Sample records for exit network proteins

  1. The Differential Roles of Budding Yeast Tem1p, Cdc15p, and Bub2p Protein Dynamics in Mitotic ExitD⃞V⃞

    PubMed Central

    Molk, Jeffrey N.; Schuyler, Scott C.; Liu, Jenny Y.; Evans, James G.; Salmon, E. D.; Pellman, David; Bloom, Kerry

    2004-01-01

    In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade. PMID:14718561

  2. Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells.

    PubMed

    Tooze, J; Tooze, S A; Fuller, S D

    1987-09-01

    Murine hepatitis virus (strain A59), (MHV-A59) is a coronavirus that buds into pre-Golgi compartments and then exploits the exocytic pathway of the host cell to reach the exterior. The fibroblastic cells in which replication of this virus is usually studied have only a constitutive exocytic pathway that the virus uses. MHV-A59 also infects, albeit inefficiently, AtT20 cells, murine pituitary tumor cells with a regulated as well as a constitutive exocytic pathway. Here we examine AtT20 cells at early times after the infection, when the Golgi apparatus retains its morphological and biochemical integrity. We observe that progeny coronavirus and secretory protein destined for the secretory granules of the regulated exocytic pathway traverse the same Golgi stacks and accumulate in the trans-Golgi network. Their pathways diverge at this site, the condensed secretory proteins including the ACTH going to the secretory granules and the coronavirus to post-Golgi transport vesicles devoid of ACTH. On very rare occasions there is missorting such that aggregates of condensed secretory proteins and viruses occur together in post-Golgi vesicles. We conclude that the constitutive and regulated exocytic pathways, identified respectively by the progeny virions and the secretory protein ACTH, diverge at the exit from the trans-Golgi network.

  3. A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae.

    PubMed Central

    Asakawa, K; Yoshida, S; Otake, F; Toh-e, A

    2001-01-01

    Exit from mitosis requires the inactivation of cyclin-dependent kinase (CDK) activity. In the budding yeast Saccharomyces cerevisiae, a number of gene products have been identified as components of the signal transduction network regulating inactivation of CDK (called the MEN, for the mitotic exit network). Cdc15, one of such components of the MEN, is an essential protein kinase. By the two-hybrid screening, we identified Cdc15 as a binding protein of Tem1 GTPase, another essential regulator of the MEN. Coprecipitation experiments revealed that Tem1 binds to Cdc15 in vivo. By deletion analysis, we found that the Tem1-binding domain resides near the conserved kinase domain of Cdc15. The cdc15-LF mutation, which was introduced into the Tem1-binding domain, reduced the interaction with Cdc15 and Tem1 and caused temperature-sensitive growth.The kinase activity of Cdc15 was not so much affected by the cdc15-LF mutation. However, Cdc15-LF failed to localize to the SPB at the restrictive temperature. Our data show that the interaction with Tem1 is important for the function of Cdc15 and that Cdc15 and Tem1 function in a complex to direct the exit from mitosis. PMID:11290702

  4. Predicting network modules of cell cycle regulators using relative protein abundance statistics.

    PubMed

    Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J

    2017-02-28

    Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.

  5. Inhibition of the Mitotic Exit Network in Response to Damaged Telomeres

    PubMed Central

    Valerio-Santiago, Mauricio; de los Santos-Velázquez, Ana Isabel; Monje-Casas, Fernando

    2013-01-01

    When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN), in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression. PMID:24130507

  6. The Ribosome Shape Directs mRNA Translocation through Entrance and Exit Dynamics

    USDA-ARS?s Scientific Manuscript database

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs (transfer ribonucleic acids) and mRNA (messenger ribonucleic acid); here the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal struc...

  7. Small protein domains fold inside the ribosome exit tunnel.

    PubMed

    Marino, Jacopo; von Heijne, Gunnar; Beckmann, Roland

    2016-03-01

    Cotranslational folding of small protein domains within the ribosome exit tunnel may be an important cellular strategy to avoid protein misfolding. However, the pathway of cotranslational folding has so far been described only for a few proteins, and therefore, it is unclear whether folding in the ribosome exit tunnel is a common feature for small protein domains. Here, we have analyzed nine small protein domains and determined at which point during translation their folding generates sufficient force on the nascent chain to release translational arrest by the SecM arrest peptide, both in vitro and in live E. coli cells. We find that all nine protein domains initiate folding while still located well within the ribosome exit tunnel. © 2016 Federation of European Biochemical Societies.

  8. Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit.

    PubMed

    Rock, Jeremy M; Amon, Angelika

    2011-09-15

    In budding yeast, a Ras-like GTPase signaling cascade known as the mitotic exit network (MEN) promotes exit from mitosis. To ensure the accurate execution of mitosis, MEN activity is coordinated with other cellular events and restricted to anaphase. The MEN GTPase Tem1 has been assumed to be the central switch in MEN regulation. We show here that during an unperturbed cell cycle, restricting MEN activity to anaphase can occur in a Tem1 GTPase-independent manner. We found that the anaphase-specific activation of the MEN in the absence of Tem1 is controlled by the Polo kinase Cdc5. We further show that both Tem1 and Cdc5 are required to recruit the MEN kinase Cdc15 to spindle pole bodies, which is both necessary and sufficient to induce MEN signaling. Thus, Cdc15 functions as a coincidence detector of two essential cell cycle oscillators: the Polo kinase Cdc5 synthesis/degradation cycle and the Tem1 G-protein cycle. The Cdc15-dependent integration of these temporal (Cdc5 and Tem1 activity) and spatial (Tem1 activity) signals ensures that exit from mitosis occurs only after proper genome partitioning.

  9. A Histidine Aspartate Ionic Lock Gates the Iron Passage in Miniferritins from Mycobacterium smegmatis*

    PubMed Central

    Williams, Sunanda Margrett; Chandran, Anu V.; Vijayabaskar, Mahalingam S.; Roy, Sourav; Balaram, Hemalatha; Vishveshwara, Saraswathi; Vijayan, Mamannamana; Chatterji, Dipankar

    2014-01-01

    Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8–2.2 Å for the various mutants to compare structural alterations vis à vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release. PMID:24573673

  10. Dropped out or pushed out? Insurance market exit and provider market power in Medicare Advantage.

    PubMed

    Pelech, Daria

    2017-01-01

    This paper explores how provider and insurer market power affect which markets an insurer chooses to operate in. A 2011 policy change required that certain private insurance plans in Medicare form provider networks de novo; in response, insurers cancelled two-thirds of the affected plans. Using detailed data on pre-policy provider and insurer market structure, I compare markets where insurers built networks to those they exited. Overall, insurers in the most concentrated hospital and physician markets were 9 and 13 percentage points more likely to exit, respectively, than those in the least concentrated markets. Conversely, insurers with more market power were less likely to exit than those with less, and an insurer's market power had the largest effect on exit in concentrated hospital markets. These findings suggest that concentrated provider markets contribute to insurer exit and that insurers with less market power have more difficulty surviving in concentrated provider markets. Published by Elsevier B.V.

  11. G1 arrest and differentiation can occur independently of Rb family function

    PubMed Central

    Wirt, Stacey E.; Adler, Adam S.; Gebala, Véronique; Weimann, James M.; Schaffer, Bethany E.; Saddic, Louis A.; Viatour, Patrick; Vogel, Hannes; Chang, Howard Y.; Meissner, Alex

    2010-01-01

    The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway. PMID:21059851

  12. Endoplasmic Reticulum Stress and Associated ROS

    PubMed Central

    Zeeshan, Hafiz Maher Ali; Lee, Geum Hwa; Kim, Hyung-Ryong; Chae, Han-Jung

    2016-01-01

    The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases. PMID:26950115

  13. A nonlinear q-voter model with deadlocks on the Watts-Strogatz graph

    NASA Astrophysics Data System (ADS)

    Sznajd-Weron, Katarzyna; Michal Suszczynski, Karol

    2014-07-01

    We study the nonlinear $q$-voter model with deadlocks on a Watts-Strogats graph. Using Monte Carlo simulations, we obtain so called exit probability and exit time. We determine how network properties, such as randomness or density of links influence exit properties of a model.

  14. Efficient protein targeting to the inner nuclear membrane requires Atlastin-dependent maintenance of ER topology

    PubMed Central

    Pawar, Sumit; Ungricht, Rosemarie; Tiefenboeck, Peter; Leroux, Jean-Christophe

    2017-01-01

    Newly synthesized membrane proteins are targeted to the inner nuclear membrane (INM) by diffusion within the membrane system of the endoplasmic reticulum (ER), translocation through nuclear pore complexes (NPCs) and retention on nuclear partners. Using a visual in vitro assay we previously showed that efficient protein targeting to the INM depends on nucleotide hydrolysis. We now reveal that INM targeting is GTP-dependent. Exploiting in vitro reconstitution and in vivo analysis of INM targeting, we establish that Atlastins, membrane-bound GTPases of the ER, sustain the efficient targeting of proteins to the INM by their continued activity in preserving ER topology. When ER topology is altered, the long-range diffusional exchange of proteins in the ER network and targeting efficiency to the INM are diminished. Highlighting the general importance of proper ER topology, we show that Atlastins also influence NPC biogenesis and timely exit of secretory cargo from the ER. PMID:28826471

  15. Automatic, time-interval traffic counts for recreation area management planning

    Treesearch

    D. L. Erickson; C. J. Liu; H. K. Cordell

    1980-01-01

    Automatic, time-interval recorders were used to count directional vehicular traffic on a multiple entry/exit road network in the Red River Gorge Geological Area, Daniel Boone National Forest. Hourly counts of entering and exiting traffic differed according to recorder location, but an aggregated distribution showed a delayed peak in exiting traffic thought to be...

  16. Synergistic Blockade of Mitotic Exit by Two Chemical Inhibitors of the APC/C

    PubMed Central

    Sackton, Katharine L.; Dimova, Nevena; Zeng, Xing; Tian, Wei; Zhang, Mengmeng; Sackton, Timothy B.; Meaders, Johnathan; Pfaff, Kathleen L.; Sigoillot, Frederic; Yu, Hongtao; Luo, Xuelian; King, Randall W.

    2014-01-01

    Summary Protein machines are multi-subunit protein complexes that orchestrate highly regulated biochemical tasks. An example is the Anaphase-Promoting Complex/Cyclosome (APC/C), a thirteen-subunit ubiquitin ligase that initiates the metaphase-anaphase transition and mitotic exit by targeting proteins such as securin and cyclin B1 for ubiquitin-dependent destruction by the proteasome1,2. Because blocking mitotic exit is an effective approach for inducing tumor cell death3,4, the APC/C represents a potential novel target for cancer therapy. APC/C activation in mitosis requires binding of Cdc205, which forms a co-receptor with the APC/C to recognize substrates containing a Destruction box (D-box)6-14. Here we demonstrate that we can synergistically inhibit APC/C-dependent proteolysis and mitotic exit by simultaneously disrupting two protein-protein interactions within the APC/C-Cdc20-substrate ternary complex. We identified a small molecule, called apcin (APC inhibitor), which binds to Cdc20 and competitively inhibits the ubiquitylation of D-box-containing substrates. Analysis of the crystal structure of the apcin-Cdc20 complex suggests that apcin occupies the D-box-binding pocket on the side face of the WD40-domain. The ability of apcin to block mitotic exit is synergistically amplified by co-addition of tosyl-L-arginine methyl ester (TAME), a small molecule that blocks the APC/C-Cdc20 interaction15,16. This work suggests that simultaneous disruption of multiple, weak protein-protein interactions is an effective approach for inactivating a protein machine. PMID:25156254

  17. Structure-Templated Predictions of Novel Protein Interactions from Sequence Information

    PubMed Central

    Betel, Doron; Breitkreuz, Kevin E; Isserlin, Ruth; Dewar-Darch, Danielle; Tyers, Mike; Hogue, Christopher W. V

    2007-01-01

    The multitude of functions performed in the cell are largely controlled by a set of carefully orchestrated protein interactions often facilitated by specific binding of conserved domains in the interacting proteins. Interacting domains commonly exhibit distinct binding specificity to short and conserved recognition peptides called binding profiles. Although many conserved domains are known in nature, only a few have well-characterized binding profiles. Here, we describe a novel predictive method known as domain–motif interactions from structural topology (D-MIST) for elucidating the binding profiles of interacting domains. A set of domains and their corresponding binding profiles were derived from extant protein structures and protein interaction data and then used to predict novel protein interactions in yeast. A number of the predicted interactions were verified experimentally, including new interactions of the mitotic exit network, RNA polymerases, nucleotide metabolism enzymes, and the chaperone complex. These results demonstrate that new protein interactions can be predicted exclusively from sequence information. PMID:17892321

  18. Degradation of Hof1 by SCFGrr1 is important for actomyosin contraction during cytokinesis in yeast

    PubMed Central

    Blondel, Marc; Bach, Stéphane; Bamps, Sophie; Dobbelaere, Jeroen; Wiget, Philippe; Longaretti, Céline; Barral, Yves; Meijer, Laurent; Peter, Matthias

    2005-01-01

    SCF-type (SCF: Skp1–Cullin–F-box protein complex) E3 ligases regulate ubiquitin-dependent degradation of many cell cycle regulators, mainly at the G1/S transition. Here, we show that SCFGrr1 functions during cytokinesis by degrading the PCH protein Hof1. While Hof1 is required early in mitosis to assemble a functional actomyosin ring, it is specifically degraded late in mitosis and remains unstable during the entire G1 phase of the cell cycle. Degradation of Hof1 depends on its PEST motif and a functional 26S proteasome. Interestingly, degradation of Hof1 is independent of APCCdh1, but instead requires the SCFGrr1 E3 ligase. Grr1 is recruited to the mother–bud neck region after activation of the mitotic-exit network, and interacts with Hof1 in a PEST motif-dependent manner. Our results also show that downregulation of Hof1 at the end of mitosis is necessary to allow efficient contraction of the actomyosin ring and cell separation during cytokinesis. SCFGrr1-mediated degradation of Hof1 may thus represent a novel mechanism to couple exit from mitosis with initiation of cytokinesis. PMID:15775961

  19. Control of the mitotic exit network during meiosis

    PubMed Central

    Attner, Michelle A.; Amon, Angelika

    2012-01-01

    The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division. PMID:22718910

  20. Sec16 in conventional and unconventional exocytosis: Working at the interface of membrane traffic and secretory autophagy?

    PubMed

    Tang, Bor Luen

    2017-12-01

    Sec16 is classically perceived to be a scaffolding protein localized to the transitional endoplasmic reticulum (tER) or the ER exit sites (ERES), and has a conserved function in facilitating coat protein II (COPII) complex-mediated ER exit. Recent findings have, however, pointed toward a role for Sec16 in unconventional exocytosis of certain membrane proteins, such as the Cystic fibrosis transmembrane conductance regulator (CFTR) in mammalian cells, and possibly also α-integrin in certain contexts of Drosophila development. In this regard, Sec16 interacts with components of a recently deciphered pathway of stress-induced unconventional exocytosis, which is dependent on the tether protein Golgi reassembly stacking proteins (GRASPs) and the autophagy pathway. Intriguingly, Sec16 also appears to be post-translationally modified by autophagy-related signaling processes. Sec16 is known to be phosphorylated by the atypical extracellular signal regulated kinase 7 (Erk7) upon serum and amino acid starvation, both represent conditions that trigger autophagy. Recent work has also shown that Sec16 is phosphorylated, and thus regulated by the prominent autophagy-initiating Unc-51-like autophagy activating kinase 1 (Ulk1), as well as another autophagy modulator Leucine-rich repeat kinase 2 (Lrrk2). The picture emerging from Sec16's network of physical and functional interactors allows the speculation that Sec16 is situated (and may in yet undefined ways function) at the interface between COPII-mediated exocytosis of conventional vesicular traffic and the GRASP/autophagy-dependent mode of unconventional exocytosis. © 2017 Wiley Periodicals, Inc.

  1. A trans-membrane segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase

    PubMed Central

    2009-01-01

    Membrane protein integration occurs predominantly at the endoplasmic reticulum and is mediated by the translocon, which is formed by the Sec61p complex. The translocon binds to the ribosome at the polypeptide exit site such that integration occurs in a cotranslational manner. Ribosomal protein Rpl17 is positioned such that it contacts both the ribosome exit tunnel and the surface of the ribosome near the exit site, where it is intimately associated with the translocon. The presence of a trans-membrane (TM) segment inside the ribosomal exit tunnel leads to the recruitment of RAMP4 to the translocon at a site adjacent to Rpl17. This suggests a signaling function for Rpl17 such that it can recognize a TM segment inside the ribosome and triggers rearrangements of the translocon, priming it for subsequent TM segment integration. PMID:19468070

  2. Exit of Plasmodium Sporozoites from Oocysts Is an Active Process That Involves the Circumsporozoite Protein

    PubMed Central

    Wang, Qian; Fujioka, Hisashi; Nussenzweig, Victor

    2005-01-01

    Plasmodium sporozoites develop within oocysts residing in the mosquito midgut. Mature sporozoites exit the oocysts, enter the hemolymph, and invade the salivary glands. The circumsporozoite (CS) protein is the major surface protein of salivary gland and oocyst sporozoites. It is also found on the oocyst plasma membrane and on the inner surface of the oocyst capsule. CS protein contains a conserved motif of positively charged amino acids: region II-plus, which has been implicated in the initial stages of sporozoite invasion of hepatocytes. We investigated the function of region II-plus by generating mutant parasites in which the region had been substituted with alanines. Mutant parasites produced normal numbers of sporozoites in the oocysts, but the sporozoites were unable to exit the oocysts. In in vitro as well, there was a profound delay, upon trypsin treatment, in the release of mutant sporozoites from oocysts. We conclude that the exit of sporozoites from oocysts is an active process that involves the region II-plus of CS protein. In addition, the mutant sporozoites were not infective to young rats. These findings provide a new target for developing reagents that interfere with the transmission of malaria. PMID:16201021

  3. Saccharomyces cerevisiae Mob1p Is Required for Cytokinesis and Mitotic Exit

    PubMed Central

    Luca, Francis C.; Mody, Manali; Kurischko, Cornelia; Roof, David M.; Giddings, Thomas H.; Winey, Mark

    2001-01-01

    The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G1 by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G1 transition to control cyclin-CDK inactivation and cytokinesis. PMID:11564880

  4. D1-Asn-298 in photosystem II is involved in a hydrogen-bond network near the redox-active tyrosine YZ for proton exit during water oxidation.

    PubMed

    Nagao, Ryo; Ueoka-Nakanishi, Hanayo; Noguchi, Takumi

    2017-12-08

    In photosynthetic water oxidation, two water molecules are converted into one oxygen molecule and four protons at the Mn 4 CaO 5 cluster in photosystem II (PSII) via the S-state cycle. Efficient proton exit from the catalytic site to the lumen is essential for this process. However, the exit pathways of individual protons through the PSII proteins remain to be identified. In this study, we examined the involvement of a hydrogen-bond network near the redox-active tyrosine Y Z in proton transfer during the S-state cycle. We focused on spectroscopic analyses of a site-directed variant of D1-Asn-298, a residue involved in a hydrogen-bond network near Y Z We found that the D1-N298A mutant of Synechocystis sp. PCC 6803 exhibits an O 2 evolution activity of ∼10% of the wild-type. D1-N298A and the wild-type D1 had very similar features of thermoluminescence glow curves and of an FTIR difference spectrum upon Y Z oxidation, suggesting that the hydrogen-bonded structure of Y Z and electron transfer from the Mn 4 CaO 5 cluster to Y Z were little affected by substitution. In the D1-N298A mutant, however, the flash-number dependence of delayed luminescence showed a monotonic increase without oscillation, and FTIR difference spectra of the S-state cycle indicated partial and significant inhibition of the S 2 → S 3 and S 3 → S 0 transitions, respectively. These results suggest that the D1-N298A substitution inhibits the proton transfer processes in the S 2 → S 3 and S 3 → S 0 transitions. This in turn indicates that the hydrogen-bond network near Y Z can be functional as a proton transfer pathway during photosynthetic water oxidation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Exit probability of the one-dimensional q-voter model: Analytical results and simulations for large networks

    NASA Astrophysics Data System (ADS)

    Timpanaro, André M.; Prado, Carmen P. C.

    2014-05-01

    We discuss the exit probability of the one-dimensional q-voter model and present tools to obtain estimates about this probability, both through simulations in large networks (around 107 sites) and analytically in the limit where the network is infinitely large. We argue that the result E(ρ )=ρq/ρq+(1-ρ)q, that was found in three previous works [F. Slanina, K. Sznajd-Weron, and P. Przybyła, Europhys. Lett. 82, 18006 (2008), 10.1209/0295-5075/82/18006; R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008), 10.1209/0295-5075/82/18007, for the case q =2; and P. Przybyła, K. Sznajd-Weron, and M. Tabiszewski, Phys. Rev. E 84, 031117 (2011), 10.1103/PhysRevE.84.031117, for q >2] using small networks (around 103 sites), is a good approximation, but there are noticeable deviations that appear even for small systems and that do not disappear when the system size is increased (with the notable exception of the case q =2). We also show that, under some simple and intuitive hypotheses, the exit probability must obey the inequality ρq/ρq+(1-ρ)≤E(ρ)≤ρ/ρ +(1-ρ)q in the infinite size limit. We believe this settles in the negative the suggestion made [S. Galam and A. C. R. Martins, Europhys. Lett. 95, 48005 (2001), 10.1209/0295-5075/95/48005] that this result would be a finite size effect, with the exit probability actually being a step function. We also show how the result that the exit probability cannot be a step function can be reconciled with the Galam unified frame, which was also a source of controversy.

  6. Spatial signals link exit from mitosis to spindle position.

    PubMed

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-05-11

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT- bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position.

  7. The Prenylated Rab GTPase Receptor PRA1.F4 Contributes to Protein Exit from the Golgi Apparatus.

    PubMed

    Lee, Myoung Hui; Yoo, Yun-Joo; Kim, Dae Heon; Hanh, Nguyen Hong; Kwon, Yun; Hwang, Inhwan

    2017-07-01

    Prenylated Rab acceptor1 (PRA1) functions in the recruitment of prenylated Rab proteins to their cognate organelles. Arabidopsis ( Arabidopsis thaliana ) contains a large number of proteins belonging to the AtPRA1 family. However, their physiological roles remain largely unknown. Here, we investigated the physiological role of AtPRA1.F4, a member of the AtPRA1 family. A T-DNA insertion knockdown mutant of AtPRA1.F4 , atpra1.f4 , was smaller in stature than parent plants and possessed shorter roots, whereas transgenic plants overexpressing HA:AtPRA1.F4 showed enhanced development of secondary roots and root hairs. However, both overexpression and knockdown plants exhibited increased sensitivity to high-salt stress, lower vacuolar Na + /K + -ATPase and plasma membrane ATPase activities, lower and higher pH in the vacuole and apoplast, respectively, and highly vesiculated Golgi apparatus. HA:AtPRA1.F4 localized to the Golgi apparatus and assembled into high-molecular-weight complexes. atpra1.f4 plants displayed a defect in vacuolar trafficking, which was complemented by low but not high levels of HA : AtPRA1.F4 Overexpression of HA:AtPRA1.F4 also inhibited protein trafficking at the Golgi apparatus, albeit differentially depending on the final destination or type of protein: trafficking of vacuolar proteins, plasma membrane proteins, and trans-Golgi network (TGN)-localized SYP61 was strongly inhibited; trafficking of TGN-localized SYP51 was slightly inhibited; and trafficking of secretory proteins and TGN-localized SYP41 was negligibly or not significantly inhibited. Based on these results, we propose that Golgi-localized AtPRA1.F4 is involved in the exit of many but not all types of post-Golgi proteins from the Golgi apparatus. Additionally, an appropriate level of AtPRA1.F4 is crucial for its function at the Golgi apparatus. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Role of protein kinase D in Golgi exit and lysosomal targeting of the transmembrane protein, Mcoln1

    PubMed Central

    Marks, David L.; Holicky, Eileen L.; Wheatley, Christine L.; Frumkin, Ayala; Bach, Gideon; Pagano, Richard E.

    2012-01-01

    The targeting of lysosomal transmembrane proteins from the Golgi apparatus to lysosomes is a complex process that is only beginning to be understood. Here, the lysosomal targeting of Mcoln1, the transmembrane protein defective in the autosomal recessive disease, Mucolipidosis, type IV, was studied by over-expressing full length and truncated forms of the protein in human cells, followed by detection using immunofluorescence and immunoblotting. We demonstrated that a 53 amino acid C-terminal region of Mcoln1 is required for efficient exit from the Golgi. Truncations lacking this region exhibited reduced delivery to lysosomes and decreased proteolytic cleavage of Mcoln1 into characteristic ~35 kDa fragments, suggesting that this cleavage occurs in lysosomes. In addition, we found that co-expression of full length Mcoln1 with kinase-inactive protein kinase D (PKD) 1 or 2 inhibited Mcoln1 Golgi exit and transport to lysosomes and decreased Mcoln1 cleavage. These studies suggest that PKDs play a role in the delivery of some lysosomal resident transmembrane proteins from the Golgi to the lysosomes. PMID:22268962

  9. [Characterization of access to normal childbirth care in Bahia State, Brazil, based on graph theory].

    PubMed

    Sousa, Ludmilla Monfort Oliveira; Araújo, Edna Maria de; Miranda, José Garcia Vivas

    2017-12-18

    Origin-destination flow is a phenomenon that can be modeled as a network. Graph theory is a mathematical tool to characterize a network and thus allows studying the topological properties and temporal and spatial development of a set of related elements. The article aims to estimate the topological evolution of an inter-municipal network of normal deliveries. We selected the admissions for normal deliveries in the Hospital Information System of the Brazilian Unified National Health System, from 2008 to 2014, for women residing in Bahia State, Brazil. The following indices were applied: entry degree (from how many municipalities the women came for childbirth), exit degree (to how many municipalities they left), entry flow (how many women came), exit flow (how many women left), and the mean size of the exit edge (distance traveled). Analyses between macro-regions used the following indicators: proportion of normal deliveries performed outside the municipality of residence and mean size of the exit edge. The results indicate an increase in deliveries performed outside the municipality of residence, in addition to the persistence of concentration of deliveries in the hub municipalities in the Health Regions, and an increase in the distance between the municipality of residence and the municipality where the delivery took place. The organization of networks for normal childbirth poses an on-going challenge. It is important to analyze the flow of women for childbirth care in order to support the establishment of inter-municipal references to guarantee safe labor and childbirth. In conclusion, it is necessary to develop a regionalized network to meet the demand by pregnant women in the territory with universal and equitable coverage.

  10. Spatial signals link exit from mitosis to spindle position

    PubMed Central

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-01-01

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT– bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position. DOI: http://dx.doi.org/10.7554/eLife.14036.001 PMID:27166637

  11. Experimental models for Murray’s law

    NASA Astrophysics Data System (ADS)

    Akita, Dai; Kunita, Itsuki; Fricker, Mark D.; Kuroda, Shigeru; Sato, Katsuhiko; Nakagaki, Toshiyuki

    2017-01-01

    Transport networks are ubiquitous in multicellular organisms and include leaf veins, fungal mycelia and blood vessels. While transport of materials and signals through the network plays a crucial role in maintaining the living system, the transport capacity of the network can best be understood in terms of hydrodynamics. We report here that plasmodium from the large, single-celled amoeboid Physarum was able to construct a hydrodynamically optimized vein-network when evacuating biomass from confined arenas of various shapes through a narrow exit. Increasingly thick veins developed towards the exit, and the network spanned the arena via repetitive bifurcations to give a branching tree. The Hausdorff distance from all parts of the plasmodium to the vein network was kept low, whilst the hydrodynamic conductivity from distal parts of the network to the exit was equivalent, irrespective of the arena shape. This combination of spatial patterning and differential vein thickening served to evacuate biomass at an equivalent rate across the entire arena. The scaling relationship at the vein branches was determined experimentally to be 2.53-3.29, consistent with predictions from Murray’s law. Furthermore, we show that mathematical models for self-organised, adaptive transport in Physarum simulate the experimental network organisation well if the scaling coefficient of the current-reinforcement rule is set to 3. In simulations, this resulted in rapid development of an optimal network that minimised the combined volume and frictional energy in comparison with other scaling coefficients. This would predict that the boundary shear forces within each vein are constant throughout the network, and would be consistent with a feedback mechanism based on a sensing a threshold shear at the vein wall.

  12. Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis

    PubMed Central

    Vizeacoumar, Franco J.; van Dyk, Nydia; S.Vizeacoumar, Frederick; Cheung, Vincent; Li, Jingjing; Sydorskyy, Yaroslav; Case, Nicolle; Li, Zhijian; Datti, Alessandro; Nislow, Corey; Raught, Brian; Zhang, Zhaolei; Frey, Brendan; Bloom, Kerry

    2010-01-01

    We describe the application of a novel screening approach that combines automated yeast genetics, synthetic genetic array (SGA) analysis, and a high-content screening (HCS) system to examine mitotic spindle morphogenesis. We measured numerous spindle and cellular morphological parameters in thousands of single mutants and corresponding sensitized double mutants lacking genes known to be involved in spindle function. We focused on a subset of genes that appear to define a highly conserved mitotic spindle disassembly pathway, which is known to involve Ipl1p, the yeast aurora B kinase, as well as the cell cycle regulatory networks mitotic exit network (MEN) and fourteen early anaphase release (FEAR). We also dissected the function of the kinetochore protein Mcm21p, showing that sumoylation of Mcm21p regulates the enrichment of Ipl1p and other chromosomal passenger proteins to the spindle midzone to mediate spindle disassembly. Although we focused on spindle disassembly in a proof-of-principle study, our integrated HCS-SGA method can be applied to virtually any pathway, making it a powerful means for identifying specific cellular functions. PMID:20065090

  13. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit.

    PubMed

    Poleshko, Andrey; Mansfield, Katelyn M; Burlingame, Caroline C; Andrake, Mark D; Shah, Neil R; Katz, Richard A

    2013-10-31

    The nuclear lamina is a protein meshwork that lies under the inner nuclear membrane of metazoan cells. One function of the nuclear lamina is to organize heterochromatin at the inner nuclear periphery. However, very little is known about how heterochromatin attaches to the nuclear lamina and how such attachments are restored at mitotic exit. Here, we show that a previously unstudied human protein, PRR14, functions to tether heterochromatin to the nuclear periphery during interphase, through associations with heterochromatin protein 1 (HP1) and the nuclear lamina. During early mitosis, PRR14 is released from the nuclear lamina and chromatin and remains soluble. Strikingly, at the onset of anaphase, PRR14 is incorporated rapidly into chromatin through HP1 binding. Finally, in telophase, PRR14 relocalizes to the reforming nuclear lamina. This stepwise reassembly of PRR14 suggests a function in the selection of HP1-bound heterochromatin for reattachment to the nuclear lamina as cells exit mitosis.

  14. The Human Protein PRR14 Tethers Heterochromatin to the Nuclear Lamina During Interphase and Mitotic Exit

    PubMed Central

    Poleshko, Andrey; Mansfield, Katelyn M.; Burlingame, Caroline C.; Andrake, Mark D.; Shah, Neil R.; Katz, Richard A.

    2013-01-01

    SUMMARY The nuclear lamina is a protein meshwork that lies under the inner nuclear membrane of metazoan cells. One function of the nuclear lamina is to organize heterochromatin at the inner nuclear periphery. However, very little is known about how heterochromatin attaches to the nuclear lamina and how such attachments are restored at mitotic exit. Here we show that a previously unstudied human protein, PRR14, functions to tether heterochromatin to the nuclear periphery during interphase, through associations with heterochromatin protein 1 (HP1) and the nuclear lamina. During early mitosis, PRR14 is released from the nuclear lamina and chromatin, and remains soluble. Strikingly, at the onset of anaphase, PRR14 is incorporated rapidly into chromatin through HP1 binding. Finally, in telophase, PRR14 relocalizes to the reforming nuclear lamina. This stepwise reassembly of PRR14 suggests a novel function in the selection of HP1–bound heterochromatin for reattachment to the nuclear lamina as cells exit mitosis. PMID:24209742

  15. Intelligent Exit-Selection Behaviors during a Room Evacuation

    NASA Astrophysics Data System (ADS)

    Zarita, Zainuddin; Lim Eng, Aik

    2012-01-01

    A modified version of the existing cellular automata (CA) model is proposed to simulate an evacuation procedure in a classroom with and without obstacles. Based on the numerous literature on the implementation of CA in modeling evacuation motions, it is notable that most of the published studies do not take into account the pedestrian's ability to select the exit route in their models. To resolve these issues, we develop a CA model incorporating a probabilistic neural network for determining the decision-making ability of the pedestrians, and simulate an exit-selection phenomenon in the simulation. Intelligent exit-selection behavior is observed in our model. From the simulation results, it is observed that occupants tend to select the exit closest to them when the density is low, but if the density is high they will go to an alternative exit so as to avoid a long wait. This reflects the fact that occupants may not fully utilize multiple exits during evacuation. The improvement in our proposed model is valuable for further study and for upgrading the safety aspects of building designs.

  16. The Spo12 protein of Saccharomyces cerevisiae: a regulator of mitotic exit whose cell cycle-dependent degradation is mediated by the anaphase-promoting complex.

    PubMed Central

    Shah, R; Jensen, S; Frenz, L M; Johnson, A L; Johnston, L H

    2001-01-01

    The Spo12 protein plays a regulatory role in two of the most fundamental processes of biology, mitosis and meiosis, and yet its biochemical function remains elusive. In this study we concentrate on the genetic and biochemical analysis of its mitotic function. Since high-copy SPO12 is able to suppress a wide variety of mitotic exit mutants, all of which arrest with high Clb-Cdc28 activity, we speculated whether SPO12 is able to facilitate exit from mitosis when overexpressed by antagonizing mitotic kinase activity. We show, however, that Spo12 is not a potent regulator of Clb-Cdc28 activity and can function independently of either the cyclin-dependent kinase inhibitor (CDKi), Sic1, or the anaphase-promoting complex (APC) regulator, Hct1. Spo12 protein level is regulated by the APC and the protein is degraded in G1 by an Hct1-dependent mechanism. We also demonstrate that in addition to localizing to the nucleus Spo12 is a nucleolar protein. We propose a model where overexpression of Spo12 may lead to the delocalization of a small amount of Cdc14 from the nucleolus, resulting in a sufficient lowering of mitotic kinase levels to facilitate mitotic exit. Finally, site-directed mutagenesis of highly conserved residues in the Spo12 protein sequence abolishes both its mitotic suppressor activity as well as its meiotic function. This result is the first indication that Spo12 may carry out the same biochemical function in mitosis as it does in meiosis. PMID:11729145

  17. Molecular dynamics simulation of the last step of a catalytic cycle: product release from the active site of the enzyme chorismate mutase from Mycobacterium tuberculosis.

    PubMed

    Choutko, Alexandra; van Gunsteren, Wilfred F

    2012-11-01

    The protein chorismate mutase MtCM from Mycobacterium tuberculosis catalyzes one of the few pericyclic reactions known in biology: the transformation of chorismate to prephenate. Chorismate mutases have been widely studied experimentally and computationally to elucidate the transition state of the enzyme catalyzed reaction and the origin of the high catalytic rate. However, studies about substrate entry and product exit to and from the highly occluded active site of the enzyme have to our knowledge not been performed on this enzyme. Crystallographic data suggest a possible substrate entry gate, that involves a slight opening of the enzyme for the substrate to access the active site. Using multiple molecular dynamics simulations, we investigate the natural dynamic process of the product exiting from the binding pocket of MtCM. We identify a dominant exit pathway, which is in agreement with the gate proposed from the available crystallographic data. Helices H2 and H4 move apart from each other which enables the product to exit from the active site. Interestingly, in almost all exit trajectories, two residues arginine 72 and arginine 134, which participate in the burying of the active site, are accompanying the product on its exit journey from the catalytic site. Copyright © 2012 The Protein Society.

  18. Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase.

    PubMed

    Ghane, Tahereh; Gorriz, Rene F; Wrzalek, Sandro; Volkenandt, Senta; Dalatieh, Ferand; Reidelbach, Marco; Imhof, Petra

    2018-02-12

    Proton transfer in cytochrome c oxidase (CcO) from the cellular inside to the binuclear redox centre as well as proton pumping through the membrane takes place through proton entrance via two distinct pathways, the D- and K-channel. Both channels show a dependence of their hydration level on the protonation states of their key residues, K362 for the K-channel, and E286 or D132 for the D-channel. In the oxidative half of CcO's catalytic cycle the D-channel is the proton-conducting path. For this channel, an interplay of protonation state of the D-channel residues with the water and hydrogen-bond dynamics has been observed in molecular dynamics simulations of the CcO protein, embedded in a lipid bi-layer, modelled in different protonation states. Protonation of residue E286 at the end of the D-channel results in a hydrogen-bonded network pointing from E286 to N139, that is against proton transport, and favouring N139 conformations which correspond to a closed asparagine gate (formed by residues N121 and N139). Consequently, the hydration level is lower than with unprotonated E286. In those models, the Asn gate is predominantly open, allowing water molecules to pass and thus increase the hydration level. The hydrogen-bonded network in these states exhibits longer life times of the Asn residues with water than other models and shows the D-channel to be traversable from the entrance, D132, to exit, E286. The D-channel can thus be regarded as auto-regulated with respect to proton transport, allowing proton passage only when required, that is the proton is located at the lower part of the D-channel (D132 to Asn gate) and not at the exit (E286).

  19. Architecture of the Mammalian Golgi

    PubMed Central

    Klumperman, Judith

    2011-01-01

    Since its first visualization in 1898, the Golgi has been a topic of intense morphological research. A typical mammalian Golgi consists of a pile of stapled cisternae, the Golgi stack, which is a key station for modification of newly synthesized proteins and lipids. Distinct stacks are interconnected by tubules to form the Golgi ribbon. At the entrance site of the Golgi, the cis-Golgi, vesicular tubular clusters (VTCs) form the intermediate between the endoplasmic reticulum and the Golgi stack. At the exit site of the Golgi, the trans-Golgi, the trans-Golgi network (TGN) is the major site of sorting proteins to distinct cellular locations. Golgi functioning can only be understood in light of its complex architecture, as was revealed by a range of distinct electron microscopy (EM) approaches. In this article, a general concept of mammalian Golgi architecture, including VTCs and the TGN, is described. PMID:21502307

  20. Retrograde traffic from the Golgi to the endoplasmic reticulum.

    PubMed

    Spang, Anne

    2013-06-01

    Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels--SNARE proteins--to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years.

  1. Studying the Role of the Mitotic Exit Network in Cytokinesis.

    PubMed

    Foltman, Magdalena; Sanchez-Diaz, Alberto

    2017-01-01

    In budding yeast cells, cytokinesis is achieved by the successful division of the cytoplasm into two daughter cells, but the precise mechanisms of cell division and its regulation are still rather poorly understood. The Mitotic Exit Network (MEN) is the signaling cascade that is responsible for the release of Cdc14 phosphatase leading to the inactivation of the kinase activity associated to cyclin-dependent kinases (CDK), which drives exit from mitosis and a rapid and efficient cytokinesis. Mitotic CDK impairs the activation of MEN before anaphase, and activation of MEN in anaphase leads to the inactivation of CDK, which presents a challenge to determine the contribution that each pathway makes to the successful onset of cytokinesis. To determine CDK and MEN contribution to cytokinesis irrespectively of each other, here we present methods to induce cytokinesis after the inactivation of CDK activity in temperature sensitive mutants of the MEN pathway. An array of methods to monitor the cellular events associated with the successful cytokinesis is included.

  2. Camera Network Topology Discovery Literature Review

    DTIC Science & Technology

    2011-11-01

    essential for 21st century military, enviromental and surveillance applications [Devarajan, Cheng & Radke 2008]. Computer networks pose several research...starting and ending points of object trajectories into entry/exit regions [Makris & Ellis 2003]. 3LDA is a new standard for document analysis. The model

  3. Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites.

    PubMed

    Tosha, Takehiko; Behera, Rabindra K; Theil, Elizabeth C

    2012-11-05

    Ferritins, a complex, mineralized, protein nanocage family essential for life, provide iron concentrates and oxidant protection. Protein-based ion channels and Fe(II)/O(2) catalysis initiate conversion of thousands of Fe atoms to caged, ferritin Fe(2)O(3)·H(2)O minerals. The ion channels consist of six helical segments, contributed by 3 of 12 or 24 polypeptide subunits, around the 3-fold cage axes. The channel structure guides entering Fe(II) ions toward multiple, catalytic, diiron sites buried inside ferritin protein helices, ~20 Å away from channel internal exits. The catalytic product, Fe(III)-O(H)-Fe(III), is a mineral precursor; mineral nucleation begins inside the protein cage with mineral growth in the central protein cavity (5-8 nm diameter). Amino acid substitutions that changed ionic or hydrophobic channel interactions R72D, D122R, and L134P increased ion channel structural disorder (protein crystallographic analyses) and increased Fe(II) exit [chelated Fe(II) after ferric mineral reduction/dissolution]. Since substitutions of some channel carboxylate residues diminished ferritin catalysis with no effect on Fe(II) exit, such as E130A and D127A, we investigated catalysis in ferritins with altered Fe(II) exit, R72D, D122R and L134P. The results indicate that simply changing the ionic properties of the channels, as in the R72D variant, need not change the forward catalytic rate. However, both D122R and L134P, which had dramatic effects on ferritin catalysis, also caused larger effects on channel structure and order, contrasting with R72D. All three amino acid substitutions, however, decreased the stability of the catalytic intermediate, diferric peroxo, even though overall ferritin cage structure is very stable, resisting 80 °C and 6 M urea. The localized structural changes in ferritin subdomains that affect ferritin function over long distances illustrate new properties of the protein cage in natural ferritin function and for applied ferritin uses.

  4. The Molecular Chaperone Hsp90 Is Required for Cell Cycle Exit in Drosophila melanogaster

    PubMed Central

    Bandura, Jennifer L.; Jiang, Huaqi; Nickerson, Derek W.; Edgar, Bruce A.

    2013-01-01

    The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite+ reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis. PMID:24086162

  5. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    PubMed

    Bandura, Jennifer L; Jiang, Huaqi; Nickerson, Derek W; Edgar, Bruce A

    2013-01-01

    The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  6. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors.

    PubMed

    Mari, Muriel; Bujny, Miriam V; Zeuschner, Dagmar; Geerts, Willie J C; Griffith, Janice; Petersen, Claus M; Cullen, Pete J; Klumperman, Judith; Geuze, Hans J

    2008-03-01

    Mannose-6-phosphate receptors (MPRs) transport lysosomal hydrolases from the trans Golgi network (TGN) to endosomes. Recently, the multi-ligand receptor sortilin has also been implicated in this transport, but the transport carriers involved herein have not been identified. By quantitative immuno-electron microscopy, we localized endogenous sortilin of HepG2 cells predominantly to the TGN and endosomes. In the TGN, sortilin colocalized with MPRs in the same clathrin-coated vesicles. In endosomes, sortilin and MPRs concentrated in sorting nexin 1 (SNX1)-positive buds and vesicles. SNX1 depletion by small interfering RNA resulted in decreased pools of sortilin in the TGN and an increase in lysosomal degradation. These data indicate that sortilin and MPRs recycle to the TGN in SNX1-dependent carriers, which we named endosome-to-TGN transport carriers (ETCs). Notably, ETCs emerge from early endosomes (EE), lack recycling plasma membrane proteins and by three-dimensional electron tomography exhibit unique structural features. Hence, ETCs are distinct from hitherto described EE-derived membranes involved in recycling. Our data emphasize an important role of EEs in recycling to the TGN and indicate that different, specialized exit events occur on the same EE vacuole.

  7. Pin1 as a Biomarker of ER+ Breast Cancers to Predict the Response to Tamoxifen and mTOR Inhibitors

    DTIC Science & Technology

    2009-04-01

    for Pin1 in modulating S6K and Akt activity. We did, however, find a modest but reproducible defect in global protein synthesis and G0 exit. To...MEFs led to a small but reproducible defect in global protein synthesis and G0 exit. The immune system is comprised of multiple cell types that...and Franchi , L. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and

  8. Retrograde Traffic from the Golgi to the Endoplasmic Reticulum

    PubMed Central

    Spang, Anne

    2013-01-01

    Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels—SNARE proteins—to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years. PMID:23732476

  9. Molecular Signaling Involved in Entry and Exit of Malaria Parasites from Host Erythrocytes.

    PubMed

    Singh, Shailja; Chitnis, Chetan E

    2017-10-03

    During the blood stage, Plasmodium spp. merozoites invade host red blood cells (RBCs), multiply, exit, and reinvade uninfected RBCs in a continuing cycle that is responsible for all the clinical symptoms associated with malaria. Entry into (invasion) and exit from (egress) RBCs are highly regulated processes that are mediated by an array of parasite proteins with specific functional roles. Many of these parasite proteins are stored in specialized apical secretory vesicles, and their timely release is critical for successful invasion and egress. For example, the discharge of parasite protein ligands to the apical surface of merozoites is required for interaction with host receptors to mediate invasion, and the timely discharge of proteases and pore-forming proteins helps in permeabilization and dismantling of limiting membranes during egress. This review focuses on our understanding of the signaling mechanisms that regulate apical organelle secretion during host cell invasion and egress by malaria parasites. The review also explores how understanding key signaling mechanisms in the parasite can open opportunities to develop novel strategies to target Plasmodium parasites and eliminate malaria. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Acid Rain

    MedlinePlus

    ... Clean Air Status and Trends Network (CASTNET) Surface Water Monitoring National Atmospheric Deposition Program (NADP) Exit Interstate Air Pollution Transport Contact Us to ask a question, provide ...

  11. Maxi- and mini-ferritins: minerals and protein nanocages.

    PubMed

    Bevers, Loes E; Theil, Elizabeth C

    2011-01-01

    Ferritins synthesize ferric oxide biominerals and are central to all life for concentrating iron and protection against oxidative stress from the ferrous and oxidant chemistry. The ferritin protein nanocages and biomineral synthesis are discussed in terms of wide biological distribution of the maxi-ferritins (24 subunit ± heme) and mini-ferritins (Dps) (12 subunit), conservations of the iron/oxygen catalytic sites in the protein cages, mineral formation (step i. Fe(II) entry and binding, step ii. O(2) or H(2)O(2) binding and formation of transition intermediates, step iii. release of differric oxo mineral precursors from active sites, step iv. nucleation and mineralization) properties of the minerals, and protein control of mineral dissolution and release of Fe(II). Pores in ferritin protein cages control iron entry for mineralization and iron exit after mineral dissolution. The relationship between phosphate or the presence of catalytically inactive subunits (animal L subunits) and ferritin iron mineral disorder is developed based on new information about contributions of ferritin protein cage structure to nucleation in protein cage subunit channels that exit close enough to those of other subunits and exiting mineral nuclei to facilitate bulk mineral formation. How and where protons move in and out of the protein during mineral synthesis and dissolution, how ferritin cage assembly with 12 or 24 subunits is encoded in the widely divergent ferritin amino acid sequences, and what is the role of the protein in synthesis of the bulk mineral are all described as problems requiring new approaches in future investigations of ferritin biominerals.

  12. Structural Insights into E. coli Porphobilinogen Deaminase during Synthesis and Exit of 1-Hydroxymethylbilane

    PubMed Central

    Bulusu, Gopalakrishnan

    2014-01-01

    Porphobilinogen deaminase (PBGD) catalyzes the formation of 1-hydroxymethylbilane (HMB), a crucial intermediate in tetrapyrrole biosynthesis, through a step-wise polymerization of four molecules of porphobilinogen (PBG), using a unique dipyrromethane (DPM) cofactor. Structural and biochemical studies have suggested residues with catalytic importance, but their specific role in the mechanism and the dynamic behavior of the protein with respect to the growing pyrrole chain remains unknown. Molecular dynamics simulations of the protein through the different stages of pyrrole chain elongation suggested that the compactness of the overall protein decreases progressively with addition of each pyrrole ring. Essential dynamics showed that domains move apart while the cofactor turn region moves towards the second domain, thus creating space for the pyrrole rings added at each stage. Residues of the flexible active site loop play a significant role in its modulation. Steered molecular dynamics was performed to predict the exit mechanism of HMB from PBGD at the end of the catalytic cycle. Based on the force profile and minimal structural changes the proposed path for the exit of HMB is through the space between the domains flanking the active site loop. Residues reported as catalytically important, also play an important role in the exit of HMB. Further, upon removal of HMB, the structure of PBGD gradually relaxes to resemble its initial stage structure, indicating its readiness to resume a new catalytic cycle. PMID:24603363

  13. BiP and Multiple DNAJ Molecular Chaperones in the Endoplasmic Reticulum Are Required for Efficient Simian Virus 40 Infection

    PubMed Central

    Goodwin, Edward C.; Lipovsky, Alex; Inoue, Takamasa; Magaldi, Thomas G.; Edwards, Anne P. B.; Van Goor, Kristin E. Y.; Paton, Adrienne W.; Paton, James C.; Atwood, Walter J.; Tsai, Billy; DiMaio, Daniel

    2011-01-01

    ABSTRACT Simian virus 40 (SV40) is a nonenveloped DNA virus that traffics through the endoplasmic reticulum (ER) en route to the nucleus, but the mechanisms of capsid disassembly and ER exit are poorly understood. We conducted an unbiased RNA interference screen to identify cellular genes required for SV40 infection. SV40 infection was specifically inhibited by up to 50-fold by knockdown of four different DNAJ molecular cochaperones or by inhibition of BiP, the Hsp70 partner of DNAJB11. These proteins were not required for the initiation of capsid disassembly, but knockdown markedly inhibited SV40 exit from the ER. In addition, BiP formed a complex with SV40 capsids in the ER in a DNAJB11-dependent fashion. These experiments identify five new cellular proteins required for SV40 infection and suggest that the binding of BiP to the capsid is required for ER exit. Further studies of these proteins will provide insight into the molecular mechanisms of polyomavirus infection and ER function. PMID:21673190

  14. Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells

    PubMed Central

    Schmitz, Michael H. A.; Held, Michael; Janssens, Veerle; Hutchins, James R. A.; Hudecz, Otto; Ivanova, Elitsa; Goris, Jozef; Trinkle-Mulcahy, Laura; Lamond, Angus I.; Poser, Ina; Hyman, Anthony A.; Mechtler, Karl; Peters, Jan-Michael; Gerlich, Daniel W.

