Science.gov

Sample records for exocyclic rings part

  1. Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings. 15. Effects of the pyridyl substituents and fused exocyclic rings on the UV-visible spectroscopic properties of Mg(II)-porphyrazines: a combined experimental and DFT/TDDFT study.

    PubMed

    Donzello, Maria Pia; De Mori, Giorgia; Viola, Elisa; Ercolani, Claudio; Ricciardi, Giampaolo; Rosa, Angela

    2014-08-04

    Two new Mg(II) porphyrazine macrocycles, the octakis(2-pyridyl)porphyrazinato-magnesium(II), [Py8PzMg(H2O)], and the tetrakis-[6,7-di(2-pyridyl)quinoxalino]porphyrazinato-magnesium(II), [Py8QxPzMg(H2O)], were prepared by Mg-template macrocyclization processes, and their general physicochemical properties were examined. The previously reported porphyrazine analog, the tetrakis-2,3-[5,6-di(2-pyridyl)-pyrazino]porphyrazinato-magnesium(II), [Py8PyzPzMg(H2O)], has been also considered in the present work. The UV-visible solution spectra in nonaqueous solvents of this triad of externally octapyridinated Mg(II) complexes exhibit the usual profile observed for phthalocyanine and porphyrazine macrocycles, with intense absorptions in the Soret (300-450 nm) and Q band (600-800 nm) regions. It is observed that the Q band maximum sensibly shifts toward the red with peak values at 635 → 658 → 759 nm along the series [Py8PzMg(H2O)], [Py8PyzPzMg(H2O)], and [Py8QxPzMg(H2O)], as the extension of the macrocycle π-system increases. TDDFT calculations of the electronic absorption spectra were performed for the related water-free model compounds [Py8PzMg], [Py8PyzPzMg], and [Py8QxPzMg] to provide an interpretation of the UV-visible spectral changes occurring upon introduction of the pyrazine and quinoxaline rings at the periphery of the Pz macrocycle. To discriminate the electronic effects of the fused exocyclic rings from those of the appended 2-pyridyl rings, the UV-visible spectra of [PzMg] and [PyzPzMg] were also theoretically investigated. The theoretical results prove to agree very well with the experimental data, providing an accurate description of the UV-visible spectra. The observed spectral changes are interpreted on the basis of the electronic structure changes occurring along the series.

  2. Exocyclic push-pull conjugated compounds. Part 3. An experimental NMR and theoretical MO ab initio study of the structure, the electronic properties and barriers to rotation about the exocyclic partial double bond in 2- exo-methylene- and 2-cyanoimino-quinazolines and -benzodiazepines

    NASA Astrophysics Data System (ADS)

    Benassi, R.; Bertarini, C.; Hilfert, L.; Kempter, G.; Kleinpeter, E.; Spindler, J.; Taddei, F.; Thomas, S.

    2000-03-01

    The structure of a number of 2- exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a, b, 4( X=-CN, -COOEt ) and their 2-cyanoimino substituted analogues 2, 3c, d( X=-CN, -SO 2C 6H 4-Me (p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/ Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push-pull effect in this part of the molecules the restricted rotation about the partial C 2,C 11 and C 2,N 11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1- 4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c, d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.

  3. Nuclear magnetic resonance and molecular modeling study of exocyclic carbon-carbon double bond polarization in benzylidene barbiturates

    NASA Astrophysics Data System (ADS)

    Figueroa-Villar, J. Daniel; Vieira, Andreia A.

    2013-02-01

    Benzylidene barbiturates are important materials for the synthesis of heterocyclic compounds with potential for the development of new drugs. The reactivity of benzylidene barbiturates is mainly controlled by their exocyclic carbon-carbon double bond. In this work, the exocyclic double bond polarization was estimated experimentally by NMR and correlated with the Hammett σ values of the aromatic ring substituents and the molecular modeling calculated atomic charge difference. It is demonstrated that carbon chemical shift differences and NBO charge differences can be used to predict their reactivity.

  4. A study of exocyclic radical reductions of polysubstituted tetrahydropyrans.

    PubMed

    Godin, François; Prévost, Michel; Viens, Frédérick; Mochirian, Philippe; Brazeau, Jean-François; Gorelsky, Serge I; Guindon, Yvan

    2013-06-21

    Exocyclic radical reductions were thoroughly investigated in the context of the synthesis of polysubstituted tetrahydropyrans, which are found in numerous macrolides. The radical precursors studied herein were generated by tandem cycloetherification and iodoetherification reactions or, alternatively, by semicyclic acetals substitutions. DFT calculations (BHandHLYP/TZVP) performed at the transition-state level for the hydrogen radical delivery are in good accordance with the experimental data and enabled the identification of important conformational factors that govern the selectivities obtained. This study demonstrates that both the preferred reactive conformation of the radical and steric interactions with the incoming hydride have to be considered in order to fully rationalize the levels of diastereoselection generated in acyclic free-radical processes.

  5. Promotion of exocyclic bond cleavages in the decomposition of 1,3-disilacyclobutane in the presence of a metal filament.

    PubMed

    Badran, I; Shi, Y J

    2015-01-29

    The primary decomposition of 1,3-disilacyclobutane (DSCB) on a tungsten filament and its secondary gas-phase reactions in a hot-wire chemical vapor deposition (CVD) reactor have been studied using laser ionization mass spectrometry. Under the collision-free conditions, DSCB decomposes on the W filament to produce H2 molecules with an activation energy of 43.6 ± 4.1 kJ·mol(-1). With the help of the isotope labeling and chemical trapping methods, the mechanistic details in the secondary gas-phase reactions important in the hot-wire CVD reactor setup have been examined. The dominant pathway has been demonstrated to be the insertion of the cyclic 1,3-disilacyclobut-1-ylidene, generated by exocyclic Si-H bond rupture, into the Si-H bond in DSCB to form 1,1'-bis(1,3-disilacyclobutane) (174 amu). The successful trapping of 1,3-disilacyclobut-1-ylidene by both 1,3-butadiene and trimethylsilane provides compelling evidence for the existence of this cyclic silylene species in the hot-wire CVD reactor with DSCB. Other reactions operating in the reactor include the DSCB cycloreversion to form silene and the ring opening of DSCB via 1,2-H shift to produce silene/methylsilylene and 1-methylsilene/silylene. The introduction of an additional Si atom in the four-membered ring monosilacyclobutane molecule has caused two major changes in the reaction chemistry assumed by DSCB: (1) The endocyclic cycloreversion reactions that dominate in the decomposition of monosilacyclobutane molecules only play a much less important role in the dissociation of DSCB; and (2) the exocyclic bond cleavages are promoted in DSCB due to the ring stabilization caused by the introduction of one additional Si atom.

  6. A simple method for N-15 labelling of exocyclic amino groups in synthetic oligodeoxynucleotides

    PubMed Central

    Acedo, Montse; Fàbrega, Carme; Aviño, Anna; Goodman, Myron; Fagan, Patricia; Wemmer, David; Eritja, Ramon

    1994-01-01

    The use of the ammonia deprotection step to introduce 15N labels at specific exocyclic amino positions of adenine, cytosine, guanine or 2-aminopurine of oligodeoxynucleotides is described. PMID:8065910

  7. Dicamba Monooxygenase: Structural Insights into a Dynamic Rieske Oxygenase that Catalyzes an Exocyclic Monooxygenation

    SciTech Connect

    D'Ordine, Robert L.; Rydel, Timothy J.; Storek, Michael J.; Sturman, Eric J.; Moshiri, Farhad; Bartlett, Ryan K.; Brown, Gregory R.; Eilers, Robert J.; Dart, Crystal; Qi, Youlin; Flasinski, Stanislaw; Franklin, Sonya J.

    2009-09-08

    Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O{sub 2} into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer ({alpha}{sub 3}) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While the Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co{sup 2+}, which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 {angstrom}, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.

  8. Collision of a vortex ring on granular material. Part II. Erosion of the granular layer

    NASA Astrophysics Data System (ADS)

    Yoshida, Junya; Masuda, Naoya; Ito, Boku; Furuya, Takayoshi; Sano, Osamu

    2012-02-01

    In our previous paper (part I), an experimental result was presented on the normal impact of a vortex ring on the granular layer (glass beads of diameter 0.10 mm), which was placed at a specified distance from the outlet of the vortex ring generator. The Reynolds number of the vortex ring ranged from 1000 to 6000, whereas the traveling distance ranged from 2 to 13 times of the diameter of the vortex ring generator nozzle. In part I, the deformation of the vortex ring impacting on the granular layer and the development of the secondary vortex ring were focused. In this paper (part II), the erosion of the granular surface by the vortex ring is described. Various patterns were found depending on the Reynolds number of the vortex ring and the traveling distance. Two patterns, one (grooves) which has radial striations from the central depressed region to the outer edge of the rim and the other (dimples) which is characterized by isolated small depressions around the outer edge of the rim, are examined in detail. The formation processes of these patterns are elucidated in terms of the deformation of the vortex ring.

  9. Dimensional accuracy of small gold alloy castings. Part 4. The casting ring and ring liners.

    PubMed

    Morey, E F

    1992-04-01

    The role of the casting ring and its asbestos liner is discussed. Asbestos as a liner has now largely been replaced by two alternative materials, one based on cellulose and the other on ceramic fibres. The limited literature on the effect of these newer materials on casting accuracy is also reviewed as their introduction may require significant changes in the traditional technology of dental casting.

  10. Mechanism of Repair of Acrolein- and Malondialdehyde-Derived Exocyclic Guanine Adducts by the α-Ketoglutarate/Fe(II) Dioxygenase AlkB

    PubMed Central

    2015-01-01

    The structurally related exocyclic guanine adducts α-hydroxypropano-dG (α-OH-PdG), γ-hydroxypropano-dG (γ-OH-PdG), and M1dG are formed when DNA is exposed to the reactive aldehydes acrolein and malondialdehyde (MDA). These lesions are believed to form the basis for the observed cytotoxicity and mutagenicity of acrolein and MDA. In an effort to understand the enzymatic pathways and chemical mechanisms that are involved in the repair of acrolein- and MDA-induced DNA damage, we investigated the ability of the DNA repair enzyme AlkB, an α-ketoglutarate/Fe(II) dependent dioxygenase, to process α-OH-PdG, γ-OH-PdG, and M1dG in both single- and double-stranded DNA contexts. By monitoring the repair reactions using quadrupole time-of-flight (Q-TOF) mass spectrometry, it was established that AlkB can oxidatively dealkylate γ-OH-PdG most efficiently, followed by M1dG and α-OH-PdG. The AlkB repair mechanism involved multiple intermediates and complex, overlapping repair pathways. For example, the three exocyclic guanine adducts were shown to be in equilibrium with open-ring aldehydic forms, which were trapped using (pentafluorobenzyl)hydroxylamine (PFBHA) or NaBH4. AlkB repaired the trapped open-ring form of γ-OH-PdG but not the trapped open-ring of α-OH-PdG. Taken together, this study provides a detailed mechanism by which three-carbon bridge exocyclic guanine adducts can be processed by AlkB and suggests an important role for the AlkB family of dioxygenases in protecting against the deleterious biological consequences of acrolein and MDA. PMID:25157679

  11. Design consideration for design a flat and ring plastics part using Solidworks software

    NASA Astrophysics Data System (ADS)

    Amran, M. A. M.; Faizal, K. M.; Salleh, M. S.; Sulaiman, M. A.; Mohamad, E.

    2015-12-01

    Various considerations on design of plastic injection moulded parts were applied in initial stage to prevent any defects of end products. Therefore, the objective of this project is to design the plastic injection moulded part by taking consideration on several factors such as draft angle, corner radius and location of gate. In this project, flat plastic part, ring plastic part, core inserts for flat and ring plastic part were designed using SolidWorks software. The plastic part was drawn in sketching mode then the 3D modeling of solid part was generated using various commands. Considerations of plastic part such as draft angle and corner radius with location of gate was considered in the design stage. Finally, it was successfully designed the two plastic parts with their respectively insert by using SolidWorks software. The flat plastic part and ring plastic part were designed for the purpose for future researches for study the weld lines, meld lines, air trapped and geometrical size of the product. Thus, by designing the flat plastic part and ring plastic part having core insert on each part, the completed mould design of two plate mould can be considered. This is because, plastic injection parts are needed to be designed properly in order to neglect any defect when the mould was made.

  12. Numerical simulation of ring rolling process - Application to superalloy 718 parts

    SciTech Connect

    Chabin, D.; Emptas, P. Y.; Bouzaiane, M.

    2007-04-07

    Numerical simulation has become a powerful tool that enables to save costs and time in the design and manufacturing of forged parts for aircraft engines. A complete simulation 'package' based on the software code Forge is used at Snecma to predict the properties of such parts and optimize the manufacturing processes. In order to have a good prediction of the metallurgical and mechanical properties, the simulation of the whole forging process is needed. Until now ring rolling simulation tools have been developed but they still need to be improved. Moreover we have to evaluate these tools before bringing them into production. The aim of this paper is to present the work being done at Snecma on ring rolling simulation. An overview of the complete simulation 'package' will first be given. Some tests performed with the ring rolling simulation module in Forge will be presented, including the comparison between simulation results and real parts. The application to an Inconel 718 disk will be discussed more into details.

  13. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context

    NASA Astrophysics Data System (ADS)

    Wilson, Rob; Anchukaitis, Kevin; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, Dave; Gunnarson, Björn; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Rydval, Miloš; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zhang, Peng; Zorita, Eduardo

    2016-02-01

    Large-scale millennial length Northern Hemisphere (NH) temperature reconstructions have been progressively improved over the last 20 years as new datasets have been developed. This paper, and its companion (Part II, Anchukaitis et al. in prep), details the latest tree-ring (TR) based NH land air temperature reconstruction from a temporal and spatial perspective. This work is the first product of a consortium called N-TREND (Northern Hemisphere Tree-Ring Network Development) which brings together dendroclimatologists to identify a collective strategy for improving large-scale summer temperature reconstructions. The new reconstruction, N-TREND2015, utilises 54 records, a significant expansion compared with previous TR studies, and yields an improved reconstruction with stronger statistical calibration metrics. N-TREND2015 is relatively insensitive to the compositing method and spatial weighting used and validation metrics indicate that the new record portrays reasonable coherence with large scale summer temperatures and is robust at all time-scales from 918 to 2004 where at least 3 TR records exist from each major continental mass. N-TREND2015 indicates a longer and warmer medieval period (∼900-1170) than portrayed by previous TR NH reconstructions and by the CMIP5 model ensemble, but with better overall agreement between records for the last 600 years. Future dendroclimatic projects should focus on developing new long records from data-sparse regions such as North America and eastern Eurasia as well as ensuring the measurement of parameters related to latewood density to complement ring-width records which can improve local based calibration substantially.

  14. Eigen analysis of tree-ring records: Part 1, a limited representativeness of regional curve

    NASA Astrophysics Data System (ADS)

    Yang, Bao; Sonechkin, Dmitry M.; Datsenko, Nina M.; Ivashchenko, Nadezda N.; Liu, Jingjing; Qin, Chun

    2011-12-01

    Based on a set of very long-living (2,000 years) Qilian junipers ( Sabina przewalskii Kom.) from the north-eastern part of the Tibetan Plateau (the region of Dulan), we carefully consider the regional curve standardization (RCS) technique. For this goal, we correlate deviations of individual tree-ring width records from their regional mean age-dependent curve (RC). It turns out that these correlations keep their positivity for almost all shifts between ages compared (up to 500 years and even more) evidencing each Dulan juniper to be a unique "thermometer". Just the unification of these "thermometers" in the form RC creates a spurious positive trend in the Dulan chronology. We modify the RCS technique to closer attach RC to these "thermometers" in order to construct a new chronology in which the trend is absent.

  15. Aminopropanedinitrile (aminomalononitrile, AMN) in the synthesis of C-nucleosides and exocyclic amino thiazole N-nucleosides. Formation and reactions of 2-substituted-5-amino-4-oxazolecarbonitriles

    SciTech Connect

    Scheuerman, R.A.

    1992-01-01

    Aminopropanedinitrile (aminomalononitrile, AMN) reacts with a wide variety of alkyl, aryl, or heteroaryl acid chlorides in the presence of 1-methyl-2-pyrrolidinone to give N-(dicyanomethyl)carboxamides which are easily cyclized in situ or after isolation to 2-substituted-5-amino-4-oxazolecarbonitriles in good to excellent yields. Electron attracting or electron releasing groups on the phenyl rings do not appear to greatly influence the yields of oxazoles and steric factors do not appear to be important in the aliphatic series. The reaction of 2, 5-anhydro-3, 4, 6-tri-O-benzoyl-[beta]-D-allonyl chloride with aminopropane-dinitrile gives 2, 5-anhydro-N-(dicyanomethyl)-[beta]-D-allonamide-3, 4, 6-tribenzoate which is converted to 5-amino-2-(2, 3, 5-tri-O-benzoyl-[beta]-D-ribofuranosyl)-4-oxazolecarbonitrile, which is used to prepare other C-nucleosides including 2-([beta]-D-ribofuranosyl)oxazole-4-carboxamide (oxazofurin), an analogue of the antitumor and antiviral C-nucleoside tiazofurin. Attempted deblocking of several benzoyl protected C-nucleosides with sodium methoxide led to double elimination reactions and the formation of furan derivatives. The 2-substituted-5-amino-4-oxazolecarbonitriles react with ortho esters to give imidates which are cyclized to axazolo[5,4-d]pyrimidines. Reactions of 2-substituted-5-amino-4-oxazolecarbonitriles include acylation of the 5-amino group, dediazotization of the 5-amino group, nucleophilic attack and ring opening of the oxazole, and acid catalyzed ring opening of the oxazole. Sugar isothiocyanates are prepared and react with aminopropane-dinitrile (aminomalononitrile, AMN) in the presence of 1-methyl-2-pyrrolidinone to afford exocyclic amino thiazole N-nucleosides.

  16. Exocyclic Deoxyadenosine Adducts of 1,2,3,4-Diepoxybutane: Synthesis, Structural Elucidation, and Mechanistic Studies

    PubMed Central

    Seneviratne, Uthpala; Antsypovich, Sergey; Goggin, Melissa; Dorr, Danae Quirk; Guza, Rebecca; Moser, Adam; Thompson, Carrie; York, Darrin M.; Tretyakova, Natalia

    2009-01-01

    1,2,3,4-Diepoxybutane (DEB)1 is considered the ultimate carcinogenic metabolite of 1,3-butadiene, an important industrial chemical and environmental pollutant present in urban air. Although it preferentially modifies guanine within DNA, DEB induces a large number of A → T transversions, suggesting that it forms strongly mispairing lesions at adenine nucleobases. We now report the discovery of three potentially mispairing exocyclic adenine lesions of DEB: N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (compound 2), 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (compound 3), and 1,N6-(1-hydroxymethyl-2-hydroxypropan-1,3-diyl)-2′-deoxyadenosine (compound 4). The structures and stereochemistry of the novel DEB-dA adducts were determined by a combination of UV and NMR spectroscopy, tandem mass spectrometry, and independent synthesis. We found that synthetic N6-(2-hydroxy-3,4-epoxybut-1-yl)-2′-deoxyadenosine (compound 1) representing the product of N6-adenine alkylation by DEB spontaneously cyclizes to form 3 under aqueous conditions or 2 under anhydrous conditions in the presence of organic base. Compound 3 can be interconverted with 4 by a reversible unimolecular pericyclic reaction favoring 4 as a more thermodynamically stable product. Both 3 and 4 are present in double stranded DNA treated with DEB in vitro and in liver DNA of laboratory mice exposed to 1,3-butadiene by inhalation. We propose that in DNA under physiological conditions, DEB alkylates the N-1 position of adenine in DNA to form N1-(2-hydroxy-3,4-epoxybut-1-yl)-adenine adducts, which undergo an SN2-type intramolecular nucleophilic substitution and rearrangement to give 3 (minor) and 4 (major). Formation of exocyclic DEB-adenine lesions following exposure to 1,3-butadiene provides a possible mechanism of mutagenesis at the A:T base pairs. PMID:19883087

  17. Synthesis and properties of novel 2'-C,4'-C-ethyleneoxy-bridged 2'-deoxyribonucleic acids with exocyclic methylene groups.

    PubMed

    Osawa, Takashi; Obika, Satoshi; Hari, Yoshiyuki

    2016-10-12

    Three 2'-C,4'-C-ethyleneoxy-bridged 2'-deoxyribonucleic acids possessing six-membered bridges with 6'-oxygen and 8'-exocyclic methylene groups (methylene-EoDNAs) were designed and synthesized in nine to ten steps from 5-methyluridine. The methylene-EoDNA-modified oligonucleotides showed excellent binding affinity with target ssRNA and extremely high nuclease resistance compared with natural oligonucleotides. These results proved the potential of methylene-EoDNAs for nucleic acid based technology.

  18. Purine (N)-Methanocarba Nucleoside Derivatives Lacking an Exocyclic Amine as Selective A3 Adenosine Receptor Agonists

    PubMed Central

    2016-01-01

    Purine (N)-methanocarba-5′-N-alkyluronamidoriboside A3 adenosine receptor (A3AR) agonists lacking an exocyclic amine resulted from an unexpected reaction during a Sonogashira coupling and subsequent aminolysis. Because the initial C6-Me and C6-styryl derivatives had unexpectedly high A3AR affinity, other rigid nucleoside analogues lacking an exocyclic amine were prepared. Of these, the C6-Me-(2-phenylethynyl) and C2-(5-chlorothienylethynyl) analogues were particularly potent, with human A3AR Ki values of 6 and 42 nM, respectively. Additionally, the C2-(5-chlorothienyl)-6-H analogue was potent and selective at A3AR (MRS7220, Ki 60 nM) and also completely reversed mouse sciatic nerve mechanoallodynia (in vivo, 3 μmol/kg, po). The lack of a C6 H-bond donor while maintaining A3AR affinity and efficacy could be rationalized by homology modeling and docking of these hypermodified nucleosides. The modeling suggests that a suitable combination of stabilizing features can partially compensate for the lack of an exocyclic amine, an otherwise important contributor to recognition in the A3AR binding site. PMID:26890707

  19. Luttinger liquid theory of Coulomb drag in mesoscopic rings,(Supported in part by US DOE.)

    NASA Astrophysics Data System (ADS)

    Shahbazyan, T. V.; Ulloa, S. E.

    1997-03-01

    We develop a Luttinger liquid theory of the Coulomb drag of persistent currents, flowing in concentric mesoscopic rings, by incorporating non-linear corrections to the electron dispersion relation. We demonstrate that at low temperatures interactions between electrons in different rings generate an additional phase and thus alter the period of Aharonov-Bohm oscillations. The resulting nondissipative(A. G. Rojo and G. D. Mahan, Phys. Rev. Lett. 68) 2074 (1992). drag depends strongly on the relative parity of the electron numbers. We also show that interactions set a new temperature scale below which the linear response theory does not apply at certain values of external flux.

  20. An investigation of volcanic depressions. Part 3: Maars, tuff-rings, tuff-cones, and diatremes

    NASA Technical Reports Server (NTRS)

    Lorenz, V.; Mcbirney, A. R.; Williams, H.

    1970-01-01

    A classification of maars, tuff-rings, tuff-cones, and diatremes is given along with a summary of their lithologic and structural characteristics at the surface and at depth, and their probable manner of formation. Particular emphasis is placed on the roles of fluidization and groundwater.

  1. Influence of ring size on the cognition-enhancing activity of DM235 and MN19, two potent nootropic drugs.

    PubMed

    Guandalini, L; Martini, E; Di Cesare Mannelli, L; Dei, S; Manetti, D; Scapecchi, S; Teodori, E; Ghelardini, C; Romanelli, M N

    2012-03-01

    A series of analogs of DM235 and MN19, characterized by rings with different size, have been prepared and evaluated for their nootropic activity in the mouse passive-avoidance test. It was found that the optimal ring size for the analogs of DM235, showing endocyclic both amidic groups, is 6 or 7 atoms. For the compounds structurally related to MN19, carrying an exocyclic amide group, the piperidine ring is the moiety which gives the most interesting compounds.

  2. Eigen analysis of tree-ring records: part 2, posing the eigen problem

    NASA Astrophysics Data System (ADS)

    Yang, Bao; Sonechkin, Dmitry M.; Datsenko, Nina M.; Ivashchenko, Nadezda N.; Liu, Jingjing; Qin, Chun

    2012-01-01

    The technique of expanding meteorological fields on eigenvectors of the field covariation matrix is popular. In this paper, we propose for the first time to use a mathematically similar technique to solve the main problem of dendrochronology: classifying variations in tree-ring records as either age- and microenvironment-dependent or climate-induced. Applying this technique to a sample of very long-lived Qilian junipers ( Sabina przewalskii Kom.) from the Dulan region in western China, we demonstrate that the ring-width variations projected on the first eigenvector are age-dependent, but those projected on several of the first subsequent vectors are mainly climate-induced. In particular, the second and third projections capture multi-centennial climatic variations, and the variations projected on the fourth through seventh eigenvectors show periodic variations that are probably induced by the 178-year solar cycle. The projections on the smallest eigenvectors seem to be negligible.

  3. Eigen analysis of tree-ring records: part 3, taking heteroscedasticity and sampling effects into consideration

    NASA Astrophysics Data System (ADS)

    Yang, Bao; Sonechkin, Dmitry M.; Datsenko, Nina M.; Ivashchenko, Nadezda N.; Liu, Jingjing; Qin, Chun

    2012-02-01

    This paper reports on the further development of a new technique for standardization of tree-ring records called the eigen analysis of tree-ring records. The data are from the same sample set of 56 long-lived Qilian junipers ( Sabina przewalskii Kom.) from the Dulan region in western China as was used in our previous paper (Yang et al. 2011b). To assess the heteroscedasticity of individual record deviations from the sample set regional curve (RC), we tested five different definitions of those deviations. Direct computations of eigenvectors of all relevant intrarecord covariation matrices turned out to be greatly affected by observational and computational noise; an analytic approximation of these vectors was therefore desirable. The Bessel function of the first kind and the zero order proved suitable for such an approximation, especially because the deviations were defined via subtraction of the RC from raw ring width records. Exclusion of the contributions of the first segment of the Bessel approximation, corresponding to the extremely large first eigenvalue, rendered individual record deviations from RC homoscedastic. Therefore, the routine Fourier basis became applicable to extract climate-dependent components of the residual deviations. A Fourier expansion of the Dulan chronology revealed the quasi-200-year-long solar activity cycle to be the main factor affecting Dulan tree growth.

  4. Surfaces, atmospheres and magnetospheres of the outer planets and their satellites and ring systems: Part X

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Atreya, S.; Castillo, J.; Coll, P.; Mueller-Wodarg, I.; Spilker, L.

    2014-12-01

    This issue contains research work presented during the past year in sessions organized at several international meetings and congresses (such as those of the European Geosciences Union (EGU), the Asia Oceania Geosciences Society (AOGS), the European Planetary Science Congress (EPSC) and others) and focusing on recent observations and models of the atmospheres, magnetospheres and surfaces of the giant planets and their satellites, as well as on their ring systems. Particular attention was devoted this time to the proposals for exploration of the Solar System by spacecraft and probes submitted during the ESA call for science themes for the L2 and L3 missions in 2013.

  5. Mineralization in the Uyaijah-Thaaban area, west-central part of the Uyaijah ring structure, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Dodge, F.C.; Helaby, A.M.

    1975-01-01

    Anomalous amounts of tungsten, molybdenum, and bismuth were found previously in surficial debris collected from the Uyaijah-Thaaban area in the west-central part of the Precambrian Al Uyaijah ring structure. The area is mostly underlain by quartz monzonite. Countless quartz veins ranging from a knife edge to more than 3 m in thickness cut the quartz monzonite; many of these veins contain molybdenite. Detailed mapping and intensive sampling of the molybdenite-bearing quartz veins indicate that their grade and quantity are probably inadequate to permit present-day mining; however, they represent a potential future resource. The tungsten of the area appears to be negligible.

  6. Aryldiones incorporating a [1,4,5]oxadiazepane ring. Part I: Discovery of the novel cereal herbicide pinoxaden.

    PubMed

    Muehlebach, Michel; Boeger, Manfred; Cederbaum, Fredrik; Cornes, Derek; Friedmann, Adrian A; Glock, Jutta; Niderman, Thierry; Stoller, André; Wagner, Trixie

    2009-06-15

    Derivatives of the new class of 3-hydroxy-4-phenyl-5-oxo-pyrazolines were optimized towards both herbicidal activity on key annual grass weed species and selectivity in small grain cereal crops. The generic structure can be separated into three parts for the analysis of the structure-activity relationships, namely the aryl, the dione with its prodrug forms and the hydrazine moiety. Each area appears to play distinct and different roles in overall expression of biological performance which is further beneficially influenced by adjuvant response and safener action. Pinoxaden 6, a novel graminicide for use in wheat and barley incorporating a [1,4,5]oxadiazepane ring, eventually emerged as a development candidate from the discovery and optimization process.

  7. Application of the Green's function method to some nonlinear problems of an electron storage ring. Part III. Beam-size enhancement due to the presence of nonlinear magnets in a ring

    SciTech Connect

    Kheifets, S.

    1983-01-01

    A perturbation method which allows one to find the distribution function and the beam size for a broad class of storage ring nonlinear problems is described in Part I of this work. In present note I apply this method to a particular problem. Namely, I want to evaluate an enhancement of the vertical beam size of a bunch due to the presence of the ring of nonlinear magnetic fields. The main part of the work deals with sextupole magnets. Formula for the beam size in the presence of octupole fields are also developed to the first order in the octupole strength, although octupole magnets are not widely used in present storage ring designs. This calculation is done mainly because the octupole field has the same symmetry as the beam-beam force for the head-on collision. This will give us the opportunity to compare the conduct of the bunch due to this two types of nonlinear kicks. The general terms of the applicability of the Green's function method is discussed in the first part of this work.

  8. Methyl [13C]glucopyranosiduronic acids: effect of COOH ionization and exocyclic structure on NMR spin-couplings.

    PubMed

    Zhang, Wenhui; Hu, Xiaosong; Carmichael, Ian; Serianni, Anthony S

    2012-11-02

    Methyl α- and β-D-glucopyranuronides singly labeled with (13)C at C1-C6 were prepared from the corresponding (13)C-labeled methyl D-glucopyranosides, and multiple NMR J-couplings (J(HH), J(CH), and J(CC)) were measured in their protonated and ionized forms in aqueous ((2)H(2)O) solution. Solvated density functional theory (DFT) calculations of J-couplings in structurally related model compounds were performed to determine how well the calculated J-couplings matched the experimental values in saccharides bearing an ionizable substituent. Intraring J(HH) values in both uronide anomers, including (3)J(H4,H5), are unaffected by solution pD, and COOH ionization exerts little effect on J(CH) and J(CC) except for (1)J(C1,H1), (1)J(C4,H4), (1)J(C5,H5), (1)J(C5,C6), and (2)J(C3,C5), where changes of up to 5 Hz were observed. Some of these changes are associated with changes in bond lengths upon ionization; in general, better agreement between theory and experiment was observed for couplings less sensitive to exocyclic C-O bond conformation. Titration of (1)H and (13)C chemical shifts, and some J-couplings, yielded a COOH pK(a) of 3.0 ± 0.1 in both anomers. DFT calculations suggest that substituents proximal to the exocyclic COOH group (i.e., the C4-O4 bond) influence the activation barrier to C5-C6 bond rotation due to transient intramolecular H-bonding. A comparison of J-couplings in the glucopyranuronides to corresponding J-couplings in the glucopyranosides showed that more pervasive changes occur upon conversion from a COOH to a CH(2)OH substituent at C6 than from COOH ionization within the uronides. Twelve J-couplings are affected, with the largest being (1)J(C5,C6) (∼18 Hz larger in the uronides), followed by (2)J(C6,H5) (∼2.5 Hz more negative in the uronides).

  9. Asymmetric phase-transfer-catalyzed conjugate addition of glycine imine to exocyclic α,β-unsaturated ketones: construction of polycyclic imines containing three stereocenters.

    PubMed

    Nie, Jing; Hua, Ming-Qing; Xiong, Heng-Ying; Zheng, Yan; Ma, Jun-An

    2012-05-04

    We developed a facile, one-pot, multistep transformation between glycine imine and exocyclic α,β-unsaturated ketones in reactions catalyzed by chiral phase-transfer catalysts (PTC). A series of polycyclic imines containing three adjacent stereocenters were obtained in good to high yields with high diastereo- and enantioselectivities. Further transformation of the imines could afford N-fused polycyclic compounds with four adjacent stereocenters.

  10. Luminescent Rings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This view shows the unlit face of Saturn's rings, visible via scattered and transmitted light. In these views, dark regions represent gaps and areas of higher particle densities, while brighter regions are filled with less dense concentrations of ring particles.

    The dim right side of the image contains nearly the entire C ring. The brighter region in the middle is the inner B ring, while the darkest part represents the dense outer B Ring. The Cassini Division and the innermost part of the A ring are at the upper-left.

    Saturn's shadow carves a dark triangle out of the lower right corner of this image.

    The image was taken in visible light with the Cassini spacecraft wide-angle camera on June 8, 2005, at a distance of approximately 433,000 kilometers (269,000 miles) from Saturn. The image scale is 22 kilometers (14 miles) per pixel.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  11. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  12. An Exocyclic Methylene Group Acts As A Bio-isostere of the 2’-Oxygen Atom in LNA

    PubMed Central

    Seth, Punit P; Allerson, Charles R.; Berdeja, Andres; Siwkowski, Andrew; Pallan, Pradeep S.; Gaus, Hans; Prakash, Thazha P.; Watt, Andrew T.; Egli, Martin; Swayze, Eric E.

    2010-01-01

    We show for the first time that it is possible to obtain LNA (Locked Nucleic Acid 1) like binding affinity and biological activity with carbocyclic LNA (cLNA) analogs by replacing the 2’-oxygen atom in LNA with an exocyclic methylene group. Synthesis of the methylene-cLNA nucleoside was accomplished by an intramolecular cyclization reaction between a radical at the 2’-position and a propynyl group at C-4’ position. Only methylene-cLNA modified oligonucleotides showed similar thermal stability and mismatch discrimination properties for complementary nucleic acids as LNA. In contrast, the close structurally related methyl-cLNA analogs showed diminished hybridization properties. Analysis of crystal structures of cLNA modified self-complementary DNA decamer duplexes revealed that the methylene group participates in a tight interaction with a 2’-deoxyribose residue of the 5’-terminal G of a neighboring duplex, resulting in the formation of a CH…O type hydrogen bond. This indicates that the methylene group retains a negative polarization at the edge of the minor groove in the absence of a hydrophilic 2’-substituent and provides a rationale for the superior thermal stability of this modification. In animal experiments, methylene-cLNA ASOs showed similar in vivo activity but reduced toxicity as compared to LNA ASOs. Our work highlights the interchangeable role of oxygen and unsaturated moeities in nucleic acid structure and emphasizes greater use of this bio-isostere to improve the properties of nucleic acids for therapeutic and diagnostic applications. PMID:20886816

  13. Synthesis and hybridization property of a boat-shaped pyranosyl nucleic acid containing an exocyclic methylene group in the sugar moiety.

    PubMed

    Mori, Kazuto; Kodama, Tetsuya; Obika, Satoshi

    2015-01-01

    A boat-shaped pyranosyl nucleic acid (BsNA) having an exocyclic methylene group in the sugar moiety was synthesized to investigate the possibility that the axial H3' of original BsNA is the cause of its duplex destabilization. The synthesized BsNA analog was chemically stable against various nucleophiles. From the thermal stability of duplex oligonucleotides including the BsNA analog, it was found that the duplex-forming ability can be sensitive to the size of functional groups at the 3'-position.

  14. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  15. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  16. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  17. DC-Powered Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2016-02-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.

  18. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  19. (1) H NMR Spectra. Part 28: Proton chemical shifts and couplings in three-membered rings. A ring current model for cyclopropane and a novel dihedral angle dependence for (3) J(HH) couplings involving the epoxy proton.

    PubMed

    Abraham, Raymond J; Leonard, Paul; Tormena, Cláudio F

    2012-04-01

    The (1) H chemical shifts of selected three-membered ring compounds in CDCl(3) solvent were obtained. This allowed the determination of the substituent chemical shifts of the substituents in the three-membered rings and the long-range effect of these rings on the distant protons. The substituent chemical shifts of common substituents in the cyclopropane ring differ considerably from the same substituents in acyclic fragments and in cyclohexane and were modelled in terms of a three-bond (γ)-effect. For long-range protons (more than three bonds removed), the substituent effects of the cyclopropane ring were analysed in terms of the cyclopropane magnetic anisotropy and steric effect. The cyclopropane magnetic anisotropy (ring current) shift was modelled by (a) a single equivalent dipole perpendicular to and at the centre of the cyclopropane ring and (b) by three identical equivalent dipoles perpendicular to the ring placed at each carbon atom. Model (b) gave a more accurate description of the (1) H chemical shifts and was the selected model. After parameterization, the overall root mean square error for the dataset of 289 entries was 0.068 ppm. The anisotropic effects are significant for the cyclopropane protons (ca 1 ppm) but decrease rapidly with distance. The heterocyclic rings of oxirane, thiirane and aziridine do not possess a ring current. (3) J(HH) couplings of the epoxy ring proton with side-chain protons were obtained and shown to be dependent on both the H-C-C-H and H-C-C-O orientations. Both density functional theory calculations and a simple Karplus-type equation gave general agreement with the observed couplings (root mean square error 0.5 Hz over a 10-Hz range).

  20. Hydrogenation of the exocyclic olefinic bond at C-16/C-17 position of ent-kaurane diterpene glycosides of Stevia rebaudiana using various catalysts.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Prakash, Indra

    2013-07-26

    Catalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH)2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2) under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data.

  1. Hydrogenation of the Exocyclic Olefinic Bond at C-16/C-17 Position of ent-Kaurane Diterpene Glycosides of Stevia rebaudiana Using Various Catalysts

    PubMed Central

    Chaturvedula, Venkata Sai Prakash; Prakash, Indra

    2013-01-01

    Catalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH)2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2) under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data. PMID:23896597

  2. Rings in the solar system

    SciTech Connect

    Pollack, J.B.; Cuzzi, J.N.

    1981-11-01

    Saturn, Jupiter, and Uranus have rings with different structure and composition. The rings consist of tiny masses in independent orbits. Photographs and data obtained by the Voyager project have aided in the understanding of Saturn's rings. Spokes have been found in B ring and boards, knots, and twist in F ring. Particles on the order of a micrometer in size are believed to occur in F, B, and A rings. The dominant component is water ice. The rings of Uranus are narrow and separated by broad empty regions. The technique used to study them has been stellar occulation. Nothing is known of particle size. The dominant component is believed to be silicates rich in compounds that absorb sunlight. Jupiter's rings consist of 3 main parts: a bright ring, a diffuse disk, and a halo. Use of Pioneer 10 data and other techniques have indicated particle sizes on the order of several micrometers and some at least a centimeter in diameter. The architecture of the ring system results from the interplay of a number of forces. These include gravitational forces due to moons outside the rings and moonlets embedded in them, electromagnetic forces due to the planet's rotating magnetic field, and even the gentle forces exerted by the dilute gaseous medium in which the rings rotate. Each of these forces is discussed. Several alternative explanations of how the rings arose are considered. The primary difference in these hypotheses is the account of the relationship between the ring particles of today and the primordial ring material. (SC)

  3. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  4. Neptune's rings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  5. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  6. Apatitic connecting rings in moulds of Baculites sp. from the middle part of the Smoky Hill Member, Niobrara Chalk (Santonian), of western Kansas

    USGS Publications Warehouse

    Hasenmueller, W.A.; Hattin, D.E.

    1985-01-01

    Moulds of Baculites sp. are common in the Smoky Hill Member but only five known specimens contain connecting rings that have been preserved because of mineralisation by carbonate apatite. Analysis of four of these specimens suggests that the connecting rings were originally composed of organic material and were mineralised during early diagenesis. Thin sections and scanning electron microscopy demonstrate that the connecting rings had a two-layered structure consisting of a thick siphuncular wall and a thin pellicle. ?? 1985.

  7. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  8. The Enceladus Ring

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] The Enceladus Ring (labeled)

    This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background.

    The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view.

    Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring.

    Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione.

    An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus.

    One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane.

    Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally

  9. Application of the Green's function method to some nonlinear problems of an electron storage ring: Part 1, The Green's function for the Fokker-Planck equation

    SciTech Connect

    Kheifets, S.

    1982-07-01

    For an electron storage ring the beam size evaluation including beam-beam interaction gives an example of such a problem. Another good example is finding the beam size for a nonlinear machine. The present work gives a way to solve some of these problems, at least in principle. The approach described here is an application of the well known Green's function method, which in this case is applied to the Fokker-Planck equation governing the distribution function in the phase space of particle motion. The new step made in this paper is to consider the particle motion in two degrees of freedom rather than in one dimension, a characteristic of all the previous work. This step seems to be necessary for an adequate description of the problem, at least for the class of problems which are considered below. This work consists of the formal solution of the Fokker-Planck equation in terms of its Green's function and describing the Green's function itself. The Green's function and the description of some of its properties can be found in the Appendices. I discuss the distribution function in the transverse phase space of a particle and it's Fokker-Planck equation for a simple case of a weak focusing machine. Part of this paper is devoted to describing the Green's function and solution of this equation. Then this technique is applied to a strong focusing machine and finally there is a discussion of applicability of this method, its limitations and relation to other methods. 13 refs.

  10. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  11. A ditopic O(4)S(2) macrocycle and its hard, soft, and hard/soft metal complexes exhibiting endo-, exo-, or endo/exocyclic coordination: synthesis, crystal structures, NMR titration, and physical properties.

    PubMed

    Ryu, Hyunsoo; Park, Ki-Min; Ikeda, Mari; Habata, Yoichi; Lee, Shim Sung

    2014-04-21

    A 20-membered O4S2 macrocycle (L(2)) was synthesized as a ditopic ligating system toward hard and soft metal ions simultaneously. Five complexes (3-7) of L(2) with different structures and coordination modes, including discrete to infinite forms, mono- to heteronuclear, and endo- to exo- and endo/exocoordination, were prepared and structurally characterized. First, the reaction of L(2) with Pb(ClO4)2·3H2O afforded a typical endocyclic mononuclear perchlorato complex [Pb(L(2))(ClO4)2] (3) in which one lead(II) is surrounded by the macrocycle adopting a "tight and bent" conformation. Meanwhile, the reaction with a softer metal salt AgNO3 resulted in the formation of the dinuclear bis(macrocycle) complex [Ag2(L(2))2(NO3)2] (4) in which two exocyclic silver(I) ions are doubly linked by two nitrate ions. The treatment of L(2) with CuI gave a mixture of the exocyclic monomer complex [Cu(L(2))I] (5) and the exocyclic dimer complex [(Cu2I2)(L(2))2] (6), which were separated manually because of their brick and rhomboid shapes of the crystals, respectively. Furthermore, the reaction of L(2) with a mixture of CuI and NaI afforded a photoluminescent heteronuclear complex [Na2(Cu6I8)(L(2))2(CH3CN)4]n (7) in the endo/exocyclic coordination mode. In this case, the endocyclic sodium(I) complex units are linked by the double-open cubanes-type cluster Cu6I8, yielding a two-dimensional network. The structural and binding properties of the complex of L(2) with silver(I) nitrate in solution were monitored by the NMR titration. Photophysical and thermal properties for complex 7 were also investigated and discussed.

  12. Application of the Green's function method to some nonlinear problems of an electron storage ring: Part 2, Checking the method by a quadrupole perturbation

    SciTech Connect

    Kheifets, S.

    1982-10-01

    In the first part of this work I described a general approach to some storage ring problems. The basic concept and the main equations were developed there. The next natural step in this work should be an application of the developed technique to some particular nonlinear problem. Instead, I found it useful to apply the method to the case of a field gradient perturbation first. This happened to be plausible not only as a check of the method, but, more importantly, as a way to resolve several troublesome difficulties encountered in subsequent calculations. The present note does not contain any new results. Still, the work is felt to be necessary as a support for all the future applications of the method. I consider here the effect of a global gradient error in a weak-focusing machine and the effect of a local gradient error in a strong focusing machine. The distribution function of a particle bunch for a perturbed lattice in these cases can be written explicitly. The expansion of this distribution function as a series perturbation terms produces the first and the second order corrections to the unperturbed function. From them we calculate, then, corresponding second moments. A similar expansion of the distribution function is found by the Green's function method described of this work. The second moments are found independently with the help of this distribution function. The comparison of these two results is one way to check the method and the correctness of the calculations. This comparison is done for the first and second order perturbations. 4 refs., 2 tabs.

  13. Benzopyrans as selective estrogen receptor beta agonists (SERBAs). Part 3: synthesis of cyclopentanone and cyclohexanone intermediates for C-ring modification.

    PubMed

    Richardson, Timothy I; Dodge, Jeffrey A; Durst, Gregory L; Pfeifer, Lance A; Shah, Jikesh; Wang, Yong; Durbin, Jim D; Krishnan, Venkatesh; Norman, Bryan H

    2007-09-01

    Benzopyrans are selective estrogen receptor (ER) beta agonists (SERBAs), which bind the ER subtypes alpha and beta in opposite orientations. Here we describe the syntheses of cyclopentanone and cyclohexanone intermediates for SAR studies of the C-ring on the benzopyran scaffold. Modification of the C-ring disrupts binding to ERalpha, thus improving ERbeta selectivity up to 100-fold. X-ray cocrystal structures confirm previously observed binding modes.

  14. Ghostly Ring

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for poster version

    This image shows a ghostly ring extending seven light-years across around the corpse of a massive star. The collapsed star, called a magnetar, is located at the exact center of this image. NASA's Spitzer Space Telescope imaged the mysterious ring around magnetar SGR 1900+14 in infrared light. The magnetar itself is not visible in this image, as it has not been detected at infrared wavelengths (it has been seen in X-ray light).

    Magnetars are formed when a massive giant star ends its life in a supernova explosion, leaving behind a super dense neutron star with an incredibly strong magnetic field. The ring seen by Spitzer could not have formed during the original explosion, as any material as close to the star as the ring would have been disrupted by the supernova shock wave. Scientists suspect that the ring my actually be the edges of a bubble that was hollowed out by an explosive burst from the magnetar in 1998. The very bright region near the center of the image is a cluster of young stars, which may be illuminating the inner edge of the bubble, making it look like a ring in projection.

    This composite image was taken using all three of Spitzer's science instruments. The blue color represents 8-micron infrared light taken by the infrared array camera, green is 16-micron light from the infrared spectograph, and red is 24-micron radiation from the multiband imaging photometer.

  15. Cave Rings

    DTIC Science & Technology

    2010-10-13

    hypothesis, that cave rings are formed in the same manner as coffee rings[3], that is, due to the enhanced deposition at the edges of sessile drops ...Literature The ‘splash ring’ conjecture is described in [5]. It is claimed that 45◦ is the most probable angle for secondary drops to be ejected at, and that...ring’ is the deposit formed when a sessile drop of a solution containing dissolved particles, such as coffee or salt, dries. This was investigated by

  16. Stacked Corrugated Horn Rings

    NASA Technical Reports Server (NTRS)

    Sosnowski, John B.

    2010-01-01

    This Brief describes a method of machining and assembly when the depth of corrugations far exceeds the width and conventional machining is not practical. The horn is divided into easily machined, individual rings with shoulders to control the depth. In this specific instance, each of the corrugations is identical in profile, and only differs in diameter and outer profile. The horn is segmented into rings that are cut with an interference fit (zero clearance with all machining errors biased toward contact). The interference faces can be cut with a reverse taper to increase the holding strength of the joint. The taper is a compromise between the interference fit and the clearance of the two faces during assembly. Each internal ring is dipped in liquid nitrogen, then nested in the previous, larger ring. The ring is rotated in the nest until the temperature of the two parts equalizes and the pieces lock together. The resulting assay is stable, strong, and has an internal finish that cannot be achieved through other methods.

  17. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease.

    PubMed

    Schrift, Greta L; Waldron, Travis T; Timmons, Mitchell A; Ramaswamy, S; Kearney, William R; Murphy, Kenneth P

    2006-01-06

    Proteins interact with nucleotides to perform a multitude of functions within cells. These interactions are highly specific; however, the molecular basis for this specificity is not well understood. To identify factors critical for protein-guanine nucleotide recognition the binding of two closely related ligands, guanosine 3'-monophosphate (3'GMP) and inosine 3'-monophosphate (3'IMP), to Ribonuclease Sa (RNase Sa), a small, guanylyl-endoribonuclease from Streptomyces aureofaciens, was compared using isothermal titration calorimetry, NMR, X-ray crystallography and molecular dynamics simulations. This comparison has allowed for the determination of the contribution of the exocyclic amino group "N2" of the guanine base to nucleotide binding specificity. Calorimetric measurements indicate that RNase Sa has a higher affinity for 3'GMP (K=(1.5+/-0.2)x10(5)) over 3'IMP (K=(3.1+/-0.2)x10(4)) emphasizing the importance of N2 as a key determinant of RNase Sa guanine binding specificity. This result was unexpected as the published structural data for RNase Sa in complex with 3'GMP showed only a potential long-range interaction (>3.3A) between N2 and the side-chain of Glu41 of RNase Sa. The observed difference in affinity is largely due to a reduction in the favorable enthalpy change by 10 kJ/mol for 3'IMP binding as compared to 3'GMP that is accompanied by a significant difference in the heat capacity changes observed for binding the two ligands. To aid interpretation of the calorimetric data, the first crystal structure of a small, guanylyl ribonuclease bound to 3'IMP was determined to 2.0 A resolution. This structure has revealed small yet unexpected changes in the ligand conformation and differences in the conformations of the side-chains contacting the sugar and phosphate moieties as compared to the 3'GMP complex. The structural data suggest the less favorable enthalpy change is due to an overall lengthening of the contacts between RNase Sa and 3'IMP as compared to 3'GMP

  18. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~<500m in size) have been indirectly identified in Saturn's A ring through their propeller signature in the images. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring. In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B

  19. Kayser-Fleischer Rings

    MedlinePlus

    ... to know about Wilson Disease Kayser-Fleischer Rings Definition Kayser-Fleischer Ring: Clinical sign. Brownish-yellow ring ... Diet & Nutrition Kayser-Fleischer Rings Wilson Disease FAQs Definitions Transplantation For Patients & Families Resources Membership Events Centers ...

  20. Formation of lunar basin rings

    USGS Publications Warehouse

    Hodges, C.A.; Wilhelms, D.E.

    1978-01-01

    The origin of the multiple concentric rings that characterize lunar impact basins, and the probable depth and diameter of the transient crater have been widely debated. As an alternative to prevailing "megaterrace" hypotheses, we propose that the outer scarps or mountain rings that delineate the topographic rims of basins-the Cordilleran at Orientale, the Apennine at Imbrium, and the Altai at Nectaris-define the transient cavities, enlarged relatively little by slumping, and thus are analogous to the rim crests of craters like Copernicus; inner rings are uplifted rims of craters nested within the transient cavity. The magnitude of slumping that occurs on all scarps is insufficient to produce major inner rings from the outer. These conclusions are based largely on the observed gradational sequence in lunar central uplifts:. from simple peaks through somewhat annular clusters of peaks, peak and ring combinations and double ring basins, culminating in multiring structures that may also include peaks. In contrast, belts of slump terraces are not gradational with inner rings. Terrestrial analogs suggest two possible mechanisms for producing rings. In some cases, peaks may expand into rings as material is ejected from their cores, as apparently occurred at Gosses Bluff, Australia. A second process, differential excavation of lithologically diverse layers, has produced nested experimental craters and is, we suspect, instrumental in the formation of terrestrial ringed impact craters. Peak expansion could produce double-ring structures in homogeneous materials, but differential excavation is probably required to produce multiring and peak-in-ring configurations in large lunar impact structures. Our interpretation of the representative lunar multiring basin Orientale is consistent with formation of three rings in three layers detected seismically in part of the Moon-the Cordillera (basin-bounding) ring in the upper crust, the composite Montes Rook ring in the underlying

  1. Ringing wormholes

    SciTech Connect

    Konoplya, R.A.; Molina, C.

    2005-06-15

    We investigate the response of traversable wormholes to external perturbations through finding their characteristic frequencies and time-domain profiles. The considered solution describes traversable wormholes between the branes in the two brane Randall-Sundrum model and was previously found within Einstein gravity with a conformally coupled scalar field. The evolution of perturbations of a wormhole is similar to that of a black hole and represents damped oscillations (ringing) at intermediately late times, which are suppressed by power-law tails (proportional to t{sup -2} for monopole perturbations) at asymptotically late times.

  2. The Saturn Ring Observer: In situ studies of planetary rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Tiscareno, M. S.; Spilker, L. J.

    2010-12-01

    As part of the Planetary Science Decadal Survey recently undertaken by the NRC's Space Studies Board for the National Academy of Sciences, studies were commissioned for a number of potential missions to outer planet targets. One of these studies examined the technological feasibility of a mission to carry out in situ studies of Saturn's rings, from a spacecraft placed in a circular orbit above the ring plane: the Saturn Ring Observer. The technical findings and background are discussed in a companion poster by T. R. Spilker et al. Here we outline the science goals of such a mission. Most of the fundamental interactions in planetary rings occur on spatial scales that are unresolved by flyby or orbiter spacecraft. Typical particle sizes in the rings of Saturn are in the 1 cm - 10 m range, and average interparticle spacings are a few meters. Indirect evidence indicates that the vertical thickness of the rings is as little as 5 - 10 m, which implies a velocity dispersion of only a few mm/sec. Theories of ring structure and evolution depend on the unknown characteristics of interparticle collisions and on the size distribution of the ring particles. The SRO could provide direct measurements of both the coefficient of restitution -- by monitoring individual collisions -- and the particles’ velocity dispersion. High-resolution observations of individual ring particles should also permit estimates of their spin states. Numerical simulations of Saturn’s rings incorporating both collisions and self-gravity predict that the ring particles are not uniformly distributed, but are instead clustered into elongated structures referred to as “self-gravity wakes”, which are continually created and destroyed on an orbital timescale. Theory indicates that the average separation between wakes in the A ring is of order 30-100 m. Direct imaging of self-gravity wakes, including their formation and subsequent dissolution, would provide critical validation of these models. Other

  3. Kinetics of ring formation

    NASA Astrophysics Data System (ADS)

    Ben-Naim, E.; Krapivsky, P. L.

    2011-06-01

    We study reversible polymerization of rings. In this stochastic process, two monomers bond and, as a consequence, two disjoint rings may merge into a compound ring or a single ring may split into two fragment rings. This aggregation-fragmentation process exhibits a percolation transition with a finite-ring phase in which all rings have microscopic length and a giant-ring phase where macroscopic rings account for a finite fraction of the entire mass. Interestingly, while the total mass of the giant rings is a deterministic quantity, their total number and their sizes are stochastic quantities. The size distribution of the macroscopic rings is universal, although the span of this distribution increases with time. Moreover, the average number of giant rings scales logarithmically with system size. We introduce a card-shuffling algorithm for efficient simulation of the ring formation process and we present numerical verification of the theoretical predictions.

  4. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  5. δ(13)C and Water Use Efficiency in the Glucose of Annual Pine Tree Rings as Ecological Indicators of the Forests in the Most Industrialized Part of Poland.

    PubMed

    Sensuła, Barbara M

    In this study, stable carbon isotope ratios in the glucose samples were extracted from annual pine tree rings as bio-indicators of contemporary environmental changes in heavily urbanized areas. The sampling sites were located in close proximity to point source pollution emitters, such as a heat and power plant "Łaziska" and steelworks "Huta Katowice" in Silesia (Poland). The analysed samples covered the time span from 1975 to 2012 AD, the time period of the development of industrialization and the modernization in the industrial sector in Poland, similarly as in Eastern Europe. This modernization was connected with EU legislation and the implementation of restrictive governmental regulations on emissions. The carbon isotope discrimination has been proposed as a method for evaluating water use efficiency. The measurements of carbon isotopes were carried out using the continuous flow isotope ratio mass spectrometer coupled to the elemental analyser. The δ(13)C values were calibrated relative to the C-3 and C-5 international standards. Diffuse air pollution caused the variation in δ(13)C and iWUE (the ratio between CO2 assimilation and stomatal conductance) dependency on the type of emitter and some local effects of other human activities. In this study, the first results of water use efficiency in glucose are presented. In the period of time from 1975 to 2012, the water use efficiency values increased from 98 to 122 μmol/mol.

  6. Ringing phenomenon of the fiber ring resonator.

    PubMed

    Ying, Diqing; Ma, Huilian; Jin, Zhonghe

    2007-08-01

    A resonator fiber-optic gyro (R-FOG) is a high-accuracy inertial rotation sensor based on the Sagnac effect. A fiber ring resonator is the core sensing element in the R-FOG. When the frequency of the fiber ring resonator input laser is swept linearly with time, ringing of the output resonance curve is observed. The output field of the fiber ring resonator is derived from the superposition of the light transmitted through the directional coupler directly and the multiple light components circulated in the fiber ring resonator when the frequency of the laser is swept. The amplitude and phase of the output field are analyzed, and it is found that the difference in time for different light components in the fiber ring resonator to reach a point of destructive interference causes the ringing phenomenon. Finally the ringing phenomenon is observed in experiments, and the experimental results agree with the theoretical analysis well.

  7. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  8. Saturn's Spectacular Ring System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Saturn's beautiful rings have fascinated astronomers since they were first observed by Galileo in 1610. The main rings consist of solid particles mostly in the 1 cm - 10 m range, composed primarily of water ice. The ring disk is exceptionally thin - the typical local thickness of the bright rings is tens of meters, whereas the diameter of the main rings is 250,000 km! The main rings exhibit substantial radial variations "ringlets", many of which are actively maintained via gravitational perturbations from Saturn's moons. Exterior to the main rings lie tenuous dust rings, which have little mass but occupy a very large volume of space. This seminar will emphasize the physics of ring-moon interactions, recent advances in our understanding of various aspects of the rings obtained from observations taken during 1995 when the rings appeared edge-on to the Earth and then to the Sun, and observations in subsequent years from HST.

  9. Analysis of Ring Wake Simulations

    NASA Astrophysics Data System (ADS)

    Lewis, M. C.; Stewart, G. R.

    1999-09-01

    indent=20pt Collisional N-body simulations at the edge of a perturbed planetary ring are used to model the edges of the Encke gap in Saturn's rings. A small satellite, Pan, orbits inside the Encke gap and excites forced eccentricities and density wakes on both edges of the gap. The simulations use a local cell method to model a narrow ring using particles of the appropriate size for the A-ring at the proper optical depth. In the simulations we see evidence for shear reversal at the wake peaks. Our results imply that the most significant factor in the damping of the wakes is the reduction of the forced eccentricity and not randomization of the phase angles of the particles. The reduction of the forced eccentricity occurs in an orderly fashion with steep drops at each successive wake maximum following the highest density wake peak. indent=20pt At the inner edge (that nearer the perturber) we see phase shifts visible as bending of the line wake maxima. Because the simulations are actually of narrow rings, we also see a number of interesting phenomena at the outer edge. A strong boundary layer forms at that edge, which becomes partially detached from the rest of the ring. The wake patterns persist much further downstream in this boundary layer than they do in the rest of the ring. We also observe that in the less dense region between the main section of the ring and the boundary layer the magnitude of the forced eccentricities reverse their behavior in the main part and increase at each wake maxima. indent=20pt At the talk we will compare our results to the various analytic theories of Borderies, Goldreich, and Tremaine.

  10. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  11. Birth Control Ring

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Birth Control Ring KidsHealth > For Teens > Birth Control Ring Print A A A What's in this ... español Anillo vaginal anticonceptivo What Is It? The birth control ring is a soft, flexible, doughnut-shaped ring ...

  12. New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring

    SciTech Connect

    de Pater, I; Hammel, H B; Gibbard, S G; Showalter, M R

    2006-02-02

    We compare near-infrared observations of the recently discovered outer rings of Uranus with HST results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced via impacts into the embedded moon Mab, which apparently orbits at a location where non-gravitational perturbations favor the survival and spreading of sub-micron sized dust. R/2003 U 2 more closely resembles Saturn's G ring.

  13. Joining mechanism with stem tension and interlocked compression ring

    DOEpatents

    James, Allister W.; Morrison, Jay A.

    2012-09-04

    A stem (34) extends from a second part (30) through a hole (28) in a first part (22). A groove (38) around the stem provides a non-threaded contact surface (42) for a ring element (44) around the stem. The ring element exerts an inward force against the non-threaded contact surface at an angle that creates axial tension (T) in the stem, pulling the second part against the first part. The ring element is formed of a material that shrinks relative to the stem by sintering. The ring element may include a split collet (44C) that fits partly into the groove, and a compression ring (44E) around the collet. The non-threaded contact surface and a mating distal surface (48) of the ring element may have conic geometries (64). After shrinkage, the ring element is locked onto the stem.

  14. [Advances in the development of new antitubercular agents from orthocondensed heterocyclic compounds. Part 3. Substances containing several types of heteroatoms in the six-membered ring].

    PubMed

    Waisser, K; Bures, O; Holý, P

    2001-11-01

    Tuberculosis and other mycobacterial diseases are considered to be one of the most important problems of contemporary health service. Since 1985 and particularly in the 1990s and at present the search for new structures of antimycobacterial agents have ranked among the foremost areas of chemotherapeutic research. The present review paper is already the 18th communication in a group of review papers about substances with antituberculotic effects, and the third, final, communication devoted in this series about the development of new antimycobacterial agents to ortho-condensed heterocyclic compounds in recent 15 years. The classification of ortho-condensed compounds is based on six-membered heterocyclic substructural fragments and the present study deals with the substructural fragments containing a greater number of different heteroatoms. The literature search is based on the journal Chemical Abstracts, Current Awareness in Biomedicine, part Mycobacteria, and original papers. Current Awareness in Biomedicine is, however, a very imperfect literature search source, recording only a fraction of communications. Review papers about five-membered heterocyclic antituberculotic ortho-condensed compounds was published in the present journal in 1999.

  15. Present and future of scientific bird ringing

    USGS Publications Warehouse

    Spina, F.; Tautin, J.; Adams, N.J.; Slotow, R.H.

    1999-01-01

    In 1999 scientific bird ringing will celebrate its first century of existence. Started mainly to investigate bird movements, bird ringing has become a much more flexible method to study different aspects of bird biology. Bird ringing can only be properly organised if an effective international co-operation exists. In Europe, this co-ordination is ensured by EURING, made of 35 national ringing centres; sister organisations exist in other parts of the world (like Africa, Australia, U.S. and Canada), sharing the same aims and problems. This RTD is mainly targeted to ornithologists involved with the co-ordination of bird ringing stations and national centres world-wide. Common aspects of the organisation of ringing activities, as well as of the potential ringing has and will have in the future in addressing major scientific questions in Ornithology will be taken into account. The advisability of setting up a standing committee on bird ringing within the IOC will be discussed, and the project of creating a world-wide organisation of ringing schemes in order to further improve communication and exchange of experiences will also be addressed. This new organisation would be formally founded in 1999, when an international conference organised by EURING to celebrate the first 100 years of bird ringing will be held in Denmark.

  16. Present and future of scientific bird ringing

    USGS Publications Warehouse

    Spina, F.; Tautin, J.; Adams, N.J.; Slotow, R.H.

    1998-01-01

    In 1999 scientific bird ringing will celebrate its first century of existence. Started mainly to investigate bird movements, bird ringing has become a much more flexible method to study different aspects of bird biology. Bird ringing can only be properly organised if an effective international co-operation exists. In Europe, this co-ordination is ensured by EURING, made of 35 national ringing centres; sister organisations exist in other parts of the world (like Africa, Australia, U.S. and Canada), sharing the same aims and problems. This RTD is mainly targeted to ornithologists involved with the co-ordination of bird ringing stations and national centres world-wide. Common aspects of the organisation of ringing activities, as well as of the potential ringing has and will have in the future in addressing major scientific questions in Ornithology will be taken into account. The advisability of setting up a standing committee on bird ringing within the IOC will be discussed, and the project of creating a world-wide organisation of ringing schemes in order to further improve communication and exchange of experiences will also be addressed. This new organisation would be formally founded in 1999, when an international conference organised by EURING to celebrate the first 100 years of bird ringing will be held in Denmark.

  17. Boom and Bust Cycles in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Meinke, B. K.; Sremcevic, M.; Albers, N.

    2010-12-01

    Cassini UVIS occultation data show clumping in Saturn’s F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations perturbed by Mimas and Prometheus. Timescales range from hours to months. The maximum clumping lags the moon by roughly π in the forcing frame. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator-prey system: the aggregate mean size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. For realistic values of the parameters this creates a limit cycle behavior, as for the ecology of foxes and hares or the boom-bust economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag roughly consistent with the UVIS occultation measurements. We conclude that the agitation by the moons at both these locations in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material allows fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. These more persistent objects would then orbit at the Kepler rate. Such processes can create the equinox objects seen at the B ring edge and in the F ring, explain the ragged nature of those ring regions and allow for rare events to aggregate ring particles into solid objects, recycling the ring material and extending the ring lifetime.

  18. Boom and Bust Cycles in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Meinke, B. K.; Sremcevic, M.; Albers, N.

    2010-10-01

    7/16/10 12:23 PM UVIS occultation data show clumping in Saturn's F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations perturbed by Mimas and Prometheus. Timescales range from hours to months. The maximum clumping lags the moon by π in the forcing frame. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator-prey system: the aggregate mean size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. For realistic values of the parameters this creates a limit cycle behavior, as for the ecology of foxes and hares or the boom-bust economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag consistent with the UVIS occultation measurements. We conclude that the agitation by the moons at both these locations in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material allows fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. These more persistent objects would then orbit at the Kepler rate. Such processes can create the equinox objects seen at the B ring edge and in the F ring, explain the ragged nature of those ring regions and allow for rare events to aggregate ring particles into solid objects, recycling the ring material and extending the ring lifetime. 7/16/10 12:23 PM 7/16/10 12:23 PM

  19. New dust belts of Uranus: one ring, two ring, red ring, blue ring.

    PubMed

    de Pater, Imke; Hammel, Heidi B; Gibbard, Seran G; Showalter, Mark R

    2006-04-07

    We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings.

  20. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  1. On certain Hecke rings

    PubMed Central

    Evens, Sam; Bressler, Paul

    1987-01-01

    We examine rings that embed into the smash product of the group algebra of the Weyl group with the field of meromorphic functions on the Cartan subalgebra and are generated by elements that satisfy braid relations. We prove that every such ring is isomorphic to either the Hecke algebra, the nil Hecke ring, or the group algebra of the Weyl group. PMID:16593804

  2. Rings Around Uranus

    ERIC Educational Resources Information Center

    Maran, Stephen P.

    1977-01-01

    Events leading up to the discovery of the rings of Uranus are described. The methods used and the logic behind the methods are explained. Data collected to prove the existence of the rings are outlined and theories concerning the presence of planetary rings are presented. (AJ)

  3. Soft normed rings.

    PubMed

    Uluçay, Vakkas; Şahin, Mehmet; Olgun, Necati

    2016-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft normed rings by soft set theory. The notions of soft normed rings, soft normed ideals, soft complete normed rings are introduced and also several related properties and examples are given.

  4. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  5. On the solar dust ring(s)

    NASA Astrophysics Data System (ADS)

    Mukai, T.

    Based on a mechanism to form the solar dust ring, it is proved that the observed peak in infrared F-corona cannot be explained by silicate type grains alone. Preliminary analysis on the recent infrared data of the F-corona by Maihara et al. (1984) has suggested that the ring particles have different physical properties compared with the dust grains, which produce the background F-corona.

  6. Electro-optical hybrid slip ring

    NASA Astrophysics Data System (ADS)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  7. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  8. GRISM Spectophotometry of the Uranus Ring

    NASA Astrophysics Data System (ADS)

    Smith, Bradford

    1997-07-01

    Details of the near-infrared spectral reflectance of the Uranus rings are poorly known, because of problems associated with the scattered light from the planet. Grism spectroscopy of the brightest part of the Epsilon ring will be made with the planet just outside the field of view. To minimize the glare from Uranus, the observations should made when the widest part of the Epsilon ring is at a position angle of approximately 174 degrees. This is one in a series of observations designed to intercompare the near-infrared spectral reflectivity of dark objects in the solar system. Some record of processes that occurred within the Uranus subnebula may be left on the surfaces of the ring particles or the surface coatings of the associated dark inner satellites.

  9. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  10. 1993 Evaluation of steel ring standards for magnetic particle inspection

    SciTech Connect

    Bates, B.; Hagemaier, D.; Petty, J.; Armstrong, C.

    1996-10-01

    The Ketos ring standard manufactured from AISI Type 01 (.90 carbon) tool steel has become part of certain US magnetic particle standards such as MIL-STD-1949. The rings are used to verify system performance and for sensitivity evaluation for magnetic particle materials. Some controversy exists concerning the use of the steel ring as a reference standard for the following reasons: inconsistencies in hole detectability have been noted between various rings caused by differences in magnetic permeability as a result of variations in annealing; the use of magnetic particle indication evaluation for ring standard certification is subject to variations in particle concentration, sensitivity, and visual subjectivity; and the proposed introduction of new materials in the manufacture of ring standards. This report describes an evaluation of rings manufactured of different materials and different annealed states. A suggested method for qualifying a newly manufactured ring as a certified reference standard is also described.

  11. Slowing of Vortex Rings

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Bolster, Diogo; Hershberger, Robert

    2008-11-01

    We have investigated the slowing of vortex rings in water which are created with very thin cores. We find that these rings propagate with no measurable change in diameter or core size. The drag appears to be the result of viscous forces on the core. A simple model for this drag describes experimental data in terms of a drag coefficient, which depends only on Reynolds number. Barenghi's group at Newcastle found that the translational velocity of a ring in an inviscid fluid perturbed by Kelvin waves decreases with increasing amplitude of Kelvin waves. This suggests that the velocity of vortex rings in a viscous fluid may well depend on the amplitude of Kelvin waves at the time of formation. Rings with substantial amplitude of Kelvin waves will be expected to move more slowly than rings with little or no Kelvin wave amplitude. We present experimental data confirming this suggestion.

  12. Relation of nickel concentrations in tree rings to groundwater contamination

    USGS Publications Warehouse

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-01-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  13. Relation of Nickel Concentrations in Tree Rings to Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-08-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  14. Saturn's E ring revisited

    NASA Astrophysics Data System (ADS)

    Feibelman, W. A.; Klinglesmith, D. A.

    1980-07-01

    Images of the E ring of Saturn obtained by the image processing of photographs of the 1966 edge-on presentation of the planet's ring plane are presented. Two methods of image enhancement were used: scanning with an image quantizer operated in the derivative mode to enhance contrast and computerized subtraction of a circularly symmetric image of the overexposed Saturn disk. Further photographic and CCD observation confirming the existence of the ring extending to twice the diameter of the A ring, which was not detected by the Pioneer 11 imaging photopolarimeter, is indicated.

  15. The exocyclic amino group of adenine in Pt(II) and Pd(II) complexes: a critical comparison of the X-ray crystallographic structural data and gas phase calculations.

    PubMed

    Silaghi-Dumitrescu, Radu; Mihály, Béla; Mihály, Timea; Attia, Amr A A; Sanz Miguel, Pablo J; Lippert, Bernhard

    2017-03-17

    A detailed computational (DFT level of theory) study regarding the nature of the exocyclic amino group, N6H2, of the model nucleobase 9-methyladenine (9MeA) and its protonated (9MeAH(+)) and deprotonated forms (9MeA-H), free and metal-complexed, has been conducted. The metals are Pt(II) and Pd(II), bonded to nitrogen-containing co-ligands (NH3, dien, bpy), with N1, N6, and N7 being the metal-binding sites, individually or in different combinations. The results obtained from gas phase calculations are critically compared with X-ray crystallography data, whenever possible. In the majority of cases, there is good qualitative agreement between calculated and experimentally determined C6-N6 bond lengths, but calculated values always show a trend to larger values, by 0.02-0.08 Å. Both methods indicate, with few exceptions, a high degree of double-bond character of C6-N6, consistent with an essentially sp(2)-hybridized N6 atom. The shortest values for C6-N6 distances in X-ray crystal structures are around 1.30 Å. Exceptions refer to cases in which DFT calculations suggest the existence of a hydrogen bond with N6H2 acting as a H bond acceptor, hence a situation with N6 having undergone a substantial hybridization shift toward sp(3). Nevertheless, even in these cases the C6-N6 bond (1.392 Å) is still halfway between a typical C-N single bond (1.48 Å) and a typical C=N double bond (1.28 Å). This scenario is, however, not borne out by X-ray crystallographic results, and is attributed to the absence of counter anions and solvent molecules in the calculated structures.

  16. Modified spiral wound retaining ring

    NASA Technical Reports Server (NTRS)

    Lawson, A. G. (Inventor)

    1980-01-01

    A spiral wound retaining ring with angled ends is described. The ring is crimped at the same angle as the ring ends to maintain a constant thickness dimension. The angling of the ends of the ring and crimp allow the ends to be positioned closer together while maintaining enough clearance to enable insertion and removal of the ring. By reducing the separation distance between the ends a stronger ring results since the double layer area of the ring is maximized.

  17. Contactless Magnetic Slip Ring

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki (Inventor); Deardon, Joe D. (Inventor)

    1997-01-01

    A contactless magnetic slip ring is disclosed having a primary coil and a secondary coil. The primary and secondary coils are preferably magnetically coupled together, in a highly reliable efficient manner, by a magnetic layered core. One of the secondary and primary coils is rotatable and the contactless magnetic slip ring provides a substantially constant output.

  18. Illustration of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration shows a close-up of Saturn's rings. These rings are thought to have formed from material that was unable to form into a Moon because of tidal forces from Saturn, or from a Moon that was broken up by Saturn's tidal forces.

  19. Birth Control Ring

    MedlinePlus

    ... It? The birth control ring is a soft, flexible, doughnut-shaped ring about 2 inches (5 centimeters) in diameter. It is inserted into the vagina, where it slowly releases hormones — the chemicals the body makes to control organ function — through the vaginal wall into the ...

  20. Steroidal contraceptive vaginal rings.

    PubMed

    Sarkar, N N

    2003-06-01

    The development of steroid-releasing vaginal rings over the past three decades is reviewed to illustrate the role of this device as an effective hormonal contraceptive for women. Vaginal rings are made of polysiloxane rubber or ethylene-vinyl-acetate copolymer with an outer diameter of 54-60 mm and a cross-sectional diameter of 4-9.5 mm and contain progestogen only or a combination of progestogen and oestrogen. The soft flexible combined ring is inserted in the vagina for three weeks and removed for seven days to allow withdrawal bleeding. Progesterone/progestogen-only rings are kept in for varying periods and replaced without a ring-free period. Rings are in various stages of research and development but a few, such as NuvaRing, have reached the market in some countries. Women find this method easy to use, effective, well tolerated and acceptable with no serious side-effects. Though the contraceptive efficacy of these vaginal rings is high, acceptability is yet to be established.

  1. Smoke Ring Physics

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2011-11-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampère's law in an introductory physics course. We discuss these common features.

  2. Smoke Ring Physics

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2011-01-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)

  3. EBT ring physics

    SciTech Connect

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)

  4. Telemetry carrier ring and support

    NASA Technical Reports Server (NTRS)

    Wakeman, Thomas G. (Inventor)

    1992-01-01

    A telemetry carrier ring for use in a gas turbine engine includes an annular support ring connected to the engine and an annular carrier ring coupled to the support ring, each ring exhibiting different growth characteristics in response to thermal and mechanical loading. The carrier ring is coupled to the support ring by a plurality of circumferentially spaced web members which are relatively thin in an engine radial direction to provide a predetermined degree of radial flexibility. the web members have a circumferential width and straight axial line of action selected to transfer torque and thrust between the support ring and the carrier ring without substantial deflection. The use of the web members with radial flexibility provides compensation between the support ring and the carrier ring since the carrier ring grows at a different rate than the supporting ring.

  5. Jupiter's Gossamer Rings Explained.

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2003-05-01

    Over the past several years, Galileo measurements and groundbased imaging have drastically improved our knowledge of Jupiter's faint ring system. We now recognize that the ring consists of four components: a main ring 7000km wide, whose inner edge blossoms into a vertically-extended halo, and a pair of more tenuous Gossamer rings, one associated with each of the small moons Thebe and Amalthea. When viewed edge on, the Gossamer rings appear as diaphanous disks whose thicknesses agree with the vertical excursions of the inclined satellites from the equatorial plane. In addition, the brightness of each Gossamer ring drops off sharply outside the satellite orbits. These correlations allowed Burns etal (1999, Science, 284, 1146) to argue convincingly that the satellites act as sources of the dusty ring material. In addition, since most material is seen inside the orbits of the source satellites, an inwardly-acting dissipative force such as Poynting-Robertson drag is implicated. The most serious problem with this simple and elegant picture is that it is unable to explain the existence of a faint swath of material that extends half a jovian radius outward from Thebe. A key constraint is that this material has the same thickness as the rest of the Thebe ring. In this work, we identify the mechanism responsible for the outward extension: it is a shadow resonance, first investigated by Horanyi and Burns (1991, JGR, 96, 19283). When a dust grain enters Jupiter's shadow, photoelectric processes shut down and the grain's electric charge becomes more negative. The electromagnetic forces associated with the varying charge cause periodic oscillations in the orbital eccentricity and semimajor axis as the orbital pericenter precesses. This results in a ring which spreads both inward and outward of its source satellite while preserving its vertical thickness - just as is observed for the Thebe ring. Predictions of the model are: i) gaps of micron-sized material interior to Thebe and

  6. Ring chromosome 4.

    PubMed Central

    McDermott, A; Voyce, M A; Romain, D

    1977-01-01

    A mentally and physically retarded boy with a 46,XY,ring (4) (p16q35) chromosome complement is described. Chromosome banding showed that the amount of chromosome material deleted from the ring chromosome 4 was minimal, apparently no more than the telomeres. Chromosomal aberrations appear to be restricted to the production of double-sized dicentric rings, and aneuploidy. The mosiacism resulting from the behavioural peculiarities of ring chromosomes is described as dynamic mosaicism. It is suggested that the clinical features associated with this ring chromosome are more likely to be the result of the effects of a diploid/monosomy 4/polysomy 4 mosaicism than to the deficiency of the telomeric regions of the chromosome. Images PMID:881718

  7. Jupiter's Rings: Sharpest View

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons spacecraft took the best images of Jupiter's charcoal-black rings as it approached and then looked back at Jupiter. The top image was taken on approach, showing three well-defined lanes of gravel- to boulder-sized material composing the bulk of the rings, as well as lesser amounts of material between the rings. New Horizons snapped the lower image after it had passed Jupiter on February 28, 2007, and looked back in a direction toward the sun. The image is sharply focused, though it appears fuzzy due to the cloud of dust-sized particles enveloping the rings. The dust is brightly illuminated in the same way the dust on a dirty windshield lights up when you drive toward a 'low' sun. The narrow rings are confined in their orbits by small 'shepherding' moons.

  8. Radio Emission from Saturn's Rings: Polarization

    NASA Astrophysics Data System (ADS)

    Molnar, L. A.; Dunn, D. E.

    2002-09-01

    We are pursuing a systematic program of observing and modeling the radio emission from Saturn's rings over a range of wavelengths and ring inclinations. In our earlier reports we have presented a number total intensity maps along with results from our Monte Carlo radiative transfer code, simrings. This has been a fruitful test of particle spatial distribution within the rings: in particular evidence of wake structure in the A ring and of a near monolayer in the C ring. In this contribution we present our first maps of polarized intensity. Such observations offer independent information about the nature of the ring particles. In particular, Grossman (Ph.D. thesis, 1990) showed that the orientation of the position angle of the polarization of the rings is in direct conflict with the predictions of Mie scattering. We will present several polarized maps, discuss some of the subtleties of producing such maps (in particular the tradeoff between angular resolution and reliable intensities), and suggest possible approaches for modeling of the polarized emission. This work was supported in part by a grant from Research Corporation.

  9. Cellular Automata Models of Ring Dynamics

    NASA Astrophysics Data System (ADS)

    Gravner, Janko

    This paper describes three models arising from the theory of excitable media, whose primary visual feature are expanding rings of excitation. Rigorous mathematical results and experimental/computational issues are both addressed. We start with the much-studied Greenberg-Hastings model (GHM) in which the rings are very short-lived, but they do have a transient percolation property. By contrast, in the model we call annihilating nested rings (ANR), excitation centers only gradually lose strength, i.e., each time they become inactive (and then stay so forever) with a fixed probability; we show how the long-term global connectivity properties of the set of excited sites undergo a phase transition. Second part of the paper is devoted to digital boiling (DB) in which new rings spontaneously appear at rested sites with a positive probability. We focus on such (related) issues as convergence to equilibrium, equilibrium excitation level and success of the basic coupling.

  10. Cellular automata models of ring dynamics

    SciTech Connect

    Gravner, J.

    1996-12-01

    This paper describes three models arising from the theory of excitable media, whose primary visual feature are expanding rings of excitation. Rigorous mathematical results and experimental/computational issues are both addressed. We start with the much-studied Greenberg-Hastings model (GHM) in which the rings are very short-lived, but they do have a transient percolation property. By contrast, in the model we call annihilating nested rings (ANR), excitation centers only gradually lose strength, i.e., each time they become inactive (and then stay so forever) with a fixed probability; we show how the long-term global connectivity properties of the set of excited sites undergo a phase transition. Second part of the paper is devoted to digital boiling (DB) in which new rings spontaneously appear at rested sites with a positive probability. We focus on such (related) issues as convergence to equilibrium, equilibrium excitation level and success of the basic coupling.

  11. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  12. Seal ring installation tool

    NASA Technical Reports Server (NTRS)

    Haselmaier, L. Haynes (Inventor)

    2004-01-01

    A seal ring tool that allows an installer to position a primary seal ring between hub ends of pipe flanges that are being assembled together. The tool includes a pivoting handle member and extension arms attached to the pivoting handle member. The ends of the arms have side indentation type longitudinal grooves angled toward one another for holding the primary seal ring in place between the hubs of respective pipes that are to be attached together. The arms of the tool can also have flat sides that can be used to abut against an optional second larger seal that is supported within a groove in one of the hub ends so that the second hub end can then be moved against the other side of the primary seal ring. Once the seal ring is positioned between the pipe hubs, the pipe hubs can be moved about the seal ring due to the flat sides of the arms of the tool. The tool eliminates the chances of damaging and contaminating seal rings being installed within pipe hubs that are being attached to one another.

  13. Gibbs Ringing in Diffusion MRI

    PubMed Central

    Veraart, Jelle; Fieremans, Els; Jelescu, Ileana O.; Knoll, Florian; Novikov, Dmitry S.

    2016-01-01

    Purpose To study and reduce the effect of Gibbs ringing artifact on computed diffusion parameters. Methods We reduce the ringing by extrapolating the k-space of each diffusion weighted image beyond the measured part by selecting an adequate regularization term. We evaluate several regularization terms and tune the regularization parameter to find the best compromise between anatomical accuracy of the reconstructed image and suppression of the Gibbs artifact. Results We demonstrate empirically and analytically that the Gibbs artifact, which is typically observed near sharp edges in magnetic resonance images, has a significant impact on the quantification of diffusion model parameters, even for infinitesimal diffusion weighting. We find the second order total generalized variation to be a good choice for the penalty term to regularize the extrapolation of the k-space, as it provides a parsimonious representation of images, a practically full suppression of Gibbs ringing, and the absence of staircasing artifacts typical for total variation methods. Conclusions Regularized extrapolation of the k-space data significantly reduces truncation artifacts without compromising spatial resolution in comparison to the default option of window filtering. In particular, accuracy of estimating diffusion tensor imaging and diffusion kurtosis imaging parameters improves so much that unconstrained fits become possible. PMID:26257388

  14. Low tilt angle photometry and the thickness of Saturn's rings

    NASA Technical Reports Server (NTRS)

    Lumme, K.; Irvine, W. M.

    1979-01-01

    Nine photographic plates taken by Focas and Dollfus (1969) at the moment of the 1966 passage of the earth through the ring plane of Saturn have been remeasured. The value 0.8 (+2.3, -0.8) km is obtained for the ring thickness. The observed transmitted radiation through the rings at two distances from the planet suggests that there are density fluctuations in Ring A with the low density areas having an optical thickness less than 0.13. The radiation reflected by the outermost part of the ring layer can be explained in terms of particles similar to those in the bulk of the rings. The time of the passage of the earth through the ring plane was found to be December 18 at 07h plus or minus 4h UT in 1966.

  15. Dynamics of the Uranian Rings

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    Some of the problems of the shepherding satellite model of Goldreich ant tremaine are discussed. The following topics are studied: (1) optical depths of the all the observed narrow rings; (2) satellite and ring separation timescales; (3) ring edge sharpness; (4) shock formation in narrow rings; (5) the existence of small satellites near the Uranian rings; and (6) the apse and node alignments of the eccentric and inclined rings.

  16. Heavy ion storage rings

    SciTech Connect

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  17. Alternative parallel ring protocols

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Foudriat, E. C.; Maly, Kurt J.; Kale, V.

    1990-01-01

    Communication protocols are know to influence the utilization and performance of communication network. The effect of two token ring protocols on a gigabit network with multiple ring structure is investigated. In the first protocol, a mode sends at most one message on receiving a token. In the second protocol, a mode sends all the waiting messages when a token is received. The behavior of these protocols is shown to be highly dependent on the number of rings as well as the load in the network.

  18. Supernumerary small ring chromosome.

    PubMed Central

    Kaffe, S; Kim, H J; Hsu, L Y; Brill, C B; Hirschhorn, K

    1977-01-01

    A supernumerary small ring chromosome was found in 30% of cultured peripheral leucocytes and 50% of skin fibroblasts in a 6-year-old boy with mild mental retardation and midline cleft palate. The extra chromosome appeared to carry a densely staining region on Giemsa banding. The banding patterns of the remaining 46 chromosomes were normal. C banding indicated that the ring chromosome contained mainly centromeric constitutive heterochromatin. Chromosome analysis of both parents showed normal karyotypes by both conventional and banding techniques; thus the origin of the ring chromosome could not be determined. Images PMID:604496

  19. Theodolite Ring Lights

    NASA Technical Reports Server (NTRS)

    Clark, David

    2006-01-01

    Theodolite ring lights have been invented to ease a difficulty encountered in the well-established optical-metrology practice of using highly reflective spherical tooling balls as position references. A theodolite ring light produces a more easily visible reflection and eliminates the need for an autocollimating device. A theodolite ring light is a very bright light source that is well centered on the optical axis of the instrument. It can be fabricated, easily and inexpensively, for use on a theodolite or telescope of any diameter.

  20. Saturn's dynamic D ring

    USGS Publications Warehouse

    Hedman, M.M.; Burns, J.A.; Showalter, M.R.; Porco, C.C.; Nicholson, P.D.; Bosh, A.S.; Tiscareno, M.S.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Clark, R.

    2007-01-01

    The Cassini spacecraft has provided the first clear images of the D ring since the Voyager missions. These observations show that the structure of the D ring has undergone significant changes over the last 25 years. The brightest of the three ringlets seen in the Voyager images (named D72), has transformed from a narrow, <40-km wide ringlet to a much broader and more diffuse 250-km wide feature. In addition, its center of light has shifted inwards by over 200 km relative to other features in the D ring. Cassini also finds that the locations of other narrow features in the D ring and the structure of the diffuse material in the D ring differ from those measured by Voyager. Furthermore, Cassini has detected additional ringlets and structures in the D ring that were not observed by Voyager. These include a sheet of material just interior to the inner edge of the C ring that is only observable at phase angles below about 60??. New photometric and spectroscopic data from the ISS (Imaging Science Subsystem) and VIMS (Visual and Infrared Mapping Spectrometer) instruments onboard Cassini show the D ring contains a variety of different particle populations with typical particle sizes ranging from 1 to 100 microns. High-resolution images reveal fine-scale structures in the D ring that appear to be variable in time and/or longitude. Particularly interesting is a remarkably regular, periodic structure with a wavelength of ??? 30 ?? km extending between orbital radii of 73,200 and 74,000 km. A similar structure was previously observed in 1995 during the occultation of the star GSC5249-01240, at which time it had a wavelength of ??? 60 ?? km. We interpret this structure as a periodic vertical corrugation in the D ring produced by differential nodal regression of an initially inclined ring. We speculate that this structure may have formed in response to an impact with a comet or meteoroid in early 1984. ?? 2006 Elsevier Inc. All rights reserved.

  1. Ultrasonic Newton's rings

    SciTech Connect

    Hsu, D.K. ); Dayal, V. )

    1992-03-09

    Interference fringes due to bondline thickness variation were observed in ultrasonic scans of the reflected echo amplitude from the bondline of adhesively joined aluminum skins. To demonstrate that full-field interference patterns are observable in point-by-point ultrasonic scans, an optical setup for Newton's rings was scanned ultrasonically in a water immersion tank. The ultrasonic scan showed distinct Newton's rings whose radii were in excellent agreement with the prediction.

  2. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    PubMed Central

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; Junge, Wolfgang; Khan, Shahid

    2015-01-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics that may

  3. Dual-ring scattering method for proton beam spreading

    NASA Astrophysics Data System (ADS)

    Takada, Yoshihisa

    1994-01-01

    A dual-ring double scattering method has been proposed to obtain a large uniform beam field in the proton rotating gantry used for cancer treatment. This method makes it possible to reduce the distance for beam field formation and to use the larger part of the beam. A flat beam field can be formed at a position on the patient by scattering the beam more strongly at the inner part of the dual-ring second scatterer than the outer part.

  4. Bending the Rings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's rings appear strangely warped in this view of the rings seen through the upper Saturn atmosphere.

    The atmosphere acts like a lens in refracting (bending) the light reflected from the rings. As the rings pass behind the overexposed limb (edge) of Saturn as seen from Cassini, the ring structure appears to curve downward due to the bending of the light as it passes through the upper atmosphere.

    This image was obtained using a near-infrared filter. The filter samples a wavelength where methane gas does not absorb light, thus making the far-off rings visible through the upper atmosphere.

    By comparing this image to similar ones taken using filters where methane gas does absorb, scientists can estimate the vertical profile of haze and the abundance of methane in Saturn's high atmosphere.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 14, 2005, through a filter sensitive to wavelengths of infrared light centered at 938 nanometers and at a distance of approximately 197,000 kilometers (123,000 miles) from Saturn. The image scale is 820 meters (2,680 feet) per pixel.

  5. Motion of a bubble ring in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2013-06-01

    In this paper, lattice Boltzmann method was undertaken to study the dynamics of a vortex ring bubble (or bubble ring) in a viscous incompressible fluid. The study is motivated partly by our desire to assess whether a bubble ring keeps increasing its radius and decreasing its rise velocity as it rises through fluid as was predicted by Turner ["Buoyant vortex rings," Proc. R. Soc. London, Ser. A 239, 61 (1957)], 10.1098/rspa.1957.0022 and Pedley ["The toroidal bubble," J. Fluid Mech. 32, 97 (1968)], 10.1017/S0022112068000601, or does the ring like a rising bubble, eventually reaches a steady state where its radius and velocity remain constant as was predicted by Joseph et al. [Potential Flows of Viscous and Viscoelastic Fluids (Cambridge University Press, 2008)]. The parameters investigated included ring circulation, Reynolds number, density ratio and Bond number. Our numerical results show that a rising bubble ring increases its radius and decreases its velocity, but the process is interrupted by ring instability that eventually causes it to break up into smaller bubbles. This finding is consistent with the stability analysis by Pedley, who predicted that a bubble ring has a finite lifespan and is ultimately destroyed by surface tension instability. Furthermore, it is found that increasing initial circulation has a stabilizing effect on a bubble ring while increasing Reynolds number or Bond number hastens ring instability, resulting in an earlier break up into smaller bubbles; the number of bubbles depends on the wavenumber of the perturbation.

  6. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2014-04-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings [5, 8]. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~ 100m in size) have been identified in Saturn's A ring through their propeller signature in the images [10, 7, 9, 11]. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring [6, 2]. In this paper we present our new results about by now classical A ring propellers and more enigmatic B ring population. Due to the presence of self-gravity wakes the analysis of propeller brightness in ISS images always bears some ambiguity [7, 9] and consequently the exact morphology of propellers is not a settled issue. In 2008 we obtained a fortunate Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation of the largest A ring propeller Bleriot. Utilizing Cassini ISS images we obtain Bleriot orbit and demonstrate that UVIS Persei Rev42 occultation did cut across Bleriot about 100km downstream from the center. The occultation itself shows a prominent partial gap and higher density outer flanking wakes, while their orientation is consistent with a downstream cut. While in the UVIS occultation the partial gap is more prominent than the flanking wakes, the features mostly seen in Bleriot images are actually flanking wakes. One of the most interesting aspects of the A ring propellers are their wanderings, or longitudinal deviations from a pure circular orbit [11]. We numerically investigated the possibility of simple moon

  7. Radar Scans of the Saturn Rings

    NASA Astrophysics Data System (ADS)

    West, Richard D.; Janssen, Michael A.; Cuzzi, Jeffrey N.; Anderson, Yanhua; Hamilton, Gary; Cassini Radar Team

    2016-10-01

    The Cassini mission is now heading into its last year of observations. Part of the mission plan includes orbits that bring the spacecraft close to Saturn's rings prior to deorbiting into Saturn's atmosphere. These orbits are providing a unique opportunity to obtain backscatter measurements and relatively high-resolution brightness temperature measurements from the rings. We plan to scan the rings with the radar central beam and obtain backscatter measurements as a function of radial distance with some variation of incidence angle. Active mode radar scans are planned for four of the final high inclination orbits that bring the spacecraft close to the rings. These radar observations will be designed to sweep the A through C rings with varying bandwidth chirps selected to optimize the tradeoff between radial resolution and measurement variance. Pulse compression will deliver radial resolutions varying from about 200 m to around 4 km depending on the bandwidth used. These measurements will provide a 1-D profile of backscatter obtained at 2.2 cm wavelength that will complement similar passive profiles obtained at optical, infrared, and microwave wavelengths. This presentation will summarize the detailed designs and tradeoffs made for these observations. Such measurements will further constrain and inform models of the composition and structure of the ring particle distributions. This work is supported by the NASA Cassini Program at JPL - CalTech.

  8. Ring correlations in random networks

    NASA Astrophysics Data System (ADS)

    Sadjadi, Mahdi; Thorpe, M. F.

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  9. Piston Ring Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kuhn, M.

    1943-01-01

    The discovery and introduction of the internal combustion engine has resulted in a very rapid development in machines utilizing the action of a piston. Design has been limited by the internal components of the engine, which has been subjected to ever increasing thermal and mechanical stresses, Of these internal engine components, the piston and piston rings are of particular importance and the momentary position of engine development is not seldom dependent upon the development of both of the components, The piston ring is a well-known component and has been used in its present shape in the steam engine of the last century, Corresponding to its importance, the piston ring has been a rich field for creative activity and it is noteworthy that in spite of this the ring has maintained its shape through the many years. From the many and complicated designs which have been suggested as a packing between piston and cylinder wall hardly one suggestion has remained which does not resemble the original design of cast iron rectangular ring.

  10. Causes of ring-related leg injuries in birds - evidence and recommendations from four field studies.

    PubMed

    Griesser, Michael; Schneider, Nicole A; Collis, Mary-Anne; Overs, Anthony; Guppy, Michael; Guppy, Sarah; Takeuchi, Naoko; Collins, Pete; Peters, Anne; Hall, Michelle L

    2012-01-01

    One of the main techniques for recognizing individuals in avian field research is marking birds with plastic and metal leg rings. However, in some species individuals may react negatively to rings, causing leg injuries and, in extreme cases, the loss of a foot or limb. Here, we report problems that arise from ringing and illustrate solutions based on field data from Brown Thornbills (Acanthiza pusilla) (2 populations), Siberian Jays (Perisoreus infaustus) and Purple-crowned Fairy-wrens (Malurus coronatus). We encountered three problems caused by plastic rings: inflammations triggered by material accumulating under the ring (Purple-crowned Fairy-wrens), contact inflammations as a consequence of plastic rings touching the foot or tibio-tarsal joint (Brown Thornbills), and toes or the foot getting trapped in partly unwrapped flat-band colour rings (Siberian Jays). Metal rings caused two problems: the edges of aluminium rings bent inwards if mounted on top of each other (Brown Thornbills), and too small a ring size led to inflammation (Purple-crowned Fairy-wrens). We overcame these problems by changing the ringing technique (using different ring types or larger rings), or using different adhesive. Additionally, we developed and tested a novel, simple technique of gluing plastic rings onto metal rings in Brown Thornbills. A review of studies reporting ring injuries (N = 23) showed that small birds (<55 g body weight) are more prone to leg infections while larger birds (>35 g) tend to get rings stuck over their feet. We give methodological advice on how these problems can be avoided, and suggest a ringing hazard index to compare the impact of ringing in terms of injury on different bird species. Finally, to facilitate improvements in ringing techniques, we encourage online deposition of information regarding ringing injuries of birds at a website hosted by the European Union for Bird Ringing (EURING).

  11. Physics of planetary rings

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2007-08-01

    It is difficult to enumerate all the surprises presented by the planetary rings. The Saturnian rings are stratified into thousands of ringlets and the Uranian rings are compressed into narrow streams, which for some reason or other differ from circular orbits like the wheel of an old bicycle. The edge of the rings is jagged and the rings themselves are pegged down under the gravitational pressure of the satellites, bending like a ship's wake. There are spiral waves, elliptical rings, strange interlacing of narrow ringlets, and to cap it all one has observed in the Neptunian ring system three dense, bright arcs - like bunches of sausages on a transparent string. For celestial mechanics this is a spectacle as unnatural as a bear's tooth in the necklace of the English queen. In the dynamics of planetary rings the physics of collective interaction was supplemented by taking collisions between particles into account. One was led to study a kinetic equation with a rather complex collision integral - because the collisions are inelastic - which later on made it possible, both by using the Chapman-Enskog method and by using the solution of the kinetic equation for a plasma in a magnetic field, to reduce it to a closed set of (hydrodynamical) moment equations [1]. The hydrodynamical instabilities lead to the growth of short-wavelength waves and large-scale structures of the Saturnian rings [1]. We have shown that the formation of the existing dense Uranian rings is connected with the capture of positively drifting ring particles in inner Lindblad resonances which arrest this drift [1]. After the formation of dense rings at the positions of satellite resonances the collective interaction between resonant particles is amplified and the rings can leave the resonance and drift away from the planet and the parent resonance. We can expect in the C ring an appreciable positive ballistic particle drift caused by the erosion of the B ring by micrometeorites. It is therefore natural

  12. Deployable Fresnel Rings

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  13. Rings dominate western Gulf

    NASA Astrophysics Data System (ADS)

    Vidal L., Francisco V.; Vidal L., Victor M. V.; Molero, José María Pérez

    Surface and deep circulation of the central and western Gulf of Mexico is controlled by interactions of rings of water pinched from the gulf's Loop Current. The discovery was made by Mexican oceanographers who are preparing a full-color, 8-volume oceanographic atlas of the gulf.Anticyclonic warm-core rings pinch off the Loop Current at a rate of about one to two per year, the scientists of the Grupo de Estudios Oceanográficos of the Instituto de Investigaciones Eléctricas (GEO-IIE) found. The rings migrate west until they collide with the continental shelf break of the western gulf, almost always between 22° and 23°N latitude. On their westward travel they transfer angular momentum and vorticity to the surrounding water, generating cyclonic circulations and vortex pairs that completely dominate the entire surface and deep circulation of the central and western gulf.