    2013-01-01

    When vertebrate cells exit mitosis various cellular structures are re-organized to build functional interphase cells1. This depends on Cdk1 (cyclin dependent kinase 1) inactivation and subsequent dephosphorylation of its substrates2–4. Members of the protein phosphatase 1 and 2A (PP1 and PP2A) families can dephosphorylate Cdk1 substrates in biochemical extracts during mitotic exit5,6, but how this relates to postmitotic reassembly of interphase structures in intact cells is not known. Here, we use a live-cell imaging assay and RNAi knockdown to screen a genome-wide library of protein phosphatases for mitotic exit functions in human cells. We identify a trimeric PP2A–B55α complex as a key factor in mitotic spindle breakdown and postmitotic reassembly of the nuclear envelope, Golgi apparatus and decondensed chromatin. Using a chemically induced mitotic exit assay, we find that PP2A–B55α functions downstream of Cdk1 inactivation. PP2A–B55α isolated from mitotic cells had reduced phosphatase activity towards the Cdk1 substrate, histone H1, and was hyper-phosphorylated on all subunits. Mitotic PP2A complexes co-purified with the nuclear transport factor importin-β1, and RNAi depletion of importin-β1 delayed mitotic exit synergistically with PP2A–B55α. This demonstrates that PP2A–B55α and importin-β1 cooperate in the regulation of postmitotic assembly mechanisms in human cells. PMID:20711181

  15. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain

    PubMed Central

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan

    2017-01-01

    Abstract The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson–Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. PMID:28369621

  16. Golgi-independent secretory trafficking through recycling endosomes in neuronal dendrites and spines

    PubMed Central

    Bowen, Aaron B; Bourke, Ashley M; Hiester, Brian G; Hanus, Cyril

    2017-01-01

    Neurons face the challenge of regulating the abundance, distribution and repertoire of integral membrane proteins within their immense, architecturally complex dendritic arbors. While the endoplasmic reticulum (ER) supports dendritic translation, most dendrites lack the Golgi apparatus (GA), an essential organelle for conventional secretory trafficking. Thus, whether secretory cargo is locally trafficked in dendrites through a non-canonical pathway remains a fundamental question. Here we define the dendritic trafficking itinerary for key synaptic molecules in rat cortical neurons. Following ER exit, the AMPA-type glutamate receptor GluA1 and neuroligin 1 undergo spatially restricted entry into the dendritic secretory pathway and accumulate in recycling endosomes (REs) located in dendrites and spines before reaching the plasma membrane. Surprisingly, GluA1 surface delivery occurred even when GA function was disrupted. Thus, in addition to their canonical role in protein recycling, REs also mediate forward secretory trafficking in neuronal dendrites and spines through a specialized GA-independent trafficking network. PMID:28875935

  17. Mutations in CENPE define a novel kinetochore-centromeric mechanism for Microcephalic Primordial Dwarfism

    PubMed Central

    Mirzaa, Ghayda M.; Vitre, Benjamin; Carpenter, Gillian; Abramowicz, Iga; Gleeson, Joseph G.; Paciorkowski, Alex R.; Cleveland, Don W.; Dobyns, William B.; O’Driscoll, Mark

    2015-01-01

    Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of Primary Microcephaly (PM) and Microcephalic Primordial Dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organisation, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated Microcephalic Osteodysplastic Primordial Dwarfism type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans. PMID:24748105

  18. Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism.

    PubMed

    Mirzaa, Ghayda M; Vitre, Benjamin; Carpenter, Gillian; Abramowicz, Iga; Gleeson, Joseph G; Paciorkowski, Alex R; Cleveland, Don W; Dobyns, William B; O'Driscoll, Mark

    2014-08-01

    Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans.

  19. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.

    PubMed

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan; Polacek, Norbert

    2017-06-20

    The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson-Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Experimental investigation of the 2D ion beam profile generated by an ESI octopole-QMS system.

    PubMed

    Syed, Sarfaraz U A H; Eijkel, Gert B; Kistemaker, Piet; Ellis, Shane; Maher, Simon; Smith, Donald F; Heeren, Ron M A

    2014-10-01

    In this paper, we have employed an ion imaging approach to investigate the behavior of ions exiting from a quadrupole mass spectrometer (QMS) system that employs a radio frequency octopole ion guide before the QMS. An in-vacuum active pixel detector (Timepix) is employed at the exit of the QMS to image the ion patterns. The detector assembly simultaneously records the ion impact position and number of ions per pixel in every measurement frame. The transmission characteristics of the ion beam exiting the QMS are studied using this imaging detector under different operating conditions. Experimental results confirm that the ion spatial distribution exiting the QMS is heavily influenced by ion injection conditions. Furthermore, ion images from Timepix measurements of protein standards demonstrate the capability to enhance the quality of the mass spectral information and provide a detailed insight in the spatial distribution of different charge states (and hence different m/z) ions exiting the QMS.

  1. Tripartite assembly of RND multidrug efflux pumps

    NASA Astrophysics Data System (ADS)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier

    2016-02-01

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  2. Structure and dimerization of the catalytic domain of the protein phosphatase Cdc14p, a key regulator of mitotic exit in Saccharomyces cerevisiae.

    PubMed

    Kobayashi, Junya; Matsuura, Yoshiyuki

    2017-10-01

    In the budding yeast Saccharomyces cerevisiae, the protein phosphatase Cdc14p orchestrates various events essential for mitotic exit. We have determined the X-ray crystal structures at 1.85 Å resolution of the catalytic domain of Cdc14p in both the apo state, and as a complex with S160-phosphorylated Swi6p peptide. Each asymmetric unit contains two Cdc14p chains arranged in an intimately associated homodimer, consistent with its oligomeric state in solution. The dimerization interface is located on the backside of the substrate-binding cleft. Structure-based mutational analyses indicate that the dimerization of Cdc14p is required for normal growth of yeast cells. © 2017 The Protein Society.

  3. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells

    PubMed Central

    Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena

    2012-01-01

    In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906

  4. A stochastic and dynamical view of pluripotency in mouse embryonic stem cells

    PubMed Central

    Lee, Esther J.

    2018-01-01

    Pluripotent embryonic stem cells are of paramount importance for biomedical sciences because of their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated applications of statistical and machine learning methods for inferring topologies of pluripotency regulating genetic networks. The inferred network topologies, however, often only encode Boolean information while remaining silent about the roles of dynamics and molecular stochasticity inherent in gene expression. Herein we develop a framework for systematically extending Boolean-level network topologies into higher resolution models of networks which explicitly account for the promoter architectures and gene state switching dynamics. We show the framework to be useful for disentangling the various contributions that gene switching, external signaling, and network topology make to the global heterogeneity and dynamics of transcription factor populations. We find the pluripotent state of the network to be a steady state which is robust to global variations of gene switching rates which we argue are a good proxy for epigenetic states of individual promoters. The temporal dynamics of exiting the pluripotent state, on the other hand, is significantly influenced by the rates of genetic switching which makes cells more responsive to changes in extracellular signals. PMID:29451874

  5. A map of protein dynamics during cell-cycle progression and cell-cycle exit

    PubMed Central

    Gookin, Sara; Min, Mingwei; Phadke, Harsha; Chung, Mingyu; Moser, Justin; Miller, Iain; Carter, Dylan

    2017-01-01

    The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence. PMID:28892491

  6. U.S. Army Research Laboratory 2010 Annual Review

    DTIC Science & Technology

    2010-12-01

    Translation Between Scales battlefield neuroscience Neuro-Cognitive Measurement Cognitive/Information – Decision Making Neurally Inspired Systems...the areas of Bioscience, Neuroscience , Network Science of Decision Making, Nanoscience, GaN High Power Electronics, Power for Microsystems, Graphene...source project POF, and NSA Trickler have also demonstrated that networks can be understood through passive observation of traffic as it exits a

  7. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila.

    PubMed

    Sousa-Nunes, Rita; Yee, Lih Ling; Gould, Alex P

    2011-03-24

    Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.

  8. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine

    PubMed Central

    Winn, Peter J.; Lüdemann, Susanna K.; Gauges, Ralph; Lounnas, Valère; Wade, Rebecca C.

    2002-01-01

    Understanding the mechanism and specificity of substrate binding in the cytochrome P450 (P450) superfamily is an important step toward explaining its key role in drug metabolism, toxicity, xenobiotic degradation, and several biosynthetic pathways. Here we investigate the ligand exit pathways and mechanisms of P450cam (CYP101), P450BM-3 (CYP102), and P450eryF (CYP107A1) by using random expulsion molecular dynamics and classical molecular dynamics simulations. Although several different pathways are found for each protein, one pathway is common to all three. The mechanism of ligand exit along this pathway is, however, quite different in the three different proteins. For P450cam, small backbone conformational changes, in combination with aromatic side chain rotation, allow for the passage of the rather rigid, compact, and hydrophobic substrate, camphor. In P450BM-3, larger transient backbone changes are observed on ligand exit. R47, situated at the entrance to the channel, appears important in guiding negatively charged fatty acid substrates in and out of the active site. In P450eryF, an isolated buried arginine, R185, stabilized by four hydrogen bonds to backbone carbonyl oxygen atoms, is located in the exit channel and is identified as having a particularly unusual functionality, dynamically gating channel opening. The results for these three P450s suggest that the channel opening mechanisms are adjusted to the physico-chemical properties of the substrate and can kinetically modulate protein-substrate specificity. PMID:11959989

  9. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction.

    PubMed

    Saher, Gesine; Quintes, Susanne; Möbius, Wiebke; Wehr, Michael C; Krämer-Albers, Eva-Maria; Brügger, Britta; Nave, Klaus-Armin

    2009-05-13

    Rapid impulse conduction requires electrical insulation of axons by myelin, a cholesterol-rich extension of the glial cell membrane with a characteristic composition of proteins and lipids. Mutations in several myelin protein genes cause endoplasmic reticulum (ER) retention and disease, presumably attributable to failure of misfolded proteins to pass the ER quality control. Because many myelin proteins partition into cholesterol-rich membrane rafts, their interaction with cholesterol could potentially be part of the ER quality control system. Here, we provide in vitro and in vivo evidence that the major peripheral myelin protein P0 requires cholesterol for exiting the ER and reaching the myelin compartment. Cholesterol dependency of P0 trafficking in heterologous cells is mediated by a cholesterol recognition/interaction amino acid consensus (CRAC) motif. Mutant mice lacking cholesterol biosynthesis in Schwann cells suffer from severe hypomyelination with numerous uncompacted myelin stretches. This demonstrates that high-level cholesterol coordinates P0 export with myelin membrane synthesis, which is required for the correct stoichiometry of myelin components and for myelin compaction.

  10. Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry.

    PubMed

    Theil, Elizabeth C

    2011-04-01

    The ferritin superfamily is composed of ancient, nanocage proteins with an internal cavity, 60% of total volume, that reversibly synthesize solid minerals of hydrated ferric oxide; the minerals are iron concentrates for cell nutrition as well as antioxidants due to ferrous and oxygen consumption during mineralization. The cages have multiple iron entry/exit channels, oxidoreductase enzyme sites, and, in eukaryotes, Fe(III)O nucleation channels with clustered exits that extend protein activity to include facilitated mineral growth. Ferritin protein cage differences include size, amino acid sequence, and location of the active sites, oxidant substrate and crystallinity of the iron mineral. Genetic regulation depends on iron and oxygen signals, which in animals includes direct ferrous signaling to RNA to release and to ubiquitin-ligases to degrade the protein repressors. Ferritin biosynthesis forms, with DNA, mRNA and the protein product, a feedback loop where the genetic signals are also protein substrates. The ferritin protein nanocages, which are required for normal iron homeostasis and are finding current use in the delivery of nanodrugs, novel nanomaterials, and nanocatalysts, are likely contributors to survival and success during the transition from anaerobic to aerobic life. Copyright © 2011. Published by Elsevier Ltd.

  11. Ferritin Protein Nanocages Use Ion Channels, Catalytic Sites, and Nucleation Channels To Manage Iron/Oxygen Chemistry

    PubMed Central

    Theil, Elizabeth C.

    2011-01-01

    The ferritin superfamily is composed of ancient, nanocage proteins with an internal cavity, 60% of total volume, that reversibly synthesize solid minerals of hydrated ferric oxide; the minerals are iron concentrates for cell nutrition as well as antioxidants due to ferrous and oxygen consumption during mineralization. The cages have multiple iron entry/exit channels, oxidoreductase enzyme sites, and, in eukaryotes, Fe(III)O nucleation channels with clustered exits that extend protein activity to include facilitated mineral growth. Ferritin protein cage differences include size, amino acid sequence, and location of the active sites, oxidant substrate and crystallinity of the iron mineral. Genetic regulation depends on iron and oxygen signals, which in animals includes direct ferrous signaling to RNA to release and to ubiquitin-ligases to degrade the protein repressors. Ferritin biosynthesis forms, with DNA, mRNA and the protein product, a feedback loop where the genetic signals are also protein substrates. The ferritin protein nanocages, which are required for normal iron homeostasis and are finding current use in delivery of nanodrugs, novel nanomaterials, and nanocatalysts, are likely contributors to survival and success during the transition from anaerobic to aerobic life. PMID:21296609

  12. A Folding Zone in the Ribosomal Exit Tunnel for Kv1.3 Helix Formation

    PubMed Central

    Tu, LiWei; Deutsch, Carol

    2010-01-01

    SUMMARY Although it is now clear that protein secondary structure can be acquired early, while the nascent peptide resides within the ribosomal exit tunnel, the principles governing folding of native polytopic proteins have not yet been elucidated. We now report an extensive investigation of native Kv1.3, a voltage-gated K+ channel, including transmembrane and linker segments synthesized in sequence. These native segments form helices vectorially (N- to C-terminus) only in a permissive vestibule located in the last 20Å of the tunnel. Native linker sequences similarly fold in this vestibule. Finally, secondary structure acquired in the ribosome is retained in the translocon. These findings emerge from accessibility studies of a diversity of native transmembrane and linker sequences and may therefore be applicable to protein biogenesis in general. PMID:20060838

  13. Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks

    NASA Astrophysics Data System (ADS)

    Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan

    2012-02-01

    Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.

  14. Characterization of new mutants in the early part of the yeast secretory pathway isolated by a (/sup 3/H)mannose suicide selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, A.P.; Ferro-Novick, S.

    We have adapted a (/sup 3/H)mannose suicide selection to identify mutations in additional genes which function in the early part of the yeast secretory pathway. Thus far this protocol has led to the identification of two new genes which are implicated in this process, as well as additional alleles of previously identified genes. The new mutants, bet1 and bet2, are temperature sensitive for growth and protein transport. Thin section analysis has revealed the accumulation of a network of endoplasmic reticulum (ER) at the restrictive temperature (37/sup 0/C). Precursors of exported proteins that accumulate in the cell at 37/sup 0/C aremore » terminally core glycosylated. These observations suggest that the transport of precursors is blocked subsequent to translocation into the ER but before entry into the Golgi apparatus. The bet1 and bet2 mutants define two new complementation groups which have the same properties as previously identified ER-accumulating mutants. This and previous findings suggest that protein exit from the ER and entry into the Golgi apparatus is a complex process requiring at least 11 genes.« less

  15. Disruption of the hydrogen bonding network determines the pH-induced non-fluorescent state of the fluorescent protein ZsYellow by protonation of Glu221.

    PubMed

    Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun

    2017-11-04

    Many fluorescent proteins (FPs) exhibit fluorescence quenching at a low pH. This pH-induced non-fluorescent state of an FP serves as a useful indicator of the cellular pH. ZsYellow is widely used as an optical marker in molecular biology, but its pH-induced non-fluorescent state has not been characterized. Here, we report the pH-dependent spectral properties of ZsYellow, which exhibited the pH-induced non-fluorescence state at a pH below 4.0. We determined the crystal structures of ZsYellow at pH 3.5 (non-fluorescence state) and 8.0 (fluorescence state), which revealed the cis-configuration of the chromophore without pH-induced isomerization. In the non-fluorescence state, Arg95, which is involved in stabilization of the exited state of the chromophore, was found to more loosely interact with the carbonyl oxygen atom of the chromophore when compared to the interaction at pH 8.0. In the fluorescence state, Glu221, which is involved in the hydrogen bonding network around the chromophore, stably interacted with Gln42 and His202. By contrast, in the non-fluorescence state, the protonated conserved Glu221 residue exhibited a large conformational change and was separated from His202 by 5.46 Å, resulting in breakdown of the hydrogen bond network. Our results provide insight into the critical role of the conserved Glu221 residue for generating the pH-induced non-fluorescent state. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ribosome protection by antibiotic resistance ATP-binding cassette protein.

    PubMed

    Su, Weixin; Kumar, Veerendra; Ding, Yichen; Ero, Rya; Serra, Aida; Lee, Benjamin Sian Teck; Wong, Andrew See Weng; Shi, Jian; Sze, Siu Kwan; Yang, Liang; Gao, Yong-Gui

    2018-05-15

    The ribosome is one of the richest targets for antibiotics. Unfortunately, antibiotic resistance is an urgent issue in clinical practice. Several ATP-binding cassette family proteins confer resistance to ribosome-targeting antibiotics through a yet unknown mechanism. Among them, MsrE has been implicated in macrolide resistance. Here, we report the cryo-EM structure of ATP form MsrE bound to the ribosome. Unlike previously characterized ribosomal protection proteins, MsrE is shown to bind to ribosomal exit site. Our structure reveals that the domain linker forms a unique needle-like arrangement with two crossed helices connected by an extended loop projecting into the peptidyl-transferase center and the nascent peptide exit tunnel, where numerous antibiotics bind. In combination with biochemical assays, our structure provides insight into how MsrE binding leads to conformational changes, which results in the release of the drug. This mechanism appears to be universal for the ABC-F type ribosome protection proteins. Copyright © 2018 the Author(s). Published by PNAS.

  17. Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis.

    PubMed

    Fritch, Benjamin; Kosolapov, Andrey; Hudson, Phillip; Nissley, Daniel A; Woodcock, H Lee; Deutsch, Carol; O'Brien, Edward P

    2018-04-18

    Mechanical forces acting on the ribosome can alter the speed of protein synthesis, indicating that mechanochemistry can contribute to translation control of gene expression. The naturally occurring sources of these mechanical forces, the mechanism by which they are transmitted 10 nm to the ribosome's catalytic core, and how they influence peptide bond formation rates are largely unknown. Here, we identify a new source of mechanical force acting on the ribosome by using in situ experimental measurements of changes in nascent-chain extension in the exit tunnel in conjunction with all-atom and coarse-grained computer simulations. We demonstrate that when the number of residues composing a nascent chain increases, its unstructured segments outside the ribosome exit tunnel generate piconewtons of force that are fully transmitted to the ribosome's P-site. The route of force transmission is shown to be through the nascent polypetide's backbone, not through the wall of the ribosome's exit tunnel. Utilizing quantum mechanical calculations we find that a consequence of such a pulling force is to decrease the transition state free energy barrier to peptide bond formation, indicating that the elongation of a nascent chain can accelerate translation. Since nascent protein segments can start out as largely unfolded structural ensembles, these results suggest a pulling force is present during protein synthesis that can modulate translation speed. The mechanism of force transmission we have identified and its consequences for peptide bond formation should be relevant regardless of the source of the pulling force.

  18. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate.

    PubMed

    Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J

    2011-06-14

    The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.

  19. The Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors

    PubMed Central

    Xie, Yonggang; Li, Xiaosu; Zhang, Xian; Mei, Shaolin; Li, Hongyu; Urso, Andreacarola; Zhu, Sijun

    2014-01-01

    Intermediate neural progenitor cells (INPs) need to avoid differentiation and cell cycle exit while maintaining restricted developmental potential, but mechanisms preventing differentiation and cell cycle exit of INPs are not well understood. In this study, we report that the Drosophila homolog of mammalian Sp8 transcription factor Buttonhead (Btd) prevents premature differentiation and cell cycle exit of INPs in Drosophila larval type II neuroblast (NB) lineages. We show that the loss of Btd leads to elimination of mature INPs due to premature differentiation of INPs into terminally dividing ganglion mother cells. We provide evidence to demonstrate that Btd prevents the premature differentiation by suppressing the expression of the homeodomain protein Prospero in immature INPs. We further show that Btd functions cooperatively with the Ets transcription factor Pointed P1 to promote the generation of INPs. Thus, our work reveals a critical mechanism that prevents premature differentiation and cell cycle exit of Drosophila INPs. DOI: http://dx.doi.org/10.7554/eLife.03596.001 PMID:25285448

  20. Quasi-2D Unsteady Flow Procedure for Real Fluids (PREPRINT)

    DTIC Science & Technology

    2006-05-17

    water /steam/ oil piping networks, refinery systems, gas-turbine secondary flow -path and cooling networks...friction factor, f, which is a function of the local Reynolds number and the wall surface roughness . For the viscous flow examples presented below, the...3.5 4 4.5 Time ( s ) V el oc ity (m / s ) Line 2 Inlet 25% 50% 75% Exit Velocity Figure 4. Water transient viscous pipe flow using

  1. Analytical expression for the exit probability of the q -voter model in one dimension

    NASA Astrophysics Data System (ADS)

    Timpanaro, André M.; Galam, Serge

    2015-07-01

    We present in this paper an approximation that is able to give an analytical expression for the exit probability of the q -voter model in one dimension. This expression gives a better fit for the more recent data about simulations in large networks [A. M. Timpanaro and C. P. C. do Prado, Phys. Rev. E 89, 052808 (2014), 10.1103/PhysRevE.89.052808] and as such departs from the expression ρ/qρq+(1-ρ ) q found in papers that investigated small networks only [R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008), 10.1209/0295-5075/82/18007; P. Przybyła et al., Phys. Rev. E 84, 031117 (2011), 10.1103/PhysRevE.84.031117; F. Slanina et al., Europhys. Lett. 82, 18006 (2008), 10.1209/0295-5075/82/18006]. The approximation consists in assuming a large separation on the time scales at which active groups of agents convince inactive ones and the time taken in the competition between active groups. Some interesting findings are that for q =2 we still have ρ/2ρ2+(1-ρ ) 2 as the exit probability and for q >2 we can obtain a lower-order approximation of the form ρ/sρs+(1-ρ ) s with s varying from q for low values of q to q -1/2 for large values of q . As such, this work can also be seen as a deduction for why the exit probability ρ/qρq+(1-ρ ) q gives a good fit, without relying on mean-field arguments or on the assumption that only the first step is nondeterministic, as q and q -1/2 will give very similar results when q →∞ .

  2. Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for Coronavirus Exit from Endosomes

    PubMed Central

    Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri

    2015-01-01

    ABSTRACT Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome (MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA (siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane trafficking, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhibition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endosomes. The several host factors identified in this study may provide avenues for targeted therapeutics. IMPORTANCE Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. However, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this study may provide directions for future research on targeted therapeutics. PMID:26311884

  3. The Alphavirus Exit Pathway: What We Know and What We Wish We Knew

    PubMed Central

    2018-01-01

    Alphaviruses are enveloped positive sense RNA viruses and include serious human pathogens, such as the encephalitic alphaviruses and Chikungunya virus. Alphaviruses are transmitted to humans primarily by mosquito vectors and include species that are classified as emerging pathogens. Alphaviruses assemble highly organized, spherical particles that bud from the plasma membrane. In this review, we discuss what is known about the alphavirus exit pathway during a cellular infection. We describe the viral protein interactions that are critical for virus assembly/budding and the host factors that are involved, and we highlight the recent discovery of cell-to-cell transmission of alphavirus particles via intercellular extensions. Lastly, we discuss outstanding questions in the alphavirus exit pathway that may provide important avenues for future research. PMID:29470397

  4. Phosphorylation and dephosphorylation regulate APC/CCdh1 substrate degradation

    PubMed Central

    Simpson-Lavy, Kobi J; Zenvirth, Drora; Brandeis, Michael

    2015-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation. PMID:26252546

  5. MicroRNAome genome: a treasure for cancer diagnosis and therapy

    PubMed Central

    Berindan-Neagoe, Ioana; Monroig, Paloma; Pasculli, Barbara; Calin, George A.

    2015-01-01

    The interplay between abnormalities in genes coding for proteins and microRNAs (miRNAs) has been among the most exiting yet unexpected discoveries in oncology over the last decade. The complexity of this network has redefined cancer research as these molecules produced from what was once considered “genomic trash”, have shown to be crucial for cancer initiation, progression, and dissemination. Naturally occurring miRNAs are very short transcripts that never produce a protein or amino acid chain, but act by regulating protein expression during cellular processes such as growth, development and differentiation at the transcriptional, post-transcriptional and/or translational level. In this review article we present miRNAs as ubiquitous players involved in all cancer hallmarks. We also describe the most used methods to detect their expression, which have revealed through gene expression studies the identity of hundreds of miRNAs dysregulated in cancer cells or tumor microenvironment cells. Furthermore, we discuss the role of miRNAs as hormones and as reliable cancer biomarkers and predictors of treatment-response. Along with this, we explore current strategies in designing miRNA-targeting therapeutics, as well as the associated challenges that research envisions to overcome. Finally, we introduce a new wave in molecular oncology translational research, the study of long non-coding RNAs. PMID:25104502

  6. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity

    PubMed Central

    Warenius, H M; Jones, M; Gorman, T; McLeish, R; Seabra, L; Barraclough, R; Rudland, P

    2000-01-01

    The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by γ-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. © 2000 Cancer Research Campaign PMID:10993658

  7. KLF4 Nuclear Export Requires ERK Activation and Initiates Exit from Naive Pluripotency.

    PubMed

    Dhaliwal, Navroop K; Miri, Kamelia; Davidson, Scott; Tamim El Jarkass, Hala; Mitchell, Jennifer A

    2018-04-10

    Cooperative action of a transcription factor complex containing OCT4, SOX2, NANOG, and KLF4 maintains the naive pluripotent state; however, less is known about the mechanisms that disrupt this complex, initiating exit from pluripotency. We show that, as embryonic stem cells (ESCs) exit pluripotency, KLF4 protein is exported from the nucleus causing rapid decline in Nanog and Klf4 transcription; as a result, KLF4 is the first pluripotency transcription factor removed from transcription-associated complexes during differentiation. KLF4 nuclear export requires ERK activation, and phosphorylation of KLF4 by ERK initiates interaction of KLF4 with nuclear export factor XPO1, leading to KLF4 export. Mutation of the ERK phosphorylation site in KLF4 (S132) blocks KLF4 nuclear export, the decline in Nanog, Klf4, and Sox2 mRNA, and differentiation. These findings demonstrate that relocalization of KLF4 to the cytoplasm is a critical first step in exit from the naive pluripotent state and initiation of ESC differentiation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Strategies for Transporting Data Between Classified and Unclassified Networks

    DTIC Science & Technology

    2016-03-01

    datagram protocol (UDP) must be used. The UDP is typically used when speed is a higher priority than data integrity, such as in music or video streaming ...and the exit point of data are separate and can be tightly controlled. This does effectively prevent the comingling of data and is used in industry to...perform functions such as streaming video and audio from secure to insecure networks (ref. 1). A second disadvantage lies in the fact that the

  9. Fast Recall for Complex-Valued Hopfield Neural Networks with Projection Rules.

    PubMed

    Kobayashi, Masaki

    2017-01-01

    Many models of neural networks have been extended to complex-valued neural networks. A complex-valued Hopfield neural network (CHNN) is a complex-valued version of a Hopfield neural network. Complex-valued neurons can represent multistates, and CHNNs are available for the storage of multilevel data, such as gray-scale images. The CHNNs are often trapped into the local minima, and their noise tolerance is low. Lee improved the noise tolerance of the CHNNs by detecting and exiting the local minima. In the present work, we propose a new recall algorithm that eliminates the local minima. We show that our proposed recall algorithm not only accelerated the recall but also improved the noise tolerance through computer simulations.

  10. The Endoplasmic Reticulum Exit of Glutamate Transporter Is Regulated by the Inducible Mammalian Yip6b/GTRAP3-18 Protein*Ⓢ

    PubMed Central

    Ruggiero, Alicia M.; Liu, Yiting; Vidensky, Svetlana; Maier, Susanne; Jung, Elizabeth; Farhan, Hesso; Robinson, Michael B.; Sitte, Harald H.; Rothstein, Jeffrey D.

    2015-01-01

    GTRAP3-18 interacts with and reduces the activity of the neuronal specific Na+/K+ glutamate transporter, EAAC1 both in vitro and in vivo. GTRAP3-18 and the related isoform, JM4, are distant relatives of the Rab GTPase-interacting factor PRA1, and share a topology of four transmembrane domains and cytosolic termini. GTRAP3-18 and JM4 are resident endoplasmic reticulum (ER) proteins. The physiological role of GTRAP3-18 is poorly understood. We demonstrate for the first time that GTRAP3-18 is a regulator of ER protein trafficking. Expression of GTRAP3-18 delays the ER exit of EAAC1, as well as other members of the excitatory amino acid transporter family. GTRAP3-18 uses hydrophobic domain interactions in the ER membrane to self-associate and cytoplasmic interactions at the C terminus to regulate trafficking. The features of GTRAP3-18 activity are consistent with recent phylogenic sequence analyses suggesting GTRAP3-18 and JM4 be reclassified as mammalian isoforms of the yeast protein family Yip, Yip6b, and Yip6a, respectively. PMID:18167356

  11. Trafficking Dynamics of PCSK9-Induced LDLR Degradation: Focus on Human PCSK9 Mutations and C-Terminal Domain

    PubMed Central

    Villeneuve, Louis; Demers, Annie; Mayer, Gaétan

    2016-01-01

    PCSK9 is a secreted ligand and negative post-translational regulator of low-density lipoprotein receptor (LDLR) in hepatocytes. Gain-of-function (GOF) or loss-of-function (LOF) mutations in PCSK9 are directly correlated with high or low plasma LDL-cholesterol levels, respectively. Therefore, PCSK9 is a prevailing lipid-lowering target to prevent coronary heart diseases and stroke. Herein, we fused monomeric fluorescent proteins to PCSK9 and LDLR to visualize their intra- and extracellular trafficking dynamics by live confocal microscopy. Fluorescence recovery after photobleaching (FRAP) showed that PCSK9 LOF R46L mutant and GOF mutations S127R and D129G, but not the LDLR high-affinity mutant D374Y, significantly accelerate PCSK9 exit from the endoplasmic reticulum (ER). Quantitative analysis of inverse FRAP revealed that only R46L presented a much slower trafficking from the trans-Golgi network (TGN) to the plasma membrane and a lower mobile fraction likely suggesting accumulation or delayed exit at the TGN as an underlying mechanism. While not primarily involved in LDLR binding, PCSK9 C-terminal domain (CTD) was found to be essential to induce LDLR degradation both upon its overexpression in cells or via the extracellular pathway. Our data revealed that PCSK9 CTD is required for the localization of PCSK9 at the TGN and increases its LDLR-mediated endocytosis. Interestingly, intracellular lysosomal targeting of PCSK9-ΔCTD was able to rescue its capacity to induce LDLR degradation emphasizing a role of the CTD in the sorting of PCSK9-LDLR complex towards late endocytic compartments. Finally, we validated our dual fluorescence system as a cell based-assay by preventing PCSK9 internalization using a PCSK9-LDLR blocking antibody, which may be expended to identify protein, peptide or small molecule inhibitors of PCSK9. PMID:27280970

  12. Helping Survivors of Human Trafficking: A Systematic Review of Exit and Postexit Interventions.

    PubMed

    Dell, Nathaniel A; Maynard, Brandy R; Born, Kara R; Wagner, Elizabeth; Atkins, Bonnie; House, Whitney

    2017-01-01

    Human trafficking is a global problem and results in deleterious psychological, social, and physical effects on the lives of those who are trafficked; however, it is not clear how to best intervene with survivors. The purpose of this review was to synthesize the evidence of exit and postexit intervention programs for survivors of human trafficking to inform practice and research. Systematic review methods were used to search, select, and extract data from published and unpublished experimental, quasi-experimental, and preexperimental studies that assessed the effects of any exit or postexit interventions for victims of human trafficking. The authors searched eight databases, reviewed bibliographies, and conducted forward citation searches from relevant reports and prior reviews to find studies authored between 2005 and 2015. The search yielded six eligible studies that included 155 female and 6 male survivors from four countries. Interventions were diverse, with three using a trauma-informed approach. Authors measured a myriad of outcomes, including mental health, social network, community reintegration, and employment; however, the quality of most studies was poor. Evidence of effects of exit and postexit interventions is sparse, and much of the research is poorly designed and executed; however, the needs of trafficking survivors are complex and effective interventions are desperately needed. Implications for practice and research are discussed.

  13. BST2/Tetherin Inhibition of Alphavirus Exit

    PubMed Central

    Ooi, Yaw Shin; Dubé, Mathieu; Kielian, Margaret

    2015-01-01

    Alphaviruses such as chikungunya virus (CHIKV) and Semliki Forest virus (SFV) are small enveloped RNA viruses that bud from the plasma membrane. Tetherin/BST2 is an interferon-induced host membrane protein that inhibits the release of many enveloped viruses via direct tethering of budded particles to the cell surface. Alphaviruses have highly organized structures and exclude host membrane proteins from the site of budding, suggesting that their release might be insensitive to tetherin inhibition. Here, we demonstrated that exogenously-expressed tetherin efficiently inhibited the release of SFV and CHIKV particles from host cells without affecting virus entry and infection. Alphavirus release was also inhibited by the endogenous levels of tetherin in HeLa cells. While rubella virus (RuV) and dengue virus (DENV) have structural similarities to alphaviruses, tetherin inhibited the release of RuV but not DENV. We found that two recently identified tetherin isoforms differing in length at the N-terminus exhibited distinct capabilities in restricting alphavirus release. SFV exit was efficiently inhibited by the long isoform but not the short isoform of tetherin, while both isoforms inhibited vesicular stomatitis virus exit. Thus, in spite of the organized structure of the virus particle, tetherin specifically blocks alphavirus release and shows an interesting isoform requirement. PMID:25912717

  14. The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling.

    PubMed

    Su, Ting; Cheng, Jingdong; Sohmen, Daniel; Hedman, Rickard; Berninghausen, Otto; von Heijne, Gunnar; Wilson, Daniel N; Beckmann, Roland

    2017-05-30

    Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 Å cryo-electron microscopy structure of a ribosome stalled during translation of the extremely compacted VemP nascent chain. The nascent chain forms two α-helices connected by an α-turn and a loop, enabling a total of 37 amino acids to be observed within the first 50-55 Å of the exit tunnel. The structure reveals how α-helix formation directly within the peptidyltransferase center of the ribosome interferes with aminoacyl-tRNA accommodation, suggesting that during canonical translation, a major role of the exit tunnel is to prevent excessive secondary structure formation that can interfere with the peptidyltransferase activity of the ribosome.

  15. Prediction of Drug-Target Interaction Networks from the Integration of Protein Sequences and Drug Chemical Structures.

    PubMed

    Meng, Fan-Rong; You, Zhu-Hong; Chen, Xing; Zhou, Yong; An, Ji-Yong

    2017-07-05

    Knowledge of drug-target interaction (DTI) plays an important role in discovering new drug candidates. Unfortunately, there are unavoidable shortcomings; including the time-consuming and expensive nature of the experimental method to predict DTI. Therefore, it motivates us to develop an effective computational method to predict DTI based on protein sequence. In the paper, we proposed a novel computational approach based on protein sequence, namely PDTPS (Predicting Drug Targets with Protein Sequence) to predict DTI. The PDTPS method combines Bi-gram probabilities (BIGP), Position Specific Scoring Matrix (PSSM), and Principal Component Analysis (PCA) with Relevance Vector Machine (RVM). In order to evaluate the prediction capacity of the PDTPS, the experiment was carried out on enzyme, ion channel, GPCR, and nuclear receptor datasets by using five-fold cross-validation tests. The proposed PDTPS method achieved average accuracy of 97.73%, 93.12%, 86.78%, and 87.78% on enzyme, ion channel, GPCR and nuclear receptor datasets, respectively. The experimental results showed that our method has good prediction performance. Furthermore, in order to further evaluate the prediction performance of the proposed PDTPS method, we compared it with the state-of-the-art support vector machine (SVM) classifier on enzyme and ion channel datasets, and other exiting methods on four datasets. The promising comparison results further demonstrate that the efficiency and robust of the proposed PDTPS method. This makes it a useful tool and suitable for predicting DTI, as well as other bioinformatics tasks.

  16. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis

    PubMed Central

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K.

    2012-01-01

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3′ untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior. PMID:22645327

  17. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    PubMed

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  18. A Single Amino Acid Substitution in the Core Protein of West Nile Virus Increases Resistance to Acidotropic Compounds

    PubMed Central

    Martín-Acebes, Miguel A.; Blázquez, Ana-Belén; de Oya, Nereida Jiménez; Escribano-Romero, Estela; Shi, Pei-Yong; Saiz, Juan-Carlos

    2013-01-01

    West Nile virus (WNV) is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu) on the highly basic internal capsid or core (C) protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A) and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses. PMID:23874963

  19. Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae.

    PubMed

    Melloy, Patricia G; Rose, Mark D

    2017-09-15

    Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective.

    PubMed

    Greene, Nicholas P; Kaplan, Elise; Crow, Allister; Koronakis, Vassilis

    2018-01-01

    The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.

  1. Twitter-Delivered Behavioral Weight-Loss Interventions: A Pilot Series.

    PubMed

    Pagoto, Sherry L; Waring, Molly E; Schneider, Kristin L; Oleski, Jessica L; Olendzki, Effie; Hayes, Rashelle B; Appelhans, Bradley M; Whited, Matthew C; Busch, Andrew M; Lemon, Stephenie C

    2015-10-23

    Lifestyle interventions are efficacious at reducing risk for diabetes and cardiovascular disease but have not had a significant public health impact given high cost and patient and provider burden. Online social networks may reduce the burden of lifestyle interventions to the extent that they displace in-person visits and may enhance opportunities for social support for weight loss. We conducted an iterative series of pilot studies to evaluate the feasibility and acceptability of using online social networks to deliver a lifestyle intervention. In Study 1 (n=10), obese participants with depression received lifestyle counseling via 12 weekly group visits and a private group formed using the online social network, Twitter. Mean weight loss was 2.3 pounds (SD 7.7; range -19.2 to 8.2) or 1.2% (SD 3.6) of baseline weight. A total of 67% (6/9) of participants completing exit interviews found the support of the Twitter group at least somewhat useful. In Study 2 (n=11), participants were not depressed and were required to be regular users of social media. Participants lost, on average, 5.6 pounds (SD 6.3; range -15 to 0) or 3.0% (SD 3.4) of baseline weight, and 100% (9/9) completing exit interviews found the support of the Twitter group at least somewhat useful. To explore the feasibility of eliminating in-person visits, in Study 3 (n=12), we delivered a 12-week lifestyle intervention almost entirely via Twitter by limiting the number of group visits to one, while using the same inclusion criteria as that used in Study 2. Participants lost, on average, 5.4 pounds (SD 6.4; range -14.2 to 3.9) or 3.0% (SD 3.1) of baseline weight, and 90% (9/10) completing exit interviews found the support of the Twitter group at least somewhat useful. Findings revealed that a private Twitter weight-loss group was both feasible and acceptable for many patients, particularly among regular users of social media. Future research should evaluate the efficacy and cost-effectiveness of online social network-delivered lifestyle interventions relative to traditional modalities.

  2. Twitter-Delivered Behavioral Weight-Loss Interventions: A Pilot Series

    PubMed Central

    Waring, Molly E; Schneider, Kristin L; Oleski, Jessica L; Olendzki, Effie; Hayes, Rashelle B; Appelhans, Bradley M; Whited, Matthew C; Busch, Andrew M; Lemon, Stephenie C

    2015-01-01

    Background Lifestyle interventions are efficacious at reducing risk for diabetes and cardiovascular disease but have not had a significant public health impact given high cost and patient and provider burden. Objective Online social networks may reduce the burden of lifestyle interventions to the extent that they displace in-person visits and may enhance opportunities for social support for weight loss. Methods We conducted an iterative series of pilot studies to evaluate the feasibility and acceptability of using online social networks to deliver a lifestyle intervention. Results In Study 1 (n=10), obese participants with depression received lifestyle counseling via 12 weekly group visits and a private group formed using the online social network, Twitter. Mean weight loss was 2.3 pounds (SD 7.7; range -19.2 to 8.2) or 1.2% (SD 3.6) of baseline weight. A total of 67% (6/9) of participants completing exit interviews found the support of the Twitter group at least somewhat useful. In Study 2 (n=11), participants were not depressed and were required to be regular users of social media. Participants lost, on average, 5.6 pounds (SD 6.3; range -15 to 0) or 3.0% (SD 3.4) of baseline weight, and 100% (9/9) completing exit interviews found the support of the Twitter group at least somewhat useful. To explore the feasibility of eliminating in-person visits, in Study 3 (n=12), we delivered a 12-week lifestyle intervention almost entirely via Twitter by limiting the number of group visits to one, while using the same inclusion criteria as that used in Study 2. Participants lost, on average, 5.4 pounds (SD 6.4; range -14.2 to 3.9) or 3.0% (SD 3.1) of baseline weight, and 90% (9/10) completing exit interviews found the support of the Twitter group at least somewhat useful. Findings revealed that a private Twitter weight-loss group was both feasible and acceptable for many patients, particularly among regular users of social media. Conclusions Future research should evaluate the efficacy and cost-effectiveness of online social network-delivered lifestyle interventions relative to traditional modalities. PMID:26500186

  3. Small GTPase Sar1 is crucial for proglutelin and α-globulin export from the endoplasmic reticulum in rice endosperm.

    PubMed

    Tian, Lihong; Dai, Ling Ling; Yin, Zhi Jie; Fukuda, Masako; Kumamaru, Toshihiro; Dong, Xiang Bai; Xu, Xiu Ping; Qu, Le Qing

    2013-07-01

    Rice seed storage proteins glutelin and α-globulin are synthesized in the endoplasmic reticulum (ER) and deposited in protein storage vacuoles (PSVs). Sar1, a small GTPase, acts as a molecular switch to regulate the assembly of coat protein complex II, which exports secretory protein from the ER to the Golgi apparatus. To reveal the route by which glutelin and α-globulin exit the ER, four putative Sar1 genes (OsSar1a/b/c/d) were cloned from rice, and transgenic rice were generated with Sar1 overexpressed or suppressed by RNA interference (RNAi) specifically in the endosperm under the control of the rice glutelin promoter. Overexpression or suppression of any OsSar1 did not alter the phenotype. However, simultaneous knockdown of OsSar1a/b/c resulted in floury and shrunken seeds, with an increased level of glutelin precursor and decreased level of the mature α- and β-subunit. OsSar1abc RNAi endosperm generated numerous, spherical, novel protein bodies with highly electron-dense matrixes containing both glutelin and α-globulin. Notably, the novel protein bodies were surrounded by ribosomes, showing that they were derived from the ER. Some of the ER-derived dense protein bodies were attached to a blebbing structure containing prolamin. These results indicated that OsSar1a/b/c play a crucial role in storage proteins exiting from the ER, with functional redundancy in rice endosperm, and glutelin and α-globulin transported together from the ER to the Golgi apparatus by a pathway mediated by coat protein complex II.

  4. Bone Morphogenetic Protein Regulation of Enteric Neuronal Phenotypic Diversity: Relationship to Timing of Cell Cycle Exit

    PubMed Central

    Chalazonitis, Alcmène; Pham, Tuan.D.; Li, Zhishan; Roman, Daniel; Guha, Udayan; Gomes, William; Kan, Lixin; Kessler, John A.; Gershon, Michael D.

    2008-01-01

    The effects of bone morphogenetic protein (BMP) signaling on enteric neuron development were examined in transgenic mice over expressing either the BMP inhibitor, noggin, or BMP4 under control of the neuron specific enolase (NSE) promoter. Noggin antagonism of BMP signaling increased total numbers of enteric neurons and those of subpopulations derived from precursors that exit the cell cycle early in neurogenesis (serotonin, calretinin, calbindin). In contrast, noggin overexpression decreased numbers of neurons derived from precursors that exit the cell cycle late (γ-aminobutyric acid, tyrosine hydroxylase [TH], dopamine transporter, calcitonin gene related peptide, TrkC). Numbers of TH- and TrkC-expressing neurons were increased by overexpression of BMP4. These observations are consistent with the idea that phenotypic expression in the enteric nervous system (ENS) is determined, in part, by the number of proliferative divisions neuronal precursors undergo before their terminal mitosis. BMP signaling may thus regulate enteric neuronal phenotypic diversity by promoting the exit of precursors from the cell cycle. BMP2 increased the numbers of TH- and TrkC-expressing neurons developing in vitro from immunoselected enteric crest-derived precursors; BMP signaling may thus also specify or promote the development of dopaminergic TrkC/NT-3-dependent neurons. The developmental defects in the ENS of noggin overexpressing mice caused a relatively mild disturbance of motility (irregular rapid transit and increased stool frequency, weight, and water content). Although the function of the gut thus displays a remarkable tolerance for ENS defects, subtle functional abnormalities in motility or secretion may arise when ENS defects short of aganglionosis occur during development. PMID:18537141

  5. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing.

    PubMed

    Gamalinda, Michael; Jakovljevic, Jelena; Babiano, Reyes; Talkish, Jason; de la Cruz, Jesús; Woolford, John L

    2013-02-01

    Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.

  6. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing

    PubMed Central

    Gamalinda, Michael; Jakovljevic, Jelena; Babiano, Reyes; Talkish, Jason; de la Cruz, Jesús; Woolford, John L.

    2013-01-01

    Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2. PMID:23268442

  7. Cheating or Cheated? Surviving Secondary Exit Exams in a Neoliberal Era

    ERIC Educational Resources Information Center

    Buckner, Elizabeth; Hodges, Rebecca

    2016-01-01

    Cheating on exams is a rampant and highly developed practice among youth in the Arab world, often involving elaborate networks, advanced technology and adult authorities. Rather than viewing cheating as mere laziness or immorality, this article interrogates the social meanings of cheating by comparing the practices and discourses of cheating on…

  8. A Novel College Network Resource Management Method using Cloud Computing

    NASA Astrophysics Data System (ADS)

    Lin, Chen

    At present information construction of college mainly has construction of college networks and management information system; there are many problems during the process of information. Cloud computing is development of distributed processing, parallel processing and grid computing, which make data stored on the cloud, make software and services placed in the cloud and build on top of various standards and protocols, you can get it through all kinds of equipments. This article introduces cloud computing and function of cloud computing, then analyzes the exiting problems of college network resource management, the cloud computing technology and methods are applied in the construction of college information sharing platform.

  9. Localization of the Houdinisome (Ejection Proteins) inside the Bacteriophage P22 Virion by Bubblegram Imaging

    PubMed Central

    Wu, Weimin; Leavitt, Justin C.; Cheng, Naiqian; Gilcrease, Eddie B.; Motwani, Tina; Teschke, Carolyn M.; Casjens, Sherwood R.