  14. The Effects of Forming Parameters on Conical Ring Rolling Process

    PubMed Central

    Meng, Wen; Zhao, Guoqun; Guan, Yanjin

    2014-01-01

    The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716

  15. Light rings in subarctic conifers as a dendrochronological tool

    SciTech Connect

    Filion, L.; Payette, S.; Gauthier, L.; Boutin, Y.

    1986-01-01

    Light rings are characterized by one or a very few latewood-cell layers, an indication of shortened growing seasons, and are particularly frequent in black spruce (Picea mariana (Mill.) BSP) at the treeline in Quebec. The construction of a light-ring chronology spanning the period AD 1398-1982 showed that the highest frequency (>25%) of light rings among 160 trees and krummholz occurred in 1593, 1620, 1634, 1784, 1816, 1817, 1853, 1969, and 1972. These diagnostic rings may be a useful cross-dating tool for dendroecologists working with living and dead krummholz with a low-growth variability. About two-thirds of the 65 light-ring years coincide with years (or triads) of major volcanic eruptions. The climatic conditions (low temperature) occurring at the end of the growing season, in part induced by the climatic effect of volcanism, seem to initiate light rings.

  16. Design Considerations for High Energy Electron -- Positron Storage Rings

    DOE R&D Accomplishments Database

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  17. Ring laser gyroscope anode

    SciTech Connect

    Ljung, B.H.

    1981-03-17

    An anode for a ring laser gyroscope which provides improved current stability in the glow discharge path is disclosed. The anode of this invention permits operation at lower currents thereby allowing a reduction of heat dissipation in the ring laser gyroscope. The anode of one embodiment of this invention is characterized by a thumbtack appearance with a spherical end where the normal sharp end of the thumbtack would be located. The stem of the anode extends from the outside of the gyroscope structure to the interior of the structure such that the spherical end is substantially adjacent to the laser beam.

  18. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  19. Unidirectional ring lasers

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1994-09-20

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.

  20. Unidirectional ring lasers

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1994-01-01

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.

  1. Photometry and polarimetry of Saturn's rings from Pioneer Saturn

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.; Dilley, J. P.; Fountain, J. W.

    1980-01-01

    A profile of the average normal optical depth for Saturn's rings between 1.22 and 2.35 Saturn radii is examined. In the A and B rings, horizontal inhomogeneities make these values deceptive. A thinner component of the B ring with an optical depth below 0.08 covers up to 4% of its surface area. In the A ring, the more transparent component covers more than 7% of its area and has an optical depth greater than 0.10. These thinner parts of the rings would rarely be apparent from earth based observations. The particles of the C ring are larger than 15 microns and differ from those of the B and A rings. The C ring is either homogeneous with high albedo and forward scattering phase functions, or shows a gradient in albedo with distance from Saturn. Polarimetry of Saturn's ring provides only an upper limit (below 15%) which is consistent with ground-based predictions. Polarization in the outer A ring is negative.

  2. Einstein Ring in Distant Universe

    NASA Astrophysics Data System (ADS)

    2005-06-01

    Using ESO's Very Large Telescope, Rémi Cabanac and his European colleagues have discovered an amazing cosmic mirage, known to scientists as an Einstein Ring. This cosmic mirage, dubbed FOR J0332-3557, is seen towards the southern constellation Fornax (the Furnace), and is remarkable on at least two counts. First, it is a bright, almost complete Einstein ring. Second, it is the farthest ever found. ESO PR Photo 20a/05 ESO PR Photo 20a/05 Deep Image of a Region in Fornax (FORS/VLT) [Preview - JPEG: 400 x 434 pix - 60k] [Normal - JPEG: 800 x 867 pix - 276k] [Full Res - JPEG: 1859 x 2015 pix - 3.8M] ESO PR Photo 20b/05 ESO PR Photo 20b/05 Zoom-in on the Newly Found Einstein Ring (FORS/VLT) [Preview - JPEG: 400 x 575 pix - 168k] [Normal - JPEG: 630 x 906 pix - 880k] Caption: ESO PR Photo 20a/05 is a composite image taken in two bands (B and R) with VLT/FORS1 of a small portion of the sky (field-of-view 7x7' or 1/15th of the area of the full moon). The faintest object seen in the image has a magnitude 26, that is, it is 100 million times fainter than what can be observed with the unaided eye. The bright elliptical galaxy on the lower-left quadrant is a dwarf galaxy part of a large nearby cluster in the Fornax constellation. As for all deep images of the sky, this field shows a variety of objects, the brightest ponctual sources being stars from our Galaxy. By far the field is dominated by thousands of faint background galaxies the colours of which are related to the age of their dominant stellar population, their dust content and their distance. The newly found Einstein ring is visible in the top right part of the image. ESO PR Photo 20b/05 zooms-in on the position of the newly found cosmic mirage. ESO PR Photo 20c/05 ESO PR Photo 20c/05 Einstein Ring in Distant Universe (FORS/VLT) [Preview - JPEG: 400 x 584 pix - 104k] [Normal - JPEG: 800 x 1168 pix - 292k] [Full Res - JPEG: 1502 x 2192 pix - 684k] Caption of ESO PR Photo 20c/05: The left image is magnified and centred

  3. Saturn's Rings, the Yarkovsky Effects, and the Ring of Fire

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2004-01-01

    The dimensions of Saturn's A and B rings may be determined by the seasonal Yarkovsky effect and the Yarkovsky-Schach effect; the two effects confine the rings between approximately 1.68 and approximately 2.23 Saturn radii, in reasonable agreement with the observed values of 1.525 and 2.267. The C ring may be sparsely populated because its particles are transients on their way to Saturn; the infall may create a luminous Ring of Fire around Saturn's equator. The ring system may be young: in the past heat flow from Saturn's interior much above its present value would not permit rings to exist.

  4. Gravity Signature of the Teague Ring Impact Structure, Western Australia

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1998-01-01

    As part of a multidisciplinary effort to better define the nature of the Teague Ring structure and to understand specifics about the crustal structure, a GPS controlled gravity survey of the feature was undertaken in the austral winter of 1996.

  5. Chariklo's ring system 1. Structure of the ring system from stellar occultations

    NASA Astrophysics Data System (ADS)

    Berard, Diane; Sicardy, Bruno; Braga-Ribas, Felipe; camargo, julio; Vieira-Martins, Roberto; Assafin, Marcelo; Sickafoose, Amanda A.; Colas, François; Dauvergne, Jean-Luc; Bath, Karl-Ludwig; Maquet, Lucie; Tancredi, Gonzalo; Richichi, Andrea; Puji, Irawati; Ivanov, Valentin; Bradshaw, Jonathan; Broughton, John; Meza, Erick; Ortiz, Jose-Luis; Duffard, Rene; Leiva, Rodrigo

    2016-10-01

    Two dense and narrow rings around Chariklo (the largest centaur object known to date) were discovered by stellar occultation on June 3, 2013 (Braga-Ribas et al., Nature 508, 72, 2014). The main and larger ring is called C1R, while the faintest one is called C2R.Here we report six others occultations by Chariklo's ring system observed on February 16, March 16, April 29, June 28, 2014 and April 26, May 12, 2015. They provide a total of fifteen ring profiles, among which are four resolved profiles of C1R.The latter exhibits a W-shape profile that is essentially opaque at the edges. Its width varies from 4.8 to 7.7 km over the available longitude range. Those caracteristics have been detected in Uranus elliptic rings. The equivalent width We (normal opacity x physical radial width) of C1R is 2 km with typical rms of 1 km, while C2R has We of 0.2 km (rms ~ 0.1 km). None of the rings exhibits variation of We with longitude.Assuming the rings are circular, we can exhibit a pole which is compatible with the two multi-chord ring detections (June 3, 2013 and April 29, 2014): αp=151.4° and δp=41.5°. We will then estimate an upper limit of a possible ring eccentricity based on those two observations.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  6. Technology and experiments of 42CrMo bearing ring forming based on casting ring blank

    NASA Astrophysics Data System (ADS)

    Li, Yongtang; Ju, Li; Qi, Huiping; Zhang, Feng; Chen, Guozhen; Wang, Mingli

    2014-03-01

    Bearing ring is the crucial component of bearing. With regard to such problems as material waste, low efficiency and high energy consumption in current process of producing large bearing ring, a new process named "casting-rolling compound forming technology" is researched by taking the typical 42CrMo slew bearing as object. Through theoretical analysis, the design criteria of the main casting-rolling forming parameters are put forward at first. Then the constitutive relationship model of as-cast 42CrMo steel and its mathematical model of dynamic recrystallization are obtained according to the results of the hot compression experiment. By a coupled thermal-mechanical finite element model for radial-axial rolling of bearing ring, the fraction of dynamic recrystallization is calculated and recrystallized grains size are predicated. Meanwhile, the effects of the initial rolling temperature and feed rate of idle roll on material microstructure evolution are analyzed. Finally, the industrial rolling experiment is designed and performed, based on the simulation results. In addition, mechanical and metallographic tests are conducted on rolled bearing ring to get the mechanical parameters and metallographic structure. The experimental data and results show that the mechanical properties of bearing ring produced by casting-rolling compound forming technology are up to industrial standard, and a qualified bearing ring can be successfully formed by employing this new technology. Through the study, a process of forming large bearing ring directly by using casting ring blank is obtained, which could provide an effective theoretical guidance for manufacturing large ring parts. It also has an edge in saving material, lowering energy and improving efficiency.

  7. Topological Interactions in Multiply Linked DNA Rings

    NASA Astrophysics Data System (ADS)

    Otto, M.; Vilgis, T. A.

    1998-01-01

    The elasticity of DNA catenanes, i.e., multiply linked DNA rings, is investigated using the Gauss invariant as a minimal model for topology conservation. An effective elastic free energy as a function of the distance R between segments located on different rings is obtained. An anharmonic part at large distances, growing as R4, if R>>RG ( RG being the radius of gyration), is found, for R<rings for several linking numbers are in qualitative agreement with distribution functions obtained experimentally from electron micrographs of DNA catenanes [S. D. Levene et al., Biophys. J. 69, 277 (1995)].

  8. Earth Rings for Planetary Environment Control

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome; Oldson, John; Levin, Eugene; Carroll, Joseph

    2002-01-01

    For most of its past, large parts of the Earth have experienced subtropical climates, with high sea levels and no polar icecaps. This warmer environment was punctuated 570, 280, and 3 million years ago with periods of glaciation that covered temperate regions with thick ice for millions of years. At the end of the current ice age, a warmer climate could flood coastal cities, even without human-caused global warming. In addition, asteroids bombard the Earth periodically, with impacts large enough to destroy most life on Earth, and the sun is warming inexorably. This paper proposes a concept to solve these problems simultaneously, by creating an artificial planetary ring about the Earth to shade it. Past proposals for space climate control have depended on gigantic engineering structures launched from Earth and placed in Earth orbit or at the Earth-Sun L1 libration point, requiring fabrication, large launch masses and expense, constant control, and repair. Our solution is to begin by using lunar material, and then mine and remove Earth-orbit-crossing asteroids and discard the tailings into Earth orbit, to form a broad, flat ring like those of Saturn. This solution is evaluated and compared with other alternatives. Such ring systems can persist for thousands of years, and can be maintained by shepherding satellites or by continual replenishment from new asteroids to replace the edges of the ring lost by diffusion. An Earth ring at R = 1.3-1.83 RE would shade only the equatorial regions, moderating climate extremes, and could reverse a century of global warming. It could also absorb particles from the radiation belts, making trips to high Earth orbit and GEO safer for humans and for electronics. It would also light the night many times as bright as the full moon. A preliminary design of the ring is developed, including its location, mass, composition, stability, and timescale required. A one-dimensional climate model is used to evaluate the Earth ring performance

  9. Ring Flame Stabilizer

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Ring Flame Stabilizer has been developed in conjunction with Lewis Research Center. This device can lower pollutant emissions (which contribute to smog and air pollution) from natural-gas appliances such as furnaces and water heaters by 90 percent while improving energy efficiency by 2 percent.

  10. Ring of Stellar Death

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Spitzer Space Telescope shows a dying star (center) surrounded by a cloud of glowing gas and dust. Thanks to Spitzer's dust-piercing infrared eyes, the new image also highlights a never-before-seen feature -- a giant ring of material (red) slightly offset from the cloud's core. This clumpy ring consists of material that was expelled from the aging star.

    The star and its cloud halo constitute a 'planetary nebula' called NGC 246. When a star like our own Sun begins to run out of fuel, its core shrinks and heats up, boiling off the star's outer layers. Leftover material shoots outward, expanding in shells around the star. This ejected material is then bombarded with ultraviolet light from the central star's fiery surface, producing huge, glowing clouds -- planetary nebulas -- that look like giant jellyfish in space.

    In this image, the expelled gases appear green, and the ring of expelled material appears red. Astronomers believe the ring is likely made of hydrogen molecules that were ejected from the star in the form of atoms, then cooled to make hydrogen pairs. The new data will help explain how planetary nebulas take shape, and how they nourish future generations of stars.

    This image composite was taken on Dec. 6, 2003, by Spitzer's infrared array camera, and is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  11. Exotic damping ring lattices

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.

  12. Ring laser scatterometer

    DOEpatents

    Ackermann, Mark; Diels, Jean-Claude

    2005-06-28

    A scatterometer utilizes the dead zone resulting from lockup caused by scatter from a sample located in the optical path of a ring laser at a location where counter-rotating pulses cross. The frequency of one pulse relative to the other is varied across the lockup dead zone.

  13. Reading, Writing, and Rings!

    ERIC Educational Resources Information Center

    Aschbacher, Pamela; Li, Erika; Hammon, Art

    2008-01-01

    "Reading, Writing, and Rings!" was created by a team of elementary teachers, literacy experts, and scientists in order to integrate science and literacy. These free units bring students inside NASA's Cassini-Huygens mission to Saturn. The authors--a science teacher and education outreach specialist and two evaluators of educational programs--have…

  14. Making Molecular Borromean Rings

    ERIC Educational Resources Information Center

    Pentecost, Cari D.; Tangchaivang, Nichol; Cantrill, Stuart J.; Chichak, Kelly S.; Peters, Andrea J.; Stoddart, Fraser J.

    2007-01-01

    A procedure that requires seven 4-hour blocks of time to allow undergraduate students to prepare the molecular Borromean rings (BRs) on a gram-scale in 90% yield is described. The experiment would serve as a nice capstone project to culminate any comprehensive organic laboratory course and expose students to fundamental concepts, symmetry point…

  15. Rings from Close Encounters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Weve recently discovered narrow sets of rings around two minor planets orbiting in our solar system. How did these rings form? A new study shows that they could be a result of close encounters between the minor planets and giants like Jupiter or Neptune.Unexpected Ring SystemsPositions of the centaurs in our solar system (green). Giant planets (red), Jupiter trojans (grey), scattered disk objects (tan) and Kuiper belt objects (blue) are also shown. [WilyD]Centaurs are minor planets in our solar system that orbit between Jupiter and Neptune. These bodies of which there are roughly 44,000 with diameters larger than 1 km have dynamically unstable orbits that cross paths with those of one or more giant planets.Recent occultation observations of two centaurs, 10199 Chariklo and 2060 Chiron, revealed that these bodies both host narrow ring systems. Besides our four giant planets, Chariklo and Chiron are the only other bodies in the solar system known to have rings. But how did these rings form?Scientists have proposed several models, implicating collisions, disruption of a primordial satellite, or dusty outgassing. But a team of scientists led by Ryuki Hyodo (Paris Institute of Earth Physics, Kobe University) has recently proposed an alternative scenario: what if the rings were formed from partial disruption of the centaur itself, after it crossed just a little too close to a giant planet?Tidal Forces from a GiantHyodo and collaborators first used past studies of centaur orbits to estimate that roughly 10% of centaurs experience close encounters (passing within a distance of ~2x the planetary radius) with a giant planet during their million-year lifetime. The team then performed a series of simulations of close encounters between a giant planet and a differentiated centaur a body in which the rocky material has sunk to form a dense silicate core, surrounded by an icy mantle.Some snapshots of simulation outcomes (click for a closer look!) for different initial states of

  16. The Impact of Climate, Sulfur Dioxide, and Industrial Dust on δ(18)O and δ(13)C in Glucose from Pine Tree Rings Growing in an Industrialized Area in the Southern Part of Poland.

    PubMed

    Sensuła, Barbara M

    The mass spectrometric analysis of the impact of sulfur dioxide and dust emission on carbon and oxygen stable isotopic compositions of glucose hydrolysed from α-cellulose samples extracted from Scots pine growing in the vicinity of "Huta Katowice" steelworks was the main aim of this study. The annual rings covered the time span from 1975 to 2012 AD. The relationships between climatic conditions, sulfur dioxide, and industrial dust emission and oxygen and carbon isotopic compositions were analyzed using correlation function methods. This study shows the first analysis of carbon and oxygen stable isotopes in glucose as the bio-indicators of CO2, sulfur dioxide, and industrial dust emission. The anticoincidence trend of δ(18)O and δ(13)C and dust and sulfur dioxide confirms that the decreases of dust and sulfur dioxide industrial emission increase δ(18)O and δ(13)C values in glucose.

  17. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  18. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  19. Ring closure in actin polymers

    NASA Astrophysics Data System (ADS)

    Sinha, Supurna; Chattopadhyay, Sebanti

    2017-03-01

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.

  20. DC-Powered Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Farhang, Amiri

    2016-01-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…

  1. Uranus: the rings are black.

    PubMed

    Sinton, W M

    1977-11-04

    An upper limit of 0.05 is established for the geometric albedo of the newly discovered rings of Uranus. In view of this very low albedo, the particles of the rings cannot be ice-covered as are those of rings A and B of Saturn.

  2. The Case for Massive and Ancient Rings of Saturn

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2016-10-01

    Analysis of Voyager and Pioneer 11 results give a mass for Saturn's rings, M = 5 x 10-8 Msat. This is about the mass of Saturn's small moon Mimas. This has been interpreted as a lower limit to the ring mass (Esposito et al 1983), since the thickest parts of the rings were not penetrated by the stellar occultstion, and this calculation assumes an unvarying particle size throughout the rings. Because the rings are constantly bombarded by micrometeroids, their current composition of nearly pure water ice implies such low mass rings must have formed recently. The case is particularly strong for Saturn's A ring, where the data are the best, implying the A ring is less than 10% of the age of the Saturn (Esposito 1986). Cassini results compound this problem. UVIS spectra are consistent with either young rings or rings about 10x as massive as the Voyager estimate (Elliott and Esposito (2011). CDA confirms the impacting mass flux is similar to that assumed for the pollution calculations (Kempf etal 2015). VIMS analysis of density wave signatures in the B ring gives a value of about 1/3 the Voyager value (Hedmann etal 2016). This VIMS result implies the rings are even younger! The problem is that young rings are very unlikely to be formed recently, meaning that we live in a very special epoch, following some unlikely recent origin… like disruption of a medium sized moon or capture of the fragments of a disrupted comet (Charnoz etal 2009).To take the VIMS results at face value, Saturn's low mass rings must be very young. The optically thick B ring must be made of small, porous or fractal particles. An alternative is that we accept the higher mass interpretation of the Pioneer 11 results (Esposito etal 2008) using the granola bar model of Colwell etal 2007. This would imply that the density wave structure seen by VIMS is not sensing all the mass in the rings, where structure near strong resonances is dominted by temporary aggregates, and where non-linear effects cause the

  3. Satellite Rings Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This brief movie clip (of which the release image is a still frame), taken by NASA's Cassini spacecraft as it approached Jupiter, shows the motions, over a 16 hour-period, of two satellites embedded in Jupiter's ring. The moon Adrastea is the fainter of the two, and Metis the brighter. Images such as these will be used to refine the orbits of the two bodies.

    The movie was made from images taken during a 40-hour sequence of the Jovian ring on December 11, 2000.

    Cassini is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages Cassini for NASA's Office of Space Science, Washington, D.C.

  4. Saturn Ring Observer

    NASA Technical Reports Server (NTRS)

    Spilker, T. R.

    2001-01-01

    Answering fundamental questions about ring particle characteristics, and individual and group behavior, appears to require close-proximity (a few km) observations. Saturn's magnificent example of a ring system offers a full range of particle sizes, densities, and behaviors for study, so it is a natural choice for such detailed investigation. Missions implementing these observations require post-approach Delta(V) of approximately 10 km/s or more, so past mission concepts called upon Nuclear Electric Propulsion. The concept described here reduces the propulsive Delta(V) requirement to as little as 3.5 km/s, difficult but not impossible for high-performance chemical propulsion systems. Additional information is contained in the original extended abstract.

  5. The Secular Evolution of a Close Ring-Satellite System

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.

    2007-10-01

    Current literature on ring-satellite interactions tells us that the long-term orbital stability of a satellite that orbits near a planetary ring is uncertain. This is because the satellite's perturbations at its Lindblad and corotation resonances in the ring tend to alter the satellite's eccentricity e, but it is unclear whether e-damping or e-excitation is the result, since that depends on whether particle motions at the corotation resonances are unsaturated (Goldreich & Tremaine 1982). Further, the stability of the satellite's inclination I seems grim, since the satellite's inclination is excited by its many vertical resonances in the ring (Borderies et al 1984). Consequently, it is unclear whether the small gap-embedded satellites Pan (which inhabits the Encke gap in Saturn's A ring) and Daphnis (which inhabits the Keeler gap) should in fact reside in nearly circular orbits that are coplanar with the ring. To address this uncertainty, the following considers the satellite's secular gravitational perturbations of the ring, which can also alter the satellite's e and I. The Lagrange planetary equations are used to show that a small gap-embedded satellite can launch spiral density and spiral bending waves that propagate radially outwards from the gap's outer edge. These one-armed waves propagate via the secular part of the ring's self-attraction, and they tend to have low amplitudes and long wavelengths, 100's of km in Saturn's A ring. The excitation of these waves also damps the satellite's e and I at rates that depend on the satellite's mass, ring surface density, the gap width, and the planet's oblateness (Hahn 2007). These analytic predictions are also confirmed using the `rings-model' of Hahn (2003) to simulate a ring-satellite system. Whether this secular interaction can stabilize a satellite's e and I will be determined, and whether these low-amplitude waves have any observational consequences will also be discussed.

  6. Strained Ring Energetic Binders

    DTIC Science & Technology

    1993-08-27

    polyhomobenzvalene ( PHBV ). PHBV was not found to have the mechanical instability problems of PBV, but was still thermally unstable (Tonset - 660C, Tmax - 1090C...DISCUSSION 4 Polybenzvalene (PBV) 4 Polyhomobenzvalene ( PHBV ) 6 Chain-Transfer Studies 11 CONCLUSIONS 15 EXPERIMENTAL PROCEDURES 16 .F 4E 19 APPENDICES A...strained ring polymers similar to PBV are known. The investigation of one of these polymers, polyhomobenzvalene ( PHBV ), is also described in this report

  7. Which Ringed Planet...!?

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Don't worry - you are not the only one who thought this was a nice amateur photo of planet Saturn, Lord of the Rings in our Solar System! But then the relative brightness and positions of the moons may appear somewhat unfamiliar... and the ring system does look unusually bright when compared to the planetary disk...?? Well, it is not Saturn, but Uranus , the next giant planet further out, located at a distance of about 3,000 million km, or 20 times the distance between the Sun and the Earth. The photo shows Uranus surrounded by its rings and some of the moons, as they appear on a near-infrared image that was obtained in the K s -band (at wavelength 2.2 µm) with the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile) . The exposure was made on November 19, 2002 (03:00 hrs UT) during a planetary research programme. The observing conditions were excellent (seeing 0.5 arcsec) and the exposure lasted 5 min. The angular diameter of Uranus is about 3.5 arcsec. The observers at ISAAC were Emmanuel Lellouch and Thérése Encrenaz of the Observatoire de Paris (France) and Jean-Gabriel Cuby and Andreas Jaunsen (both ESO-Chile). The rings The rings of Uranus were discovered in 1977, from observations during a stellar occultation event by astronomer teams at the Kuiper Airborne Observatory (KAO) and the Perth Observatory (Australia). Just before and after the planet moved in front of the (occulted) star, the surrounding rings caused the starlight to dim for short intervals of time. Photos obtained from the Voyager-2 spacecraft in 1986 showed a multitude of very tenuous rings. These rings are almost undetectable from the Earth in visible light. However, on the present VLT near-infrared picture, the contrast between the rings and the planet is strongly enhanced. At the particular wavelength at which this observation was made, the infalling sunlight is almost completely absorbed by gaseous methane present in the planetary atmosphere

  8. Precooler Ring Vacuum System

    SciTech Connect

    Moenich, J.

    1980-10-02

    The precooler vacuum system, as proposed by FNAL, is based on a suitable modification of the existing Electron Cooling Ring System. Because of the magnetic cycle of the bending magnets, distributed ion pumping, as exists in the Electron Cooling Ring, is not applicable. Instead, the proposed pumping will be done with commercial appendage ion pumps mounted approximately every two meters around the circumference of the ring. The loss of effective pumping speed and non-uniformity of system pressure with appendage pumps may not be major considerations but the large number required does effect experimental and analytical equipment placement considerations. There is a distributed pumping technique available which: (1) is not affected by the magnetic cycle of the bending magnets; (2) will provide a minimum of four times the hydrogen pumping speed of the proposed appendage ion pumps; (3) will require no power during pumping after the strip is activated; (4) will provide the heat source for bakeout; (5) is easily replaceable; and (6) can be purchased, installed, and operated at a generous economic advantage over the presently proposed ion pumped system. The pumping technique referred to is non-evaporable gettering with ST101 Zr/Al pumping strip. A technical description of this pumping strip is given on Data Sheet 1 and 2 attached to this report.

  9. Saturn's ``Gossamer'' Ring: The F Ring's Inner Sheet

    NASA Astrophysics Data System (ADS)

    Showalter, M. R.; Burns, J. A.; Hamilton, D. P.

    1998-09-01

    Recent Galileo and Earth-based images have revealed for the first time that Jupiter's ``gossamer'' ring is actually composed of two rings, one bounded at the outer edge by Amalthea and the other bounded by Thebe. Dynamical models suggest that these rings are composed of dust grains ejected off the surfaces of the two moons, which then evolve inward under Poynting-Robertson drag. A very faint sheet of material filling the region between Saturn's A and F Rings reported by Burns et al. (BAAS 15, 1013--1014, 1983) may be a dynamically analogous system, in which dust escapes from the F Ring and evolves inward to the A Ring. Unlike Jupiter's gossamer rings, however, the inner sheet of Saturn's F Ring has been well observed from a large range of phase angles and visual wavelengths by Voyager. Voyager images reveal that this faint ring shows a tenfold increase in brightness between phase angles of 125(deg) and 165(deg) , indicating that it is composed of fine dust microns in size. Preliminary estimates of the normal optical depth fall in the range 1--2*E(-4) , depending on the dust size distribution assumed. Initial spectrophotometry reveals that the ring is neutral in color. The ring is uniform in brightness over the entire region between the two rings, with no evidence for internal structure associated with Prometheus and Atlas, suggesting that neither of these embedded moons acts as either a source or a sink. We will refine the aforementioned measurements and develop photometric models to better constrain the properties of the dust in this ring. This will enable us to relate the dust population to that in the F Ring proper, and to better explore the dynamical processes at work.

  10. Persistent organic pollutants in ringed seals from the Russian Arctic.

    PubMed

    Savinov, Vladimir; Muir, Derek C G; Svetochev, Vladislav; Svetocheva, Olga; Belikov, Stanislav; Boltunov, Andrey; Alekseeva, Ludmila; Reiersen, Lars-Otto; Savinova, Tatiana

    2011-06-15

    Organochlorine compounds total DDT (ΣDDT), total HCH isomers (ΣHCH), toxaphenes (sum of Parlar 26, 50, 62), mirex, endrin, methoxychlor, total chlorinated benzenes (ΣCBz), total chlordane compounds (ΣCHL), polychlorinated biphenyls (total of 56 congeners; ΣPCBs), polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (sum of 7 tri- to hepta congeners; ΣPBDEs) were analysed in the blubber of adult ringed seals from the four areas of the Russian Arctic (White Sea, Barents Sea, Kara Sea and Chukchi Sea) collected in 2001-2005. Ringed seals from the south-western part of the Kara Sea (Dikson Island - Yenisei estuary) were the most contaminated with ΣDDTs, ΣPCBs, ΣCHL, and mirex as compared with those found in the other three areas of Russian Arctic, while the highest mean concentrations of ΣHCHs and PCDD/Fs were found in the blubber of ringed seals from the Chukchi Sea and the White Sea, respectively. Among all organochlorine compounds measured in ringed seals from the European part of the Russian Arctic, concentrations of ΣDDT and ΣPCBs only were higher as compared with the other Arctic regions. Levels of all other organochlorine compounds were similar or lower than in seals from Svalbard, Alaska, the Canadian Arctic and Greenland. ΣPBDEs were found in all ringed seal samples analysed. There were no significant differences between ΣPBDE concentrations found in the blubber of ringed seals from the three studied areas of the European part of the Russian Arctic, while PBDE contamination level in ringed seals from the Chukchi Sea was 30-50 times lower. ΣPBDE levels in the blubber of seals from the European part of the Russian Arctic are slightly higher than in ringed seals from the Canadian Arctic, Alaska, and western Greenland but lower compared to ringed seals from Svalbard and eastern Greenland.

  11. Helmet latching and attaching ring

    NASA Technical Reports Server (NTRS)

    Chase, E. W.; Viikinsalo, S. J. (Inventor)

    1970-01-01

    A neck ring releasably secured to a pressurized garment carries an open-ended ring normally in the engagement position fitted into an annular groove and adapted to fit into a complementary annular groove formed in a helmet. Camming means formed on the inner surface at the end of the helmet engages the open-ended ring to retract the same and allow for one motion donning even when the garment is pressurized. A projection on the end of the split ring is engageable to physically retract the split ring.

  12. Cassini UVIS Observations Show Active Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L.; Colwell, J. E.; UVIS Team

    2004-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the NASA/ESA Cassini spacecraft. This spectrograph includes channels for extreme UV and far UV spectroscopic imaging, high speed photometry of stellar occultations, solar EUV occultation, and a hydrogen/deuterium absorption cell. We report our initial results from UVIS observations of Saturn's rings. Dynamic interactions between neutrals, ions, rings, moons and meteoroids produce a highly structured and time variable Saturn system Oxygen in the Saturn system dominates the magnetosphere. Observed fluctuations indicate close interactions with plasma sources. Stochastic events in the E ring may be the ultimate source. The spectral signature of water ice is seen on Phoebe and in Saturn's rings. Water ice is mixed non-uniformly with darker constituents. The high structure of the UV ring reflectance argues that collisional transport dominates ballistic transport in darkening the rings. Our preliminary results support the idea that rings are recycled fragments of moons: the current processes are more important than history and initial conditions. The spectra along the UVIS SOI radial scan indicate varying amounts of water ice. In the A ring, the ice fraction increases outward to a maximum at the outer edge. This large-scale variation is consistent with initially pure ice that has suffered meteoritic bombardment over the age of the Solar system (Cuzzi and Estrada 1998). We also see variations over scales of 1000 - 3000 km, which cannot be explained by this mechanism. Ballistic transport of spectrally neutral extrinsic pollutants from meteoroids striking the rings has a typical throw distance of 6000 km (Durisen et al 1989), too long to explain this finer structure. We propose a class of smaller renewal events, in which a small moon residing within the rings is shattered by an external impactor (Colwell and Esposito 1993, Barbara and Esposito 2002, Esposito and Colwell 2003). The

  13. Mass of Saturn's A ring

    NASA Technical Reports Server (NTRS)

    Horn, L. J.; Russell, C. T.

    1993-01-01

    The mass of Saturn's A ring is reestimated using the behavior of spiral density waves embedded in the ring. The Voyager photopolarimeter (PPS) observed the star delta-Scorpii as it was occulted by Saturn's rings during the Voyager 2 flyby of Saturn in 1981 producing a radial profile of the rings. We examined forty spiral density waves in the Voyager PPS data of the A ring including 10 weaker waves that have not been previously analyzed by means of an autoregressive power spectral technique called Burg. The strengths of this new method for ring studies are that weaker, less extended waves are easily detected and characterized. This method is also the first one which does not require precise knowledge of the resonance location and phase of the wave in order to calculate the surface mass density. Uncertainties of up to 3 km are present in the currently available radial scales for Saturn's rings.

  14. A season in Saturn's rings: Cycling, recycling and ring history

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Meinke, B. K.; Albers, N.; Sremcevic, M.

    2012-04-01

    Cassini experiments have watched Saturn's ring system evolve before our eyes. Images and occultations show changes and transient events. The rings are a dynamic and complex geophysical system, incompletely modeled as a single-phase fluid. Key Cassini observations: High resolution images show straw, propellers, embedded moonlets, and F ring objects. Multiple UVIS, RSS and VIMS occutlations indicate multimodal ringlet and edge structure, including free and forced modes along with stochastic perturbations that are most likely caused by nearby mass concentrations. Vertical excursions are evident at ring edges and in other perturbed regions. The rings are occasionally hit by meteorites that leave a signature that may last centuries; meteoritic dust pollutes the rings. Temperature, reflectance and transmission spectra are influenced by the dynamical state of the ring particles. Saturn's Equinox 2009: Oblique lighting exposed vertical structure and embedded objects. The rings were the coldest ever. Images inspired new occultation and spectral analysis that show abundant structure in the perturbed regions. The rings are more variable and complex than we had expected prior to this seasonal viewing geometry. Sub-kilometer structure in power spectral analysis: Wavelet analysis shows features in the strongest density waves and at the shepherded outer edge of the B ring. Edges are variable as shown by multiple occultations and occultations of double stars. F ring kittens: 25 features seen in the first 102 occultations show a weak correlation with Prometheus location. We interpret these features as temporary aggregations. Simulation results indicate that accretion must be enhanced to match the kittens' size distribution. Images show that Prometheus triggers the formation of transient objects. Propellers and ghosts: Occulations and images provide evidence for small moonlets in the A, B and C rings. These indicate accretion occurs inside the classical Roche limit. Implications

  15. Erratum: Voyager Color Photometry of Saturn's Main Rings

    NASA Technical Reports Server (NTRS)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Showalter, Mark R.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    We correct a calibration error in our earlier analysis of Voyager color observations of Saturn's main rings at 14 deg phase angle and present thoroughly revised and reanalyzed radial profiles of the brightness of the main rings in Voyager G, V, and UV filters, and ratios of these brightnesses. These results are consistent with more recent HST results at 6 deg phase angle, once allowance is made for plausible phase reddening of the rings. Unfortunately, the Voyager camera calibration factors are simply not sufficiently well known for a combination of the Voyager and HST data to be used to constrain the phase reddening quantitatively. However, some interesting radial variations in reddening between 6-14 deg phase angles are hinted at. We update a ring-and-satellite color vs. albedo plot from Cuzzi and Estrada in several ways. The A and B rings are still found to be in a significantly redder part of color-albedo space than Saturn's icy satellites.

  16. New Views of Jupiter's Rings

    NASA Astrophysics Data System (ADS)

    Burns, J. A.

    1998-09-01

    Jupiter's rings are the archetype of ethereal planetary rings (very-low optical-depth bands containing micron-sized "dust"). As a result of much improved observations by Galileo (Ockert-Bell* -- most citations are et al. and Icarus in press* or this meeting) and Keck (de Pater*), we now understand the nature of such rings. The ring has three components: a 104 km-thick toroidal halo (1.4-1.7 RJ; normal optical depth t = 10-6), a thin main ring (1.7-1.8 RJ; t = 10-6), and a pair of exterior gossamer rings (1.8-3.5RJ; t = 10-7). The main ring has patchy ( 20-30 percent) brightness. The ring is reddish and its particles satisfy a -2.5 differential power-law size distribution. Because particle lifetimes are brief, the rings must be continually regenerated, by collisions into parent bodies, which may be unseen or may be the known small ring-moons (Thomas*, Simonelli). The gossamer ring seems to be collisional ejecta derived from the ring-moons Amalthea and Thebe, and evolving inward by Poynting-Robertson drag (Burns). The particles drift through many electromagnetic resonances, clustering around synchronous orbit, which produce jumps in the particles' inclinations (Hamilton). The main ring is probably debris from Adrastea and Metis, which orbit in the equatorial plane. The halo particles are driven vertically by electromagnetic forces, which may be resonant (Schaffer & Burns) or not (Horanyi & Cravens). When halo orbits become highly distorted, particles are lost into Jupiter. Similar faint rings may be attendant to all small, close-in satellites (Showalter).

  17. Aromatic and antiaromatic ring currents in a molecular nanoring

    NASA Astrophysics Data System (ADS)

    Peeks, Martin D.; Claridge, Timothy D. W.; Anderson, Harry L.

    2016-12-01

    Aromatic and antiaromatic molecules—which have delocalized circuits of [4n + 2] or [4n] electrons, respectively—exhibit ring currents around their perimeters. The direction of the ring current in an aromatic molecule is such as to generate a magnetic field that opposes the external field inside the ring (a ‘diatropic’ current), while the ring current in an antiaromatic molecule flows in the reverse direction (‘paratropic’). Similar persistent currents occur in metal or semiconductor rings, when the phase coherence of the electronic wavefunction is preserved around the ring. Persistent currents in non-molecular rings switch direction as a function of the magnetic flux passing through the ring, so that they can be changed from diatropic (‘aromatic’) to paratropic (‘antiaromatic’) simply by changing the external magnetic field. As in molecular systems, the direction of the persistent current also depends on the number of electrons. The relationship between ring currents in molecular and non-molecular rings is poorly understood, partly because they are studied in different size regimes: the largest aromatic molecules have diameters of about one nanometre, whereas persistent currents are observed in microfabricated rings with diameters of 20-1,000 nanometres. Understanding the connection between aromaticity and quantum-coherence effects in mesoscopic rings provides a motivation for investigating ring currents in molecules of an intermediate size. Here we show, using nuclear magnetic resonance spectroscopy and density functional theory, that a six-porphyrin nanoring template complex, with a diameter of 2.4 nanometres, is antiaromatic in its 4+ oxidation state (80 π electrons) and aromatic in its 6+ oxidation state (78 π electrons). The antiaromatic state has a huge paramagnetic susceptibility, despite having no unpaired electrons. This work demonstrates that a global ring current can be promoted in a macrocycle by adjusting its oxidation state

  18. Tree Rings: Timekeepers of the Past.

    ERIC Educational Resources Information Center

    Phipps, R. L.; McGowan, J.

    One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…

  19. Ring currents in azulene

    NASA Astrophysics Data System (ADS)

    Paxton, A. T.; Todorov, T. N.; Elena, A. M.

    2009-11-01

    We propose a self consistent polarisable ion tight binding theory for the study of push-pull processes in aromatic molecules. We find that the method quantitatively reproduces ab initio calculations of dipole moments and polarisability. We apply the scheme in a simulation which solves the time dependent Schrödinger equation to follow the relaxation of azulene from the second excited to the ground states. We observe rather spectacular oscillating ring currents which we explain in terms of interference between the HOMO and LUMO states.

  20. Wave structure in planetary rings

    NASA Astrophysics Data System (ADS)

    Horn, Linda Joyce

    1992-01-01

    Planetary rings contain a wealth of wavelike structure that is driven by gravitational resonance interactions with nearby satellites. Wave behavior is a powerful tool for estimating physical ring parameters that are key to our understanding of ring origin and evolution. A new technique, utilizing the Burg autoregressive power spectral algorithm, was developed for probing the physical characteristics of rings and for detecting waves that are not otherwise visible. Data from the Voyager photopolarimeter (PPS) stellar occultations by the rings of Saturn, Uranus, and Neptune and the Voyager radio science (RSS) occultation by Saturn's rings were used. Local surface mass density estimates are obtained from the dispersion of 40 spiral density waves in Saturn's A ring, including 10 weaker waves not previously analyzed. Surface mass densities vary from 20 to 60 gm sq cm. Increasing optical depth is not correlated with increasing surface mass density, especially after the Keeler gap, suggesting that ring particle size and composition are not uniform throughout the A ring. Saturn's A ring mass is reestimated using the surface mass densities and is 5.2 +/- 1.3 x 1021 gm. The wakes of Saturn's satellite Pan are not short timescale phenomena because the effects of Pan's gravitational perturbations persist for more than one Pan encounter. Four additional Pan wakes were discovered at longitudes greater than 360 deg. Collective effects such as collisions modify the wake dispersion more extensively at greater longitudes. Pan is the dominant mass in the Encke gap. A spiral density wave was detected inside the Uranian delta ring. Upper and lower bounds were estimated for the surface mass density of the delta ring 5 less than or equal to sigma less than or equal to 10 gm/sq cm, the viscosity 10 less than or equal to nu less than or equal to 40 sq cm/sec, and the local ring height 7 less than or equal to h less than or equal to 20 m. These values are comparable to the corresponding

  1. Revisiting stability of pickup ion rings

    NASA Astrophysics Data System (ADS)

    Florinski, V. A.; Niemiec, J.; Heerikhuisen, J.

    2015-12-01

    Do we really understand ring distribution stability in weakly turbulent plasmas? The first measurement of the interstellar magnetic fluctuation spectrum by Voyager 1 was consistent with interstellar Kolmogorov turbulence spectrum, ruling out any significant local wave sources, such as an instability. We show that both linear dispersion analysis and kinetic plasma computer simulations should be approached with much caution when drawing conclusions about the wave generation and resulting particle scattering in pitch angle, especially for very tenuous rings. Using hybrid-kinetic and PIC models we carefully examine the nonlinear phase of pickup ion (PUI) scattering on self-generated fluctuations to reveal a critical dependence on the number of pseudo-particles present in the simulation. It is shown that narrow rings modeled with very high number of particles (1 million per cell) could become stable in the nonlinear phase. The second part of this presentation deals with more realistic pickup rings derived from the distribution of primary energetic neutral atoms (ENAs) originating in the solar wind and the inner heliosheath. The width of these distributions allow them to remain stable on the timescales of at least a few months. These results lend additional support to the secondary PUI theory of the origin of the IBEX ribbon.

  2. The Charging of Planetary Rings

    NASA Astrophysics Data System (ADS)

    Graps, Amara L.; Horanyi, M.; Havnes, O.; Gruen, E.

    2008-09-01

    Planetary rings have an undeniable aesthetic appeal, resulting in media icons of ringed planets as descriptive of the planetary sciences field as a whole. Such far-reaching symbolism might not be misplaced, however, because planetary rings represent a fundamental class of planetary structure that invites interdisciplinary investigations from specialists in dust, gravitational, plasma, collisional, and radiative transfer physics, due to: its sub-micron to meters-sized particles, its immersion in the planet's magnetic field, its embedded moonlets and its close proximity to the ringed planet's ionosphere and innermost moons. As such, planetary rings are a metaphoric bridge through a wide range of planetary physical processes. Processes to charge ring particles have different relative dynamical effects, dependent upon the rings' particle sizes, and the ring's plasma, magnetic and gravitational environments. This presentation will review what is known about the charging parameters and processes of planetary rings, in particular the sum of the individual currents from the time-varying charge dQ/dt, of the planetary ring particle. The individual currents depend on the environmental plasma conditions: number density, flow speed, temperature, and mass for the currents: electron and ion capture from the plasma, ion currents to a moving grain, photoelectron emission, secondary electron emission, thermionic effects, with stochastic charging influencing all of the above. Since rings are an ensemble of particles, ("cloud" Ring), we will define an ensemble, and consider the above currents, including those for the smallest ring particles, the dust particles, to arrive at a table giving charge potential and other relevant parameters.

  3. Rheology of Rings: Current Status and Future Challenges

    NASA Astrophysics Data System (ADS)

    McKenna, Gregory

    Understanding the dynamics of circular or ring-like polymers has been a subject of investigation since the 1980s and is one which remains an area that is not fully understood. Part of the reason for this is the difficulty of making synthetic rings of sufficient size to establish the nature of the entanglement dynamics, if entanglements even exist in these materials. Furthermore, there is now strong evidence that small amounts of linear impurities can impact the dynamics. Hence, one of the major challenges to our understanding of ring dynamics is to make large molecular weight rings of sufficient purity that the dynamics of the rings themselves can be determined. In the present work the current state of understanding of the dynamics of rings is outlined and current work from our group of collaborators to make extremely large circular polymers using Echeverria Coli as a route to make pure rings (circular DNA) in sufficient quantity and size to determine the dynamics of these materials will be shown. First results of ring dynamics in dilute solution are presented and new results on concentrated and entangled solutions will be discussed. Remaining challenges will be elucidated. Partially supported by the John R. Bradford Endowment and the Paul Whitfield Horn Professorship at Texas Tech University.

  4. Buoyant Norbury's vortex rings

    NASA Astrophysics Data System (ADS)

    Blyth, Mark; Rodriguez-Rodriguez, Javier; Salman, Hayder

    2014-11-01

    Norbury's vortices are a one-parameter family of axisymmetric vortex rings that are exact solutions to the Euler equations. Due to their relative simplicity, they are extensively used to model the behavior of real vortex rings found in experiments and in Nature. In this work, we extend the original formulation of the problem to include buoyancy effects for the case where the fluid that lies within the vortex has a different density to that of the ambient. In this modified formulation, buoyancy effects enter the problem through the baroclinic term of the vorticity equation. This permits an efficient numerical solution of the governing equation of motion in terms of a vortex contour method that tracks the evolution of the boundary of the vortex. Finally, we compare our numerical results with the theoretical analysis of the short-time evolution of a buoyant vortex. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02 and by the London Mathematical Society.

  5. Storage ring injection

    SciTech Connect

    Burke, R.J.

    1980-01-01

    Some basic issues involved in injecting the beam into storage rings with the principal parameters of those studied at the workshop have been considered. The main conclusion is that straightforward adjustments of the storage ring parameters makes injection easy. The largest number of injected turns is fourteen, and the phase space dilution allowance seems adequate to ensure very small beam loss during injection. The adjustments also result in lower bending magnet fields, and high field superconducting magnets (e.g., 5 Tesla) are not necessary. The design changes do not necessarily affect the Keil-Schnell criterion for stability of the longitudinal microwave instability, although that criterion appears to be irrelevant. Because the beams are expected to be unstable, but with slow growth rates, the vacuum chamber impedances required to give equal risetimes for the various designs are compared for systems posing various degrees of difficulty for injection. Finally, the impact of the parameters on cost is noted, and a system is considered that cuts the length of the linac in half by using doubly charged ions.

  6. Ring Image Analyzer

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.

    2012-01-01

    Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.

  7. Analysis of Double Ring Resonators using Method of Equating Fields

    NASA Astrophysics Data System (ADS)

    Althaf, Shahana

    Optical ring resonators have the potential to be integral parts of large scale photonic circuits. My thesis theoretically analyzes parallel coupled double ring resonators (DRRs) in detail. The analysis is performed using the method of equating fields (MEF) which provides an in depth understanding about the transmitted and reflected light paths in the structure. Equations for the transmitted and reflected fields are derived; these equations allow for unequal ring lengths and coupling coefficients. Sanity checks including comparison with previously studied structures are performed in the final chapter in order to prove the correctness of the obtained results.

  8. Cassini-VIMS Observations of Saturn's Rings at SOI

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Clark, R. N.; Cruikshank, D. P.; Showalter, M. R.; Sicardy, B.; Cassini VIMS

    2004-11-01

    Following the Cassini spacecraft's Saturn Orbit Insertion (SOI) burn on 1 July 2004, the Visual and Infrared Mapping Spectrometer (VIMS) obtained near-infrared spectra from 0.9 to 5.1 μ m in two continuous radial scans across the unlit side of the rings, at ranges of ˜30,000 km. The first scan covers the outer C and inner B rings at a phase angle, α = 82o and an emission angle, e = 47o, while the second covers the Cassini Division and entire A ring at α = 59o and e = 63o. The solar incidence angle was 114o and the radial resolution of both scans is 15-20 km, with sampling intervals of 2-3 km. Structurally, the rings appear to have changed little, if at all, since the Voyager observations in 1980/81 and the 28 Sgr occultations in 1989. This similarity extends even to the quasi-irregular structure which characterizes the inner B ring on scales of ˜100 km. Spectrally, all regions of the rings scanned are dominated by water ice, with prominent absorption bands at 1.55, 2.0 and 3.0 μ m, as well as weaker bands at 1.04 and 1.25 μ m seen primarily in the A and B rings. The ice bands are strongest in the middle A ring, somewhat weaker in the B ring, and much weaker in the C ring and Cassini Division. Locally, however, the fractional band depths appear to be independent of optical depth, suggesting that the light diffusely transmitted through the rings at moderate phase angles is dominated by single scattering. Regionally, the transitions between the C and B rings and between the Cassini Division and A ring are marked by gradual changes in band depth over radial distances of a few thousand km, perhaps indicative of ballistic redistribution of material. A broad reflectance maximum at 3.6 μ m, characteristic of ice grain sizes less than 100 μ m, is prominent everywhere but particularly strong in the outermost parts of the A ring, exterior to the Encke Gap. Besides water ice, the most noteworthy spectral feature is a broad, shallow absorption in the 0.9-1.8 μ m

  9. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    SciTech Connect

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings

  10. Ring current and radiation belts

    NASA Technical Reports Server (NTRS)

    Williams, D. J.

    1987-01-01

    Studies performed during 1983-1986 on the ring current, the injection boundary model, and the radiation belts are discussed. The results of these studies yielded the first observations on the composition and charge state of the ring current throughout the ring-current energy range, and strong observational support for an injection-boundary model accounting for the origins of radiation-belt particles, the ring current, and substorm particles observed at R less than about 7 earth radii. In addition, the results have demonstrated that the detection of energetic neutral atoms generated by charge-exchange interactions between the ring current and the hydrogen geocorona can provide global images of the earth's ring current and its spatial and temporal evolution.

  11. Reversible Rings with Involutions and Some Minimalities

    PubMed Central

    Fakieh, W. M.; Nauman, S. K.

    2013-01-01

    In continuation of the recent developments on extended reversibilities on rings, we initiate here a study on reversible rings with involutions, or, in short, ∗-reversible rings. These rings are symmetric, reversible, reflexive, and semicommutative. In this note we will study some properties and examples of ∗-reversible rings. It is proved here that the polynomial rings of ∗-reversible rings may not be ∗-reversible. A criterion for rings which cannot adhere to any involution is developed and it is observed that a minimal noninvolutary ring is of order 4 and that a minimal noncommutative ∗-reversible ring is of order 16. PMID:24489510

  12. Causes of Ring-Related Leg Injuries in Birds – Evidence and Recommendations from Four Field Studies

    PubMed Central

    Griesser, Michael; Schneider, Nicole A.; Collis, Mary-Anne; Overs, Anthony; Guppy, Michael; Guppy, Sarah; Takeuchi, Naoko; Collins, Pete; Peters, Anne; Hall, Michelle L.

    2012-01-01

    One of the main techniques for recognizing individuals in avian field research is marking birds with plastic and metal leg rings. However, in some species individuals may react negatively to rings, causing leg injuries and, in extreme cases, the loss of a foot or limb. Here, we report problems that arise from ringing and illustrate solutions based on field data from Brown Thornbills (Acanthiza pusilla) (2 populations), Siberian Jays (Perisoreus infaustus) and Purple-crowned Fairy-wrens (Malurus coronatus). We encountered three problems caused by plastic rings: inflammations triggered by material accumulating under the ring (Purple-crowned Fairy-wrens), contact inflammations as a consequence of plastic rings touching the foot or tibio-tarsal joint (Brown Thornbills), and toes or the foot getting trapped in partly unwrapped flat-band colour rings (Siberian Jays). Metal rings caused two problems: the edges of aluminium rings bent inwards if mounted on top of each other (Brown Thornbills), and too small a ring size led to inflammation (Purple-crowned Fairy-wrens). We overcame these problems by changing the ringing technique (using different ring types or larger rings), or using different adhesive. Additionally, we developed and tested a novel, simple technique of gluing plastic rings onto metal rings in Brown Thornbills. A review of studies reporting ring injuries (N = 23) showed that small birds (<55 g body weight) are more prone to leg infections while larger birds (>35 g) tend to get rings stuck over their feet. We give methodological advice on how these problems can be avoided, and suggest a ringing hazard index to compare the impact of ringing in terms of injury on different bird species. Finally, to facilitate improvements in ringing techniques, we encourage online deposition of information regarding ringing injuries of birds at a website hosted by the European Union for Bird Ringing (EURING). PMID:23300574

  13. Pressure-Energized Seal Rings to Better Withstand Flows

    NASA Technical Reports Server (NTRS)

    Farner, Bruce

    2009-01-01

    approximate parallelogram would be pushed farther apart along a radius of the ring, thereby causing the polymeric ring material to push radially harder against the body sealing surface. From the radially innermost corner of the approximate parallelogram, the spring material would extend radially, then axially into recesses in the seal gland. These extensions would help to restrain the seal ring against ejection. A seat retainer would hold the sealing ring in the gland and form a mechanical compression seal to prevent or at least reduce leakage of pressurized fluid into the cavity behind the seal. However, because there would likely be a little leakage, the cavity behind the seal should be vented to the low pressure side to prevent buildup of pressure in the cavity over time; otherwise, the built-up pressure could cause ejection of the seal ring when the pressure on the high-pressure side was reduced. Polymeric seal-ring materials may not be able to withstand working conditions in applications that involve abrasive and/or hot working fluids. For such applications, all-metal seal rings may be preferred. The bottom part of Figure 2 shows one example of an alternative gland configuration with an all-metal seal ring.

  14. Fingering inside the coffee ring

    NASA Astrophysics Data System (ADS)

    Weon, Byung Mook; Je, Jung Ho

    2013-01-01

    Colloidal droplets including micro- and nanoparticles generally leave a ringlike stain, called the “coffee ring,” after evaporation. We show that fingering emerges during evaporation inside the coffee ring, resulting from a bidispersed colloidal mixture of micro- and nanoparticles. Microscopic observations suggest that finger formation is driven by competition between the coffee-ring and Marangoni effects, especially when the inward Marangoni flow is overwhelmed by the outward coffee-ring flow. This finding could help to understand the variety of the final deposition patterns of colloidal droplets.

  15. Split ring containment attachment device

    DOEpatents

    Sammel, Alfred G.

    1996-01-01

    A containment attachment device 10 for operatively connecting a glovebag 200 to plastic sheeting 100 covering hazardous material. The device 10 includes an inner split ring member 20 connected on one end 22 to a middle ring member 30 wherein the free end 21 of the split ring member 20 is inserted through a slit 101 in the plastic sheeting 100 to captively engage a generally circular portion of the plastic sheeting 100. A collar potion 41 having an outer ring portion 42 is provided with fastening means 51 for securing the device 10 together wherein the glovebag 200 is operatively connected to the collar portion 41.

  16. Ground Movement in SSRL Ring

    SciTech Connect

    Sunikumar, Nikita; /UCLA /SLAC

    2011-08-25

    Users of the Stanford Synchrotron Radiation Lightsource (SSRL) are being affected by diurnal motion of the synchrotron's storage ring, which undergoes structural changes due to outdoor temperature fluctuations. In order to minimize the effects of diurnal temperature fluctuations, especially on the vertical motion of the ring floor, scientists at SSRL tried three approaches: painting the storage ring white, covering the asphalt in the middle of the ring with highly reflective Mylar and installing Mylar on a portion of the ring roof and walls. Vertical motion in the storage ring is measured by a Hydrostatic Leveling System (HLS), which calculates the relative height of water in a pipe that extends around the ring. The 24-hr amplitude of the floor motion was determined using spectral analysis of HLS data, and the ratio of this amplitude before and after each experiment was used to quantitatively determine the efficacy of each approach. The results of this analysis showed that the Mylar did not have any significant effect on floor motion, although the whitewash project did yield a reduction in overall HLS variation of 15 percent. However, further analysis showed that the reduction can largely be attributed to a few local changes rather than an overall reduction in floor motion around the ring. Future work will consist of identifying and selectively insulating these local regions in order to find the driving force behind diurnal floor motion in the storage ring.

  17. Saturn's Rings Edge-on

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.

    For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.

    The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.

    This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).

    Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science

  18. Black ring deconstruction

    SciTech Connect

    Gimon, Eric; Gimon, Eric G.; Levi, Thomas S.

    2007-06-22

    We present a sample microstate for a black ring in four and five dimensional language. The microstate consists of a black string microstate with an additional D6-brane. We show that with an appropriate choice of parameters the piece involving the black string microstate falls down a long AdS throat, whose M-theory lift is AdS_3 x S2. We wrap a spinning dipole M2-brane on the S2 in the probe approximation. In IIA, this corresponds to a dielectric D2-brane carrying only D0-charge. We conjecture this is the firstapproximation to a cloud of D0-branes blowing up due to their non-abelian degrees of freedom and the Myers effect.

  19. Ring around the colloid

    NASA Astrophysics Data System (ADS)

    Cavallaro, Marcello, Jr.; Gharbi, Mohamed A.; Beller, Daniel A.; Čopar, Simon; Shi, Zheng; Kamien, Randall D.; Yang, Shu; Baumgart, Tobias; Stebe, Kathleen J.

    In this work, we show that Janus washers, genus-one colloids with hybrid anchoring conditions, form topologically required defects in nematic liquid crystals. Experiments under crossed polarizers reveal the defect structure to be a rigid disclination loop confined within the colloid, with an accompanying defect in the liquid crystal. When confined to a homeotropic cell, the resulting colloid-defect ring pair tilts relative to the far field director, in contrast to the behavior of toroidal colloids with purely homeotropic anchoring. We show that this tilting behavior can be reversibly suppressed by the introduction of a spherical colloid into the center of the toroid, creating a new kind of multi-shape colloidal assemblage.

  20. Synthesis of the EF-ring of ciguatoxin 3C based on the [2,3]-Wittig rearrangement and ring-closing olefin metathesis.

    PubMed

    Goto, Akiyoshi; Fujiwara, Kenshu; Kawai, Ayako; Kawai, Hidetoshi; Suzuki, Takanori

    2007-12-20

    The EF-ring segment of ciguatoxin 3C, a causative toxin of ciguatera fish poisoning, was synthesized in three major steps: 1,4-addition for the C20O-C27 bond connection, chirality transferring anti selective [2,3]-Wittig rearrangement for the construction of the anti-2-hydroxyalkyl ether part, and ring-closing olefin metathesis for the F-ring formation.

  1. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    DOE PAGES

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; ...

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ringmore » motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics

  2. Fibre ring cavity semiconductor laser

    SciTech Connect

    Duraev, V P; Medvedev, S V

    2013-10-31

    This paper presents a study of semiconductor lasers having a polarisation maintaining fibre ring cavity. We examine the operating principle and report main characteristics of a semiconductor ring laser, in particular in single- and multiple-frequency regimes, and discuss its application areas. (lasers)

  3. Contraceptive vaginal rings: a review.

    PubMed

    Brache, Vivian; Faundes, Anibal

    2010-11-01

    Development efforts on contraceptive vaginal rings were initiated over 40 years ago based on two principles: the capacity of the vaginal epithelium to absorb steroids and the capacity of elastomers to release these hormones at a nearly constant rate. Numerous models of contraceptive vaginal rings (CVRs) have been studied, but only two have reached the market: NuvaRing, a combined ring that releases etonogestrel (ENG) and ethinylestradiol (EE), and Progering, a progesterone-releasing ring for use in lactating women. The main advantages of CVRs are their effectiveness (similar to or slightly better than the pill), ease of use without the need of remembering a daily routine, user's ability to control initiation and discontinuation, nearly constant release rate allowing for lower doses, greater bioavailability and good cycle control with the combined ring. The main disadvantages are related to the mode of delivery; CVRs may cause vaginal discharge and complaints, ring expulsion is not uncommon, the ring may be felt during coitus and vaginal insertion may be unpleasant for some women. The studies reviewed in this article provide evidence that CVRs are safe, effective and highly acceptable to women. There is no doubt that CVRs offer a new, effective contraceptive option to women, expanding their available choices of hormonal contraception.

  4. Ring Infiltrate in Staphylococcal Keratitis

    PubMed Central

    Wallang, Batriti S.; Sharma, Savitri; Sahu, Srikant K.; Mittal, Ruchi

    2013-01-01

    Smear and culture tests of corneal scrapings from a patient with a ring infiltrate confirmed significant growth of a Staphylococcus species resistant to fluoroquinolones. Because of nonresponse to medical management, the patient underwent therapeutic penetrating keratoplasty. Staphylococcal infection of the cornea may appear as a ring-like infiltrate that is recalcitrant to medical management. PMID:23100354

  5. Biomechanics of Corneal Ring Implants

    PubMed Central

    2015-01-01

    Purpose: To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. Methods: The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant designs. The strengthening factor is a measure of the amount of strengthening of the cornea induced by the implant. Results: For ring segments and incomplete rings, sf = 1.0, which indicates that these implants are not able to strengthen the cornea. The intracorneal continuous complete ring (MyoRing) has a strengthening factor of up to sf = 3.2. The MyoRing is, therefore, able to strengthen the cornea significantly. Conclusions: The result of the presented biomechanical analysis of different ring-shaped corneal implant designs can explain the different postoperative clinical results of different implant types in myopia and keratoconus. PMID:26312619

  6. Reversible Seeding in Storage Rings

    SciTech Connect

    Ratner, Daniel; Chao, Alex; /SLAC

    2011-12-14

    We propose to generate steady-state microbunching in a storage ring with a reversible seeding scheme. High gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) are two promising methods for microbunching linac electron beams. Because both schemes increase the energy spread of the seeded beam, they cannot drive a coherent radiator turn-by-turn in a storage ring. However, reversing the seeding process following the radiator minimizes the impact on the electron beam and may allow coherent radiation at or near the storage ring repetition rate. In this paper we describe the general idea and outline a proof-of-principle experiment. Electron storage rings can drive high average power light sources, and free-electron lasers (FELs) are now producing coherent light sources of unprecedented peak brightness While there is active research towards high repetition rate FELs (for example, using energy recovery linacs), at present there are still no convenient accelerator-based sources of high repetition rate, coherent radiation. As an alternative avenue, we recently proposed to establish steady-state microbunching (SSMB) in a storage ring. By maintaining steady-state coherent microbunching at one point in the storage ring, the beam generates coherent radiation at or close to the repetition rate of the storage ring. In this paper, we propose a method of generating a microbunched beam in a storage ring by using reversible versions of linac seeding schemes.

  7. How Jupiter's Ring Was Discovered.

    ERIC Educational Resources Information Center

    Elliot, James; Kerr, Richard

    1985-01-01

    "Rings" (by astronomer James Elliot and science writer Richard Kerr) is a nontechnical book about the discovery and exploration of ring systems from the time of Galileo to the era of the Voyager spacecraft. One of this book's chapters is presented. (JN)

  8. Rings Full of Waves (zoom)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows a close-up view of a density wave in Saturn's A ring. It was taken by the narrow angle camera on the Cassini spacecraft after successful entry into Saturn's orbit. The view shows the dark, or unlit, side of the rings.

  9. Simulating the Smallest Ring World of Chariklo

    NASA Astrophysics Data System (ADS)

    Michikoshi, Shugo; Kokubo, Eiichiro

    2017-03-01

    A ring system consisting of two dense narrow rings has been discovered around Centaur Chariklo. The existence of these rings around a small object poses various questions about their origin, stability, and lifetime. In order to understand the nature of Chariklo’s rings, we perform global N-body simulations of the self-gravitating collisional particle rings for the first time. We find that Chariklo should be denser than the ring material in order to avoid the rapid diffusion of the rings. If Chariklo is denser than the ring material, fine spiral structures called self-gravity wakes occur in the inner ring. These wakes accelerate the viscous spreading of the ring significantly and typically occur on timescales of about 100 {years} for m-sized ring particles, which is considerably shorter than the timescales suggested in previous studies. The existence of these narrow rings implies smaller ring particles or the existence of shepherding satellites.

  10. Ring lens focusing and push-pull tracking scheme for optical disk systems

    NASA Technical Reports Server (NTRS)

    Gerber, R.; Zambuto, J.; Erwin, J. K.; Mansuripur, M.

    1993-01-01

    An experimental comparison of the ring lens and the astigmatic techniques of generating focus-error-signal (FES) in optical disk systems reveals that the ring lens generates a FES over two times steeper than that produced by the astigmat. Partly due to this large slope and, in part, because of its diffraction-limited behavior, the ring lens scheme exhibits superior performance characteristics. In particular the undesirable signal known as 'feedthrough' (induced on the FES by track-crossings during the seek operation) is lower by a factor of six compared to that observed with the astigmatic method. The ring lens is easy to align and has reasonable tolerance for positioning errors.

  11. Radiation issues in a radioactive ion decay ring.

    PubMed

    Magistris, M; Silari, M

    2005-01-01

    In a beta-beam facility, a pure beam of electron neutrinos, or their antiparticles, are produced by the decay of fully stripped radioactive ions (6He and 18Ne) circulating in a storage ring. Since the beam is not extracted from the ring, all the particles will eventually be lost somewhere in the machine and thus activate the accelerator components and the surrounding concrete and rock. In particular, as nuclei change their charge in beta-decay, a large part of the particles will be lost in the arcs of the decay ring and mainly irradiate the magnets. The density of inelastic interactions of hadrons in the magnets, concrete and rock and the track-length distribution of secondary hadrons were calculated by means of the FLUKA Monte Carlo code. These values were used to estimate the induced radioactivity in the facility, the dose rates expected in the decay ring and the consequences for the environment.

  12. Observed structures at the edges of Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.; Sremcevic, M.; Esposito, L. W.

    2014-04-01

    The edges of Saturn's rings exhibit structure on a range of spatial and temporal scales. Aside from the known variability in edge location many edges feature clumping on orbital timescales. In cases like the B and A ring outer edges even larger, more persistent objects have been observed. Most of these features and the underlying physical processing creating them have been associated with moon-induced perturbations. In addition tomoon-associated structures like wakes and gaps at the Encke and Keeler gap due to the presence of Pan and Daphnis respectively, parts of ring material is found truncated from the edges downstream of the moon. These gaps are about a few km wide and located a few tens of km from the edge. Using primarily Cassini UVIS occultations we investigate spatial and temporal morphology of ring edges.

  13. On the buckling of elastic rings by external confinement.

    PubMed

    Hazel, Andrew L; Mullin, Tom

    2017-05-13

    We report the results of an experimental and numerical investigation into the buckling of thin elastic rings confined within containers of circular or regular polygonal cross section. The rings float on the surface of water held in the container and controlled removal of the fluid increases the confinement of the ring. The increased compressive forces can cause the ring to buckle into a variety of shapes. For the circular container, finite perturbations are required to induce buckling, whereas in polygonal containers the buckling occurs through a linear instability that is closely related to the canonical Euler column buckling. A model based on Kirchhoff-Love beam theory is developed and solved numerically, showing good agreement with the experiments and revealing that in polygons increasing the number of sides means that buckling occurs at reduced levels of confinement.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  14. Impact of Saturn ring particles on Pioneer 11

    NASA Technical Reports Server (NTRS)

    Humes, D. H.; Oneal, R. L.; Kinard, W. H.; Alvarez, J. M.

    1980-01-01

    The detection of particles near the rings of Saturn by the meteoroid detection instrument on board Pioneer 11 is discussed. The instrument consists of 234 penetration detectors, distributed between two independent data channels each of which is designed to become inhibited for a period of 77 min after the registration of a penetration event in that channel. At least four particles penetrated the detectors in the 4.5 h period around Saturn periapsis at radial distances between 1.36 and 3.1 Saturn radii, a radial distribution inconsistent with the gravitational focusing of meteoroids. The detection of particles which may have been part of the E ring before the crossing of the ring plane suggests that this ring may be 1800 km thick, with an optical thickness greater than 10 to the -8th.

  15. Ring Buffered Network Bus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report describes the research effort to demonstrate the integration of a data sharing technology, Ring Buffered Network Bus, in development by Dryden Flight Research Center, with an engine simulation application, the Java Gas Turbine Simulator, in development at the University of Toledo under a grant from the Glenn Research Center. The objective of this task was to examine the application of the RBNB technologies as a key component in the data sharing, health monitoring and system wide modeling elements of the NASA Aviation Safety Program (AVSP) [Golding, 1997]. System-wide monitoring and modeling of aircraft and air safety systems will require access to all data sources which are relative factors when monitoring or modeling the national airspace such as radar, weather, aircraft performance, engine performance, schedule and planning, airport configuration, flight operations, etc. The data sharing portion of the overall AVSP program is responsible for providing the hardware and software architecture to access and distribute data, including real-time flight operations data, among all of the AVSP elements. The integration of an engine code capable of numerically "flying" through recorded flight paths and weather data using a software tool that allows for distributed access of data to this engine code demonstrates initial steps toward building a system capable of monitoring and modeling the National Airspace.

  16. Vortex formation in magnetic narrow rings

    NASA Astrophysics Data System (ADS)

    Bland, J. A. C.

    2002-03-01

    between the contacts, the magnetization is everywhere parallel to the current, and the resistance is high. After the second switching into the reverse `onion' state a domain wall is now present between the contacts. This means some of the magnetization in the transverse domain wall is perpendicular to the current and hence the resistance decreases. This shows that one can clearly distinguish between the onion and vortex state using MR measurements. In addition, using the field dependent voltage drop between different contacts, the switching field at which each part of the ring reverses can be determined. >From the second type of measurements clear hysteretic behaviour is seen, indicating that there is some domain wall pinning. This demonstrates that the position of the domain walls can be identified by looking at the voltage drop between different contacts. By measuring at different magnitudes of the applied field the pinning strength of the domain walls is determined, and in particular the dependence of the domain wall pinning on the notch size. Furthermore the structure of the domain wall changes for different notch sizes, and hence the contribution of the wall to the resistance changes as well. Real-time measurements between different contacts might allow for domain wall speed measurements and other domain wall propagation studies. References: [1] J. Rothman, M. Kläui, L. Lopez-Diaz, C.A.F. Vaz, A. Bleloch, J.A.C. Bland, Z. Cui, R. Speaks, Phys. Rev. Lett. 86 (2001) 1098. [2] Z. Cui, J. Rothman, M. Kläui, L. Lopez-Diaz, C.A.F. Vaz, J.A.C. Bland, to be published. [3] M. Kläui, L. Lopez-Diaz, J. Rothman, C.A.F. Vaz, J.A.C. Bland, Z. Cui, J. Magn. Magn. Mat., to be published. [4] L. Lopez-Diaz, J. Rothman, M. Kläui, J.A.C. Bland, IEEE Trans. Mag. 36 (2000) 3155. [5] C.A.F. Vaz, L. Lopez-Diaz, M. Kläui, J.A.C. Bland, T.L. Monchesky, J. Unguris, Z. Cui, 46th MMM Conference, Seattle, 2001. [6] R. D. McMichael and M. J. Donahue, IEEE Trans. Mag. 33, 4167-4169 (1997).

  17. Ion Rings for Magnetic Fusion

    SciTech Connect

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  18. Genetics Home Reference: ring chromosome 20 syndrome

    MedlinePlus

    ... Home Health Conditions ring chromosome 20 syndrome ring chromosome 20 syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Ring chromosome 20 syndrome is a condition that affects the ...

  19. Genetics Home Reference: ring chromosome 14 syndrome

    MedlinePlus

    ... Home Health Conditions ring chromosome 14 syndrome ring chromosome 14 syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Ring chromosome 14 syndrome is a condition characterized by seizures ...

  20. Keck Adaptive Optics Imaging of Uranus and its Rings

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Roe, H.; Macintosh, B.; Gibbard, S.; Max, C.; Gavel, D.

    2000-10-01

    We observed Uranus with the recently commissioned AO/NIRSPEC system (Adaptive Optics system with the Near-Infrared echelle Spectrograph) on the 10-m W.M. Keck telescope, UT June 17 and 18, 2000. NIRSPEC allows one to take images and spectra simultaneously. Here we will discuss the images at wavelengths between 1 and 2.4 micron. Due to the location of the rings' pericenter, the rings were much brighter in the north than the south, which resulted in excellent ring images. Inside of the ɛ ring at least three more (individually slightly resolved) rings are visible: from the outside inwards these are: 1) combined δ ,γ ,η rings, 2) combined β ,α rings, and 3) combined 4,5,6 rings. On the planet itself we detected at least 8 different cloud features, five of which were in the northern hemisphere. Two features could be tracked over a 40-60 degree longitude range, and yield wind velocities of 175 +/- 35 m/s at a latitude of +30o, and of 120 +/- 40 m/s at +40o latitude. The highest latitude reached by HST NICMOS was +27o, where a velocity of 20 m/s was measured (Karkoschka, 1998). Has the wind speed changed? Or is there a very steep gradient in the profile? Our data suggest the wind profile to be similar to that derived for Neptune, though at reduced velocities. This research was supported in part by the STC Program of the National Science Foundation under Agreement No. AST-9876783, and in part under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory, Univ. of Calif. under contract No. W-7405-Eng-48.

  1. Researches on the Piston Ring

    NASA Technical Reports Server (NTRS)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and

  2. Reflex ring laser amplifier system

    DOEpatents

    Summers, Mark A.

    1985-01-01

    A laser pulse is injected into an unstable ring resonator-amplifier structure. Inside this resonator the laser pulse is amplified, spatially filtered and magnified. The laser pulse is recirculated in the resonator, being amplified, filtered and magnified on each pass. The magnification is chosen so that the beam passes through the amplifier in concentric non-overlapping regions similar to a single pass MOPA. After a number of passes around the ring resonator the laser pulse is spatially large enough to exit the ring resonator system by passing around an output mirror.

  3. Structures of exocyclic R,R- and S,S-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine adducts induced by 1,2,3,4-diepoxybutane.

    PubMed

    Kowal, Ewa A; Seneviratne, Uthpala; Wickramaratne, Susith; Doherty, Kathleen E; Cao, Xiangkun; Tretyakova, Natalia; Stone, Michael P

    2014-05-19

    1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N(6) position of adenine in DNA. Two enantiomers of bis-N(6)-dA adducts of DEB have been identified: R,R-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (R,R-DHB-dA), and S,S-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (S,S-DHB-dA) [ Seneviratne , U. , Antsypovich , S. , Dorr , D. Q. , Dissanayake , T. , Kotapati , S. , and Tretyakova , N. ( 2010 ) Chem. Res. Toxicol. 23 , 1556 -1567 ]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5'-d(C(1)G(2)G(3)A(4)C(5)X(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19)C(20)C(21)G(22))-3' duplex [X(6) = R,R-DHB-dA (R(6)) or S,S-DHB-dA (S(6))]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N(6) bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N(6) bond, allows the complementary thymine, T(17), to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T(17) N3H imino proton. The loss of the second Watson-Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as

  4. Photometric Analysis of the Jovian Ring System and Modeling of Ring Origin and Evolution

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    2003-01-01

    We have successfully completed the work described in our proposal. The work supported by this grant resulted in the publication of the following paper: Brooks, S. M., L. W. Esposito, M. R. Showalter, and H. B. Throop. 2002. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy. Icarus, in press. This was also the major part of Dr. Shawn Brooks PhD dissertation. Dr. Brooks gave oral presentations on this work at the Lunar and Planetary Conference, the annual meetings of the Division for Planetary Sciences of the American Astronomical Society, the annual meetings of the European Geophysical Society, the international Jupiter Conference in Boulder, the Jupiter after Galileo and Cassini Conference in Lisbon and to the Working Group in Non-Linear Dynamics in Potsdam, Germany. This work was reviewed in: Esposito, L. W. 2002. Planetary rings. Rep. hog. Phys. 65, 1741-1783. Planetary rings. LASP reprint 874. Online at http://stacks.iop.org/RoPP/65/1741. Dr. Esposito gave presentations at schools and over the internet on the results of this work. Dr. Brooks lectured in undergraduate and graduate classes on Jupiter's rings, and on the meaning of his research. In August 2003, Dr. Shawn Brooks received the Phd degree from the University of Colorado in Astrophysical and Planetary Sciences.

  5. Origins of axial inhomogeneity of magnetic performance in hot deformed Nd-Fe-B ring magnets

    NASA Astrophysics Data System (ADS)

    Yin, Wen-Zong; Chen, Ren-Jie; Tang, Xu; Lin, Min; Lee, Don; Yan, Aru

    2012-04-01

    Hot-deformed Nd-Fe-B ring magnets have wide potential applications. These ring magnets, however, exhibit axial inhomogeneity of magnetic performance. In this work, the effects of density, pressure, deformation temperature, deformation rate, and texture on axial magnetic performance were investigated over ring magnets prepared by backward extrusion method. It was demonstrated that the texture accounted for the variation of magnetic performance along axial direction. Microstructures of the ring magnets were examined with SEM, which further revealed two different origins of axial inhomogeneity of magnetic performance. The deformation degree of Nd-Fe-B grains plays a critical role in the performance difference between the top and middle part of ring magnet. But that between the middle and bottom part mainly results from different alignment orientations of platelet Nd-Fe-B grains. It was both deformation degree and alignment orientation that determined the axial texture and consequent magnetic performance of hot-deformed ring magnets.

  6. Black rings at large D

    NASA Astrophysics Data System (ADS)

    Tanabe, Kentaro

    2016-02-01

    We study the effective theory of slowly rotating black holes at the infinite limit of the spacetime dimension D. This large D effective theory is obtained by integrating the Einstein equation with respect to the radial direction. The effective theory gives equations for non-linear dynamical deformations of a slowly rotating black hole by effective equations. The effective equations contain the slowly rotating Myers-Perry black hole, slowly boosted black string, non-uniform black string and black ring as stationary solutions. We obtain the analytic solution of the black ring by solving effective equations. Furthermore, by perturbation analysis of effective equations, we find a quasinormal mode condition of the black ring in analytic way. As a result we confirm that thin black ring is unstable against non-axisymmetric perturbations. We also include 1 /D corrections to the effective equations and discuss the effects by 1 /D corrections.

  7. Dissipative ring solitons with vorticity.

    PubMed

    Soto-Crespo, J M; Akhmediev, N; Mejia-Cortés, C; Devine, N

    2009-03-16

    We study dissipative ring solitons with vorticity in the frame of the (2+1)-dimensional cubic-quintic complex Ginzburg-Landau equation. In dissipative media, radially symmetric ring structures with any vorticity m can be stable in a finite range of parameters. Beyond the region of stability, the solitons lose the radial symmetry but may remain stable, keeping the same value of the topological charge. We have found bifurcations into solitons with n-fold bending symmetry, with n independent on m. Solitons without circular symmetry can also display (m + 1)-fold modulation behaviour. A sequence of bifurcations can transform the ring soliton into a pulsating or chaotic state which keeps the same value of the topological charge as the original ring.

  8. Dust Impact Detection by the Cassini Langmuir Probe in Saturn's E ring

    NASA Astrophysics Data System (ADS)

    Hsu, H.-W.; Wahlund, J.-E.; Morooka, M.; Kempf, S.; Horanyi, M.

    2015-10-01

    In this work, we present preliminary analysis of dust impact detections recorded by the Cassini Langmuir probe (LP) in Saturn's E ring. These signals appear as sharp spikes in the LP current-voltage (I-V) curves and show clear correlation with the E ring dust density. The statistical analysis will help to understand the nature of these detections as well as provide an alternative method to study the densest part of the E ring.

  9. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.

    1999-06-15

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.

  10. Resonance capture and Saturn's rings

    SciTech Connect

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab.

  11. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun

    1999-01-01

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).

  12. Salt bridges at the inter-ring interface regulate the thermostat of GroEL.

    PubMed

    Sot, Begoña; Galán, Asier; Valpuesta, Jose María; Bertrand, Sara; Muga, Arturo

    2002-09-13

    The chaperonin GroEL consists of a double-ring structure made of identical subunits and displays unusual allosteric properties caused by the interaction between its constituent subunits. Cooperative binding of ATP to a protein ring allows binding of GroES to that ring, and at the same time negative inter-ring cooperativity discharges the ligands from the opposite ring, thus driving the protein-folding cycle. Biochemical and electron microscopy analysis of wild type GroEL, a single-ring mutant (SR1), and two mutants with one inter-ring salt bridge of the chaperonin disrupted (E461K and E434K) indicate that these ion pairs form part of the interactions that allow the inter-ring allosteric signal to be transmitted. The wild type-like activities of the ion pair mutants at 25 degrees C are in contrast with their lack of inter-ring communication and folding activity at physiological temperatures. These salt bridges stabilize the inter-ring interface and maintain the inter-ring spacing so that functional communication between protein heptamers takes place. The characterization of GroEL hybrids containing different amounts of wild type and mutant subunits also indicates that as the number of inter-ring salt bridges increases the functional properties of the hybrids recover. Taken together, these results strongly suggest that inter-ring salt bridges form a stabilizing ring-shaped, ionic zipper that ensures inter-ring communication at the contact sites and therefore a functional protein-folding cycle. Furthermore, they regulate the chaperonin thermostat, allowing GroEL to distinguish physiological (37 degrees C) from stress temperatures (42 degrees C).

  13. The Case for Massive and Ancient Rings of Saturn

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2016-04-01

    Analysis of Voyager and Pioneer 11 results give a mass for Saturn's rings, M = 5 x 10-8 Msat. This is about the mass of Saturn's small moon Mimas. This has been interpreted as a lower limit to the ring mass (Esposito et al 1983), since the thickest parts of the rings were not penetrated by the stellar occultstion, and this calculation assumes an unvarying particle size throughout the rings. Because the rings are constantly bombarded by micrometeroids, their current composition of nearly pure water ice implies such low mass rings must have formed recently. The case is par-ticularly strong for Saturn's A ring, where the data are the best, implying the A ring is less than 10% of the age of the Saturn (Esposito 1986). Cassini results com-pound this problem. UVIS spectra are consistent with either young rings or rings about 10x as massive as the Voyager estimate (Elliott and Esposito (2011). CDA confirms the impacting mass flux is similar to that as-sumed for the pollution calculations (Kempf etal 2015). VIMS analysis of density wave signatures in the B ring gives a value of about 1/3 the Voyager value (Hedmann etal 2016). This VIMS result implies the rings are even younger! The problem is that young rings are very unlikely to be formed recently, meaning that we live in a very special epoch, following some unlikely recent origin… like disruption of a medium sized moon or capture of the fragments of a disrupted comet. This paradox (Charnoz etal 2009) is unre-solved. Alternative interpretations: To take the VIMS results at face value, Saturn's low mass rings must be very young. The optically thick B ring must be made of small, porous or fractal particles. This is hard to understand, since the particles are continually colliding every few hours and temporary aggregates will stir the collision velocities to higher values. An alternative is that we accept the higher mass interpretation of the Pioneer 11 results (Esposito etal 2008) using the granola bar model of Colwell

  14. Classifying Saturn's F Ring Strands

    NASA Astrophysics Data System (ADS)

    Albers, Nicole; Sremcevic, M.; Esposito, L. W.; Colwell, J. E.

    2009-09-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) High Speed Photometer (HSP) has recorded more than 113 stellar occultations by Saturn's F ring providing measurements with ring plane resolutions of a few dozen meters and better. Inner and outer F ring strands have been seen throughout the Cassini mission where they revealed themselves as non-continuous, azimuthally and temporally highly variable structures. In the light of a more accurate orbit description of the F ring core we find evidence for a ring that becomes dynamically more active as the system approaches anti-apse alignment with Prometheus. This is consistent with the observed increased strand activity. A recent strand that morphologically resembles the core is the strongest seen to date and points to the intricate relation between core and strands indicating the strands' violent creation. Using more than 150 identifications of various strands, we trace their kinematics and infer dynamical timescales and photometric properties. Implications for the dynamical evolution of the F ring will be discussed. This research was supported by the Cassini Project.

  15. Physics of Jupiter's Gossamer Rings

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.; Krueger, H.

    2007-10-01

    Thebe's gossamer ring, the outermost and faintest of Jupiter's rings, has an outward extension that we have previously argued is due to a shadow resonance (Hamilton 2003, DPS meeting #35, #11.09). A shadow resonance arises from the abrupt shutoff of photoelectric charging when a dust particle enters Jupiter's shadow which, in turn, affects the strength of the electromagnetic perturbation from the planet's intense magnetic field. The result is a coupled oscillation between a particle's orbital eccentricity and its semimajor axis. Ring material spreads outward from Thebe while maintaining its vertical thickness just as observed by Galileo imaging. In addition to cameras, the Galileo spacecraft was also equipped with dust and plasma detectors. The spacecraft made two passes through the ring and its dust detector found that 1) dust fluxes drop immediately interior to Thebe's orbit, 2) some grains have inclinations in excess of 20 degrees and 3) submicron particles are present in the Amalthea ring in much greater numbers than in the Thebe ring. These findings can all be explained in the context of our shadow resonance model: the inner boundary is a direct consequence of the conservation of the Electromagnetic Jacobi Constant, the high inclinations are forced by a vertical resonance, and the excess submicron particles are a consequence of the weakening of electromagnetic forces in the vicinity of synchronous orbit. In this talk, we will present the data sets as well as detailed numerical simulations that back up these claims.

  16. Collar nut and thrust ring

    DOEpatents

    Lowery, Guy B.

    1991-01-01

    A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.

  17. Of Rings and Volcanoes

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Office National d'Etudes et de Recherches Aérospatiales (ONERA) , Laboratoire d'Astrophysique de Grenoble (LAOG) and the DESPA and DASGAL laboratories of the Observatoire de Paris in France, in collaboration with ESO. The CONICA infra-red camera was built, under an ESO contract, by the Max-Planck-Institut für Astronomie (MPIA) (Heidelberg) and the Max-Planck Institut für Extraterrestrische Physik (MPE) (Garching) in Germany, in collaboration with ESO. Saturn - Lord of the rings ESO PR Photo 04a/02 ESO PR Photo 04a/02 [Preview - JPEG: 460 x 400 pix - 54k] [Normal - JPEG: 1034 x 800 pix - 200k] Caption : PR Photo 04a/02 shows the giant planet Saturn, as observed with the VLT NAOS-CONICA Adaptive Optics instrument on December 8, 2001; the distance was 1209 million km. It is a composite of exposures in two near-infrared wavebands (H and K) and displays well the intricate, banded structure of the planetary atmosphere and the rings. Note also the dark spot at the south pole at the bottom of the image. One of the moons, Tethys, is visible as a small point of light below the planet. It was used to guide the telescope and to perform the adaptive optics "refocussing" for this observation. More details in the text. Technical information about this photo is available below. This NAOS/CONICA image of Saturn ( PR Photo 04a/02 ), the second-largest planet in the solar system, was obtained at a time when Saturn was close to summer solstice in the southern hemisphere. At this moment, the tilt of the rings was about as large as it can be, allowing the best possible view of the planet's South Pole. That area was on Saturn's night side in 1982 and could therefore not be photographed during the Voyager encounter. The dark spot close to the South Pole is a remarkable structure that measures approximately 300 km across. It was only recently observed in visible light from the ground with a telescope at the Pic du Midi Observatory in the Pyrenees (France) - this is the first infrared image to

  18. Characteristic Time of the Magnetospheric Ring Current Decay FROM EXPIREMENT AND THEORY

    NASA Astrophysics Data System (ADS)

    Biktash(Sizova), L. Z.; Korotova, G. I.

    2006-12-01

    The magnetospheric ring current particles are the most dynamic part of the Earth's radiation belts especially during geomagnetic storms. The processes of the magnetospheric ring current decay are studied as a function of the solar wind electric field. It is shown that the ring current dissipation rate is different during the main and recovery phase of geomagnetic storms. The characteristic time of the ring current decay in the main phase is independent of storm intensity and equals 4 hours. The characteristic time of the ring current decay in a recovery phase increases with storm intensity. We examine the ring current ion lifetimes for the possible mechanisms of its decay. Coulomb scattering, charge exchange and plasma instability mechanisms are used for estimation of lifetime of electrons, protons, helium, and oxygen ions. The values of the characteristic lifetime of ring current dissipation obtained from experiment and theory are compared. It is shown that during main and recovery phase of magnetic storm the different mechanisms can play main role in dissipation of the ring current. Very short characteristic decay time during main phase of geomagnetic storms is associated with plasma instabilities. The available ion composition data of the ring current make possible to assume that the ring current decay is accounted for by ion composition variations with changing the intensity (and hence position) of the ring current and/or by a rise of energetic ion fraction on low L-shells.

  19. Structures of Exocyclic R,R- and S,S-N6,N6-(2,3-Dihydroxybutan-1,4-diyl)-2′-Deoxyadenosine Adducts Induced by 1,2,3,4-Diepoxybutane

    PubMed Central

    2015-01-01

    1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N6 position of adenine in DNA. Two enantiomers of bis-N6-dA adducts of DEB have been identified: R,R-N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (R,R-DHB-dA), and S,S-N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (S,S-DHB-dA) [SeneviratneU., AntsypovichS., DorrD. Q., DissanayakeT., KotapatiS., and TretyakovaN. (2010) Chem. Res. Toxicol.23, 1556−156720873715]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5′-d(C1G2G3A4C5X6A7G8A9A10G11)-3′:5′-d(C12T13T14C15T16T17G18T19C20C21G22)-3′ duplex [X6 = R,R-DHB-dA (R6) or S,S-DHB-dA (S6)]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N6 bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N6 bond, allows the complementary thymine, T17, to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T17 N3H imino proton. The loss of the second Watson–Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as compared to the corresponding unmodified duplex. The reduced base stacking at the

  20. Microstrip Ring Resonator for Soil Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Li, Eric S.

    1993-01-01

    Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.

  1. A ring system detected around the Centaur (10199) Chariklo.

    PubMed

    Braga-Ribas, F; Sicardy, B; Ortiz, J L; Snodgrass, C; Roques, F; Vieira-Martins, R; Camargo, J I B; Assafin, M; Duffard, R; Jehin, E; Pollock, J; Leiva, R; Emilio, M; Machado, D I; Colazo, C; Lellouch, E; Skottfelt, J; Gillon, M; Ligier, N; Maquet, L; Benedetti-Rossi, G; Ramos Gomes, A; Kervella, P; Monteiro, H; Sfair, R; El Moutamid, M; Tancredi, G; Spagnotto, J; Maury, A; Morales, N; Gil-Hutton, R; Roland, S; Ceretta, A; Gu, S-h; Wang, X-b; Harpsøe, K; Rabus, M; Manfroid, J; Opitom, C; Vanzi, L; Mehret, L; Lorenzini, L; Schneiter, E M; Melia, R; Lecacheux, J; Colas, F; Vachier, F; Widemann, T; Almenares, L; Sandness, R G; Char, F; Perez, V; Lemos, P; Martinez, N; Jørgensen, U G; Dominik, M; Roig, F; Reichart, D E; LaCluyze, A P; Haislip, J B; Ivarsen, K M; Moore, J P; Frank, N R; Lambas, D G

    2014-04-03

    Hitherto, rings have been found exclusively around the four giant planets in the Solar System. Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur--that is, one of a class of small objects orbiting primarily between Jupiter and Neptune--with an equivalent radius of 124 ±  9 kilometres (ref. 2). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.

  2. On the synthesis, measurement and applications of octanuclear heterometallic rings

    NASA Astrophysics Data System (ADS)

    Faust, T. B.

    Inorganic macrocycles have stimulated interest in recent years for their magnetic properties, their associated host-guest chemistry and their aesthetically appealing structures. These characteristics have led to suggestions that they could be exploited for the purposes of ion recognition, catalysis, as single molecule magnets, MRI agents, antibacterial agents and as part of larger architectures in a molecular machine. This thesis explores the properties of a group of chromium(III) macrocycles, with functionality tailored towards different pursuits. Firstly the magnetic properties of a newly synthesised family of ring dimers are investigated. The nature of magnetic exchange within each ring leads to a net electronic spin which, it has been proposed, could represent a quantum binary digit within a quantum information processing system. By linking together pairs of rings, the degree of inter-ring communication can be determined. Such interactions are important for the correlation of spin as initiation of quantum entanglement, a pre-requisite for quantum computing. The rings can also act as fluoro-metallocrown, hosting the molecule which templated their formation. A range of rings with different guests are synthesised and their solid and solution state structures are explored. On templating about bulky dialykyl amines hybrid organic-inorganic rotaxanes are formed where the guest is fixed. In contrast when using small amines and alkali metals, exchange of guests is possible. The dynamics of all of these systems are investigated with proton NMR, quite remarkable for such highly paramagnetic complexes.

  3. Accretion in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  4. Study of Intrabeam Scattering in Low Energy Electron Rings

    SciTech Connect

    Venturini, Marco

    2002-08-08

    The paper contains a study of intrabeam scattering in a low energy electron storage ring to be used as part of a Compton back-scattering x-ray source. We discuss time evolution of emittance and dependence of IBS growth rates on lattice parameters.

  5. Mode Orientation Control For Sapphire Dielectric Ring Resonator

    NASA Technical Reports Server (NTRS)

    Santiago, David G.; Dick, G. John; Prata, Aluizio

    1996-01-01

    Small sapphire tuning wedge used in technique for solving mode-purity problem associated with sapphire dielectric-ring resonator part of cryogenic microwave frequency discriminator. Breaks quasi-degeneracy of two modes and allows selective coupling to just one mode. Wedge mounted on axle entering resonator cavity and rotated while resonator cryogenically operating in vacuum. Furthermore, axle moved vertically to tune resonant frequency.

  6. Injection and Extraction Lines for the ILC Damping Rings

    SciTech Connect

    Reichel, Ina

    2007-06-20

    The current design for the injection and extraction linesintoand out of the ILC Damping Rings is presented as well as the designfor the abort line. Due to changes of the geometric boundary conditionsby other subsystems of the ILC, a modular approach has been used to beable to respond to recurring layout changes whilereusing previouslydesigned parts.

  7. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6200 Ring cutter. (a) Identification. A ring cutter is a device intended for medical purposes that is used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates...

  8. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6200 Ring cutter. (a) Identification. A ring cutter is a device intended for medical purposes that is used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates...

  9. Study for ILC Damping Ring at KEKB

    SciTech Connect

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  10. Double acting stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  11. Plasma deposited rider rings for hot displacer

    DOEpatents

    Kroebig, Helmut L.

    1976-01-01

    A hot cylinder for a cryogenic refrigerator having two plasma spray deposited rider rings of a corrosion and abrasion resistant material provided in the rider ring grooves, wherein the rider rings are machined to the desired diameter and width after deposition. The rider rings have gas flow flats machined on their outer surface.

  12. Concentric ring flywheel without expansion separators

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

  13. Concentric ring flywheel without expansion separators

    DOEpatents

    Kuklo, T.C.

    1999-08-24

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion. 3 figs.

  14. Micromagnetic calculation of magnetization reversal in magnetic rings

    NASA Astrophysics Data System (ADS)

    Lopez-Diaz, Luis

    2002-03-01

    The success of using patterned magnetic nanoelements in Magnetic Random Access Memories (MRAM) depends entirely on our ability to control accurately their switching fields. In a recent study1, we showed that micron-sized narrow rings present well defined stable states and nucleation-free switching between them. In the first part of the talk we review our experimental studies on ring magnets. Pre-patterned Si(100) substrates were used to grow free-standing epitaxial ring magnets of Cu(100)/Co(100)/Cu(100)/Si(100) with 1.8 mm outer diameter, 1.2 mm inner diameter and 34 nm thickness. The samples were magnetically characterised using specially adapted magneto-optic Kerr effect. The measurements show that a two step switching process occurs at high fields, indicating the existence of two different stable states. In addition to the vortex state, which occurs at intermediate fields, we have identified a second state which is also stable at remanence and undergoes a simple and well characterised nucleation free domain wall propagation switching process. Moreover, it is confirmed that the rings reverse by falling into vortex states with different circulation when the field is applied in opposite directions. This means a particular vortex state (clockwise or counter-clockwise) can be prepared using a uniform field only, which can be important for technological applications. In the second part of the talk we use micromagnetic simulations to further explore the potential performance of narrow rings as memory cells in MRAM devices in terms of scalability and switching speed. We introduce two artificial notches at the outer surface of the rings in order to control accurately the depinning fields for the domain walls. According to our simulations, well defined onion states1 and switching by domain wall motion can be achieved for ring diameters down 180 nm. In order to speed up the switching process, two different approaches are considered. In the first one, a field pulse is

  15. Intrinsic structure in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.

    2015-10-01

    Saturn's rings are the most prominent in our Solar system and one example of granular matter in space. Dominated by tides and inelastic collisions the system is highly flattened being almost 300000km wide while only tens of meters thick. Individual particles are composed of primarily water ice and range from microns to few tens of meters in size. Apparent patterns comprise ringlets, gaps, kinematic wakes, propellers, bending waves, and the winding spiral arms of density waves. These large-scale structures are perturbations foremost created by external as well as embedded moons. Observations made by the Cassini spacecraft currently in orbit around Saturn show these structures in unprecedented detail. But high-resolution measurements reveal the presence of small-scale structures throughout the system. These include self-gravity wakes (50-100m), overstable waves (100-300m), subkm structure at the A and B ring edges, "straw" and "ropy" structures (1-3km), and the C ring "ghosts". Most of these had not been anticipated and are found in perturbed regions, driven by resonances with external moons, where the system undergoes periodic phases of compression and relaxation that correlate with the presence of structure. High velocity dispersion and the presence of large clumps imply structure formation on time scales as short as one orbit (about 10 hours). The presence of these intrinsic structures is seemingly the response to varying local conditions such as internal density, optical depth, underlying particle size distribution, granular temperature, and distance from the central planet. Their abundance provides evidence for an active and dynamic ring system where aggregation and fragmentation are ongoing on orbital timescales. Thus a kinetic description of the rings may be more appropriate than the fluid one. I will present Cassini Ultraviolet Spectrometer (UVIS) High Speed Photometer (HSP) occultations, Voyager 1 and 2 Imaging Science Subsystem (ISS), and high

  16. Archiving of Planetary Ring Data

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    2001-01-01

    Stellar occultation data provide our only Earth-based means of probing planetary rings at kilometer spatial resolution. The occultation data archive at MIT contains original data and analysis products of stellar occultations by the ring systems of the planets Jupiter, Saturn, Uranus, and Neptune observed by members of the group (and other groups) from 1977 to the present. During this time period, several media have been used to record and store the original and processed data: (1) chart records; (2) printed output, (3) audio reel tape; (4) audio cassette tape; (5) 7-track, 1/2-inch computer tape; (6) 9-track, 1/2-inch computer tape at 800, 1600, and 6250 bpi; (7) NOVA disk platters (2.5 and 5.0 Mbyte); (8) write once optical disks; (9) punched cards; and (10) read-write optical disks. With the rapid change of computer technology over this time period, some of these media have become not only obsolete, but nearly extinct. In particular, it has become nearly impossible to find any facilities that can still read 800 bpi tapes, which contain the only copies of several important data sets for the ring system of Uranus. In particular, we have an extensive ring data collection that includes data sets for the following Uranian ring occultations: U0, U11, U12, U13, U14, U25, U17, and U36.