    2016-01-01

    ABSTRACT The P22 capsid is a T=7 icosahedrally symmetric protein shell with a portal protein dodecamer at one 5-fold vertex. Extending outwards from that vertex is a short tail, and putatively extending inwards is a 15-nm-long α-helical barrel formed by the C-terminal domains of portal protein subunits. In addition to the densely packed genome, the capsid contains three “ejection proteins” (E-proteins [gp7, gp16, and gp20]) destined to exit from the tightly sealed capsid during the process of DNA delivery into target cells. We estimated their copy numbers by quantitative SDS-PAGE as approximately 12 molecules per virion of gp16 and gp7 and 30 copies of gp20. To localize them, we used bubblegram imaging, an adaptation of cryo-electron microscopy in which gaseous bubbles induced in proteins by prolonged irradiation are used to map the proteins’ locations. We applied this technique to wild-type P22, a triple mutant lacking all three E-proteins, and three mutants each lacking one E-protein. We conclude that all three E-proteins are loosely clustered around the portal axis, in the region displaced radially inwards from the portal crown. The bubblegram data imply that approximately half of the α-helical barrel seen in the portal crystal structure is disordered in the mature virion, and parts of the disordered region present binding sites for E-proteins. Thus positioned, the E-proteins are strategically placed to pass down the shortened barrel and through the portal ring and the tail, as they exit from the capsid during an infection. PMID:27507825

  10. FUNCTION OF PHLOEM-BORNE INFORMATION MACROMOLECULES IN INTEGRATING PLANT GROWTH & DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William J. Lucas

    2012-11-12

    Studies on higher plants have revealed the operation of cell-to-cell and long-distance communication networks that mediate the transport of information macromolecules, such as proteins and RNA. Based on the findings from this DOE-funded project and results from other groups, it is now well established that the enucleate sieve tube system of the angiosperms contains a complex set of proteins including RNA binding proteins as well as a unique population of RNA molecules, comprised of both mRNA and small RNA species. Hetero-grafting experiments demonstrated that delivery of such RNA molecules, into the scion, is highly correlated with changes in developmental phenotypes.more » Furthermore, over the course of this project, our studies showed that plasmodesmata and the phloem are intimately involved in the local and systemic spread of sequence-specific signals that underlie gene silencing in plants. Major advances were also made in elucidating the underlying mechanisms that operate to mediate the selective entry and exit of proteins and RNA into and out of the phloem translocation stream. Our pioneering studies identified the first plant protein with the capacity to both bind specifically to small RNA molecules (si-RNA) and mediate in the cell-to-cell movement of such siRNA. Importantly, studies conducted with support from this DOE program also yielded a detailed characterization of the first phloem-mobile RNP complex isolated from pumpkin, namely the CmRBP50-RNP complex. This RNP complex was shown to bind, in a sequence-specific manner, to a set of transcripts encoding for transcription factors. The remarkable stability of this CmRBP50-RNP complex allows for long-distance delivery of bound transcripts from mature leaves into developing tissues and organs. Knowledge gained from this project can be used to exert control over the long-distance signaling networks used by plants to integrate their physiological and developmental programs at a whole plant level. Eventually, this information will aid in the engineering of elite plant lines with optimal traits for plant growth under non-ideal conditions, enhanced biomass and/or seed yield, and directed carbon allocation for efficient and sustainable biofuels production.« less

  11. Protein charge distribution in proteomes and its impact on translation

    PubMed Central

    Requião, Rodrigo D.; Fernandes, Luiza; de Souza, Henrique José Araujo; Rossetto, Silvana; Domitrovic, Tatiana

    2017-01-01

    As proteins are synthesized, the nascent polypeptide must pass through a negatively charged exit tunnel. During this stage, positively charged stretches can interact with the ribosome walls and slow the translation. Therefore, charged polypeptides may be important factors that affect protein expression. To determine the frequency and distribution of positively and negatively charged stretches in different proteomes, the net charge was calculated for every 30 consecutive amino acid residues, which corresponds to the length of the ribosome exit tunnel. The following annotated and reviewed proteins in the UniProt database (Swiss-Prot) were analyzed: 551,705 proteins from different organisms and a total of 180 million protein segments. We observed that there were more negative than positive stretches and that super-charged positive sequences (i.e., net charges ≥ 14) were underrepresented in the proteomes. Overall, the proteins were more positively charged at their N-termini and C-termini, and this feature was present in most organisms and subcellular localizations. To investigate whether the N-terminal charges affect the elongation rates, previously published ribosomal profiling data obtained from S. cerevisiae, without translation-interfering drugs, were analyzed. We observed a nonlinear effect of the charge on the ribosome occupancy in which values ≥ +5 and ≤ -6 showed increased and reduced ribosome densities, respectively. These groups also showed different distributions across 80S monosomes and polysomes. Basic polypeptides are more common within short proteins that are translated by monosomes, whereas negative stretches are more abundant in polysome-translated proteins. These findings suggest that the nascent peptide charge impacts translation and can be one of the factors that regulate translation efficiency and protein expression. PMID:28531225

  12. Theoretical evaluation of a V/STOL fighter model utilizing the PAN AIR code

    NASA Technical Reports Server (NTRS)

    Howell, G. A.; Bhateley, I. C.

    1982-01-01

    The PAN AIR computer code was investigated as a tool for predicting closely coupled aerodynamic and propulsive flowfields of arbitrary configurations. The NASA/Ames V/STOL fighter model, a configuration of complex geometry, was analyzed with the PAN AIR code. A successful solution for this configuration was obtained when the nozzle exit was treated as an impermeable surface and no wakes were included around the nozzle exit. When separated flow was simulated from the end of the nacelle, requiring the use of wake networks emanating from the nozzle exit, a number of problems were encountered. A circular body nacelle model was used to investigate various techniques for simulating the exhaust plume in PAN AIR. Several approaches were tested and eliminated because they could not correctly simulate the interference effects. Only one plume modeling technique gave good results. A PAN AIR computation that used a plume shape and inflow velocities obtained from the Navier-Stokes solution for the plume produced results for the effects of power that compared well with experimental data.

  13. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Bertrand; Hermanson, Ola, E-mail: ola.hermanson@ki.se

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas membersmore » of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.« less

  14. The Anaphase-Promoting Complex is a dual integrator that regulates both microRNA-mediated transcriptional regulation of Cyclin B1 and degradation of Cyclin B1 during Arabidopsis male gametophyte development

    USDA-ARS?s Scientific Manuscript database

    The anaphase-promoting complex/cyclosome (APC/C), an essential ubiquitin protein ligase, regulates mitotic progression and exit by enhancing degradation of cell cycle regulatory proteins, such as CYCB1;1, whose transcripts are upregulated by DUO POLLEN1 (DUO1). DUO1 is required for cell division in ...

  15. The Anaphase-Promoting Complex Is a Dual Integrator That Regulates Both MicroRNA-Mediated Transcriptional Regulation of Cyclin B1 and Degradation of Cyclin B1 during Arabidopsis Male Gametophyte Development

    USDA-ARS?s Scientific Manuscript database

    The anaphase-promoting complex/cyclosome (APC/C), an essential ubiquitin protein ligase, regulates mitotic progression and exit by enhancing degradation of cell cycle regulatory proteins, such as CYCB1;1, whose transcripts are upregulated by DUO POLLEN1 (DUO1). DUO1 is required for cell division in ...

  16. User experiences with clinical social franchising: qualitative insights from providers and clients in Ghana and Kenya.

    PubMed

    Sieverding, Maia; Briegleb, Christina; Montagu, Dominic

    2015-02-01

    Clinical social franchising is a rapidly growing delivery model in private healthcare markets in low- and middle-income countries. Despite this growth, little is known about providers' perceptions of the benefits and challenges of social franchising or clients' reasons for choosing franchised facilities over other healthcare options. We examine these questions in the context of three social franchise networks in Ghana and Kenya. We conducted in-depth interviews with a purposive sample of providers from the BlueStar Ghana, and Amua and Tunza networks in Kenya. We also conducted qualitative exit interviews with female clients who were leaving franchised facilities after a visit for a reproductive or child health reason. The total sample consists of 47 providers and 47 clients across the three networks. Providers perceived the main benefits of participation in a social franchise network to be training opportunities and access to a consistent supply of low-cost family planning commodities; few providers mentioned branding as a benefit of participation. Although most providers said that client flows for franchised services increased after joining the network, they did not associate this with improved finances for their facility. Clients overwhelmingly cited the quality of the client-provider relationship as their main motivation for attending the franchise facility. Recognition of the franchise brand was low among clients who were exiting a franchised facility. The most important benefit of social franchise programs to both providers and their clients may have more to do with training on business practices, patient counseling and customer service, than with subsidies, technical input, branding or clinical support. This finding may lead to a reconsideration of how franchise programs interact with both their member clinics and the larger health-seeking communities they serve.

  17. Capacity-constrained traffic assignment in networks with residual queues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, W.H.K.; Zhang, Y.

    2000-04-01

    This paper proposes a capacity-constrained traffic assignment model for strategic transport planning in which the steady-state user equilibrium principle is extended for road networks with residual queues. Therefore, the road-exit capacity and the queuing effects can be incorporated into the strategic transport model for traffic forecasting. The proposed model is applicable to the congested network particularly when the traffic demands exceeds the capacity of the network during the peak period. An efficient solution method is proposed for solving the steady-state traffic assignment problem with residual queues. Then a simple numerical example is employed to demonstrate the application of the proposedmore » model and solution method, while an example of a medium-sized arterial highway network in Sioux Falls, South Dakota, is used to test the applicability of the proposed solution to real problems.« less

  18. The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling

    PubMed Central

    Su, Ting; Cheng, Jingdong; Sohmen, Daniel; Hedman, Rickard; Berninghausen, Otto; von Heijne, Gunnar; Wilson, Daniel N; Beckmann, Roland

    2017-01-01

    Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 Å cryo-electron microscopy structure of a ribosome stalled during translation of the extremely compacted VemP nascent chain. The nascent chain forms two α-helices connected by an α-turn and a loop, enabling a total of 37 amino acids to be observed within the first 50–55 Å of the exit tunnel. The structure reveals how α-helix formation directly within the peptidyltransferase center of the ribosome interferes with aminoacyl-tRNA accommodation, suggesting that during canonical translation, a major role of the exit tunnel is to prevent excessive secondary structure formation that can interfere with the peptidyltransferase activity of the ribosome. DOI: http://dx.doi.org/10.7554/eLife.25642.001 PMID:28556777

  19. Energy star compliant voice over internet protocol (VoIP) telecommunications network including energy star compliant VoIP devices

    DOEpatents

    Kouchri, Farrokh Mohammadzadeh

    2012-11-06

    A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.

  20. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective

    PubMed Central

    Greene, Nicholas P.; Kaplan, Elise; Crow, Allister; Koronakis, Vassilis

    2018-01-01

    The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking. PMID:29892271

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dyke, Natalya; Chanchorn, Ekkawit; Van Dyke, Michael W., E-mail: mvandyke@email.wcu.edu

    Highlights: Black-Right-Pointing-Pointer Stm1p confers increased resistance to the macrolide starvation-mimic rapamycin. Black-Right-Pointing-Pointer Stm1p maintains 80S ribosome integrity during stationary phase-induced quiescence. Black-Right-Pointing-Pointer Stm1p facilitates polysome formation following quiescence exit. Black-Right-Pointing-Pointer Stm1p facilitates protein synthesis following quiescence exit. Black-Right-Pointing-Pointer Stm1p is a ribosome preservation factor under conditions of nutrient deprivation. -- Abstract: Once cells exhaust nutrients from their environment, they enter an alternative resting state known as quiescence, whereby proliferation ceases and essential nutrients are obtained through internal stores and through the catabolism of existing macromolecules and organelles. One example of this is ribophagy, the degradation of ribosomes through the processmore » of autophagy. However, some ribosomes need to be preserved for an anticipated recovery from nutrient deprivation. We found that the ribosome-associated protein Stm1p greatly increases the quantity of 80S ribosomes present in quiescent yeast cells and that these ribosomes facilitate increased protein synthesis rates once nutrients are restored. These findings suggest that Stm1p can act as a ribosome preservation factor under conditions of nutrient deprivation and restoration.« less

  2. Automation of Some Operations of a Wind Tunnel Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Buggele, Alvin E.

    1996-01-01

    Artificial neural networks were used successfully to sequence operations in a small, recently modernized, supersonic wind tunnel at NASA-Lewis Research Center. The neural nets generated correct estimates of shadowgraph patterns, pressure sensor readings and mach numbers for conditions occurring shortly after startup and extending to fully developed flow. Artificial neural networks were trained and tested for estimating: sensor readings from shadowgraph patterns, shadowgraph patterns from shadowgraph patterns and sensor readings from sensor readings. The 3.81 by 10 in. (0.0968 by 0.254 m) tunnel was operated with its mach 2.0 nozzle, and shadowgraph was recorded near the nozzle exit. These results support the thesis that artificial neural networks can be combined with current workstation technology to automate wind tunnel operations.

  3. Release of Infectious Hepatitis C Virus from Huh7 Cells Occurs via a trans-Golgi Network-to-Endosome Pathway Independent of Very-Low-Density Lipoprotein Secretion

    PubMed Central

    Mankouri, Jamel; Walter, Cheryl; Stewart, Hazel; Bentham, Matthew; Park, Wei Sun; Heo, Won Do; Fukuda, Mitsunori

    2016-01-01

    ABSTRACT The release of infectious hepatitis C virus (HCV) particles from infected cells remains poorly characterized. We previously demonstrated that virus release is dependent on the endosomal sorting complex required for transport (ESCRT). Here, we show a critical role of trans-Golgi network (TGN)-endosome trafficking during the assembly, but principally the secretion, of infectious virus. This was demonstrated by both small interfering RNA (siRNA)-mediated silencing of TGN-associated adaptor proteins and a panel of dominant negative (DN) Rab GTPases involved in TGN-endosome trafficking steps. Importantly, interfering with factors critical for HCV release did not have a concomitant effect on secretion of triglycerides, ApoB, or ApoE, indicating that particles are likely released from Huh7 cells via pathways distinct from that of very-low-density lipoprotein (VLDL). Finally, we show that HCV NS2 perturbs TGN architecture, redistributing TGN membranes to closely associate with HCV core protein residing on lipid droplets. These findings support the notion that HCV hijacks TGN-endosome trafficking to facilitate particle assembly and release. Moreover, although essential for assembly and infectivity, the trafficking of mature virions is seemingly independent of host lipoproteins. IMPORTANCE The mechanisms by which infectious hepatitis C virus particles are assembled and released from the cell are poorly understood. We show that the virus subverts host cell trafficking pathways to effect the release of virus particles and disrupts the structure of the Golgi apparatus, a key cellular organelle involved in secretion. In addition, we demonstrate that the mechanisms used by the virus to exit the cell are distinct from those used by the cell to release lipoproteins, suggesting that the virus effects a unique modification to cellular trafficking pathways. PMID:27226379

  4. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonekamp, Nina A.; Vormund, Kerstin; Jacob, Ralf

    2010-12-10

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. Aftermore » silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.« less

  5. "Couch Surfing" of Latino Foster Care Alumni: Reliance on Peers as Social Capital

    ERIC Educational Resources Information Center

    Perez, Beatrix F.; Romo, Harriett D.

    2011-01-01

    Youth exiting foster care often experience difficulties transitioning into adulthood. This paper focuses on Latino foster care youth in a major southwestern U.S. city and addresses the importance of peer networks as a crucial form of social capital as youth leave foster care. Case studies illustrate experiences of foster care alumni ranging in age…

  6. Study of Double-Weighted Graph Model and Optimal Path Planning for Tourist Scenic Area Oriented Intelligent Tour Guide

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Long, Y.; Wi, X. L.

    2014-04-01

    When tourists visiting multiple tourist scenic spots, the travel line is usually the most effective road network according to the actual tour process, and maybe the travel line is different from planned travel line. For in the field of navigation, a proposed travel line is normally generated automatically by path planning algorithm, considering the scenic spots' positions and road networks. But when a scenic spot have a certain area and have multiple entrances or exits, the traditional described mechanism of single point coordinates is difficult to reflect these own structural features. In order to solve this problem, this paper focuses on the influence on the process of path planning caused by scenic spots' own structural features such as multiple entrances or exits, and then proposes a doubleweighted Graph Model, for the weight of both vertexes and edges of proposed Model can be selected dynamically. And then discusses the model building method, and the optimal path planning algorithm based on Dijkstra algorithm and Prim algorithm. Experimental results show that the optimal planned travel line derived from the proposed model and algorithm is more reasonable, and the travelling order and distance would be further optimized.

  7. Can health insurance improve access to quality care for the Indian poor?

    PubMed

    Michielsen, Joris; Criel, Bart; Devadasan, Narayanan; Soors, Werner; Wouters, Edwin; Meulemans, Herman

    2011-08-01

    Recently, the Indian government launched health insurance schemes for the poor both to protect them from high health spending and to improve access to high-quality health services. This article aims to review the potentials of health insurance interventions in order to improve access to quality care in India based on experiences of community health insurance schemes. PubMed, Ovid MEDLINE (R), All EBM Reviews, CSA Sociological Abstracts, CSA Social Service Abstracts, EconLit, Science Direct, the ISI Web of Knowledge, Social Science Research Network and databases of research centers were searched up to September 2010. An Internet search was executed. One thousand hundred and thirty-three papers were assessed for inclusion and exclusion criteria. Twenty-five papers were selected providing information on eight schemes. A realist review was performed using Hirschman's exit-voice theory: mechanisms to improve exit strategies (financial assets and infrastructure) and strengthen patient's long voice route (quality management) and short voice route (patient pressure). All schemes use a mix of measures to improve exit strategies and the long voice route. Most mechanisms are not effective in reality. Schemes that focus on the patients' bargaining position at the patient-provider interface seem to improve access to quality care. Top-down health insurance interventions with focus on exit strategies will not work out fully in the Indian context. Government must actively facilitate the potential of CHI schemes to emancipate the target group so that they may transform from mere passive beneficiaries into active participants in their health.

  8. Hurricanes Katrina and Rita: role of individuals and collaborative networks in mobilizing/coordinating societal and professional resources for major disasters

    PubMed Central

    Mattox, Kenneth L

    2006-01-01

    The medical support for the coordinated effort for Harris County Texas (Houston) to rescue evacuees from New Orleans following Hurricane Katrina was part of an integrated collaborative network. Both public health and operational health care was structured to custom meet the needs of the evacuees and to create an exit strategy for the clinic and shelter. Integrating local hospital and physician resources into the Joint Incident Command was essential. Outside assistance, including federal and national resources must be coordinated through the local incident command. PMID:16420647

  9. Predicting re-victimization of battered women 3 years after exiting a shelter program.

    PubMed

    Bybee, Deborah; Sullivan, Cris M

    2005-09-01

    This study examined interpersonal and ecological predictors of re-victimization of a sample of women with abusive partners. All women (N = 124) had sought refuge from a battered women's shelter 3 years earlier, and half the sample had been randomly assigned to receive free, short-term advocacy services immediately upon exit from the shelter. Results 2 years post-intervention revealed positive change in the lives of participants (C. M. Sullivan & D. Bybee, 1999), including a decrease in abuse for women who had worked with advocates. The current study examined intervention effects 3 years after the program ended, as well as other predictors of re-abuse. Nineteen percent of the original sample had experienced domestic violence between 2 and 3 years after shelter exit (65% by current partners, 35% by ex-partners). The advocacy program's effect on risk of re-victimization did not continue 3 years post-intervention. However, having worked with an advocate 3 years prior continued to have a positive impact on women's quality of life and level of social support. The risk of being abused 3 years post-shelter stay was exacerbated by a number of factors present 1 year prior, including women's (1) having experienced abuse in the 6 months before that point; (2) having difficulties accessing resources; (3) having problems with the state welfare system; and (4) having people in their social networks who made their lives difficult. Women were at less risk of abuse if, 1 year earlier, they (1) were employed; (2) reported higher quality of life; and (3) had people in their networks who provided practical help and/or were available to talk about personal matters. These findings support the hypothesis that access to resources and social support serve as protective factors against continued abuse.

  10. Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells

    PubMed Central

    Stryjewska, Agata; Dries, Ruben; Pieters, Tim; Verstappen, Griet; Conidi, Andrea; Coddens, Kathleen; Francis, Annick; Umans, Lieve; van IJcken, Wilfred F. J.; Berx, Geert; van Grunsven, Leo A.; Grosveld, Frank G.; Goossens, Steven; Haigh, Jody J.

    2016-01-01

    Abstract In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell‐fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA‐sequencing (RNA‐seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naïve state. However, most cells in these EBs stall in an early epiblast‐like state and are impaired in both neural and mesendodermal differentiation. Genes involved in pluripotency, epithelial‐to‐mesenchymal transition (EMT), and DNA‐(de)methylation, including Tet1, are deregulated in the absence of Zeb2. The observed elevated Tet1 levels in the mutant cells and the knowledge of previously mapped Tet1‐binding sites correlate with loss‐of‐methylation in neural‐stimulating conditions, however, after the cells initially acquired the correct DNA‐methyl marks. Interestingly, cells from such Zeb2 KO EBs maintain the ability to re‐adapt to 2i + LIF conditions even after prolonged differentiation, while knockdown of Tet1 partially rescues their impaired differentiation. Hence, in addition to its role in EMT, Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA‐methylation with irreversible commitment to differentiation. Stem Cells 2017;35:611–625 PMID:27739137

  11. Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells.

    PubMed

    Stryjewska, Agata; Dries, Ruben; Pieters, Tim; Verstappen, Griet; Conidi, Andrea; Coddens, Kathleen; Francis, Annick; Umans, Lieve; van IJcken, Wilfred F J; Berx, Geert; van Grunsven, Leo A; Grosveld, Frank G; Goossens, Steven; Haigh, Jody J; Huylebroeck, Danny

    2017-03-01

    In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell-fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA-sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naïve state. However, most cells in these EBs stall in an early epiblast-like state and are impaired in both neural and mesendodermal differentiation. Genes involved in pluripotency, epithelial-to-mesenchymal transition (EMT), and DNA-(de)methylation, including Tet1, are deregulated in the absence of Zeb2. The observed elevated Tet1 levels in the mutant cells and the knowledge of previously mapped Tet1-binding sites correlate with loss-of-methylation in neural-stimulating conditions, however, after the cells initially acquired the correct DNA-methyl marks. Interestingly, cells from such Zeb2 KO EBs maintain the ability to re-adapt to 2i + LIF conditions even after prolonged differentiation, while knockdown of Tet1 partially rescues their impaired differentiation. Hence, in addition to its role in EMT, Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA-methylation with irreversible commitment to differentiation. Stem Cells 2017;35:611-625. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  12. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B.

    PubMed

    Ren, Dapeng; Fisher, Laura A; Zhao, Jing; Wang, Ling; Williams, Byron C; Goldberg, Michael L; Peng, Aimin

    2017-06-16

    Greatwall (Gwl) kinase plays an essential role in the regulation of mitotic entry and progression. Mitotic activation of Gwl requires both cyclin-dependent kinase 1 (CDK1)-dependent phosphorylation and its autophosphorylation at an evolutionarily conserved serine residue near the carboxyl terminus (Ser-883 in Xenopus ). In this study we show that Gwl associates with protein phosphatase 1 (PP1), particularly PP1γ, which mediates the dephosphorylation of Gwl Ser-883. Consistent with the mitotic activation of Gwl, its association with PP1 is disrupted in mitotic cells and egg extracts. During mitotic exit, PP1-dependent dephosphorylation of Gwl Ser-883 occurs prior to dephosphorylation of other mitotic substrates; replacing endogenous Gwl with a phosphomimetic S883E mutant blocks mitotic exit. Moreover, we identified PP1 regulatory subunit 3B (PPP1R3B) as a targeting subunit that can direct PP1 activity toward Gwl. PPP1R3B bridges PP1 and Gwl association and promotes Gwl Ser-883 dephosphorylation. Consistent with the cell cycle-dependent association of Gwl and PP1, Gwl and PPP1R3B dissociate in M phase. Interestingly, up-regulation of PPP1R3B facilitates mitotic exit and blocks mitotic entry. Thus, our study suggests PPP1R3B as a new cell cycle regulator that functions by governing Gwl dephosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation

    PubMed Central

    David, Gregory; Grandinetti, Kathryn B.; Finnerty, Patricia M.; Simpson, Natalie; Chu, Gerald C.; DePinho, Ronald A.

    2008-01-01

    The Sin3-histone deacetylase (HDAC) corepressor complex is conserved from yeast to humans. Mammals possess two highly related Sin3 proteins, mSin3A and mSin3B, which serve as scaffolds tethering HDAC enzymatic activity, and numerous sequence-specific transcription factors to enable local chromatin regulation at specific gene targets. Despite broad overlapping expression of mSin3A and mSin3B, mSin3A is cell-essential and vital for early embryonic development. Here, genetic disruption of mSin3B reveals a very different phenotype characterized by the survival of cultured cells and lethality at late stages of embryonic development with defective differentiation of multiple lineages—phenotypes that are strikingly reminiscent of those associated with loss of retinoblastoma family members or E2F transcriptional repressors. Additionally, we observe that, whereas mSin3B−/− cells cycle normally under standard growth conditions, they show an impaired ability to exit the cell cycle with limiting growth factors. Correspondingly, mSin3B interacts physically with the promoters of known E2F target genes, and its deficiency is associated with derepression of these gene targets in vivo. Together, these results reveal a critical role for mSin3B in the control of cell cycle exit and terminal differentiation in mammals and establish contrasting roles for the mSin3 proteins in the growth and development of specific lineages. PMID:18332431

  14. Functional Importance of the Anaphase-Promoting Complex-Cdh1-Mediated Degradation of TMAP/CKAP2 in Regulation of Spindle Function and Cytokinesis▿ †

    PubMed Central

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-01-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G1/S and peaks at G2/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis. PMID:17339342

  15. Functional importance of the anaphase-promoting complex-Cdh1-mediated degradation of TMAP/CKAP2 in regulation of spindle function and cytokinesis.

    PubMed

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-05-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G(1)/S and peaks at G(2)/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis.

  16. The health of HIV-exposed children after early weaning.

    PubMed

    Parker, Megan E; Tembo, Martin; Adair, Linda; Chasela, Charles; Piwoz, Ellen G; Jamieson, Denise J; Ellington, Sascha; Kayira, Dumbani; Soko, Alice; Mkhomawanthu, Chimwemwe; Martinson, Francis; van der Horst, Charles M; Bentley, Margaret E

    2013-04-01

    There are potential health risks associated with the use of early weaning to prevent mother-to-child transmission of human immunodeficiency virus (HIV) in resource-poor settings. Our objective was to examine growth and nutrient inadequacies among a cohort of children weaned early. Children participating in the Breastfeeding Antiretrovirals and Nutrition (BAN) Study in Lilongwe, Malawi, had HIV-infected mothers, were weaned at 6 months and fed LNS until 12 months. 40 HIV-negative, BAN-exited children were compared with 40 HIV-negative, community children matched on age, gender and local health clinic. Nutrient intake was calculated from 24-h dietary recalls collected from BAN-exited children. Anthropometric measurements were collected from BAN-exited and matched community children at 15-16 months, and 2 months later. Longitudinal random effects sex-stratified models were used to evaluate anthropometric differences between the two groups. BAN-exited children consumed adequate energy, protein and carbohydrates but inadequate amounts of fat. The prevalence of inadequate micronutrient intakes were: 46% for vitamin A; 20% for vitamin B6; 69% for folate; 13% for vitamin C; 19% for iron; 23% for zinc. Regarding growth, BAN-exited girls gained weight at a significantly lower rate {0.02 g kg(-1) per day [95% confidence interval (CI): 0.01, 0.03]} than their matched comparison [0.05 g kg(-1) per day (95% CI: 0.03, 0.07)]; BAN girls grew significantly slower [0.73 cm month(-1) (95% CI: 0.40,1.06)] than their matched comparison (1.55 cm month(-1) [95% CI: 0.98, 2.12]). Among this sample of BAN-exited children, early weaning was associated with dietary deficiencies and girls experienced reduced growth velocity. In resource-poor settings, HIV prevention programmes must ensure that breastfeeding stop only once a nutritionally adequate and safe diet without breast milk can be provided. © 2011 Blackwell Publishing Ltd.

  17. Research and realization implementation of monitor technology on illegal external link of classified computer

    NASA Astrophysics Data System (ADS)

    Zhang, Hong

    2017-06-01

    In recent years, with the continuous development and application of network technology, network security has gradually entered people's field of vision. The host computer network external network of violations is an important reason for the threat of network security. At present, most of the work units have a certain degree of attention to network security, has taken a lot of means and methods to prevent network security problems such as the physical isolation of the internal network, install the firewall at the exit. However, these measures and methods to improve network security are often not comply with the safety rules of human behavior damage. For example, the host to wireless Internet access and dual-network card to access the Internet, inadvertently formed a two-way network of external networks and computer connections [1]. As a result, it is possible to cause some important documents and confidentiality leak even in the the circumstances of user unaware completely. Secrecy Computer Violation Out-of-band monitoring technology can largely prevent the violation by monitoring the behavior of the offending connection. In this paper, we mainly research and discuss the technology of secret computer monitoring.

  18. Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking

    PubMed Central

    Lowe, Alan R.; Siegel, Jake J.; Kalab, Petr; Siu, Merek; Weis, Karsten; Liphardt, Jan T.

    2010-01-01

    The Nuclear Pore Complex (NPC) mediates all exchange between the cytoplasm and the nucleus. Small molecules can passively diffuse through the NPC, while larger cargos require transport receptors to translocate1. How the NPC facilitates the translocation of transport receptor/cargo complexes remains unclear. Here, we track single protein-functionalized Quantum Dot (QD) cargos as they translocate the NPC. Import proceeds by successive sub-steps comprising cargo capture, filtering and translocation, and release into the nucleus. The majority of QDs are rejected at one of these steps and return to the cytoplasm including very large cargos that abort at a size-selective barrier. Cargo movement in the central channel is subdiffusive and cargos that can bind more transport receptors diffuse more freely. Without Ran, cargos still explore the entire NPC, but have a markedly reduced probability of exit into the nucleus, suggesting that NPC entry and exit steps are not equivalent and that the pore is functionally asymmetric to importing cargos. The overall selectivity of the NPC appears to arise from the cumulative action of multiple reversible sub-steps and a final irreversible exit step. PMID:20811366

  19. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    PubMed

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  20. The tumor suppressor CDKN3 controls mitosis

    PubMed Central

    Nalepa, Grzegorz; Barnholtz-Sloan, Jill; Enzor, Rikki; Dey, Dilip; He, Ying; Gehlhausen, Jeff R.; Lehmann, Amalia S.; Park, Su-Jung; Yang, Yanzhu; Yang, Xianlin; Chen, Shi; Guan, Xiaowei; Chen, Yanwen; Renbarger, Jamie; Yang, Feng-Chun; Parada, Luis F.

    2013-01-01

    Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2pThr-161 at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics. PMID:23775190

  1. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs

    PubMed Central

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process. PMID:27099964

  2. Detection of protein complex from protein-protein interaction network using Markov clustering

    NASA Astrophysics Data System (ADS)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  3. Multilane Traffic Flow Modeling Using Cellular Automata Theory

    NASA Astrophysics Data System (ADS)

    Chechina, Antonina; Churbanova, Natalia; Trapeznikova, Marina

    2018-02-01

    The paper deals with the mathematical modeling of traffic flows on urban road networks using microscopic approach. The model is based on the cellular automata theory and presents a generalization of the Nagel-Schreckenberg model to a multilane case. The created program package allows to simulate traffic on various types of road fragments (T or X type intersection, strait road elements, etc.) and on road networks that consist of these elements. Besides that, it allows to predict the consequences of various decisions regarding road infrastructure changes, such as: number of lanes increasing/decreasing, putting new traffic lights into operation, building new roads, entrances/exits, road junctions.

  4. Self organized spatio-temporal structure within the fractured Vadose Zone: The influence of dynamic overloading at fracture intersections

    NASA Astrophysics Data System (ADS)

    LaViolette, Randall A.; Glass, Robert J.

    2004-09-01

    Under low flow conditions (where gravity and capillary forces dominate) within an unsaturated fracture network, fracture intersections act as capillary barriers to integrate flow from above and then release it as a pulse below. Water exiting a fracture intersection is often thought to enter the single connected fracture with the lowest invasion pressure. When the accumulated volume varies between intersections, the smaller volume intersections can be overloaded to cause all of the available fractures exiting an intersection to flow. We included the dynamic overloading process at fracture intersections within our previously discussed model where intersections were modeled as tipping buckets connected within a two-dimensional diamond lattice. With dynamic overloading, the flow behavior transitioned smoothly from diverging to converging flow with increasing overload parameter, as a consequence of a heterogeneous field, and they impose a dynamic structure where additional pathways activate or deactivate in time.

  5. An efficient collaborative approach for black hole attack discovery and mitigating its impact in manet

    NASA Astrophysics Data System (ADS)

    Devipriya, K.; Ivy, B. Persis Urbana; Prabha, D.

    2018-04-01

    A mobile ad hoc network (MANET) is an assemblage of nodes composed of mobile devices coupled in various ways wirelessly which do not have any central administration. Each node in MANET cooperates in forwarding packets in the network. This type of collaboration incurs high cost but there exits nodes that declines to cooperate leading to selfish conduct of nodes which effects overall network performance. To discover the attacks caused by such nodes, a renowned mechanism using watchdog can be deployed. In infrastructure less network attack detection and reaction and high false positives, false negatives initiating black hole attack becomes major issue in watchdog. This paper put forward a collaborative approach for identifying such attacks in MANET. Through abstract analysis and extensive simulation of this approach, the detection time of misbehaved nodes is reduced and substantial enhancement in overhead and throughput is witnessed.

  6. A mathematical model for adaptive transport network in path finding by true slime mold.

    PubMed

    Tero, Atsushi; Kobayashi, Ryo; Nakagaki, Toshiyuki

    2007-02-21

    We describe here a mathematical model of the adaptive dynamics of a transport network of the true slime mold Physarum polycephalum, an amoeboid organism that exhibits path-finding behavior in a maze. This organism possesses a network of tubular elements, by means of which nutrients and signals circulate through the plasmodium. When the organism is put in a maze, the network changes its shape to connect two exits by the shortest path. This process of path-finding is attributed to an underlying physiological mechanism: a tube thickens as the flux through it increases. The experimental evidence for this is, however, only qualitative. We constructed a mathematical model of the general form of the tube dynamics. Our model contains a key parameter corresponding to the extent of the feedback regulation between the thickness of a tube and the flux through it. We demonstrate the dependence of the behavior of the model on this parameter.

  7. Characterization of essential proteins based on network topology in proteins interaction networks

    NASA Astrophysics Data System (ADS)

    Bakar, Sakhinah Abu; Taheri, Javid; Zomaya, Albert Y.

    2014-06-01

    The identification of essential proteins is theoretically and practically important as (1) it is essential to understand the minimal surviving requirements for cellular lives, and (2) it provides fundamental for development of drug. As conducting experimental studies to identify essential proteins are both time and resource consuming, here we present a computational approach in predicting them based on network topology properties from protein-protein interaction networks of Saccharomyces cerevisiae. The proposed method, namely EP3NN (Essential Proteins Prediction using Probabilistic Neural Network) employed a machine learning algorithm called Probabilistic Neural Network as a classifier to identify essential proteins of the organism of interest; it uses degree centrality, closeness centrality, local assortativity and local clustering coefficient of each protein in the network for such predictions. Results show that EP3NN managed to successfully predict essential proteins with an accuracy of 95% for our studied organism. Results also show that most of the essential proteins are close to other proteins, have assortativity behavior and form clusters/sub-graph in the network.

  8. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-01-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  9. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    NASA Astrophysics Data System (ADS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-09-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  10. Immediate Translation of Formin DIAPH1 mRNA after Its Exiting the Nucleus Is Required for Its Perinuclear Localization in Fibroblasts

    PubMed Central

    Liao, Guoning; Liu, Gang

    2013-01-01

    DIAPH1 is a formin protein which promotes actin polymerization, stabilizes microtubules and consequently is involved in cytoskeleton dynamics, cell migration and differentiation. In contrast to the relatively well-understood signaling cascades that regulate DIAPH1 activity, its spatial regulation of biogenesis is not understood. A recent report showed that synthesis of DIAPH1 is confined in the perinuclear ER compartment through translation-dependent mRNA targeting. However, the underlying mechanism of DIAPH1 local synthesis is yet to be elucidated. Here, we provide evidence to demonstrate that the 5′-cap-mediated immediate translation of DIAPH1 mRNA upon exiting nucleus is required for localizing the mRNA in the perinuclear ER compartment. This is supported by data: 1) Delayed translation of DIAPH1 mRNA resulted in loss of perinuclear localization of the mRNA; 2) Once delocalized, DIAPH1 mRNA could not be retargeted to the perinuclear region; and 3) The translation of DIAPH1 mRNA is 5′-cap dependent. These results provide new insights into the novel mechanism of DIAPH1 local synthesis. In addition, these findings have led to the development of new approaches for manipulating DIAPH1 mRNA localization and local protein synthesis in cells for functional studies. Furthermore, a correlation of DIAPH1 mRNA and DIAPH1 protein localization has been demonstrated using a new method to quantify the intracellular distribution of protein. PMID:23840831

  11. A Strategy Based on Protein-Protein Interface Motifs May Help in Identifying Drug Off-Targets

    PubMed Central

    Engin, H. Billur; Keskin, Ozlem; Nussinov, Ruth; Gursoy, Attila

    2014-01-01

    Networks are increasingly used to study the impact of drugs at the systems level. From the algorithmic standpoint, a drug can ‘attack’ nodes or edges of a protein-protein interaction network. In this work, we propose a new network strategy, “The Interface Attack”, based on protein-protein interfaces. Similar interface architectures can occur between unrelated proteins. Consequently, in principle, a drug that binds to one has a certain probability of binding others. The interface attack strategy simultaneously removes from the network all interactions that consist of similar interface motifs. This strategy is inspired by network pharmacology and allows inferring potential off-targets. We introduce a network model which we call “Protein Interface and Interaction Network (P2IN)”, which is the integration of protein-protein interface structures and protein interaction networks. This interface-based network organization clarifies which protein pairs have structurally similar interfaces, and which proteins may compete to bind the same surface region. We built the P2IN of p53 signaling network and performed network robustness analysis. We show that (1) ‘hitting’ frequent interfaces (a set of edges distributed around the network) might be as destructive as eleminating high degree proteins (hub nodes); (2) frequent interfaces are not always topologically critical elements in the network; and (3) interface attack may reveal functional changes in the system better than attack of single proteins. In the off-target detection case study, we found that drugs blocking the interface between CDK6 and CDKN2D may also affect the interaction between CDK4 and CDKN2D. PMID:22817115

  12. SigFlux: a novel network feature to evaluate the importance of proteins in signal transduction networks.

    PubMed

    Liu, Wei; Li, Dong; Zhang, Jiyang; Zhu, Yunping; He, Fuchu

    2006-11-27

    Measuring each protein's importance in signaling networks helps to identify the crucial proteins in a cellular process, find the fragile portion of the biology system and further assist for disease therapy. However, there are relatively few methods to evaluate the importance of proteins in signaling networks. We developed a novel network feature to evaluate the importance of proteins in signal transduction networks, that we call SigFlux, based on the concept of minimal path sets (MPSs). An MPS is a minimal set of nodes that can perform the signal propagation from ligands to target genes or feedback loops. We define SigFlux as the number of MPSs in which each protein is involved. We applied this network feature to the large signal transduction network in the hippocampal CA1 neuron of mice. Significant correlations were simultaneously observed between SigFlux and both the essentiality and evolutionary rate of genes. Compared with another commonly used network feature, connectivity, SigFlux has similar or better ability as connectivity to reflect a protein's essentiality. Further classification according to protein function demonstrates that high SigFlux, low connectivity proteins are abundant in receptors and transcriptional factors, indicating that SigFlux candescribe the importance of proteins within the context of the entire network. SigFlux is a useful network feature in signal transduction networks that allows the prediction of the essentiality and conservation of proteins. With this novel network feature, proteins that participate in more pathways or feedback loops within a signaling network are proved far more likely to be essential and conserved during evolution than their counterparts.

  13. DOR undergoes nucleo-cytoplasmic shuttling, which involves passage through the nucleolus.

    PubMed

    Mauvezin, Caroline; Sancho, Ana; Ivanova, Saska; Palacin, Manuel; Zorzano, Antonio

    2012-09-21

    DOR is a bi-functional protein that regulates transcription and enhances starvation-induced autophagy. While autophagy has been mostly described as a stress-response mechanism, cells also need autophagy to maintain homeostasis in basal conditions. However, the mechanisms regulating basal autophagy still remain unknown. Our results show that DOR acts in basal autophagy. Indeed, DOR already undergoes nucleo-cytoplasmic shuttling in basal conditions and, surprisingly, DOR exits continuously the nucleus and traverses the nucleolus. However, the nucleolus integrity is not essential for both DOR nucleo-cytoplasmic shuttling and DOR function on basal autophagy. Taken together, we propose that DOR exit from the nucleus is essential for basal autophagy stimulation even under nucleolus disruption. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE.

    PubMed

    Zhong, Aihua; Fan, Ping; Zhong, Yuanting; Zhang, Dongping; Li, Fu; Luo, Jingting; Xie, Yizhu; Hane, Kazuhiro

    2018-02-13

    Structure shift of GaN nanowall network, nanocolumn, and compact film were successfully obtained on Si (111) by plasma-assisted molecular beam epitaxy (MBE). As is expected, growth of the GaN nanocolumns was observed in N-rich condition on bare Si, and the growth shifted to compact film when the Ga flux was improved. Interestingly, if an aluminum (Al) pre-deposition for 40 s was carried out prior to the GaN growth, GaN grows in the form of the nanowall network. Results show that the pre-deposited Al exits in the form of droplets with typical diameter and height of ~ 80 and ~ 6.7 nm, respectively. A growth model for the nanowall network is proposed and the growth mechanism is discussed. GaN grows in the area without Al droplets while the growth above Al droplets is hindered, resulting in the formation of continuous GaN nanowall network that removes the obstacles of nano-device fabrication.

  15. Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE

    NASA Astrophysics Data System (ADS)

    Zhong, Aihua; Fan, Ping; Zhong, Yuanting; Zhang, Dongping; Li, Fu; Luo, Jingting; Xie, Yizhu; Hane, Kazuhiro

    2018-02-01

    Structure shift of GaN nanowall network, nanocolumn, and compact film were successfully obtained on Si (111) by plasma-assisted molecular beam epitaxy (MBE). As is expected, growth of the GaN nanocolumns was observed in N-rich condition on bare Si, and the growth shifted to compact film when the Ga flux was improved. Interestingly, if an aluminum (Al) pre-deposition for 40 s was carried out prior to the GaN growth, GaN grows in the form of the nanowall network. Results show that the pre-deposited Al exits in the form of droplets with typical diameter and height of 80 and 6.7 nm, respectively. A growth model for the nanowall network is proposed and the growth mechanism is discussed. GaN grows in the area without Al droplets while the growth above Al droplets is hindered, resulting in the formation of continuous GaN nanowall network that removes the obstacles of nano-device fabrication.

  16. ROADMs for reconfigurable metro networks

    NASA Astrophysics Data System (ADS)

    Homa, Jonathan; Bala, Krishna

    2009-01-01

    Reconfigurable Optical Add-Drop Multiplexers (ROADMs) are the key nodal sub-systems that are used to implement modern DWDM networks. They provide network flexibility by switching wavelengths among fibers under software control without expensive conversion to the electronic domain. They speed up provisioning time, reduce operational costs and eliminate human errors. Two general types of ROADMs are used in Metro optical networks, two-degree and multi-degree, where the degree refers to the numbers of DWDM fibers entering and exiting the ROADM node. A twodegree ROADM is like a location on a highway with off and on ramps to drop off and accept local traffic while a multidegree ROADM is like an interchange where highways meet and is used for interconnecting DWDM rings or for mesh networking. The paper describes two-degree and multi-degree ROADM architectures and how these relate to the technology alternatives used to implement the ROADMs themselves. Focus is provided on the role and expected evolution of the wavelength selective switch (WSS) which is the primary engine used to power ROADMs.

  17. Spatiotemporal Regulation of the Anaphase-Promoting Complex in Mitosis

    PubMed Central

    Sivakumar, Sushama; Gorbsky, Gary J

    2015-01-01

    The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The Anaphase-Promoting Complex or Cyclosome (APC/C) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events. PMID:25604195

  18. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.

    PubMed

    Nariai, N; Kim, S; Imoto, S; Miyano, S

    2004-01-01

    We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.

  19. Construction of ontology augmented networks for protein complex prediction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  20. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    PubMed

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.

  1. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory.

    PubMed

    Jia, Dongya; Jolly, Mohit Kumar; Kulkarni, Prakash; Levine, Herbert

    2017-06-22

    Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.

  2. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    PubMed Central

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M.

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  3. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  4. Network-based study reveals potential infection pathways of hepatitis-C leading to various diseases.

    PubMed

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement.

  5. Network-Based Study Reveals Potential Infection Pathways of Hepatitis-C Leading to Various Diseases

    PubMed Central

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement. PMID:24743187

  6. The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA

    PubMed Central

    Toh, Seok-Ming; Xiong, Liqun; Bae, Taeok; Mankin, Alexander S.

    2008-01-01

    A2503 in 23S rRNA of the Gram-negative bacterium Escherichia coli is located in a functionally important region of the ribosome, at the entrance to the nascent peptide exit tunnel. In E. coli, and likely in other species, this adenosine residue is post-transcriptionally modified to m2A. The enzyme responsible for this modification was previously unknown. We identified E. coli protein YfgB, which belongs to the radical SAM enzyme superfamily, as the methyltransferase that modifies A2503 of 23S rRNA to m2A. Inactivation of the yfgB gene in E. coli led to the loss of modification at nucleotide A2503 of 23S rRNA as revealed by primer extension analysis and thin layer chromatography. The A2503 modification was restored when YfgB protein was expressed in the yfgB knockout strain. A similar protein was shown to catalyze post-transcriptional modification of A2503 in 23S rRNA in Gram-positive Staphylococcus aureus. The yfgB knockout strain loses in competition with wild type in a co-growth experiment, indicating functional importance of A2503 modification. The location of A2503 in the exit tunnel suggests its possible involvement in interaction with the nascent peptide and raises the possibility that its post-transcriptional modification may influence such an interaction. PMID:18025251

  7. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.

    PubMed

    Mistry, Divya; Wise, Roger P; Dickerson, Julie A

    2017-01-01

    Identification of central genes and proteins in biomolecular networks provides credible candidates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC centrality measure predicts central and essential genes and proteins using a protein-protein interaction network. Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures helped identify critical genes and proteins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the number of interactions of a protein and the gene coexpression values of genes from which those proteins were translated, as a weighting factor to bias the identification of essential proteins in a protein interaction network. Potentially essential proteins with low node degree are promoted through eigenvector centrality. Thus, the gene coexpression values are used in conjunction with the eigenvector of the network's adjacency matrix and edge clustering coefficient to improve essentiality prediction. The outcome of this prediction is shown using three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coexpression measures, and (3) impact of different gene expression data sets. For a total of seven networks, DiffSLC is compared to other centrality measures using Saccharomyces cerevisiae protein interaction networks and gene expression data. Comparisons are also performed for the top ranked proteins against the known essential genes from the Saccharomyces Gene Deletion Project, which show that DiffSLC detects more essential proteins and has a higher area under the ROC curve than other compared methods. This makes DiffSLC a stronger alternative to other centrality methods for detecting essential genes using a protein-protein interaction network that obeys centrality-lethality principle. DiffSLC is implemented using the igraph package in R, and networkx package in Python. The python package can be obtained from git.io/diffslcpy. The R implementation and code to reproduce the analysis is available via git.io/diffslc.

  8. DiffSLc: A graph centrality method to detect essential proteins of a protein-protein interaction network

    USDA-ARS?s Scientific Manuscript database

    Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures have been helpful in identifying critical genes and proteins in biomolecular networks. The proposed centrality measure DiffSLc uses the number of interactions of a protein and gen...

  9. Evidence for nucleolar subcompartments in Dictyostelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalano, Andrew, E-mail: acatalano@ccny.cuny.edu; O’Day, Danton H., E-mail: danton.oday@utoronto.ca; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5

    2015-01-24

    Highlights: • Two nucleolar subcompartments (NoSC1, NoSC2) were found in Dictyostelium. • Specific nucleolar proteins localize to different nucleolar subcompartments. • Specific proteins exit NoSC1 and NoSC2 differently upon Actinomycin D treatment. • KRKR appears to function as an NoSC2 nucleolar subcompartment localization signal. - Abstract: The nucleolus is a multifunctional nuclear compartment usually consisting of two to three subcompartments which represent stages of ribosomal biogenesis. It is linked to several human diseases including viral infections, cancer, and neurodegeneration. Dictyostelium is a model eukaryote for the study of fundamental biological processes as well as several human diseases however comparatively littlemore » is known about its nucleolus. Unlike most nucleoli it does not possess visible subcompartments at the ultrastructural level. Several recently identified nucleolar proteins in Dictyostelium leave the nucleolus after treatment with the rDNA transcription inhibitor actinomycin-D (AM-D). Different proteins exit in different ways, suggesting that previously unidentified nucleolar subcompartments may exist. The identification of nucleolar subcompartments would help to better understand the nucleolus in this model eukaryote. Here, we show that Dictyostelium nucleolar proteins nucleomorphin isoform NumA1 and Bud31 localize throughout the entire nucleolus while calcium-binding protein 4a localizes to only a portion, representing nucleolar subcompartment 1 (NoSC1). SWI/SNF complex member Snf12 localizes to a smaller area within NoSC1 representing a second nucleolar subcompartment, NoSC2. The nuclear/nucleolar localization signal KRKR from Snf12 localized GFP to NoSC2, and thus also appears to function as a nucleolar subcompartment localization signal. FhkA localizes to the nucleolar periphery displaying a similar pattern to that of Hsp32. Similarities between the redistribution patterns of Dictyostelium nucleolar proteins during nucleolar disruption as a result of either AM-D treatment or mitosis support these subcompartments. A model for the AM-D-induced redistribution patterns is proposed.« less

  10. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  11. A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks.

    PubMed

    Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao

    2018-06-01

    Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.

  12. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  13. Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina

    PubMed Central

    2012-01-01

    Background Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina’s stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. Results The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. Conclusions These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins. PMID:23111152

  14. Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina.

    PubMed

    Luo, Jing; Uribe, Rosa A; Hayton, Sarah; Calinescu, Anda-Alexandra; Gross, Jeffrey M; Hitchcock, Peter F

    2012-10-30

    Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina's stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins.

  15. Functions of the Type 1 BMP Receptor Acvr1 (Alk2) in Lens Development: Cell Proliferation, Terminal Differentiation, and Survival

    PubMed Central

    Rajagopal, Ramya; Dattilo, Lisa K.; Kaartinen, Vesa; Deng, Chu-Xia; Umans, Lieve; Zwijsen, An; Roberts, Anita B.; Bottinger, Erwin P.; Beebe, David C.