  17. Hydrodynamic Simulations of Planetary Rings

    NASA Astrophysics Data System (ADS)

    Miller, Jacob; Stewart, G. R.; Esposito, L. W.

    2013-10-01

    Simulations of rings have traditionally been done using N-body methods, granting insight into the interactions of individual ring particles on varying scales. However, due to the scale of a typical ring system and the sheer number of particles involved, a global N-body simulation is too computationally expensive, unless particle collisions are replaced by stochastic forces (Bromley & Kenyon, 2013). Rings are extraordinarily flat systems and therefore are well-suited to existing geophysical shallow-water hydrodynamics models with well-established non-linear advection methods. By adopting a general relationship between pressure and surface density such as a polytropic equation of state, we can modify the shallow-water formula to treat a thin, compressible, self-gravitating, shearing fluid. Previous hydrodynamic simulations of planetary rings have been restricted to axisymmetric flows and therefore have not treated the response to nonaxisymmetric perturbations by moons (Schmidt & Tscharnuter 1999, Latter & Ogilvie 2010). We seek to expand on existing hydrodynamic methods and, by comparing our work with complementary N-body simulations and Cassini observations, confirm the veracity of our results at small scales before eventually moving to a global domain size. We will use non-Newtonian, dynamically variable viscosity to model the viscous transport caused by unresolved self-gravity wakes. Self-gravity will be added to model the dynamics of large-scale structures, such as density waves and edge waves. Support from NASA Outer Planets and Planetary Geology and Geophysics programs is gratefully acknowledged.

  18. Storage ring working group report

    SciTech Connect

    Krinsky, S.

    1997-01-01

    Over the last two decades great progress has been made in the development of storage rings with small transverse emittance. It is now a good time to consider the possibility of achieving very short bunches m storage rings. From the perspective of synchrotron radiation source development, there are at least two motivations for obtaining short electron bunches: (1) the generation of sub- picosecond x-ray pulses and (2) the coherent emission of sub- picosecond pulses of far infrared radiation. A useful short-term goal is the experimental study of bunches with 1 ps rms length both at high ({approx_gt} 1 GeV) and low ({approx_lt} 150 MeV) electron energies. Experiments on 1 ps bunches are now feasible and can yield new insight into the high frequency impedance of storage rings and the associated phenomena which can result in bunch lengthening. Achievement of 1 ps bunches can also be expected to allow the first observation of coherent synchrotron radiation in a storage ring, in the millimeter wavelength regime. A longer-term objective is the realization of 100 fs bunches. Achievement of this goal not only will advance understanding of storage rings but will open up new opportunities in synchrotron radiation based research at both x-ray and far infrared wavelengths. It is now an appropriate time to carry forward theoretical investigations clarifying the fundamental limitations on bunch length, and to devise schemes to minimize it.

  19. Ring wormholes via duality rotations

    NASA Astrophysics Data System (ADS)

    Gibbons, Gary W.; Volkov, Mikhail S.

    2016-09-01

    We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy-Voorhees-Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than -c4 / 4 G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  20. Ring Beholds a Delicate Flower

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom. A planetary nebula is a shell of material ejected from a dying star. Located about 2,000 light years from Earth in the constellation Lyra, the Ring Nebula is also known as Messier Object 57 and NGC 6720. It is one of the best examples of a planetary nebula and a favorite target of amateur astronomers.

    The 'ring' is a thick cylinder of glowing gas and dust around the doomed star. As the star begins to run out of fuel, its core becomes smaller and hotter, boiling off its outer layers. The telescope's infrared array camera detected this material expelled from the withering star. Previous images of the Ring Nebula taken by visible-light telescopes usually showed just the inner glowing loop of gas around the star. The outer regions are especially prominent in this new image because Spitzer sees the infrared light from hydrogen molecules. The molecules emit infrared light because they have absorbed ultraviolet radiation from the star or have been heated by the wind from the star.

    Download the QuickTime movie for the animated version of this Ring Nebula image.

  1. A numerical model for vacuum carburization of an automotive gear ring

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Wan; Cho, Yi-Gil; Cho, Hoon-Hwe; Kim, Sung-Hwan; Lee, Won-Beom; Lee, Myoung-Gyu; Han, Heung Nam

    2011-12-01

    A vacuum carburizing-heat treatment of an annulus gear ring is simulated via a carburized predictive finite element model that accounts for both heat transfer and carbon diffusion. Profiles of carbon concentration along the depth of the gear ring were calculated and are congruent with measured values, which were obtained by a glow discharge spectrometer (GDS). While sensitive to carbon content, rigorous observation of the microstructures in the gear ring after heat treatment was attempted by transmission electron microscopy (TEM). The finial various martensitic microstructures in several parts of the gear ring may be well explained on the basis of the calculated carbon concentration.

  2. Grinding Parts For Automatic Welding

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  3. Ring Vaccination and Smallpox Control

    PubMed Central

    van den Hof, Susan; Wallinga, Jacco; van Wijngaarden, Jan

    2004-01-01

    We present a stochastic model for the spread of smallpox after a small number of index cases are introduced into a susceptible population. The model describes a branching process for the spread of the infection and the effects of intervention measures. We discuss scenarios in which ring vaccination of direct contacts of infected persons is sufficient to contain an epidemic. Ring vaccination can be successful if infectious cases are rapidly diagnosed. However, because of the inherent stochastic nature of epidemic outbreaks, both the size and duration of contained outbreaks are highly variable. Intervention requirements depend on the basic reproduction number R0, for which different estimates exist. When faced with the decision of whether to rely on ring vaccination, the public health community should be aware that an epidemic might take time to subside even for an eventually successful intervention strategy. PMID:15200816

  4. Traversable wormholes: The Roman ring

    SciTech Connect

    Visser, M.

    1997-04-01

    In this Brief Report I introduce yet another class of geometries for which semiclassical chronology protection theorems are of dubious physical reliability. I consider a {ital {open_quotes}Roman ring{close_quotes}} of traversable wormholes, wherein a number of wormholes are arranged in a ring in such a manner that no subset of wormholes is near chronology violation, though the combined system can be arbitrarily close to chronology violation. I show that (with enough wormholes in the ring) the gravitational vacuum polarization (the expectation value of the quantum stress-energy tensor) can be made arbitrarily small. In particular, the back reaction can be kept arbitrarily small all the way to the {open_quotes}reliability horizon,{close_quotes} so that semiclassical quantum gravity becomes unreliable before the gravitational back reaction becomes large. {copyright} {ital 1997} {ital The American Physical Society}

  5. CMB lensing and giant rings

    SciTech Connect

    Rathaus, Ben; Itzhaki, Nissan E-mail: ben.rathaus@gmail.com

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  6. Physics of Jupiter's Gossamer Rings

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.; Krueger, H.

    2008-05-01

    Thebe's gossamer ring, the outermost and faintest of Jupiter's rings, extends outward by at least half a jovian radius from its source satellite while maintaining a constant vertical thickness. This structure is created by an electromagnetic perturbation known as a shadow resonance (Hamilton 2003, DPS meeting #35, #11.09). A shadow resonance arises from the abrupt shutoff of photoelectric charging when a dust particle enters Jupiter's shadow which, in turn, affects the strength of the electromagnetic perturbation from the planet's intense magnetic field. The result is a coupled oscillation between a particle's orbital eccentricity and its semimajor axis. Ring material spreads outward from Thebe while maintaining its vertical thickness just as observed by Galileo imaging. In addition to cameras, the Galileo spacecraft was also equipped with dust and plasma detectors. The spacecraft made two passes through the ring and its dust detector found that 1) dust fluxes drop immediately interior to Thebe's orbit, 2) some grains have inclinations in excess of 20 degrees and 3) submicron particles are present in the Amalthea ring in much greater numbers than in the Thebe ring. These findings can all be explained in the context of our shadow resonance model: the inner boundary is a direct consequence of the conservation of the Electromagnetic Jacobi Constant, the high inclinations are forced by a vertical version of the shadow resonance, and the excess submicron particles are a consequence of the weakening of electromagnetic forces in the vicinity of synchronous orbit. In this talk, we will present the data sets as well as detailed numerical simulations that back up these claims.

  7. Physical processes in Jupiter's ring - Clues to its origin by Jove

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Showalter, M. R.; Cuzzi, J. N.; Pollack, J. B.

    1980-01-01

    It is shown that many of the observed properties of the Jovian ring can be explained by the presence of numerious small and unseen parent bodies, or 'mooms', residing within the ring; whose radii are less than 1 km. The small visible ring grains, which are destroyed in short times by sputtering and meteoroid erosion, are derived from these parent bodies largely through meteoroid impacts, and partly from Io's dust. Substantial orbit modification results from plasma drag, and the charge carried by the grains will influence their dynamics and may modify their shapes. It is concluded that the processes discussed, though present in other planetary ring systems, may be highlighted in Jupiter's ring because of its low optical depth and the small size of some of its particles. It is suggested that hidden reservoirs similar to the Jovian 'mooms' proposed may be present in the rings of Saturn and Uranus.

  8. Hawking radiation from black rings

    SciTech Connect

    Miyamoto, Umpei; Murata, Keiju

    2008-01-15

    We calculate the quantum radiation from the 5-dimensional charged rotating black rings by demanding the radiation eliminate the possible anomalies on the horizons. It is shown that the temperature, energy flux, and angular-momentum flux exactly coincide with those of the Hawking radiation. The black rings considered in this paper contain the Myers-Perry black hole as a limit, and the quantum radiation for this black hole, obtained in the literature, is recovered in the limit. The results support the picture that the Hawking radiation can be regarded as the anomaly eliminator on horizons and suggest its general applicability to the higher-dimensional black holes discovered recently.

  9. A Crack in the C Ring?

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; Hedman, M. M.; Cassini VIMS Team

    2010-10-01

    The most prominent wavelike feature in Saturn's C ring, at a radius of 77520 - 77600 km, was identified by Rosen & Lissauer (1988; Science 241, 690) in Voyager radio occultation data as a vertical or bending wave driven at the Titan -1:0 nodal resonance. At such a resonance, the nodal regression rate of ring particles approximately matches the negative of the satellite's mean motion. Unlike other bending waves, this wave propagates radially outwards due to its negative pattern speed; its prominence in the Voyager profile was attributed to the very low elevation angle of 6 degrees, which amplified the effect of subtle vertical corrugations. However, the same wave appears in twenty stellar occultation profiles of the C ring obtained with the Cassini VIMS instrument at elevation angles as high as 62 degrees, casting some doubt on its identification as a bending wave. Also troubling is an apparently empty gap in the inner part of the Voyager wave profile, which also appears in about one-half of the VIMS profiles. When these data are organized by their position with respect to the predicted spiral pattern, the gap is seen to extend over 180 degrees in longitude, with varying width. A simple model which can account for these observations consists of a very narrow (< 1 km), continuous gap, one of whose edges is inclined with respect to the other by a few km. This is comparable to the amplitude of the bending wave inferred by Rosen & Lissauer. The gap is located only 14 km exterior to the nominal location of the -1:0 resonance, suggesting that the vertical displacement of its edge is resonantly forced. We acknowledge helpful discussions with R.G. French of the Cassini RSS team, and support from the Cassini/Huygens project.

  10. Uranus' Rings: Leading up to RPX

    NASA Astrophysics Data System (ADS)

    de Pater, I.; Showalter, M.; Hammel, H.; Gibbard, S.; Lissauer, J.

    We summarize recent HST and Keck observations of the uranian ring system, taken over the past years while the viewing geometry is changing. Some highlights of our campaign to date include: i) Detection of a ring system outside of Uranus main ring system by HST (Showalter and Lissauer, Science 311, p.973, 2006), followed by color information from Keck (de Pater et al, Science 312, p.92, 2006). This system consists of two rings. The inner ring, U2, is red and relatively narrow like Saturn's G ring, while the outer ring, U1, is much broader in extent and very blue, like Saturn's E ring. Just like Enceladus is located within the E ring, moon Mab is inside U1. Saturn's E ring is most likely produced by geyser activity on Enceladus. Mab, being over 20 times smaller, is unlikely to be geologically active. However, being this small, its size is optimal to produce a ring via meteorite sputtering. ii) Detection of a ring interior to the main ring system, which might be ring 1986U2R, discovered by Voyager, though its extent and location is different from the Voyager ring. iii) Dust sheets in between the main ring. These may be similar to the dust sheets seen by Voyager in forward scattered light, yet our observations indicate large changes from the Voyager era iv) New moons were detected by HST. The orbits of some of these moons appear to be somewhat erratic. The color of moon Mab appears to be more similar to that of the large outer moons than the small inner moons. Earth will cross Uranus' ring plane three times in 2007-2008 (2 May, 16 Aug. 2007, 20 Feb. 2008), and the Sun will cross it once (7 Dec. 2007). At these times optically thin dusty rings will brighten considerably, making this period an ideal time to study Uranus' outer ring system. Between the May and August crossings, as well as between December and February, the Earth and Sun are on opposite sides of the rings, so that any optically thick rings will essentially be invisible. This allows phenomena normally

  11. Dependency of the regio- and stereoselectivity of intramolecular, ring-closing glycosylations upon the ring size

    PubMed Central

    Claude, Patrick; Lehmann, Christian

    2011-01-01

    Summary Phenyl 3,4,6-tri-O-benzyl-2-O-(3-carboxypropionyl)-1-thio-β-D-galactopyranoside (1) was condensed via its pentafluorophenyl ester 2 with 5-aminopentyl (4a), 4-aminobutyl (4b), 3-aminopropyl (4c) and 2-aminoethyl 4,6-O-benzylidene-β-D-glucopyranoside (4d), prepared from the corresponding N-Cbz protected glucosides 3a–d, to give the corresponding 2-[3-(alkylcarbamoyl)propionyl] tethered saccharides 5a–d. Intramolecular, ring closing glycosylation of the saccharides with NIS and TMSOTf afforded the tethered β(1→3) linked disaccharides 6a–c, the α(1→3) linked disaccharides 7a–d and the α(1→2) linked disaccharide 8d in ratios depending upon the ring size formed during glycosylation. No β(1→2) linked disaccharides were formed. Molecular modeling of saccharides 6–8 revealed that a strong aromatic stacking interaction between the aromatic parts of the benzyl and benzylidene protecting groups in the galactosyl and glucosyl moieties was mainly responsible for the observed regioselectivity and anomeric selectivity of the ring-closing glycosylation step. PMID:22238538

  12. Thomson’s ring experiment with resonant LC circuit

    NASA Astrophysics Data System (ADS)

    Haidar, Sajjad

    2016-01-01

    Thomson’s jumping ring experiment is conducted using a low voltage (24 V) electronic circuit. A coil (L) is connected with a capacitor (C) in parallel and is driven at its resonant frequency to obtain a high current in the coil. A circuit sends current pulses to the LC tank circuit at around its resonant frequency. The oscillating current in the coil induces a voltage in a copper-loop on top of it. The induced current interacts with the radial part of the coil-magnetic field; the resulting force levitates the loop. In a separate coil, a ferrite core and a copper ring are used to demonstrate the jumping-ring effect. The levitation and the jumping effect can be controlled by changing the duty cycle and frequency. In this report simple formulae and approximations are used to calculate the levitating force on the loop.

  13. Ring artifacts correction in compressed sensing tomographic reconstruction

    PubMed Central

    Paleo, Pierre; Mirone, Alessandro

    2015-01-01

    Ring artifacts are a very common problem in tomographic reconstruction, and numerous methods exist to either pre-process the sinogram or correct the reconstructed slice. A novel approach to perform the correction as part of the reconstruction process is presented. It is shown that for iterative techniques, which amount to optimizing an objective function, the ring artifacts correction can be easily integrated in the formalism, enabling simultaneous slice reconstruction and ring artifacts correction. This method is tested and compared with mainstream correction techniques for both simulated and experimental data. Results show that the correction is efficient, especially for undersampled datasets. This technique is included in the PyHST2 code which is used at the European Synchrotron Radiation Facility for tomographic reconstruction. PMID:26289279

  14. Dimensional crossover of the dephasing time in disordered mesoscopic rings

    NASA Astrophysics Data System (ADS)

    Treiber, M.; Yevtushenko, O. M.; Marquardt, F.; von Delft, J.; Lerner, I. V.

    2009-11-01

    We study dephasing by electron interactions in a small disordered quasi-one-dimensional (1D) ring weakly coupled to leads. We use an influence functional for quantum Nyquist noise to describe the crossover for the dephasing time τφ(T) from diffusive or ergodic 1D (τφ-1∝T2/3,T1) to zero-dimensional (0D) behavior (τφ-1∝T2) as T drops below the Thouless energy. The crossover to 0D, predicted earlier for two-dimensional and three-dimensional systems, has so far eluded experimental observation. The ring geometry holds promise of meeting this long-standing challenge, since the crossover manifests itself not only in the smooth part of the magnetoconductivity but also in the amplitude of Altshuler-Aronov-Spivak oscillations. This allows signatures of dephasing in the ring to be cleanly extracted by filtering out those of the leads.

  15. Conical O-ring seal

    DOEpatents

    Chalfant, Jr., Gordon G.

    1984-01-01

    A shipping container for radioactive or other hazardous materials which has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  16. Baroclinic Structure of Oceanic Rings

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Sun, C.

    One of the most important analytical solutions to the two dimensional incompressible flow is circular Rankin vortex that has a solid-body core and an approximately irrotational far field. For an f-plane rotating flow, Ingersoll (1969) presented a closed-form ring solution superposed with a zonal flow. So far most studies have been concerned with two dimensional and barotropic situations.

  17. On the vortex ring state

    NASA Astrophysics Data System (ADS)

    Green, Richard; Gillies, E.; Giuni, M.; Hislop, J.; Savas, Omer

    2014-11-01

    The investigation considers the vortex ring state, a phenomenon normally associated with the collapse of a trailing, helical vortex wake into a unstable vortex ring, and is a problem encountered when a helicopter rotor descends into its own wake. A series of wind tunnel and towing tank experiments on rotor systems have been performed, and a comparison is then made with the behaviour of a specially designed open core, annular jet system that generates a mean flow velocity profile similar to that observed below a rotor. In experimentally simulated descents the jet system forms flow patterns that are topologically similar to the vortex ring state of a rotor system. Furthermore the dynamic behaviour of the flow shares many of the important characteristics of the rotor flow. This result suggests that the phenomenon of the vortex ring state of a rotor wake is decoupled from the detailed vortex dynamics of the helical vortex filaments themselves. The presentation will describe the principle behind the investigation, the details of the annular jet system and the results gained using PIV and flow visualisation of the wake and jet systems.

  18. Conical O-ring seal

    DOEpatents

    Chalfant, G.G. Jr.

    A shipping container for radioactive or other hazardous materials has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  19. Stirring properties of vortex rings

    NASA Astrophysics Data System (ADS)

    Auerbach, David

    1991-05-01

    Ring vortex evolution, from the initial roll-up phase through to the final turbulent phase, was experimentally studied to see the dependence of its stirring properties on both the initial (accelerating, constant, decelerating, slow, fast) piston motion as well as on the boundary (tube/hole geometry) conditions. Stirring between fluid initially upstream and that initially downstream of the nozzle plane is done more by convective entrainment at the beginning (roll-up and contraction phases), by diffusive entrainment during the laminar and wavy phases, and by mixed entrainment and ejection during the transition to turbulence and the turbulent phase itself. During vortex roll-up, it was found that tubes eject shorter streaklines than do holes, and that there is less Re dependence for this for tubes than for holes. During the contraction phase, entrainment ends, save for minimal entrainment due to axial inflow into the ring from along the cores of Goertler-type vortices. Generally, the rate of fluid ejected is largest during the transition from the wavy to the turbulent state. As far as the stability of the vortices is concerned, rings generated at holes are less stable than those generated at tubes. During the final turbulent phase, rings not only entrain fluid but eject it periodically into the wake: Between two and four hairpin vortices are generated and laid off in the wake during each ejection. The frequency at which such ejections takes place scales as a Strouhal number that takes on values of between 2 and 4.

  20. Looking for rings and things

    NASA Astrophysics Data System (ADS)

    Kenworthy, Matthew

    2017-04-01

    It's not often that an astronomical object gets its own dedicated observatory, but as the planet Beta Pictoris b moves in front of its host star, its every move will be watched by bRing, eager to discover more about the planet's Hill sphere, explains Matthew Kenworthy.

  1. Cavity-locked ring down spectroscopy

    DOEpatents

    Zare, Richard N.; Paldus, Barbara A.; Harb, Charles C.; Spence, Thomas

    2000-01-01

    Distinct locking and sampling light beams are used in a cavity ring-down spectroscopy (CRDS) system to perform multiple ring-down measurements while the laser and ring-down cavity are continuously locked. The sampling and locking light beams have different frequencies, to ensure that the sampling and locking light are decoupled within the cavity. Preferably, the ring-down cavity is ring-shaped, the sampling light is s-polarized, and the locking light is p-polarized. Transmitted sampling light is used for ring-down measurements, while reflected locking light is used for locking in a Pound-Drever scheme.

  2. The formation of Jupiter's faint rings

    PubMed

    Burns; Showalter; Hamilton; Nicholson; de Pater I; Ockert-Bell; Thomas

    1999-05-14

    Observations by the Galileo spacecraft and the Keck telescope showed that Jupiter's outermost (gossamer) ring is actually two rings circumscribed by the orbits of the small satellites Amalthea and Thebe. The gossamer rings' unique morphology-especially the rectangular end profiles at the satellite's orbit and the enhanced intensities along the top and bottom edges of the rings-can be explained by collisional ejecta lost from the inclined satellites. The ejecta evolves inward under Poynting-Robertson drag. This mechanism may also explain the origin of Jupiter's main ring and suggests that faint rings may accompany all small inner satellites of the other jovian planets.

  3. High-Speed Ring Bus

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There

  4. Wireless optics protection of fiber via SONET ring closure

    NASA Astrophysics Data System (ADS)

    Mullen, Ruth Ann; Celmer, Ken T.; Foster, Michael; Wooten, Jimmie; Miller, Jared; Kean, John C.; Carter, Doug; Kefauver, Michael; Singh, Bhupendra; Achour, Maha; Willebrand, Heinz A.

    2001-02-01

    12 A free-space laser link closes an otherwise all-fiber SONET ring, demonstrating for the first time the feasibility of using wireless optics as a back-up to fiber in an application demanding the highest levels of statistical availability and sub-50-ms protection-restoral times. This experiment demonstrates that protocol-transparent wireless optical links can be readily internetworked with industry- standard fiber-based protection protocols to achieve SONET restoral times in the event of a fiber cut. By using the wireless optics as a back-up to fiber rather than as the primary link, end-users are normally protected from the unavoidable burst errors and outages that can arise on a wireless optical link in the event of anomalously poor atmospheric visibility or unanticipated line-of-sight obstructions. While an all-fiber SONET ring operating over physically diverse paths is generally preferred, hybrid fiber/air rings operating over physically-diverse paths (fiber as one path and air as the other) will easily meet or exceed existing Bellcore availability standards for SONET rings. The hybrid part-fiber, part-air ring advantageously protects customers from fiber cuts (a.k.a. `backhoe fade') and may be preferable to over service via either an unprotected fiber spur or over a `collapsed' fiber ring made up of fiber segments sharing a common conduit. The experiment is performed at an OC-12 (622 Mbps) data rate in a point-to-consecutive point configuration which demonstrates the use of a relay site to work-around a line- of-sight obstruction.

  5. F Ring Mini-Jets

    NASA Astrophysics Data System (ADS)

    Attree, N.; Murray, C.; Cooper, N. J.; Williams, G.

    2012-12-01

    Mini-jets are small, (~50 km) linear features observed in Cassini images to be emanating from Saturn's F ring; they are believed to be produced by collisions with a local population of moonlets. An analysis of one such feature, observed over the course of a ~7.5 h sequence as its length changed from ~75 km to ~250 km while it simultaneously appeared to collapse back into the core, supports the collisional theory of their origin [1]. Orbit determination suggests that this mini-jet consisted of ring material displaced by a ~1 m/s collision with a nearby object, resulting in paths relative to the core that are due to a combination of keplerian shear and epicyclic motion. The colliding object itself is likely to be too small to resolve in these images but represents just one member of a population of F ring moonlets. Such a population has been investigated by UVIS occultations [2], and other methods, but generally remains unresolved in Cassini images. Collisional features such as this mini-jet therefore provide an additional tracer for the region's moonlet population. In this talk we will present the results of recent work in measuring and describing a subset of ~350 catalogued mini-jets, applying knowledge gained from the original mini-jet feature. Their distribution in space and time, proximity to Prometheus and evolution are all examined in an effort to place constraints on the properties of the underlying population of colliding objects. References [1] N. O. Attree, C. D. Murray, N. J. Cooper, and G. A. Williams. Detection of low velocity collisions in Saturn's F ring. Ap. J. Lett. (In press). [1] B. K. Meinke, L. W. Esposito, N. Albers, and M. Sremevi. Classification of F ring features observed in cassini UVIS occultations. Icarus, 218(1):545 - 554, 2012.

  6. Saturn's Magnetosphere, Rings, and Inner Satellites.

    PubMed

    VAN Allen, J A; Thomsen, M F; Randall, B A; Rairden, R L; Grosskreutz, C L

    1980-01-25

    Our 31 August to 5 September 1979 observations together with those of the other Pioneer 11 investigators provide the first credible discovery of the magnetosphere of Saturn and many detailed characteristics thereof. In physical dimensions and energetic charged particle population, Saturn's magnetosphere is intermediate between those of Earth and Jupiter. In terms of planetary radii, the scale of Saturn's magnetosphere more nearly resembles that of Earth and there is much less inflation by entrapped plasma than in the case at Jupiter. The orbit of Titan lies in the outer fringes of the magnetosphere. Particle angular distributions on the inbound leg of the trajectory (sunward side) have a complex pattern but are everywhere consistent with a dipolar magnetic field approximately perpendicular to the planet's equator. On the outbound leg (dawnside) there are marked departures from this situation outside of 7 Saturn radii (Rs), suggesting an equatorial current sheet having both longitudinal and radial components. The particulate rings and inner satellites have a profound effect on the distribution of energetic particles. We find (i) clear absorption signatures of Dione and Mimas; (ii) a broad absorption region encompassing the orbital radii of Tethys and Enceladus but probably attributable, at least in part, to plasma physical effects; (iii) no evidence for Janus (1966 S 1) (S 10) at or near 2.66 Rs; (iv) a satellite of diameter greater, similar 170 kilometers at 2.534 R(s) (1979 S 2), probably the same object as that detected optically by Pioneer 11 (1979 S 1) and previously by groundbased telescopes (1966 S 2) (S 11); (v) a satellite of comparable diameter at 2.343 Rs (1979 S 5); (vi) confirmation of the F ring between 2.336 and 2.371 Rs; (vii) confirmation of the Pioneer division between 2.292 and 2.336 Rs; (viii) a suspected satellite at 2.82 Rs (1979 S 3); (ix) no clear evidence for the E ring though its influence may be obscured by stronger effects; and (x) the

  7. Recording PEP2 Ring Beam Losses at SLAC

    SciTech Connect

    Zelazny, M.; Gromme, T.; Himel, T.; Hendrickson, L.; Krauter, K.; /SLAC

    2005-09-30

    The PEP2 (e+)(e-) storage rings contain many complex interrelated systems. When the beam aborts, examining a record of the orbit from the time just before the abort can help identify the root cause. At the Stanford Linear Accelerator Center (SLAC) a system has been developed to continuously record beam orbits from Beam Position Monitors (BPMS) into a circular buffer. When the beam is aborted the buffers are frozen and their contents are stored for later analysis. BPM orbits are saved on a turn by turn basis for 2800 turns in both the high energy ring (HER) and the low energy ring (LER). Each BPM Processor (BPMP) can either monitor the HER or the LER, but not both as the readout of the two rings is multiplexed into a single readout channel. Tools exist as part of the SLAC Control Program (SCP) to collect, display, and save the data. A physicist or operator can choose a few BPMS in which to view all 2800 turns to identify the turn in which the beam went awry; then ask for that specific orbit from all of the BPMS in the storage ring to determine the root cause of the abort.

  8. Recommendation for the Feasibility of more Compact LC Damping Rings

    SciTech Connect

    Pivi, M.T.F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Shibata, K.; Ohmi, K.; Dugan, G.; Palmer, M.; Crittenden, J.A.; Harkay, K.; Boon, L.; Furman, M.A.; Venturini, M.; Celata, C.; Malyshev, O.B.; Papaphilippou, I.; /CERN

    2010-06-15

    As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of the shorter damping ring with respect to the electron cloud build-up and related beam instabilities. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 [1] and would allow considerable reduction of the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigation techniques and the integration of the CesrTA results into the Damping Ring design.

  9. Recommendation for the Feasibility of more Compact LC Damping Rings

    SciTech Connect

    Pivi, M. T. F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Fukuma, H.; Shibata, K.; Dugan, K.,G.; Palmer, M.; Crittenden, J.; Harkay, K.; Boon, L.; Furman, M. A.; Venturini, M.; Celata, C.; Malyshev, O.; Papaphilippou, I.

    2010-05-23

    As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of a shorter damping ring with respect to the electron cloud build-up and related beam instability. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 [1] and would allow to considerably reduce the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigations and the integration of the CesrTA results into the Damping Ring design.

  10. The Canarias Einstein ring: a newly discovered optical Einstein ring

    NASA Astrophysics Data System (ADS)

    Bettinelli, M.; Simioni, M.; Aparicio, A.; Hidalgo, S. L.; Cassisi, S.; Walker, A. R.; Piotto, G.; Valdes, F.

    2016-09-01

    We report the discovery of an optical Einstein ring in the Sculptor constellation, IAC J010127-334319, in the vicinity of the Sculptor dwarf spheroidal galaxy. It is an almost complete ring (˜300°) with a diameter of ˜4.5 arcsec. The discovery was made serendipitously from inspecting Dark Energy Camera (DECam) archive imaging data. Confirmation of the object nature has been obtained by deriving spectroscopic redshifts for both components, lens and source, from observations at the 10.4 m Gran Telescopio CANARIAS (GTC) with the spectrograph OSIRIS. The lens, a massive early-type galaxy, has a redshift of z = 0.581, while the source is a starburst galaxy with redshift of z = 1.165. The total enclosed mass that produces the lensing effect has been estimated to be Mtot = (1.86 ± 0.23) × 1012 M⊙.

  11. Contact stresses calculated for miniature slip rings

    NASA Technical Reports Server (NTRS)

    Albright, F. G.; Domerest, K. E.; Horton, J. C.

    1965-01-01

    Using mathematical formulations to plot the graphs of the contact preload versus the Hertzian load, calculations of unit loading of the preloaded brushes on slip rings can be made. This optimizes the design of contact brushes and miniature slip rings.

  12. Planetary science: Shepherds of Saturn's ring

    NASA Astrophysics Data System (ADS)

    Crida, Aurélien

    2015-09-01

    Saturn's F ring is chaperoned on both sides by the tiny moons Prometheus and Pandora. Numerical simulations show that this celestial ballet can result from the collision of two aggregates that evolved out of Saturn's main rings.

  13. How to Remove a Stuck Ring Safely

    MedlinePlus

    ... Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring ... Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring ...

  14. Microwave observations provide clues to the origin of Saturn's main rings

    NASA Astrophysics Data System (ADS)

    Zhang, Zhimeng

    Division particles are more likely to contain ≥ 90% porosity due to its high opacity. We find that the overall pollution exposure time for the A and B rings and the Cassini Division ranges from 40-150 Myr, which is in line with the 15-90 Myr in the C ring. Our results support the idea that Saturn's rings may be ≤ 150 Myr old suggesting an origin scenario in which the rings are derived from the relatively recent breakup of an icy moon. The multi-wavelength VLA observations confirm the high porosity in the C ring particles and the presence of a "hot band" in the middle C ring. In the intramixure model, our multi-wavelength study suggests a corresponding decrease in the imaginary part of the silicates dielectric constant at higher frequencies. However, we do not see evidence for such decrease in the B ring particles. The results support the idea that the silicates in middle C ring has different origin source from meteoroid flux or that the middle C ring particles are more likely to be described by the core-mantle model which naturally matches observations at all wavelengths. Finally, the silicates fraction in the B ring is consistent with that derived from Cassini observations, less than 1%. We confirm that the B ring particles are likely to be over 80% porous, which at the same time explains the high opacity in the B ring measured by density waves.

  15. Local Area Networks: Part II.

    ERIC Educational Resources Information Center

    Dessy, Raymond E., Ed.

    1982-01-01

    Discusses five approaches used by industry/colleges to provide local area network (LAN) capabilities in the analytical laboratory: (1) mixed baseband bus network coupled to a star net; (2) broadband bus network; (3) ring network; (4) star network coupled to broadband net; and (5) simple multiprocessor center. Part I (September issue) focused on…

  16. Shepherding model for Neptune's arc ring

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.

    1985-01-01

    A model to explain the confinement of the recently discovered incomplete arc ring around Neptune is developed. The ring may be azimuthally confined near a triangular (Trojan) point of an undiscovered satellite of Neptune. Radial diffusion of the ring particles can be prevented by shepherding torques of another moon. Two satellites with diameters of 100-200 km would be sufficient to confine the ring; such moons would be too small to have been photographed from earth.

  17. Random Implantation of Asymmetric Intracorneal Rings

    PubMed Central

    Peris-Martínez, Cristina; Gregori Gisbert, Irene

    2014-01-01

    Intracorneal ring employment for treating ectasia is widespread. Although the mechanism of action of intracorneal rings in the regularization of the corneal surface after its implantation is well known in most cases, there are still many doubts. We present a case of implanted intracorneal rings, where, despite the peculiar position of the rings, the patient gains lines of visual acuity and keratoconus remains stable. PMID:24711941

  18. Analysis of Alternative Ring Resonator Designs

    DTIC Science & Technology

    2014-08-01

    the ring strip of the antenna as in the case of the original design. Both the alternative dielectric laminate and the increased thickness laminate...adjustments to the geometry parameters. 2. Ring Resonator Antenna Design The ring resonator is a two port antenna consisting of a ring strip and two...differing thicknesses for resonator antennas of the same design suggests that the RF fields penetrate slightly more or that the resonator can “see” a

  19. Kinematics and dynamics of the Uranian rings

    NASA Technical Reports Server (NTRS)

    French, Richard G.

    1987-01-01

    The self-gravity model of apse alignment was tested by comparing its predictions about structure within the epsilon ring with an extensive set of observed occultation profiles covering a wide range of ring longitudes. The self-gravity model as presently constructed is inconsistent with the observations. The Lindblad resonance survey and Shepherd satellite ring perturbation are discussed. The kinematic model of the Uranian ring orbit was enhanced to accommodate Voyager observations as well as ground-based occultation observations.

  20. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J.; Dawson, Jay W.; Beach, Raymond J.; Barty, Christopher P. J.

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  1. Environmental study of miniature slip rings

    NASA Technical Reports Server (NTRS)

    Radnik, J. L.

    1967-01-01

    Investigation studied the long term operation of miniature slip ring assembles in high vacuum of space and included the influence of ring, brush, and insulator materials on electrical noise and mechanical wear. Results show that soft metal vapor plating and niobium diselenide miniature slip rings are beneficial.

  2. O-ring gasket test fixture

    NASA Technical Reports Server (NTRS)

    Turner, James Eric (Inventor); Mccluney, Donald Scott (Inventor)

    1991-01-01

    An apparatus is presented for testing O-ring gaskets under a variety of temperature, pressure, and dynamic loading conditions. Specifically, this apparatus has the ability to simulate a dynamic loading condition where the sealing surface in contact with the O-ring moves both away from and axially along the face of the O-ring.

  3. A Ring Construction Using Finite Directed Graphs

    ERIC Educational Resources Information Center

    Bardzell, Michael

    2012-01-01

    In this paper we discuss an interesting class of noncommutative rings which can be constructed using finite directed graphs. This construction also creates a vector space. These structures provide undergraduate students connections between ring theory and graph theory and, among other things, allow them to see a ring unity element that looks quite…

  4. Rings of uranus: invisible and impossible?

    PubMed

    VAN Flandern, T C

    1979-06-08

    Neither the dynamical nor the optical properties of the rings of Uranus are easily understood, unless it is assumed that they are not rings in the ordinary sense but simply volatile material in the orbits of several individual small satellites. It is possible that other natural satellites may also leave such rings in their wakes.

  5. The Phase Shift in the Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Amiri, Farhang

    2008-01-01

    The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation.…

  6. 21 CFR 870.3800 - Annuloplasty ring.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Annuloplasty ring. 870.3800 Section 870.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...) Identification. An annuloplasty ring is a rigid or flexible ring implanted around the mitral or tricuspid...

  7. 21 CFR 870.3800 - Annuloplasty ring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Annuloplasty ring. 870.3800 Section 870.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...) Identification. An annuloplasty ring is a rigid or flexible ring implanted around the mitral or tricuspid...

  8. 21 CFR 870.3800 - Annuloplasty ring.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Annuloplasty ring. 870.3800 Section 870.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...) Identification. An annuloplasty ring is a rigid or flexible ring implanted around the mitral or tricuspid...

  9. 21 CFR 870.3800 - Annuloplasty ring.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Annuloplasty ring. 870.3800 Section 870.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...) Identification. An annuloplasty ring is a rigid or flexible ring implanted around the mitral or tricuspid...

  10. APS storage ring vacuum system

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Goeppner, G.A.; Gonczy, J.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1990-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs.

  11. Behavioral Mapless Navigation Using Rings

    NASA Technical Reports Server (NTRS)

    Monroe, Randall P.; Miller, Samuel A.; Bradley, Arthur T.

    2012-01-01

    This paper presents work on the development and implementation of a novel approach to robotic navigation. In this system, map-building and localization for obstacle avoidance are discarded in favor of moment-by-moment behavioral processing of the sonar sensor data. To accomplish this, we developed a network of behaviors that communicate through the passing of rings, data structures that are similar in form to the sonar data itself and express the decisions of each behavior. Through the use of these rings, behaviors can moderate each other, conflicting impulses can be mediated, and designers can easily connect modules to create complex emergent navigational techniques. We discuss the development of a number of these modules and their successful use as a navigation system in the Trinity omnidirectional robot.

  12. Arrays of ultrasmall metal rings

    NASA Astrophysics Data System (ADS)

    Singh, Deepak K.; Krotkov, Robert V.; Xiang, Hongqi; Xu, Ting; Russell, Thomas P.; Tuominen, Mark T.

    2008-06-01

    In this paper, we present a simple method to fabricate ultra-high-density hexagonal arrays of ferromagnetic nanorings having 13 nm outer diameter, 5 nm inner diameter and 5 nm thickness. Cobalt magnetic nanorings were fabricated using a self-assembled diblock copolymer template with an angular evaporation of metal followed by an ion-beam etching. Magnetic measurements and theoretical calculations suggest that, at low fields, only the single domain and vortex states are important for rings of this size. The measured magnetization as a function of applied field shows a hysteresis that is consistent. These ultrasmall ferromagnetic rings have potential use in magnetic memory devices due to the simplicity of the preparation coupled with the ultra-high-density and geometry-controlled switching. This fabrication technique can be extended to other materials for applications in optics, sensing and nanoscale research.

  13. Drag of buoyant vortex rings

    NASA Astrophysics Data System (ADS)

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S.-K.; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015), 10.1017/jfm.2015.126], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.

  14. Fiber Ring Optical Gyroscope (FROG)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design, construction, and testing of a one meter diameter fiber ring optical gyro, using 1.57 kilometers of single mode fiber, are described. The various noise components: electronic, thermal, mechanical, and optical, were evaluated. Both dc and ac methods were used. An attempt was made to measure the Earth rotation rate; however, the results were questionable because of the optical and electronic noise present. It was concluded that fiber ring optical gyroscopes using all discrete components have many serious problems that can only be overcome by discarding the discrete approach and adapting an all integrated optic technique that has the laser source, modulator, detector, beamsplitters, and bias element on a single chip.

  15. Fourth-generation storage rings

    SciTech Connect

    Galayda, J. N.

    1999-11-16

    It seems clear that a linac-driven free-electron laser is the accepted prototype of a fourth-generation facility. This raises two questions: can a storage ring-based light source join the fourth generation? Has the storage ring evolved to its highest level of performance as a synchrotrons light source? The answer to the second question is clearly no. The author thinks the answer to the first question is unimportant. While the concept of generations has been useful in motivating thought and effort towards new light source concepts, the variety of light sources and their performance characteristics can no longer be usefully summed up by assignment of a ''generation'' number.

  16. Ball-joint grounding ring

    NASA Technical Reports Server (NTRS)

    Aperlo, P. J. A.; Buck, P. A.; Weldon, V. A.

    1981-01-01

    In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.

  17. The Friction of Piston Rings

    NASA Technical Reports Server (NTRS)

    Tischbein, Hans W

    1945-01-01

    The coefficient of friction between piston ring and cylinder liner was measured in relation to gliding acceleration, pressure, temperature, quantity of oil and quality of oil. Comparing former lubrication-technical tests, conclusions were drawn as to the state of friction. The coefficients of friction as figured out according to the hydrodynamic theory were compared with those measured by tests. Special tests were made on "oiliness." The highest permissible pressure was measured and the ratio of pressure discussed.

  18. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  19. Chariklo's ring system 3. Exploration of possible Chariklo spin/ring orbit resonances

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; El Moutamid, Maryame; Leiva, Rodrigo; Berard, Diane; Renner, Stéfan

    2016-10-01

    Two dense and narrow rings orbit the Centaur object Chariklo at respective radii of 391±3 and 405±3 km (Braga-Ribas et al., Nature 508, 72, 2014).With a rotation period of PC = 7.004 ± 0.036 h (Fornasier et al. A.&A. 568, L11, 2014), Chariklo may adopt either a MacLaurin spheroid or a Jacobi ellipsoid shape, depending on density (and assuming hydrostatic equilibrium). Moreover, being a small icy body, Chariklo is prone to topographic features at several-kilometer scales.Meanwhile, scarce information on Chariklo's size and shape is presently available from occultation works, as only five chords have been obtained during three occultations that have been observed in 2013 and 2014. Those data are consistent with a MacLaurin shape with axes a, b, c ~ 133x133x110 km and mass MC ~ (1-2)x1019 kg, or with a Jacobi shape with a, b, c ~ 167x133x124 km and MC ~ 0.6-0.7x1019 kg, see the companion paper by Leiva et al.Those values imply a corotation radius between 190 and 280 km, depending on the adopted value of MC. This is well inside the ring radii, ruling out the corotation resonance as the main driver for the ring orbital dynamics.The ring orbital period could lie between Pr ~12 and 22 h, depending on MC, thus allowing possible resonances with Chariklo's spin rate ΩC. Two models will be explored. One model assumes a MacLaurin shape with a topographic feature of mass m that acts as perturbing satellites with orbital radius and period a and PC, respectively. This creates 1st order Linblad-type resonances of the kind Pr/PC = m+1/m (m integer) whose possible effects on the ring structure will be evaluated.The other model assumes a Jacobi shape that creates a perturbing potential GMc/r3 [(A+B-2C)2 + (3/2)(A-B).cos(2θ)] with θ= λ-ΩC.t in Chariklo's equatorial plane, where A, B, C are the moments of inertia around a, b, c, respectively, and λ is the mean longitude. This creates qth order Linblad-type resonances of the kind Pr/PC = q+2/q (q integer) that will also be

  20. Saturn's rings revisited by the images of the CASSINI spacecraft: Dynamical evolution of the F ring and photometric study of the main rings

    NASA Astrophysics Data System (ADS)

    Deau, E.

    2007-12-01

    In the Solar system, the planetary rings represent a fantastic opportunity of studying a majority of phenomena taking place in the thin discs. One can find discs at all redshifts and on all scales of the Universe. Planetary discs are very different~: among the jovian rings, one finds a halo of fine and diffuse dust; the rings of Uranus are very compact, like radially confined strings and the system of rings of Neptune consists of azimuthally stable arcs. However our interest goes on Saturn which has the most complex and widest system of rings known to date~: 484.000 km and a vertical extension which increases with the distance to Saturn (typically less than 1km to 10.000 km). The interest of such a matter organization around Saturn plus its many moons (more than one forty including 8 of a size of several hundreds kilometers) gave birth to the exploration mission CASSINI, supposed to allow the development and the refinement of models set up at the flybies of the two interplanetary probes VOYAGER. The CASSINI Mission began its nominal tour on january, 15th 2005 after the orbital insertion the 1st july 2004 and the dropping of HUYGENS probe on january, 14th 2005 on Titan's surface. The purpose of this thesis consists to revisite two subjects unsolved of long date in the photometric and dynamic behaviours of the Saturn's rings. In a first part, we try to solve the problem of accretion of matter within the Roche limit by studying the F ring. This ring, since its discovery in 1979 by Pioneer 11, is involved in a most various dynamic theories to explain its complex multi-radial structure and its variable azimuthal structure. We showed that the multi-radial structure of this ring can be understood by the existence of a spiral which is rolled up around a central area, bright, eccentric and inclined~: the core. The lifespan of this spiral is not the same one as the core, suggesting that the processes which create the spiral are periodic. Moreover, we showed that the

  1. Vaginal rings for delivery of HIV microbicides

    PubMed Central

    Malcolm, R Karl; Fetherston, Susan M; McCoy, Clare F; Boyd, Peter; Major, Ian

    2012-01-01

    Following the successful development of long-acting steroid-releasing vaginal ring devices for the treatment of menopausal symptoms and contraception, there is now considerable interest in applying similar devices to the controlled release of microbicides against HIV. In this review article, the vaginal ring concept is first considered within the wider context of the early advances in controlled-release technology, before describing the various types of ring device available today. The remainder of the article highlights the key developments in HIV microbicide-releasing vaginal rings, with a particular focus on the dapivirine ring that is presently in late-stage clinical testing. PMID:23204872

  2. Oxygen ions observed near Saturn's A ring.

    PubMed

    Waite, J H; Cravens, T E; Ip, W-H; Kasprzak, W T; Luhmann, J G; McNutt, R L; Niemann, H B; Yelle, R V; Mueller-Wodarg, I; Ledvina, S A; Scherer, S

    2005-02-25

    Ions were detected in the vicinity of Saturn's A ring by the Ion and Neutral Mass Spectrometer (INMS) instrument onboard the Cassini Orbiter during the spacecraft's passage over the rings. The INMS saw signatures of molecular and atomic oxygen ions and of protons, thus demonstrating the existence of an ionosphere associated with the A ring. A likely explanation for these ions is photoionization by solar ultraviolet radiation of neutral O2 molecules associated with a tenuous ring atmosphere. INMS neutral measurements made during the ring encounter are dominated by a background signal.

  3. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  4. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R.; Trotter, Douglas C.; Young, Ralph W.; Nielson, Gregory N.

    2009-11-10

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  5. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R.; Trotter, Douglas C.; Young, Ralph W.; Nielson, Gregory N.

    2011-07-19

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  6. An interesting natural phenomenon - giant rings on Lake Baikal ice

    NASA Astrophysics Data System (ADS)

    Kouraev, Alexei; Shimaraev, Michail; Remy, Frederique; Ivanov, Andrei; Golubov, Boris

    2010-05-01

    Starting from May 2009 scientific community and large public have been puzzled by the formation of giant rings on Baikal ice. These rings (diameter 5-7 km, thickness of dark layer - 1 - 1.8 km) have almost perfect circular shape what makes them so interesting and attractive not only to scientists, but also for large public. . The rings have been observed since 1999 by various satellites and sensors (AVHRR, MODIS, Landsat, SPOT) as early as 1999 but probably also in 1984 and 1994 (Shuttle missions). These rings are usually well observed in April, when snow cover is thin or absent. Rings have been observed in the southern tip of the lake (2009), and in three places in the central part: near Krestovskiy cape (1999, 2003, 2005 and 2008), near Turka (2008), and near Cape Nizhnee Izgolovye (2009). All these places are located in the region of steep bottom topography, over depths of more than 500 m. According to in situ measurements done by the Limnological Institute in Irkutsk in 2009, ice thickness is about 70 cm in the center and on the outside of the ring, and 40 cm in the ring itself. It is known that the Baikal lake has important hydrothermal activity, and there are numerous observations of gas (methane etc) seepage from its 7 km-thick layer of bottom sediments. Local-scale absence of ice cover (steamthroughs or "propariny") is typical for some places in Lake Baikal. They result from gas emissions (associated with rise of warm water), near capes and straits (due to better vertical mixing), thermal sources, outlets of large rivers. Often they are observed near Capes Big and Small Kadil'niy, and in the Olkhonskiye vorota strait. However they size ranges from just a half a meter to several hundreds of meters (but not several kilometers) and this could not be an explanation for the formation of giant rings. We present several existing hypotheses of the origin of these rings including gas emission, heat flux, cyclonic subsurface currents and mega-bubble formation due to

  7. Facile Access to Cyclooctanoid Ring Systems via Microwave-Assisted Tandem 6-exo dig Cyclization-Rearrangement Sequence

    PubMed Central

    Feldman, Aaron W.; Ovaska, Sami I.; Ovaska, Timo V.

    2014-01-01

    Appropriately substituted 5-alkyn-1-ol systems bearing a nitrile moiety at the triple bond serve as versatile precursors to a variety of cyclooctenone derivatives via a “one-pot” base-catalyzed oxyanionic 6-exo dig cyclization/Claisen rearrangement sequence under microwave irradiation. It was found that the initially formed cyclic intermediate consists of a mixture of endo and exocyclic isomers, which appear to be in equilibrium under the reaction conditions. However, the only observed products from these reactions are α-cyano substituted cyclooctenones, derived from the exocyclic dihydrofuran intermediates. PMID:24994941

  8. DESIGN OF VISIBLE DIAGNOSTIC BEAMLINE FOR NSLS2 STORAGE RING

    SciTech Connect

    Cheng, W.; Fernandes, H.; Hseuh, H.; Kosciuk, B.; Krinsky, S.; Singh, O.

    2011-03-28

    A visible synchrotron light monitor (SLM) beam line has been designed at the NSLS2 storage ring, using the bending magnet radiation. A retractable thin absorber will be placed in front of the first mirror to block the central x-rays. The first mirror will reflect the visible light through a vacuum window. The light is guided by three 6-inch diameter mirrors into the experiment hutch. In this paper, we will describe design work on various optical components in the beamline. The ultra high brightness NSLS-II storage ring is under construction at Brookhaven National Laboratory. It will have 3GeV, 500mA electron beam circulating in the 792m ring, with very low emittance (0.9nm.rad horizontal and 8pm.rad vertical). The ring is composed of 30 DBA cells with 15 fold symmetry. Three damping wigglers will be installed in long straight sections 8, 18 and 28 to lower the emittance. While electrons pass through the bending magnet, synchrotron radiation will be generated covering a wide spectrum. There are other insertion devices in the storage ring which will generate shorter wavelength radiation as well. Synchrotron radiation has been widely used as diagnostic tool to measure the transverse and longitudinal profile. Three synchrotron light beam lines dedicated for diagnostics are under design and construction for the NSLS-II storage ring: two x-ray beam lines (pinhole and CRL) with the source points from Cell 22 BM{_}A (first bending in the DBA cell) and Cell22 three-pole wiggler; the third beam line is using visible part of radiation from Cell 30 BM{_}B (second bending magnet from the cell). Our paper focuses on the design of the visible beam line - SLM.

  9. Experimental determination of storage ring optics using orbit response measurements

    NASA Astrophysics Data System (ADS)

    Safranek, J.

    1997-02-01

    The measured response matrix giving the change in orbit at beam position monitors (BPMs) with changes in steering magnet excitation can be used to accurately calibrate the linear optics in an electron storage ring [1-8]. A computer code called LOCO (Linear Optics from Closed Orbits) was developed to analyze the NSLS X-Ray Ring measured response matrix to determine: the gradients in all 56 quadrupole magnets; the calibration of the steering magnets and BPMs; the roll of the quadrupoles, steering magnets, and BPMs about the electron beam direction; the longitudinal magnetic centers of the orbit steering magnets; the horizontal dispersion at the orbit steering magnets; and the transverse mis-alignment of the electron orbit in each of the sextupoles. Random orbit measurement error from the BPMs propagated to give only 0.04% rms error in the determination of individual quadrupole gradients and 0.4 mrad rms error in the determination of individual quadrupole rolls. Small variations of a few parts in a thousand in the quadrupole gradients within an individual family were resolved. The optics derived by LOCO gave accurate predictions of the horizontal dispersion, the beta functions, and the horizontal and vertical emittances, and it gave good qualitative agreement with the measured vertical dispersion. The improved understanding of the X-Ray Ring has enabled us to increase the synchrotron radiation brightness. The LOCO code can also be used to find the quadrupole family gradients that best correct for gradient errors in quadrupoles, in sextupoles, and from synchrotron radiation insertion devices. In this way the design periodicity of a storage ring's optics can be restored. An example of periodicity restoration will be presented for the NSLS VUV Ring. LOCO has also produced useful results when applied to the ALS storage ring [8].

  10. AM 2217-490: A polar ring galaxy under construction

    NASA Astrophysics Data System (ADS)

    Freitas-Lemes, P.; Rodrigues, I.; Faúndez-Abans, M.; Dors, O.

    2014-10-01

    This work is part of a series of case studies of Polar Ring Galaxies (PRGs) (see also Posters GAL-1: 163, GAL-2: 178). A PRG is formed by an early type host galaxy (e.g. lenticular or elliptical), surrounded by a ring of gas and stars orbiting approximately at the polar plane of the host galaxy. AM2217-490 is an interesting case of PRG in formation, with a still asymmetrical ring that surrounds the host galaxy. Apparently, this bluish structure (characteristic of the rings of PRGs), is not yet in equilibrium with the host galaxy. This study is based on spectra on the range 6250-7250 Å obtained with the CTIO 1.5 m telescope - Chile. From them, we measure a heliocentric radial velocity of 9152± 18 km/s. The value of the ionization parameter (log U = -3.5) is similar to that in interacting galaxies (Freitas-Lemes et al. 2013, submitted to MNRAS; and Krabbe et al. 2013, MNRAS Accepted), and lower than that of isolated ones. The electron density shows little variation along the major axis of the host galaxy, and a mean value typical of interacting galaxies. Diagnostic diagrams show that the nuclear region harbors an AGN, following a trend among polar ring galaxies. The low-resolution images of the SDSS show no tails or bridges connecting the galaxy to other objects, however, in a radius of 5 arcmin there are three other galaxies with similar speeds, featuring a group. A plausible hypothesis is that one of these galaxies may have interacted with AM2217-490, donating material to form the ring.

  11. Noncircular features in Saturn's rings II: The C ring

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; French, Richard G.; McGhee-French, Colleen A.; Hedman, Matthew M.; Marouf, Essam A.; Colwell, Joshua E.; Lonergan, Katherine; Sepersky, Talia

    2014-10-01

    We present a comprehensive survey of sharp-edged features in Saturn's C ring, using data from radio and stellar occultation experiments carried out by the Cassini spacecraft over a period of more than five years. Over 100 occultations are included in the combined data set, enabling us to identify systematic radial perturbations as small as 200 m on the edges of ringlets and gaps. We systematically examine all of the noncircular features in the C ring, refine the eccentricities, precession rates and width variations of the known eccentric ringlets, identify connections between several noncircular gap and ringlet edges and nearby satellite resonances, and report the discovery of a host of free normal modes on ring and gap edges. We confirm a close association between the Titan (or Colombo) ringlet (a = 77878.7 km) and the Titan 1:0 apsidal resonance: the apoapse of the ringlet is nearly aligned with Titan's mean longitude, and the pattern speed closely matches Titan's mean motion. Similar forced perturbations associated with the Titan resonance are detectable in more than two dozen other features located throughout the inner C ring as far as 3500 km from the Titan resonance. The inner edge of the Titan ringlet exhibits several strong outer Lindblad resonance (OLR-type) normal modes, and scans of the outer edge reveal inner Lindblad resonance (ILR-type) normal modes. The Maxwell ringlet (a = 87,510 km), in contrast, appears to be a freely-precessing eccentric ringlet, with post-fit RMS residuals for the inner and outer edges of only 0.23 and 0.16 km, respectively. The best-fitting edge precession rates differ by over 10 times the estimated uncertainty in the rate of the inner edge, consistent with a slow libration about an equilibrium configuration on a decadal timescale. Using self-gravity models for ringlet apse alignment, we estimate the masses and surface densities of the Titan and Maxwell ringlets. The Bond ringlet (a = 88,710 km), about 17 km wide, shows no free

  12. More on five dimensional EVH black rings

    NASA Astrophysics Data System (ADS)

    Ghodsi, Ahmad; Golchin, Hanif; Sheikh-Jabbari, M. M.

    2014-09-01

    In this paper we continue our analysis of arXiv:1308.1478 and study in detail the parameter space of three families of doubly spinning black ring solutions: balanced black ring, unbalanced ring and dipole-charged balanced black rings. In all these three families the Extremal Vanishing Horizon (EVH) ring appears in the vanishing limit of the dimensionful parameter of the solution which measures the ring size. We study the near horizon limit of the EVH black rings and for all three cases we find a (pinching orbifold) AdS3 throat with the AdS3 radius ℓ 2 = 8 G 5 M/(3 π) where M is the ring mass and G 5 is the 5d Newton constant. We also discuss the near horizon limit of near-EVH black rings and show that the AdS3 factor is replaced with a generic BTZ black hole. We use these results to extend the EVH/CFT correspondence for black rings, a 2d CFT dual to near-EVH black rings.

  13. Nuclear Rings in Galaxies - A Kinematic Perspective

    NASA Technical Reports Server (NTRS)

    Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain

    2011-01-01

    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.

  14. Leapfrogging of multiple coaxial viscous vortex rings

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2015-03-01

    A recent theoretical study [Borisov, Kilin, and Mamaev, "The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem," Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., "The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid," Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.

  15. Leapfrogging of multiple coaxial viscous vortex rings

    SciTech Connect

    Cheng, M. Lou, J.; Lim, T. T.

    2015-03-15

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.

  16. Pressurized balanced sealing system for use on the ring-liner interface of a coal fired diesel engine

    SciTech Connect

    Leonard, G.L.

    1989-03-14

    A system for minimizing a wear to a reciprocating internal combustion engine is described, consisting of a cylinder having a wall and a combustion chamber within the cylinder; a piston movable in a stroke within the cylinder between a top dead center position and a bottom dead center position, the piston having first and second ends, the first end being adjacent to the combustion chamber and the second end being remote from the combustion chamber; first, second, and third piston rings extending around the piston, the second piston ring being positioned between the first and the third piston rings; a ring pack area on the piston between the first piston ring and the second piston ring; a lubricant blowby area between the second piston ring and the third piston ring; and a pump communicating with an inlet in the wall such that the lubricant blowby area registers with the inlet during at least part of the stroke of the piston, the pump having an outlet in the wall such that the ring pack area registers with the outlet during at least part of the stroke of the piston, the pump operable to draw lubricant from the lubricant blowby area and provide lubricant to the ring pack area.

  17. Small Satellites Embedded in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Hahn, J. M.

    2005-08-01

    A small satellite that inhabits a narrow gap in an dense planetary ring, such as Pan, will excite wakes at the gap edges, as well as spiral waves deeper in the ring. As the satellite disturbs the ring, it also draws angular momentum from the ring matter that orbits just interior to the satellite, while depositing that angular momentum among the ring particles that orbit just exterior. This outward transport of angular momentum causes the orbits of the nearby ring particles to slowly shrink, dragging along with them the satellite in its gap. This inward motion is of course type II migration that is familiar from planet formation theory. The significance of type II migration, if any, will also be assessed for the small satellites that orbit within Saturn's rings.

  18. Apse Alignment of the Uranian Rings

    NASA Astrophysics Data System (ADS)

    Mosqueira, Ignacio; Estrada, Paul R.

    2002-08-01

    An explanation of the dynamical mechanism for apse alignment of the eccentric uranian rings is necessary before observations can be used to determine properties such as ring masses, particle sizes, and elasticities. The leading model (P. Goldreich and S. Tremaine 1979, Astron J.84, 1638-1641) relies on the ring self-gravity to accomplish this task, yet it yields equilibrium masses which are not in accord with Voyager radio measurements. We explore possible solutions such that the self-gravity and the collisional terms are both involved in the process of apse alignment. We consider limits that correspond to a hot and a cold ring, and we show that pressure terms may play a significant role in the equilibrium conditions for the narrow uranian rings. In the cold ring case, where the scale height of the ring near periapse is comparable to the ring particle size, we introduce a new pressure correction pertaining to a region of the ring where the particles are locked in their relative positions and jammed against their neighbors and the velocity dispersion is so low that the collisions are nearly elastic. In this case, we find a solution such that the ring self-gravity maintains apse alignment against both differential precession ( m=1 mode) and the fluid pressure. We apply this model to the uranian α ring and show that, compared to the previous self-gravity model, the mass estimate for this ring increases by an order of magnitude. In the case of a hot ring, where the scale height can reach a value as much as 50 times the particle size, we find velocity dispersion profiles that result in pressure forces which act in such a way as to alter the ring equilibrium conditions, again leading to a ring mass increase of an order of magnitude. We find that such a velocity dispersion profile would require a different mechanism than is currently envisioned for establishing a heating/cooling balance in a finite-sized, inelastic particle ring. Finally, we introduce an important

  19. A search for cold water rings

    NASA Technical Reports Server (NTRS)

    Cheney, R. E.

    1981-01-01

    SAR imagery obtained by Seasat in the Sargasso Sea during 1978 is examined for cold ring signatures. One orbit on August 26 is thought to have imaged the edge of a cold ring, although the ring's position was not well known at the time. During another orbit on September 23, drifting buoy and expendable bathythermography data furnished conclusive evidence that the ring was centered directly in the SAR swath. Although some suggestive patterns are visible in the images, it is not clear that cold rings can be identified by SAR, even though dynamically similar features, such as the Gulf Stream and warm rings, can be accurately detected. The suggestion is made that cold rings may be imaged inadequately because of their lack of surface temperature gradient.

  20. On the Janus-Epimetheus Ring

    NASA Astrophysics Data System (ADS)

    Winter, Othon; Souza, Alexandre; Sfait, Rafael; Giuliatti Winter, Silvia; Mourão, Decio; Foryta, Dietmar

    2016-10-01

    Cassini spacecraft found a new and unique ring to share a trajectory with Janus and Epimetheus, co-orbital satellites of Saturn. Analyzing Cassini images, we found that the Janus-Epimetheus ring is a continuous and smooth ring, which can only be seen by Cassini's camera at very high phase angles, not being observed at other geometries, as a `firefly' behavior. We also found a very short mean lifetime for the ring particles, less than a couple of decades. Consequently, the ring needs to be constantly replenished. Using a collisional model of micrometeoroids on the satellites' surfaces we found that it produces a faint ring that is fully compatible with the Janus-Epimitheus ring. We also verified that the steady state of the generated particles distribution corresponds to that of the light scattering regime responsible for the `firefly' behavior.

  1. Feasibility of a ring FEL at low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Agapov, I.

    2015-09-01

    A scheme for generating coherent radiation at latest generation low emittance storage rings such as PETRA III at DESY (Balewski et al., 2004 [1]) is proposed. The scheme is based on focusing and subsequent defocusing of the electron beam in the longitudinal phase space at the undulator location. The expected performance characteristics are estimated for radiation in the wavelength range of 500-1500 eV. It is shown that the average brightness is increased by several orders of magnitude compared to spontaneous undulator radiation, which can open new perspectives for photon-hungry soft X-ray spectroscopy techniques.

  2. Mode beating and heterodyning of monolithically integrated semiconductor ring lasers

    NASA Astrophysics Data System (ADS)

    Liu, Chiyu

    Monolithically integrated semiconductor ring lasers (SRLs) are attractive optical sources for optoelectronic integrated circuits (OEICs) because they do not require any feedback elements, do not have parts exposed to external ambient, and can operate in a traveling-wave mode. They are promising candidates for wavelength filtering, unidirectional traveling-wave operation, and multiplexing/demultiplexing applications. Ring lasers can also be used as ultrashort pulse generators using various mode-locking schemes and as active gyro components. However, the SRL is a very complicated dynamic system, which requires more investigations to understand the performance regarding details of the design and fabrication. As a part of NASA-supported project "Monolithically Integrated Semiconductor Ring Laser Gyro for Space Applications", this dissertation research was focused on design and characterization of a novel monolithically integrated rotation sensor based on two large-size independent SRLs. Numerical modeling based on the beam propagation method (BPM) was used to design the fabrication parameters for the single-mode ridge-waveguide ring cavity and directional coupler waveguides. The mode internal coupling in single lateral-mode laser diodes with InGaAs/GaAs material system was investigated by optical experiments and numerical modeling. To gain the understanding of the SRL performance, optical and electrical characterization was performed on fabricated SRLs. Particular emphasis was placed on the study of optical and radio frequency (RF) beating spectra of longitudinal modes of ring lasers. RF measurements provide high accuracy in the diagnosis of laser oscillation parameters by purely electronic means, particularly in the measurement of the group index and its dependence on current and temperature. Theoretical analysis based on the effective index method provides good agreement between the experimental data and numerical calculations. Finally, optical heterodyning spectra

  3. The F ring: Saturn's crooked halo?

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; French, R. G.; Bosh, A. S.

    1999-09-01

    HST observations of the ring--plane crossings in May, August and November 1995 showed that the edge-on brightness of Saturn's rings is dominated not by the classical A and B rings, but by the narrow, irregular F Ring (Nicholson et al., [1996] Science 272, 509; Bosh & Rivkin [1996] Ibid 272, 518). Located 3500 km exterior to the outer edge of the A ring, and bounded by the small satellites Prometheus and Pandora, the F ring is ~ 50 km wide, optically thin at normal incidence angles, and exhibits a multi-stranded appearance in high resolution Voyager images (Murray et al. [1997] Icarus 129, 304). Occultation observations in 1980/81 and 1989 show a single strand which is well-fitted by a precessing keplerian ellipse with semimajor axis 140209 km and e = 0.0029. A stellar occultation observed by HST on 22 November 1995, just after the solar ring plane crossing and at a terrestrial incidence angle of only 2.7 deg, revealed that the F ring is inclined at an angle of 0.0062 deg to the plane of the main rings (Olkin & Bosh [1996] BAAS, 28, 1125). This non-zero inclination, which corresponds to a vertical amplitude a sin i = 15 km, also manifests itself in the partial eclipse of the F ring by the A ring in the November HST images. By precessing the ring back to the Earth ring plane crossing of 10 August, we find that the curious east-west asymmetry in the brightness of the main rings noted at this time - which is the principal source of uncertainty in the crossing time (Nicholson & French [1997] BAAS 29, 1097) - is apparently due to partial obscuration of the A and B rings by the inclined F ring. By chance, the Earth crossing of 22 May occurred when the line of nodes pointed to the Earth, and no such asymmetry was seen. Photometric models of the edge-on ring brightness should permit us to determine both the thickness and radial optical depth of the F ring, and eventually to refine the ring plane crossing time to within an uncertainty of a few minutes .

  4. Oxidized metabolites from benzo[a]pyrene, benzo[e]pyrene, and aza-benzo[a]pyrenes. A computational study of their carbocations formed by epoxide ring opening reactions.

    PubMed

    Borosky, Gabriela L; Laali, Kenneth K

    2007-07-21

    A DFT study aimed at understanding structure-reactivity relationships and fluorine substitution effects on carbocation stability in benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and aza-benzo[a]pyrene (aza-BaP) derivatives are reported. The relative energies of the resulting carbocations are examined and compared, taking into account the available biological activity data on these compounds. O-Protonation of the epoxides and diol epoxides leads to carbocation formation by barrierless processes. Charge delocalization modes in the resulting carbocations were deduced via NPA-derived changes in charges, and fluorine substitution effects were analyzed on the basis of charge density at different carbocation positions. Thus, fluorine substitution at sites bearing negative charge generated inductive destabilization of the carbocation, whereas a fluorine atom at a ring position which presented significant positive charge density produced a less pronounced destabilization due to fluorine p-pi back-bonding. Protonation reactions were also studied for the azaBaPs. In selected cases, the covalent adducts generated via bond formation with the exocyclic nitrogen of cytosine were computed and relative energies and geometries of the resulting adducts were examined.

  5. Continuous Earth Rotation Monitoring with the large Ring Laser G

    NASA Astrophysics Data System (ADS)

    Schreiber, Ulrich; Holdaway, John; Gebauer, André; Kluegel, Thomas; Wells, Jon-Paul

    2010-05-01

    Over the last decade, ring lasers have found their way back into the research laboratories. By scaling them up in size, they have gained several orders of magnitude over their commercial counterparts, both in sensitivity and stability. Unlike the established space geodetic techniques SLR/LLR and VLBI, ring lasers can be operated autonomous and continuously. While a single ring laser component already provides direct access to the instantaneous axis of rotation of the Earth, it is also susceptible to local perturbations both with respect to platform rotation and instrumental tilt caused by local wind load for example. These instrumental coupling issues are addressed in more detail in a separate paper (Gebauer et al.) in this conference. Currently the laser gyro G at the Geodetic Observatory Wettzell (Germany) can resolve rotation rates as small as 1 pico-rad/s requiring an integration time of less than 2 hours. This opens the door for the research of high frequency variations in Earth rotation. Over the last year we have improved the ring laser technology by as much as a factor of 3 in sensitivity, which makes the domain of ∆Omega/Omega ≈ 10e-9 of Earth rotation accessible to a local rotation sensor. Currently it appears that the micro-seismic background activity of the Earth causes the major part from the observed deviation of the sensor performance with respect to the computed shot noise limit. Recent efforts concentrated on the improvement of the sensor stability against drift effects caused by the aging of the laser gas, scale factor instabilities induced by atmospheric pressure variations and the corresponding temperature changes from adiabatic expansion and compression of the local air around the instrument. Over the last year have introduced a pressure stabilizing vessel enclosing the entire ring laser structure. By monitoring the optical frequency in the ring laser cavity continuously and stabilizing the scale factor in a closed loop system, it became

  6. Ring magnet firing angle control

    DOEpatents

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  7. Longitudinal dynamics in storage rings

    SciTech Connect

    Colton, E.P.

    1986-01-01

    The single-particle equations of motion are derived for charged particles in a storage ring. Longitudinal space charge is included in the potential assuming an infinitely conducting circular beam pipe with a distributed inductance. The framework uses Hamilton's equations with the canonical variables phi and W. The Twiss parameters for longitudinal motion are also defined for the small amplitude synchrotron oscillations. The space-charge Hamiltonian is calculated for both parabolic bunches and ''matched'' bunches. A brief analysis including second-harmonic rf contributions is also given. The final sections supply calculations of dynamical quantities and particle simulations with the space-charge effects neglected.

  8. False ring formation in eastern hemlock branches: impacts of hemlock woolly adelgid and elongate hemlock scale.

    PubMed

    Gonda-King, Liahna; Radville, Laura; Preisser, Evan L

    2012-06-01

    Herbivores can alter plant physiology through the induction of abnormal wood formation. Feeding by some insects induces the formation of false rings, a band of thick-walled latewood cells within the earlywood portion of the tree ring that reduces water transport. Hemlock woolly adelgid (Adelges tsugae Annand) and elongate hemlock scale (Fiorinia externa Ferris) are invasive insects that both feed on eastern hemlock [Tsuga canadensis (L.) Carrière]. Adelges tsugae has a greater effect on tree health than F. externa, but the mechanism underlying their differential effect is unknown. We explored the effects of these herbivores by assessing growth ring formation in branches of trees that had been experimentally infested for 4 yr with A. tsugae, F. externa, or neither insect. We measured false ring density, ring growth, and earlywood: latewood ratios in the two most recently deposited growth rings. Branches from A. tsugae-infested trees had 30% more false rings than branches from F. externa-infested trees and 50% more than branches from uninfested trees. In contrast, branches from F. externa-infested trees and control trees did not differ in false ring formation. Radial growth and earlywood: latewood ratios did not differ among treatments. Our results show that two invasive herbivores with piercing-sucking mouth parts have differing effects on false ring formation in eastern hemlock. These false rings may be the product of a systemic plant hypersensitive response to feeding by A. tsugae on hemlock stems. If false rings are responsible for or symptomatic of hemlock water stress, this may provide a potential explanation for the relatively large effect of A. tsugae infestations on tree health.

  9. Magnetic response measurements of mesoscopic superconducting and normal metal rings

    NASA Astrophysics Data System (ADS)

    Bluhm, Hendrik

    The main part of this thesis reports three experiments on the magnetic response of mesoscopic superconducting and normal metal rings using a scanning SQUID microscope. The first experiment explores the magnetic response and fluxoid transitions of superconducting, mesoscopic bilayer aluminum rings in the presence of two coupled order parameters arising from the layered structure. For intermediate couplings, metastable states that have different phase winding numbers around the ring in each of the two order parameters were observed. Larger coupling locks the relative phase, so that the two order parameters are only manifest in the temperature dependence of the response. With increasing proximitization, this signature gradually disappears. The data can be described with a two-order-parameter Ginzburg-Landau theory. The second experiment concentrates on fluxoid transitions in similar, but single-layer rings. Near the critical temperature, the transitions, which are induced by applying a flux to the ring, only admit a single fluxoid at a time. At lower temperatures, several fluxoids enter or leave at once, and the final state approaches the ground state. Currently available theoretical frameworks cannot quantitatively explain the data. Heating and quasiparticle diffusion are likely important for a quantitative understanding of this experiment, which could provide a model system for studying the nonlinear dynamics of superconductors far from equilibrium. The third and most important scanning SQUID study concerns 33 individual mesoscopic gold rings. All measured rings show a paramagnetic linear susceptibility and a poorly understood anomaly around zero field, both of which are likely due to unpaired defect spins. The response of sufficiently small rings also has a component that is periodic in the flux through the ring, with a period close to h/e. Its amplitude varies in sign and magnitude from ring to ring, and its typical value and temperature dependence agree with

  10. Dynamics of dust in Jupiter's gossamer rings

    NASA Astrophysics Data System (ADS)

    Hamilton, D.; Burns, J.; Krueger, H.; Showalter, M.

    2003-04-01

    Over the past several years, the Galileo spacecraft has drastically improved our knowledge of Jupiter's faint rings. We now know the system to be composed of a main ring 7000km wide whose inner edge blossoms into a vertically-extended halo, and a pair of gossamer rings, each one extending inward from a small moon. These moonlets, Thebe and Amalthea, have large orbital tilts and resulting vertical excursions of 1150km and 4300km, respectively. The vertical thicknesses of the two Gossamer rings accurately match these values, providing compelling evidence that the two small satellites act as the dominant sources of ring material. Ring Material is born during high speed impacts onto the moonlet surfaces, after which the material evolves inward under the action of a dissipative force, either Poynting-Robertson Drag or Resonant Charge Variations. The basic framework for the origin and evolution of the Gossamer Rings is well understood, but there are a few loose ends that are not so easily explained: i) an outward extension of the Thebe Ring, ii) the nature of the dissipative force. In this talk I will report my latest dynamical modeling of the Gossamer rings associated with Thebe and Amalthea, and will discuss how in-situ impact data collected by the Galileo dust detector during the first ever ring "fly-through" may help to resolve some of these and other outstanding issues.

  11. Interaction of Vortex Ring with Cutting Plate

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2015-11-01

    The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.

  12. Onset of necking in electro-magnetically formed rings

    NASA Astrophysics Data System (ADS)

    Triantafyllidis, Nicolas; Waldenmyer, Joshua R.

    2004-09-01

    The electromagnetic forming (EMF) process is an attractive manufacturing technique, which uses electromagnetic (Lorentz) body forces to fabricate metallic parts. One of the many advantages of EMF is the considerable ductility increase observed in several metals, with aluminum featuring prominently among them. The quantitative explanation of this phenomenon is the primary motivation of this work. To study the ductility increase due to EMF, an aluminum ring is placed outside a fixed coil, which is connected to a capacitor. Upon the capacitor's discharge, the time varying current in the coil induces a larger current in the ring specimen and the resulting Lorentz forces make it expand. The coupled coil-ring electromagnetic and thermomechanical problem is solved, using an experimentally obtained constitutive model for a particular aluminum alloy. Our results show that for realistic imperfections, the EMF ring starts necking at strains about six times larger than its static counterpart, as observed experimentally. This study establishes the importance of solving the fully coupled electromagnetic and thermomechanical problem and provides insight on how different constitutive parameters influence ductility in an EMF process.

  13. Extreme Drought Events Revealed in Amazon Tree Ring Records

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Baker, P. A.; Guilderson, T. P.

    2010-12-01

    The Amazon basin is a center of deep atmospheric convection and thus acts as a major engine for global hydrologic circulation. Yet despite its significance, a full understanding of Amazon rainfall variability remains elusive due to a poor historical record of climate. Temperate tree rings have been used extensively to reconstruct climate over the last thousand years, however less attention has been given to the application of dendrochronology in tropical regions, in large part due to a lower frequency of tree species known to produce annual rings. Here we present a tree ring record of drought extremes from the Madre de Dios region of southeastern Peru over the last 190 years. We confirm that tree ring growth in species Cedrela odorata is annual and show it to be well correlated with wet season precipitation. This correlation is used to identify extreme dry (and wet) events that have occurred in the past. We focus on drought events identified in the record as drought frequency is expected to increase over the Amazon in a warming climate. The Cedrela chronology records historic Amazon droughts of the 20th century previously identified in the literature and extends the record of drought for this region to the year 1816. Our analysis shows that there has been an increase in the frequency of extreme drought (mean recurrence interval = 5-6 years) since the turn of the 20th century and both Atlantic and Pacific sea surface temperature (SST) forcing mechanisms are implicated.

  14. Saturn's rings thickness with the shadow hiding

    NASA Astrophysics Data System (ADS)

    Deau, Estelle; Brahic, André; Porco, Carolyn

    Using the Hapke shadow hiding model on various curves phases of ISS/Cassini, we were able to compute the thickness of Saturn's rings through the photometric filling factor. Our results show that diffuse rings (C ring and Cassini Division) are distributed in a monolayer with a thickness from a few centimeters to 5 meters. This seems to suggest that the layer is smaller than the larger particles. For the A and B rings, we find a thickness ranging from 10 to 20 meters, then leading to multiple layers of particles. Our results for the A ring are systematically lower than the values derived by density waves (Tiscareno et al., 2007) and dynamical simulations of Salo and Kaarjalainen (2003). For the first one, this can be explain by the fact the vertical height of the density waves are the upper limit of the real height. Indeed, the wakes (Julian & Toomre, 1966; Salo 1995) conduce the viscosity in the A ring (Daisaka et al., 2001), and produce random speeds greater in the ring plane than in the vertical direction (Daisaka & Ida, 1999), thereby reducing the thickness given by the vertical random speed used to compute the vertical height. However, for the latter one, simulations lead in all the cases (A and B rings such as C ring and Cassini Division) to vertical height of few meters. This constancy can be explained by the fact that simulations take a size distribution too truncated, and a coefficient of restitution rather simple (indeed, rings reflect different surface conditions related to the optical depth, thus the Bridges' law could not promote only one type of collisions). Finally, our results prefer monolayer (layer smaller than the larger particles which allow multilayer of smaller particules) for the faint rings (C ring and Cassini Division) and multilayer for the A and B rings.

  15. Polycomb Group Targeting through Different Binding Partners of RING1B C-Terminal Domain

    PubMed Central

    Wang, Renjing; Taylor, Alexander B.; Leal, Belinda Z.; Chadwell, Linda V.; Ilangovan, Udayar; Robinson, Angela K.; Schirf, Virgil; Hart, P. John; Lafer, Eileen M.; Demeler, Borries; Hinck, Andrew P.; McEwen, Donald G.; Kim, Chongwoo A.

    2015-01-01

    SUMMARY RING1B, a Polycomb Group (PcG) protein, binds methylated chromatin through its association with another PcG protein called Polycomb (Pc). However, RING1B can associate with nonmethylated chromatin suggesting an alternate mechanism for RING1B interaction with chromatin. Here, we demonstrate that two proteins with little sequence identity between them, the Pc cbox domain and RYBP, bind the same surface on the C-terminal domain of RING1B (C-RING1B). Pc cbox and RYBP each fold into a nearly identical, intermolecular beta sheet with C-RING1B and a loop structure which are completely different in the two proteins. Both the beta sheet and loop are required for stable binding and transcription repression. Further, a mutation engineered to disrupt binding on the Drosophila dRING1 protein prevents chromatin association and PcG function in vivo. These results suggest that PcG targeting to different chromatin locations relies, in part, on binding partners of C-RING1B that are diverse in sequence and structure. PMID:20696397

  16. Satellite-rocket docking ring recognition method based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang; Shang, Yang; Ma, Xuan

    2015-10-01

    Satellite-rocket docking ring recognition method based on mathematical morphology is presented in this paper, according to the geometric and grayscale characteristics of the docking ring typical structure. The docking ring used in this paper is a circle with a cross in the middle. Most of spacecrafts are transported into orbit by rocket, and they retain the connection component with the rocket. The tracing spacecraft should capture the target spacecraft first before operating the target spacecraft. The docking ring is one of the typical parts of a spacecraft, and it can be recognized automatically. Thereby we can capture the spacecraft through the information of the docking ring. Firstly a multi-step mathematical morphology processing is applied to the image of the target spacecraft with different structure element, followed by edge detection and line detection, and finally docking ring typical structure is located in the image by relative geometry analysis. The images used in this paper are taken of real satellite in lab. The docking ring can be recognized when the distance between the two spacecraft is different. The results of physical simulation experiment show that the method in this paper can recognize docking ring typical structure accurately when the tracing spacecraft is approaching the target spacecraft.

  17. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    NASA Astrophysics Data System (ADS)

    Ojkic, Nikola; Wu, Jian-Qiu; Vavylonis, Dimitrios

    2011-09-01

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  18. Macroscopic Anatomy of the Saimaa Ringed Seal (Phoca hispida saimensis) Lower Respiratory Tract.

    PubMed

    Laakkonen, Juha; Jernvall, Jukka

    2016-04-01

    We studied the macroscopic anatomy of the lower respiratory tract of the endangered Saimaa ringed seal (Phoca hispida saimensis). Examination of one adult and one young individual found dead showed that trachea had 85 and 86 complete cartilage rings. The adjacent cartilages exhibited very few random anastomoses. There was variation in the confirmation of the trachea between the cranial and caudal part of the trachea. The right lung was divided by partly incomplete inter-lobar fissures into cranial, middle, caudal, and accessory lobes. The left lung consisted of cranial, middle, and caudal lobes. The lungs were characterized by a high amount of interlobular connective tissue. Silicone casts were prepared of the two specimens to visualize the tracheobronchial branching which was similar to that of marine ringed seals but in the Saimaa ringed seal the right middle lobar bronchus originated at the same level as the accessory lobar bronchus.

  19. Ring distributions leading to species formation: a global topographic analysis of geographic barriers associated with ring species

    PubMed Central

    2012-01-01

    Background In the mid 20th century, Ernst Mayr and Theodosius Dobzhansky championed the significance of circular overlaps or ring species as the perfect demonstration of speciation, yet in the over 50 years since, only a handful of such taxa are known. We developed a topographic model to evaluate whether the geographic barriers that favor processes leading to ring species are common or rare, and to predict where other candidate ring barriers might be found. Results Of the 952,147 geographic barriers identified on the planet, only about 1% are topographically similar to barriers associated with known ring taxa, with most of the likely candidates occurring in under-studied parts of the world (for example, marine environments, tropical latitudes). Predicted barriers separate into two distinct categories: (i) single cohesive barriers (< 50,000 km2), associated with taxa that differentiate at smaller spatial scales (salamander: Ensatina eschscholtzii; tree: Acacia karroo); and (ii) composite barriers - formed by groups of barriers (each 184,000 to 1.7 million km2) in close geographic proximity (totaling 1.9 to 2.3 million km2) - associated with taxa that differentiate at larger spatial scales (birds: Phylloscopus trochiloides and Larus (sp. argentatus and fuscus)). When evaluated globally, we find a large number of cohesive barriers that are topographically similar to those associated with known ring taxa. Yet, compared to cohesive barriers, an order of magnitude fewer composite barriers are similar to those that favor ring divergence in species with higher dispersal. Conclusions While these findings confirm that the topographic conditions that favor evolutionary processes leading to ring speciation are, in fact, rare, they also suggest that many understudied natural systems could provide valuable demonstrations of continuous divergence towards the formation of new species. Distinct advantages of the model are that it (i) requires no a priori information on the relative

  20. The cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  1. The cryogenic storage ring CSR.

    PubMed

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  2. RING-APODIZED VORTEX CORONAGRAPHS FOR OBSCURED TELESCOPES. I. TRANSMISSIVE RING APODIZERS

    SciTech Connect

    Mawet, D.; Pueyo, L.; Carlotti, A.; Mennesson, B.; Serabyn, E.; Wallace, J. K.

    2013-11-01

    The vortex coronagraph (VC) is a new generation small inner working angle (IWA) coronagraph currently offered on various 8 m class ground-based telescopes. On these observing platforms, the current level of performance is not limited by the intrinsic properties of actual vortex devices, but by wavefront control residuals and incoherent background (e.g., thermal emission of the sky), or the light diffracted by the imprint of the secondary mirror and support structures on the telescope pupil. In the particular case of unfriendly apertures (mainly large central obscuration) when very high contrast is needed (e.g., direct imaging of older exoplanets with extremely large telescopes or space-based coronagraphs), a simple VC, like most coronagraphs, cannot deliver its nominal performance because of the contamination due to the diffraction from the obscured part of the pupil. Here, we propose a novel yet simple concept that circumvents this problem. We combine a vortex phase mask in the image plane of a high-contrast instrument with a single pupil-based amplitude ring apodizer, tailor-made to exploit the unique convolution properties of the VC at the Lyot-stop plane. We show that such a ring-apodized vortex coronagraph (RAVC) restores the perfect attenuation property of the VC regardless of the size of the central obscuration, and for any (even) topological charge of the vortex. More importantly, the RAVC maintains the IWA and conserves a fairly high throughput, which are signature properties of the VC.

  3. Fluid entrainment by isolated vortex rings

    NASA Astrophysics Data System (ADS)

    Dabiri, John O.; Gharib, Morteza

    2004-07-01

    Of particular importance to the development of models for isolated vortex ring dynamics in a real fluid is knowledge of ambient fluid entrainment by the ring. This time-dependent process dictates changes in the volume of fluid that must share impulse delivered by the vortex ring generator. Therefore fluid entrainment is also of immediate significance to the unsteady forces that arise due to the presence of vortex rings in starting flows. Applications ranging from industrial and transportation, to animal locomotion and cardiac flows, are currently being investigated to understand the dynamical role of the observed vortex ring structures. Despite this growing interest, fully empirical measurements of fluid entrainment by isolated vortex rings have remained elusive. The primary difficulties arise in defining the unsteady boundary of the ring, as well as an inability to maintain the vortex ring in the test section sufficiently long to facilitate measurements. We present a new technique for entrainment measurement that utilizes a coaxial counter-flow to retard translation of vortex rings generated from a piston cylinder apparatus, so that their growth due to fluid entrainment can be observed. Instantaneous streamlines of the flow are used to determine the unsteady vortex ring boundary and compute ambient fluid entrainment. Measurements indicate that the entrainment process does not promote self-similar vortex ring growth, but instead consists of a rapid convection-based entrainment phase during ring formation, followed by a slower diffusive mechanism that entrains ambient fluid into the isolated vortex ring. Entrained fluid typically constitutes 30% to 40% of the total volume of fluid carried with the vortex ring. Various counter-flow protocols were used to substantially manipulate the diffusive entrainment process, producing rings with entrained fluid fractions up to 65%. Measurements of vortex ring growth rate and vorticity distribution during diffusive entrainment

  4. Evaluation of Flow Fields and Orientation Effects Around Ring Geometries During Quenching

    NASA Astrophysics Data System (ADS)

    Banka, Andrew L.; Ferguson, B. L.; MacKenzie, D. Scott

    2013-07-01

    The orientation in which parts are held during the quenching operation can have a strong effect on the overall success of heat treating. Certain orientations can result in significantly greater distortion than other orientations, even when high-quality quenchants are used. In this study, various simple, rolled ring geometries are examined at two different orientations to quenchant flow using computational fluid dynamics with the software program AZORE®. These parts were examined singly without the influence of other parts in close proximity. Three rolled ring geometries were examined, using the same outside diameter, while the inside diameter was varied. These flow fields will be used for understanding the likely distortion occurring during quenching.

  5. Gravito-electromagnetic effects of massive rings

    NASA Astrophysics Data System (ADS)

    Ruggiero, Matteo Luca

    2015-05-01

    The Einstein field equations in linear post-Newtonian approximation can be written in analogy with electromagnetism, in the so-called gravito-electromagnetic (GEM) formalism. We use this analogy to study the gravitational field of a massive ring: In particular, we consider a continuous mass distribution on Keplerian orbit around a central body, and we work out the gravitational field generated by this mass distribution in the intermediate zone between the central body and the ring, focusing on the gravitomagnetic (GM) component that originates from the rotation of the ring. In doing so, we generalize and complement some previous results that focused on the purely Newtonian effects of the ring (thus neglecting its rotation) or that were applied to the case, of rotating spherical shells. Eventually, we study in some simple cases, the effect of the rotation of the ring, and suggest that, in principle, this approach could be used to infer information about the angular momentum of the ring.

  6. Passive scalar mixing in vortex rings

    NASA Astrophysics Data System (ADS)

    Sau, Rajes; Mahesh, Krishnan

    2006-11-01

    Direct numerical simulations of passive scalar mixing in vortex rings are performed, with and without crossflow. The simulation results without crossflow agree well with experimental data for `formation number', total circulation, trajectory and entrainment fraction. Scalar profiles, mixedness and volume of scalar carrying fluid are used to quantify mixing, whose characteristics are quite different in the formation and propagation phases of the ring. These results are explained in terms of entrainment by the ring. The simulations with crossflow show that the ring tilts and deforms. When the stroke ratio is greater than formation number, the ring tilts in the direction of the crossflow. On the other hand, when the stroke ratio is less than formation number, the ring tilts in the opposite direction, such that its induced velocity opposes the crossflow. The Magnus effect may be used to provide a simple explanation. The impact of this behavior on mixing will be discussed.

  7. Electromagnetic angular momentum transport in Saturn's rings

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Morfill, G. E.; Ip, W.; Gruen, E.; Havnes, O.

    1986-01-01

    It is shown here that submicrometer dust particles sporadically elevated above Saturn's ring are subject to electromagnetic forces which will reduce their angular momentum inside synchronous orbit and increase it outside. When the dust is reabsorbed by the ring the angular momentum of the ring is decreased (increased) inside (outside) of synchronous orbit. For the case of the spokes in Saturn's B-ring it is estimated that the timescale for transporting ring material due to this angular momentum coupling effect is comparable to the viscous transport time or even smaller. It is suggested that the minimum in the optical depth of the B-ring at synchronous orbit is due to this effect.

  8. Future plans for the small isochronous ring

    SciTech Connect

    Eduard Pozdeyev

    2005-05-01

    The Small Isochronous Ring (SIR) has been operational at Michigan State University since December 2003. It has been used for experimental studies of the beam dynamics in high-intensity isochronous cyclotrons and synchrotrons at the transition energy. Operational experience with SIR has demonstrated that the ring can be successfully used to study space charge effects in accelerators. The low velocity of beam particles in the ring allowed longitudinal profile measurements with an accuracy that would be difficult to achieve in full-size accelerators. The experimental data obtained in the ring was used for validation of the multi-particle, space-charge codes CYCO and WARP3D. Encouraged by the success of SIR in the isochronous regime, we consider options for expanding the scope of the beam physics studied in the ring. In this paper, we outline possible future experiments and discuss required modifications of the ring optics and hardware.

  9. Cooling system for three hook ring segment

    DOEpatents

    Campbell, Christian X.; Eng, Darryl; Lee, Ching-Pang; Patat, Harry

    2014-08-26

    A triple hook ring segment including forward, midsection and aft mounting hooks for engagement with respective hangers formed on a ring segment carrier for supporting a ring segment panel, and defining a forward high pressure chamber and an aft low pressure chamber on opposing sides of the midsection mounting hook. An isolation plate is provided on the aft side of the midsection mounting hook to form an isolation chamber between the aft low pressure chamber and the ring segment panel. High pressure air is supplied to the forward chamber and flows to the isolation chamber through crossover passages in the midsection hook. The isolation chamber provides convection cooling air to an aft portion of the ring segment panel and enables a reduction of air pressure in the aft low pressure chamber to reduce leakage flow of cooling air from the ring segment.

  10. Optical slip ring for off-axis high-bit-rate data transmission.

    PubMed

    Helzel, T; Martens, G

    1986-03-01

    A 0.9-m diam off-axis optical slip ring for a 140-Mbit/s data transmission between the fixed and rotating parts of a continuously rotating device has been made. A grazing incidence multiple reflection technique has been used in this data link for guiding the light around the circumference of the slip ring. The optical properties are discussed as well as a special arrangement for the compensation of pulse delay time effects.

  11. Moonlets wandering on a leash-ring

    NASA Astrophysics Data System (ADS)

    Winter, O. C.; Mourão, D. C.; Giuliatti Winter, S. M.; Spahn, F.; da Cruz, C.

    2007-09-01

    Since the Voyager flybys, embedded moonlets have been proposed to explain some of the surprising structures observed in Saturn's narrow F ring. Experiments conducted with the Cassini spacecraft support this suggestion. Images of the F ring show bright compact spots, and seven occultations of stars by the F ring, monitored by ultraviolet and infrared experiments, revealed nine events of high optical depth. These results point to a large number of such objects, but it is not clear whether they are solid moonlets or rather loose particle aggregates. Subsequent images suggested an irregular motion of these objects so that a determination of their orbits consistent with the F ring failed. Some of these features seem to cross the whole ring. Here we show that these observations are explained by chaos in the F ring driven mainly by the `shepherd' moons Prometheus and Pandora. It is characterized by a rather short Lyapunov time of about a few hundred orbital periods. Despite this chaotic diffusion, more than 93 per cent of the F-ring bodies remain confined within the F ring because of the shepherding, but also because of a weak radial mobility contrasted by an effective longitudinal diffusion. This chaotic stirring of all bodies involved prevents the formation of `propellers' typical of moonlets, but their frequent ring crossings explain the multiple radial `streaks' seen in the F ring. The related `thermal' motion causes more frequent collisions between all bodies which steadily replenish F-ring dust and allow for ongoing fragmentation and re-accretion processes (ring recycling).

  12. Signet ring lymphoma: a potential diagnostic mishap.

    PubMed

    Krause, John R

    2013-07-01

    Signet ring lymphomas are proliferations of malignant lymphoid cells containing cytoplasmic inclusions or vacuoles that displace the nucleus to the side, imparting a "signet ring" appearance. These signet ring cells, particularly those with cytoplasmic vacuoles, may be mistaken for an adenocarcinoma rather than a lymphoma, if sufficient material is not available to differentiate the case by immunohistochemical stains or flow cytometry. The pathologist must also be aware of this entity so that appropriate studies may be untaken.

  13. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1995-03-14

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.

  14. Saturn Ring Data Analysis and Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Dobson, Coleman

    2011-01-01

    CIRS, VIMS, UVIS, and ISS (Cassini's Composite Infrared Specrtometer, Visual and Infrared Mapping Spectrometer, Ultra Violet Imaging Spectrometer and Imaging Science Subsystem, respectively), have each operated in a multidimensional observation space and have acquired scans of the lit and unlit rings at multiple phase angles. To better understand physical and dynamical ring particle parametric dependence, we co-registered profiles from these three instruments, taken at a wide range of wavelengths, from ultraviolet through the thermal infrared, to associate changes in ring particle temperature with changes in observed brightness, specifically with albedos inferred by ISS, UVIS and VIMS. We work in a parameter space where the solar elevation range is constrained to 12 deg - 14 deg and the chosen radial region is the B3 region of the B ring; this region is the most optically thick region in Saturn's rings. From this compilation of multiple wavelength data, we construct and fit phase curves and color ratios using independent dynamical thermal models for ring structure and overplot Saturn, Saturn ring, and Solar spectra. Analysis of phase curve construction and color ratios reveals thermal emission to fall within the extrema of the ISS bandwidth and a geometrical dependence of reddening on phase angle, respectively. Analysis of spectra reveals Cassini CIRS Saturn spectra dominate Cassini CIRS B3 Ring Spectra from 19 to 1000 microns, while Earth-based B Ring Spectrum dominates Earth-based Saturn Spectrum from 0.4 to 4 microns. From our fits we test out dynamical thermal models; from the phase curves we derive ring albedos and non-lambertian properties of the ring particle surfaces; and from the color ratios we examine multiple scattering within the regolith of ring particles.

  15. Variant congenital dyserythropoietic anaemia with ringed sideroblasts.

    PubMed

    Brien, W F; Mant, M J; Etches, W S

    1985-01-01

    A family is described with mild anaemia characterized by marked dyserythropoiesis and by prominent ringed sideroblasts. Inheritance is autosomal recessive. Other features include marked microcytosis, poikilocytosis, mild haemolysis, slightly increased haemoglobin A2, bone marrow erythroid hyperplasia and non-specific structural abnormalities of erythroid precursors on electron microscopy. This appears to be a previously unreported type of hereditary anaemia with both dyserythropoiesis and ringed sideroblasts. We propose the designation 'variant congenital dyserythropoietic anaemia with ringed sideroblasts'.

  16. Storage rings, internal targets and PEP

    SciTech Connect

    Spencer, J.E.

    1986-11-01

    Storage rings with internal targets are described, using PEP as an example. The difference between electrons and heavier particles such as protons, antiprotons, and heavy ions is also discussed because it raises possibilities of bypass insertions for more exotic experiments. PEP is compared to other rings in various contexts to verify the assertion that it is an ideal ring for many fundamental and practical applications that can be carried on simultaneously. (LEW)

  17. Vascular ring complicates accidental button battery ingestion.

    PubMed

    Mercer, Ronald W; Schwartz, Matthew C; Stephany, Joshua; Donnelly, Lane F; Franciosi, James P; Epelman, Monica

    2015-01-01

    Button battery ingestion can lead to dangerous complications, including vasculoesophageal fistula formation. The presence of a vascular ring may complicate battery ingestion if the battery lodges at the level of the ring and its important vascular structures. We report a 4-year-old boy with trisomy 21 who was diagnosed with a vascular ring at the time of button battery ingestion and died 9 days after presentation due to massive upper gastrointestinal bleeding from esophageal erosion and vasculoesophageal fistula formation.

  18. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1995-01-01

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer.

  19. Modeling a Large Ring Resonator Gyroscope.

    DTIC Science & Technology

    2014-09-26

    quantum noise and low frequency noise b) Basic modeling of the ring with Gaussian beam and ray matrices c) Technical design: Effect of residual gas in...ring on quality factor and light drag, scanning of beam, effect of misalignment and mismatch of source to ring, calibration procedures. The results show...Frequencies of Hermite-Gaussian modes in a ringlaser 64 II. F. Injection errors: Misalignment and mismatching of an injected 77 Gaussian beam. Effects of offset

  20. Report of the eRHIC Ring-Ring Working Group

    SciTech Connect

    Aschenauer, E. C.; Berg, S.; Blaskiewicz, M.; Brennan, M.; Fedotov, A.; Fischer, W.; Litvinenko, V.; Montag, C.; Palmer, R.; Parker, B.; Peggs, S.; Ptitsyn, V.; Ranjbar, V.; Tepikian, S.; Trbojevic, D.; Willeke, F.