    2009-01-01

    Purpose Bone morphogenetic protein (BMP) signaling is essential for the induction and subsequent development of the lens. The purpose of this study was to analyze the function(s) of the type 1 BMP receptor, Acvr1, in lens development. Methods Acvr1 was deleted from the surface ectoderm of mouse embryos on embryonic day 9 using the Cre-loxP method. Cell proliferation, cell cycle exit, and apoptosis were measured in tissue sections by immunohistochemistry, immunofluorescence, and TUNEL staining. Results Lenses formed in the absence of Acvr1. However, Acvr1CKO (conditional knockout) lenses were small. Acvr1 signaling promoted proliferation at early stages of lens formation but inhibited proliferation at later stages. Inhibition of cell proliferation by Acvr1 was necessary for the proper regionalization of the lens epithelium and promoted the withdrawal of lens fiber cells from the cell cycle. In spite of the failure of all Acvr1CKO fiber cells to withdraw from the cell cycle, they expressed proteins characteristic of differentiated fiber cells. Although the stimulation of proliferation was Smad independent, the ability of Acvr1 to promote cell cycle exit later in development depended on classical R-Smad-Smad4 signaling. Loss of Acvr1 led to an increase in apoptosis of lens epithelial and fiber cells. Increased cell death, together with the initial decrease in proliferation, appeared to account for the smaller sizes of the Acvr1CKO lenses. Conclusions This study revealed a novel switch in the functions of Acvr1 in regulating lens cell proliferation. Previously unknown functions mediated by this receptor included regionalization of the lens epithelium and cell cycle exit during fiber cell differentiation. PMID:18566469

  16. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome

    PubMed Central

    Ullers, Ronald S.; Houben, Edith N.G.; Raine, Amanda; ten Hagen-Jongman, Corinne M.; Ehrenberg, Måns; Brunner, Joseph; Oudega, Bauke; Harms, Nellie; Luirink, Joen

    2003-01-01

    As newly synthesized polypeptides emerge from the ribosome, they interact with chaperones and targeting factors that assist in folding and targeting to the proper location in the cell. In Escherichia coli, the chaperone trigger factor (TF) binds to nascent polypeptides early in biosynthesis facilitated by its affinity for the ribosomal proteins L23 and L29 that are situated around the nascent chain exit site on the ribosome. The targeting factor signal recognition particle (SRP) interacts specifically with the signal anchor (SA) sequence in nascent inner membrane proteins (IMPs). Here, we have used photocross-linking to map interactions of the SA sequence in a short, in vitro–synthesized, nascent IMP. Both TF and SRP were found to interact with the SA with partially overlapping binding specificity. In addition, extensive contacts with L23 and L29 were detected. Both purified TF and SRP could be cross-linked to L23 on nontranslating ribosomes with a competitive advantage for SRP. The results suggest a role for L23 in the targeting of IMPs as an attachment site for TF and SRP that is close to the emerging nascent chain. PMID:12756233

  17. Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells

    PubMed Central

    Yang, Ching-Po; Samuels, Tamsin J.; Huang, Yaling; Yang, Lu; Ish-Horowicz, David; Davis, Ilan

    2017-01-01

    The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a ‘decommissioning’ phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex, causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than in other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together, our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages. PMID:28851709

  18. Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin.

    PubMed

    Orlowski, Slawomir; Nowak, Wieslaw

    2007-07-01

    Cytoglobin (Cyg)--a new member of the vertebrate heme globin family--is expressed in many tissues of the human body but its physiological role is still unclear. It may deliver oxygen under hypoxia, serve as a scavenger of reactive species or be involved in collagen synthesis. This protein is usually six-coordinated and binds oxygen by a displacement of the distal HisE7 imidazole. In this paper, the results of 60 ns molecular dynamics (MD) simulations of dioxygen diffusion inside Cyg matrix are discussed. In addition to a classical MD trajectory, an approximate Locally Enhanced Sampling (LES) method has been employed. Classical diffusion paths were carefully analyzed, five cavities in dynamical structures were determined and at least four distinct ligand exit paths were identified. The most probable exit/entry path is connected with a large tunnel present in Cyg. Several residues that are perhaps critical for kinetics of small gaseous diffusion were discovered. A comparison of gaseous ligand transport in Cyg and in the most studied heme protein myoglobin is presented. Implications of efficient oxygen transport found in Cyg to its possible physiological role are discussed.

  19. A Cell-Permeable Inhibitor to Trap Gαq Proteins in the Empty Pocket Conformation

    PubMed Central

    Schmitz, Anna-Lena; Schrage, Ramona; Gaffal, Evelyn; Charpentier, Thomas H.; Wiest, Johannes; Hiltensperger, Georg; Morschel, Julia; Hennen, Stephanie; Häußler, Daniela; Horn, Velten; Wenzel, Daniela; Grundmann, Manuel; Büllesbach, Katrin M.; Schröder, Ralf; Brewitz, H. Henning; Schmidt, Johannes; Gomeza, Jesús; Galés, Céline; Fleischmann, Bernd K.; Tüting, Thomas; Imhof, Diana; Tietze, Daniel; Gütschow, Michael; Holzgrabe, Ulrike; Sondek, John; Harden, T. Kendall; Mohr, Klaus; Kostenis, Evi

    2015-01-01

    SUMMARY In spite of the crucial role of heterotrimeric G proteins as molecular switches transmitting signals from G protein-coupled receptors, their selective manipulation with small molecule, cell-permeable inhibitors still remains an unmet challenge. Here, we report that the small molecule BIM-46187, previously classified as pan-G protein inhibitor, preferentially silences Gαq signaling in a cellular context-dependent manner. Investigations into its mode of action reveal that BIM traps Gαq in the empty pocket conformation by permitting GDP exit but interdicting GTP entry, a molecular mechanism not yet assigned to any other small molecule Gα inhibitor to date. Our data show that Gα proteins may be “frozen” pharmacologically in an intermediate conformation along their activation pathway and propose a pharmacological strategy to specifically silence Gα subclasses with cell-permeable inhibitors. PMID:25036778

  20. The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure.

    PubMed

    Becker, Matthias; Becker, Yvonne; Green, Kimberly; Scott, Barry

    2016-07-01

    Epichloë festucae forms a mutualistic symbiotic association with Lolium perenne. This biotrophic fungus systemically colonizes the intercellular spaces of aerial tissues to form an endophytic hyphal network. E. festucae also grows as an epiphyte, but the mechanism for leaf surface colonization is not known. Here we identify an appressorium-like structure, which we call an expressorium that allows endophytic hyphae to penetrate the cuticle from the inside of the leaf to establish an epiphytic hyphal net on the surface of the leaf. We used a combination of scanning electron, transmission electron and confocal laser scanning microscopy to characterize this novel fungal structure and determine the composition of the hyphal cell wall using aniline blue and wheat germ agglutinin labelled with Alexafluor-488. Expressoria differentiate immediately below the cuticle in the leaf blade and leaf sheath intercalary cell division zones where the hyphae grow by tip growth. Differentiation of this structure requires components of both the NoxA and NoxB NADPH oxidase complexes. Major remodelling of the hyphal cell wall occurs following exit from the leaf. These results establish that the symbiotic association of E. festucae with L. perenne involves an interconnected hyphal network of both endophytic and epiphytic hyphae. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Viral Uncoating Is Directional: Exit of the Genomic RNA in a Common Cold Virus Starts with the Poly-(A) Tail at the 3′-End

    PubMed Central

    Sedivy, Arthur; Subirats, Xavier; Kowalski, Heinrich; Köhler, Gottfried; Blaas, Dieter

    2013-01-01

    Upon infection, many RNA viruses reorganize their capsid for release of the genome into the host cell cytosol for replication. Often, this process is triggered by receptor binding and/or by the acidic environment in endosomes. In the genus Enterovirus, which includes more than 150 human rhinovirus (HRV) serotypes causing the common cold, there is persuasive evidence that the viral RNA exits single-stranded through channels formed in the protein shell. We have determined the time-dependent emergence of the RNA ends from HRV2 on incubation of virions at 56°C using hybridization with specific oligonucleotides and detection by fluorescence correlation spectroscopy. We report that psoralen UV crosslinking prevents complete RNA release, allowing for identification of the sequences remaining inside the capsid. We also present the structure of uncoating intermediates in which parts of the RNA are condensed and take the form of a rod that is directed roughly towards a two-fold icosahedral axis, the presumed RNA exit point. Taken together, in contrast to schemes frequently depicted in textbooks and reviews, our findings demonstrate that exit of the RNA starts from the 3′-end. This suggests that packaging also occurs in an ordered manner resulting in the 3′-poly-(A) tail becoming located close to a position of pore formation during conversion of the virion into a subviral particle. This directional genome release may be common to many icosahedral non-enveloped single-stranded RNA viruses. PMID:23592991

  2. Perspectives of Youth in Foster Care on Essential Ingredients for Promoting Self-determination and Successful Transition to Adult Life: My Life Model.

    PubMed

    Powers, Laurie E; Fullerton, Ann; Schmidt, Jessica; Geenen, Sarah; Oberweiser-Kennedy, Molly; Dohn, JoAnn; Nelson, May; Iavanditti, Rosemary; Blakeslee, Jennifer

    2018-02-01

    Research clearly documents the serious challenges and poor outcomes experienced by many young people exiting foster care, as well as compounded disparities for the high percentage of youth in care who are identified with disabilities and/or mental health challenges. However, very little research has been conducted to specify or validate effective models for improving the transition trajectories of youth exiting care. Evidence suggests the My Life self-determination enhancement model offers a promising approach for supporting youths' self-determined and positive transition to adulthood. The model includes youth-directed, experientially oriented coaching in the application of self-determination skills to achieve youth-identified transition goals, coupled with peer mentoring workshops that provide opportunities for learning, networking and fun. This in depth qualitative study of 10 youth who completed the My Life intervention focused on investigating coaching and mentoring elements and processes that youth participants identify as most important to their success, with the intention of informing the further development of youth-directed approaches to supporting young people who are transitioning to adulthood. Themes emerged around the centrality of youth self-direction, important processes in the coaching relationship, the essential value of experiential activities and self-determination skill development, and peer mentoring experiences that youth identified as fostering their success. Implications are discussed for research and practice in supporting youth exiting foster care.

  3. Driving simulator evaluation of drivers' response to intersections with dynamic use of exit-lanes for left-turn.

    PubMed

    Zhao, Jing; Yun, Meiping; Zhang, H Michael; Yang, Xiaoguang

    2015-08-01

    With the worsening of urban traffic congestion in large cities around the world, researchers have been looking for unconventional designs and/or controls to squeeze more capacity out of intersections, the most common bottlenecks of the road network. One of these innovative intersection designs, known as the exit-lanes for left-turn (EFL), opens up exit-lanes to be used by left-turn traffic with the help of an additional traffic light installed at the median opening (the pre-signal). This paper studies how drivers respond to EFL intersections with a series of driving simulator experiments. In our experiments, 64 drivers were recruited and divided into two groups. One group is trained to use the EFL while the other group is not. In addition, four scenarios were considered with different sign and marking designs and traffic conditions in the experiments. Results indicate that drivers show certain amount of confusion and hesitation when encountering an EFL intersection for the first time. They can be overcome, however, by increasing exposure through driver education or by cue provided from other vehicles. Moreover, drivers unfamiliar with EFL operation can make a left turn using the conventional left-turn lanes as usual. The EFL operation is not likely to pose any serious safety risk of the intersection in real life operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Emissions Prediction and Measurement for Liquid-Fueled TVC Combustor with and without Water Injection

    NASA Technical Reports Server (NTRS)

    Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.

  5. Investigation of a protein complex network

    NASA Astrophysics Data System (ADS)

    Mashaghi, A. R.; Ramezanpour, A.; Karimipour, V.

    2004-09-01

    The budding yeast Saccharomyces cerevisiae is the first eukaryote whose genome has been completely sequenced. It is also the first eukaryotic cell whose proteome (the set of all proteins) and interactome (the network of all mutual interactions between proteins) has been analyzed. In this paper we study the structure of the yeast protein complex network in which weighted edges between complexes represent the number of shared proteins. It is found that the network of protein complexes is a small world network with scale free behavior for many of its distributions. However we find that there are no strong correlations between the weights and degrees of neighboring complexes. To reveal non-random features of the network we also compare it with a null model in which the complexes randomly select their proteins. Finally we propose a simple evolutionary model based on duplication and divergence of proteins.

  6. Modeling and simulating networks of interdependent protein interactions.

    PubMed

    Stöcker, Bianca K; Köster, Johannes; Zamir, Eli; Rahmann, Sven

    2018-05-21

    Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of these systems emerge not only from the protein interactions themselves but also from the dependencies between these interactions, as generated by allosteric effects or mutual exclusion due to steric hindrance. Therefore, formal models for integrating and utilizing information about interaction dependencies are of high interest. Here, we describe an approach for endowing protein networks with interaction dependencies using propositional logic, thereby obtaining constrained protein interaction networks ("constrained networks"). The construction of these networks is based on public interaction databases as well as text-mined information about interaction dependencies. We present an efficient data structure and algorithm to simulate protein complex formation in constrained networks. The efficiency of the model allows fast simulation and facilitates the analysis of many proteins in large networks. In addition, this approach enables the simulation of perturbation effects, such as knockout of single or multiple proteins and changes of protein concentrations. We illustrate how our model can be used to analyze a constrained human adhesome protein network, which is responsible for the formation of diverse and dynamic cell-matrix adhesion sites. By comparing protein complex formation under known interaction dependencies versus without dependencies, we investigate how these dependencies shape the resulting repertoire of protein complexes. Furthermore, our model enables investigating how the interplay of network topology with interaction dependencies influences the propagation of perturbation effects across a large biochemical system. Our simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is available under the MIT license at http://github.com/BiancaStoecker/cpinsim and as a Bioconda package (https://bioconda.github.io).

  7. Bub2 regulation of cytokinesis and septation in budding yeast

    PubMed Central

    Park, Su Young; Cable, Addie E; Blair, Jessica; Stockstill, Katherine E; Shannnon, Katie B

    2009-01-01

    Background The mitotic exit network (MEN) is required for events at the end of mitosis such as degradation of mitotic cyclins and cytokinesis. Bub2 and its binding partner Bfa1 act as a GTPase activating protein (GAP) to negatively regulate the MEN GTPase Tem1. The Bub2/Bfa1 checkpoint pathway is required to delay the cell cycle in response to mispositioned spindles. In addition to its role in mitotic exit, Tem1 is required for actomyosin ring contraction. Results To test the hypothesis that the Bub2 pathway prevents premature actin ring assembly, we compared the timing of actin ring formation in wild type, bub2Δ, mad2Δ, and bub2Δmad2Δ cells both with and without microtubules. There was no difference in the timing of actin ring formation between wild type and mutant cells in a synchronized cell cycle. In the presence of nocodazole, both bub2Δ and mad2Δ cells formed rings after a delay of the same duration. Double mutant bub2Δmad2Δ and bfa1Δmad2Δ cells formed rings at the same time with and without nocodazole. To determine if Bub2 has an effect on actomyosin ring contraction through its regulation of Tem1, we used live cell imaging of Myo1-GFP in a bub2Δ strain. We found a significant decrease in the total time of contraction and an increase in rate of contraction compared to wild type cells. We also examined myosin contraction using Myo1-GFP in cells overexpressing an epitope tagged Bub2. Surprisingly, overexpression of Bub2 also led to a significant increase in the rate of contraction, as well as morphological defects. The chained cell phenotype caused by Bub2 overexpression could be rescued by co-overexpression of Tem1, and was not rescued by deletion of BFA1. Conclusion Our data indicate that the Bub2 checkpoint pathway does not have a specific role in delaying actin ring formation. The observed increase in the rate of myosin contraction in the bub2Δ strain provides evidence that the MEN regulates actomyosin ring contraction. Our data suggest that the overexpression of the Bub2 fusion protein acts as a dominant negative, leading to septation defects by a mechanism that is Tem1-dependent. PMID:19490645

  8. An Arabidopsis Lipid Flippase Is Required for Timely Recruitment of Defenses to the Host-Pathogen Interface at the Plant Cell Surface.

    PubMed

    Underwood, William; Ryan, Andrew; Somerville, Shauna C

    2017-06-05

    Deposition of cell wall-reinforcing papillae is an integral component of the plant immune response. The Arabidopsis PENETRATION 3 (PEN3) ATP binding cassette (ABC) transporter plays a role in defense against numerous pathogens and is recruited to sites of pathogen detection where it accumulates within papillae. However, the trafficking pathways and regulatory mechanisms contributing to recruitment of PEN3 and other defenses to the host-pathogen interface are poorly understood. Here, we report a confocal microscopy-based screen to identify mutants with altered localization of PEN3-GFP after inoculation with powdery mildew fungi. We identified a mutant, aberrant localization of PEN3 3 (alp3), displaying accumulation of the normally plasma membrane (PM)-localized PEN3-GFP in endomembrane compartments. The mutant was found to be disrupted in the P 4 -ATPase AMINOPHOSPHOLIPID ATPASE 3 (ALA3), a lipid flippase that plays a critical role in vesicle formation. We provide evidence that PEN3 undergoes continuous endocytic cycling from the PM to the trans-Golgi network (TGN). In alp3, PEN3 accumulates in the TGN, causing delays in recruitment to the host-pathogen interface. Our results indicate that PEN3 and other defense proteins continuously cycle through the TGN and that timely exit of these proteins from the TGN is critical for effective pre-invasive immune responses against powdery mildews. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  9. Colonization by Legionella spp. of water networks in residential buildings of the Province of Pisa, Italy.

    PubMed

    Baggiani, A; Casini, B; Totaro, M; Aquino, F; Valentini, P; Bruni, B; Porretta, A; Casalini, F; Miccoli, M; Privitera, G

    2015-01-01

    Despite the increase of community acquired cases of legionellosis in Italy over the last years, the Italian guidelines do not give indications for prevention and control of Legionella in the hot water networks (or centralized conditioning systems) of residential buildings. We performed a survey on eight medium sized apartment buildings in the Pisa district to assess the prevalence of Legionella spp. in the water network and the respondance to drinking water requisites at the point of use, according to the Italian norms. For each building two hot water and three cold water samples (located at water entrance from the aqueduct network into the building pipework, at the exit from pressure autoclave, and at a remote tap) were collected. Legionella was detected in 20% of residential buildings, mostly in those with a central hot water production system. The study highlights a condition of potential risk for susceptible population subgroups and supports the need for measures of risk assessment and control.

  10. Molecular Determinants and Dynamics of Hepatitis C Virus Secretion

    PubMed Central

    Coller, Kelly E.; Heaton, Nicholas S.; Berger, Kristi L.; Cooper, Jacob D.; Saunders, Jessica L.; Randall, Glenn

    2012-01-01

    The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells. PMID:22241992

  11. Presence of Legionella spp. in Hot Water Networks of Different Italian Residential Buildings: A Three-Year Survey.

    PubMed

    Totaro, Michele; Valentini, Paola; Costa, Anna Laura; Frendo, Lorenzo; Cappello, Alessia; Casini, Beatrice; Miccoli, Mario; Privitera, Gaetano; Baggiani, Angelo

    2017-10-26

    Although the European reports highlight an increase in community-acquired Legionnaires' disease cases, the risk of Legionella spp. in private houses is underestimated. In Pisa (Italy) we performed a three-year survey on Legionella presence in 121 buildings with an independent hot water production (IB); 64 buildings with a central hot water production (CB); and 35 buildings with a solar thermal system for hot water production (TB). From all the 220 buildings Legionella spp. was researched in two hot water samples collected either at the recirculation point or on the first floor and on the last floor, while the potable water quality was analysed in three cold water samples collected at the inlet from the aqueduct network, at the exit from the autoclave, and at the most remote tap. Legionella pneumophila sg1, Legionella pneumophila sg2-16, and non- pneumophila Legionella species were detected in 26% of the hot water networks, mostly in CB and TB. In these buildings we detected correlations between the presence of Legionella and the total chlorine concentration decrease and/or the increase of the temperature. Cold water resulted free from microbiological hazards, with the exception of Serratia liquefaciens and Enterobacter cloacae isolated at the exit from two different autoclaves. We observed an increase in total microbial counts at 22 °C and 37 °C between the samples collected at the most remote taps compared to the ones collected at the inlet from the aqueduct. The study highlights a condition of potential risk for susceptible categories of population and supports the need for measures of risk assessment and control.

  12. The SmartOR: a distributed sensor network to improve operating room efficiency.

    PubMed

    Huang, Albert Y; Joerger, Guillaume; Fikfak, Vid; Salmon, Remi; Dunkin, Brian J; Bass, Barbara L; Garbey, Marc

    2017-09-01

    Despite the significant expense of OR time, best practice achieves only 70% efficiency. Compounding this problem is a lack of real-time data. Most current OR utilization programs require manual data entry. Automated systems require installation and maintenance of expensive tracking hardware throughout the institution. This study developed an inexpensive, automated OR utilization system and analyzed data from multiple operating rooms. OR activity was deconstructed into four room states. A sensor network was then developed to automatically capture these states using only three sensors, a local wireless network, and a data capture computer. Two systems were then installed into two ORs, recordings captured 24/7. The SmartOR recorded the following events: any room activity, patient entry/exit time, anesthesia time, laparoscopy time, room turnover time, and time of preoperative patient identification by the surgeon. From November 2014 to December 2015, data on 1003 cases were collected. The mean turnover time was 36 min, and 38% of cases met the institutional goal of ≤30 min. Data analysis also identified outlier cases (>1 SD from mean) in the domains of time from patient entry into the OR to intubation (11% of cases) and time from extubation to patient exiting the OR (11% of cases). Time from surgeon identification of patient to scheduled procedure start time was 11 min (institution bylaws require 20 min before scheduled start time), yet OR teams required 22 min on average to bring a patient into the room after surgeon identification. The SmartOR automatically and reliably captures data on OR room state and, in real time, identifies outlier cases that may be examined closer to improve efficiency. As no manual entry is required, the data are indisputable and allow OR teams to maintain a patient-centric focus.

  13. Presence of Legionella spp. in Hot Water Networks of Different Italian Residential Buildings: A Three-Year Survey

    PubMed Central

    Totaro, Michele; Valentini, Paola; Costa, Anna Laura; Frendo, Lorenzo; Cappello, Alessia; Casini, Beatrice; Miccoli, Mario; Privitera, Gaetano; Baggiani, Angelo

    2017-01-01

    Although the European reports highlight an increase in community-acquired Legionnaires’ disease cases, the risk of Legionella spp. in private houses is underestimated. In Pisa (Italy) we performed a three-year survey on Legionella presence in 121 buildings with an independent hot water production (IB); 64 buildings with a central hot water production (CB); and 35 buildings with a solar thermal system for hot water production (TB). From all the 220 buildings Legionella spp. was researched in two hot water samples collected either at the recirculation point or on the first floor and on the last floor, while the potable water quality was analysed in three cold water samples collected at the inlet from the aqueduct network, at the exit from the autoclave, and at the most remote tap. Legionella pneumophila sg1, Legionella pneumophila sg2–16, and non-pneumophila Legionella species were detected in 26% of the hot water networks, mostly in CB and TB. In these buildings we detected correlations between the presence of Legionella and the total chlorine concentration decrease and/or the increase of the temperature. Cold water resulted free from microbiological hazards, with the exception of Serratia liquefaciens and Enterobacter cloacae isolated at the exit from two different autoclaves. We observed an increase in total microbial counts at 22 °C and 37 °C between the samples collected at the most remote taps compared to the ones collected at the inlet from the aqueduct. The study highlights a condition of potential risk for susceptible categories of population and supports the need for measures of risk assessment and control. PMID:29072607

  14. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  15. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    PubMed

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.

    PubMed

    Le, Duc-Hau

    2015-01-01

    Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with prostate cancer and selected the top 100 highly ranked candidate protein complexes. Interestingly, 69 of them were evidenced since at least one of their protein elements are known to be associated with prostate cancer. Our proposed method, including the framework to construct functional similarity protein complex networks and the neighborhood-based algorithm on these networks, could be used for identification of novel disease-protein complex associations.

  17. A protein interaction network analysis for yeast integral membrane protein.

    PubMed

    Shi, Ming-Guang; Huang, De-Shuang; Li, Xue-Ling

    2008-01-01

    Although the yeast Saccharomyces cerevisiae is the best exemplified single-celled eukaryote, the vast number of protein-protein interactions of integral membrane proteins of Saccharomyces cerevisiae have not been characterized by experiments. Here, based on the kernel method of Greedy Kernel Principal Component analysis plus Linear Discriminant Analysis, we identify 300 protein-protein interactions involving 189 membrane proteins and get the outcome of a highly connected protein-protein interactions network. Furthermore, we study the global topological features of integral membrane proteins network of Saccharomyces cerevisiae. These results give the comprehensive description of protein-protein interactions of integral membrane proteins and reveal global topological and robustness of the interactome network at a system level. This work represents an important step towards a comprehensive understanding of yeast protein interactions.

  18. [Epidemiology of catheter-related infections in intensive care unit].

    PubMed

    Merrer, J

    2005-03-01

    Catheter-related infections remain an important cause of nosocomial infection in the ICU. They include colonization of the device, exit-site infection and catheter-related bloodstream infection with or without bacteraemia. Data from clinical studies and surveillance networks should be compared cautiously due to important methodological differences and wide variations of device-utilization ratio between units or countries. In France, two regional networks (C-CLIN Paris-Nord and C-CLIN Sud-Est) produced comparable and reproducible results. Colonization represents five-six cases per 1000 catheter-days and bacteraemia represents one case per 1000 catheter-days. Incidence rates from North American studies are usually four to five times higher. Numerous risk factors have been identified. Some of them could be used to stratify patients according to risk of catheter-related infection and to allow more valid comparison between ICU's performances. Participation of French ICUs to the recent national surveillance networks (REA RAISIN and REACAT RAISIN) should be encouraged.

  19. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer

    PubMed Central

    CHEN, CHEN; SHEN, HONG; ZHANG, LI-GUO; LIU, JIAN; CAO, XIAO-GE; YAO, AN-LIANG; KANG, SHAO-SAN; GAO, WEI-XING; HAN, HUI; CAO, FENG-HONG; LI, ZHI-GUO

    2016-01-01

    Currently, using human prostate cancer (PCa) tissue samples to conduct proteomics research has generated a large amount of data; however, only a very small amount has been thoroughly investigated. In this study, we manually carried out the mining of the full text of proteomics literature that involved comparisons between PCa and normal or benign tissue and identified 41 differentially expressed proteins verified or reported more than 2 times from different research studies. We regarded these proteins as seed proteins to construct a protein-protein interaction (PPI) network. The extended network included one giant network, which consisted of 1,264 nodes connected via 1,744 edges, and 3 small separate components. The backbone network was then constructed, which was derived from key nodes and the subnetwork consisting of the shortest path between seed proteins. Topological analyses of these networks were conducted to identify proteins essential for the genesis of PCa. Solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4) had the highest closeness centrality located in the center of each network, and the highest betweenness centrality and largest degree in the backbone network. Tubulin, beta 2C (TUBB2C) had the largest degree in the giant network and subnetwork. In addition, using module analysis of the whole PPI network, we obtained a densely connected region. Functional annotation indicated that the Ras protein signal transduction biological process, mitogen-activated protein kinase (MAPK), neurotrophin and the gonadotropin-releasing hormone (GnRH) signaling pathway may play an important role in the genesis and development of PCa. Further investigation of the SLC2A4, TUBB2C proteins, and these biological processes and pathways may therefore provide a potential target for the diagnosis and treatment of PCa. PMID:27121963

  20. The Role of Drosophila Merlin in the Control of Mitosis Exit and Development

    DTIC Science & Technology

    2005-07-01

    Abstract presented to the 2005 CTF International Consortium for the Molecular Biology of NFl, NF2, and Schwannomatosis ). Experiments are in progress...Drosophila Spermatogenesis. Abstract presented to the 2005 CTF International Consortium for the Molecular Biology of NFl, NF2, and Schwannomatosis . We...and Schwannomatosis . By combining bioinformatics and phylogenetic approaches, we demonstrated a monophyletic origin of the merlin proteins with the

  1. The E4 protein; structure, function and patterns of expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genomemore » amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup ∧}E4, these kinases regulate one of the E1{sup ∧}E4 proteins main functions, the association with the cellular keratin network, and eventually also its cleavage by the protease calpain which allows assembly into amyloid-like fibres and reorganisation of the keratin network. Although the E4 proteins of different HPV types appear divergent at the level of their primary amino acid sequence, they share a recognisable modular organisation and pattern of expression, which may underlie conserved functions and regulation. Assembly into higher-order multimers and suppression of cell proliferation are common to all E4 proteins examined. Although not yet formally demonstrated, a role in virus release and transmission remains a likely function for E4. - Highlights: • E4 gene products have a modular structure, and are expressed from the E1{sup ∧}E4 spliced mRNA. • E4 proteins are modified during epithelial differentiation by phosphorylation and proteolysis. • The E4 proteins contribute to genome amplification-efficiency and virus synthesis. • E4 proteins are abundantly expressed and may facilitate efficient virus release and transmission. • High-risk E4 proteins are deposited as amyloid fibres and can be used as infection biomarkers.« less

  2. Network-Based Methods for Identifying Key Active Proteins in the Extracellular Electron Transfer Process in Shewanella oneidensis MR-1.

    PubMed

    Ding, Dewu; Sun, Xiao

    2018-01-16

    Shewanella oneidensis MR-1 can transfer electrons from the intracellular environment to the extracellular space of the cells to reduce the extracellular insoluble electron acceptors (Extracellular Electron Transfer, EET). Benefiting from this EET capability, Shewanella has been widely used in different areas, such as energy production, wastewater treatment, and bioremediation. Genome-wide proteomics data was used to determine the active proteins involved in activating the EET process. We identified 1012 proteins with decreased expression and 811 proteins with increased expression when the EET process changed from inactivation to activation. We then networked these proteins to construct the active protein networks, and identified the top 20 key active proteins by network centralization analysis, including metabolism- and energy-related proteins, signal and transcriptional regulatory proteins, translation-related proteins, and the EET-related proteins. We also constructed the integrated protein interaction and transcriptional regulatory networks for the active proteins, then found three exclusive active network motifs involved in activating the EET process-Bi-feedforward Loop, Regulatory Cascade with a Feedback, and Feedback with a Protein-Protein Interaction (PPI)-and identified the active proteins involved in these motifs. Both enrichment analysis and comparative analysis to the whole-genome data implicated the multiheme c -type cytochromes and multiple signal processing proteins involved in the process. Furthermore, the interactions of these motif-guided active proteins and the involved functional modules were discussed. Collectively, by using network-based methods, this work reported a proteome-wide search for the key active proteins that potentially activate the EET process.

  3. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model.

    PubMed

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2016-10-06

    Comparative analysis of protein-protein interaction (PPI) networks provides an effective means of detecting conserved functional network modules across different species. Such modules typically consist of orthologous proteins with conserved interactions, which can be exploited to computationally predict the modules through network comparison. In this work, we propose a novel probabilistic framework for comparing PPI networks and effectively predicting the correspondence between proteins, represented as network nodes, that belong to conserved functional modules across the given PPI networks. The basic idea is to estimate the steady-state network flow between nodes that belong to different PPI networks based on a Markov random walk model. The random walker is designed to make random moves to adjacent nodes within a PPI network as well as cross-network moves between potential orthologous nodes with high sequence similarity. Based on this Markov random walk model, we estimate the steady-state network flow - or the long-term relative frequency of the transitions that the random walker makes - between nodes in different PPI networks, which can be used as a probabilistic score measuring their potential correspondence. Subsequently, the estimated scores can be used for detecting orthologous proteins in conserved functional modules through network alignment. Through evaluations based on multiple real PPI networks, we demonstrate that the proposed scheme leads to improved alignment results that are biologically more meaningful at reduced computational cost, outperforming the current state-of-the-art algorithms. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/CUFID .

  4. Linking the proteins--elucidation of proteome-scale networks using mass spectrometry.

    PubMed

    Pflieger, Delphine; Gonnet, Florence; de la Fuente van Bentem, Sergio; Hirt, Heribert; de la Fuente, Alberto

    2011-01-01

    Proteomes are intricate. Typically, thousands of proteins interact through physical association and post-translational modifications (PTMs) to give rise to the emergent functions of cells. Understanding these functions requires one to study proteomes as "systems" rather than collections of individual protein molecules. The abstraction of the interacting proteome to "protein networks" has recently gained much attention, as networks are effective representations, that lose specific molecular details, but provide the ability to see the proteome as a whole. Mostly two aspects of the proteome have been represented by network models: proteome-wide physical protein-protein-binding interactions organized into Protein Interaction Networks (PINs), and proteome-wide PTM relations organized into Protein Signaling Networks (PSNs). Mass spectrometry (MS) techniques have been shown to be essential to reveal both of these aspects on a proteome-wide scale. Techniques such as affinity purification followed by MS have been used to elucidate protein-protein interactions, and MS-based quantitative phosphoproteomics is critical to understand the structure and dynamics of signaling through the proteome. We here review the current state-of-the-art MS-based analytical pipelines for the purpose to characterize proteome-scale networks. Copyright © 2010 Wiley Periodicals, Inc.

  5. Hippo Signaling in Mitosis: An Updated View in Light of the MEN Pathway.

    PubMed

    Hergovich, Alexander

    2017-01-01

    The Hippo pathway is an essential tumor suppressor signaling network that coordinates cell proliferation, death, and differentiation in higher eukaryotes. Intriguingly, the core components of the Hippo pathway are conserved from yeast to man, with the yeast analogs of mammalian MST1/2 (fly Hippo), MOB1 (fly Mats), LATS1/2 (fly Warts), and NDR1/2 (fly Tricornered) functioning as essential components of the mitotic exit network (MEN). Here, we update our previous summary of mitotic functions of Hippo core components in Drosophila melanogaster and mammals, with particular emphasis on similarities between the yeast MEN pathway and mitotic Hippo signaling. Mitotic functions of YAP and TAZ, the two main effectors of Hippo signaling, are also discussed.

  6. Transmembrane Segments Form Tertiary Hairpins in the Folding Vestibule of the Ribosome.

    PubMed Central

    Tu, LiWei; Khanna, Pooja; Deutsch, Carol

    2013-01-01

    Folding of membrane proteins begins in the ribosome as the peptide is elongated. During this process, the nascent peptide navigates along 100 Å of tunnel from the peptidyltransferase center to the exit port. Proximal to the exit port is a ‘folding vestibule’ that permits the nascent peptide to compact and explore conformational space for potential tertiary folding partners. The latter occurs for cytosolic subdomains, but has not yet been shown for transmembrane segments. We now demonstrate, using an accessibility assay and an improved, intramolecular crosslinking assay, that the helical transmembrane S3b-S4 hairpin (‘paddle’) of a voltage-gated potassium (Kv) channel, a critical region of the Kv voltage sensor, forms in the vestibule. S3-S4 hairpin interactions are detected at an early stage of Kv biogenesis. Moreover, this vestibule hairpin is consistent with a closed-state conformation of the Kv channel in the plasma membrane. PMID:24055377

  7. Systematic mutational analysis of the intracellular regions of yeast Gap1 permease.

    PubMed

    Merhi, Ahmad; Gérard, Nicolas; Lauwers, Elsa; Prévost, Martine; André, Bruno

    2011-04-19

    The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g., ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER). We used alanine-scanning mutagenesis to isolate 64 mutant Gap1 proteins altered in the NT, the CT, or one of the five TM-connecting intracellular loops (L2, -4, -6, -8 and -10). We found 17 mutations (in L2, L8, L10 and CT) impairing Gap1 exit from the ER. Of the 47 mutant proteins reaching the plasma membrane normally, two are unstable and rapidly down-regulated even when the nitrogen source is poor. Six others are totally inactive and another four, altered in a 16-amino-acid sequence in the NT, are resistant to ammonium-induced down-regulation. Finally, a mutation in L6 causes missorting of Gap1 from the secretory pathway to the vacuole. Interestingly, this direct vacuolar sorting seems to be independent of Gap1 ubiquitylation. This study illustrates the importance of multiple intracellular regions of Gap1 in its secretion, transport activity, and down-regulation.

  8. Ndfip1 mediates peripheral tolerance to self and exogenous antigen by inducing cell cycle exit in responding CD4+ T cells

    PubMed Central

    Altin, John A.; Daley, Stephen R.; Howitt, Jason; Rickards, Helen J.; Batkin, Alison K.; Horikawa, Keisuke; Prasad, Simon J.; Nelms, Keats A.; Kumar, Sharad; Wu, Lawren C.; Tan, Seong-Seng; Cook, Matthew C.; Goodnow, Christopher C.

    2014-01-01

    The NDFIP1 (neural precursor cell expressed, developmentally down-regulated protein 4 family-interacting protein 1) adapter for the ubiquitin ligase ITCH is genetically linked to human allergic and autoimmune disease, but the cellular mechanism by which these proteins enable foreign and self-antigens to be tolerated is unresolved. Here, we use two unique mouse strains—an Ndfip1-YFP reporter and an Ndfip1-deficient strain—to show that Ndfip1 is progressively induced during T-cell differentiation and activation in vivo and that its deficiency causes a cell-autonomous, Forkhead box P3-independent failure of peripheral CD4+ T-cell tolerance to self and exogenous antigen. In small cohorts of antigen-specific CD4+ cells responding in vivo, Ndfip1 was necessary for tolerogen-reactive T cells to exit cell cycle after one to five divisions and to abort Th2 effector differentiation, defining a step in peripheral tolerance that provides insights into the phenomenon of T-cell anergy in vivo and is distinct from the better understood process of Bcl2-interacting mediator of cell death-mediated apoptosis. Ndfip1 deficiency precipitated autoimmune pancreatic destruction and diabetes; however, this depended on a further accumulation of nontolerant anti-self T cells from strong stimulation by exogenous tolerogen. These findings illuminate a peripheral tolerance checkpoint that aborts T-cell clonal expansion against allergens and autoantigens and demonstrate how hypersensitive responses to environmental antigens may trigger autoimmunity. PMID:24520172

  9. Mcl1 regulates the terminal mitosis of neural precursor cells in the mammalian brain through p27Kip1.

    PubMed

    Hasan, S M Mahmudul; Sheen, Ashley D; Power, Angela M; Langevin, Lisa Marie; Xiong, Jieying; Furlong, Michael; Day, Kristine; Schuurmans, Carol; Opferman, Joseph T; Vanderluit, Jacqueline L

    2013-08-01

    Cortical development requires the precise timing of neural precursor cell (NPC) terminal mitosis. Although cell cycle proteins regulate terminal mitosis, the factors that influence the cell cycle machinery are incompletely understood. Here we show in mice that myeloid cell leukemia 1 (Mcl1), an anti-apoptotic Bcl-2 protein required for the survival of NPCs, also regulates their terminal differentiation through the cell cycle regulator p27(Kip1). A BrdU-Ki67 cell profiling assay revealed that in utero electroporation of Mcl1 into NPCs in the embryonic neocortex increased NPC cell cycle exit (the leaving fraction). This was further supported by a decrease in proliferating NPCs (Pax6(+) radial glial cells and Tbr2(+) neural progenitors) and an increase in differentiating cells (Dcx(+) neuroblasts and Tbr1(+) neurons). Similarly, BrdU birth dating demonstrated that Mcl1 promotes premature NPC terminal mitosis giving rise to neurons of the deeper cortical layers, confirming their earlier birthdate. Changes in Mcl1 expression within NPCs caused concomitant changes in the levels of p27(Kip1) protein, a key regulator of NPC differentiation. Furthermore, in the absence of p27(Kip1), Mcl1 failed to induce NPC cell cycle exit, demonstrating that p27(Kip1) is required for Mcl1-mediated NPC terminal mitosis. In summary, we have identified a novel physiological role for anti-apoptotic Mcl1 in regulating NPC terminal differentiation.

  10. A study of knowledge supernetworks and network robustness in different business incubators

    NASA Astrophysics Data System (ADS)

    Zhang, Haihong; Wu, Wenqing; Zhao, Liming

    2016-04-01

    As the most important intangible resource of the new generation of business incubators, knowledge has been studied extensively, particularly with respect to how it spreads among incubating firms through knowledge networks. However, these homogeneous networks do not adequately describe the heterogeneity of incubating firms in different types of business incubators. To solve the problem of heterogeneity, the notion of a knowledge supernetwork has been used both to construct a knowledge interaction model among incubating firms and to distinguish social network relationships from knowledge network relationships. The process of knowledge interaction and network evolution can then be simulated with a few rules for incubating firms regarding knowledge innovation/absorption, social network connection, and entry and exit, among other aspects. Knowledge and networks have been used as performance indicators to evaluate the evolution of knowledge supernetworks. Moreover, we study the robustness of incubating firms' social networks by employing four types of attack strategies. Based on our simulation results, we conclude that there have been significant knowledge interaction and network evolution among incubating firms on a periodic basis and that both specialized and diversified business incubators have every advantage necessary in terms of both knowledge and networks to cultivate start-up companies. As far as network robustness is concerned, there is no obvious difference between the two types of business incubators with respect to the stability of their network structures, but specialized business incubators have stronger network communication abilities than diversified business incubators.

  11. Battlefield Acoustic Sensing, Multimodal Sensing, and Networked Sensing for Intelligence, Surveillance, and Reconnaissance (ISR) Applications

    DTIC Science & Technology

    2015-09-01

    seen in Fig. 9, were placed at the rear of the vehicle to minimize the noise and vibration from the engine and its intake and exhaust from the...Specific/unique algorithm approaches attempted and results 4) Observations related to wind noise rejection and/or effects 5) Limitations of technology 6...After a certain time, the muzzle blast is detected, which results from the exit of the munition at the muzzle. Figure 6 shows an example of a single

  12. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.

    PubMed

    Theil, Elizabeth C; Tosha, Takehiko; Behera, Rabindra K

    2016-05-17

    Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein cage symmetry (3-fold and 4-fold axes) and amino acid conservation coincide with function, shown by amino acid substitution effects. 3-Fold symmetry axes control Fe(2+) entry (enzyme catalysis of Fe(2+)/O2 oxidoreduction) and Fe(2+) exit (reductive ferritin mineral dissolution); 3-fold symmetry axes influence Fe(2+)exit from dissolved mineral; bacterial ferritins diverge slightly in Fe/O2 reaction mechanisms and intracage paths of iron-oxy complexes. Biosynthesis rates of ferritin protein change with Fe(2+) and O2 concentrations, dependent on DNA-binding, and heme binding protein, Bach 1. Increased cellular O2 indirectly stabilizes ferritin DNA/Bach 1 interactions. Heme, Fe-protoporphyrin IX, decreases ferritin DNA-Bach 1 binding, causing increased ferritin mRNA biosynthesis (transcription). Direct Fe(2+) binding to ferritin mRNA decreases binding of an inhibitory protein, IRP, causing increased ferritin mRNA translation (protein biosynthesis). Newly synthesized ferritin protein consumes Fe(2+) in biomineral, decreasing Fe(2)(+) and creating a regulatory feedback loop. Ferritin without iron is "apoferritin". Iron removal from ferritin, experimentally, uses biological reductants, for example, NADH + FMN, or chemical reductants, for example, thioglycolic acid, with Fe(2+) chelators; physiological mechanism(s) are murky. Clear, however, is the necessity of ferritin for terrestrial life by conferring oxidant protection (plants, animals, and bacteria), virulence (bacteria), and embryonic survival (mammals). Future studies of ferritin structure/function and Fe(2+)/O2 chemistry will lead to new ferritin uses in medicine, nutrition, and nanochemistry.

  13. Disease gene classification with metagraph representations.

    PubMed

    Kircali Ata, Sezin; Fang, Yuan; Wu, Min; Li, Xiao-Li; Xiao, Xiaokui

    2017-12-01

    Protein-protein interaction (PPI) networks play an important role in studying the functional roles of proteins, including their association with diseases. However, protein interaction networks are not sufficient without the support of additional biological knowledge for proteins such as their molecular functions and biological processes. To complement and enrich PPI networks, we propose to exploit biological properties of individual proteins. More specifically, we integrate keywords describing protein properties into the PPI network, and construct a novel PPI-Keywords (PPIK) network consisting of both proteins and keywords as two different types of nodes. As disease proteins tend to have a similar topological characteristics on the PPIK network, we further propose to represent proteins with metagraphs. Different from a traditional network motif or subgraph, a metagraph can capture a particular topological arrangement involving the interactions/associations between both proteins and keywords. Based on the novel metagraph representations for proteins, we further build classifiers for disease protein classification through supervised learning. Our experiments on three different PPI databases demonstrate that the proposed method consistently improves disease protein prediction across various classifiers, by 15.3% in AUC on average. It outperforms the baselines including the diffusion-based methods (e.g., RWR) and the module-based methods by 13.8-32.9% for overall disease protein prediction. For predicting breast cancer genes, it outperforms RWR, PRINCE and the module-based baselines by 6.6-14.2%. Finally, our predictions also turn out to have better correlations with literature findings from PubMed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. An exploration of alternative visualisations of the basic helix-loop-helix protein interaction network

    PubMed Central

    Holden, Brian J; Pinney, John W; Lovell, Simon C; Amoutzias, Grigoris D; Robertson, David L

    2007-01-01

    Background Alternative representations of biochemical networks emphasise different aspects of the data and contribute to the understanding of complex biological systems. In this study we present a variety of automated methods for visualisation of a protein-protein interaction network, using the basic helix-loop-helix (bHLH) family of transcription factors as an example. Results Network representations that arrange nodes (proteins) according to either continuous or discrete information are investigated, revealing the existence of protein sub-families and the retention of interactions following gene duplication events. Methods of network visualisation in conjunction with a phylogenetic tree are presented, highlighting the evolutionary relationships between proteins, and clarifying the context of network hubs and interaction clusters. Finally, an optimisation technique is used to create a three-dimensional layout of the phylogenetic tree upon which the protein-protein interactions may be projected. Conclusion We show that by incorporating secondary genomic, functional or phylogenetic information into network visualisation, it is possible to move beyond simple layout algorithms based on network topology towards more biologically meaningful representations. These new visualisations can give structure to complex networks and will greatly help in interpreting their evolutionary origins and functional implications. Three open source software packages (InterView, TVi and OptiMage) implementing our methods are available. PMID:17683601

  15. Automated analysis of Physarum network structure and dynamics

    NASA Astrophysics Data System (ADS)

    Fricker, Mark D.; Akita, Dai; Heaton, Luke LM; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki

    2017-06-01

    We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015.

  16. Detection of Protein Complexes Based on Penalized Matrix Decomposition in a Sparse Protein⁻Protein Interaction Network.

    PubMed

    Cao, Buwen; Deng, Shuguang; Qin, Hua; Ding, Pingjian; Chen, Shaopeng; Li, Guanghui

    2018-06-15

    High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein⁻protein interaction (PPI) networks. In this study, based on penalized matrix decomposition ( PMD ), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMD pc ) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMD pc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).

  17. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  18. Identifying protein complexes in PPI network using non-cooperative sequential game.

    PubMed

    Maulik, Ujjwal; Basu, Srinka; Ray, Sumanta

    2017-08-21

    Identifying protein complexes from protein-protein interaction (PPI) network is an important and challenging task in computational biology as it helps in better understanding of cellular mechanisms in various organisms. In this paper we propose a noncooperative sequential game based model for protein complex detection from PPI network. The key hypothesis is that protein complex formation is driven by mechanism that eventually optimizes the number of interactions within the complex leading to dense subgraph. The hypothesis is drawn from the observed network property named small world. The proposed multi-player game model translates the hypothesis into the game strategies. The Nash equilibrium of the game corresponds to a network partition where each protein either belong to a complex or form a singleton cluster. We further propose an algorithm to find the Nash equilibrium of the sequential game. The exhaustive experiment on synthetic benchmark and real life yeast networks evaluates the structural as well as biological significance of the network partitions.

  19. Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks.

    PubMed

    Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia

    2012-06-21

    Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.

  20. Predicting Human Protein Subcellular Locations by the Ensemble of Multiple Predictors via Protein-Protein Interaction Network with Edge Clustering Coefficients

    PubMed Central

    Du, Pufeng; Wang, Lusheng

    2014-01-01

    One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods. PMID:24466278

  1. The Down syndrome-related protein kinase DYRK1A phosphorylates p27Kip1 and Cyclin D1 and induces cell cycle exit and neuronal differentiation

    PubMed Central

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome. PMID:24806449

  2. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network.

    PubMed

    Lautz, Jonathan D; Brown, Emily A; VanSchoiack, Alison A Williams; Smith, Stephen E P

    2018-05-27

    Cells utilize dynamic, network level rearrangements in highly interconnected protein interaction networks to transmit and integrate information from distinct signaling inputs. Despite the importance of protein interaction network dynamics, the organizational logic underlying information flow through these networks is not well understood. Previously, we developed the quantitative multiplex co-immunoprecipitation platform, which allows for the simultaneous and quantitative measurement of the amount of co-association between large numbers of proteins in shared complexes. Here, we adapt quantitative multiplex co-immunoprecipitation to define the activity dependent dynamics of an 18-member protein interaction network in order to better understand the underlying principles governing glutamatergic signal transduction. We first establish that immunoprecipitation detected by flow cytometry can detect activity dependent changes in two known protein-protein interactions (Homer1-mGluR5 and PSD-95-SynGAP). We next demonstrate that neuronal stimulation elicits a coordinated change in our targeted protein interaction network, characterized by the initial dissociation of Homer1 and SynGAP-containing complexes followed by increased associations among glutamate receptors and PSD-95. Finally, we show that stimulation of distinct glutamate receptor types results in different modular sets of protein interaction network rearrangements, and that cells activate both modules in order to integrate complex inputs. This analysis demonstrates that cells respond to distinct types of glutamatergic input by modulating different combinations of protein co-associations among a targeted network of proteins. Our data support a model of synaptic plasticity in which synaptic stimulation elicits dissociation of preexisting multiprotein complexes, opening binding slots in scaffold proteins and allowing for the recruitment of additional glutamatergic receptors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Transcriptome of Atoh7 retinal progenitor cells identifies new Atoh7-dependent regulatory genes for retinal ganglion cell formation.