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  1. Differential Resonant Ring YIG Tuned Oscillator

    NASA Technical Reports Server (NTRS)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n

  2. Condenser for illuminating a ring field

    DOEpatents

    Sweatt, W.C.

    1994-11-01

    A series of segments of a parent aspheric mirror having one foci at a point source of radiation and the other foci at the radius of a ring field have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ring field camera about one of the beams and fall onto the ring field radius as a coincident image as an arc of the ring field. 5 figs.

  3. Condenser for illuminating a ring field

    DOEpatents

    Sweatt, William C.

    1994-01-01

    A series of segments of a parent aspheric mirror having one foci at at a si-point source of radiation and the other foci at the radius of a ring field have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ring field camera about one of the beams and fall onto the ring field radius as a coincident image as an arc of the ring field.

  4. Development of a liquid metal slip ring

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1972-01-01

    A liquid metal slip ring/solar orientation mechanism was designed and a model tested. This was a follow-up of previous efforts for the development of a gallium liquid metal slip ring in which the major problem was the formation and ejection of debris. A number of slip ring design approaches were studied. The probe design concept was fully implemented with detail drawings and a model was successfully tested for dielectric strength, shock vibration, acceleration and operation. The conclusions are that a gallium liquid metal slip ring/solar orientation mechanism is feasible and that the problem of debris formation and ejection has been successfully solved.

  5. Status of the SLC damping rings

    SciTech Connect

    Hutton, A.M.; Davies-White, W.A.; Delahaye, J.P.; Fieguth, T.H.; Hofmann, A.; Jager, J.; Kloeppel, P.K.; Lee, M.J.; Linebarger, W.A.; Rivkin, L.

    1985-06-01

    Electron beams of full design energy 1.21 GeV and nearly full design intensity 4 x 10/sup 10/ particles/pulse (design 5 x 10/sup 10/) have been extracted from the Stanford Linac and successfully stored in the electron damping ring. Beams of less intensity have been extracted from the ring and reinjected into the Linac. The present intensity limits are not thought to be fundamental. The operating experience with the electron ring and the status of the construction of the positron ring will be discussed. 11 refs., 1 fig., 2 tabs.

  6. Apse-Alignment of the Uranian Rings

    NASA Technical Reports Server (NTRS)

    Mosqueira, I.; Estrada, P. R.

    2000-01-01

    An explanation of the dynamical mechanism for apse-alignment of the eccentric Uranian rings is necessary before observations can be used to determine properties such as ring masses, particle sizes, and elasticities. The leading model relies on the ring self-gravity to accomplish this task, yet it yields equilibrium masses which are not in accord with Voyager radio measurements. We explore possible solutions such that the self-gravity and the collisional terms are both involved in the process of apse-alignment. We consider limits that correspond to a hot and a cold ring, and show that pressure terms may play a significant role in the equilibrium conditions for the narrow Uranian rings. In the cold ring case, where the scale height of the ring near periapse is comparable to the ring particle size, we introduce a new pressure correction pertaining to a region of the ring where the particles are locked in their relative positions and jammed against their neighbors, and the velocity dispersion is so low that the collisions are nearly elastic. In this case, we find a solution such that the ring self-gravity maintains apse-alignment against both differential precession (m = 1 mode) and the fluid pressure. We apply this model to the Uranian alpha ring, and show that, compared to the previous self-gravity model, the mass estimate for this ring increases by an order of magnitude. In the case of a hot ring, where the scale height can reach a value as much as fifty times larger than a particle size, we find velocity dispersion profiles that result in pressure forces which act in such a way as to alter the ring equilibrium conditions, again leading to a ring mass increase of an order of magnitude; however, such a velocity dispersion profile would require a different mechanism than is currently envisioned for establishing heating/cooling balance in a finite-sized, inelastic particle ring. Finally, we introduce an important correction to the model of Chiang and Goldreich.

  7. What Perturbs the ggrdgr Rings of Uranus?

    PubMed

    French, R G; Kangas, J A; Elliot, J L

    1986-01-31

    The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images.

  8. Horizon detection and higher dimensional black rings

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; McNutt, D. D.

    2017-02-01

    In this paper we study the stationary horizons of the rotating black ring and the supersymmetric black ring spacetimes in five dimensions. In the case of the rotating black ring we use Weyl aligned null directions to algebraically classify the Weyl tensor, and utilize an adapted Cartan algorithm in order to produce Cartan invariants. For the supersymmetric black ring we employ the discriminant approach and repeat the adapted Cartan algorithm. For both of these metrics we are able to construct Cartan invariants that detect the horizon alone, and which are easier to compute and analyse than scalar polynomial curvature invariants.

  9. Simulation of Rings about Ellipsoidal Bodies

    NASA Astrophysics Data System (ADS)

    Gupta, Akash; Nadkarni-Ghosh, Sharvari; Sharma, Ishan

    2016-10-01

    Recent discovery of rings around Chariklo, a centaur orbiting the Sun (F. Braga-Ribas et al., 2014) and speculations of rings around minor planet, Chiron (Ortiz et al., 2015), Saturn's satellites, Rhea (Jones et al., 2008; Schenk et al., 2011), Iapetus (Ip, 2006) or exoplanets, suggest that rings about non-spherical bodies is perhaps a more general phenomenon than anticipated. As a first step towards understanding such systems, we examine the dynamical behavior of rings around similar bodies using N-body simulations. Our code employs the `local simulation method' (Wisdom & Tremaine, 1988; Salo, 1995) and accounts for particle interactions via collisions using Discrete Element Method (Cundall & Strack, 1978; Bhateja et al., 2016) and mutual gravitation. The central body has been modeled as an axisymmetric ellipsoid characterized by its axis ratio, or defined via characteristic frequencies (circular, vertical and epicyclic frequency) representing the gravitational field of an axisymmetric body. We vary the central body's characterizing parameter and observe the change in various ring properties like the granular temperature, impact frequency, radial width and vertical thickness. We also look into the effect on ring properties upon variation in the size of the central body-ring system. Further, we investigate the role of characteristic frequencies in dictating the ring dynamics, and how this could help in qualitatively estimating the ring dynamics about any arbitrary central body with symmetry about the equatorial plane and the axis normal to it.

  10. Edge-on View of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    1996-01-01

    TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.

    In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.

    BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.

    Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.

    The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  11. Acoustic focusing by metal circular ring structure

    NASA Astrophysics Data System (ADS)

    Xia, Jian-Ping; Sun, Hong-Xiang

    2015-02-01

    We report an exotic acoustic focusing effect through a simple brass circular ring structure immersed in water. The acoustic waves can be focused on a prefect point at the centre of the ring structure. This exotic acoustic focusing phenomenon arises from the intrinsic modes in the ring structure at some special eigenfrequencies, which is essentially distinct from the previous studies originating from the negative refraction. The focusing effect is closely related to the size and shape of the ring structure. Interesting applications of the focusing mechanism in black box detectors in the sea and medical ultrasound treatment are further discussed.

  12. Flexure-Ring for Centering a Concave Lens in a Bore of a Housing for an Optical System

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G. (Inventor)

    2002-01-01

    A flexure-ring is provided for centering a lens in a bore of a housing with 3N lens contacting stubs, where N is an integer equal to or greater than one. The stubs are formed by increasing the inside diameter of the ring made to fit tightly around a lens except at 3N locations for the aforesaid stubs, and said ring having an outside diameter made to fit tightly inside the housing bore locations. Behind each stub, a segment of the ring is removed down to a chord perpendicular to a ring diameter passing through the center of each stub. That chord is selected to have a length greater than the lens contacting surface of the stub, thereby to produce a reduced cross section of the ring on both sides of the stub to serve as flexures in relieving stresses due to different coefficients of thermal expansion of the three parts involved due to changes in temperature while in use.

  13. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  14. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, T.C.

    1999-07-20

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

  15. Mechanical support of a ceramic gas turbine vane ring

    DOEpatents

    Shi, Jun; Green, Kevin E.; Mosher, Daniel A.; Holowczak, John E.; Reinhardt, Gregory E.

    2010-07-27

    An assembly for mounting a ceramic turbine vane ring onto a turbine support casing comprises a first metal clamping ring and a second metal clamping ring. The first metal clamping ring is configured to engage with a first side of a tab member of the ceramic turbine vane ring. The second metal clamping ring is configured to engage with a second side of the tab member such that the tab member is disposed between the first and second metal clamping rings.

  16. Human Arterial Ring Angiogenesis Assay.

    PubMed

    Seano, Giorgio; Primo, Luca

    2016-01-01

    In this chapter we describe a model of human angiogenesis where artery explants from umbilical cords are embedded in gel matrices and subsequently produce capillary-like structures. The human arterial ring (hAR) assay is an innovative system that enables three-dimensional (3D) and live studies of human angiogenesis. This ex vivo model has the advantage of recapitulating several steps of angiogenesis, including endothelial sprouting, migration, and differentiation into capillaries. Furthermore, it can be exploited for (1) identification of new genes regulating sprouting angiogenesis, (2) screening for pro- or anti-angiogenic drugs, (3) identification of biomarkers to monitor the efficacy of anti-angiogenic regimens, and (4) dynamic analysis of tumor microenvironmental effects on vessel formation.

  17. Spin Filtering in Storage Rings

    NASA Astrophysics Data System (ADS)

    Nikolaev, N. N.; Pavlov, F. F.

    The spin filtering in storage rings is based on a multiple passage of a stored beam through a polarized internal gas target. Apart from the polarization by the spin-dependent transmission, a unique geometrical feature of interaction with the target in such a filtering process, pointed out by H.O. Meyer,1 is a scattering of stored particles within the beam. A rotation of the spin in the scattering process affects the polarization buildup. We derive here a quantum-mechanical evolution equation for the spin-density matrix of a stored beam which incorporates the scattering within the beam. We show how the interplay of the transmission and scattering within the beam changes from polarized electrons to polarized protons in the atomic target. After discussions of the FILTEX results on the filtering of stored protons,2 we comment on the strategy of spin filtering of antiprotons for the PAX experiment at GSI FAIR.3.

  18. Monolithically integrated semiconductor ring lasers: Design, fabrication, and directional control

    NASA Astrophysics Data System (ADS)

    Cao, Hongjun

    Monolithic semiconductor ring lasers (SRLs) are attractive light sources for optoelectronic integrated circuits (OEICs) due to their convenience in monolithic integration: neither cleaved facets nor gratings are required for optical feedback. They are promising candidates for wavelength filtering, multiplexing-demultiplexing applications, electrical or all-optical switching, gating, and memories, and particularly, optical inertial rotation sensors or ring laser gyros. As the major part of a NASA-supported project "Monolithically integrated semiconductor ring laser gyro for space applications," this dissertation research was focused on design, fabrication, and directional control of monolithically integrated SRLs with relatively large size and sophisticated OEIC structures. The main potential application is the next-generation monolithic ring laser gyros. Specifically, monolithic SRLs with the longest reported cavity of 10.28 mm have been demonstrated. In device characterization, differential I-V analysis has been used for the first time in SRLs for purely electrical identification of lasing threshold and directional switching. Sophisticated device structures have been devised, including optically independent novel ring laser pairs, from which frequency beating between monolithically integrated SRLs was reported for the first time. In addition, no frequency lock-in was observed in the beating spectra, indicating an important progress for proposed gyro applications. Functional OEIC components including photodetectors, passive and active waveguides, and novel Joule heaters have been integrated on-chip along with the ring lasers. Mode competition, directional switching, bistability, and bidirectional and unidirectional operation in SRLs have been investigated. Directional control techniques with asymmetric mechanisms including spiral and S-section waveguides have been implemented. The S-section was investigated and analyzed in great detail for its suppression of

  19. Possible red spruce decline: Contributions of tree-ring analysis

    SciTech Connect

    Van Deusen, P.C. ); Reams, G.A. ); Cook, E.R. )

    1991-01-01

    Debate continues about the cause of apparent unprecedented decreases in ring width at all elevations, and increasing levels of mortality at high elevations, in red spruce (Picea rubens) stands in the northeastern United States. These growth and mortality trends are often used as evidence of red spruce decline, but the possibility remains that they may be occurring naturally. Two hypotheses are being used to explain the causes of red spruce growth reduction across its range and increased levels of standing dead at some high-elevation sites. This article summarizes the basic evidence used by advocates of these hypotheses and discusses the strengths of their arguments. The information presented is based primarily on tree-ring studies sponsored by the Forest Response Program, which is part of the National Acid Precipitation Assessment Program.

  20. Design and Optimization of Composite Gyroscope Momentum Wheel Rings

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2007-01-01

    Stress analysis and preliminary design/optimization procedures are presented for gyroscope momentum wheel rings composed of metallic, metal matrix composite, and polymer matrix composite materials. The design of these components involves simultaneously minimizing both true part volume and mass, while maximizing angular momentum. The stress analysis results are combined with an anisotropic failure criterion to formulate a new sizing procedure that provides considerable insight into the design of gyroscope momentum wheel ring components. Results compare the performance of two optimized metallic designs, an optimized SiC/Ti composite design, and an optimized graphite/epoxy composite design. The graphite/epoxy design appears to be far superior to the competitors considered unless a much greater premium is placed on volume efficiency compared to mass efficiency.

  1. VUV optical ring resonator for Duke storage ring free electron laser

    SciTech Connect

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  2. On a suspected ring external to the visible rings of Saturn

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Beebe, R. F.; Smith, B. A.; Cook, A. F., II

    1974-01-01

    The reexamination of a photograph of Saturn taken on 15 November 1966 when the earth was nearly in the ring plane is investigated which indicates that ring material does exist outside the visible rings, extending to more than 6 Saturnian radii. The observed brightness in blue light was estimated per linear arc second, implying a normal optical thickness, for ice-covered particles.

  3. One-port ring refractive index sensor with attached sub-ring

    NASA Astrophysics Data System (ADS)

    Okayama, H.; Takahisa, H.; Tsutsui, M.; Mendez-Astudillo, M.; Nakajima, H.

    2017-02-01

    In this report, we propose a ring resonator with one port for surface normal input/output attached with another ring resonator. A resonance generated by one of the ring resonators is used for sensing and that by the other as a reference. The device characteristics were examined using the FDTD simulation.

  4. RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination

    PubMed Central

    Metzger, Meredith B.; Pruneda, Jonathan N.; Klevit, Rachel E.; Weissman, Allan M.

    2013-01-01

    RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. PMID:23747565

  5. Experimental determination of gravitomagnetic effects by means of ring lasers

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo

    2013-08-01

    A new experiment aimed to the detection of the gravito-magnetic Lense-Thirring effect at the surface of the Earth will be presented; the name of the experiment is GINGER. The proposed technique is based on the behavior of light beams in ring-lasers, also known as gyrolasers. A three-dimensional array of ringlasers will be attached to a rigid "monument"; each ring will have a different orientation in space. Within the space-time of a rotating mass the propagation of light is indeed anisotropic; part of the anisotropy is purely kinematical (Sagnac effect), part is due to the interaction between the gravito-electric field of the source and the kinematical motion of the observer (de Sitter effect), finally there is a contribution from the gravito-magnetic component of the Earth (gravito-magnetic frame dragging or Lense-Thirring effect). In a ring-laser a light beam traveling counterclockwise is superposed to another beam traveling in the opposite sense. The anisotropy in the propagation leads to standing waves with slightly different frequencies in the two directions; the final effect is a beat frequency proportional to the size of the instrument and its effective rotation rate in space, including the gravito-magnetic drag. Current laser techniques and the performances of the best existing ring-lasers allow at the moment a sensitivity within one order of magnitude of the required accuracy for the detection of gravito-magnetic effects, so that the objective of GINGER is in the range of feasibility and aims to improve the sensitivity of a couple of orders of magnitude with respect to present. The experiment will be underground, probably in the Gran Sasso National Laboratories in Italy, and is based on an international collaboration among four Italian groups, the Technische Universität München and the University of Canterbury in Christchurch (NZ).

  6. Springback Prediction on Slit-Ring Test

    SciTech Connect

    Chen Xiaoming; Shi, Ming F.; Ren Feng; Xia, Z. Cedric

    2005-08-05

    Advanced high strength steels (AHSS) are increasingly being used in the automotive industry to reduce vehicle weight while improving vehicle crash performance. One of the concerns in manufacturing is springback control after stamping. Although computer simulation technologies have been successfully applied to predict stamping formability, they still face major challenges in springback prediction, particularly for AHSS. Springback analysis is very complicated and involves large deformation problems in the forming stage and mechanical multiplying effect during the elastic recovery after releasing a part from the die. Therefore, the predictions are very sensitive to the simulation parameters used. It is very critical in springback simulation to choose an appropriate material model, element formulation and contact algorithm. In this study, a springback benchmark test, the slit ring cup, is used in the springback simulation with commercially available finite element analysis (FEA) software, LS-DYNA. The sensitivity of seven simulation variables on springback predictions was investigated, and a set of parameters with stable simulation results was identified. Final simulations using the selected set of parameters were conducted on six different materials including two AHSS steels, two conventional high strength steels, one mild steel and an aluminum alloy. The simulation results are compared with experimental measurements for all six materials and a favorable result is achieved. Simulation errors as compared against test results falls within 10%.

  7. PMIX_Ring patch for SLURM

    SciTech Connect

    Moody, A. T.

    2014-04-20

    This code adds an implementation of PMIX_Ring to the existing PM12 Library in the SLURM open source software package (Simple Linux Utility for Resource Management). PMIX_Ring executes a particular communication pattern that is used to bootstrap connections between MPI processes in a parallel job.

  8. Cullin RING Ligases: Glommed by Glomulin

    PubMed Central

    Hristova, Ventzislava A.; Stringer, Daniel K.; Weissman, Allan M.

    2012-01-01

    Cullin ring ligases (CRLs) constitute the largest group of RING finger ubiquitin ligases. Two recent studies in Molecular Cell describe glomulin as a CRL1 inhibitor that blocks interactions with its ubiquitin-conjugating enzyme (E2) (Duda et al., 2012; Tron et al., 2012). These findings and their significance are discussed. PMID:22883621

  9. Evolution of Vortex Rings Exiting Inclined Cylinders

    NASA Astrophysics Data System (ADS)

    Longmire, E. K.; Webster, D. R.; Reetz, M.; Gefroh, D.

    1996-11-01

    Vortex rings initiated in cylinders with exit incline lengths of 0, D/4, and D/2 were investigated for Reynolds numbers up to 30,000. The fluid exiting each cylinder was visualized with an ionized bromothymol blue solution, and velocity fields were obtained with PIV. In each inclined case, vortex rings form at angles smaller than the cylinder incline angle. Entrainment of ambient fluid on the short side of the cylinder is much stronger than that on the long side. This results in a larger circulation about the short side of the ring and a greater propagation velocity on that side. The incline angle of the ring thus decreases as it moves downstream. Behind the ring core, an impulsive wave of entrained ambient fluid flows parallel to the cylinder exit plane. Some of this fluid is wrapped into the core, while the rest is ejected outward past the long cylinder edge. The vortex ring dynamics differ significantly from those observed in jets from inclined nozzles where neighboring rings are connected by straining zones, and ring incline angles increase with downstream distance.

  10. SLC positron damping ring optics design

    SciTech Connect

    Delahaye, J.P.; Rivkin, L.

    1984-12-01

    The basic SLAC Linear Collider operation scheme assumes the use of two damping rings, one for the e/sup -/, one for the e/sup +/, in order to reduce the colliding beam normalized emittances to 30..pi.. ..mu..radm hence raising the corresponding luminosity by a factor 170. The e/sup -/ damping ring which optics was designed by H. Wiedemann, has been extensively studied and modelled since it's completion at the end of 1982. The e/sup +/ damping ring to be built soon will be based on the same design except for some modifications resulting from the studies on the e/sup -/ damping ring which clearly pointed out two major optics weak points: the extracted normalized emittances are 30 to 60% bigger than the design values, which already left no margin for unavoidable blow-up between the damping rings and the SLC interaction point, and the chromaticity correction based on distributed sextupole components provided by shaping the ends of the bending magnet poles was insufficient. Moreover the QDI quadrupoles introduce a strong coupling between transverse planes due to an undesirable skew component. The present note describes the basic modifications of the ring lattice and main equipment positions in order to improve the first two points in the Positron Damping Ring. The QDI quadrupole design has already been modified and magnets of a new type will be implemented in both damping rings.

  11. 21 CFR 870.3800 - Annuloplasty ring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Annuloplasty ring. 870.3800 Section 870.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3800 Annuloplasty ring....

  12. Let Freedom Ring! Bulletin, 1937, No. 32

    ERIC Educational Resources Information Center

    Calhoun, Harold G.; Calhoun, Dorothy; Hatch, Roy W.; Cohen, Philip H.; Schramm, Rudolf

    1937-01-01

    This volume of "Let Freedom Ring!" contains the scripts of the 13 national broadcasts of the radio series of that name presented in the spring of 1937 over the national network of the Columbia Broadcast System. In "Let Freedom Ring!" you will find the courage, the struggle, the triumph of men and women who fought to win and safeguard liberties…

  13. Introduction: Special issue on planetary rings

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip; Esposito, Larry

    2016-11-01

    This issue of Icarus is devoted largely to papers presented at an open conference held at the Univ. of Colorado on 13-15 August 2014. This Planetary Rings Workshop is the fourth in a series organized by the Rings Working Group of the Cassini-Huygens mission and most of the papers presented dealt with phenomena revealed

  14. New Horizons Imaging of Jupiter's Main Ring

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.; Showalter, Mark Robert; Dones, Henry C. Luke; Hamilton, D. P.; Weaver, Harold A.; Cheng, Andrew F.; Stern, S. Alan; Young, Leslie; Olkin, Catherine B.; New Horizons Science Team

    2016-10-01

    New Horizons took roughly 520 visible-light images of Jupiter's ring system during its 2007 flyby, using the spacecraft's Long-Range Reconnaissance Imager (LORRI). These observations were taken over nine days surrounding Jupiter close-approach. They span a range in distance of 30 - 100 RJ, and a phase angle range of 20 - 174 degrees. The highest resolution images -- more than 200 frames -- were taken at a resolution approaching 20 km/pix.We will present an analysis of this dataset, much of which has not been studied in detail before. Our results include New Horizons' first quantitative measurements of the ring's intrinsic brightness and variability. We will also present results on the ring's azimuthal and radial structure. Our measurements of the ring's phase curve will be used to infer properties of the ring's dust grains.Our results build on the only previous analysis of the New Horizons Jupiter ring data set, presented in Showalter et al (2007, Science 318, 232-234), which detected ring clumps and placed a lower limit on the population of undetected ring-moons.This work was supported by NASA's OPR program.

  15. Microwave Observations on Saturn's Main Rings

    NASA Astrophysics Data System (ADS)

    Zhang, Zhimeng; Hayes, Alexander; Janssen, Michael A.; Nicholson, Philip D.; Cuzzi, Jeffrey N.; de Pater, Imke; Dunn, David; Hedman, Matthew M.; Estrada, Paul R.

    2016-10-01

    Despite considerable study, Saturn's rings continue to challenge current theories for their provenance. Water ice comprises the bulk of Saturn's rings, yet it is the small fraction of non-icy material that is arguably more valuable in revealing clues about the system's origin and age. Herein, we present new measurements of the non-icy material fraction in Saturn's main rings, determined from microwave observations obtained by Cassini Radar and EVLA.Our Cassini Radar observations in the C Ring show an exceptionally high brightness at near-zero azimuthal angles, suggesting a high porosity of 70%-75% for the particles. Furthermore, most regions in the C ring contain about 1-2% silicates while with an enhanced abundance concentrated in the middle C ring reaching a maximum of 6%-11%. We proposed that the C ring has been continuously polluted by meteoroid bombardment for 15-90Myr, while the middle C ring was further contaminated by an incoming Centaur disrupted by Saturn tidal force. Owing to the B ring's high opacity, the particles there are likely to have 85% - 90% porosity, with corresponding non-icy material fractions of ~ 0.3% - 0.5% in the inner and outer B ring, and ~0.1% - 0.2% in the middle regions. For the A ring interior to the Encke gap, the derived non-icy material is ~0.2% - 0.3% everywhere for porosities ranging from 55% - 90%. Finally, our results for the Cassini Division indicate a non-icy material fraction of ~1% - 2% similar to most regions in the C ring, except that the Cassini Division particles are more likely to contain ~ 90% porosity due to the high opacity there. Our results here further support the idea that Saturn's rings may be less than 150 Myr old suggesting an origin scenario in which the rings are derived from the relatively recent breakup of an icy moon.Furthermore, we calibrated and analyzed multi-wavelengths EVLA observation at wavelengths ranging from 0.7cm to 13cm. As the array operates in a wavelength regime where the absorption

  16. A topologically driven glass in ring polymers

    PubMed Central

    Michieletto, Davide; Turner, Matthew S.

    2016-01-01

    The static and dynamic properties of ring polymers in concentrated solutions remains one of the last deep unsolved questions in polymer physics. At the same time, the nature of the glass transition in polymeric systems is also not well understood. In this work, we study a novel glass transition in systems made of circular polymers by exploiting the topological constraints that are conjectured to populate concentrated solutions of rings. We show that such rings strongly interpenetrate through one another, generating an extensive network of topological interactions that dramatically affects their dynamics. We show that a kinetically arrested state can be induced by randomly pinning a small fraction of the rings. This occurs well above the classical glass transition temperature at which microscopic mobility is lost. Our work both demonstrates the existence of long-lived inter-ring penetrations and realizes a novel, topologically induced, glass transition. PMID:27118847

  17. Instability of a rotating liquid ring

    NASA Astrophysics Data System (ADS)

    Zhao, Sicheng; Tao, Jianjun

    2013-09-01

    It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.

  18. Mysteries of the ringed planets. [colloquium review

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.

    1982-01-01

    An assessment is presented of the recent progress in the theory of planetary rings which was in evidence at the IAU's recent, 75th Colloquium. Observational material was dominated by spacecraft data, and theoretical consideration of the problems posed comes predominantly from gravitational mechanics. An understanding of collective effects, in light of both fluid mechanical and statistical mechanical methodologies, is being approached, and the importance of electromagnetic phenomena studies is noted. Voyager observations of Saturn's rings, and accumulating data from stellar occultations by the rings of Uranus, provided most of the observational material. Jupiter's faint ring was closely examined by the 1979 Voyager flight. These three known ring systems are found to exhibit such family resemblances as their proximity to the parent planet and magnetospheric environment.

  19. Vortex rings impinging on permeable boundaries

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  20. Monlithic nonplanar ring oscillator and method

    NASA Technical Reports Server (NTRS)

    Nilsson, Alan C. (Inventor); Byer, Robert L. (Inventor)

    1991-01-01

    A monolithic nonplanar ring oscillator having an optically isotropic solid-state laser body for propagating laser radiation about a nonplanar ring path internal to the laser body is disclosed. The monolithic laser body is configured to produce a 2N reflection nonplanar ring light path, where N is an integer greater than or equal to 2, comprising 2N-1 total internal reflections and one reflection at a coupler in a single round trip. Undirectional traveling wave oscillation of the laser is induced by the geometry of the nonplanar ring path together with the effect of an applied magnetic field and partial polarizer characteristics of the oblique reflection from the coupler. The 6-reflection nonplanar ring oscillator makes possible otpimal unidirectional oscillation (low loss for the oscillating direction of propagation and, simultaneously high loss for the nonoscillating direction of propagation) in monolithic NPROs using materials with index of refraction smaller than the square root of 3, for example, laser glass.

  1. Bernstein instability driven by thermal ring distribution

    SciTech Connect

    Yoon, Peter H.; Hadi, Fazal; Qamar, Anisa

    2014-07-15

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

  2. Ring particles - Collisional interactions and physical nature

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Chapman, C. R.; Davis, D. R.; Greenberg, R.

    1984-01-01

    Attention is given to the properties of, and dynamical processes affecting individual particles of Saturn's rings. Because particles tend to be gravitationally bound when located on the surfaces of larger particles, and since net tidal stresses within the particles are small, particle collisions should produce accretion in Saturn's rings. Rapid accretionary processes within the rings are counterbalanced by tidal disruption of the larger accreted aggregates, which are presently designated 'dynamic ephemeral bodies'. The coefficient of restitution is probably very low, implying that the large particles containing most of the rings' mass are in a monolayer, although the small particles responsible for most of the rings' visible cross section form a layer many particles thick. Kinematic viscosity and interparticle erosive process models should incorporate these properties.

  3. Edges of Saturn's rings are fractal.

    PubMed

    Li, Jun; Ostoja-Starzewski, Martin

    2015-01-01

    The images recently sent by the Cassini spacecraft mission (on the NASA website http://saturn.jpl.nasa.gov/photos/halloffame/) show the complex and beautiful rings of Saturn. Over the past few decades, various conjectures were advanced that Saturn's rings are Cantor-like sets, although no convincing fractal analysis of actual images has ever appeared. Here we focus on four images sent by the Cassini spacecraft mission (slide #42 "Mapping Clumps in Saturn's Rings", slide #54 "Scattered Sunshine", slide #66 taken two weeks before the planet's Augus't 200'9 equinox, and slide #68 showing edge waves raised by Daphnis on the Keeler Gap) and one image from the Voyager 2' mission in 1981. Using three box-counting methods, we determine the fractal dimension of edges of rings seen here to be consistently about 1.63 ~ 1.78. This clarifies in what sense Saturn's rings are fractal.

  4. The Circumnuclear Starburst Ring in NGC 1097

    NASA Astrophysics Data System (ADS)

    Thackeray-Lacko, Beverly; Stierwalt, Sabrina; Sheth, Kartik

    2016-01-01

    The circumnuclear ring in galaxy NGC 1097 is bursting with star formation at a rate of five solar masses per year as previously measured through Hα emission. The rate of star formation drops by a factor of one thousand outside the circumnuclear ring. We characterize the behavior of the dust in this region by measuring the spectral energy distribution focused exclusively on the circumnuclear ring using a selective variety of high resolution science images spanning wavelengths from ultraviolet to infrared, and adding proprietary high resolution radio data from Atacoma Large Millimeter Array (ALMA) in Chile. High resolution radio data obtained from ALMA allows us to constrain the shape of the spectral energy distribution curve specifically at longer wavelengths, and therefore the rate of star formation within the circumnuclear ring. Comparing the spectral energy distribution of the entire galaxy with that of the circumnuclear ring indicates how starburst activity influences the galactic spectral energy distribution.

  5. Cassini CIRS Observations of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    Spilker, Linda J.; Pilorz, Stuart H.; Wallis, Brad D.; Brooks, Shawn M.; Edgington, Scott G.; Flasar, F. Michael; Pearl, John C.; Showalter, Mark R.; Ferrari, Cecile; Achterberg, Richard K.

    2005-01-01

    In the spring of 2004, during Cassini s approach to Saturn, the Cassini Composite Infrared Spectrometer (CIRS) began acquiring thermal spectra of Saturn s rings. CIRS is a Fourier-transform spectrometer that measures radiation in the thermal infrared from 7 microns to 1 millimeter (1400 to 10/cm). CIRS has a set of 21 detectors, consisting of two 1 x 10 linear arrays with a pixel size of 0.3 mrad, and one 4 mrad circular detector. Just after the completion of the Saturn orbit insertion (SOI) burn, CIRS performed an especially high spatial resolution scan of portions of Saturn s A, B and C rings. In the months following SOI, additional ring measurements have been obtained, including radial scans on the lit and unlit sides of the rings, and azimuthal scans across the shadowed regions of the A, B and C rings.

  6. Micro Ring Grating Spectrometer with Adjustable Aperture

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)

    2012-01-01

    A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.

  7. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  8. Tandem Ring-Opening-Ring-Closing Metathesis for Functional Metathesis Catalysts.

    PubMed

    Nagarkar, Amit A; Yasir, Mohammad; Crochet, Aurelien; Fromm, Katharina M; Kilbinger, Andreas F M

    2016-09-26

    Use of a tandem ring-opening-ring-closing metathesis (RORCM) strategy for the synthesis of functional metathesis catalysts is reported. Ring opening of 7-substituted norbornenes and subsequent ring-closing metathesis forming a thermodynamically stable 6-membered ring lead to a very efficient synthesis of new catalysts from commercially available Grubbs' catalysts. Hydroxy functionalized Grubbs' first- as well as third-generation catalysts have been synthesized. Mechanistic studies have been performed to elucidate the order of attack of the olefinic bonds. This strategy was also used to synthesize the ruthenium methylidene complex.

  9. DYNAMICS OF SELF-GRAVITY WAKES IN DENSE PLANETARY RINGS. I. PITCH ANGLE

    SciTech Connect

    Michikoshi, Shugo; Kokubo, Eiichiro; Fujii, Akihiko; Salo, Heikki E-mail: kokubo@th.nao.ac.jp E-mail: heikki.salo@oulu.fi

    2015-10-20

    We investigate the dynamics of self-gravity wakes in dense planetary rings. In particular, we examine how the pitch angles of self-gravity wakes depend on ring parameters using N-body simulations. We calculate the pitch angles using the two-dimensional autocorrelation function of the ring surface density. We obtain the pitch angles for the inner and outer parts of the autocorrelation function separately. We confirm that the pitch angles are 15°–30° for reasonable ring parameters, which are consistent with previous studies. We find that the inner pitch angle increases with the Saturnicentric distance, while it barely depends on the optical depth and the restitution coefficient of ring particles. The increase of the inner pitch angle with the Saturnicentric distance is consistent with the observations of the A ring. The outer pitch angle does not have a clear dependence on any ring parameters and is about 10°–15°. This value is consistent with the pitch angle of spiral arms in collisionless systems.

  10. Radiocarbon evidence for annual growth rings in a deep sea octocoral (Primnoa resedaeformis)

    SciTech Connect

    Sherwood, O A; Scott, D B; Risk, M J; Guilderson, T P

    2005-04-05

    The deep-sea gorgonian octocoral Primnoa resedaeformis is distributed throughout the Atlantic and Pacific Oceans at depths of 65-3200 m. It has a two-part skeleton of calcite and gorgonin. Towards the inside of the axial skeleton gorgonin and calcite are deposited in concentric growth rings, similar to tree rings. Colonies were collected from the Northeast Channel (northwest Atlantic Ocean, southwest of Nova Scotia, Canada) from depths of 250-475 m. Radiocarbon was measured in individual rings isolated from sections of each colony, after dissolution of calcite. Each {Delta}{sup 14}C measurement was paired with a ring age determined by three amateur ring counters. The precision of ring counts averaged better than {+-} 2 years. Accurate reconstruction of 20th century bomb-radiocarbon shows that (1) the growth rings are formed annually, (2) the gorgonin is derived from surface particulate organic matter (POM) and (3) useful environmental data are recorded in the organic endoskeletons of deep-sea octocorals. These results support the use of Primnoa resedaeformis as a long-term, high resolution monitor of surface ocean conditions, particularly in temperate and boreal environments where proxy data are lacking.

  11. The Tunguska event in 1908: evidence from tree-ring anatomy.

    PubMed

    Vaganov, Evgenii A; Hughes, Malcolm K; Silkin, Pavel P; Nesvetailo, Valery D

    2004-01-01

    We analyzed tree rings in wood samples collected from some of the few surviving trees found close to the epicenter (within 4-5 km) of the Tunguska event that occurred on the last day of June 1908. Tree-ring growth shows a depression starting in the year after the event and continuing during a 4-5-year period. The most remarkable traces of the event were found in the rings' anatomical structure: (1) formation of "light" rings and a reduction of maximum density in 1908; (2) non-thickened tracheids (the cells that make up most of the wood volume) in the transition and latewood zones (the middle and last-formed parts of the ring, respectively); and (3) deformed tracheids, which are located on the 1908 annual ring outer boundary. In the majority of samples, normal earlywood and latewood tracheids were formed in all annual rings after 1908. The observed anomalies in wood anatomy suggest two main impacts of the Tunguska event on surviving trees--(1) defoliation and (2) direct mechanical stress on active xylem tissue. The mechanical stress needed to fell trees is less than the stress needed to cause the deformation of differentiating tracheids observed in trees close to the epicenter. In order to resolve this apparent contradiction, work is suggested on possible topographic modification of the overpressure experienced by these trees, as is an experimental test of the effects of such stresses on precisely analogous growing trees.

  12. The Tunguska Event in 1908: Evidence from Tree-Ring Anatomy

    NASA Astrophysics Data System (ADS)

    Vaganov, Evgenii A.; Hughes, Malcolm K.; Silkin, Pavel P.; Nesvetailo, Valery D.

    2004-09-01

    We analyzed tree rings in wood samples collected from some of the few surviving trees found close to the epicenter (within 4-5 km) of the Tunguska event that occurred on the last day of June 1908. Tree-ring growth shows a depression starting in the year after the event and continuing during a 4-5-year period. The most remarkable traces of the event were found in the rings??? anatomical structure: (1) formation of "light" rings and a reduction of maximum density in 1908; (2) non-thickened tracheids (the cells that make up most of the wood volume) in the transition and latewood zones (the middle and last-formed parts of the ring, respectively); and (3) deformed tracheids, which are located on the 1908 annual ring outer boundary. In the majority of samples, normal earlywood and latewood tracheids were formed in all annual rings after 1908. The observed anomalies in wood anatomy suggest two main impacts of the Tunguska event on surviving trees-(1) defoliation and (2) direct mechanical stress on active xylem tissue. The mechanical stress needed to fell trees is less than the stress needed to cause the deformation of differentiating tracheids observed in trees close to the epicenter. In order to resolve this apparent contradiction, work is suggested on possible topographic modification of the overpressure experienced by these trees, as is an experimental test of the effects of such stresses on precisely analogous growing trees.

  13. An Nbody Integrator for Planetary Rings

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.; Porco, C.; Spitale, J.

    2010-10-01

    An Nbody integrator has been developed to simulate large-scale phenomena in planetary rings, such as the confinement of the outer edge of Saturn's B ring by Mimas' m=2 Lindblad resonance, and the propagation of spiral density waves in the A ring. The code tracks N particles whose motions trace the perturbed ring's streamlines. Accelerations on those particles due to ring gravity, pressure, and viscosity are then simple functions of the particles' positions and velocities relative to those streamlines. A second-order kick-drift scheme (Wisdom & Holman 1991, Saha & Tremaine 1992) is used to advance the particles' epicyclic orbit elements over time, with the kicks given by the rate equations of Longaretti and Borderies (1991). Simulating a narrow but well-resolved annulus in the ring typically requires execution times of 10 minutes on a desktop PC using only N 1000 particles. A simulation of the B ring's sharp outer edge, as well as the propagation of nonlinear spiral density waves, will be shown in the conference poster. We also plan to extend this 2D model to 3D, so as to simulate spiral bending waves. Another goal of this program is to study resonant perturbations in a dense and incompressible ring, which can experience vertical displacements due to a satellite's horizontal forcing. Such rings are suspected to be unstable (Borderies et al 1985), which can account for the B ring-edge's m<ɮ modes (Spitale & Porco 2009, 2010). We also hope to have preliminary results from a study of this scenario at conference time.

  14. Statistical Correlations Between Near-Infrared Luminosities and Ring Sizes in Field Ringed Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Wentao

    2008-01-01

    Statistically complete samples of inner-pseudo-, inner-, and outer-ringed galaxies can be extracted from the Catalog of Southern Ringed Galaxies. Redshifts and near-infrared (NIR) photometric data are available for the samples, allowing the derivation of the statistical correlations between the total NIR luminosities (L NIR) and the projected ring major axes in the physical scale (D) for these galaxies. For any of the three types of rings, the correlations are approximately L NIR vprop D 1.2 among the early-type ringed galaxies (the most commonly observed ringed galaxies). The correlations among late-type ringed galaxies appear significantly different. The results contradict the previous suggestion by Kormendy (1979, ApJ, 227, 714), who gave LB vprop D 2 (LB : B-band galaxy luminosity). The relations can be used in future to test theoretical simulations of dynamical structures of ringed galaxies as well as those of ring formation under the framework of cosmological models. Currently the results indicate at most small differences in the relative contributions of disk components to total galaxy masses and in the initial disk velocity dispersions between commonly observed ringed galaxies of similar type. The correlations also suggest a new approach to effectively use ring sizes as tertiary cosmological distance indicators, to help enhance the reliability of the measurement of the Hubble Constant.

  15. Structure of a BRCA1/BARD1 Complex: a Heterodimeric RING-RING Interaction

    SciTech Connect

    Brzovic, Peter S.; Rajagopal, Ponni; Hoyt, David W.; King, Mary-Claire; Klevit, Rachel E.

    2001-10-01

    The N-terminal RING domain of the breast and ovarian cancer tumor suppressor BRCA1 interacts with multiple cognate proteins, including the RING protein, BARD1. Proper function of the BRCA1 RING domain is critical, as evidenced by the many cancer-predisposing mutations found within this domain. We present the solution structure of the N-terminal RING domain heterodimer of BRCA1 and BARD1. Comparison with the RAG1 RING homodimer reveals the structural diversity of complexes formed by interactions between different RING domains. The BRCA1/BARD1 structure provides a model for its ubiquitin ligase activity, illustrates how the BRCA1 RING domain can be involved in associations with multiple protein partners, and provdes a framework for understanding cancer-causing mutations at the molecular level.

  16. Keck Infrared Observations of Jupiter's Ring System

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Graham, J. R.; Liu, M. C.; Showalter, M. R.; Burns, J. A.; Nicholson, P. D.; Hamilton, D. P.

    1998-09-01

    We imaged the Jovian ring system at a wavelength of 2.27 mu m with the 10-m W.M. Keck telescope in August and October 1997, when the ring plane was almost edge-on. We obtained the first images of the Jovian halo and gossamer ring in back-scattered light, and the best ground-based images to date of Jupiter's main ring. The main ring is radially confined between 1.70 -- 1.82 R_J, with a maximum (after inversion) at 1.79 R_J, in agreement with the Voyager findings (1 R_J=71398 km). The halo extends inwards from the main ring (at 1.71 R_J) down to 1.40 R_J, bounded by the locations of Lorentz resonances. Roughly 50% of the halo's intensity originates from a region within ~ 700 km from the equatorial plane, while the halo is visible up to ~ 10,000 km above and below the plane. Although the vertical extent agrees with Voyager findings, the halo's intensity relative to that of the main ring in the Keck images is much less than in Voyager images, which is attributed to the fact that the halo contains fewer macroscopic particles, which preferentially backscatter visible light. The gossamer ring is found to have two components, with steep dropoffs in brightness at the orbits of Amalthea and Thebe. The first, Amalthea's gossamer ring, is visible between the main ring's periphery and ~ 2.5 R_J; it is relatively uniform in brightness and has a vertical thickness (FWHM) of 0.06 R_J, clearly broader than the FWHM of the main ring (0.045 R_J) and image resolution of 0.6('') =0.025;R_J. The other component, a factor of five fainter than Amalthea's ring and about twice as broad vertically (FWHM ~ 0.12 ; R_J), is seen inwards from 3.11 R_J, i.e., inwards of Thebe's orbit. Additional material still seems present, albeit barely, at larger distances, until ~ 3.6 R_J, near the edge of our images. Our data are consistent with the Galileo results, and suggest the ring material originates at the bounding satellites Thebe, Amalthea, Adrastea and Metis (see abstracts by Burns et al., and

  17. A Novel Low-Ringing Monocycle Picosecond Pulse Generator Based on Step Recovery Diode.

    PubMed

    Zhou, Jianming; Yang, Xiao; Lu, Qiuyuan; Liu, Fan

    2015-01-01

    This paper presents a high-performance low-ringing ultra-wideband monocycle picosecond pulse generator, formed using a step recovery diode (SRD), simulated in ADS software and generated through experimentation. The pulse generator comprises three parts, a step recovery diode, a field-effect transistor and a Schottky diode, used to eliminate the positive and negative ringing of pulse. Simulated results validate the design. Measured results indicate an output waveform of 1.88 peak-to-peak amplitude and 307ps pulse duration with a minimal ringing of -22.5 dB, providing good symmetry and low level of ringing. A high degree of coordination between the simulated and measured results is achieved.

  18. A Novel Low-Ringing Monocycle Picosecond Pulse Generator Based on Step Recovery Diode

    PubMed Central

    Zhou, Jianming; Yang, Xiao; Lu, Qiuyuan; Liu, Fan

    2015-01-01

    This paper presents a high-performance low-ringing ultra-wideband monocycle picosecond pulse generator, formed using a step recovery diode (SRD), simulated in ADS software and generated through experimentation. The pulse generator comprises three parts, a step recovery diode, a field-effect transistor and a Schottky diode, used to eliminate the positive and negative ringing of pulse. Simulated results validate the design. Measured results indicate an output waveform of 1.88 peak-to-peak amplitude and 307ps pulse duration with a minimal ringing of -22.5 dB, providing good symmetry and low level of ringing. A high degree of coordination between the simulated and measured results is achieved. PMID:26308450

  19. Narcotics detection using piezoelectric ringing

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; Magnuson, Erik E.; West, Rebecca; Lyndquist, R.

    1997-02-01

    Piezo-electric ringing (PER) has been demonstrated to be an effective means of scanning cargo for the presence of hidden narcotics. The PER signal is characteristic of certain types of crystallized material, such as cocaine hydrochloride. However, the PER signal cannot be used to conclusively identify all types of narcotic material, as the signal is not unique. For the purposes of cargo scanning, the PER technique is therefore most effective when used in combination with quadrupole resonance analysis (QRA). PER shares the same methodology as QRA technology, and can therefore be very easily and inexpensively integrated into existing QRA detectors. PER can be used as a pre-scanning technique before the QRA scan is applied and, because the PER scan is of a very short duration, can effectively offset some of the throughput limitations of standard QRA narcotics detectors. Following is a discussion of a PER detector developed by Quantum Manetics under contract to United States Customs. Design philosophy and performance are discussed, supported by results from recent tests conducted by the U.S. Drug Enforcement Agency and U.S. Customs.

  20. Recycler ring conceptual design study

    SciTech Connect

    Jackson, G.

    1995-07-18

    The Tevatron Collider provides the highest center of mass energy collisions in the world. To fully exploit this unique tool, Fermilab is committed to a program of accelerator upgrades for the purpose of increasing the Collider luminosity. Over the past 7 years the luminosity has been increased from a peak of 1.6{times}10{sup 30}cm{sup {minus}2}sec{sup {minus}1} in 1989 to over 3{times}10{sup 31}cm{sup {minus}2}sec{sup {minus}1} during 1995. The Main Injector will supply a larger flux of protons for antiproton production and more intense proton bunches for use in the Collider, and this is expected to increase the peak luminosity to close to 1{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}. Further increases in luminosity will require additional upgrades to the Fermilab accelerator complex. This report documents the design of a new fixed-energy storage ring to be placed in the Main Injector tunnel which will provide an initial factor of 2 increase to 2{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}, and ultimately provide the basis for an additional order of magnitude luminosity increase up to 1{times}10{sup 33}cm{sup {minus}2}sec{sup {minus}1}.

  1. Wedding ring shaped excitation coil

    DOEpatents

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  2. Stable isotopes in tree rings

    NASA Astrophysics Data System (ADS)

    McCarroll, Danny; Loader, Neil J.

    2004-04-01

    Stable isotopes in tree rings could provide palaeoclimate reconstructions with perfect annual resolution and statistically defined confidence limits. Recent advances make the approach viable for non-specialist laboratories. The relevant literature is, however, spread across several disciplines, with common problems approached in different ways. Here we provide the first overview of isotope dendroclimatology, explaining the underlying theory and describing the steps taken in building and interpreting isotope chronologies. Stable carbon isotopes record the balance between stomatal conductance and photosynthetic rate, dominated at dry sites by relative humidity and soil water status and at moist sites by summer irradiance and temperature. Stable oxygen and hydrogen isotopic ratios record source water, which contains a temperature signal, and leaf transpiration, controlled dominantly by vapour pressure deficit. Variable exchange with xylem (source) water during wood synthesis determines the relative strength of the source water and leaf enrichment signals. Producing long Holocene chronologies will require a change in emphasis towards processing very large numbers of samples efficiently, whilst retaining analytical precision. A variety of sample preparation and data treatment protocols have been used, some of which have a deleterious effect on the palaeoclimate signal. These are reviewed and suggestions made for a more standardised approach.

  3. Size distribution of ring polymers

    PubMed Central

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.

    2016-01-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 − d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5. PMID:27302596

  4. Modeling The Size Distribution Of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Albers, Nicole; Esposito, L. W.

    2007-10-01

    Spatial structures such as density and bending waves, self-gravity and moonlet wakes are among the better known pieces in the puzzle of the formation and evolution of Saturn's main rings. But also the actual sizes of ring particles are very important to understand the long-term behavior or the system. The Cassini mission is continuing to provide a wealth of new observations. Among those are the transient features, bright clumps, and brightness fluctuations in the rather mysterious F ring that are partially attributed to a population of moonlets hidden well within the bright core of the structure. Detections of opaque features during stellar occultations of the UVIS and VIMS instruments strongly support this idea. Further, the discovery of embedded moonlets in Saturn's A ring raises questions about the origin of these objects; not to forget about the km-sized moons, Pan and Daphnis, orbiting within the A ring. Are they remnants of a shattered moon or is it possible to accrete these objects from the surrounding ring material? Currently, the theory still lags behind the observations. Here, we employ a generalized kinetic approach aiming at the long-term evolution of the size distribution that cannot be achieved by current N-body simulations and discuss its implications for the evolution and origin of Saturn's rings.