    PubMed

    Gao, Zhiguang; Mao, Chai-An; Pan, Ping; Mu, Xiuqian; Klein, William H

    2014-11-01

    The bHLH transcription factor ATOH7 (Math5) is essential for establishing retinal ganglion cell (RGC) fate. However, Atoh7-expressing retinal progenitor cells (RPCs) can give rise to all retinal cell types, suggesting that other factors are involved in specifying RGCs. The basis by which a subpopulation of Atoh7-expressing RPCs commits to an RGC fate remains uncertain but is of critical importance to retinal development since RGCs are the earliest cell type to differentiate. To better understand the regulatory mechanisms leading to cell-fate specification, a binary genetic system was generated to specifically label Atoh7-expressing cells with green fluorescent protein (GFP). Fluorescence-activated cell sorting (FACS)-purified GFP(+) and GFP(-) cells were profiled by RNA-seq. Here, we identify 1497 transcripts that were differentially expressed between the two RPC populations. Pathway analysis revealed diminished growth factor signaling in Atoh7-expressing RPCs, indicating that these cells had exited the cell cycle. In contrast, axon guidance signals were enriched, suggesting that axons of Atoh7-expressing RPCs were already making synaptic connections. Notably, many genes enriched in Atoh7-expressing RPCs encoded transcriptional regulators, and several were direct targets of ATOH7, including, and unexpectedly, Ebf3 and Eya2. We present evidence for a Pax6-Atoh7-Eya2 pathway that acts downstream of Atoh7 but upstream of differentiation factor Pou4f2. EYA2 is a protein phosphatase involved in protein-protein interactions and posttranslational regulation. These properties, along with Eya2 as an early target gene of ATOH7, suggest that EYA2 functions in RGC specification. Our results expand current knowledge of the regulatory networks operating in Atoh7-expressing RPCs and offer new directions for exploring the earliest aspects of retinogenesis. © 2014 Wiley Periodicals, Inc.

  4. Protein-Protein Interface and Disease: Perspective from Biomolecular Networks.

    PubMed

    Hu, Guang; Xiao, Fei; Li, Yuqian; Li, Yuan; Vongsangnak, Wanwipa

    Protein-protein interactions are involved in many important biological processes and molecular mechanisms of disease association. Structural studies of interfacial residues in protein complexes provide information on protein-protein interactions. Characterizing protein-protein interfaces, including binding sites and allosteric changes, thus pose an imminent challenge. With special focus on protein complexes, approaches based on network theory are proposed to meet this challenge. In this review we pay attention to protein-protein interfaces from the perspective of biomolecular networks and their roles in disease. We first describe the different roles of protein complexes in disease through several structural aspects of interfaces. We then discuss some recent advances in predicting hot spots and communication pathway analysis in terms of amino acid networks. Finally, we highlight possible future aspects of this area with respect to both methodology development and applications for disease treatment.

  5. A Collaboration Network Model Of Cytokine-Protein Network

    NASA Astrophysics Data System (ADS)

    Zou, Sheng-Rong; Zhou, Ta; Peng, Yu-Jing; Guo, Zhong-Wei; Gu, Chang-Gui; He, Da-Ren

    2008-03-01

    Complex networks provide us a new view for investigation of immune systems. We collect data through STRING database and present a network description with cooperation network model. The cytokine-protein network model we consider is constituted by two kinds of nodes, one is immune cytokine types which can be regarded as collaboration acts, the other one is protein type which can be regarded as collaboration actors. From act degree distribution that can be well described by typical SPL (shifted power law) functions [1], we find that HRAS, TNFRSF13C, S100A8, S100A1, MAPK8, S100A7, LIF, CCL4, CXCL13 are highly collaborated with other proteins. It reveals that these mediators are important in cytokine-protein network to regulate immune activity. Dyad in the collaboration networks can be defined as two proteins and they appear in one cytokine collaboration relationship. The dyad act degree distribution can also be well described by typical SPL functions. [1] Assortativity and act degree distribution of some collaboration networks, Hui Chang, Bei-Bei Su, Yue-Ping Zhou, Daren He, Physica A, 383 (2007) 687-702

  6. Universal partitioning of the hierarchical fold network of 50-residue segments in proteins

    PubMed Central

    Ito, Jun-ichi; Sonobe, Yuki; Ikeda, Kazuyoshi; Tomii, Kentaro; Higo, Junichi

    2009-01-01

    Background Several studies have demonstrated that protein fold space is structured hierarchically and that power-law statistics are satisfied in relation between the numbers of protein families and protein folds (or superfamilies). We examined the internal structure and statistics in the fold space of 50 amino-acid residue segments taken from various protein folds. We used inter-residue contact patterns to measure the tertiary structural similarity among segments. Using this similarity measure, the segments were classified into a number (Kc) of clusters. We examined various Kc values for the clustering. The special resolution to differentiate the segment tertiary structures increases with increasing Kc. Furthermore, we constructed networks by linking structurally similar clusters. Results The network was partitioned persistently into four regions for Kc ≥ 1000. This main partitioning is consistent with results of earlier studies, where similar partitioning was reported in classifying protein domain structures. Furthermore, the network was partitioned naturally into several dozens of sub-networks (i.e., communities). Therefore, intra-sub-network clusters were mutually connected with numerous links, although inter-sub-network ones were rarely done with few links. For Kc ≥ 1000, the major sub-networks were about 40; the contents of the major sub-networks were conserved. This sub-partitioning is a novel finding, suggesting that the network is structured hierarchically: Segments construct a cluster, clusters form a sub-network, and sub-networks constitute a region. Additionally, the network was characterized by non-power-law statistics, which is also a novel finding. Conclusion Main findings are: (1) The universe of 50 residue segments found here was characterized by non-power-law statistics. Therefore, the universe differs from those ever reported for the protein domains. (2) The 50-residue segments were partitioned persistently and universally into some dozens (ca. 40) of major sub-networks, irrespective of the number of clusters. (3) These major sub-networks encompassed 90% of all segments. Consequently, the protein tertiary structure is constructed using the dozens of elements (sub-networks). PMID:19454039

  7. The BioPlex Network: A Systematic Exploration of the Human Interactome.

    PubMed

    Huttlin, Edward L; Ting, Lily; Bruckner, Raphael J; Gebreab, Fana; Gygi, Melanie P; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E; De Camilli, Pietro; Paulo, Joao A; Harper, J Wade; Gygi, Steven P

    2015-07-16

    Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The BioPlex Network: A Systematic Exploration of the Human Interactome

    PubMed Central

    Huttlin, Edward L.; Ting, Lily; Bruckner, Raphael J.; Gebreab, Fana; Gygi, Melanie P.; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K.; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A.; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E.; DeCamilli, Pietro; Paulo, Joao A.; Harper, J. Wade; Gygi, Steven P.

    2015-01-01

    SUMMARY Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally-related proteins. Finally, BioPlex, in combination with other approaches can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial Amyotrophic Lateral Sclerosis perturb a defined community of interactors. PMID:26186194

  9. Protein interaction networks from literature mining

    NASA Astrophysics Data System (ADS)

    Ihara, Sigeo

    2005-03-01

    The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.

  10. Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases.

    PubMed

    Berger, Seth I; Posner, Jeremy M; Ma'ayan, Avi

    2007-10-04

    In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes. Genes2Networks is a software system that integrates the content of ten mammalian interaction network datasets. Filtering techniques to prune low-confidence interactions were implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from "seed" lists of human Entrez gene symbols. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Genes2Networks is powerful web-based software that can help experimental biologists to interpret lists of genes and proteins such as those commonly produced through genomic and proteomic experiments, as well as lists of genes and proteins associated with disease processes. This system can be used to find relationships between genes and proteins from seed lists, and predict additional genes or proteins that may play key roles in common pathways or protein complexes.

  11. mei-41 and bub1 block mitosis at two distinct steps in response to incomplete DNA replication in Drosophila embryos.

    PubMed

    Garner, M; van Kreeveld, S; Su, T T

    2001-10-16

    Drosophila double park encodes a homolog of Cdt1 that functions in initiation of DNA replication in fission yeast and Xenopus. dup mutants complete the first 15 embryonic cell cycles, presumably via maternal dup products, and show defects in the 16(th) S phase (S16). Cells carrying dup(a1) allele forgo S16 altogether but enter mitosis 16 (M16). We find that the timing of entry into M16 is similar in dup(a1) and heterozygous or wild-type (wt) controls. In contrast, we find that mutant cells carrying another allele, dup(a3), undergo a partial S16 and delay the entry into M16. Thus, initiation of S16 appears necessary for delaying M16. This delay is absent in double mutants of dup(a3) and mei-41 (Drosophila ATR), indicating that a mei-41-dependent checkpoint acts to delay the entry into mitosis in response to incomplete DNA replication. dup(a3) and dup(a1) mutant cells that enter M16 become arrested in M16. We find that mitotic cyclins are stabilized and that a spindle checkpoint protein, Bub1, localizes onto chromosomes during mitotic arrest in dup mutants. These features suggest an arrest prior to metaphase-anaphase transition. dup(a3) bub1 double mutant cells exit M16, indicating that a bub1-mediated checkpoint acts to block mitotic exit in dup mutants. To our knowledge, this is the first report of (1) incomplete DNA replication affecting both the entry into and the exit from mitosis in a single cell cycle via different mechanisms and (2) the role of bub1 in regulating mitotic exit in response to incomplete DNA replication.

  12. 29 CFR 1917.122 - Employee exits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Employee exits. 1917.122 Section 1917.122 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.122 Employee exits. (a) Employee exits shall be clearly marked. (b) If an employee exit is not visible from employees' work stations, directional signs...

  13. Advanced Diesel Oil Fuel Processor Development

    DTIC Science & Technology

    1986-06-01

    water exit 29 sample quencher: gas sample line inlet 30 sample quencher: gas sample line exit 31 sample quencher: cooling water inlet 32 desulfuriser ...exit line 33, 34 desulfurimer 35 heat exchanger: process gas exit (to desulfuriser ) 38 shift reactor inlet (top) 37 shift reactor: cooling air exit

  14. HubAlign: an accurate and efficient method for global alignment of protein-protein interaction networks.

    PubMed

    Hashemifar, Somaye; Xu, Jinbo

    2014-09-01

    High-throughput experimental techniques have produced a large amount of protein-protein interaction (PPI) data. The study of PPI networks, such as comparative analysis, shall benefit the understanding of life process and diseases at the molecular level. One way of comparative analysis is to align PPI networks to identify conserved or species-specific subnetwork motifs. A few methods have been developed for global PPI network alignment, but it still remains challenging in terms of both accuracy and efficiency. This paper presents a novel global network alignment algorithm, denoted as HubAlign, that makes use of both network topology and sequence homology information, based upon the observation that topologically important proteins in a PPI network usually are much more conserved and thus, more likely to be aligned. HubAlign uses a minimum-degree heuristic algorithm to estimate the topological and functional importance of a protein from the global network topology information. Then HubAlign aligns topologically important proteins first and gradually extends the alignment to the whole network. Extensive tests indicate that HubAlign greatly outperforms several popular methods in terms of both accuracy and efficiency, especially in detecting functionally similar proteins. HubAlign is available freely for non-commercial purposes at http://ttic.uchicago.edu/∼hashemifar/software/HubAlign.zip. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  15. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ba, Qian; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing; Li, Junyang

    2015-03-01

    Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong tomore » the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified.« less

  16. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    PubMed

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that is indicative of their strong influence in the protein protein interaction network. Similarly the newly proposed GEADCA helped identify the transcription factors with high centrality values indicative of their key roles in transcriptional regulation. The enrichment studies provided a list of molecular functions, biological processes and biochemical pathways associated with the constructed network. The study shows how pathway based databases may be used to create and analyze a relevant protein interaction network in glioma cancer stem cells and identify the essential elements within it to gather insights into the molecular interactions that regulate the properties of glioma stem cells. How these insights may be utilized to help the development of future research towards formulation of new management strategies have been discussed from a theoretical standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Finding Correlation between Protein Protein Interaction Modules Using Semantic Web Techniques

    NASA Astrophysics Data System (ADS)

    Kargar, Mehdi; Moaven, Shahrouz; Abolhassani, Hassan

    Many complex networks such as social networks and computer show modular structures, where edges between nodes are much denser within modules than between modules. It is strongly believed that cellular networks are also modular, reflecting the relative independence and coherence of different functional units in a cell. In this paper we used a human curated dataset. In this paper we consider each module in the PPI network as ontology. Using techniques in ontology alignment, we compare each pair of modules in the network. We want to see that is there a correlation between the structure of each module or they have totally different structures. Our results show that there is no correlation between proteins in a protein protein interaction network.

  18. Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks

    DTIC Science & Technology

    2012-09-21

    Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks Paulo Shakarian1*, J. Kenneth Wickiser2 1 Paulo Shakarian...significantly attacked. Citation: Shakarian P, Wickiser JK (2012) Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks...to 00-00-2012 4. TITLE AND SUBTITLE Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks 5a. CONTRACT NUMBER 5b

  19. The network organization of protein interactions in the spliceosome is reproduced by the simple rules of food-web models

    PubMed Central

    Pires, Mathias M.; Cantor, Maurício; Guimarães, Paulo R.; de Aguiar, Marcus A. M.; dos Reis, Sérgio F.; Coltri, Patricia P.

    2015-01-01

    The network structure of biological systems provides information on the underlying processes shaping their organization and dynamics. Here we examined the structure of the network depicting protein interactions within the spliceosome, the macromolecular complex responsible for splicing in eukaryotic cells. We show the interactions of less connected spliceosome proteins are nested subsets of the connections of the highly connected proteins. At the same time, the network has a modular structure with groups of proteins sharing similar interaction patterns. We then investigated the role of affinity and specificity in shaping the spliceosome network by adapting a probabilistic model originally designed to reproduce food webs. This food-web model was as successful in reproducing the structure of protein interactions as it is in reproducing interactions among species. The good performance of the model suggests affinity and specificity, partially determined by protein size and the timing of association to the complex, may be determining network structure. Moreover, because network models allow building ensembles of realistic networks while encompassing uncertainty they can be useful to examine the dynamics and vulnerability of intracelullar processes. Unraveling the mechanisms organizing the spliceosome interactions is important to characterize the role of individual proteins on splicing catalysis and regulation. PMID:26443080

  20. Network representation of protein interactions: Theory of graph description and analysis.

    PubMed

    Kurzbach, Dennis

    2016-09-01

    A methodological framework is presented for the graph theoretical interpretation of NMR data of protein interactions. The proposed analysis generalizes the idea of network representations of protein structures by expanding it to protein interactions. This approach is based on regularization of residue-resolved NMR relaxation times and chemical shift data and subsequent construction of an adjacency matrix that represents the underlying protein interaction as a graph or network. The network nodes represent protein residues. Two nodes are connected if two residues are functionally correlated during the protein interaction event. The analysis of the resulting network enables the quantification of the importance of each amino acid of a protein for its interactions. Furthermore, the determination of the pattern of correlations between residues yields insights into the functional architecture of an interaction. This is of special interest for intrinsically disordered proteins, since the structural (three-dimensional) architecture of these proteins and their complexes is difficult to determine. The power of the proposed methodology is demonstrated at the example of the interaction between the intrinsically disordered protein osteopontin and its natural ligand heparin. © 2016 The Protein Society.

  1. Topology association analysis in weighted protein interaction network for gene prioritization

    NASA Astrophysics Data System (ADS)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  2. Discovering disease-associated genes in weighted protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Cai, Meng; Stanley, H. Eugene

    2018-04-01

    Although there have been many network-based attempts to discover disease-associated genes, most of them have not taken edge weight - which quantifies their relative strength - into consideration. We use connection weights in a protein-protein interaction (PPI) network to locate disease-related genes. We analyze the topological properties of both weighted and unweighted PPI networks and design an improved random forest classifier to distinguish disease genes from non-disease genes. We use a cross-validation test to confirm that weighted networks are better able to discover disease-associated genes than unweighted networks, which indicates that including link weight in the analysis of network properties provides a better model of complex genotype-phenotype associations.

  3. Solvated dissipative electro-elastic network model of hydrated proteins

    NASA Astrophysics Data System (ADS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2012-10-01

    Elastic network models coarse grain proteins into a network of residue beads connected by springs. We add dissipative dynamics to this mechanical system by applying overdamped Langevin equations of motion to normal-mode vibrations of the network. In addition, the network is made heterogeneous and softened at the protein surface by accounting for hydration of the ionized residues. Solvation changes the network Hessian in two ways. Diagonal solvation terms soften the spring constants and off-diagonal dipole-dipole terms correlate displacements of the ionized residues. The model is used to formulate the response functions of the electrostatic potential and electric field appearing in theories of redox reactions and spectroscopy. We also formulate the dielectric response of the protein and find that solvation of the surface ionized residues leads to a slow relaxation peak in the dielectric loss spectrum, about two orders of magnitude slower than the main peak of protein relaxation. Finally, the solvated network is used to formulate the allosteric response of the protein to ion binding. The global thermodynamics of ion binding is not strongly affected by the network solvation, but it dramatically enhances conformational changes in response to placing a charge at the active site of the protein.

  4. Discovering functional interdependence relationship in PPI networks for protein complex identification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2012-04-01

    Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation, PCIFI was used to identify protein complexes in real PPI network data and the protein complexes it found were matched against those that were previously known in MIPS. The results show that PCIFI can be an effective technique for the identification of protein complexes. The protein complexes it found can match more known protein complexes with a smaller false-alarm rate and can provide useful insights into the understanding of the functional interdependence relationships between proteins in protein complexes.

  5. In silico modeling of the yeast protein and protein family interaction network

    NASA Astrophysics Data System (ADS)

    Goh, K.-I.; Kahng, B.; Kim, D.

    2004-03-01

    Understanding of how protein interaction networks of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce an in silico ``coevolutionary'' model for the protein interaction network and the protein family network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed: gene duplication, divergence, and mutation. This model produces a prototypical feature of complex networks in a wide range of parameter space, following the generalized Pareto distribution in connectivity. Moreover, we investigate other structural properties of our model in detail with some specific values of parameters relevant to the yeast Saccharomyces cerevisiae, showing excellent agreement with the empirical data. Our model indicates that the physical constraints encoded via the domain structure of proteins play a crucial role in protein interactions.

  6. Effects of nozzle exit geometry and pressure ratio on plume shape for nozzles exhausting into quiescent air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1991-01-01

    The effects of varying the exit geometry on the plume shapes of supersonic nozzles exhausting into quiescent air at several exit-to-ambient pressure ratios are given. Four nozzles having circular throat sections and circular, elliptical and oval exit cross sections were tested and the exit plume shapes are compared at the same exit-to-ambient pressure ratios. The resulting mass flows were calculated and are also presented.

  7. 14 CFR 27.805 - Flight crew emergency exits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight crew emergency exits. 27.805 Section... § 27.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the rotorcraft or...

  8. 14 CFR 29.805 - Flight crew emergency exits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight crew emergency exits. 29.805 Section... Accommodations § 29.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the...

  9. 14 CFR 29.805 - Flight crew emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight crew emergency exits. 29.805 Section... Accommodations § 29.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the...

  10. 14 CFR 27.805 - Flight crew emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight crew emergency exits. 27.805 Section... § 27.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the rotorcraft or...

  11. STAM Adaptor Proteins Interact with COPII Complexes and Function in ER-to-Golgi Trafficking

    PubMed Central

    Rismanchi, Neggy; Puertollano, Rosa; Blackstone, Craig

    2009-01-01

    Signal transducing adaptor molecules (STAMs) are involved in growth factor and cytokine signaling as well as receptor degradation, and they form complexes with a number of endocytic proteins, including Hrs and Eps15. Here we demonstrate that STAM proteins also localize prominently to early exocytic compartments and profoundly regulate Golgi morphology. Upon STAM overexpression in cells the Golgi apparatus becomes extensively fragmented and dispersed, but when STAMs are depleted the Golgi becomes highly condensed. Under both scenarios, vesicular stomatitis virus G protein (VSVG)-GFP trafficking to the plasma membrane is markedly inhibited, and recovery of Golgi morphology after brefeldin A treatment is substantially impaired in STAM-depleted cells. Furthermore, STAM proteins interact with COPII proteins, probably at endoplasmic reticulum (ER) exit sites, and Sar1 activity is required to maintain the localization of STAMs at discrete sites. Thus, in addition to their roles in signaling and endocytosis, STAMs function prominently in ER-to-Golgi trafficking, most likely through direct interactions with the COPII complex. PMID:19054391

  12. A protein domain-based interactome network for C. elegans early embryogenesis

    PubMed Central

    Boxem, Mike; Maliga, Zoltan; Klitgord, Niels; Li, Na; Lemmens, Irma; Mana, Miyeko; de Lichtervelde, Lorenzo; Mul, Joram D.; van de Peut, Diederik; Devos, Maxime; Simonis, Nicolas; Yildirim, Muhammed A.; Cokol, Murat; Kao, Huey-Ling; de Smet, Anne-Sophie; Wang, Haidong; Schlaitz, Anne-Lore; Hao, Tong; Milstein, Stuart; Fan, Changyu; Tipsword, Mike; Drew, Kevin; Galli, Matilde; Rhrissorrakrai, Kahn; Drechsel, David; Koller, Daphne; Roth, Frederick P.; Iakoucheva, Lilia M.; Dunker, A. Keith; Bonneau, Richard; Gunsalus, Kristin C.; Hill, David E.; Piano, Fabio; Tavernier, Jan; van den Heuvel, Sander; Hyman, Anthony A.; Vidal, Marc

    2008-01-01

    Summary Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or “interactome” networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed new insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms. PMID:18692475

  13. "Getting out of downtown": a longitudinal study of how street-entrenched youth attempt to exit an inner city drug scene.

    PubMed

    Knight, Rod; Fast, Danya; DeBeck, Kora; Shoveller, Jean; Small, Will

    2017-05-02

    Urban drug "scenes" have been identified as important risk environments that shape the health of street-entrenched youth. New knowledge is needed to inform policy and programing interventions to help reduce youths' drug scene involvement and related health risks. The aim of this study was to identify how young people envisioned exiting a local, inner-city drug scene in Vancouver, Canada, as well as the individual, social and structural factors that shaped their experiences. Between 2008 and 2016, we draw on 150 semi-structured interviews with 75 street-entrenched youth. We also draw on data generated through ethnographic fieldwork conducted with a subgroup of 25 of these youth between. Youth described that, in order to successfully exit Vancouver's inner city drug scene, they would need to: (a) secure legitimate employment and/or obtain education or occupational training; (b) distance themselves - both physically and socially - from the urban drug scene; and (c) reduce their drug consumption. As youth attempted to leave the scene, most experienced substantial social and structural barriers (e.g., cycling in and out of jail, the need to access services that are centralized within a place that they are trying to avoid), in addition to managing complex individual health issues (e.g., substance dependence). Factors that increased youth's capacity to successfully exit the drug scene included access to various forms of social and cultural capital operating outside of the scene, including supportive networks of friends and/or family, as well as engagement with addiction treatment services (e.g., low-threshold access to methadone) to support cessation or reduction of harmful forms of drug consumption. Policies and programming interventions that can facilitate young people's efforts to reduce engagement with Vancouver's inner-city drug scene are critically needed, including meaningful educational and/or occupational training opportunities, 'low threshold' addiction treatment services, as well as access to supportive housing outside of the scene.

  14. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology.

    PubMed

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir

    2017-02-01

    Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.

  15. Evidence for dynamically organized modularity in the yeast protein-protein interaction network

    NASA Astrophysics Data System (ADS)

    Han, Jing-Dong J.; Bertin, Nicolas; Hao, Tong; Goldberg, Debra S.; Berriz, Gabriel F.; Zhang, Lan V.; Dupuy, Denis; Walhout, Albertha J. M.; Cusick, Michael E.; Roth, Frederick P.; Vidal, Marc

    2004-07-01

    In apparently scale-free protein-protein interaction networks, or `interactome' networks, most proteins interact with few partners, whereas a small but significant proportion of proteins, the `hubs', interact with many partners. Both biological and non-biological scale-free networks are particularly resistant to random node removal but are extremely sensitive to the targeted removal of hubs. A link between the potential scale-free topology of interactome networks and genetic robustness seems to exist, because knockouts of yeast genes encoding hubs are approximately threefold more likely to confer lethality than those of non-hubs. Here we investigate how hubs might contribute to robustness and other cellular properties for protein-protein interactions dynamically regulated both in time and in space. We uncovered two types of hub: `party' hubs, which interact with most of their partners simultaneously, and `date' hubs, which bind their different partners at different times or locations. Both in silico studies of network connectivity and genetic interactions described in vivo support a model of organized modularity in which date hubs organize the proteome, connecting biological processes-or modules -to each other, whereas party hubs function inside modules.

  16. Gene essentiality and the topology of protein interaction networks

    PubMed Central

    Coulomb, Stéphane; Bauer, Michel; Bernard, Denis; Marsolier-Kergoat, Marie-Claude

    2005-01-01

    The mechanistic bases for gene essentiality and for cell mutational resistance have long been disputed. The recent availability of large protein interaction databases has fuelled the analysis of protein interaction networks and several authors have proposed that gene dispensability could be strongly related to some topological parameters of these networks. However, many results were based on protein interaction data whose biases were not taken into account. In this article, we show that the essentiality of a gene in yeast is poorly related to the number of interactants (or degree) of the corresponding protein and that the physiological consequences of gene deletions are unrelated to several other properties of proteins in the interaction networks, such as the average degrees of their nearest neighbours, their clustering coefficients or their relative distances. We also found that yeast protein interaction networks lack degree correlation, i.e. a propensity for their vertices to associate according to their degrees. Gene essentiality and more generally cell resistance against mutations thus seem largely unrelated to many parameters of protein network topology. PMID:16087428

  17. Identification of Modules in Protein-Protein Interaction Networks

    NASA Astrophysics Data System (ADS)

    Erten, Sinan; Koyutürk, Mehmet

    In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.

  18. Unified Alignment of Protein-Protein Interaction Networks.

    PubMed

    Malod-Dognin, Noël; Ban, Kristina; Pržulj, Nataša

    2017-04-19

    Paralleling the increasing availability of protein-protein interaction (PPI) network data, several network alignment methods have been proposed. Network alignments have been used to uncover functionally conserved network parts and to transfer annotations. However, due to the computational intractability of the network alignment problem, aligners are heuristics providing divergent solutions and no consensus exists on a gold standard, or which scoring scheme should be used to evaluate them. We comprehensively evaluate the alignment scoring schemes and global network aligners on large scale PPI data and observe that three methods, HUBALIGN, L-GRAAL and NATALIE, regularly produce the most topologically and biologically coherent alignments. We study the collective behaviour of network aligners and observe that PPI networks are almost entirely aligned with a handful of aligners that we unify into a new tool, Ulign. Ulign enables complete alignment of two networks, which traditional global and local aligners fail to do. Also, multiple mappings of Ulign define biologically relevant soft clusterings of proteins in PPI networks, which may be used for refining the transfer of annotations across networks. Hence, PPI networks are already well investigated by current aligners, so to gain additional biological insights, a paradigm shift is needed. We propose such a shift come from aligning all available data types collectively rather than any particular data type in isolation from others.

  19. Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.

    PubMed

    Al-Anzi, Bader; Arpp, Patrick; Gerges, Sherif; Ormerod, Christopher; Olsman, Noah; Zinn, Kai

    2015-05-01

    An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.

  20. Do spouses coordinate their work exits? A combined survey and register analysis from Norway.

    PubMed

    Syse, Astri; Solem, Per Erik; Ugreninov, Elisabeth; Mykletun, Reidar; Furunes, Trude

    2014-09-01

    Research on spouses' joint work exits is scarce, although household factors such as spouses' work status, marital quality, and caregiving burdens are likely to affect seniors' work engagement. We therefore examine whether the work exit probability of one spouse affects that of the other. Discrete-time hazard regression analyses of survey data linked to later registry information including all gainfully employed married respondents aged 50-74 with a working spouse (N = 1,764) were used to assess subsequent work exits. A spouse's work exit is a strong predictor of a respondent's work exit (hazard ratio 3.1, 95% confidence interval [2.5, 4.0]). Educational attainment, poor marital quality, and spouses' health and care needs do not predict work exits. Surprisingly, no gender differences are observed. Research on larger survey samples to distinguish different work exit routes and reasons for spouses' joint work exits appears warranted. To account for cultural and welfare state characteristics, cross-national studies ought to be undertaken. © The Author(s) 2013.

  1. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks

    NASA Astrophysics Data System (ADS)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  2. Noise Tolerance of Attractor and Feedforward Memory Models

    PubMed Central

    Lim, Sukbin; Goldman, Mark S.

    2017-01-01

    In short-term memory networks, transient stimuli are represented by patterns of neural activity that persist long after stimulus offset. Here, we compare the performance of two prominent classes of memory networks, feedback-based attractor networks and feedforward networks, in conveying information about the amplitude of a briefly presented stimulus in the presence of gaussian noise. Using Fisher information as a metric of memory performance, we find that the optimal form of network architecture depends strongly on assumptions about the forms of nonlinearities in the network. For purely linear networks, we find that feedforward networks outperform attractor networks because noise is continually removed from feedforward networks when signals exit the network; as a result, feedforward networks can amplify signals they receive faster than noise accumulates over time. By contrast, attractor networks must operate in a signal-attenuating regime to avoid the buildup of noise. However, if the amplification of signals is limited by a finite dynamic range of neuronal responses or if noise is reset at the time of signal arrival, as suggested by recent experiments, we find that attractor networks can out-perform feedforward ones. Under a simple model in which neurons have a finite dynamic range, we find that the optimal attractor networks are forgetful if there is no mechanism for noise reduction with signal arrival but nonforgetful (perfect integrators) in the presence of a strong reset mechanism. Furthermore, we find that the maximal Fisher information for the feedforward and attractor networks exhibits power law decay as a function of time and scales linearly with the number of neurons. These results highlight prominent factors that lead to trade-offs in the memory performance of networks with different architectures and constraints, and suggest conditions under which attractor or feedforward networks may be best suited to storing information about previous stimuli. PMID:22091664

  3. Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae

    PubMed Central

    Jarnuczak, Andrew F.; Eyers, Claire E.; Schwartz, Jean‐Marc; Grant, Christopher M.

    2015-01-01

    Molecular chaperones play an important role in protein homeostasis and the cellular response to stress. In particular, the HSP70 chaperones in yeast mediate a large volume of protein folding through transient associations with their substrates. This chaperone interaction network can be disturbed by various perturbations, such as environmental stress or a gene deletion. Here, we consider deletions of two major chaperone proteins, SSA1 and SSB1, from the chaperone network in Sacchromyces cerevisiae. We employ a SILAC‐based approach to examine changes in global and local protein abundance and rationalise our results via network analysis and graph theoretical approaches. Although the deletions result in an overall increase in intracellular protein content, correlated with an increase in cell size, this is not matched by substantial changes in individual protein concentrations. Despite the phenotypic robustness to deletion of these major hub proteins, it cannot be simply explained by the presence of paralogues. Instead, network analysis and a theoretical consideration of folding workload suggest that the robustness to perturbation is a product of the overall network structure. This highlights how quantitative proteomics and systems modelling can be used to rationalise emergent network properties, and how the HSP70 system can accommodate the loss of major hubs. PMID:25689132

  4. Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport

    PubMed Central

    Helm, Jared R.; Bentley, Marvin; Thorsen, Kevin D.; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C.

    2014-01-01

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  5. Rapid Nuclear Exclusion of Hcm1 in Aging Saccharomyces cerevisiae Leads to Vacuolar Alkalization and Replicative Senescence

    PubMed Central

    Ghavidel, Ata; Baxi, Kunal; Prusinkiewicz, Martin; Swan, Cynthia; Belak, Zach R.; Eskiw, Christopher H.; Carvalho, Carlos E.; Harkness, Troy A.

    2018-01-01

    The yeast, Saccharomyces cerevisiae, like other higher eukaryotes, undergo a finite number of cell divisions before exiting the cell cycle due to the effects of aging. Here, we show that yeast aging begins with the nuclear exclusion of Hcm1 in young cells, resulting in loss of acidic vacuoles. Autophagy is required for healthy aging in yeast, with proteins targeted for turnover by autophagy directed to the vacuole. Consistent with this, vacuolar acidity is necessary for vacuolar function and yeast longevity. Using yeast genetics and immunofluorescence microscopy, we confirm that vacuolar acidity plays a critical role in cell health and lifespan, and is potentially maintained by a series of Forkhead Box (Fox) transcription factors. An interconnected transcriptional network involving the Fox proteins (Fkh1, Fkh2 and Hcm1) are required for transcription of v-ATPase subunits and vacuolar acidity. As cells age, Hcm1 is rapidly excluded from the nucleus in young cells, blocking the expression of Hcm1 targets (Fkh1 and Fkh2), leading to loss of v-ATPase gene expression, reduced vacuolar acidification, increased α-syn-GFP vacuolar accumulation, and finally, diminished replicative lifespan (RLS). Loss of vacuolar acidity occurs about the same time as Hcm1 nuclear exclusion and is conserved; we have recently demonstrated that lysosomal alkalization similarly contributes to aging in C. elegans following a transition from progeny producing to post-reproductive life. Our data points to a molecular mechanism regulating vacuolar acidity that signals the end of RLS when acidification is lost. PMID:29519938

  6. The N and C Termini of ZO-1 Are Surrounded by Distinct Proteins and Functional Protein Networks*

    PubMed Central

    Van Itallie, Christina M.; Aponte, Angel; Tietgens, Amber Jean; Gucek, Marjan; Fredriksson, Karin; Anderson, James Melvin

    2013-01-01

    The proteins and functional protein networks of the tight junction remain incompletely defined. Among the currently known proteins are barrier-forming proteins like occludin and the claudin family; scaffolding proteins like ZO-1; and some cytoskeletal, signaling, and cell polarity proteins. To define a more complete list of proteins and infer their functional implications, we identified the proteins that are within molecular dimensions of ZO-1 by fusing biotin ligase to either its N or C terminus, expressing these fusion proteins in Madin-Darby canine kidney epithelial cells, and purifying and identifying the resulting biotinylated proteins by mass spectrometry. Of a predicted proteome of ∼9000, we identified more than 400 proteins tagged by biotin ligase fused to ZO-1, with both identical and distinct proteins near the N- and C-terminal ends. Those proximal to the N terminus were enriched in transmembrane tight junction proteins, and those proximal to the C terminus were enriched in cytoskeletal proteins. We also identified many unexpected but easily rationalized proteins and verified partial colocalization of three of these proteins with ZO-1 as examples. In addition, functional networks of interacting proteins were tagged, such as the basolateral but not apical polarity network. These results provide a rich inventory of proteins and potential novel insights into functions and protein networks that should catalyze further understanding of tight junction biology. Unexpectedly, the technique demonstrates high spatial resolution, which could be generally applied to defining other subcellular protein compartmentalization. PMID:23553632

  7. Context-based retrieval of functional modules in protein-protein interaction networks.

    PubMed

    Dobay, Maria Pamela; Stertz, Silke; Delorenzi, Mauro

    2017-03-27

    Various techniques have been developed for identifying the most probable interactants of a protein under a given biological context. In this article, we dissect the effects of the choice of the protein-protein interaction network (PPI) and the manipulation of PPI settings on the network neighborhood of the influenza A virus (IAV) network, as well as hits in genome-wide small interfering RNA screen results for IAV host factors. We investigate the potential of context filtering, which uses text mining evidence linked to PPI edges, as a complement to the edge confidence scores typically provided in PPIs for filtering, for obtaining more biologically relevant network neighborhoods. Here, we estimate the maximum performance of context filtering to isolate a Kyoto Encyclopedia of Genes and Genomes (KEGG) network Ki from a union of KEGG networks and its network neighborhood. The work gives insights on the use of human PPIs in network neighborhood approaches for functional inference. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    PubMed

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    PubMed

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-05-08

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  10. A human functional protein interaction network and its application to cancer data analysis

    PubMed Central

    2010-01-01

    Background One challenge facing biologists is to tease out useful information from massive data sets for further analysis. A pathway-based analysis may shed light by projecting candidate genes onto protein functional relationship networks. We are building such a pathway-based analysis system. Results We have constructed a protein functional interaction network by extending curated pathways with non-curated sources of information, including protein-protein interactions, gene coexpression, protein domain interaction, Gene Ontology (GO) annotations and text-mined protein interactions, which cover close to 50% of the human proteome. By applying this network to two glioblastoma multiforme (GBM) data sets and projecting cancer candidate genes onto the network, we found that the majority of GBM candidate genes form a cluster and are closer than expected by chance, and the majority of GBM samples have sequence-altered genes in two network modules, one mainly comprising genes whose products are localized in the cytoplasm and plasma membrane, and another comprising gene products in the nucleus. Both modules are highly enriched in known oncogenes, tumor suppressors and genes involved in signal transduction. Similar network patterns were also found in breast, colorectal and pancreatic cancers. Conclusions We have built a highly reliable functional interaction network upon expert-curated pathways and applied this network to the analysis of two genome-wide GBM and several other cancer data sets. The network patterns revealed from our results suggest common mechanisms in the cancer biology. Our system should provide a foundation for a network or pathway-based analysis platform for cancer and other diseases. PMID:20482850

  11. Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation*

    PubMed Central

    Kankipati, Harish Nag; Rubio-Texeira, Marta; Castermans, Dries; Diallinas, George; Thevelein, Johan M.

    2015-01-01

    Sulfate is an essential nutrient with pronounced regulatory effects on cellular metabolism and proliferation. Little is known, however, about how sulfate is sensed by cells. Sul1 and Sul2 are sulfate transporters in the yeast Saccharomyces cerevisiae, strongly induced upon sulfur starvation and endocytosed upon the addition of sulfate. We reveal Sul1,2-dependent activation of PKA targets upon sulfate-induced exit from growth arrest after sulfur starvation. We provide two major arguments in favor of Sul1 and Sul2 acting as transceptors for signaling to PKA. First, the sulfate analogue, d-glucosamine 2-sulfate, acted as a non-transported agonist of signaling by Sul1 and Sul2. Second, mutagenesis to Gln of putative H+-binding residues, Glu-427 in Sul1 or Glu-443 in Sul2, abolished transport without affecting signaling. Hence, Sul1,2 can function as pure sulfate sensors. Sul1E427Q and Sul2E443Q are also deficient in sulfate-induced endocytosis, which can therefore be uncoupled from signaling. Overall, our data suggest that transceptors can undergo independent conformational changes, each responsible for triggering different downstream processes. The Sul1 and Sul2 transceptors are the first identified plasma membrane sensors for extracellular sulfate. High affinity transporters induced upon starvation for their substrate may generally act as transceptors during exit from starvation. PMID:25724649

  12. Optimal network alignment with graphlet degree vectors.

    PubMed

    Milenković, Tijana; Ng, Weng Leong; Hayes, Wayne; Przulj, Natasa

    2010-06-30

    Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two networks using any cost function. We design a cost function based solely on network topology and use it in our network alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are statistically significant. It does this independent of protein sequence or any other information external to network topology.

  13. Performance Characteristics of Flush and Shielded Auxiliary Exits at Mach Numbers of 1.5 to 2.0

    NASA Technical Reports Server (NTRS)

    Abdalla, Kaleel L.

    1959-01-01

    The performance characteristics of several flush and shielded auxiliary exits were investigated at Mach numbers of 1.5 to 2.0, and jet pressure ratios from jet off to 10. The results indicate that the shielded configurations produced better overall performance than the corresponding flush exits over the Mach-number and pressure-ratio ranges investigated. Furthermore, the full-length shielded exit was highest in performance of all the configurations. The flat-exit nozzle block provided considerably improved performance compared with the curved-exit nozzle block.

  14. Architecture and dynamics of overlapped RNA regulatory networks.

    PubMed

    Lapointe, Christopher P; Preston, Melanie A; Wilinski, Daniel; Saunders, Harriet A J; Campbell, Zachary T; Wickens, Marvin

    2017-11-01

    A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution. © 2017 Lapointe et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    PubMed

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  16. Interplay Between Protein Homeostasis Networks in Protein Aggregation and Proteotoxicity

    PubMed Central

    Douglas, Peter M.; Cyr, Douglas M.

    2010-01-01

    The misfolding and aggregation of disease proteins is characteristic of numerous neurodegenerative diseases. Particular neuronal populations are more vulnerable to proteotoxicity while others are more apt to tolerate the misfolding and aggregation of disease proteins. Thus, the cellular environment must play a significant role in determining whether disease proteins are converted into toxic or benign forms. The endomembrane network of eukaryotes divides the cell into different subcellular compartments that possess distinct sets of molecular chaperones and protein interaction networks. Chaperones act as agonists and antagonists of disease protein aggregation to prevent the accumulation of toxic intermediates in the aggregation pathway. Interacting partners can also modulate the conformation and localization of disease proteins and thereby influence proteotoxicity. Thus, interplay between these protein homeostasis network components can modulate the self-association of disease proteins and determine whether they elicit a toxic or benign outcome. PMID:19768782

  17. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory

    PubMed Central

    Kulkarni, Prakash; Levine, Herbert

    2017-01-01

    Waddington’s epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of “landscape” in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an “attractor” that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of “cancer attractors”—hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes “recanalization”, i.e., the exit from “cancer attractors” and re-entry into “normal attractors”, is more likely to succeed rather than a conventional approach that targets individual molecules/pathways. PMID:28640191

  18. The quality of service in passenger transport terminals

    NASA Astrophysics Data System (ADS)

    Oprea, C.; Roşca, E.; Popa, M.; Ilie, A.; Dinu, O.; Roşca, M.

    2016-11-01

    The quality of service in transport terminals is differently perceived by engineers, economists, transport operators and sociologists. The traveler's perception is nevertheless decisive. The quality of service is well connected with the inside design of terminals, with the facilities in terminals and with the provided service standards. In order to provide a high level of service, the activities taking place in the public transport terminal and the maximum travelers flow size must be carefully analyzed and dimensioned. The purpose of modelling is to find the best route for each traveler from origin (entrance) to destination (exit) through all the intermediate service points, taking into consideration the instant network conditions. In developing the model we consider the walking, the waiting and the serving time. Using a simulation program written in ARENA we determine the waiting time. For validation, the model is used to evaluate the performance level in Bucharest Basarab station. By comparing the total walking distance for the possible routes and the utility function that describes the utility of all activities from entrance to exit we can find the optimal route.

  19. Can favourable psychosocial working conditions in midlife moderate the risk of work exit for chronically ill workers? A 20-year follow-up of the Whitehall II study.

    PubMed

    Fleischmann, Maria; Carr, Ewan; Stansfeld, Stephen A; Xue, Baowen; Head, Jenny

    2018-03-01

    To investigate if favourable psychosocial working conditions can reduce the risk of work exit and specifically for workers with chronic disease. Men and women (32%) aged 35-55, working and having no chronic disease at baseline of the Whitehall II study of London-based civil servants were selected (n=9040). We observed participants' exit from work through retirement, health-related exit and unemployment, new diagnosis of chronic disease (ie, coronary heart disease, diabetes, stroke and cancer) and their psychosocial working conditions in midlife. Using cause-specific Cox models, we examined the association of chronic disease and favourable psychosocial working conditions and their interaction, with the three types of work exit. We adjusted for gender, occupational grade, educational level, remaining in civil service, spouse's employment status and mental health. Chronic disease significantly increased the risk of any type of work exit (HR 1.27) and specifically the risk of health-related exit (HR 2.42). High skill discretion in midlife reduced the risk of any type of work exit (HR 0.90), retirement (HR 0.91) and health-related exit (HR 0.68). High work social support in midlife decreased the risk of health-related exit (HR 0.79) and unemployment (HR 0.71). Favourable psychosocial working conditions in midlife did not attenuate the association between chronic disease and work exit significantly. The chronically ill have increased risks of work exit, especially through health-related exit routes. Chronic disease is an obstacle to extended working lives. Favourable working conditions directly relate to reduced risks of work exit. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Aligning Biomolecular Networks Using Modular Graph Kernels

    NASA Astrophysics Data System (ADS)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  1. Solvated dissipative electro-elastic network model of hydrated proteins

    NASA Astrophysics Data System (ADS)

    Martin, Daniel

    2013-03-01

    Elastic network models coarse grain proteins into a network of residue beads connected by springs. We add dissipative dynamics to this mechanical system by applying overdamped Langevin equations of motion to normal-mode vibrations of the network. In addition, the network is made heterogeneous and softened at the protein surface by accounting for hydration of the ionized residues. Solvation changes the network Hessian in two ways. Diagonal solvation terms soften the spring constants and off-diagonal dipole-dipole terms correlate displacements of the ionized residues. The model is used to formulate the response functions of the electrostatic potential and electric field appearing in theories of redox reactions and spectroscopy. We also formulate the dielectric response of the protein and find that solvation of the surface ionized residues leads to a slow relaxation peak in the dielectric loss spectrum, about two orders of magnitude slower than the main peak of protein relaxation. Finally, the solvated network is used to formulate the allosteric response of the protein to ion binding. The global thermodynamics of ion binding is not strongly affected by the network solvation, but it dramatically enhances conformational changes in response to placing a charge at the a the active site.

  2. Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions.

    PubMed

    Mai, Te-Lun; Hu, Geng-Ming; Chen, Chi-Ming

    2016-07-01

    Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences.

  3. Predicting protein complex geometries with a neural network.

    PubMed

    Chae, Myong-Ho; Krull, Florian; Lorenzen, Stephan; Knapp, Ernst-Walter

    2010-03-01

    A major challenge of the protein docking problem is to define scoring functions that can distinguish near-native protein complex geometries from a large number of non-native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom-pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near-native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge-based energy functions for scoring. We show that a distance-dependent atom pair potential performs much better than a simple atom-pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge-based scoring functions such as ZDOCK 3.0, ZRANK, ITScore-PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network-based scoring function achieves a reasonable performance in rigid-body unbound docking of proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  4. Evolution of the Max and Mlx networks in animals.

    PubMed

    McFerrin, Lisa G; Atchley, William R

    2011-01-01

    Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.

  5. The Knowledge-Integrated Network Biomarkers Discovery for Major Adverse Cardiac Events

    PubMed Central

    Jin, Guangxu; Zhou, Xiaobo; Wang, Honghui; Zhao, Hong; Cui, Kemi; Zhang, Xiang-Sun; Chen, Luonan; Hazen, Stanley L.; Li, King; Wong, Stephen T. C.

    2010-01-01

    The mass spectrometry (MS) technology in clinical proteomics is very promising for discovery of new biomarkers for diseases management. To overcome the obstacles of data noises in MS analysis, we proposed a new approach of knowledge-integrated biomarker discovery using data from Major Adverse Cardiac Events (MACE) patients. We first built up a cardiovascular-related network based on protein information coming from protein annotations in Uniprot, protein–protein interaction (PPI), and signal transduction database. Distinct from the previous machine learning methods in MS data processing, we then used statistical methods to discover biomarkers in cardiovascular-related network. Through the tradeoff between known protein information and data noises in mass spectrometry data, we finally could firmly identify those high-confident biomarkers. Most importantly, aided by protein–protein interaction network, that is, cardiovascular-related network, we proposed a new type of biomarkers, that is, network biomarkers, composed of a set of proteins and the interactions among them. The candidate network biomarkers can classify the two groups of patients more accurately than current single ones without consideration of biological molecular interaction. PMID:18665624

  6. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    NASA Astrophysics Data System (ADS)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  7. Adolescents Exiting Homelessness Over Two Years: The Risk Amplification and Abatement Model

    PubMed Central

    Milburn, Norweeta G.; Rice, Eric; Rotheram-Borus, Mary Jane; Mallett, Shelley; Rosenthal, Doreen; Batterham, Phillip; May, Susanne J.; Witkin, Andrea; Duan, Naihua

    2014-01-01

    The Risk Amplification and Abatement Model (RAAM), demonstrates that negative contact with socializing agents amplify risk, while positive contact abates risk for homeless adolescents. To test this model, the likelihood of exiting homelessness and returning to familial housing at 2 years and stably exiting over time are examined with longitudinal data collected from 183 newly homeless adolescents followed over 2 years in Los Angeles, CA. In support of RAAM, unadjusted odds of exiting at 2 years and stably exiting over2 years revealed that engagement with pro-social peers, maternal social support, and continued school attendance all promoted exiting behaviors. Simultaneously, exposure to family violence and reliance on shelter services discouraged stably exiting behaviors. Implications for family-based interventions are proposed. PMID:25067896

  8. Topological properties of complex networks in protein structures

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Jung, Jae-Won; Min, Seungsik

    2014-03-01

    We study topological properties of networks in structural classification of proteins. We model the native-state protein structure as a network made of its constituent amino-acids and their interactions. We treat four structural classes of proteins composed predominantly of α helices and β sheets and consider several proteins from each of these classes whose sizes range from amino acids of the Protein Data Bank. Particularly, we simulate and analyze the network metrics such as the mean degree, the probability distribution of degree, the clustering coefficient, the characteristic path length, the local efficiency, and the cost. This work was supported by the KMAR and DP under Grant WISE project (153-3100-3133-302-350).

  9. Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations.

    PubMed

    Suratanee, Apichat; Plaimas, Kitiporn

    2017-01-01

    The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k -nearest neighbor (R k NN) search. The R k NN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the R k NN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases.

  10. An information-based network approach for protein classification

    PubMed Central

    Wan, Xiaogeng; Zhao, Xin; Yau, Stephen S. T.

    2017-01-01

    Protein classification is one of the critical problems in bioinformatics. Early studies used geometric distances and polygenetic-tree to classify proteins. These methods use binary trees to present protein classification. In this paper, we propose a new protein classification method, whereby theories of information and networks are used to classify the multivariate relationships of proteins. In this study, protein universe is modeled as an undirected network, where proteins are classified according to their connections. Our method is unsupervised, multivariate, and alignment-free. It can be applied to the classification of both protein sequences and structures. Nine examples are used to demonstrate the efficiency of our new method. PMID:28350835

  11. deepNF: Deep network fusion for protein function prediction.

    PubMed

    Gligorijevic, Vladimir; Barot, Meet; Bonneau, Richard

    2018-06-01

    The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provides a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that encounter difficulty in capturing complex and highly-nonlinear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks. We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting GO terms of varying type and specificity. deepNF is freely available at: https://github.com/VGligorijevic/deepNF. vgligorijevic@flatironinstitute.org, rb133@nyu.edu. Supplementary data are available at Bioinformatics online.