  5. Migration of Small Moons in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2013-02-01

    The motions of small moons through Saturn's rings provide excellent tests of radial migration models. In theory, torque exchange between these moons and ring particles leads to radial drift. We predict that moons with Hill radii r H ~ 2-24 km should migrate through the A ring in 1000 yr. In this size range, moons orbiting in an empty gap or in a full ring eventually migrate at the same rate. Smaller moons or moonlets—such as the propellers—are trapped by diffusion of disk material into corotating orbits, creating inertial drag. Larger moons—such as Pan or Atlas—do not migrate because of their own inertia. Fast migration of 2-24 km moons should eliminate intermediate-size bodies from the A ring and may be responsible for the observed large-radius cutoff of r H ~ 1-2 km in the size distribution of the A ring's propeller moonlets. Although the presence of Daphnis (r H ≈ 5 km) inside the Keeler gap challenges this scenario, numerical simulations demonstrate that orbital resonances and stirring by distant, larger moons (e.g., Mimas) may be important factors. For Daphnis, stirring by distant moons seems the most promising mechanism to halt fast migration. Alternatively, Daphnis may be a recent addition to the ring that is settling into a low inclination orbit in ~103 yr prior to a phase of rapid migration. We provide predictions of observational constraints required to discriminate among possible scenarios for Daphnis.

  6. Satellite And Propeller Migration In Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Crida, Aurelien; Charnoz, S.; Papaloizou, J.; Salmon, J.

    2009-09-01

    Saturn's rings host satellites like Pan and Daphnis, and smaller bodies like the recently discovered propellers (Tiscareno et al. 2006). These bodies interact gravitationally with the rings. Actually, the resulting perturbations on the ring system have revealed the presence of embedded objects (the Encke and Keeler gaps associated with Pan and Daphnis respectively, the little two-folded structures called propellers tracing the scattering of ring particles by some embedded small objects). Reciprocally, the rings must act on the embedded bodies, leading to their migration. Here, we study how the standard theory of planetary migration applies in Saturn's ring, where the pressure is negligible in contrast with standard protoplanetary disks. Pan and Daphnis should be in standard type II migration, governed by the global disk evolution. Therefore, their presence and position provide constraints on the history of the A-ring, which can be studied using numerical simulations of disk-satellite interactions. The propellers are fully embedded in the disc, and therefore should be subject to type I migration. The simple impulse approximation used by Lin and Papaloi zou (1979) to derive the one-sided torque is particularly suited to this case. Refining their calculation, taking density variations into account, and discussing the possibility for these bodies to enter the type III, runaway regime of migration, we aim at estimating a possible migration rate for these propellers, to be compared to the system life time.

  7. Bacterial cell division and the septal ring.

    PubMed

    Weiss, David S

    2004-11-01

    Cell division in bacteria is mediated by the septal ring, a collection of about a dozen (known) proteins that localize to the division site, where they direct assembly of the division septum. The foundation of the septal ring is a polymer of the tubulin-like protein FtsZ. Recently, experiments using fluorescence recovery after photobleaching have revealed that the Z ring is extremely dynamic. FtsZ subunits exchange in and out of the ring on a time scale of seconds even while the overall morphology of the ring appears static. These findings, together with in vitro studies of purified FtsZ, suggest that the rate-limiting step in turnover of FtsZ polymers is GTP hydrolysis. Another component of the septal ring, FtsK, is involved in coordinating chromosome segregation with cell division. Recent studies have revealed that FtsK is a DNA translocase that facilitates decatenation of sister chromosomes by TopIV and resolution of chromosome dimers by the XerCD recombinase. Finally, two murein hydrolases, AmiC and EnvC, have been shown to localize to the septal ring of Escherichia coli, where they play an important role in separation of daughter cells.

  8. The circumstellar ring of SN 1987A

    NASA Astrophysics Data System (ADS)

    Fransson, Claes; Migotto, Katia; Larsson, Josefin; Pesce, Dominic; Challis, Peter; Chevalier, Roger A.; France, Kevin; Kirshner, Robert P.; Leibundgut, Bruno; Lundqvist, Peter; McCray, Richard; Spyromilio, Jason; Taddia, Francesco; Jerkstrand, Anders; Mattila, Seppo; Smith, Nathan; Sollerman, Jesper; Wheeler, J. Craig; Crotts, Arlin; Garnavich, Peter; Heng, Kevin; Lawrence, Stephen S.; Panagia, Nino; Pun, Chun S. J.; Sonneborn, George; Sugerman, Ben

    2016-06-01

    The circumstellar ring of supernova 1987A first became visible a few months after the explosion due to photoionisation by the supernova flash. From 1995 hotspots appeared in the ring and their brightness increased nearly exponentially as a result of interaction with the supernova blast wave. Imaging and spectroscopic observations with the Hubble Space Telescope and the Very Large Telescope now show that both the shocked and the unshocked emission components from the ring have been decreasing since ~ 2009. In addition, the most recent images reveal the brightening of new spots outside the ring. These observations indicate that the hotspots are being dissolved by the shocks and that the blast wave is now expanding and interacting with dense clumps beyond the ring. Based on the currently observed decay we predict that the ring will be destroyed by ~ 2025, while the blast wave will reveal the distribution of gas as it expands outside the ring, thus tracing the mass-loss history of the supernova progenitor.

  9. Vortex Ring Interaction with a Heated Screen

    NASA Astrophysics Data System (ADS)

    Smith, Jason; Krueger, Paul S.

    2008-11-01

    Previous examinations of vortex rings impinging on porous screens has shown the reformation of the vortex ring with a lower velocity after passing through the screen, the creation of secondary vortices, and mixing. A heated screen could, in principle, alter the vortex-screen interaction by changing the local liquid viscosity and density. In the present investigation, a mechanical piston-cylinder vortex ring generator was used to create vortex rings in an aqueous sucrose solution. The rings impinged on a screen of horizontal wires that were heated using electrical current. The flow was visualized with food color and video imaging. Tests with and without heat were conducted at a piston stroke-to-jet diameter ratio of 4 and a jet Reynolds number (Re) of 1000. The vortex rings slowed after passing through the screen, but in tests with heat, they maintained a higher fraction of their before-screen velocity due to reduction in fluid viscosity near the wires. In addition, small ``fingers'' that developed on the front of the vortex rings as they passed through the screen exhibited positive buoyancy effects in the heated case.

  10. A Novel Method for Identifying Exoplanetary Rings

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Kipping, David M.; Sucerquia, Mario; Alvarado, Jaime A.

    2015-04-01

    The discovery of rings around extrasolar planets (“exorings”) is one of the next breakthroughs in exoplanetary research. Previous studies have explored the feasibility of detecting exorings with present and future photometric sensitivities by seeking anomalous deviations in the residuals of a standard transit light curve fit, at the level of ≃ 100 ppm for Kronian rings. In this work, we explore two much larger observational consequences of exorings: (1) the significant increase in transit depth that may lead to the misclassification of ringed planetary candidates as false-positives and/or the underestimation of planetary density; and (2) the so-called “photo-ring” effect, a new asterodensity profiling effect, revealed by a comparison of the light curve derived stellar density to that measured with independent methods (e.g., asteroseismology). While these methods do not provide an unambiguous detection of exorings, we show that the large amplitude of these effects, combined with their relatively simple analytic description, makes them highly suited to large-scale surveys to identify candidate ringed planets worthy of more detailed investigation. Moreover, these methods lend themselves to ensemble analyses seeking to uncover evidence of a population of ringed planets. We describe the method in detail, develop the basic underlying formalism, and test it in the parameter space of rings and transit configuration. We discuss the prospects of using this method for the first systematic search of exoplanetary rings in the Kepler database and provide a basic computational code for implementing it.

  11. Warm-Ring Structures in Intense Hurricanes

    NASA Astrophysics Data System (ADS)

    Espinosa, F. I.; Gonzalez, A. O.; Slocum, C. J.; Schubert, W. H.

    2014-12-01

    Typical hurricanes have a warm-core structure such that the warmest temperatures occur in the center of the hurricane. However, weather reconnaissance aircraft data has observed warm-rings in intense hurricanes. A warm-ring structure results when the warmest temperature anomalies occur on the outer edge of the eye. Schubert et al. (2007) suggests the Eliassen transverse circulation equation can model intense hurricanes with a warm-core structure in the upper troposphere and also a warm-ring structure in the lower. Although the thermal wind equation was used in the derivation of the transverse circulation equation, the thermal wind equation has not been used explicitly in an attempt to create such a temperature field. This study derives the thermal wind equation from the hydrostatic and the gradient wind equations to analyze the temperature, tangential velocity, and the absolute vorticity fields. Using observed hurricanes, a warm-ring structure is simulated with the thermal wind equation as the basis. With a prescribed temperature profile, the calculated tangential velocity and absolute vorticity fields resemble those of a realistic hurricane. Thus, the thermal wind equation can be used to create a realistic, intense hurricane with a warm ring structure. Schubert et al. (2007) discusses subsidence as a mechanism that leads to the warm-ring but the tangential velocity and absolute vorticity fields suggest some influence of boundary layer processes that should be explored in future research for a further understanding of warm-rings.

  12. Ring and plasma - The enigmae of Enceladus

    NASA Technical Reports Server (NTRS)

    Haff, P. K.; Siscoe, G. L.; Eviatar, A.

    1983-01-01

    The E ring associated with the Kronian moon Enceladus has a lifetime of only a few thousand years against sputtering by slow corotating O ions. The existence of the ring implies the necessity for a continuous supply of matter. Possible particle source mechanisms on Enceladus include meteoroidal impact ejection and geysering. Estimates of ejection rates of particulate debris following small meteoroid impact are on the order of 3 x 10 to the -18th g/(sq cm sec), more than an order of magnitude too small to sustain the ring. A geyser source would need to generate a droplet supply at a rate of approximately 10 to the -16th g/(sq cm sec) in order to account for a stable ring. Enceladus and the ring particles also directly supply both plasma and vapor to space via sputtering. The absence of a 60 eV plasma at the Voyager 2 Enceladus L-shell crossing, such as might have been expected from sputtering, cannot be explained by absorption and moderation of plasma ions by ring particles, because the ring is too diffuse. Evidently, the effective sputtering yield in the vicinity of Enceladus is on the order of, or smaller than, 0.4, about an order of magnitude less than te calculated value. Small scale surface roughness may account for some of this discrepancy.

  13. Estimating the mass of Saturn's B ring

    NASA Astrophysics Data System (ADS)

    Hedman, Matthew M.; Nicholson, Philip D.

    2016-10-01

    The B ring is the brightest and most opaque of Saturn's rings, but it is also amongst the least well understood because basic parameters like its surface mass density have been poorly constrained. Elsewhere in the rings, spiral density waves driven by resonances with Saturn's various moons provide precise and robust mass density estimates, but for most the B ring extremely high opacities and strong stochastic optical depth variations obscure the signal from these wave patterns. We have developed a new wavelet-based technique that combines data from multiple stellar occultations (observed by the Visual and Infrared Mapping Spectrometer instrument onboard the Cassini spacecraft) that has allowed us to identify signals that appear to be due to waves generated by the strongest resonances in the central and outer B ring. These wave signatures yield new estimates of the B-ring's mass density and indicate that the B-ring's total mass could be quite low, between 1/3 and 2/3 the mass of Saturn's moon Mimas.

  14. Seeing ghosts - Photometry of Saturn's G Ring

    NASA Technical Reports Server (NTRS)

    Showalter, Mark R.; Cuzzi, Jeffrey N.

    1993-01-01

    Saturn's faint and narrow G Ring is only visible to the eye in two Voyager images, each taken at a rather high solar phase angle of about 160 deg. In this paper we introduce a new photometric technique for averaging across multiple Voyager images, and use it to detect the G Ring at several additional viewing geometries. The resultant phase curve suggests that the G Ring is composed of dust particles obeying a very steep power-law size distribution. The dust is generally smaller than that seen in other rings, ranging down to 0.03 micron. The G Ring occupies the region between orbital radii 166,000 and 173,000 km, and has a peak somewhat closer to the inner edge. Based on these limits, we demonstrate that Voyager 2 passed through and directly sampled this ring during its 1981 encounter with Saturn. Combined analysis of additional data sets suggests that a population of larger bodies is also present in the G Ring; these bodies occupy a narrower band near the observed peak and are likely the source for the visible dust. Based on some preliminary dynamical models, we propose that these larger bodies represent leftover debris from the collisional breakup of a small moon in Saturn's distant past.

  15. Irregular Wavelike Structure in Saturn's Rings

    NASA Technical Reports Server (NTRS)

    Pollard, Benjamin J.

    2005-01-01

    We have searched Saturn's A, B, and C rings for irregular wavelike structure using Voyager Photopolarimeter (PPS), Ultraviolet Spectrometer (UVS), and Radio Science (RSS) occultation datasets, as well as ring reflectivity profiles derived from Voyager images. A maximum entropy technique for conducting spectral analysis was used to estimate wave frequency power in relation to radial location for each dataset. Using this method we have found irregular structure in the PPS and UVS inner B Ring occultation datasets previously identified in Voyager imaging data. Both finer structure, with a wavelength of around 20 km, and large structure with wavelengths of 200 to 1000 km, are visible in the occultation data and appear similar to that seen in the imaging data. After removing ringlets from the C-Ring data, we have identified what appears to be a 1000-km wave sustained throughout the ring. The large dominant wavelength appears in all datasets; however, tests are currently being conducted in an attempt to verify its existence. Irregular structure with a wavelength of approximately 20 km has been observed in the C Ring reflectivity profiles, but not within the occultation datasets. This leads us to doubt it is caused by ring surface mass density fluctuations detectable by the occultation experiments.

  16. Spin-orbit interaction for the double ring-shaped oscillator

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Yuan; Lu, Fa-Lin; Sun, Dong-Sheng; You, Yuan; Dong, Shi-Hai

    2016-08-01

    The spin-orbit interactions (SOI) for the single and double ring-shaped oscillator potentials are studied as an energy correction to the Schrödinger equation. We find that the degeneracy for the energy levels with angular quantum number m = 0 keeps invariant in the case of the SOI. The degeneracy is still 2 for single ring-shaped potential and 4 for double ring-shaped potential. However, for the energy levels with angular quantum number m ≠ 0 the degeneracy is reduced from original 4 for the single ring-shaped potential and 8 for the double ring-shaped potential to 2. That is, their energy levels in the case of the SOI are split to 2 (single) and 4 (double) sublevels. There exists an accidental degeneracy for the cases | m | = 2 , 3 , 4 , …. We note that around the critical value b0, the energy levels are reversed. We also discuss some special cases for η = 2 , 3 , 4 , 5 , 6 , …, and the b = 0 , c > 0. It should be pointed out that the parameter b0 is relevant for the angular part parameter b in the single and double ring-shaped potentials and it makes the energy levels changed from positive to negative, but the parameter c corresponds to the angular part parameter in double ring-shaped potential and the η is related to it. This model can be useful for investigations of axial symmetric subjects like the ring-shaped molecules or related problems and may also be easily extended to a many-electron theory.

  17. N-body simulations of viscous instability of planetary rings

    NASA Astrophysics Data System (ADS)

    Salo, Heikki; Schmidt, Jürgen

    2010-04-01

    We study viscous instability of planetary rings in terms of N-body simulations. We show that for rings composed of fairly elastic particles (e.g. as in Hatzes et al. [Hatzes, A., Bridges, F.G., Lin, D.N.C., 1988. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 1091-1115]) the instability may lead to the spontaneous formation of dense ringlets in a background of lower density. In most parts of Saturn's rings the particle collisions are probably much more dissipative, as suggested by the presence of self-gravity wakes, and classic viscous instability should be suppressed. However, our results demonstrate that the mechanism of viscous instability itself is valid. The dynamical effects of size-dependent elasticity in a system with a size distribution have never been studied before. We show that this may in principle lead to a size-selective viscous instability, small particles concentrating on ringlets against the more uniform background of large particles.

  18. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    PubMed

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  19. Saturn's F Ring Core: Calm Amidst Chaos

    NASA Astrophysics Data System (ADS)

    Whizin, A.; Cuzzi, J.; Hogan, R.; Dobrovolskis, A.; Colwell, J. E.; Scargle, J.; Dones, L.; Showalter, M.

    2012-12-01

    Near the edge of Saturn's Roche Zone the F ring is straddled on either side by two small satellites Prometheus and Pandora and as such undergoes perturbations that result in orbital chaos (Scargle et al 1993 DPS 25, #26.04, Winter et al 2007 MNRAS 380, L54; 2010 A&A 523, A67). Even in such an unstable environment the F ring appears to be relatively stable. Thus we postulate there are quiescent stable zones arising from mutual resonant interactions from the two ring moons. It is in one of these zones we believe the F ring has found a stable foothold despite the chaotic orbits in the region. At locations we call "anti-resonances" ring particles have much smaller changes over time in their semi-major axes and eccentricities than particles outside of these anti-resonance zones. We devise an impulse-based perturbation model that explains the orbital outcomes from successive perturbations from two satellites. In addition we compute the orbital evolution of thousands of mass-less test particles with a Bulirsch-Stoer N-body integrator over a narrow radial range covering the F ring core region at high spatial resolution. We find that the variance of the semi-major axes of particles in anti-resonances can be less than ~1km over a period of 32 years, while just a few kilometers away in either radial direction the variance can be tens of kilometers. More importantly, particles outside of these stable zones can migrate into a stable zone due to chaotic orbits, but once they enter an anti-resonance zone they remain there. The anti-resonances act as long-lived sinks for ring particles and explain the location of the F ring core despite its location not being in overall torque balance with ring moons.

  20. The Morphology of Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Murray, Carl D.; Cooper, N. J.; Attree, N. O.; Williams, G. A.

    2012-05-01

    The unusual nature of Saturn's F ring can be understood by considering the combined effects of gravity and collisional encounters. Gravitational perturbations from Prometheus and Pandora orbiting on either side of the ring produce the regular, streamer-channel phenomenon and also trigger the formation of clumps in the ring. There is also evidence for a population of 10km objects colliding with the ring at speeds of 30m/s to produce jets of material that subsequently undergo Keplerian shear to form the spiral strands that emanate from the core. Evidence for a population of 1km objects is also emerging; these appear to have similar orbits to the F ring core with collision speeds of 2m/s. The unprecedented opportunity to study the evolving F ring in detail with the Cassini spacecraft has resulted in new insights into the dynamics of the system. We present a review of our current knowledge of the F ring, primarily derived from Cassini ISS images. We show that geometric fits for the orbit of the core are consistent with those derived from occultations and yet still show variation due to the effect of Prometheus. Cassini images documented the formation and evolution of several prominent jets many of which are associated with collisions between the object S/2004 S 6 and the core. We show that smaller jet-like features have also been observed and clumps produced by Prometheus have been tracked in the core and strands. Finally we discuss possible models to explain the formation and evolution of the population of F ring objects and the varying activity observed in the ring.

  1. Recent observations of Jupiter's ring system

    NASA Astrophysics Data System (ADS)

    Showalter, M.; Burns, J.; de Pater, I.; Hamilton, D.; Horanyi, M.

    2003-04-01

    Jupiter's faint, dusty ring system has several distinct components: a thin main ring, an inner, vertically extended halo, and an outer, fainter pair of "gossamer" rings. This ring system illustrates the complex dynamics of dust after it is ejected from the local moons (Metis, Adrastea, Amalthea and Thebe) and/or embedded parent bodies, and then evolves orbitally under solar and electromagnetic perturbations. The ring system has been observed by four spacecraft (Voyagers 1 and 2, Galileo and Cassini), as well as from the Earth by ground-based observatories and the Hubble Space Telescope (HST). While each individual data set has very limited coverage and content, a complete description of the system is now emerging. This paper will provide a systematic overview of the ring system, based on the latest available data and dynamical models. In particular, the period December 2002 through February 2003 is providing a rare opportunity to watch Jupiter sweep through its full range of Earth-based phase angles while remaining nearly edge-on to the Earth. We will discuss the initial results of an observing program using HST in the visual and the Keck Telescope in the infrared. As the rings pass through opposition, the parent bodies surge in brightness while the dust grains do not; this should provide a new means to distinguish the two populations, better revealing their numbers and locations. Variations in halo thickness with wavelength will provide new information about the sizes and dynamics of the dust grains scattered by Jupiter's strong, inner magnetic field. We will also seek out structures near the outer edge of Amalthea's gossamer ring, hinted at in previous data, which illustrate the dynamics of these dust grains immediately after their initial ejection into the ring.

  2. Saturn B and C ring studies at multiple wavelengths

    NASA Astrophysics Data System (ADS)

    Spilker, Linda; Deau, Estelle; Morishima, Ryuji; Filacchione, Gianrico; Hedman, Matt; Nicholson, Phil; Colwell, Josh; Bradley, Todd; Pilorz, Stu

    2015-04-01

    We can learn a great deal about the characteristics of Saturn's ring particles and their regoliths by modeling the changes in their brightness, color and temperature with changing viewing geometry over a wide range of wavelengths, from ultraviolet through the thermal infrared. Data from Cassini's Composite Infrared Spectrometer (CIRS), Visual and Infrared Mapping Spectrometer (VIMS), Imaging Science Subsystem (ISS) and Ultraviolet Imaging Spectrograph (UVIS) are jointly studied using data from the lit and unlit main rings at multiple geometries and solar elevations. Using multi-wavelength data sets allow us to test different thermal models by combining the effects of particle albedo, regolith grain size and surface roughness with thermal emissivity and inertia, particle spin rate and spin axis orientation. With the high spatial resolution of the Cassini data it is now possible to analyze these effects at smaller spatial scales and characterize higher optical depth regions in faint rings such as the outer C ring, where albedo differences may be present. The CIRS temperature and ISS color variations are confined primarily to phase angle over a range of solar elevations with only small differences from changing spacecraft elevation. Color and temperature dependence with varying solar elevation angle are also observed. Brightness dependence with changing solar elevation angle and phase angle is observed with UVIS. VIMS observations show that the IR ice absorption band depths are a very weak function of phase angle, out to ~140 deg phase, suggesting that interparticle light scattering is relatively unimportant except at very high phase angles. These results imply that the individual properties of the ring particles may play a larger role than the collective properties of the rings, in particular at visible wavelengths. The temperature and color variation with phase angle may be a result of scattering within the regolith and on possibly rough surfaces of the clumps, as

  3. A census of Gulf Stream rings, spring 1975

    NASA Technical Reports Server (NTRS)

    Richardson, P. L.; Worthington, L. V.; Cheney, R. E.

    1978-01-01

    During 1975 several shipboard expendable bathythermograph surveys plus satellite infrared imagery provided a nearly synoptic view of the distribution and number of Gulf Stream rings in the western North Atlantic. Twelve rings were identified; nine were cyclonic (cold core) rings and three were anticyclonic (warm core) rings. This is the largest number of rings ever observed during a short period of time (4 months). Evidence suggests that the mean movement of these rings was southwestward.

  4. Propellers in Saturn A and B rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, Miodrag; Stewart, Glen R.; Albers, Nicole; Esposito, Larry W.

    2014-11-01

    Propellers are gravitational signatures of small embedded moonlets within Saturn's rings. Even if the objects are too small to be directly observed, each body creates a much larger "S" shaped undulation on the rings. In this paper we present new results about by now classical A ring propellers and more enigmatic B ring population. In 2008 we obtained a UVIS occultation of the largest A ring propeller Bleriot. Utilizing Cassini ISS images we obtain Bleriot orbit and demonstrate that UVIS occultation did cut across Bleriot about 100km downstream from the center. The occultation itself shows a prominent partial gap and higher density outer flanking wakes, while their orientation is consistent with a downstream cut. Using simple model of the induced moonlet wakes we obtain that the size of the embedded body is about 400m, consistent with other estimates. While in the UVIS occultation the partial gap is more prominent than the flanking wakes, the features mostly seen in Bleriot images are actually flanking wakes. This result has been confirmed in another UVIS occultation from 2012.One of the most interesting aspects of the A ring propellers are their wanderings, or longitudinal deviations from a pure circular orbit We numerically investigated the possibility of simple moon driven librations. We adopted HNbody numerical integrator and checked forpossible influence of Saturnian satellites. We found that some of A ring propellers indeed respond to the satellites. Earhart and Sikorsky are strongly perturbed by 415:416 and 293:294 mean longitude resonances with Pan and propellers close to the Keeler gap are allperturbed by Daphnis.While the A ring propellers are not far from the Roche zone limit, propellers within the B ring come as a surprise. Simple expectation has been that the strong shear rate in the inner rings would tear bodies apart, which in turn requires stronger evidence for the B ring propellers. In B ring we discovered 12 propellers in 21 ISS NAC images (both

  5. Polar lunar power ring: Propulsion energy resource

    NASA Technical Reports Server (NTRS)

    Galloway, Graham Scott

    1990-01-01

    A ring shaped grid of photovoltaic solar collectors encircling a lunar pole at 80 to 85 degrees latitude is proposed as the primary research, development, and construction goal for an initial lunar base. The polar Lunar Power Ring (LPR) is designed to provide continuous electrical power in ever increasing amounts as collectors are added to the ring grid. The LPR can provide electricity for any purpose indefinitely, barring a meteor strike. The associated rail infrastructure and inherently expandable power levels place the LPR as an ideal tool to power an innovative propulsion research facility or a trans-Jovian fleet. The proposed initial output range is 90 Mw to 90 Gw.

  6. Features of the compact photon storage ring

    NASA Astrophysics Data System (ADS)

    Yamada, Hironari; Tsutsui, Hiroshi; Shimoda, Koichi; Mima, Kunioki

    1993-07-01

    The compact photon storage ring (PhSR) is a hybrid machine that features both linac driven FEL and storage ring driven FEL. The lasing condition is determined by the exactly circular electron storage ring, but a continuous electron injection is possible without disturbing the lasing. An effect of coherent synchrotron radiation takes an important role in the lasing. It is found that the compact PhSR is promising in lasing up to a wavelength of less than 10 μm with 10 A accumulated current.

  7. An SAE high speed ring bus overview

    NASA Astrophysics Data System (ADS)

    Kroeger, Brian W.; Shih, Hubert

    An overview of the protocols and important features of the SAE high-speed ring bus (HSRB) standard is presented here, along with the functional design of a typical ring interface unit architecture. The counterrotating ring topology, with both loopback and bypass mechanisms, provides the high degree of fault tolerance desirable in many military and avionic systems. The error-detection, fault-detection, and recovery mechanisms are briefly described to illustrate the robustness of the HSRB system. The reserved-priority token-passing protocol is shown to provide efficient and deterministic performance, uselful in real-time applications where messages must be transmitted predictably, quickly, and reliably.

  8. Adjustable expandable cryogenic piston and ring

    DOEpatents

    Mazur, Peter O.; Pallaver, Carl B.

    1980-01-01

    The operation of a reciprocating expansion engine for cryogenic refrigeration is improved by changing the pistons and rings so that the piston can be operated from outside the engine to vary the groove in which the piston ring is located. This causes the ring, which is of a flexible material, to be squeezed so that its contact with the wall is subject to external control. This control may be made manually or it may be made automatically in response to instruments that sense the amount of blow-by of the cryogenic fluid and adjust for an optimum blow-by.

  9. CHEER, Canadian high energy electron ring

    NASA Astrophysics Data System (ADS)

    Hemingway, R. J.

    The Institute of Particle Physics (IPP) in Canada have received funds from the Natural Sciences and Engineering Research Council (NSERC) to pursue a study which looks at the feasibility of adding an external electron storage ring at one of the long straight sections of the Tevatron. The machine, as currently configured, has a 300 MeV Linac injector, a 300 MeV accumulator ring, a 2 GeV booster synchrotron, and a 10 GeV storage ring holding 120 mA of either electrons or positrons. Particular attention has been paid to beam polarisation and the design of the interaction region.

  10. Wind turbine ring/shroud drive system

    DOEpatents

    Blakemore, Ralph W.

    2005-10-04

    A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

  11. Slowing down of ring polymer diffusion caused by inter-ring threading.

    PubMed

    Lee, Eunsang; Kim, Soree; Jung, YounJoon

    2015-06-01

    Diffusion of long ring polymers in a melt is much slower than the reorganization of their internal structures. While direct evidence for entanglements has not been observed in the long ring polymers unlike linear polymer melts, threading between the rings is suspected to be the main reason for slowing down of ring polymer diffusion. It is, however, difficult to define the threading configuration between two rings because the rings have no chain end. In this work, evidence for threading dynamics of ring polymers is presented by using molecular dynamics simulation and applying a novel analysis method. The simulation results are analyzed in terms of the statistics of persistence and exchange times that have proved useful in studying heterogeneous dynamics of glassy systems. It is found that the threading time of ring polymer melts increases more rapidly with the degree of polymerization than that of linear polymer melts. This indicates that threaded ring polymers cannot diffuse until an unthreading event occurs, which results in the slowing down of ring polymer diffusion.

  12. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    PubMed Central

    Makeyev, Oleksandr; Besio, Walter G.

    2016-01-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933

  13. Studies of Saturn's Main Rings at Multiple Wavelengths

    NASA Astrophysics Data System (ADS)

    Spilker, L. J.; Deau, E.; Filacchione, G.; Morishima, R.; Hedman, M. M.; Nicholson, P. D.; Colwell, J. E.; Bradley, E. T.; Showalter, M.; Pilorz, S.; Brooks, S. M.

    2015-12-01

    A wealth of information about the characteristics of Saturn's ring particles and their regolith can be obtained by modeling the changes in their brightness, color and temperature with changing viewing geometry over a wide range of wavelengths, from ultraviolet through the thermal infrared. Data from Cassini's Composite Infrared Spectrometer (CIRS), Visual and Infrared Mapping Spectrometer (VIMS), Imaging Science Subsystem (ISS) and Ultraviolet Imaging Spectrograph (UVIS) are jointly studied using data from the lit and unlit main rings at multiple geometries and solar elevations over 11 years of the Cassini mission. Using multi-wavelength data sets allow us to test different thermal models by combining the effects of particle albedo, regolith grain size and surface roughness with thermal emissivity and inertia, particle spin rate and spin axis orientation. The CIRS temperature and ISS color variations are confined primarily to phase angle over a range of solar elevations with only small differences from changing spacecraft elevation. Color and temperature dependence with varying solar elevation angle are also observed. Brightness dependence with changing solar elevation angle and phase angle is observed with UVIS. VIMS observations show that the IR ice absorption band depths are a very weak function of phase angle, out to ~140 deg phase, suggesting that interparticle light scattering is relatively unimportant except at very high phase angles. These results imply that the individual properties of the ring particles may play a larger role than the collective properties of the rings, in particular at visible wavelengths. The temperature and color variation with phase angle may be a result of scattering within the regolith and on possibly rough surfaces of the clumps, as well as a contribution from scattering between individual particles in a many-particle-thick layer. Preliminary results from our joint studies will be presented. This research was carried out in part at

  14. Quantum Logics of Idempotents of Unital Rings

    NASA Astrophysics Data System (ADS)

    Bikchentaev, Airat; Navara, Mirko; Yakushev, Rinat

    2015-06-01

    We introduce some new examples of quantum logics of idempotents in a ring. We continue the study of symmetric logics, i.e., collections of subsets generalizing Boolean algebras and closed under the symmetric difference.

  15. Apparatus for Teaching Physics: Giant Newton's Rings.

    ERIC Educational Resources Information Center

    Cheung, Kai-yin; Mak, Se-yuen

    1996-01-01

    Describes a modification of the traditional demonstration of Newton's rings that magnifies the scale of the interference pattern so that the demonstration can be used for the whole class or for semiquantitative measurements in any high school laboratory. (JRH)

  16. Resonance splitting in gyrotropic ring resonators.

    PubMed

    Jalas, Dirk; Petrov, Alexander; Krause, Michael; Hampe, Jan; Eich, Manfred

    2010-10-15

    We present the theoretical concept of an optical isolator based on resonance splitting in a silicon ring resonator covered with a magneto-optical polymer cladding. For this task, a perturbation method is derived for the modes in the cylindrical coordinate system. A polymer magneto-optical cladding causing a 0.01 amplitude of the off-diagonal element of the dielectric tensor is assumed. It is shown that the derived resonance splitting of the clockwise and counterclockwise modes increases for smaller ring radii. For the ring with a radius of approximately 1.5μm, a 29GHz splitting is demonstrated. An integrated optical isolator with a 10μm geometrical footprint is proposed based on a critically coupled ring resonator.

  17. INSTABILITY ISSUES AT THE SNS STORAGE RING

    SciTech Connect

    ZHANG,S.Y.

    1999-06-28

    The impedance and beam instability issues of the SNS storage ring is reviewed, and the effort toward solutions at the BNL is reported. Some unsettled issues are raised, indicating the direction of planned works.

  18. Coloured Rings Produced on Transparent Plates

    ERIC Educational Resources Information Center

    Suhr, Wilfried; Schlichting, H. Joachim

    2007-01-01

    Beautiful colored interference rings can be produced by using transparent plates such as window glass. A simple model explains this effect, which was described by Newton but has almost been forgotten. (Contains 11 figures.)

  19. Low thermal expansion seal ring support

    DOEpatents

    Dewis, David W.; Glezer, Boris

    2000-01-01

    Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.

  20. Satellite Mean Motion Resonances in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Gordon, Mitchell K.; Murray, C. D.; Showalter, M. R.

    2006-09-01

    We report on work to develop an atlas of satellite mean motion resonance locations and strengths within the rings of Saturn. Using the full literal expansion of the disturbing function, we identify locations of 1st, 2nd and selected 3rd order resonances. We show representative portions of the preliminary atlas in this paper. Our atlas allows for resonance splitting and includes weaker resonances than in the only previously available atlas (Lissauer & Cuzzi, 1982). Consequently, the new atlas will contain a substantially larger set of mean motion resonance locations within the rings. Our results are in good agreement with those of Lissauer & Cuzzi although a few resonance locations differ by a few to several kilometers. When completed, the atlas will be available through the PDS Rings Node, http://pds-rings.seti.org/.

  1. Electron beam depolarization in a damping ring

    SciTech Connect

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms.

  2. Ethinyl Estradiol and Etonogestrel Vaginal Ring

    MedlinePlus

    ... a class of medications called combination hormonal contraceptives (birth control medications). Etonogestrel is a progestin and ethinyl estradiol ... contraceptive ring is a very effective method of birth control but does not prevent the spread of human ...

  3. Dedicated storage rings for nuclear physics

    SciTech Connect

    Jackson, H.E.

    1984-01-01

    The use of internal targets in circulating beams of electron storage and stretcher rings has been widely discussed recently as a method of achieving high luminosity under conditions of low background, and good energy resolution, with minimal demands for beam from an injecting accelerator. In the two critical areas of the technology, ring design and target development, research is very active, and the prospects for major advances are very bright. Reasonable extrapolations of the current state of the art suggest for many problems in nuclear physics, particularly polarization physics of the nucleon and few body nuclei, internal target measurement may be the optimum experimental technique. This paper, discusses the comparative merit of internal target rings and external beam experiments, reviews briefly current research efforts in the critical areas of the technology, and establishes one goal for the discussions at the workshop. It appears that storage rings dedicated to internal target physics may offer a powerful option for future advances in nuclear physics.

  4. Astrophysics: Fingerprints in Saturn's F ring

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2005-11-01

    A planet's rings can be distorted by the gravitational pull of its satellites, and these complex interactions have been difficult to disentangle. Saturn's moon Prometheus, however, has now been caught returning to the scene of the crime.

  5. Reinterpreting the Sharp Edges of Planetary Rings

    NASA Astrophysics Data System (ADS)

    Rimlinger, Thomas; Hamilton, Douglas P.; Hahn, Joseph M.

    2016-10-01

    Narrow ringlets are found throughout the Solar System and are typically 1-100 km wide. Angular momentum, L, is the key to understanding how narrow rings remain confined; L2 ∝ a(1 - e2) for semimajor axis a and eccentricity e. In a circular ring, L conservation demands that the ring quickly spread apart when some colliding particles lose energy while others gain it. By contrast, in an eccentric ring, energy loss and the associated decay of the average semi-major axes can be offset by a decrease in the average eccentricity. We argue that a ring's lifetime can be greatly extended if particles arrange themselves in this way (Borderies et al. 1984). The key difference of our model, however, is that rings need not be shepherded and can confine themselves provided they are sufficiently eccentric. Satellites merely extend the rings' lifespans by pumping up their eccentricities.This confinement mechanism can explain the existence and longevity of narrow ringlets in a variety of contexts. Saturn's Titan ringlet, which is quite circular, may nevertheless be able to confine itself indefinitely if its eccentricity decay is balanced by the increase from the resonance with Titan. Preliminary simulations presented by Rimlinger et al. at this year's DDA Conference have verified that this ring can self-confine even in the absence of any satellite; we update these findings with new results that include the effects of Titan. Furthermore, Mimas' resonance with the edge of the B ring may excite its higher order modes to similar effect. We update the findings of Hahn and Spitale (2013), who used artificial forces to confine the B ring's edge, and suggest that with a suitable viscosity and density, no such forces will be needed to keep the edge sharp. Finally, a ring that is "born" with a sufficiently high eccentricity may live for hundreds of millions or even billions of years in isolation if the rate of decay is slow enough. We present simulations exploring such a scenario.

  6. The Structure of Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Murray, C. D.; Attree, N. O.; Cooper, N. J.; Williams, G. A.

    2012-04-01

    In stark contrast to the ordered regularity of the planet's main rings, Cassini images of Saturn's F ring show a diversity of structures on a variety of scales. The ring is located ~3000km beyond the edge of the A ring and Cassini ISS images reveal a core (radial width ~50km) with localised radial distortions (~50km), as well as occasional spiral strands that can extend to ~200km on either side. High-resolution images also show discrete structures on smaller scales (~10km) in addition to several types of clumps in or around the core and the strands. Despite this the F ring can still be modelled as a uniformly precessing, eccentric, inclined ring suggesting that it has sufficient mass for the effects of self-gravity or collisions to be important in maintaining this configuration. The perturbing effect of the nearby satellite Prometheus is now well understood (Murray et al., 2005) as is its role in producing clumps of material which then interact with the ring and strands (Beurle et al., 2010). The production of the largest strands is linked to collisions between the ring's core and the object S/2004 S 6 (Murray et al., 2008) although additional objects may be involved. Such collisions produce "jets" of material that subsequently undergo Keplerian shear to produce the spiral strands. Cassini images have now provided direct evidence for the existence of a population of small objects (radius <1km) colliding with the ring. The impact velocities are ~ 5 m/s implying a source of objects with orbits similar to that of the F ring; this is consistent with what might be expected for objects formed in the core and perturbed by Prometheus. It is now possible to understand the morphology and dynamic nature of the F ring as being due to the gravitational and collisional effects of a variety of nearby objects, ranging in size from Prometheus (mean radius ~40km) down to sub-km objects orbiting close to the core.

  7. A microstructural investigation of ``machining rings'' and deformation uniformity for dynamic ring compression tests

    NASA Astrophysics Data System (ADS)

    Cloete, T. J.; Hartley, R. S.; Nurick, G. N.

    2006-08-01

    A series of ring compression tests, conducted both quasi-statically (using a Zwick tensile test machine) and dynamically (using a split Hopkinson bar) are presented. The friction conditions were inferred from the behaviour of the inner diameter of the ring specimen using the analysis of Avitzur. Both quasi-static and dynamic specimens displayed machining rings. Microstructural analysis revealed that under quasi-static conditions the machining rings correlate with fold-over, while under dynamic conditions machining rings can appear without fold over. This indicates that machining rings formed during dynamic tests may be due to lubrication breakdown. The results indicate that the assumption of uniform specimen deformation is reasonable for strains attainable during split Hopkinson bar tests.

  8. Microstructure and magnetic properties of backward extruded NdFeB ring magnets by the CAPA process

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Tae; Kim, Yoon-Bae

    2004-06-01

    The inhomogeneity in microstructure and magnetic properties of a ring magnet prepared by backward extrusion with a current-applied pressure-assisted process has been investigated. The initial part (top part) of a ring magnet prepared by back extrusion shows a high coercivity which is comparable to the raw powder. It exhibits isotropic characteristics along the three orthogonal directions probably due to small deformation. The last part (bottom part) of the ring magnet has a a low coercivity with large grains because high current flows through the pressurized punches during the whole deformation process as to increase the temperature and grain growth. The middle part is under an appropriate deformation with short time exposure at high temperature, therefore it maintains a relatively high remanent polarization with high coercivity.

  9. Physical properties of Dowell Chemical Seal Ring

    SciTech Connect

    Benny, H.L.

    1985-07-01

    This document outlines the tests, procedures, and results of an evaluation program for Dowell's Chemical Seal Ring.'' The testing reported here deals with the physical properties of density, compression, tensile strength, elongation, and a push-out/bond strength test. Dowell's Chemical Seal Ring'' is proposed as a gasket-like seal between grout layers in the annulus around the Exploratory Shaft steel liner. 4 refs., 1 fig., 4 tabs.

  10. Ring-Resonator/Sol-Gel Interferometric Immunosensor

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Cohen, David

    2007-01-01

    A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.

  11. APS storage ring vacuum system performance

    SciTech Connect

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-06-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented.

  12. Prometheus Induced Vorticity in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Sutton, Phil J.; Kusmartsev, Feo V.

    2016-11-01

    Saturn's rings are known to show remarkable real time variability in their structure. Many of which can be associated to interactions with nearby moons and moonlets. Possibly the most interesting and dynamic place in the rings, probably in the whole Solar System, is the F ring. A highly disrupted ring with large asymmetries both radially and azimuthally. Numerically non-zero components to the curl of the velocity vector field (vorticity) in the perturbed area of the F ring post encounter are witnessed, significantly above the background vorticity. Within the perturbed area rich distributions of local rotations is seen located in and around the channel edges. The gravitational scattering of ring particles during the encounter causes a significant elevated curl of the vector field above the background F ring vorticity for the first 1-3 orbital periods post encounter. After 3 orbital periods vorticity reverts quite quickly to near background levels. This new found dynamical vortex life of the ring will be of great interest to planet and planetesimals in proto-planetary disks where vortices and turbulence are suspected of having a significant role in their formation and migrations. Additionally, it is found that the immediate channel edges created by the close passage of Prometheus actually show high radial dispersions in the order 20-50 cm/s, up to a maximum of 1 m/s. This is much greater than the value required by Toomre for a disk to be unstable to the growth of axisymmetric oscillations. However, an area a few hundred km away from the edge shows a more promising location for the growth of coherent objects.

  13. Latest on polarization in electron storage rings

    SciTech Connect

    Chao, A.W.

    1983-01-01

    The field of beam polarization in electron storage rings is making rapid progress in recent several years. This report is an attempt to summarize some of these developments concerning how to produce and maintain a high level of beam polarization. Emphasized will be the ideas and current thoughts people have on what should and could be done on electron rings being designed at present such as HERA, LEP and TRISTAN. 23 references.

  14. Technology Assessment of Ring Laser Gyroscopes,

    DTIC Science & Technology

    1979-07-01

    National Aerospace Sympoium, 47. Vali, V. and Shorthill, R.W., " Fibre Ring Interferometer ," AppliedOptics, Vol. 15, No. 5, May 1976. 48. Morrison...GYROSCOPE......................3 3.1 Introduction . . . . . . . . . . . . . . . . . . . 3 3.2 Development ...................... 3 3.3 Other Interferometer ...Shapes ................. 3.4 Ring Laser Interferometer ............... 12 3.5 Laser Gyroscope Output................15 3.6 Laser Gyroscope Errors

  15. Recent Hubble Observations of Jupiter's Ring System

    NASA Astrophysics Data System (ADS)

    Showalter, M. R.; Burns, J. A.; de Pater, I.; Hamilton, D. P.; Horanyi, M.

    2003-05-01

    The period December 2002 through February 2003 provided a rare opportunity to watch Jupiter sweep through its full range of Earth-based phase angles while the rings remained nearly edge-on to Earth. We used this period for a series of Jovian ring observations using the High Resolution Channel (HRC) of Hubble's new Advanced Camera for Surveys (ACS). Phase angles span 0.17o--10o. Our images showed the main ring, Adrastea and Metis with very high signal-to-noise ratios (SNR). Amalthea's gossamer ring was detected (and vertically resolved) in a small set of specially targeted images. Somewhat surprisingly, we have not yet been able to detect the halo in any of our images, perhaps because it is obscured by the scattered light from Jupiter's disk, positioned just 4'' outside the HRC's field of view. Preliminary results from this data set are as follows. (1) The ring is substantially less red than the moons, suggesting that fine dust represents a significant fraction of its backscattering intensity. (2) Neither the rings nor the embedded moons Metis and Adrastea have significant opposition surges. We were hoping to use the surge, which is characteristic of most macroscopic bodies but not dust, as an indicator of where any embedded ring parent bodies might reside. (3) Because our data are so sensitive to Metis (radius ˜ 20 km) and Adrastea ( ˜ 8 km), we believe that bodies as small as 3--4 km in radius should have been detected in the data. In an initial search, no additional bodies have been detected. (4) The Amalthea ring shows an enhancement in brightness in its outermost 15,000 km. This is consistent with what was seen in Galileo images at very high phase angles. Support for this work was provided by NASA through the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS5-26555.

  16. Integral Ring Carbon-Carbon Piston

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  17. Buckling of elliptical rings under uniform external pressure

    SciTech Connect

    Tang, Y.

    1991-04-03

    A thin, elastic elliptical ring is subjected to uniform external pressure. The lowest critical pressure is computed and presented for various ratio of the major axis to the minor axis of the elliptical ring. It is found that the critical pressure for an elliptical ring is higher than that for the circular ring whose diameter is equal to the major axis of the elliptical ring. It can be shown that under the same external pressure, the axial force developed in the elliptical ring is less than that developed in the corresponding circular ring. Thus, a higher pressure is required to buckle the elliptical rings. Therefore, by changing the shape of the ring from circular to elliptical, the capability of the ring to sustain the external pressure can be increased substantially. The results of this study can be useful in the design of elliptical reinforcing rings and thin-walled tubes subjected to external pressure.

  18. Electrothermal ring burn from a car battery.

    PubMed

    Sibley, Paul A; Godwin, Kenneth A

    2013-08-01

    Despite prevention efforts, burn injuries among auto mechanics are described in the literature. Electrothermal ring burns from car batteries occur by short-circuiting through the ring when it touches the open terminal or metal housing. This article describes a 34-year-old male auto mechanic who was holding a wrench when his gold ring touched the positive terminal of a 12-volt car battery and the wrench touched both his ring and the negative terminal. He felt instant pain and had a deep partial-thickness circumferential burn at the base of his ring finger. No other soft tissues were injured. He was initially managed conservatively, but after minimal healing at 3 weeks, he underwent a full-thickness skin graft. The graft incorporated well and healed by 4 weeks postoperatively. He had full range of motion. The cause of ring burns has been controversial, but based on reports similar to the current patient's mechanism, they are most likely electrothermal burns. Gold, a metal with high thermal conductivity, can heat up to its melting point in a matter of seconds. Many treatments have been described, including local wound care to split- and full-thickness skin grafts. Because most burns are preventable, staff should be warned and trained about the potential risks of contact burns. All jewelry should be removed, and the live battery terminal should be covered while working in the vicinity of the battery.

  19. Dust Sources of Saturn's E Ring

    NASA Astrophysics Data System (ADS)

    Spahn, F.; Schmidt, J.; Albers, N.; Kempf, S.; Krivov, A. V.; Sremcevic, M.

    The recent detection of a dust plume at Enceladus' south pole sheds new light on the origin of the E ring of Saturn. The particles probably condense from gas vents escaping from a system of cracks covering the south pole that appears unusually hot in the Cassini infrared experiments. The main fraction of the E ring dust is created in these gas vents. Still, significant amounts of dust should originate from grains ejected by hypervelocity impacts of E ring particles (ERPs), or alternatively, of interplanetary dust grains (IDPs) on the Saturnian moons embedded in the E ring. We estimate the contributions of impactor -ejecta created dust at these various satellites in the ring, relative to the production rate of grains in the plume at Enceladus. Furthermore, we compare the amount of dust created by both projectile families - ERPs and IDPs - and predict that one can clearly discriminate between the ejecta raised by either projectile families in the data of the Cassini dust detector (CDA) collected at close flybys with the moons embedded in the E ring.

  20. Localized Perturbations in Saturn's C Ring

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Tiscareno, Matthew S.

    2016-10-01

    Years of high-resolution imaging of Saturn's rings have revealed many examples of perturbations arising from local causes. For example, the presence of 100-m-scale and smaller moonlets is inferred in the A ring based on the propeller-shaped disturbances that they create (Tiscareno et al. 2006, 2010); the F ring is shaped by regular collisions with its shepherd Prometheus, as well as with other smaller bodies orbiting in the vicinity (Murray et al. 2005, 2008); the "wisps" on the outer edge of the Keeler gap (Porco et al. 2005) may mark the locations of small moonlets that have emerged from the A ring (Tiscareno and Arnault 2015); wakes in the Huygens ringlet imply the presence of two multi-km bodies, and the irregular shape of its inner edge suggests the presence of many smaller bodies (Spitale and Hahn 2016); based on shadow measurements, the B ring contains an embedded 300-m object that produces a small propeller-shaped disturbance (Spitale and Porco 2010; Spitale and Tiscareno 2012).Here, we present evidence for localized perturbations in the C ring. The ringlet embedded in the Bond gap, near 1.470 Saturn radii, shows discrete clumps orbiting at the Keplerian rate in images spanning about eight years. The clumps are not detected in all image sequences at the expected longitudes. The Dawes ringlet, near 1.495 Saturn radii, has an irregular edge that does not appear as a simple superposition of low-wavenumber normal modes.