  12. A novel integrated framework and improved methodology of computer-aided drug design.

    PubMed

    Chen, Calvin Yu-Chian

    2013-01-01

    Computer-aided drug design (CADD) is a critical initiating step of drug development, but a single model capable of covering all designing aspects remains to be elucidated. Hence, we developed a drug design modeling framework that integrates multiple approaches, including machine learning based quantitative structure-activity relationship (QSAR) analysis, 3D-QSAR, Bayesian network, pharmacophore modeling, and structure-based docking algorithm. Restrictions for each model were defined for improved individual and overall accuracy. An integration method was applied to join the results from each model to minimize bias and errors. In addition, the integrated model adopts both static and dynamic analysis to validate the intermolecular stabilities of the receptor-ligand conformation. The proposed protocol was applied to identifying HER2 inhibitors from traditional Chinese medicine (TCM) as an example for validating our new protocol. Eight potent leads were identified from six TCM sources. A joint validation system comprised of comparative molecular field analysis, comparative molecular similarity indices analysis, and molecular dynamics simulation further characterized the candidates into three potential binding conformations and validated the binding stability of each protein-ligand complex. The ligand pathway was also performed to predict the ligand "in" and "exit" from the binding site. In summary, we propose a novel systematic CADD methodology for the identification, analysis, and characterization of drug-like candidates.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, Ronald W.; Monazam, Esmail R.; Shadle, Lawrence J.

    Riser hydrodynamics are a function of the flow rates of gas and solids as well as the exit geometry, particularly when operated above the upper transport velocity. This work compares the exit voidage for multiple geometries and two different solids: Geldart group A glass beads and Geldart group B coke. Geometries were changed by modifying the volume of an abrupt T-shaped exit above the lateral riser exit. This was accomplished by positioning a plunger at various heights above the exit from zero to 0.38 m. A dimensionless expression used to predict smooth exit voidage was modified to account for themore » effect of the depth of the blind-T. The new correlation contains the solids-gas load ratio, solids-to-gas density ratio, bed-to-particle diameter ratio, gas Reynolds Number, as well as a term for the exit geometry. This study also found that there was a minimum riser roof height above the blind-T exit beyond which the riser exit voidage was not affected by the exit geometry. A correlation for this minimum riser roof height has also been developed in this study. This study covered riser superficial gas velocities of 4.35 to 7.7 m/s and solids circulation rates of 1.3 to 11.5 kg/s.« less

  14. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  15. Using the clustered circular layout as an informative method for visualizing protein-protein interaction networks.

    PubMed

    Fung, David C Y; Wilkins, Marc R; Hart, David; Hong, Seok-Hee

    2010-07-01

    The force-directed layout is commonly used in computer-generated visualizations of protein-protein interaction networks. While it is good for providing a visual outline of the protein complexes and their interactions, it has two limitations when used as a visual analysis method. The first is poor reproducibility. Repeated running of the algorithm does not necessarily generate the same layout, therefore, demanding cognitive readaptation on the investigator's part. The second limitation is that it does not explicitly display complementary biological information, e.g. Gene Ontology, other than the protein names or gene symbols. Here, we present an alternative layout called the clustered circular layout. Using the human DNA replication protein-protein interaction network as a case study, we compared the two network layouts for their merits and limitations in supporting visual analysis.

  16. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation.

    PubMed

    Pandey, R B; Farmer, B L

    2014-11-07

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ∼ 3) at low temperature to a ramified fibrous network (D ∼ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ∼ 1.6) of fibrous Glu- and Thr-chain configurations.

  17. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Farmer, B. L.

    2014-11-01

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ˜ 3) at low temperature to a ramified fibrous network (D ˜ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ˜ 1.6) of fibrous Glu- and Thr-chain configurations.

  18. Network Compression as a Quality Measure for Protein Interaction Networks

    PubMed Central

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  19. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  20. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    PubMed

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  1. Toward a systems-level view of dynamic phosphorylation networks

    PubMed Central

    Newman, Robert H.; Zhang, Jin; Zhu, Heng

    2014-01-01

    To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks. PMID:25177341

  2. A new multi-scale method to reveal hierarchical modular structures in biological networks.

    PubMed

    Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin

    2016-11-15

    Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.

  3. Protein complex prediction for large protein protein interaction networks with the Core&Peel method.

    PubMed

    Pellegrini, Marco; Baglioni, Miriam; Geraci, Filippo

    2016-11-08

    Biological networks play an increasingly important role in the exploration of functional modularity and cellular organization at a systemic level. Quite often the first tools used to analyze these networks are clustering algorithms. We concentrate here on the specific task of predicting protein complexes (PC) in large protein-protein interaction networks (PPIN). Currently, many state-of-the-art algorithms work well for networks of small or moderate size. However, their performance on much larger networks, which are becoming increasingly common in modern proteome-wise studies, needs to be re-assessed. We present a new fast algorithm for clustering large sparse networks: Core&Peel, which runs essentially in time and storage O(a(G)m+n) for a network G of n nodes and m arcs, where a(G) is the arboricity of G (which is roughly proportional to the maximum average degree of any induced subgraph in G). We evaluated Core&Peel on five PPI networks of large size and one of medium size from both yeast and homo sapiens, comparing its performance against those of ten state-of-the-art methods. We demonstrate that Core&Peel consistently outperforms the ten competitors in its ability to identify known protein complexes and in the functional coherence of its predictions. Our method is remarkably robust, being quite insensible to the injection of random interactions. Core&Peel is also empirically efficient attaining the second best running time over large networks among the tested algorithms. Our algorithm Core&Peel pushes forward the state-of the-art in PPIN clustering providing an algorithmic solution with polynomial running time that attains experimentally demonstrable good output quality and speed on challenging large real networks.

  4. Co-Translational Folding Trajectory of the HemK Helical Domain.

    PubMed

    Mercier, Evan; Rodnina, Marina V

    2018-06-26

    Protein folding begins co-translationally within the restricted space of the peptide exit tunnel of the ribosome. We have already shown that the N-terminal α-helical domain of the universally conserved N 5 -glutamine methyltransferase HemK is compacted within the exit tunnel and rearranges into the native fold upon emerging from the ribosome. However, the exact folding pathway of the domain remained unclear. Here we analyzed the rapid kinetics of translation and folding monitored by fluorescence resonance energy transfer and photoinduced electron transfer using global fitting to a model for synthesis of the 112-amino acid HemK fragment. Our results suggest that the co-translational folding trajectory of HemK starts within the tunnel and passes through four kinetically distinct folding intermediates that may represent sequential docking of helices to a growing compact core. The kinetics of the process is defined entirely by translation. The results show how analysis of ensemble kinetic data can be used to dissect complex trajectories of rapid conformational rearrangements in multicomponent systems.

  5. Glass microfluidic devices with thin membrane voltage junctions for electrospray mass spectrometry.

    PubMed

    Yue, Guihua Eileen; Roper, Michael G; Jeffery, Erin D; Easley, Christopher J; Balchunas, Catherine; Landers, James P; Ferrance, Jerome P

    2005-06-01

    In this study a novel glass membrane was prepared for conducting high voltage (HV) to solution in the channel of a microfabricated device for generation of liquid electrospray. Taylor cone formation and mass spectra obtained from this microdevice confirmed the utility of the glass membrane, but voltage conduction through the membrane could not be successfully explained based solely on the conductivity of the glass itself. This novel method for developing a high-voltage interface for microdevices avoids direct metal/liquid contact eliminating bubble formation in the channel due to water hydrolysis on the surface of the metal. Further, this arrangement produces no dead volume as is often found with traditional liquid junctions. At the same time, preliminary investigations into the outlet design of glass microdevices for interfacing with electrospray mass spectrometry, was explored. Both the exit shape and the use of hydrophobic coatings at the channel exit of the microdevice electrospray interface were evaluated using standard proteins with results indicating the utility of this type of design after further optimization.

  6. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis

    PubMed Central

    2018-01-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that ‘leftover’ proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles. PMID:29518071

  7. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    PubMed

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles.

  8. Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae.

    PubMed

    Jarnuczak, Andrew F; Eyers, Claire E; Schwartz, Jean-Marc; Grant, Christopher M; Hubbard, Simon J

    2015-09-01

    Molecular chaperones play an important role in protein homeostasis and the cellular response to stress. In particular, the HSP70 chaperones in yeast mediate a large volume of protein folding through transient associations with their substrates. This chaperone interaction network can be disturbed by various perturbations, such as environmental stress or a gene deletion. Here, we consider deletions of two major chaperone proteins, SSA1 and SSB1, from the chaperone network in Sacchromyces cerevisiae. We employ a SILAC-based approach to examine changes in global and local protein abundance and rationalise our results via network analysis and graph theoretical approaches. Although the deletions result in an overall increase in intracellular protein content, correlated with an increase in cell size, this is not matched by substantial changes in individual protein concentrations. Despite the phenotypic robustness to deletion of these major hub proteins, it cannot be simply explained by the presence of paralogues. Instead, network analysis and a theoretical consideration of folding workload suggest that the robustness to perturbation is a product of the overall network structure. This highlights how quantitative proteomics and systems modelling can be used to rationalise emergent network properties, and how the HSP70 system can accommodate the loss of major hubs. © 2015 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Network-wide BGP route prediction for traffic engineering

    NASA Astrophysics Data System (ADS)

    Feamster, Nick; Rexford, Jennifer

    2002-07-01

    The Internet consists of about 13,000 Autonomous Systems (AS's) that exchange routing information using the Border Gateway Protocol (BGP). The operators of each AS must have control over the flow of traffic through their network and between neighboring AS's. However, BGP is a complicated, policy-based protocol that does not include any direct support for traffic engineering. In previous work, we have demonstrated that network operators can adapt the flow of traffic in an efficient and predictable fashion through careful adjustments to the BGP policies running on their edge routers. Nevertheless, many details of the BGP protocol and decision process make predicting the effects of these policy changes difficult. In this paper, we describe a tool that predicts traffic flow at network exit points based on the network topology, the import policy associated with each BGP session, and the routing advertisements received from neighboring AS's. We present a linear-time algorithm that computes a network-wide view of the best BGP routes for each destination prefix given a static snapshot of the network state, without simulating the complex details of BGP message passing. We describe how to construct this snapshot using the BGP routing tables and router configuration files available from operational routers. We verify the accuracy of our algorithm by applying our tool to routing and configuration data from AT&T's commercial IP network. Our route prediction techniques help support the operation of large IP backbone networks, where interdomain routing is an important aspect of traffic engineering.

  10. Bacterial flagellar capping proteins adopt diverse oligomeric states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postel, Sandra; Deredge, Daniel; Bonsor, Daniel A.

    2016-09-24

    Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD fromPseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find thatPseudomonasFliD exhibits unexpected structural similarity to other flagellar proteins atmore » the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.« less

  11. Generic Information Can Retrieve Known Biological Associations: Implications for Biomedical Knowledge Discovery

    PubMed Central

    van Haagen, Herman H. H. B. M.; 't Hoen, Peter A. C.; Mons, Barend; Schultes, Erik A.

    2013-01-01

    Motivation Weighted semantic networks built from text-mined literature can be used to retrieve known protein-protein or gene-disease associations, and have been shown to anticipate associations years before they are explicitly stated in the literature. Our text-mining system recognizes over 640,000 biomedical concepts: some are specific (i.e., names of genes or proteins) others generic (e.g., ‘Homo sapiens’). Generic concepts may play important roles in automated information retrieval, extraction, and inference but may also result in concept overload and confound retrieval and reasoning with low-relevance or even spurious links. Here, we attempted to optimize the retrieval performance for protein-protein interactions (PPI) by filtering generic concepts (node filtering) or links to generic concepts (edge filtering) from a weighted semantic network. First, we defined metrics based on network properties that quantify the specificity of concepts. Then using these metrics, we systematically filtered generic information from the network while monitoring retrieval performance of known protein-protein interactions. We also systematically filtered specific information from the network (inverse filtering), and assessed the retrieval performance of networks composed of generic information alone. Results Filtering generic or specific information induced a two-phase response in retrieval performance: initially the effects of filtering were minimal but beyond a critical threshold network performance suddenly drops. Contrary to expectations, networks composed exclusively of generic information demonstrated retrieval performance comparable to unfiltered networks that also contain specific concepts. Furthermore, an analysis using individual generic concepts demonstrated that they can effectively support the retrieval of known protein-protein interactions. For instance the concept “binding” is indicative for PPI retrieval and the concept “mutation abnormality” is indicative for gene-disease associations. Conclusion Generic concepts are important for information retrieval and cannot be removed from semantic networks without negative impact on retrieval performance. PMID:24260124

  12. PROFEAT Update: A Protein Features Web Server with Added Facility to Compute Network Descriptors for Studying Omics-Derived Networks.

    PubMed

    Zhang, P; Tao, L; Zeng, X; Qin, C; Chen, S Y; Zhu, F; Yang, S Y; Li, Z R; Chen, W P; Chen, Y Z

    2017-02-03

    The studies of biological, disease, and pharmacological networks are facilitated by the systems-level investigations using computational tools. In particular, the network descriptors developed in other disciplines have found increasing applications in the study of the protein, gene regulatory, metabolic, disease, and drug-targeted networks. Facilities are provided by the public web servers for computing network descriptors, but many descriptors are not covered, including those used or useful for biological studies. We upgraded the PROFEAT web server http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi for computing up to 329 network descriptors and protein-protein interaction descriptors. PROFEAT network descriptors comprehensively describe the topological and connectivity characteristics of unweighted (uniform binding constants and molecular levels), edge-weighted (varying binding constants), node-weighted (varying molecular levels), edge-node-weighted (varying binding constants and molecular levels), and directed (oriented processes) networks. The usefulness of the network descriptors is illustrated by the literature-reported studies of the biological networks derived from the genome, interactome, transcriptome, metabolome, and diseasome profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Correction to: The NMR contribution to protein-protein networking in Fe-S protein maturation.

    PubMed

    Banci, Lucia; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Piccioli, Mario

    2018-05-31

    The article "The NMR contribution to protein-protein networking in Fe-S protein maturation", written by Lucia Banci, Francesca Camponeschi, Simone Ciofi‑Baffoni, Mario Piccioli was originally published electronically on the publisher's internet portal (currently SpringerLink) on 22 March, 2018 without open access.

  14. Evolution of SH2 domains and phosphotyrosine signalling networks

    PubMed Central

    Liu, Bernard A.; Nash, Piers D.

    2012-01-01

    Src homology 2 (SH2) domains mediate selective protein–protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks. PMID:22889907

  15. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  16. Large Eddy Simulation in a Channel with Exit Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Cziesla, T.; Braun, H.; Biswas, G.; Mitra, N. K.

    1996-01-01

    The influence of the exit boundary conditions (vanishing first derivative of the velocity components and constant pressure) on the large eddy simulation of the fully developed turbulent channel flow has been investigated for equidistant and stretched grids at the channel exit. Results show that the chosen exit boundary conditions introduce some small disturbance which is mostly damped by the grid stretching. The difference between the fully developed turbulent channel flow obtained with LES with periodicity condition and the inlet and exit and the LES with fully developed flow at the inlet and the exit boundary condition is less than 10% for equidistant grids and less than 5% for the case grid stretching. The chosen boundary condition is of interest because it may be used in complex flows with backflow at exit.

  17. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.

    PubMed

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-07-25

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.

  18. Essential protein discovery based on a combination of modularity and conservatism.

    PubMed

    Zhao, Bihai; Wang, Jianxin; Li, Xueyong; Wu, Fang-Xiang

    2016-11-01

    Essential proteins are indispensable for the survival of a living organism and play important roles in the emerging field of synthetic biology. Many computational methods have been proposed to identify essential proteins by using the topological features of interactome networks. However, most of these methods ignored intrinsic biological meaning of proteins. Researches show that essentiality is tied not only to the protein or gene itself, but also to the molecular modules to which that protein belongs. The results of this study reveal the modularity of essential proteins. On the other hand, essential proteins are more evolutionarily conserved than nonessential proteins and frequently bind each other. That is to say, conservatism is another important feature of essential proteins. Multiple networks are constructed by integrating protein-protein interaction (PPI) networks, time course gene expression data and protein domain information. Based on these networks, a new essential protein identification method is proposed based on a combination of modularity and conservatism of proteins. Experimental results show that the proposed method outperforms other essential protein identification methods in terms of a number essential protein out of top ranked candidates. Copyright © 2016. Published by Elsevier Inc.

  19. Distinct roles of a tyrosine-associated hydrogen-bond network in fine-tuning the structure and function of heme proteins: two cases designed for myoglobin.

    PubMed

    Liao, Fei; Yuan, Hong; Du, Ke-Jie; You, Yong; Gao, Shu-Qin; Wen, Ge-Bo; Lin, Ying-Wu; Tan, Xiangshi

    2016-10-20

    A hydrogen-bond (H-bond) network, specifically a Tyr-associated H-bond network, plays key roles in regulating the structure and function of proteins, as exemplified by abundant heme proteins in nature. To explore an approach for fine-tuning the structure and function of artificial heme proteins, we herein used myoglobin (Mb) as a model protein and introduced a Tyr residue in the secondary sphere of the heme active site at two different positions (107 and 138). We performed X-ray crystallography, UV-Vis spectroscopy, stopped-flow kinetics, and electron paramagnetic resonance (EPR) studies for the two single mutants, I107Y Mb and F138Y Mb, and compared to that of wild-type Mb under the same conditions. The results showed that both Tyr107 and Tyr138 form a distinct H-bond network involving water molecules and neighboring residues, which fine-tunes ligand binding to the heme iron and enhances the protein stability, respectively. Moreover, the Tyr107-associated H-bond network was shown to fine-tune both H2O2 binding and activation. With two cases demonstrated for Mb, this study suggests that the Tyr-associated H-bond network has distinct roles in regulating the protein structure, properties and functions, depending on its location in the protein scaffold. Therefore, it is possible to design a Tyr-associated H-bond network in general to create other artificial heme proteins with improved properties and functions.

  20. MOCASSIN-prot software

    USDA-ARS?s Scientific Manuscript database

    MOCASSIN-prot is a software, implemented in Perl and Matlab, for constructing protein similarity networks to classify proteins. Both domain composition and quantitative sequence similarity information are utilized in constructing the directed protein similarity networks. For each reference protein i...

  1. PROPER: global protein interaction network alignment through percolation matching.

    PubMed

    Kazemi, Ehsan; Hassani, Hamed; Grossglauser, Matthias; Pezeshgi Modarres, Hassan

    2016-12-12

    The alignment of protein-protein interaction (PPI) networks enables us to uncover the relationships between different species, which leads to a deeper understanding of biological systems. Network alignment can be used to transfer biological knowledge between species. Although different PPI-network alignment algorithms were introduced during the last decade, developing an accurate and scalable algorithm that can find alignments with high biological and structural similarities among PPI networks is still challenging. In this paper, we introduce a new global network alignment algorithm for PPI networks called PROPER. Compared to other global network alignment methods, our algorithm shows higher accuracy and speed over real PPI datasets and synthetic networks. We show that the PROPER algorithm can detect large portions of conserved biological pathways between species. Also, using a simple parsimonious evolutionary model, we explain why PROPER performs well based on several different comparison criteria. We highlight that PROPER has high potential in further applications such as detecting biological pathways, finding protein complexes and PPI prediction. The PROPER algorithm is available at http://proper.epfl.ch .

  2. Fluctuations in Mass-Action Equilibrium of Protein Binding Networks

    NASA Astrophysics Data System (ADS)

    Yan, Koon-Kiu; Walker, Dylan; Maslov, Sergei

    2008-12-01

    We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The first type is driven by slow changes in total concentrations of interacting proteins. The second type (spontaneous) is caused by quickly decaying thermodynamic deviations away from equilibrium. We investigate the effects of network connectivity on fluctuations by comparing them to scenarios in which the interacting pair is isolated from the network and analytically derives bounds on fluctuations. Collective effects are shown to sometimes lead to large amplification of spontaneous fluctuations. The strength of both types of fluctuations is positively correlated with the complex connectivity and negatively correlated with complex concentration. Our general findings are illustrated using a curated network of protein interactions and multiprotein complexes in baker’s yeast, with empirical protein concentrations.

  3. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets

    PubMed Central

    Vinayagam, Arunachalam; Gibson, Travis E.; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-01-01

    The protein–protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as “indispensable,” “neutral,” or “dispensable,” which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network’s control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets. PMID:27091990

  4. EOS Terra Terra Constellation Exit/Future Maneuver Plans Update

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    This EOS Terra Constellation Exit/Future Maneuver Plans Update presentation will discuss brief history of Terra EOM work; lifetime fuel estimates; baseline vs. proposed plan origin; resultant exit orbit; baseline vs. proposed exit plan; long term orbit altitude; revised lifetime proposal and fallback options.

  5. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats

    PubMed Central

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as “junk” sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping the interaction networks of the human proteome, and define proteome-wide knowledge that may guide the informed biological exploration of the role of AARs in protein interactions. PMID:26734058

  6. Entry and Exit Mechanisms at the cis-Face of the Golgi Complex

    PubMed Central

    Lorente-Rodríguez, Andrés; Barlowe, Charles

    2011-01-01

    Vesicular transport of protein and lipid cargo from the endoplasmic reticulum (ER) to cis-Golgi compartments depends on coat protein complexes, Rab GTPases, tethering factors, and membrane fusion catalysts. ER-derived vesicles deliver cargo to an ER-Golgi intermediate compartment (ERGIC) that then fuses with and/or matures into cis-Golgi compartments. The forward transport pathway to cis-Golgi compartments is balanced by a retrograde directed pathway that recycles transport machinery back to the ER. How trafficking through the ERGIC and cis-Golgi is coordinated to maintain organelle structure and function is poorly understood and highlights central questions regarding trafficking routes and organization of the early secretory pathway. PMID:21482742

  7. Network-based prediction and knowledge mining of disease genes.

    PubMed

    Carson, Matthew B; Lu, Hui

    2015-01-01

    In recent years, high-throughput protein interaction identification methods have generated a large amount of data. When combined with the results from other in vivo and in vitro experiments, a complex set of relationships between biological molecules emerges. The growing popularity of network analysis and data mining has allowed researchers to recognize indirect connections between these molecules. Due to the interdependent nature of network entities, evaluating proteins in this context can reveal relationships that may not otherwise be evident. We examined the human protein interaction network as it relates to human illness using the Disease Ontology. After calculating several topological metrics, we trained an alternating decision tree (ADTree) classifier to identify disease-associated proteins. Using a bootstrapping method, we created a tree to highlight conserved characteristics shared by many of these proteins. Subsequently, we reviewed a set of non-disease-associated proteins that were misclassified by the algorithm with high confidence and searched for evidence of a disease relationship. Our classifier was able to predict disease-related genes with 79% area under the receiver operating characteristic (ROC) curve (AUC), which indicates the tradeoff between sensitivity and specificity and is a good predictor of how a classifier will perform on future data sets. We found that a combination of several network characteristics including degree centrality, disease neighbor ratio, eccentricity, and neighborhood connectivity help to distinguish between disease- and non-disease-related proteins. Furthermore, the ADTree allowed us to understand which combinations of strongly predictive attributes contributed most to protein-disease classification. In our post-processing evaluation, we found several examples of potential novel disease-related proteins and corresponding literature evidence. In addition, we showed that first- and second-order neighbors in the PPI network could be used to identify likely disease associations. We analyzed the human protein interaction network and its relationship to disease and found that both the number of interactions with other proteins and the disease relationship of neighboring proteins helped to determine whether a protein had a relationship to disease. Our classifier predicted many proteins with no annotated disease association to be disease-related, which indicated that these proteins have network characteristics that are similar to disease-related proteins and may therefore have disease associations not previously identified. By performing a post-processing step after the prediction, we were able to identify evidence in literature supporting this possibility. This method could provide a useful filter for experimentalists searching for new candidate protein targets for drug repositioning and could also be extended to include other network and data types in order to refine these predictions.

  8. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-06-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. © 2011 Elsevier Ltd. All rights reserved.

  9. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed Central

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-01-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. PMID:21666777

  10. Evidence of Probabilistic Behaviour in Protein Interaction Networks

    DTIC Science & Technology

    2008-01-31

    Evidence of degree-weighted connectivity in nine PPI networks. a, Homo sapiens (human); b, Drosophila melanogaster (fruit fly); c-e, Saccharomyces...illustrates maps for the networks of Homo sapiens and Dro- sophila melanogaster, while maps for the remaining net- works are provided in Additional file 2. As...protein-protein interaction networks. a, Homo sapiens ; b, Drosophila melanogaster. Distances shown as average shortest path lengths L(k1, k2) between

  11. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

    PubMed

    Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin

    2017-08-31

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

  12. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks

    PubMed Central

    Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin

    2017-01-01

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211

  13. ChiPPI: a novel method for mapping chimeric protein-protein interactions uncovers selection principles of protein fusion events in cancer.

    PubMed

    Frenkel-Morgenstern, Milana; Gorohovski, Alessandro; Tagore, Somnath; Sekar, Vaishnovi; Vazquez, Miguel; Valencia, Alfonso

    2017-07-07

    Fusion proteins, comprising peptides deriving from the translation of two parental genes, are produced in cancer by chromosomal aberrations. The expressed fusion protein incorporates domains of both parental proteins. Using a methodology that treats discrete protein domains as binding sites for specific domains of interacting proteins, we have cataloged the protein interaction networks for 11 528 cancer fusions (ChiTaRS-3.1). Here, we present our novel method, chimeric protein-protein interactions (ChiPPI) that uses the domain-domain co-occurrence scores in order to identify preserved interactors of chimeric proteins. Mapping the influence of fusion proteins on cell metabolism and pathways reveals that ChiPPI networks often lose tumor suppressor proteins and gain oncoproteins. Furthermore, fusions often induce novel connections between non-interactors skewing interaction networks and signaling pathways. We compared fusion protein PPI networks in leukemia/lymphoma, sarcoma and solid tumors finding distinct enrichment patterns for each disease type. While certain pathways are enriched in all three diseases (Wnt, Notch and TGF β), there are distinct patterns for leukemia (EGFR signaling, DNA replication and CCKR signaling), for sarcoma (p53 pathway and CCKR signaling) and solid tumors (FGFR and EGFR signaling). Thus, the ChiPPI method represents a comprehensive tool for studying the anomaly of skewed cellular networks produced by fusion proteins in cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Identifying protein complexes based on brainstorming strategy.

    PubMed

    Shen, Xianjun; Zhou, Jin; Yi, Li; Hu, Xiaohua; He, Tingting; Yang, Jincai

    2016-11-01

    Protein complexes comprising of interacting proteins in protein-protein interaction network (PPI network) play a central role in driving biological processes within cells. Recently, more and more swarm intelligence based algorithms to detect protein complexes have been emerging, which have become the research hotspot in proteomics field. In this paper, we propose a novel algorithm for identifying protein complexes based on brainstorming strategy (IPC-BSS), which is integrated into the main idea of swarm intelligence optimization and the improved K-means algorithm. Distance between the nodes in PPI network is defined by combining the network topology and gene ontology (GO) information. Inspired by human brainstorming process, IPC-BSS algorithm firstly selects the clustering center nodes, and then they are separately consolidated with the other nodes with short distance to form initial clusters. Finally, we put forward two ways of updating the initial clusters to search optimal results. Experimental results show that our IPC-BSS algorithm outperforms the other classic algorithms on yeast and human PPI networks, and it obtains many predicted protein complexes with biological significance. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Structure of Protein Geranylgeranyltransferase-I from the Human Pathogen Candida albicans Complexed with a Lipid Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hast, Michael A.; Beese, Lorena S.

    2008-11-21

    Protein geranylgeranyltransferase-I (GGTase-I) catalyzes the transfer of a 20-carbon isoprenoid lipid to the sulfur of a cysteine residue located near the C terminus of numerous cellular proteins, including members of the Rho superfamily of small GTPases and other essential signal transduction proteins. In humans, GGTase-I and the homologous protein farnesyltransferase (FTase) are targets of anticancer therapeutics because of the role small GTPases play in oncogenesis. Protein prenyltransferases are also essential for many fungal and protozoan pathogens that infect humans, and have therefore become important targets for treating infectious diseases. Candida albicans, a causative agent of systemic fungal infections in immunocompromisedmore » individuals, is one pathogen for which protein prenylation is essential for survival. Here we present the crystal structure of GGTase-I from C. albicans (CaGGTase-I) in complex with its cognate lipid substrate, geranylgeranylpyrophosphate. This structure provides a high-resolution picture of a non-mammalian protein prenyltransferase. There are significant variations between species in critical areas of the active site, including the isoprenoid-binding pocket, as well as the putative product exit groove. These differences indicate the regions where specific protein prenyltransferase inhibitors with antifungal activity can be designed.« less

  16. Protein Signaling Networks from Single Cell Fluctuations and Information Theory Profiling

    PubMed Central

    Shin, Young Shik; Remacle, F.; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R.D.; Heath, James R.

    2011-01-01

    Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network. PMID:21575571

  17. Exploring the Social Impact of Being a Typical Peer Model for Included Children with Autism Spectrum Disorder

    PubMed Central

    Locke, Jill; Fuller, Erin Rotheram; Kasari, Connie

    2014-01-01

    This study examined the social impact of being a typical peer model as part of a social skills intervention for children with autism spectrum disorder (ASD). Participants were drawn from a randomized-controlled-treatment trial that examined the effects of targeted interventions on the social networks of 60 elementary-aged children with ASD. Results demonstrated that typical peer models had higher social network centrality, received friendships, friendship quality, and less loneliness than non-peer models. Peer models were also more likely to be connected with children with ASD than non-peer models at baseline and exit. These results suggest that typical peers can be socially connected to children with ASD, as well as other classmates, and maintain a strong and positive role within the classroom. PMID:22215436

  18. Developing Governance for Federated Community-based EHR Data Sharing

    PubMed Central

    Lin, Ching-Ping; Stephens, Kari A.; Baldwin, Laura-Mae; Keppel, Gina A.; Whitener, Ron J.; Echo-Hawk, Abigail; Korngiebel, Diane

    2014-01-01

    Bi-directional translational pathways between scientific discoveries and primary care are crucial for improving individual patient care and population health. The Data QUEST pilot project is a program supporting data sharing amongst community based primary care practices and is built on a technical infrastructure to share electronic health record data. We developed a set of governance requirements from interviewing and collaborating with partner organizations. Recommendations from our partner organizations included: 1) partner organizations can physically terminate the link to the data sharing network and only approved data exits the local site; 2) partner organizations must approve or reject each query; 3) partner organizations and researchers must respect local processes, resource restrictions, and infrastructures; and 4) partner organizations can be seamlessly added and removed from any individual data sharing query or the entire network. PMID:25717404

  19. Star Mapping with Slime Mold Physarum Polycephalum

    NASA Astrophysics Data System (ADS)

    Mihklepp, M.; Domnitch, E.; Gelfand, D.; Foing, B. H.; van der Heide, E.

    2014-04-01

    Human curiosity and exploration towards outer space has led to many fantastic inventions and given way to alternative scenarios about the origins of life. In the Space Science in the Arts course together with ESTEC with support from ILEWG. I got interested about unicellular slime mold Physarum polycephalum. There has been and still is a lot of research on Physarum polycephalum. This brainless eucaryotic microbe has its smartness and external memory strategies. Physarum can navigate through a maze made of agar using the shortest route possible when two pieces of food are placed at two separate exits of the maze. It can build efficient networks - Physarum created network similar to the existing Tokyo train system. It is being used to control a robot, in USB-sensor and in sound synthesis. Right now there is a lot of research about using Physarum in bio-computing.

  20. Prediction and functional analysis of the sweet orange protein-protein interaction network.

    PubMed

    Ding, Yu-Duan; Chang, Ji-Wei; Guo, Jing; Chen, Dijun; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Cheng, Yun-Jiang; Chen, Ling-Ling

    2014-08-05

    Sweet orange (Citrus sinensis) is one of the most important fruits world-wide. Because it is a woody plant with a long growth cycle, genetic studies of sweet orange are lagging behind those of other species. In this analysis, we employed ortholog identification and domain combination methods to predict the protein-protein interaction (PPI) network for sweet orange. The K-nearest neighbors (KNN) classification method was used to verify and filter the network. The final predicted PPI network, CitrusNet, contained 8,195 proteins with 124,491 interactions. The quality of CitrusNet was evaluated using gene ontology (GO) and Mapman annotations, which confirmed the reliability of the network. In addition, we calculated the expression difference of interacting genes (EDI) in CitrusNet using RNA-seq data from four sweet orange tissues, and also analyzed the EDI distribution and variation in different sub-networks. Gene expression in CitrusNet has significant modular features. Target of rapamycin (TOR) protein served as the central node of the hormone-signaling sub-network. All evidence supported the idea that TOR can integrate various hormone signals and affect plant growth. CitrusNet provides valuable resources for the study of biological functions in sweet orange.

  1. Aircraft evacuations through type-III exits I : effects of seat placement at the exit.

    DOT National Transportation Integrated Search

    1995-07-01

    Simulated emergency egress from Type III over-wing exits was studied to support regulatory action by the FAA. Passageway width and seat encroachment distance adjacent to the Type-III exit were the major variables of interest. : Methods. Two subject g...

  2. 29 CFR 1910.36 - Design and construction requirements for exit routes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....36 Section 1910.36 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Exit Routes and Emergency Planning... of exit routes necessary for your workplace, consult NFPA 101-2000, Life Safety Code. (c) Exit...

  3. Safety and operational performance evaluation of four types of exit ramps on Florida's freeways (final report).

    DOT National Transportation Integrated Search

    2010-12-01

    This project mainly focuses on exit ramp performance analysis of safety and operations. In addition, issues of advance guide sign for exit ramp are also mentioned. : Safety analysis evaluates safety performances of different exit ramps used in Florid...

  4. Construction of reliable protein-protein interaction networks with a new interaction generality measure.

    PubMed

    Saito, Rintaro; Suzuki, Harukazu; Hayashizaki, Yoshihide

    2003-04-12

    Recent screening techniques have made large amounts of protein-protein interaction data available, from which biologically important information such as the function of uncharacterized proteins, the existence of novel protein complexes, and novel signal-transduction pathways can be discovered. However, experimental data on protein interactions contain many false positives, making these discoveries difficult. Therefore computational methods of assessing the reliability of each candidate protein-protein interaction are urgently needed. We developed a new 'interaction generality' measure (IG2) to assess the reliability of protein-protein interactions using only the topological properties of their interaction-network structure. Using yeast protein-protein interaction data, we showed that reliable protein-protein interactions had significantly lower IG2 values than less-reliable interactions, suggesting that IG2 values can be used to evaluate and filter interaction data to enable the construction of reliable protein-protein interaction networks.

  5. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM.

    PubMed

    Cromer, Laurence; Heyman, Jefri; Touati, Sandra; Harashima, Hirofumi; Araou, Emilie; Girard, Chloe; Horlow, Christine; Wassmann, Katja; Schnittger, Arp; De Veylder, Lieven; Mercier, Raphael

    2012-01-01

    Cell cycle control is modified at meiosis compared to mitosis, because two divisions follow a single DNA replication event. Cyclin-dependent kinases (CDKs) promote progression through both meiosis and mitosis, and a central regulator of their activity is the APC/C (Anaphase Promoting Complex/Cyclosome) that is especially required for exit from mitosis. We have shown previously that OSD1 is involved in entry into both meiosis I and meiosis II in Arabidopsis thaliana; however, the molecular mechanism by which OSD1 controls these transitions has remained unclear. Here we show that OSD1 promotes meiotic progression through APC/C inhibition. Next, we explored the functional relationships between OSD1 and the genes known to control meiotic cell cycle transitions in Arabidopsis. Like osd1, cyca1;2/tam mutation leads to a premature exit from meiosis after the first division, while tdm mutants perform an aberrant third meiotic division after normal meiosis I and II. Remarkably, while tdm is epistatic to tam, osd1 is epistatic to tdm. We further show that the expression of a non-destructible CYCA1;2/TAM provokes, like tdm, the entry into a third meiotic division. Finally, we show that CYCA1;2/TAM forms an active complex with CDKA;1 that can phosphorylate OSD1 in vitro. We thus propose that a functional network composed of OSD1, CYCA1;2/TAM, and TDM controls three key steps of meiotic progression, in which OSD1 is a meiotic APC/C inhibitor.

  6. Piloting a Statewide Home Visiting Quality Improvement Learning Collaborative.

    PubMed

    Goyal, Neera K; Rome, Martha G; Massie, Julie A; Mangeot, Colleen; Ammerman, Robert T; Breckenridge, Jye; Lannon, Carole M

    2017-02-01

    Objective To pilot test a statewide quality improvement (QI) collaborative learning network of home visiting agencies. Methods Project timeline was June 2014-May 2015. Overall objectives of this 8-month initiative were to assess the use of collaborative QI to engage local home visiting agencies and to test the use of statewide home visiting data for QI. Outcome measures were mean time from referral to first home visit, percentage of families with at least three home visits per month, mean duration of participation, and exit rate among infants <6 months. Of 110 agencies, eight sites were selected based on volume, geography, and agency leadership. Our adapted Breakthrough Series model included monthly calls with performance feedback and cross-agency learning. A statewide data system was used to generate monthly run charts. Results Mean time from referral to first home visit was 16.7 days, and 9.4% of families received ≥3 visits per month. Mean participation was 11.7 months, and the exit rate among infants <6 months old was 6.1%. Agencies tested several strategies, including parent commitment agreements, expedited contact after referral, and Facebook forums. No shift in outcome measures was observed, but agencies tracked intermediate process changes using internal site-specific data. Agencies reported positive experiences from participation including more frequent and structured staff meetings. Conclusions for Practice Within a pilot QI learning network, agencies tested and measured changes using statewide and internal data. Potential next steps are to develop and test new metrics with current pilot sites and a larger collaborative.

  7. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    PubMed

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  8. Process for Considering Special Exit Criteria from Bilingual/English as a Second Language (ESL) Services under 19 TAC §89.1225(k). School Year: 2013-2014, Grades 1-12

    ERIC Educational Resources Information Center

    Texas Education Agency, 2014

    2014-01-01

    Under Texas Administrative Code (TAC) §89.1225(h), districts are required to use the exit criteria represented in the chart titled "2013-2014 English Proficiency Exit Criteria Chart" found at (http://www.tea.state.tx.us/index2.aspx?id=4098) to exit English language learners (ELLs) from bilingual/ESL programs. The exit criteria under TAC…

  9. The effect of riser end geometry on gas-solid hydrodynamics in a CFB riser operating in the core annular and dilute homogeneous flow regimes

    DOE PAGES

    Breault, Ronald W.; Monazam, Esmail R.; Shadle, Lawrence J.; ...

    2017-02-12

    Riser hydrodynamics are a function of the flow rates of gas and solids as well as the exit geometry, particularly when operated above the upper transport velocity. This work compares the exit voidage for multiple geometries and two different solids: Geldart group A glass beads and Geldart group B coke. Geometries were changed by modifying the volume of an abrupt T-shaped exit above the lateral riser exit. This was accomplished by positioning a plunger at various heights above the exit from zero to 0.38 m. A dimensionless expression used to predict smooth exit voidage was modified to account for themore » effect of the depth of the blind-T. The new correlation contains the solids-gas load ratio, solids-to-gas density ratio, bed-to-particle diameter ratio, gas Reynolds Number, as well as a term for the exit geometry. This study also found that there was a minimum riser roof height above the blind-T exit beyond which the riser exit voidage was not affected by the exit geometry. A correlation for this minimum riser roof height has also been developed in this study. This study covered riser superficial gas velocities of 4.35 to 7.7 m/s and solids circulation rates of 1.3 to 11.5 kg/s.« less

  10. Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information

    PubMed Central

    2013-01-01

    Background In recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored. Results We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes. Conclusions Although the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes. PMID:23663484

  11. Functional modules by relating protein interaction networks and gene expression.

    PubMed

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  12. Functional modules by relating protein interaction networks and gene expression

    PubMed Central

    Tornow, Sabine; Mewes, H. W.

    2003-01-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317

  13. Factors Associated With Premature Exits From Supported Housing.

    PubMed

    Gabrielian, Sonya; Burns, Alaina V; Nanda, Nupur; Hellemann, Gerhard; Kane, Vincent; Young, Alexander S

    2016-01-01

    Many homeless consumers who enroll in supported housing programs--which offer subsidized housing and supportive services--disengage prematurely, before placement in permanent community-based housing. This study explored factors associated with exiting a supported housing program before achieving housing placement. With the use of administrative data, a roster was obtained for consumers enrolled in the Veterans Affairs (VA) Greater Los Angeles supported housing program from 2011 to 2012. Fewer (4%) consumers exited this program before achieving housing ("exiters") compared with consumers described in national VA figures (18%). Exiters with available demographic data (N=51) were matched 1:1 on age, gender, marital status, and race-ethnicity with consumers housed through this program ("stayers," N=51). Medical records were reviewed to compare diagnoses, health care utilization, housing histories, vocational history, and criminal justice involvement of exiters versus stayers. Exiters' housing outcomes were identified. Recursive partitioning identified variables that best differentiated exiters from stayers. Several factors were associated with premature exits from this supported housing program: residing in temporary housing on hospital grounds during program enrollment, poor adherence to outpatient care, substance use disorders, hepatitis C, chronic pain, justice involvement, frequent emergency department utilization, and medical-surgical admissions. The first of these factors and poor adherence to outpatient medical-surgical care best differentiated exiters from stayers. Moreover, >50% of exiters became street homeless or incarcerated after leaving the program. In that diverse social factors, diagnoses, and health care utilization patterns were associated with premature disengagement from supported housing, future research is needed to implement and evaluate rehabilitative services that address these factors, adapted to the context of supported housing.

  14. Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations

    PubMed Central

    Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel

    2018-01-01

    Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102

  15. Communication between the N and C Termini Is Required for Copper-stimulated Ser/Thr Phosphorylation of Cu(I)-ATPase (ATP7B)*

    PubMed Central

    Braiterman, Lelita T.; Gupta, Arnab; Chaerkady, Raghothama; Cole, Robert N.; Hubbard, Ann L.

    2015-01-01

    The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated (“hyperphosphorylated”) in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration. PMID:25666620

  16. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    PubMed

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  17. From pull-down data to protein interaction networks and complexes with biological relevance.

    PubMed

    Zhang, Bing; Park, Byung-Hoon; Karpinets, Tatiana; Samatova, Nagiza F

    2008-04-01

    Recent improvements in high-throughput Mass Spectrometry (MS) technology have expedited genome-wide discovery of protein-protein interactions by providing a capability of detecting protein complexes in a physiological setting. Computational inference of protein interaction networks and protein complexes from MS data are challenging. Advances are required in developing robust and seamlessly integrated procedures for assessment of protein-protein interaction affinities, mathematical representation of protein interaction networks, discovery of protein complexes and evaluation of their biological relevance. A multi-step but easy-to-follow framework for identifying protein complexes from MS pull-down data is introduced. It assesses interaction affinity between two proteins based on similarity of their co-purification patterns derived from MS data. It constructs a protein interaction network by adopting a knowledge-guided threshold selection method. Based on the network, it identifies protein complexes and infers their core components using a graph-theoretical approach. It deploys a statistical evaluation procedure to assess biological relevance of each found complex. On Saccharomyces cerevisiae pull-down data, the framework outperformed other more complicated schemes by at least 10% in F(1)-measure and identified 610 protein complexes with high-functional homogeneity based on the enrichment in Gene Ontology (GO) annotation. Manual examination of the complexes brought forward the hypotheses on cause of false identifications. Namely, co-purification of different protein complexes as mediated by a common non-protein molecule, such as DNA, might be a source of false positives. Protein identification bias in pull-down technology, such as the hydrophilic bias could result in false negatives.

  18. 34 CFR 682.604 - Required exit counseling for borrowers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 4 2014-07-01 2014-07-01 false Required exit counseling for borrowers. 682.604 Section... counseling for borrowers. (a) Exit counseling. (1) A school must ensure that exit counseling is conducted... ensure that this counseling is conducted shortly before the student borrower ceases at least half-time...

  19. 14 CFR 27.1557 - Miscellaneous markings and placards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; (iii) For turbine engine powered rotorcraft, the permissible fuel designations; and (iv) For pressure...) Emergency exit placards. Each placard and operating control for each emergency exit must be red. A placard must be near each emergency exit control and must clearly indicate the location of that exit and its...

  20. 14 CFR 27.1557 - Miscellaneous markings and placards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; (iii) For turbine engine powered rotorcraft, the permissible fuel designations; and (iv) For pressure...) Emergency exit placards. Each placard and operating control for each emergency exit must be red. A placard must be near each emergency exit control and must clearly indicate the location of that exit and its...

  1. 14 CFR 27.1557 - Miscellaneous markings and placards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (iii) For turbine engine powered rotorcraft, the permissible fuel designations; and (iv) For pressure...) Emergency exit placards. Each placard and operating control for each emergency exit must be red. A placard must be near each emergency exit control and must clearly indicate the location of that exit and its...

  2. 14 CFR 27.1557 - Miscellaneous markings and placards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; (iii) For turbine engine powered rotorcraft, the permissible fuel designations; and (iv) For pressure...) Emergency exit placards. Each placard and operating control for each emergency exit must be red. A placard must be near each emergency exit control and must clearly indicate the location of that exit and its...

  3. 36 CFR 13.1318 - Location of the EGDA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed... boundary to Exit Glacier Campground Entrance Road, all park areas within 350 meters (383 yards) of the centerline of the Exit Glacier Road; (2) From Exit Glacier Campground Entrance Road to the end of the main...

  4. 36 CFR 13.1318 - Location of the EGDA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed... boundary to Exit Glacier Campground Entrance Road, all park areas within 350 meters (383 yards) of the centerline of the Exit Glacier Road; (2) From Exit Glacier Campground Entrance Road to the end of the main...

  5. 36 CFR 13.1318 - Location of the EGDA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed... boundary to Exit Glacier Campground Entrance Road, all park areas within 350 meters (383 yards) of the centerline of the Exit Glacier Road; (2) From Exit Glacier Campground Entrance Road to the end of the main...

  6. Cytoprophet: a Cytoscape plug-in for protein and domain interaction networks inference.

    PubMed

    Morcos, Faruck; Lamanna, Charles; Sikora, Marcin; Izaguirre, Jesús

    2008-10-01

    Cytoprophet is a software tool that allows prediction and visualization of protein and domain interaction networks. It is implemented as a plug-in of Cytoscape, an open source software framework for analysis and visualization of molecular networks. Cytoprophet implements three algorithms that predict new potential physical interactions using the domain composition of proteins and experimental assays. The algorithms for protein and domain interaction inference include maximum likelihood estimation (MLE) using expectation maximization (EM); the set cover approach maximum specificity set cover (MSSC) and the sum-product algorithm (SPA). After accepting an input set of proteins with Uniprot ID/Accession numbers and a selected prediction algorithm, Cytoprophet draws a network of potential interactions with probability scores and GO distances as edge attributes. A network of domain interactions between the domains of the initial protein list can also be generated. Cytoprophet was designed to take advantage of the visual capabilities of Cytoscape and be simple to use. An example of inference in a signaling network of myxobacterium Myxococcus xanthus is presented and available at Cytoprophet's website. http://cytoprophet.cse.nd.edu.

  7. TimeXNet Web: Identifying cellular response networks from diverse omics time-course data.

    PubMed

    Tan, Phit Ling; López, Yosvany; Nakai, Kenta; Patil, Ashwini

    2018-05-14

    Condition-specific time-course omics profiles are frequently used to study cellular response to stimuli and identify associated signaling pathways. However, few online tools allow users to analyze multiple types of high-throughput time-course data. TimeXNet Web is a web server that extracts a time-dependent gene/protein response network from time-course transcriptomic, proteomic or phospho-proteomic data, and an input interaction network. It classifies the given genes/proteins into time-dependent groups based on the time of their highest activity and identifies the most probable paths connecting genes/proteins in consecutive groups. The response sub-network is enriched in activated genes/proteins and contains novel regulators that do not show any observable change in the input data. Users can view the resultant response network and analyze it for functional enrichment. TimeXNet Web supports the analysis of high-throughput data from multiple species by providing high quality, weighted protein-protein interaction networks for 12 model organisms. http://txnet.hgc.jp/. ashwini@hgc.jp. Supplementary data are available at Bioinformatics online.

  8. Computational Framework for Analysis of Prey–Prey Associations in Interaction Proteomics Identifies Novel Human Protein–Protein Interactions and Networks

    PubMed Central

    Saha, Sudipto; Dazard, Jean-Eudes; Xu, Hua; Ewing, Rob M.

    2013-01-01

    Large-scale protein–protein interaction data sets have been generated for several species including yeast and human and have enabled the identification, quantification, and prediction of cellular molecular networks. Affinity purification-mass spectrometry (AP-MS) is the preeminent methodology for large-scale analysis of protein complexes, performed by immunopurifying a specific “bait” protein and its associated “prey” proteins. The analysis and interpretation of AP-MS data sets is, however, not straightforward. In addition, although yeast AP-MS data sets are relatively comprehensive, current human AP-MS data sets only sparsely cover the human interactome. Here we develop a framework for analysis of AP-MS data sets that addresses the issues of noise, missing data, and sparsity of coverage in the context of a current, real world human AP-MS data set. Our goal is to extend and increase the density of the known human interactome by integrating bait–prey and cocomplexed preys (prey–prey associations) into networks. Our framework incorporates a score for each identified protein, as well as elements of signal processing to improve the confidence of identified protein–protein interactions. We identify many protein networks enriched in known biological processes and functions. In addition, we show that integrated bait–prey and prey–prey interactions can be used to refine network topology and extend known protein networks. PMID:22845868

  9. Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks.

    PubMed

    Benzekry, Sebastian; Tuszynski, Jack A; Rietman, Edward A; Lakka Klement, Giannoula

    2015-05-28

    The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. We observed a linear correlation of R = -0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger potential for survival benefit. We hope that the use of advanced mathematics in medicine will provide timely information about the best drug combination for patients, and avoid the expense associated with an unsuccessful clinical trial, where drug(s) did not show a survival benefit.

  10. Proteomic and computational analysis of bronchoalveolar proteins during the course of the acute respiratory distress syndrome.

    PubMed

    Chang, Dong W; Hayashi, Shinichi; Gharib, Sina A; Vaisar, Tomas; King, S Trevor; Tsuchiya, Mitsuhiro; Ruzinski, John T; Park, David R; Matute-Bello, Gustavo; Wurfel, Mark M; Bumgarner, Roger; Heinecke, Jay W; Martin, Thomas R

    2008-10-01

    Acute lung injury causes complex changes in protein expression in the lungs. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of pathogenesis and new targets for treatment. The purpose of this study was to examine the changes in protein expression in the bronchoalveolar lavage fluid (BALF) of patients during the course of the acute respiratory distress syndrome (ARDS). Using two-dimensional difference gel electrophoresis (DIGE), the expression of proteins in the BALF from patients on Days 1 (n = 7), 3 (n = 8), and 7 (n = 5) of ARDS were compared with findings in normal volunteers (n = 9). The patterns of protein expression were analyzed using principal component analysis (PCA). Biological processes that were enriched in the BALF proteins of patients with ARDS were identified using Gene Ontology (GO) analysis. Protein networks that model the protein interactions in the BALF were generated using Ingenuity Pathway Analysis. An average of 991 protein spots were detected using DIGE. Of these, 80 protein spots, representing 37 unique proteins in all of the fluids, were identified using mass spectrometry. PCA confirmed important differences between the proteins in the ARDS and normal samples. GO analysis showed that these differences are due to the enrichment of proteins involved in inflammation, infection, and injury. The protein network analysis showed that the protein interactions in ARDS are complex and redundant, and revealed unexpected central components in the protein networks. Proteomics and protein network analysis reveals the complex nature of lung protein interactions in ARDS. The results provide new insights about protein networks in injured lungs, and identify novel mediators that are likely to be involved in the pathogenesis and progression of acute lung injury.

  11. Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities?

    PubMed Central

    Webster, Christopher P.; Smith, Emma F.; Shaw, Pamela J.; De Vos, Kurt J.

    2017-01-01

    Protein homeostasis (proteostasis), the correct balance between production and degradation of proteins, is essential for the health and survival of cells. Proteostasis requires an intricate network of protein quality control pathways (the proteostasis network) that work to prevent protein aggregation and maintain proteome health throughout the lifespan of the cell. Collapse of proteostasis has been implicated in the etiology of a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disorder. Here, we review the evidence linking dysfunctional proteostasis to the etiology of ALS and discuss how ALS-associated insults affect the proteostasis network. Finally, we discuss the potential therapeutic benefit of proteostasis network modulation in ALS. PMID:28512398

  12. Integrative network alignment reveals large regions of global network similarity in yeast and human.

    PubMed

    Kuchaiev, Oleksii; Przulj, Natasa

    2011-05-15

    High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising efficient network alignment heuristics is currently a foremost challenge in computational biology. We introduce a novel network alignment algorithm, called Matching-based Integrative GRAph ALigner (MI-GRAAL), which can integrate any number and type of similarity measures between network nodes (e.g. proteins), including, but not limited to, any topological network similarity measure, sequence similarity, functional similarity and structural similarity. Hence, we resolve the ties in similarity measures and find a combination of similarity measures yielding the largest contiguous (i.e. connected) and biologically sound alignments. MI-GRAAL exposes the largest functional, connected regions of protein-protein interaction (PPI) network similarity to date: surprisingly, it reveals that 77.7% of proteins in the baker's yeast high-confidence PPI network participate in such a subnetwork that is fully contained in the human high-confidence PPI network. This is the first demonstration that species as diverse as yeast and human contain so large, continuous regions of global network similarity. We apply MI-GRAAL's alignments to predict functions of un-annotated proteins in yeast, human and bacteria validating our predictions in the literature. Furthermore, using network alignment scores for PPI networks of different herpes viruses, we reconstruct their phylogenetic relationship. This is the first time that phylogeny is exactly reconstructed from purely topological alignments of PPI networks. Supplementary files and MI-GRAAL executables: http://bio-nets.doc.ic.ac.uk/MI-GRAAL/.

  13. Identifying Functional Mechanisms of Gene and Protein Regulatory Networks in Response to a Broader Range of Environmental Stresses

    PubMed Central

    Li, Cheng-Wei; Chen, Bor-Sen

    2010-01-01

    Cellular responses to sudden environmental stresses or physiological changes provide living organisms with the opportunity for final survival and further development. Therefore, it is an important topic to understand protective mechanisms against environmental stresses from the viewpoint of gene and protein networks. We propose two coupled nonlinear stochastic dynamic models to reconstruct stress-activated gene and protein regulatory networks via microarray data in response to environmental stresses. According to the reconstructed gene/protein networks, some possible mutual interactions, feedforward and feedback loops are found for accelerating response and filtering noises in these signaling pathways. A bow-tie core network is also identified to coordinate mutual interactions and feedforward loops, feedback inhibitions, feedback activations, and cross talks to cope efficiently with a broader range of environmental stresses with limited proteins and pathways. PMID:20454442

  14. Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides.

    PubMed

    Xu, Xiaofei; Yang, Jiguo; Ning, Zhengxiang; Zhang, Xuewu

    2016-01-01

    Lentinula edodes-derived polysaccharides are well known for their immunomodulation and antitumor activities. However, the mechanisms of action have not been fully elucidated. This study presents proteomic analysis of the colon and small intestine from mice fed with an immunostimulating heteropolysaccharide L2 from the fruit body of L. edodes. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS were employed to characterize the protein profiles. Twenty nine gel spots representing 20 proteins in colon tissues and 38 gel spots in small intestine tissues representing 23 proteins were identified as showing significant changes in abundance. These differential proteins in abundance are mainly involved in metabolism, binding, structural components, and response to stimulus. Protein-protein interaction network analysis demonstrated mapping of the 20 colon proteins to a 7-protein and a 3-protein sub-network, and mapping of the 23 small intestine proteins to a 9-protein and a 5-protein sub-network. All the 40 altered proteins were integrated into a unified network containing 25 proteins, suggesting the existence of a concerted mechanism, although acting on the colon and small intestine separately. These findings facilitate the understanding of the regulatory mechanism in response to L2 treatment.

  15. Networking at the Protein Society symposium.

    PubMed

    McKnight, C James; Cordes, Matthew H J

    2005-10-01

    From the complex behavior of multicomponent signaling networks to the structures of large protein complexes and aggregates, questions once viewed as daunting are now being tackled fearlessly by protein scientists. The 19th Annual Symposium of the Protein Society in Boston highlighted the maturation of systems biology as applied to proteins.

  16. The protein-protein interaction network of eyestalk, Y-organ and hepatopancreas in Chinese mitten crab Eriocheir sinensis.

    PubMed

    Hao, Tong; Zeng, Zheng; Wang, Bin; Zhang, Yichen; Liu, Yichen; Geng, Xuyun; Sun, Jinsheng

    2014-03-27

    The protein-protein interaction network (PIN) is an effective information tool for understanding the complex biological processes inside the cell and solving many biological problems such as signaling pathway identification and prediction of protein functions. Eriocheir sinensis is a highly-commercial aquaculture species with an unclear proteome background which hinders the construction and development of PIN for E. sinensis. However, in recent years, the development of next-generation deep-sequencing techniques makes it possible to get high throughput data of E. sinensis tanscriptome and subsequently obtain a systematic overview of the protein-protein interaction system. In this work we sequenced the transcriptional RNA of eyestalk, Y-organ and hepatopancreas in E. sinensis and generated a PIN of E. sinensis which included 3,223 proteins and 35,787 interactions. Each protein-protein interaction in the network was scored according to the homology and genetic relationship. The signaling sub-network, representing the signal transduction pathways in E. sinensis, was extracted from the global network, which depicted a global view of the signaling systems in E. sinensis. Seven basic signal transduction pathways were identified in E. sinensis. By investigating the evolution paths of the seven pathways, we found that these pathways got mature in different evolutionary stages. Moreover, the functions of unclassified proteins and unigenes in the PIN of E. sinensis were predicted. Specifically, the functions of 549 unclassified proteins related to 864 unclassified unigenes were assigned, which respectively covered 76% and 73% of all the unclassified proteins and unigenes in the network. The PIN generated in this work is the first large-scale PIN of aquatic crustacean, thereby providing a paradigmatic blueprint of the aquatic crustacean interactome. Signaling sub-network extracted from the global PIN depicts the interaction of different signaling proteins and the evolutionary paths of the identified signal transduction pathways. Furthermore, the function assignment of unclassified proteins based on the PIN offers a new reference in protein function exploration. More importantly, the construction of the E. sinensis PIN provides necessary experience for the exploration of PINs in other aquatic crustacean species.

  17. Network based approaches reveal clustering in protein point patterns

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang

    2014-03-01

    Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.

  18. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells

    PubMed Central

    Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko

    2012-01-01

    The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration. PMID:22740633

  19. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells.

    PubMed

    Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko

    2012-08-01

    The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.

  20. Use of exit examinations: a criterion for graduation?

    PubMed

    Cullen, P D

    1997-01-01

    This study sought to measure the use of exit examinations in nursing schools at Historically Black Colleges and Universities (HBCU). Fifteen participants from HBCU nursing schools throughout the United States were surveyed to determine current practices related to exit exams. Overall, fourteen schools (93.33%) used an exit exam at the end of their nursing program. However, 73.33% of the participants (11 schools) reported it was mandatory for students to pass the exam as a requirement for graduation. Almost 47% of the participants (7 schools) reported the use of the exit exam was related to NCLEX-RN pass rates, while others reported identification of student needs as the primary reason for using an exit exam. Most participants were very helpful by sharing their innovations. While this small study provided some information on the use of exit examinations, more research is needed to substantiate both the appropriateness and usefulness of their use in baccalaureate degree nursing programs.

  1. 46 CFR 185.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Escape hatches and emergency exits. 185.606 Section 185... 100 GROSS TONS) OPERATIONS Markings Required § 185.606 Escape hatches and emergency exits. All escape hatches and other emergency exits used as means of escape must be marked on both sides in clearly legible...

  2. 46 CFR 169.745 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Escape hatches and emergency exits. 169.745 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.745 Escape hatches and emergency exits. Each escape hatch and other emergency exit must be marked on both sides using at least 1...

  3. 46 CFR 185.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Escape hatches and emergency exits. 185.606 Section 185... 100 GROSS TONS) OPERATIONS Markings Required § 185.606 Escape hatches and emergency exits. All escape hatches and other emergency exits used as means of escape must be marked on both sides in clearly legible...

  4. 46 CFR 169.745 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Escape hatches and emergency exits. 169.745 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.745 Escape hatches and emergency exits. Each escape hatch and other emergency exit must be marked on both sides using at least 1...

  5. 46 CFR 185.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Escape hatches and emergency exits. 185.606 Section 185... 100 GROSS TONS) OPERATIONS Markings Required § 185.606 Escape hatches and emergency exits. All escape hatches and other emergency exits used as means of escape must be marked on both sides in clearly legible...

  6. 46 CFR 185.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Escape hatches and emergency exits. 185.606 Section 185... 100 GROSS TONS) OPERATIONS Markings Required § 185.606 Escape hatches and emergency exits. All escape hatches and other emergency exits used as means of escape must be marked on both sides in clearly legible...

  7. 46 CFR 169.745 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Escape hatches and emergency exits. 169.745 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.745 Escape hatches and emergency exits. Each escape hatch and other emergency exit must be marked on both sides using at least 1...

  8. 46 CFR 169.745 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Escape hatches and emergency exits. 169.745 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.745 Escape hatches and emergency exits. Each escape hatch and other emergency exit must be marked on both sides using at least 1...

  9. 46 CFR 169.745 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Escape hatches and emergency exits. 169.745 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.745 Escape hatches and emergency exits. Each escape hatch and other emergency exit must be marked on both sides using at least 1...

  10. 46 CFR 185.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Escape hatches and emergency exits. 185.606 Section 185... 100 GROSS TONS) OPERATIONS Markings Required § 185.606 Escape hatches and emergency exits. All escape hatches and other emergency exits used as means of escape must be marked on both sides in clearly legible...

  11. An Entrance to Exit Polling: Strategies for Using Exit Polls as Experiential Learning Projects

    ERIC Educational Resources Information Center

    Berry, Michael J.; Robinson, Tony

    2012-01-01

    Engaging students in the design, administration, and postelection analysis of an exit poll can be an excellent experiential learning activity. Lelieveldt and Rossen (2009) argue that exit polls are a "perfect teaching tool" because they provide students with a cooperative (rather than competitive) learning experience; help students…

  12. 40 CFR 63.3176 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... automobiles or light-duty trucks, including coating facilities and processes. Bake oven air seal means an entry or entry vestibule to or an exit or exit vestibule from a bake oven which isolates the bake oven... exit or exit vestibule) the bake oven. No significant VOC generating activity takes place in a bake...

  13. Exit Cards: Creating a Dialogue for Continuous Evaluation

    ERIC Educational Resources Information Center

    Patka, Mazna; Wallin-Ruschman, Jennifer; Wallace, Tenille; Robbins, Candice

    2016-01-01

    This study explored the use of Exit Cards, which are formative evaluations of student knowledge and instruction undertaken at every class meeting. Its results are based on Exit Card data from two undergraduate research methods courses. Thematic analysis indicated that students used Exit Cards to communicate (1) what they learned, (2) challenges…

  14. 8 CFR 215.9 - Temporary Worker Visa Exit Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Temporary Worker Visa Exit Program. 215.9... ALIENS DEPARTING FROM THE UNITED STATES § 215.9 Temporary Worker Visa Exit Program. An alien admitted on certain temporary worker visas at a port of entry participating in the Temporary Worker Visa Exit Program...

  15. 8 CFR 215.9 - Temporary Worker Visa Exit Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Temporary Worker Visa Exit Program. 215.9... ALIENS DEPARTING FROM THE UNITED STATES § 215.9 Temporary Worker Visa Exit Program. An alien admitted on certain temporary worker visas at a port of entry participating in the Temporary Worker Visa Exit Program...

  16. 8 CFR 215.9 - Temporary Worker Visa Exit Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Temporary Worker Visa Exit Program. 215.9... ALIENS DEPARTING FROM THE UNITED STATES § 215.9 Temporary Worker Visa Exit Program. An alien admitted on certain temporary worker visas at a port of entry participating in the Temporary Worker Visa Exit Program...

  17. 8 CFR 215.9 - Temporary Worker Visa Exit Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Temporary Worker Visa Exit Program. 215.9... ALIENS DEPARTING FROM THE UNITED STATES § 215.9 Temporary Worker Visa Exit Program. An alien admitted on certain temporary worker visas at a port of entry participating in the Temporary Worker Visa Exit Program...

  18. 8 CFR 215.9 - Temporary Worker Visa Exit Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Temporary Worker Visa Exit Program. 215.9... ALIENS DEPARTING FROM THE UNITED STATES § 215.9 Temporary Worker Visa Exit Program. An alien admitted on certain temporary worker visas at a port of entry participating in the Temporary Worker Visa Exit Program...

  19. Exit Exam as Academic Performance Indicator

    ERIC Educational Resources Information Center

    Al Ahmad, Mahmoud; Al Marzouqi, Ali H.; Hussien, Mousa

    2014-01-01

    This paper focuses on the impact of exit exams on different elements of the educational process, namely: curriculum development, students and instructors. A 50-question multiple-choice Exit Exam was prepared by Electrical Engineering (EE) faculty members covering a poll of questions from EE core courses. A copy of the Exit Exam applied during each…

  20. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    PubMed

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  1. Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum.

    PubMed Central

    Di Jeso, Bruno; Ulianich, Luca; Pacifico, Francesco; Leonardi, Antonio; Vito, Pasquale; Consiglio, Eduardo; Formisano, Silvestro; Arvan, Peter

    2003-01-01

    During its initial folding in the endoplasmic reticulum (ER), newly synthesized thyroglobulin (Tg) is known to interact with calnexin and other ER molecular chaperones, but its interaction with calreticulin has not been examined previously. In the present study, we have investigated the interactions of endogenous Tg with calreticulin and with several other ER chaperones. We find that, in FRTL-5 and PC-Cl3 cells, calnexin and calreticulin interact with newly synthesized Tg in a carbohydrate-dependent manner, with largely overlapping kinetics that are concomitant with the maturation of Tg intrachain disulphide bonds, preceding Tg dimerization and exit from the ER. Calreticulin co-precipitates more newly synthesized Tg than does calnexin; however, using two different experimental approaches, calnexin and calreticulin were found in ternary complexes with Tg, making this the first endogenous protein reported in ternary complexes with calnexin and calreticulin in the ER of live cells. Depletion of Ca(2+) from the ER elicited by thapsigargin (a specific inhibitor of ER Ca(2+)-ATPases) results in retention of Tg in this organelle. Interestingly, thapsigargin treatment induces the premature exit of Tg from the calnexin/calreticulin cycle, while stabilizing and prolonging interactions of Tg with BiP (immunoglobulin heavy chain binding protein) and GRP94 (glucose-regulated protein 94), two chaperones whose binding is not carbohydrate-dependent. Our results suggest that calnexin and calreticulin, acting in ternary complexes with a large glycoprotein substrate such as Tg, might be engaged in the folding of distinct domains, and indicate that lumenal Ca(2+) strongly influences the folding of exportable glycoproteins, in part by regulating the balance of substrate binding to different molecular chaperone systems within the ER. PMID:12401114

  2. DOR/Tp53inp2 and Tp53inp1 constitute a metazoan gene family encoding dual regulators of autophagy and transcription.

    PubMed

    Sancho, Ana; Duran, Jordi; García-España, Antonio; Mauvezin, Caroline; Alemu, Endalkachew A; Lamark, Trond; Macias, Maria J; DeSalle, Rob; Royo, Miriam; Sala, David; Chicote, Javier U; Palacín, Manuel; Johansen, Terje; Zorzano, Antonio

    2012-01-01

    Human DOR/TP53INP2 displays a unique bifunctional role as a modulator of autophagy and gene transcription. However, the domains or regions of DOR that participate in those functions have not been identified. Here we have performed structure/function analyses of DOR guided by identification of conserved regions in the DOR gene family by phylogenetic reconstructions. We show that DOR is present in metazoan species. Invertebrates harbor only one gene, DOR/Tp53inp2, and in the common ancestor of vertebrates Tp53inp1 may have arisen by gene duplication. In keeping with these data, we show that human TP53INP1 regulates autophagy and that different DOR/TP53INP2 and TP53INP1 proteins display transcriptional activity. The use of molecular evolutionary information has been instrumental to determine the regions that participate in DOR functions. DOR and TP53INP1 proteins share two highly conserved regions (region 1, aa residues 28-42; region 2, 66-112 in human DOR). Mutation of conserved hydrophobic residues in region 1 of DOR (that are part of a nuclear export signal, NES) reduces transcriptional activity, and blocks nuclear exit and autophagic activity under autophagy-activated conditions. We also identify a functional and conserved LC3-interacting motif (LIR) in region 1 of DOR and TP53INP1 proteins. Mutation of conserved acidic residues in region 2 of DOR reduces transcriptional activity, impairs nuclear exit in response to autophagy activation, and disrupts autophagy. Taken together, our data reveal DOR and TP53INP1 as dual regulators of transcription and autophagy, and identify two conserved regions in the DOR family that concentrate multiple functions crucial for autophagy and transcription.

  3. DOR/Tp53inp2 and Tp53inp1 Constitute a Metazoan Gene Family Encoding Dual Regulators of Autophagy and Transcription

    PubMed Central

    Sancho, Ana; Duran, Jordi; García-España, Antonio; Mauvezin, Caroline; Alemu, Endalkachew A.; Lamark, Trond; Macias, Maria J.; DeSalle, Rob; Royo, Miriam; Sala, David; Chicote, Javier U.; Palacín, Manuel; Johansen, Terje; Zorzano, Antonio

    2012-01-01

    Human DOR/TP53INP2 displays a unique bifunctional role as a modulator of autophagy and gene transcription. However, the domains or regions of DOR that participate in those functions have not been identified. Here we have performed structure/function analyses of DOR guided by identification of conserved regions in the DOR gene family by phylogenetic reconstructions. We show that DOR is present in metazoan species. Invertebrates harbor only one gene, DOR/Tp53inp2, and in the common ancestor of vertebrates Tp53inp1 may have arisen by gene duplication. In keeping with these data, we show that human TP53INP1 regulates autophagy and that different DOR/TP53INP2 and TP53INP1 proteins display transcriptional activity. The use of molecular evolutionary information has been instrumental to determine the regions that participate in DOR functions. DOR and TP53INP1 proteins share two highly conserved regions (region 1, aa residues 28–42; region 2, 66–112 in human DOR). Mutation of conserved hydrophobic residues in region 1 of DOR (that are part of a nuclear export signal, NES) reduces transcriptional activity, and blocks nuclear exit and autophagic activity under autophagy-activated conditions. We also identify a functional and conserved LC3-interacting motif (LIR) in region 1 of DOR and TP53INP1 proteins. Mutation of conserved acidic residues in region 2 of DOR reduces transcriptional activity, impairs nuclear exit in response to autophagy activation, and disrupts autophagy. Taken together, our data reveal DOR and TP53INP1 as dual regulators of transcription and autophagy, and identify two conserved regions in the DOR family that concentrate multiple functions crucial for autophagy and transcription. PMID:22470510

  4. Scale-space measures for graph topology link protein network architecture to function.

    PubMed

    Hulsman, Marc; Dimitrakopoulos, Christos; de Ridder, Jeroen

    2014-06-15

    The network architecture of physical protein interactions is an important determinant for the molecular functions that are carried out within each cell. To study this relation, the network architecture can be characterized by graph topological characteristics such as shortest paths and network hubs. These characteristics have an important shortcoming: they do not take into account that interactions occur across different scales. This is important because some cellular functions may involve a single direct protein interaction (small scale), whereas others require more and/or indirect interactions, such as protein complexes (medium scale) and interactions between large modules of proteins (large scale). In this work, we derive generalized scale-aware versions of known graph topological measures based on diffusion kernels. We apply these to characterize the topology of networks across all scales simultaneously, generating a so-called graph topological scale-space. The comprehensive physical interaction network in yeast is used to show that scale-space based measures consistently give superior performance when distinguishing protein functional categories and three major types of functional interactions-genetic interaction, co-expression and perturbation interactions. Moreover, we demonstrate that graph topological scale spaces capture biologically meaningful features that provide new insights into the link between function and protein network architecture. Matlab(TM) code to calculate the scale-aware topological measures (STMs) is available at http://bioinformatics.tudelft.nl/TSSA © The Author 2014. Published by Oxford University Press.

  5. Architecture of the human interactome defines protein communities and disease networks

    PubMed Central

    Huttlin, Edward L.; Bruckner, Raphael J.; Paulo, Joao A.; Cannon, Joe R.; Ting, Lily; Baltier, Kurt; Colby, Greg; Gebreab, Fana; Gygi, Melanie P.; Parzen, Hannah; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Pontano-Vaites, Laura; Swarup, Sharan; White, Anne E.; Schweppe, Devin K.; Rad, Ramin; Erickson, Brian K.; Obar, Robert A.; Guruharsha, K.G.; Li, Kejie; Artavanis-Tsakonas, Spyros; Gygi, Steven P.; Harper, J. Wade

    2017-01-01

    The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidation of how genome variation contributes to disease1–3. Here, we present BioPlex 2.0 (Biophysical Interactions of ORFEOME-derived complexes), which employs robust affinity purification-mass spectrometry (AP-MS) methodology4 to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein coding genes from the human genome, and constitutes the largest such network to date. With >56,000 candidate interactions, BioPlex 2.0 contains >29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering (MCL)5 of interacting proteins identified more than 1300 protein communities representing diverse cellular activities. Genes essential for cell fitness6,7 are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization. PMID:28514442

  6. DESIGN ANALYSIS OF RADIAL INFLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    This program performs a velocity-diagram analysis required for determining geometry and estimating performance for radial-inflow turbines. Input design requirements are power, mass flow rate, inlet temperature and pressure, and rotative rate. The design variables include stator-exit angle, rotor-exit-tip to rotor-inlet radius ratio, rotor-exit-hub to tip radius ratio, and the magnitude and radial distribution of rotor-exit tangential velocity. The program output includes diameters, total and static efficiences, all absolute and relative temperatures, pressures, and velocities, and flow angles at stator inlet, stator exit, rotor inlet, and rotor exit. Losses accounted for in this program by the internal loss model are three-dimensional (profile plus end wall) viscous losses in the stator and the rotor, the disk-friction loss on the back side of the rotor, the loss due to the clearance between the rotor tip and the outer casing, and the exit velocity loss. The flow analysis is one-dimensional at the stator inlet, stator exit, and rotor inlet, each of these calculation stations being at a constant radius. At the rotor exit where there is a variation in flow-field radius, an axisymmetric two-dimensional analysis is made using constant height sectors. Simple radial equilibrium is used to establish the static pressure gradient at the rotor exit. This program is written in FORTRAN V and has been implemented on a UNIVAC 1100 series computer with a memory requirement of approximately 22K of 36 bit words.

  7. Locating overlapping dense subgraphs in gene (protein) association networks and predicting novel protein functional groups among these subgraphs

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas

    2006-03-01

    Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.

  8. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. VANLO - Interactive visual exploration of aligned biological networks

    PubMed Central

    Brasch, Steffen; Linsen, Lars; Fuellen, Georg

    2009-01-01

    Background Protein-protein interaction (PPI) is fundamental to many biological processes. In the course of evolution, biological networks such as protein-protein interaction networks have developed. Biological networks of different species can be aligned by finding instances (e.g. proteins) with the same common ancestor in the evolutionary process, so-called orthologs. For a better understanding of the evolution of biological networks, such aligned networks have to be explored. Visualization can play a key role in making the various relationships transparent. Results We present a novel visualization system for aligned biological networks in 3D space that naturally embeds existing 2D layouts. In addition to displaying the intra-network connectivities, we also provide insight into how the individual networks relate to each other by placing aligned entities on top of each other in separate layers. We optimize the layout of the entire alignment graph in a global fashion that takes into account inter- as well as intra-network relationships. The layout algorithm includes a step of merging aligned networks into one graph, laying out the graph with respect to application-specific requirements, splitting the merged graph again into individual networks, and displaying the network alignment in layers. In addition to representing the data in a static way, we also provide different interaction techniques to explore the data with respect to application-specific tasks. Conclusion Our system provides an intuitive global understanding of aligned PPI networks and it allows the investigation of key biological questions. We evaluate our system by applying it to real-world examples documenting how our system can be used to investigate the data with respect to these key questions. Our tool VANLO (Visualization of Aligned Networks with Layout Optimization) can be accessed at . PMID:19821976

  10. Occupational and educational inequalities in exit from employment at older ages: evidence from seven prospective cohorts.

    PubMed

    Carr, Ewan; Fleischmann, Maria; Goldberg, Marcel; Kuh, Diana; Murray, Emily T; Stafford, Mai; Stansfeld, Stephen; Vahtera, Jussi; Xue, Baowen; Zaninotto, Paola; Zins, Marie; Head, Jenny

    2018-05-01

    Past studies have identified socioeconomic inequalities in the timing and route of labour market exit at older ages. However, few studies have compared these trends cross-nationally and existing evidence focuses on specific institutional outcomes (such as disability pension and sickness absence) in Nordic countries. We examined differences by education level and occupational grade in the risks of work exit and health-related work exit. Prospective longitudinal data were drawn from seven studies (n=99 164). Participants were in paid work at least once around age 50. Labour market exit was derived based on reductions in working hours, changes in self-reported employment status or from administrative records. Health-related exit was ascertained by receipt of health-related benefit or pension or from the reported reason for stopping work. Cox regression models were estimated for each study, adjusted for baseline self-rated health and birth cohort. There were 50 003 work exits during follow-up, of which an average of 14% (range 2-32%) were health related. Low level education and low occupational grade were associated with increased risks of health-related exit in most studies. Low level education and occupational grade were also associated with an increased risk of any exit from work, although with less consistency across studies. Workers with low socioeconomic position have an increased risk of health-related exit from employment. Policies that extend working life may disadvantage such workers disproportionally, especially where institutional support for those exiting due to poor health is minimal. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. An FD-LC-MS/MS Proteomic Strategy for Revealing Cellular Protein Networks: A Conditional Superoxide Dismutase 1 Knockout Cells

    PubMed Central

    Ichibangase, Tomoko; Sugawara, Yasuhiro; Yamabe, Akio; Koshiyama, Akiyo; Yoshimura, Akari; Enomoto, Takemi; Imai, Kazuhiro

    2012-01-01

    Systems biology aims to understand biological phenomena in terms of complex biological and molecular interactions, and thus proteomics plays an important role in elucidating protein networks. However, many proteomic methods have suffered from their high variability, resulting in only showing altered protein names. Here, we propose a strategy for elucidating cellular protein networks based on an FD-LC-MS/MS proteomic method. The strategy permits reproducible relative quantitation of differences in protein levels between different cell populations and allows for integration of the data with those obtained through other methods. We demonstrate the validity of the approach through a comparison of differential protein expression in normal and conditional superoxide dismutase 1 gene knockout cells and believe that beginning with an FD-LC-MS/MS proteomic approach will enable researchers to elucidate protein networks more easily and comprehensively. PMID:23029042

  12. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution

    PubMed Central

    Mannakee, Brian K.; Gutenkunst, Ryan N.

    2016-01-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265

  13. Influence of homology and node age on the growth of protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Bottinelli, Arianna; Bassetti, Bruno; Lagomarsino, Marco Cosentino; Gherardi, Marco

    2012-10-01

    Proteins participating in a protein-protein interaction network can be grouped into homology classes following their common ancestry. Proteins added to the network correspond to genes added to the classes, so the dynamics of the two objects are intrinsically linked. Here we first introduce a statistical model describing the joint growth of the network and the partitioning of nodes into classes, which is studied through a combined mean-field and simulation approach. We then employ this unified framework to address the specific issue of the age dependence of protein interactions through the definition of three different node wiring or divergence schemes. A comparison with empirical data indicates that an age-dependent divergence move is necessary in order to reproduce the basic topological observables together with the age correlation between interacting nodes visible in empirical data. We also discuss the possibility of nontrivial joint partition and topology observables.

  14. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    PubMed

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint

    PubMed Central

    Salmela, Anna-Leena; Pouwels, Jeroen; Varis, Asta; Kukkonen, Anu M.; Toivonen, Pauliina; Halonen, Pasi K.; Perälä, Merja; Kallioniemi, Olli; Gorbsky, Gary J.; Kallio, Marko J.

    2009-01-01

    Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2–160 μg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound. PMID:19395653

  16. Pak3 promotes cell cycle exit and differentiation of β-cells in the embryonic pancreas and is necessary to maintain glucose homeostasis in adult mice.

    PubMed

    Piccand, Julie; Meunier, Aline; Merle, Carole; Jia, Zhengping; Barnier, Jean-Vianney; Gradwohl, Gérard

    2014-01-01

    The transcription factor neurogenin3 (Ngn3) triggers islet cell differentiation in the developing pancreas. However, little is known about the molecular mechanisms coupling cell cycle exit and differentiation in Ngn3(+) islet progenitors. We identified a novel effector of Ngn3 endocrinogenic function, the p21 protein-activated kinase Pak3, known to control neuronal differentiation and implicated in X-linked intellectual disability in humans. We show that Pak3 expression is initiated in Ngn3(+) endocrine progenitor cells and next maintained in maturing hormone-expressing cells during pancreas development as well as in adult islet cells. In Pak3-deficient embryos, the proliferation of Ngn3(+) progenitors and β-cells is transiently increased concomitantly with an upregulation of Ccnd1. β-Cell differentiation is impaired at E15.5 but resumes at later stages. Pak3-deficient mice do not develop overt diabetes but are glucose intolerant under high-fat diet (HFD). In the intestine, Pak3 is expressed in enteroendocrine cells but is not necessary for their differentiation. Our results indicate that Pak3 is a novel regulator of β-cell differentiation and function. Pak3 acts downstream of Ngn3 to promote cell cycle exit and differentiation in the embryo by a mechanism that might involve repression of Ccnd1. In the adult, Pak3 is required for the proper control of glucose homeostasis under challenging HFD.

  17. A novel method for objective vision testing in canine models of inherited retinal disease.

    PubMed

    Gearhart, Patricia M; Gearhart, Chris C; Petersen-Jones, Simon M

    2008-08-01

    The use of canine models of retinal disease in the development of therapeutic strategies for inherited retinal disorders is a growing area of research. To evaluate accurately the success of potential vision-enhancing treatments, reliable methods for objectively assessing visual function in canine models is necessary. A simple vision-testing device was constructed that consisted of a junction box with four exit tunnels. Dogs were placed in the junction box and given one vision-based choice for exit. The first-choice tunnel and time to exit were recorded and analyzed. Two canine models of retinal disease with distinct molecular defects, a null mutation in the gene encoding the alpha subunit of rod cyclic GMP phosphodiesterase (PDE6A), and a null mutation in the gene encoding a retinal pigment epithelium-specific protein (RPE65) were tested and compared to those in unaffected dogs. With the use of bright light versus dim red light, the test differentiated between unaffected dogs and dogs affected with either mutation with a high degree of certainty. The white-light intensity series showed a significantly different performance between the unaffected and affected dogs. A significant difference in performance was detected between the dogs with each mutation. The results indicate that this novel canine vision-testing method is an accurate and sensitive means of distinguishing between unaffected dogs and dogs affected with two different forms of inherited retinal disease and should be useful as a means of assessing response to therapy in future studies.

  18. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins

    PubMed Central

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-01-01

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function. DOI: http://dx.doi.org/10.7554/eLife.23882.001 PMID:28742022

  19. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A.

    PubMed

    King, Cason R; Zhang, Ali; Tessier, Tanner M; Gameiro, Steven F; Mymryk, Joe S

    2018-05-01

    As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected "hub" proteins to "hack" the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. Copyright © 2018 King et al.

  20. De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity

    PubMed Central

    Boyken, Scott E.; Chen, Zibo; Groves, Benjamin; Langan, Robert A.; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H.; Baker, David

    2017-01-01

    In nature, structural specificity in DNA and proteins is encoded quite differently: in DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen bond networks with atomic accuracy is a milestone for protein design and enables the programming of protein interaction specificity for a broad range of synthetic biology applications. PMID:27151862

  1. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A

    PubMed Central

    King, Cason R.; Zhang, Ali; Tessier, Tanner M.; Gameiro, Steven F.

    2018-01-01

    ABSTRACT As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. PMID:29717008

  2. Systematic network assessment of the carcinogenic activities of cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Peizhan; Duan, Xiaohua; Li, Mian

    Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscapemore » software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. - Highlights: • A cadmium-influenced network with 850 nodes and 8770 edges was established. • The cadmium-rewired gene network was scale-free and highly connected. • Nine modules were identified, and 60 key signaling pathways related to cadmium-induced carcinogenesis were found. • Key mediators in the network were validated in multiple cellular models.« less

  3. Investigation of the Causes of Breast Cancer at the Cellular Level: Isolation of In Vivo Binding Sites of the Human Origin Recognition Complex

    DTIC Science & Technology

    2002-08-01

    We study the process of DNA replication in proliferating human cells. Our efforts are directed to the identification and characterization of proteins...that promote DNA replication (initiators) as well as the DNA sequences recognized by them (replicators) . We have focused in a group of initiator...to be a critical factor for the coordination of DNA replication with the cell division cycle. hOrclp levels are higher between the exit of mitosis and

  4. Network-based prediction and knowledge mining of disease genes

    PubMed Central

    2015-01-01

    Background In recent years, high-throughput protein interaction identification methods have generated a large amount of data. When combined with the results from other in vivo and in vitro experiments, a complex set of relationships between biological molecules emerges. The growing popularity of network analysis and data mining has allowed researchers to recognize indirect connections between these molecules. Due to the interdependent nature of network entities, evaluating proteins in this context can reveal relationships that may not otherwise be evident. Methods We examined the human protein interaction network as it relates to human illness using the Disease Ontology. After calculating several topological metrics, we trained an alternating decision tree (ADTree) classifier to identify disease-associated proteins. Using a bootstrapping method, we created a tree to highlight conserved characteristics shared by many of these proteins. Subsequently, we reviewed a set of non-disease-associated proteins that were misclassified by the algorithm with high confidence and searched for evidence of a disease relationship. Results Our classifier was able to predict disease-related genes with 79% area under the receiver operating characteristic (ROC) curve (AUC), which indicates the tradeoff between sensitivity and specificity and is a good predictor of how a classifier will perform on future data sets. We found that a combination of several network characteristics including degree centrality, disease neighbor ratio, eccentricity, and neighborhood connectivity help to distinguish between disease- and non-disease-related proteins. Furthermore, the ADTree allowed us to understand which combinations of strongly predictive attributes contributed most to protein-disease classification. In our post-processing evaluation, we found several examples of potential novel disease-related proteins and corresponding literature evidence. In addition, we showed that first- and second-order neighbors in the PPI network could be used to identify likely disease associations. Conclusions We analyzed the human protein interaction network and its relationship to disease and found that both the number of interactions with other proteins and the disease relationship of neighboring proteins helped to determine whether a protein had a relationship to disease. Our classifier predicted many proteins with no annotated disease association to be disease-related, which indicated that these proteins have network characteristics that are similar to disease-related proteins and may therefore have disease associations not previously identified. By performing a post-processing step after the prediction, we were able to identify evidence in literature supporting this possibility. This method could provide a useful filter for experimentalists searching for new candidate protein targets for drug repositioning and could also be extended to include other network and data types in order to refine these predictions. PMID:26043920

  5. IntNetDB v1.0: an integrated protein-protein interaction network database generated by a probabilistic model

    PubMed Central

    Xia, Kai; Dong, Dong; Han, Jing-Dong J

    2006-01-01

    Background Although protein-protein interaction (PPI) networks have been explored by various experimental methods, the maps so built are still limited in coverage and accuracy. To further expand the PPI network and to extract more accurate information from existing maps, studies have been carried out to integrate various types of functional relationship data. A frequently updated database of computationally analyzed potential PPIs to provide biological researchers with rapid and easy access to analyze original data as a biological network is still lacking. Results By applying a probabilistic model, we integrated 27 heterogeneous genomic, proteomic and functional annotation datasets to predict PPI networks in human. In addition to previously studied data types, we show that phenotypic distances and genetic interactions can also be integrated to predict PPIs. We further built an easy-to-use, updatable integrated PPI database, the Integrated Network Database (IntNetDB) online, to provide automatic prediction and visualization of PPI network among genes of interest. The networks can be visualized in SVG (Scalable Vector Graphics) format for zooming in or out. IntNetDB also provides a tool to extract topologically highly connected network neighborhoods from a specific network for further exploration and research. Using the MCODE (Molecular Complex Detections) algorithm, 190 such neighborhoods were detected among all the predicted interactions. The predicted PPIs can also be mapped to worm, fly and mouse interologs. Conclusion IntNetDB includes 180,010 predicted protein-protein interactions among 9,901 human proteins and represents a useful resource for the research community. Our study has increased prediction coverage by five-fold. IntNetDB also provides easy-to-use network visualization and analysis tools that allow biological researchers unfamiliar with computational biology to access and analyze data over the internet. The web interface of IntNetDB is freely accessible at . Visualization requires Mozilla version 1.8 (or higher) or Internet Explorer with installation of SVGviewer. PMID:17112386

  6. Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast

    PubMed Central

    Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S

    2005-01-01

    Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two pathways needed). PMID:16283923

  7. Morphine Regulated Synaptic Networks Revealed by Integrated Proteomics and Network Analysis*

    PubMed Central

    Stockton, Steven D.; Gomes, Ivone; Liu, Tong; Moraje, Chandrakala; Hipólito, Lucia; Jones, Matthew R.; Ma'ayan, Avi; Morón, Jose A.; Li, Hong; Devi, Lakshmi A.

    2015-01-01

    Despite its efficacy, the use of morphine for the treatment of chronic pain remains limited because of the rapid development of tolerance, dependence and ultimately addiction. These undesired effects are thought to be because of alterations in synaptic transmission and neuroplasticity within the reward circuitry including the striatum. In this study we used subcellular fractionation and quantitative proteomics combined with computational approaches to investigate the morphine-induced protein profile changes at the striatal postsynaptic density. Over 2,600 proteins were identified by mass spectrometry analysis of subcellular fractions enriched in postsynaptic density associated proteins from saline or morphine-treated striata. Among these, the levels of 34 proteins were differentially altered in response to morphine. These include proteins involved in G-protein coupled receptor signaling, regulation of transcription and translation, chaperones, and protein degradation pathways. The altered expression levels of several of these proteins was validated by Western blotting analysis. Using Genes2Fans software suite we connected the differentially expressed proteins with proteins identified within the known background protein-protein interaction network. This led to the generation of a network consisting of 116 proteins with 40 significant intermediates. To validate this, we confirmed the presence of three proteins predicted to be significant intermediates: caspase-3, receptor-interacting serine/threonine protein kinase 3 and NEDD4 (an E3-ubiquitin ligase identified as a neural precursor cell expressed developmentally down-regulated protein 4). Because this morphine-regulated network predicted alterations in proteasomal degradation, we examined the global ubiquitination state of postsynaptic density proteins and found it to be substantially altered. Together, these findings suggest a role for protein degradation and for the ubiquitin/proteasomal system in the etiology of opiate dependence and addiction. PMID:26149443

  8. Position Matters: Network Centrality Considerably Impacts Rates of Protein Evolution in the Human Protein-Protein Interaction Network.

    PubMed

    Alvarez-Ponce, David; Feyertag, Felix; Chakraborty, Sandip

    2017-06-01

    The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein-protein interaction data set and the human signal transduction network-a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Mining protein interactomes to improve their reliability and support the advancement of network medicine.

    PubMed

    Alanis-Lobato, Gregorio

    2015-01-01

    High-throughput detection of protein interactions has had a major impact in our understanding of the intricate molecular machinery underlying the living cell, and has permitted the construction of very large protein interactomes. The protein networks that are currently available are incomplete and a significant percentage of their interactions are false positives. Fortunately, the structural properties observed in good quality social or technological networks are also present in biological systems. This has encouraged the development of tools, to improve the reliability of protein networks and predict new interactions based merely on the topological characteristics of their components. Since diseases are rarely caused by the malfunction of a single protein, having a more complete and reliable interactome is crucial in order to identify groups of inter-related proteins involved in disease etiology. These system components can then be targeted with minimal collateral damage. In this article, an important number of network mining tools is reviewed, together with resources from which reliable protein interactomes can be constructed. In addition to the review, a few representative examples of how molecular and clinical data can be integrated to deepen our understanding of pathogenesis are discussed.

  10. 3DProIN: Protein-Protein Interaction Networks and Structure Visualization.

    PubMed

    Li, Hui; Liu, Chunmei

    2014-06-14

    3DProIN is a computational tool to visualize protein-protein interaction networks in both two dimensional (2D) and three dimensional (3D) view. It models protein-protein interactions in a graph and explores the biologically relevant features of the tertiary structures of each protein in the network. Properties such as color, shape and name of each node (protein) of the network can be edited in either 2D or 3D views. 3DProIN is implemented using 3D Java and C programming languages. The internet crawl technique is also used to parse dynamically grasped protein interactions from protein data bank (PDB). It is a java applet component that is embedded in the web page and it can be used on different platforms including Linux, Mac and Window using web browsers such as Firefox, Internet Explorer, Chrome and Safari. It also was converted into a mac app and submitted to the App store as a free app. Mac users can also download the app from our website. 3DProIN is available for academic research at http://bicompute.appspot.com.

  11. An Evolutionarily Conserved Innate Immunity Protein Interaction Network*

    PubMed Central

    De Arras, Lesly; Seng, Amara; Lackford, Brad; Keikhaee, Mohammad R.; Bowerman, Bruce; Freedman, Jonathan H.; Schwartz, David A.; Alper, Scott

    2013-01-01

    The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice. PMID:23209288

  12. Structural reducibility of multilayer networks

    NASA Astrophysics Data System (ADS)

    de Domenico, Manlio; Nicosia, Vincenzo; Arenas, Alexandre; Latora, Vito

    2015-04-01

    Many complex systems can be represented as networks consisting of distinct types of interactions, which can be categorized as links belonging to different layers. For example, a good description of the full protein-protein interactome requires, for some organisms, up to seven distinct network layers, accounting for different genetic and physical interactions, each containing thousands of protein-protein relationships. A fundamental open question is then how many layers are indeed necessary to accurately represent the structure of a multilayered complex system. Here we introduce a method based on quantum theory to reduce the number of layers to a minimum while maximizing the distinguishability between the multilayer network and the corresponding aggregated graph. We validate our approach on synthetic benchmarks and we show that the number of informative layers in some real multilayer networks of protein-genetic interactions, social, economical and transportation systems can be reduced by up to 75%.

  13. Differences in Student Achievement between Early-Exit and Late-Exit Bilingual Programs: A Multiyear, Statewide Investigation

    ERIC Educational Resources Information Center

    Martinez, Rosa Maria

    2014-01-01

    Purpose The purpose of this study was to examine the difference between two bilingual program types: traditional early-exit and late-exit bilingual programs and academic achievement using archival data from the Texas Education Agency Public Education Information Management System. An examination of academic achievement rates across a 3-year period…

  14. Relationship between cattle temperament as determined by exit velocity carcass merit in beef cattle

    USDA-ARS?s Scientific Manuscript database

    The objective of this trial was to use cattle temperament, as determined by exit velocity only, as a means to evaluate the impact of temperament on carcass merit and the possible utilization of exit velocity alone as a sorting tool within the feedlot. At the time of processing, exit velocity and bod...

  15. Exit Strategies: How Low-Performing High Schools Respond to High School Exit Examination Requirements

    ERIC Educational Resources Information Center

    Holme, Jennifer Jellison

    2013-01-01

    Background: Over the past several decades, a significant number of states have either adopted or increased high school exit examination requirements. Although these policies are intended to generate improvement in schools, little is known about how high schools are responding to exit testing pressures. Purpose: This study examined how five…

  16. 24 CFR 3280.106 - Exit facilities; egress windows and devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Exit facilities; egress windows and... § 3280.106 Exit facilities; egress windows and devices. (a) Every room designed expressly for sleeping purposes, unless it has an exit door (see § 3280.105), shall have at least one outside window or approved...

  17. Exit Exams: Decreases or Increases the Dropout Rate

    ERIC Educational Resources Information Center

    Barnes, Teresa A.

    2009-01-01

    The purpose of this paper was to examine the impact of exit exams on the dropout rate. Data was gathered from several research articles. The most impressionable research revealed exit exams have a negative effect on minorities, especially black males. Results indicate by 2012, that exit exams in 25 states will affect 81 percent of minority high…

  18. Rotor with Flattened Exit Pressure Profile

    NASA Technical Reports Server (NTRS)

    Baltas, Constantine (Inventor); Prasad, Dilip (Inventor); Gallagher, Edward J. (Inventor)

    2015-01-01

    A rotor blade comprises an airfoil extending radially from a root section to a tip section and axially from a leading edge to a trailing edge, the leading and trailing edges defining a curvature therebetween. The curvature determines a relative exit angle at a relative span height between the root section and the tip section, based on an incident flow velocity at the leading edge of the airfoil and a rotational velocity at the relative span height. In operation of the rotor blade, the relative exit angle determines a substantially flat exit pressure ratio profile for relative span heights from 75% to 95%, wherein the exit pressure ratio profile is constant within a tolerance of 10% of a maximum value of the exit pressure ratio profile.

  19. Evaluation of the Performance and Flow in an Axial Compressor.

    DTIC Science & Technology

    1982-10-01

    A Exit Rake P 11.00-P tP noz P2noz -PA SP-1 PHub - PA Exit Rake Pt11.50-Pt p - PA SP-1 PTip - PA Exit Rake Pt2.00-PPtpipe ATp Att Pspipe - PA SP-2...PTip - PA Exit Rake Pt6.50-Pt Inlet Rake Pt14.40-PA SP-8 PTip - PA Exit Rake Pt 17.00-Pt Inlet Rake Pt 1.30-PA SP-8 PHub - PA Exit Rake Pt17.50-Pt...Determination from Probe Pressures Pt (1) =((Pt=(1) + Phub ) + (Pt(1) + Pt(2)))/3 P t(2) P t(2) Pt (3) = t(3) P t(4) = (P t(3) + P t(4))/2 P t(5) =P t(4) Pt

  20. Mean-field theory for pedestrian outflow through an exit.

    PubMed

    Yanagisawa, Daichi; Nishinari, Katsuhiro

    2007-12-01

    The average pedestrian flow through an exit is one of the most important indices in evaluating pedestrian dynamics. In order to study the flow in detail, the floor field model, which is a crowd model using cellular automata, is extended by taking into account realistic behavior of pedestrians around the exit. The model is studied by both numerical simulations and cluster analysis to obtain a theoretical expression for the average pedestrian flow through the exit. It is found quantitatively that the effects of exit door width, the wall, and the pedestrian mood of competition or cooperation significantly influence the average flow. The results show that there is a suitable width and position of the exit according to the pedestrians' mood.

  1. Enhancing the Functional Content of Eukaryotic Protein Interaction Networks

    PubMed Central

    Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean

    2014-01-01

    Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489

  2. Overview of Sparse Graph for Multiple Access in Future Mobile Networks

    NASA Astrophysics Data System (ADS)

    Lei, Jing; Li, Baoguo; Li, Erbao; Gong, Zhenghui

    2017-10-01

    Multiple access via sparse graph, such as low density signature (LDS) and sparse code multiple access (SCMA), is a promising technique for future wireless communications. This survey presents an overview of the developments in this burgeoning field, including transmitter structures, extrinsic information transform (EXIT) chart analysis and comparisons with existing multiple access techniques. Such technique enables multiple access under overloaded conditions to achieve a satisfactory performance. Message passing algorithm is utilized for multi-user detection in the receiver, and structures of the sparse graph are illustrated in detail. Outlooks and challenges of this technique are also presented.

  3. Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant

    PubMed Central

    Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J.

    2009-01-01

    Alpha-helix based protein networks as they appear in intermediate filaments in the cell’s cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance. PMID:19547709

  4. An automated method for finding molecular complexes in large protein interaction networks

    PubMed Central

    Bader, Gary D; Hogue, Christopher WV

    2003-01-01

    Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261

  5. Annotation of Alternatively Spliced Proteins and Transcripts with Protein-Folding Algorithms and Isoform-Level Functional Networks.

    PubMed

    Li, Hongdong; Zhang, Yang; Guan, Yuanfang; Menon, Rajasree; Omenn, Gilbert S

    2017-01-01

    Tens of thousands of splice isoforms of proteins have been catalogued as predicted sequences from transcripts in humans and other species. Relatively few have been characterized biochemically or structurally. With the extensive development of protein bioinformatics, the characterization and modeling of isoform features, isoform functions, and isoform-level networks have advanced notably. Here we present applications of the I-TASSER family of algorithms for folding and functional predictions and the IsoFunc, MIsoMine, and Hisonet data resources for isoform-level analyses of network and pathway-based functional predictions and protein-protein interactions. Hopefully, predictions and insights from protein bioinformatics will stimulate many experimental validation studies.

  6. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    PubMed

    Shen, Xianjun; Yi, Li; Jiang, Xingpeng; He, Tingting; Yang, Jincai; Xie, Wei; Hu, Po; Hu, Xiaohua

    2017-01-01

    How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI) data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment). It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  7. Protein thermal denaturation is modulated by central residues in the protein structure network.

    PubMed

    Souza, Valquiria P; Ikegami, Cecília M; Arantes, Guilherme M; Marana, Sandro R

    2016-03-01

    Network structural analysis, known as residue interaction networks or graphs (RIN or RIG, respectively) or protein structural networks or graphs (PSN or PSG, respectively), comprises a useful tool for detecting important residues for protein function, stability, folding and allostery. In RIN, the tertiary structure is represented by a network in which residues (nodes) are connected by interactions (edges). Such structural networks have consistently presented a few central residues that are important for shortening the pathways linking any two residues in a protein structure. To experimentally demonstrate that central residues effectively participate in protein properties, mutations were directed to seven central residues of the β-glucosidase Sfβgly (β-D-glucoside glucohydrolase; EC 3.2.1.21). These mutations reduced the thermal stability of the enzyme, as evaluated by changes in transition temperature (Tm ) and the denaturation rate at 45 °C. Moreover, mutations directed to the vicinity of a central residue also caused significant decreases in the Tm of Sfβgly and clearly increased the unfolding rate constant at 45 °C. However, mutations at noncentral residues or at surrounding residues did not affect the thermal stability of Sfβgly. Therefore, the data reported in the present study suggest that the perturbation of the central residues reduced the stability of the native structure of Sfβgly. These results are in agreement with previous findings showing that networks are robust, whereas attacks on central nodes cause network failure. Finally, the present study demonstrates that central residues underlie the functional properties of proteins. © 2016 Federation of European Biochemical Societies.

  8. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  9. Genome-wide predicting disease-related protein complexes by walking on the heterogeneous network based on data integration and laplacian normalization.

    PubMed

    Liu, Zhiming; Luo, Jiawei

    2017-08-01

    Associating protein complexes to human inherited diseases is critical for better understanding of biological processes and functional mechanisms of the disease. Many protein complexes have been identified and functionally annotated by computational and purification methods so far, however, the particular roles they were playing in causing disease have not yet been well determined. In this study, we present a novel method to identify associations between protein complexes and diseases. First, we construct a disease-protein heterogeneous network based on data integration and laplacian normalization. Second, we apply a random walk with restart on heterogeneous network (RWRH) algorithm on this network to quantify the strength of the association between proteins and the query disease. Third, we sum over the scores of member proteins to obtain a summary score for each candidate protein complex, and then rank all candidate protein complexes according to their scores. With a series of leave-one-out cross-validation experiments, we found that our method not only possesses high performance but also demonstrates robustness regarding the parameters and the network structure. We test our approach with breast cancer and select top 20 highly ranked protein complexes, 17 of the selected protein complexes are evidenced to be connected with breast cancer. Our proposed method is effective in identifying disease-related protein complexes based on data integration and laplacian normalization. Copyright © 2017. Published by Elsevier Ltd.

  10. Discovering protein complexes in protein interaction networks via exploring the weak ties effect

    PubMed Central

    2012-01-01

    Background Studying protein complexes is very important in biological processes since it helps reveal the structure-functionality relationships in biological networks and much attention has been paid to accurately predict protein complexes from the increasing amount of protein-protein interaction (PPI) data. Most of the available algorithms are based on the assumption that dense subgraphs correspond to complexes, failing to take into account the inherence organization within protein complex and the roles of edges. Thus, there is a critical need to investigate the possibility of discovering protein complexes using the topological information hidden in edges. Results To provide an investigation of the roles of edges in PPI networks, we show that the edges connecting less similar vertices in topology are more significant in maintaining the global connectivity, indicating the weak ties phenomenon in PPI networks. We further demonstrate that there is a negative relation between the weak tie strength and the topological similarity. By using the bridges, a reliable virtual network is constructed, in which each maximal clique corresponds to the core of a complex. By this notion, the detection of the protein complexes is transformed into a classic all-clique problem. A novel core-attachment based method is developed, which detects the cores and attachments, respectively. A comprehensive comparison among the existing algorithms and our algorithm has been made by comparing the predicted complexes against benchmark complexes. Conclusions We proved that the weak tie effect exists in the PPI network and demonstrated that the density is insufficient to characterize the topological structure of protein complexes. Furthermore, the experimental results on the yeast PPI network show that the proposed method outperforms the state-of-the-art algorithms. The analysis of detected modules by the present algorithm suggests that most of these modules have well biological significance in context of complexes, suggesting that the roles of edges are critical in discovering protein complexes. PMID:23046740

  11. Thermostability of In Vitro Evolved Bacillus subtilis Lipase A: A Network and Dynamics Perspective

    PubMed Central

    Srivastava, Ashutosh; Sinha, Somdatta

    2014-01-01

    Proteins in thermophilic organisms remain stable and function optimally at high temperatures. Owing to their important applicability in many industrial processes, such thermostable proteins have been studied extensively, and several structural factors attributed to their enhanced stability. How these factors render the emergent property of thermostability to proteins, even in situations where no significant changes occur in their three-dimensional structures in comparison to their mesophilic counter-parts, has remained an intriguing question. In this study we treat Lipase A from Bacillus subtilis and its six thermostable mutants in a unified manner and address the problem with a combined complex network-based analysis and molecular dynamic studies to find commonality in their properties. The Protein Contact Networks (PCN) of the wild-type and six mutant Lipase A structures developed at a mesoscopic scale were analyzed at global network and local node (residue) level using network parameters and community structure analysis. The comparative PCN analysis of all proteins pointed towards important role of specific residues in the enhanced thermostability. Network analysis results were corroborated with finer-scale molecular dynamics simulations at both room and high temperatures. Our results show that this combined approach at two scales can uncover small but important changes in the local conformations that add up to stabilize the protein structure in thermostable mutants, even when overall conformation differences among them are negligible. Our analysis not only supports the experimentally determined stabilizing factors, but also unveils the important role of contacts, distributed throughout the protein, that lead to thermostability. We propose that this combined mesoscopic-network and fine-grained molecular dynamics approach is a convenient and useful scheme not only to study allosteric changes leading to protein stability in the face of negligible over-all conformational changes due to mutations, but also in other molecular networks where change in function does not accompany significant change in the network structure. PMID:25122499

  12. Neutral beamline with improved ion energy recovery

    DOEpatents

    Kim, Jinchoon

    1984-01-01

    A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.

  13. UDoNC: An Algorithm for Identifying Essential Proteins Based on Protein Domains and Protein-Protein Interaction Networks.

    PubMed

    Peng, Wei; Wang, Jianxin; Cheng, Yingjiao; Lu, Yu; Wu, Fangxiang; Pan, Yi

    2015-01-01

    Prediction of essential proteins which are crucial to an organism's survival is important for disease analysis and drug design, as well as the understanding of cellular life. The majority of prediction methods infer the possibility of proteins to be essential by using the network topology. However, these methods are limited to the completeness of available protein-protein interaction (PPI) data and depend on the network accuracy. To overcome these limitations, some computational methods have been proposed. However, seldom of them solve this problem by taking consideration of protein domains. In this work, we first analyze the correlation between the essentiality of proteins and their domain features based on data of 13 species. We find that the proteins containing more protein domain types which rarely occur in other proteins tend to be essential. Accordingly, we propose a new prediction method, named UDoNC, by combining the domain features of proteins with their topological properties in PPI network. In UDoNC, the essentiality of proteins is decided by the number and the frequency of their protein domain types, as well as the essentiality of their adjacent edges measured by edge clustering coefficient. The experimental results on S. cerevisiae data show that UDoNC outperforms other existing methods in terms of area under the curve (AUC). Additionally, UDoNC can also perform well in predicting essential proteins on data of E. coli.

  14. Influences of exit and stair conditions on human evacuation in a dormitory

    NASA Astrophysics Data System (ADS)

    Lei, Wenjun; Li, Angui; Gao, Ran; Wang, Xiaowei

    2012-12-01

    Evacuation processes of students are investigated by experiment and simulation. The experiment is performed for students evacuating from a dormitory with an exit and stairs. FDS+Evac is proposed to simulate the exit and stair dynamics of occupant evacuation. Concerning the exit and stair widths, we put forward some useful standpoints. Good agreement is achieved between the predicted results and experimental results. With the increase of exit width, a significant stratification phenomenon will be found in flow rate. Stratification phenomenon is that two different stable flow rates will emerge during the evacuation. And the flow rate curve looks like a ladder. The larger the exit width, the earlier the stratification phenomenon appears. When exit width is more than 2.0 m, the flow rate of each exit width is divided into two stable stages, and the evacuation times show almost no change. The judgment that the existence of stairs causes flow stratification is reasonable. By changing the width of the stairs, we proved that judgment. The smaller the width of BC, the earlier the stratification appears. We found that scenario 5 is the most adverse circumstance. Those results are helpful in performance-based design of buildings.

  15. Network-based function prediction and interactomics: the case for metabolic enzymes.

    PubMed

    Janga, S C; Díaz-Mejía, J Javier; Moreno-Hagelsieb, G

    2011-01-01

    As sequencing technologies increase in power, determining the functions of unknown proteins encoded by the DNA sequences so produced becomes a major challenge. Functional annotation is commonly done on the basis of amino-acid sequence similarity alone. Long after sequence similarity becomes undetectable by pair-wise comparison, profile-based identification of homologs can often succeed due to the conservation of position-specific patterns, important for a protein's three dimensional folding and function. Nevertheless, prediction of protein function from homology-driven approaches is not without problems. Homologous proteins might evolve different functions and the power of homology detection has already started to reach its maximum. Computational methods for inferring protein function, which exploit the context of a protein in cellular networks, have come to be built on top of homology-based approaches. These network-based functional inference techniques provide both a first hand hint into a proteins' functional role and offer complementary insights to traditional methods for understanding the function of uncharacterized proteins. Most recent network-based approaches aim to integrate diverse kinds of functional interactions to boost both coverage and confidence level. These techniques not only promise to solve the moonlighting aspect of proteins by annotating proteins with multiple functions, but also increase our understanding on the interplay between different functional classes in a cell. In this article we review the state of the art in network-based function prediction and describe some of the underlying difficulties and successes. Given the volume of high-throughput data that is being reported the time is ripe to employ these network-based approaches, which can be used to unravel the functions of the uncharacterized proteins accumulating in the genomic databases. © 2010 Elsevier Inc. All rights reserved.

  16. Catalytic reactor for low-Btu fuels

    DOEpatents

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  17. Neutral beamline with improved ion energy recovery

    DOEpatents

    Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.

    1984-01-01

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, Whitney; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu

    The alphavirus membrane protein E1 mediates low pH-triggered fusion of the viral and endosome membranes during virus entry. During virus biogenesis E1 associates as a heterodimer with the transmembrane protein p62. Late in the secretory pathway, cellular furin cleaves p62 to the mature E2 protein and a peripheral protein E3. E3 remains bound to E2 at low pH, stabilizing the heterodimer and thus protecting E1 from the acidic pH of the secretory pathway. Release of E3 at neutral pH then primes the virus for fusion during entry. Here we used site-directed mutagenesis and revertant analysis to define residues important formore » the interactions at the E3–E2 interface. Our data identified a key residue, E2 W235, which was required for E1 pH protection and alphavirus production. Our data also suggest additional residues on E3 and E2 that affect their interacting surfaces and thus influence the pH protection of E1 during alphavirus exit.« less

  19. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions

    DOE PAGES

    Jiang, Jiansen; Chan, Henry; Cash, Darian D.; ...

    2015-10-15

    Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less

  20. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jiansen; Chan, Henry; Cash, Darian D.

    Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less

  1. Structural basis of efficient contagion: measles variations on a theme by parainfluenza viruses.

    PubMed

    Mateo, Mathieu; Navaratnarajah, Chanakha K; Cattaneo, Roberto

    2014-04-01

    A quartet of attachment proteins and a trio of fusion protein subunits play the cell entry concert of parainfluenza viruses. While many of these viruses bind sialic acid to enter cells, wild type measles binds exclusively two tissue-specific proteins, the lymphatic receptor signaling lymphocytic activation molecule (SLAM), and the epithelial receptor nectin-4. SLAM binds near the stalk-head junction of the hemagglutinin. Nectin-4 binds a hydrophobic groove located between blades 4 and 5 of the hemagglutinin β-propeller head. The mutated vaccine strain hemagglutinin binds in addition the ubiquitous protein CD46, which explains attenuation. The measles virus entry concert has four movements. Andante misterioso: the virus takes over the immune system. Allegro con brio: it rapidly spreads in the upper airway's epithelia. 'Targeting' fugue: the versatile orchestra takes off. Presto furioso: the virus exits the host with thunder. Be careful: music is contagious. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Computational architecture of the yeast regulatory network

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei; Sneppen, Kim

    2005-12-01

    The topology of regulatory networks contains clues to their overall design principles and evolutionary history. We find that while in- and out-degrees of a given protein in the regulatory network are not correlated with each other, there exists a strong negative correlation between the out-degree of a regulatory protein and in-degrees of its targets. Such correlation positions large regulatory modules on the periphery of the network and makes them rather well separated from each other. We also address the question of relative importance of different classes of proteins quantified by the lethality of null-mutants lacking one of them as well as by the level of their evolutionary conservation. It was found that in the yeast regulatory network highly connected proteins are in fact less important than their low-connected counterparts.

  3. The use of multi-channel ground penetrating radar and stream monitoring to investigate the seasonal evolution of englacial and subglacial drainage systems at the terminus of Exit Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Kilgore, Susan Marlena

    Concerns regarding the issue of climate change and, in particular, the rapid retreat of glaciers around the world, have placed great importance on glacial monitoring. Some of the methods most commonly used to observe glacial change---direct mass balance measurements and remote sensing---provide valuable information about glacier change. However, these methods do not address the englacial and subglacial environments. Surface meltwater that enters englacial and subglacial hydrological networks can contribute to acceleration of ice flow, increased calving on marine-terminating glaciers, surges or outburst floods, and greater overall ablation rates. Because subsurface drainage systems often freeze during the winter and re-form each summer, examining the seasonal evolution of these networks is crucial for assessing the impact that internal drainage may have on the behavior of a glacier each year. The goal of this study is to determine the role englacial and subglacial drainage system evolution plays in influencing summer ablation and discharge at the terminus of Exit Glacier, a small valley glacier located in South-central Alaska. During the summers of 2010 and 2011, we used ground-penetrating radar (GPR) to locate internal drainage features on the lower 100 meters of the glacier. GPR surveys were conducted in June and August of each year in an effort to observe the evolution of the drainage systems over the course of an ablation season. Three antenna frequencies---250, 500, and 800 MHz---were used on a dual frequency GPR so that various resolutions and depths in the ice could be viewed simultaneously. Stream monitoring was conducted to document discharge in the proglacial stream throughout the 2011 season. These data were compared with weather records to differentiate noticeable meltwater releases from precipitation events. Additionally, morphological changes in the glacier were observed through photographic documentation. Throughout the observation period, significant subglacial tunnels appeared, followed by the collapse of terminal ice above the tunnels. This phenomenon was most noticeable in 2011. These observations indicate that the internal drainage systems near the terminus of Exit Glacier became very well-developed each summer, and contributed approximately 75 meters of ice loss between June, 2010 and August, 2011.

  4. Evolution versus "intelligent design": comparing the topology of protein-protein interaction networks to the Internet.

    PubMed

    Yang, Q; Siganos, G; Faloutsos, M; Lonardi, S

    2006-01-01

    Recent research efforts have made available genome-wide, high-throughput protein-protein interaction (PPI) maps for several model organisms. This has enabled the systematic analysis of PPI networks, which has become one of the primary challenges for the system biology community. In this study, we attempt to understand better the topological structure of PPI networks by comparing them against man-made communication networks, and more specifically, the Internet. Our comparative study is based on a comprehensive set of graph metrics. Our results exhibit an interesting dichotomy. On the one hand, both networks share several macroscopic properties such as scale-free and small-world properties. On the other hand, the two networks exhibit significant topological differences, such as the cliqueishness of the highest degree nodes. We attribute these differences to the distinct design principles and constraints that both networks are assumed to satisfy. We speculate that the evolutionary constraints that favor the survivability and diversification are behind the building process of PPI networks, whereas the leading force in shaping the Internet topology is a decentralized optimization process geared towards efficient node communication.

  5. Distinctive Behaviors of Druggable Proteins in Cellular Networks

    PubMed Central

    Workman, Paul; Al-Lazikani, Bissan

    2015-01-01

    The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/. PMID:26699810

  6. L-GRAAL: Lagrangian graphlet-based network aligner.

    PubMed

    Malod-Dognin, Noël; Pržulj, Nataša

    2015-07-01

    Discovering and understanding patterns in networks of protein-protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, but because of NP-completeness of underlying sub-graph isomorphism problem, producing topologically and biologically accurate alignments remains a challenge. We introduce a novel global network alignment tool, Lagrangian GRAphlet-based ALigner (L-GRAAL), which directly optimizes both the protein and the interaction functional conservations, using a novel alignment search heuristic based on integer programming and Lagrangian relaxation. We compare L-GRAAL with the state-of-the-art network aligners on the largest available PPI networks from BioGRID and observe that L-GRAAL uncovers the largest common sub-graphs between the networks, as measured by edge-correctness and symmetric sub-structures scores, which allow transferring more functional information across networks. We assess the biological quality of the protein mappings using the semantic similarity of their Gene Ontology annotations and observe that L-GRAAL best uncovers functionally conserved proteins. Furthermore, we introduce for the first time a measure of the semantic similarity of the mapped interactions and show that L-GRAAL also uncovers best functionally conserved interactions. In addition, we illustrate on the PPI networks of baker's yeast and human the ability of L-GRAAL to predict new PPIs. Finally, L-GRAAL's results are the first to show that topological information is more important than sequence information for uncovering functionally conserved interactions. L-GRAAL is coded in C++. Software is available at: http://bio-nets.doc.ic.ac.uk/L-GRAAL/. n.malod-dognin@imperial.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  7. Association Between Health Plan Exit From Medicaid Managed Care and Quality of Care, 2006-2014

    PubMed Central

    Schpero, William L.; Schlesinger, Mark J.; Trivedi, Amal N.

    2017-01-01

    Importance State Medicaid programs have increasingly contracted with insurers to provide medical care services for enrollees (Medicaid managed care plans). Insurers that provide these plans can exit Medicaid programs each year, with unclear effects on quality of care and health care experiences. Objective To determine the frequency and interstate variation of health plan exit from Medicaid managed care and evaluate the relationship between health plan exit and market-level quality. Design, Setting, and Participants Retrospective cohort of all comprehensive Medicaid managed care plans (N = 390) during the interval 2006-2014. Exposures Plan exit, defined as the withdrawal of a managed care plan from a state’s Medicaid program. Main Outcomes and Measures Eight measures from the Healthcare Effectiveness Data and Information Set were used to construct 3 composite indicators of quality (preventive care, chronic disease care management, and maternity care). Four measures from the Consumer Assessment of Healthcare Providers and Systems were combined into a composite indicator of patient experience, reflecting the proportion of beneficiaries rating experiences as 8 or above on a 0-to-10–point scale. Outcome data were available for 248 plans (68% of plans operating prior to 2014, representing 78% of beneficiaries). Results Of the 366 comprehensive Medicaid managed care plans operating prior to 2014, 106 exited Medicaid. These exiting plans enrolled 4 848 310 Medicaid beneficiaries, with a mean of 606 039 beneficiaries affected by plan exits annually. Six states had a mean of greater than 10% of Medicaid managed care recipients enrolled in plans that exited, whereas 10 states experienced no plan exits. Plans that exited from a state’s Medicaid market performed significantly worse prior to exiting than those that remained in terms of preventive care (57.5% vs 60.4%; difference, 2.9% [95% CI, 0.3% to 5.5%]), maternity care (69.7% vs 73.6%; difference, 3.8% [95% CI, 1.7% to 6.0%]), and patient experience (73.5% vs 74.8%; difference, 1.3% [95% CI, 0.6% to 1.9%]). There was no significant difference between exiting and nonexiting plans for the quality of chronic disease care management (76.2% vs 77.1%; difference, 1.0% [95% CI, −2.1% to 4.0%]). There was also no significant change in overall market performance before and after the exit of a plan: 0.7–percentage point improvement in preventive care quality (95% CI, −4.9 to 6.3); 0.2–percentage point improvement in chronic disease care management quality (95% CI, −5.8 to 6.2); 0.7–percentage point decrease in maternity care quality (95% CI, −6.4 to 5.0]); and a 0.6–percentage point improvement in patient experience ratings (95% CI, −3.9 to 5.1). Medicaid beneficiaries enrolled in exiting plans had access to coverage for a higher-quality plan, with 78% of plans in the same county having higher quality for preventive care, 71.1% for chronic disease management, 65.5% for maternity care, and 80.8% for patient experience. Conclusions and Relevance Between 2006 and 2014, health plan exit from the US Medicaid program was frequent. Plans that exited generally had lower quality ratings than those that remained, and the exits were not associated with significant overall changes in quality or patient experience in the plans in the Medicaid market. PMID:28655014

  8. Association Between Health Plan Exit From Medicaid Managed Care and Quality of Care, 2006-2014.

    PubMed

    Ndumele, Chima D; Schpero, William L; Schlesinger, Mark J; Trivedi, Amal N

    2017-06-27

    State Medicaid programs have increasingly contracted with insurers to provide medical care services for enrollees (Medicaid managed care plans). Insurers that provide these plans can exit Medicaid programs each year, with unclear effects on quality of care and health care experiences. To determine the frequency and interstate variation of health plan exit from Medicaid managed care and evaluate the relationship between health plan exit and market-level quality. Retrospective cohort of all comprehensive Medicaid managed care plans (N = 390) during the interval 2006-2014. Plan exit, defined as the withdrawal of a managed care plan from a state's Medicaid program. Eight measures from the Healthcare Effectiveness Data and Information Set were used to construct 3 composite indicators of quality (preventive care, chronic disease care management, and maternity care). Four measures from the Consumer Assessment of Healthcare Providers and Systems were combined into a composite indicator of patient experience, reflecting the proportion of beneficiaries rating experiences as 8 or above on a 0-to-10-point scale. Outcome data were available for 248 plans (68% of plans operating prior to 2014, representing 78% of beneficiaries). Of the 366 comprehensive Medicaid managed care plans operating prior to 2014, 106 exited Medicaid. These exiting plans enrolled 4 848 310 Medicaid beneficiaries, with a mean of 606 039 beneficiaries affected by plan exits annually. Six states had a mean of greater than 10% of Medicaid managed care recipients enrolled in plans that exited, whereas 10 states experienced no plan exits. Plans that exited from a state's Medicaid market performed significantly worse prior to exiting than those that remained in terms of preventive care (57.5% vs 60.4%; difference, 2.9% [95% CI, 0.3% to 5.5%]), maternity care (69.7% vs 73.6%; difference, 3.8% [95% CI, 1.7% to 6.0%]), and patient experience (73.5% vs 74.8%; difference, 1.3% [95% CI, 0.6% to 1.9%]). There was no significant difference between exiting and nonexiting plans for the quality of chronic disease care management (76.2% vs 77.1%; difference, 1.0% [95% CI, -2.1% to 4.0%]). There was also no significant change in overall market performance before and after the exit of a plan: 0.7-percentage point improvement in preventive care quality (95% CI, -4.9 to 6.3); 0.2-percentage point improvement in chronic disease care management quality (95% CI, -5.8 to 6.2); 0.7-percentage point decrease in maternity care quality (95% CI, -6.4 to 5.0]); and a 0.6-percentage point improvement in patient experience ratings (95% CI, -3.9 to 5.1). Medicaid beneficiaries enrolled in exiting plans had access to coverage for a higher-quality plan, with 78% of plans in the same county having higher quality for preventive care, 71.1% for chronic disease management, 65.5% for maternity care, and 80.8% for patient experience. Between 2006 and 2014, health plan exit from the US Medicaid program was frequent. Plans that exited generally had lower quality ratings than those that remained, and the exits were not associated with significant overall changes in quality or patient experience in the plans in the Medicaid market.

  9. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae

    PubMed Central

    Reguly, Teresa; Breitkreutz, Ashton; Boucher, Lorrie; Breitkreutz, Bobby-Joe; Hon, Gary C; Myers, Chad L; Parsons, Ainslie; Friesen, Helena; Oughtred, Rose; Tong, Amy; Stark, Chris; Ho, Yuen; Botstein, David; Andrews, Brenda; Boone, Charles; Troyanskya, Olga G; Ideker, Trey; Dolinski, Kara; Batada, Nizar N; Tyers, Mike

    2006-01-01

    Background The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP) methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference. Results We describe here a comprehensive database of genetic and protein interactions, and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as manually curated from over 31,793 abstracts and online publications. This literature-curated (LC) dataset contains 33,311 interactions, on the order of all extant HTP datasets combined. Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of the interactions in the literature. The LC network nevertheless shares attributes with HTP networks, including scale-free connectivity and correlations between interactions, abundance, localization, and expression. We find that essential genes or proteins are enriched for interactions with other essential genes or proteins, suggesting that the global network may be functionally unified. This interconnectivity is supported by a substantial overlap of protein and genetic interactions in the LC dataset. We show that the LC dataset considerably improves the predictive power of network-analysis approaches. The full LC dataset is available at the BioGRID () and SGD () databases. Conclusion Comprehensive datasets of biological interactions derived from the primary literature provide critical benchmarks for HTP methods, augment functional prediction, and reveal system-level attributes of biological networks. PMID:16762047

  10. Users’ participation and social influence during information spreading on Twitter

    PubMed Central

    Zhang, Xin; Han, Ding-Ding; Yang, Ruiqi; Zhang, Ziqiao

    2017-01-01

    Online Social Networks generate a prodigious wealth of real-time information at an incessant rate. In this paper we study the empirical data that crawled from Twitter to describe the topology and information spreading dynamics of Online Social Networks. We propose a measurement with three measures to state the efforts of users on Twitter to get their information spreading, based on the unique mechanisms for information retransmission on Twitter. It is noticed that small fraction of users with special performance on participation can gain great influence, while most other users play a role as middleware during the information propagation. Thus a community analysis is performed and four categories of users are found with different kinds of participation that cause the information dissemination dynamics. These suggest that exiting topological measures alone may reflect little about the influence of individuals and provide new insights for information spreading. PMID:28902906

  11. Reversible Age-Related Phenotypes Induced during Larval Quiescence in C. elegans

    PubMed Central

    Roux, Antoine E.; Langhans, Kelley; Huynh, Walter; Kenyon, Cynthia

    2017-01-01

    Summary Cells can enter quiescent states in which cell cycling and growth are suspended. We find that during a long developmental arrest (quiescence) induced by starvation, newly-hatched C. elegans acquire features associated with impaired proteostasis and aging: mitochondrial fission, ROS production, protein aggregation, decreased proteotoxic-stress resistance, and at the organismal level, decline of mobility and high mortality. All signs of aging but one, the presence of protein aggregates, were reversed upon return to development induced by feeding. The endoplasmic reticulum receptor IRE-1 is completely required for recovery, and the downstream transcription factor XBP-1, as well as a protein kinase, KGB-1, are partially required. Interestingly, kgb-1(−) mutants that do recover fail to reverse aging-like mitochondrial phenotypes and have a short adult lifespan. Our study describes the first pathway that reverses phenotypes of aging at the exit of prolonged quiescence. PMID:27304510

  12. Prion-Associated Toxicity is Rescued by Elimination of Cotranslational Chaperones

    PubMed Central

    Keefer, Kathryn M.; True, Heather L.

    2016-01-01

    The nascent polypeptide-associated complex (NAC) is a highly conserved but poorly characterized triad of proteins that bind near the ribosome exit tunnel. The NAC is the first cotranslational factor to bind to polypeptides and assist with their proper folding. Surprisingly, we found that deletion of NAC subunits in Saccharomyces cerevisiae rescues toxicity associated with the strong [PSI+] prion. This counterintuitive finding can be explained by changes in chaperone balance and distribution whereby the folding of the prion protein is improved and the prion is rendered nontoxic. In particular, the ribosome-associated Hsp70 Ssb is redistributed away from Sup35 prion aggregates to the nascent chains, leading to an array of aggregation phenotypes that can mimic both overexpression and deletion of Ssb. This toxicity rescue demonstrates that chaperone modification can block key steps of the prion life cycle and has exciting implications for potential treatment of many human protein conformational disorders. PMID:27828954

  13. Elastic Network Models For Biomolecular Dynamics: Theory and Application to Membrane Proteins and Viruses

    NASA Astrophysics Data System (ADS)

    Lezon, Timothy R.; Shrivastava, Indira H.; Yang, Zheng; Bahar, Ivet

    The following sections are included: * Introduction * Theory and Assumptions * Statistical mechanical foundations * Anisotropic network models * Gaussian network model * Rigid block models * Treatment of perturbations * Langevin dynamics * Applications * Membrane proteins * Viruses * Conclusion * References

  14. Reconstruction of the experimentally supported human protein interactome: what can we learn?

    PubMed

    Klapa, Maria I; Tsafou, Kalliopi; Theodoridis, Evangelos; Tsakalidis, Athanasios; Moschonas, Nicholas K

    2013-10-02

    Understanding the topology and dynamics of the human protein-protein interaction (PPI) network will significantly contribute to biomedical research, therefore its systematic reconstruction is required. Several meta-databases integrate source PPI datasets, but the protein node sets of their networks vary depending on the PPI data combined. Due to this inherent heterogeneity, the way in which the human PPI network expands via multiple dataset integration has not been comprehensively analyzed. We aim at assembling the human interactome in a global structured way and exploring it to gain insights of biological relevance. First, we defined the UniProtKB manually reviewed human "complete" proteome as the reference protein-node set and then we mined five major source PPI datasets for direct PPIs exclusively between the reference proteins. We updated the protein and publication identifiers and normalized all PPIs to the UniProt identifier level. The reconstructed interactome covers approximately 60% of the human proteome and has a scale-free structure. No apparent differentiating gene functional classification characteristics were identified for the unrepresented proteins. The source dataset integration augments the network mainly in PPIs. Polyubiquitin emerged as the highest-degree node, but the inclusion of most of its identified PPIs may be reconsidered. The high number (>300) of connections of the subsequent fifteen proteins correlates well with their essential biological role. According to the power-law network structure, the unrepresented proteins should mainly have up to four connections with equally poorly-connected interactors. Reconstructing the human interactome based on the a priori definition of the protein nodes enabled us to identify the currently included part of the human "complete" proteome, and discuss the role of the proteins within the network topology with respect to their function. As the network expansion has to comply with the scale-free theory, we suggest that the core of the human interactome has essentially emerged. Thus, it could be employed in systems biology and biomedical research, despite the considerable number of currently unrepresented proteins. The latter are probably involved in specialized physiological conditions, justifying the scarcity of related PPI information, and their identification can assist in designing relevant functional experiments and targeted text mining algorithms.

  15. Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier

    NASA Astrophysics Data System (ADS)

    Wang, Leilei; Cheng, Jinyong

    2018-03-01

    Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.

  16. 36 CFR 13.1326 - Snowmachines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...

  17. 36 CFR 13.1326 - Snowmachines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...

  18. 36 CFR 13.1326 - Snowmachines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...

  19. 36 CFR 13.1326 - Snowmachines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...

  20. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation

    PubMed Central

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/β-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand—receptor interactions is complicated. Here, we identified the G-protein/β-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the β2-adrenergic receptor (β2AR) with a diverse collection of ligands and correlation analysis of their G protein/β-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the β-arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/β-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  1. Evaluation of Two Methods of Prompting Drivers to Use Specific Exits on Conflicts between Vehicles at the Critical Exit

    ERIC Educational Resources Information Center

    Van Houten, Ron; Malenfant, J. E. Louis; Zhao, Nan; Ko, Byungkon; Van Houten, Jonathan

    2005-01-01

    The Florida Department of Transportation used a series of changeable-message signs that functioned as freeway guide signs to divert traffic to Universal Theme Park via one of two eastbound exits based on traffic congestion at the first of the two exits. An examination of crashes along the entire route indicated a statistically significant increase…

  2. To Leave or Not to Leave? A Regression Discontinuity Analysis of the Impact of Failing High School Exit Exam. CEE DP 107

    ERIC Educational Resources Information Center

    Ou, Dongshu

    2009-01-01

    This paper presents new empirical evidence on whether failing the high school exit exam increases the chance of exiting from high school "prior to high school completion". More importantly, the author discusses the potentially different impacts of failing the High School Exit Exams (HSEE) on students with limited English proficiency,…

  3. Solar concentrator with restricted exit angles

    DOEpatents

    Rabl, Arnulf; Winston, Roland

    1978-12-19

    A device is provided for the collection and concentration of radiant energy and includes at least one reflective side wall. The wall directs incident radiant energy to the exit aperture thereof or onto the surface of energy absorber positioned at the exit aperture so that the angle of incidence of radiant energy at the exit aperture or on the surface of the energy absorber is restricted to desired values.

  4. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  5. Polarization analysis of VLF/ELF waves observed at subauroral latitudes during the VLF-CHAIN campaign

    NASA Astrophysics Data System (ADS)

    Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin

    2015-02-01

    Chorus wave emissions are one of the most intense naturally occurring phenomena in the very low (VLF) and extremely low frequency (ELF) ranges. They are believed to be one of the major contributors to acceleration and loss of electrons in the radiation belts. During the VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) from 17 to 25 February 2012, several types of VLF/ELF emissions, including chorus, were observed at subauroral latitudes in Athabasca, Canada. To our knowledge, there has not been any comprehensive study of the physical properties of such emissions at these latitudes. In this study, we calculate spectral and polarization parameters of VLF/ELF waves with high temporal resolution. We found that the polarization angle of several emissions depended on both frequency and time. We suggest that the frequency-dependent events, which usually last several tens of minutes, might be the consequence of the broadening of the ray path that the waves follow from their generation region to the ground. Furthermore, time-dependent events, also lasting tens of minutes, have a polarization angle that changes from negative to positive values (or vice versa) every few minutes. We suggest that this could be due to variations of the wave duct, either near the generation region or along the wave propagation path. Using another ground station in Fort Vermillion, Canada, about 450 km northwest of Athabasca, we tracked the movements of the ionospheric exit point of three chorus emissions observed simultaneously at both stations. Although we found that movement of the ionospheric exit point does not follow a general direction, it is subject to hovering motion, suggesting that the exit point can be affected by small-scale plasma processes.

  6. A Network Approach to Rare Disease Modeling

    NASA Astrophysics Data System (ADS)

    Ghiassian, Susan; Rabello, Sabrina; Sharma, Amitabh; Wiest, Olaf; Barabasi, Albert-Laszlo

    2011-03-01

    Network approaches have been widely used to better understand different areas of natural and social sciences. Network Science had a particularly great impact on the study of biological systems. In this project, using biological networks, candidate drugs as a potential treatment of rare diseases were identified. Developing new drugs for more than 2000 rare diseases (as defined by ORPHANET) is too expensive and beyond expectation. Disease proteins do not function in isolation but in cooperation with other interacting proteins. Research on FDA approved drugs have shown that most of the drugs do not target the disease protein but a protein which is 2 or 3 steps away from the disease protein in the Protein-Protein Interaction (PPI) network. We identified the already known drug targets in the disease gene's PPI subnetwork (up to the 3rd neighborhood) and among them those in the same sub cellular compartment and higher coexpression coefficient with the disease gene are expected to be stronger candidates. Out of 2177 rare diseases, 1092 were found not to have any drug target. Using the above method, we have found the strongest candidates among the rest in order to further experimental validations.

  7. RRW: repeated random walks on genome-scale protein networks for local cluster discovery

    PubMed Central

    Macropol, Kathy; Can, Tolga; Singh, Ambuj K

    2009-01-01

    Background We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW) for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins. Results We apply the proposed technique on a functional network of yeast genes and accurately identify statistically significant clusters of proteins. We validate the biological significance of the results using known complexes in the MIPS complex catalogue database and well-characterized biological processes. We find that 90% of the created clusters have the majority of their catalogued proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins involved in the same biological process. We compare our method to various other clustering techniques, such as the Markov Clustering Algorithm (MCL), and find a significant improvement in the RRW clusters' precision and accuracy values. Conclusion RRW, which is a technique that exploits the topology of the network, is more precise and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-functional proteins by allowing overlapping clusters. PMID:19740439

  8. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.

    PubMed

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-11-05

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.

  9. Prediction of protein tertiary structure from sequences using a very large back-propagation neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.; Wilcox, G.L.

    1993-12-31

    We have implemented large scale back-propagation neural networks on a 544 node Connection Machine, CM-5, using the C language in MIMD mode. The program running on 512 processors performs backpropagation learning at 0.53 Gflops, which provides 76 million connection updates per second. We have applied the network to the prediction of protein tertiary structure from sequence information alone. A neural network with one hidden layer and 40 million connections is trained to learn the relationship between sequence and tertiary structure. The trained network yields predicted structures of some proteins on which it has not been trained given only their sequences.more » Presentation of the Fourier transform of the sequences accentuates periodicity in the sequence and yields good generalization with greatly increased training efficiency. Training simulations with a large, heterologous set of protein structures (111 proteins from CM-5 time) to solutions with under 2% RMS residual error within the training set (random responses give an RMS error of about 20%). Presentation of 15 sequences of related proteins in a testing set of 24 proteins yields predicted structures with less than 8% RMS residual error, indicating good apparent generalization.« less

  10. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks.

    PubMed

    Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter

    2014-05-01

    During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.

  11. The effects of exit from work on health across different socioeconomic groups: A systematic literature review.

    PubMed

    Schaap, Rosanne; de Wind, Astrid; Coenen, Pieter; Proper, Karin; Boot, Cécile

    2018-02-01

    Exit from work leads to different effects on health, partially depending on the socioeconomic status (SES) of people in the work exit. Several studies on the effects of exit from work on health across socioeconomic groups have been performed, but results are conflicting. The aim of this review is to systematically review the available evidence regarding the effects of exit from work on health in high and low socioeconomic groups. A systematic literature search was conducted using Pubmed, Embase, Web of Science, CINAHL and PsycINFO. Search terms related to exit from work, health, SES and design (prospective or retrospective). Articles were included if they focused on: exit from work (early/statutory retirement, unemployment or disability pension); health (general, physical or mental health and/or health behaviour); SES (educational, occupational and/or income level); and inclusion of stratified or interaction analyses to determine differences across socioeconomic groups. This search strategy resulted in 22 studies. For general, physical or mental health and health behaviour, 13 studies found more positive effects of exit from work on health among employees with a higher SES compared to employees with a lower SES. These effects were mainly found after early/statutory retirement. In conclusion, the effects of exit from work, or more specific the effects of early/statutory retirement on health are different across socioeconomic groups. However, the findings of this review should be interpreted with caution as the studies used heterogeneous health outcomes and on each health outcome a limited number of studies was included. Yet, the positive effects of exit from work on health are mainly present in higher socioeconomic groups. Therefore, public health policies should focus on improving health of employees with a lower SES, in particular after exit from work to decrease health inequalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Suicide, Canadian law, and Exit International's "peaceful pill".

    PubMed

    Ogden, Russel D

    2010-11-01

    Australia's Exit International ("Exit") is probably the most visible and controversial right-to-die organization in the world. Founded by Dr. Philip Nitschke, Exit is known for do-it-yourself ("DIY") suicide workshops and a book banned in Australia: The Peaceful Pill Handbook. In 2009, Exit held its first workshop in Canada. Due to legal concerns, the Vancouver Public Library reneged on a commitment to give Exit a venue, so the workshop proceeded in the sanctuary of a church hall. This article summarizes the history of suicide law in Canada and gives an overview of the emerging DIY movement. A case report describes how a Canadian woman studied Exit's literature and learned how to import veterinary pentobarbital. In accordance with Exit's information, she ended her life. Ethical and legal implications for researching DIY suicide are discussed and it is argued that prohibition contributes to an undesirable situation of uncontrolled and unregulated suicide. Whether they are prohibited, permitted, or tolerated, suicide and assisted suicide are controversial. Their legal treatment in Canada is conflicting because suicide is not a crime but it is a serious offense to assist, encourage, or counsel someone to suicide. Individuals can lawfully take their lives, but they must act independently. This legal situation has given rise to a do-it-yourself ("DIY") right-to-die movement dedicated to technologies and information to enhance the possibilities for planned and humane suicide, while limiting the legal exposure of sympathetic third parties (Martin, 2010; Ogden 2001). My aim is to summarize the legal history of suicide in Canada and discuss the emerging social movement for DIY suicide and assistance in suicide. Exit International ("Exit"), based in Australia, is a leading organization in this movement. I present a case report that describes how a Canadian woman ended her life using DIY techniques learned from Exit. Some ethical and legal implications for researching DIY suicide are discussed. I argue that the DIY movement is an undesirable consequence of prohibition.

  13. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    PubMed

    Garamszegi, Sara; Franzosa, Eric A; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology.

  14. Robustness of the p53 network and biological hackers.

    PubMed

    Dartnell, Lewis; Simeonidis, Evangelos; Hubank, Michael; Tsoka, Sophia; Bogle, I David L; Papageorgiou, Lazaros G

    2005-06-06

    The p53 protein interaction network is crucial in regulating the metazoan cell cycle and apoptosis. Here, the robustness of the p53 network is studied by analyzing its degeneration under two modes of attack. Linear Programming is used to calculate average path lengths among proteins and the network diameter as measures of functionality. The p53 network is found to be robust to random loss of nodes, but vulnerable to a targeted attack against its hubs, as a result of its architecture. The significance of the results is considered with respect to mutational knockouts of proteins and the directed attacks mounted by tumour inducing viruses.

  15. Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.

    PubMed

    Yao, Qiuming; Xu, Dong

    2017-01-01

    Protein phosphorylation is one of the most pervasive protein post-translational modification events in plant cells. It is involved in many plant biological processes, such as plant growth, organ development, and plant immunology, by regulating or switching signaling and metabolic pathways. High-throughput experimental methods like mass spectrometry can easily characterize hundreds to thousands of phosphorylation events in a single experiment. With the increasing volume of the data sets, Plant Protein Phosphorylation DataBase (P3DB, http://p3db.org ) provides a comprehensive, systematic, and interactive online platform to deposit, query, analyze, and visualize these phosphorylation events in many plant species. It stores the protein phosphorylation sites in the context of identified mass spectra, phosphopeptides, and phosphoproteins contributed from various plant proteome studies. In addition, P3DB associates these plant phosphorylation sites to protein physicochemical information in the protein charts and tertiary structures, while various protein annotations from hierarchical kinase phosphatase families, protein domains, and gene ontology are also added into the database. P3DB not only provides rich information, but also interconnects and provides visualization of the data in networks, in systems biology context. Currently, P3DB includes the KiC (Kinase Client) assay network, the protein-protein interaction network, the kinase-substrate network, the phosphatase-substrate network, and the protein domain co-occurrence network. All of these are available to query for and visualize existing phosphorylation events. Although P3DB only hosts experimentally identified phosphorylation data, it provides a plant phosphorylation prediction model for any unknown queries on the fly. P3DB is an entry point to the plant phosphorylation community to deposit and visualize any customized data sets within this systems biology framework. Nowadays, P3DB has become one of the major bioinformatics platforms of protein phosphorylation in plant biology.

  16. Folding energy landscape and network dynamics of small globular proteins

    PubMed Central

    Hori, Naoto; Chikenji, George; Berry, R. Stephen; Takada, Shoji

    2009-01-01

    The folding energy landscape of proteins has been suggested to be funnel-like with some degree of ruggedness on the slope. How complex the landscape, however, is still rather unclear. Many experiments for globular proteins suggested relative simplicity, whereas molecular simulations of shorter peptides implied more complexity. Here, by using complete conformational sampling of 2 globular proteins, protein G and src SH3 domain and 2 related random peptides, we investigated their energy landscapes, topological properties of folding networks, and folding dynamics. The projected energy surfaces of globular proteins were funneled in the vicinity of the native but also have other quite deep, accessible minima, whereas the randomized peptides have many local basins, including some leading to seriously misfolded forms. Dynamics in the denatured part of the network exhibited basin-hopping itinerancy among many conformations, whereas the protein reached relatively well-defined final stages that led to their native states. We also found that the folding network has the hierarchic nature characterized by the scale-free and the small-world properties. PMID:19114654

  17. Folding energy landscape and network dynamics of small globular proteins.

    PubMed

    Hori, Naoto; Chikenji, George; Berry, R Stephen; Takada, Shoji

    2009-01-06

    The folding energy landscape of proteins has been suggested to be funnel-like with some degree of ruggedness on the slope. How complex the landscape, however, is still rather unclear. Many experiments for globular proteins suggested relative simplicity, whereas molecular simulations of shorter peptides implied more complexity. Here, by using complete conformational sampling of 2 globular proteins, protein G and src SH3 domain and 2 related random peptides, we investigated their energy landscapes, topological properties of folding networks, and folding dynamics. The projected energy surfaces of globular proteins were funneled in the vicinity of the native but also have other quite deep, accessible minima, whereas the randomized peptides have many local basins, including some leading to seriously misfolded forms. Dynamics in the denatured part of the network exhibited basin-hopping itinerancy among many conformations, whereas the protein reached relatively well-defined final stages that led to their native states. We also found that the folding network has the hierarchic nature characterized by the scale-free and the small-world properties.

  18. Microdomains of endoplasmic reticulum within the sarcoplasmic reticulum of skeletal myofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaakinen, Mika; Papponen, Hinni; Metsikkoe, Kalervo

    2008-01-15

    The relationship between the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of skeletal muscle cells has remained obscure. In this study, we found that ER- and SR-specific membrane proteins exhibited diverse solubility properties when extracted with mild detergents. Accordingly, the major SR-specific protein Ca{sup 2+}-ATPase (SERCA) remained insoluble in Brij 58 and floated in sucrose gradients while typical ER proteins were partially or fully soluble. Sphingomyelinase treatment rendered SERCA soluble in Brij 58. Immunofluorescence staining for resident ER proteins revealed dispersed dots over I bands contrasting the continuous staining pattern of SERCA. Infection of isolated myofibers with enveloped virusesmore » indicated that interfibrillar protein synthesis occurred. Furthermore, we found that GFP-tagged Dad1, able to incorporate into the oligosaccharyltransferase complex, showed the dot-like structures but the fusion protein was also present in membranes over the Z lines. This behaviour mimics that of cargo proteins that accumulated over the Z lines when blocked in the ER. Taken together, the results suggest that resident ER proteins comprised Brij 58-soluble microdomains within the insoluble SR membrane. After synthesis and folding in the ER-microdomains, cargo proteins and non-incorporated GFP-Dad1 diffused into the Z line-flanking compartment which likely represents the ER exit sites.« less

  19. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1.

    PubMed Central

    Bischoff, F R; Krebber, H; Smirnova, E; Dong, W; Ponstingl, H

    1995-01-01

    RCC1 (the regulator of chromosome condensation) stimulates guanine nucleotide dissociation on the Ras-related nuclear protein Ran. Both polypeptides are components of a regulatory pathway that has been implicated in regulating DNA replication, onset of and exit from mitosis, mRNA processing and transport, and import of proteins into the nucleus. In a search for further members of the RCC1-Ran signal pathway, we have identified proteins of 23, 45 and 300 kDa which tightly bind to Ran-GTP but not Ran-GDP. The purified soluble 23 kDa Ran binding protein RanBP1 does not activate RanGTPase, but increases GTP hydrolysis induced by the RanGTPase-activating protein RanGAP1 by an order of magnitude. In the absence of RanGAP, it strongly inhibits RCC1-induced exchange of Ran-bound GTP. In addition, it forms a stable complex with nucleotide-free RCC1-Ran. With these properties, it differs markedly from guanine diphosphate dissociation inhibitors which preferentially prevent the exchange of protein-bound GDP and in some cases were shown to inhibit GAP-induced GTP hydrolysis. RanBP1 is the first member of a new class of proteins regulating the binding and hydrolysis of GTP by Ras-related proteins. Images PMID:7882974

  20. DNMT1 maintains progenitor function in self-renewing somatic tissue.

    PubMed

    Sen, George L; Reuter, Jason A; Webster, Daniel E; Zhu, Lilly; Khavari, Paul A

    2010-01-28

    Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.

Top