Gene analysis of steroid 5 alpha-reductase 1 in hyperandrogenic women.
Eminović, Izet; Komel, Radovan; Prezelj, Janez; Karamehić, Jasenko; Gavrankapetanović, Faris; Heljić, Becir
2005-08-01
To examine the gene encoding for 5alpha-reductase type 1 in hyperandrogenic women, and assess the association of its eventual mutations or polymorphisms with the development of the hyperandrogenic female pattern. Sixteen hyperandrogenic women were included in the study. Single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing were performed after polymerase chain reaction amplification of each of the 5 exons of the SRD5A1 gene in both hyperandrogenic and control group (16 participants). Sequence analysis identified the existence of many polymorphisms; in codon 24 of exon 1, GGC (Gly) into GAC (Asp); in codon 30 of exon 1, CGG (Arg) into CGC (Arg); in exon 3 codon 169, ACA to ACG (both encoding for threonine); in exon 5, AGA to AGG (both encoding for arginine, codon 260); and T/C polymorphism in intron 2. Polymorphisms were found in both groups. Polymorphisms of SRD5A1 gene were the same in both hyperandrogenic and healthy women, indicating no significant associations of genetic polymorphisms/variations of SRD5A1 gene with clinical manifestations of hyperandrogenic disorders in women.
Esmaeili, Rezvan; Abdoli, Nasrin; Yadegari, Fatemeh; Neishaboury, Mohamadreza; Farahmand, Leila; Kaviani, Ahmad; Majidzadeh-A, Keivan
2018-01-01
CD44 encoded by a single gene is a cell surface transmembrane glycoprotein. Exon 2 is one of the important exons to bind CD44 protein to hyaluronan. Experimental evidences show that hyaluronan-CD44 interaction intensifies the proliferation, migration, and invasion of breast cancer cells. Therefore, the current study aimed at investigating the association between specific polymorphisms in exon 2 and its flanking region of CD44 with predisposition to breast cancer. In the current study, 175 Iranian female patients with breast cancer and 175 age-matched healthy controls were recruited in biobank, Breast Cancer Research Center, Tehran, Iran. Single nucleotide polymorphisms of CD44 exon 2 and its flanking were analyzed via polymerase chain reaction and gene sequencing techniques. Association between the observed variation with breast cancer risk and clinico-pathological characteristics were studied. Subsequently, bioinformatics analysis was conducted to predict potential exonic splicing enhancer (ESE) motifs changed as the result of a mutation. A unique polymorphism of the gene encoding CD44 was identified at position 14 nucleotide upstream of exon 2 (A37692→G) by the sequencing method. The A > G polymorphism exhibited a significant association with higher-grades of breast cancer, although no significant relation was found between this polymorphism and breast cancer risk. Finally, computational analysis revealed that the intronic mutation generated a new consensus-binding motif for the splicing factor, SC35, within intron 1. The current study results indicated that A > G polymorphism was associated with breast cancer development; in addition, in silico analysis with ESE finder prediction software showed that the change created a new SC35 binding site.
Sun, Shunchang; Zhang, Wenwu; Chen, Xi; Song, Huiwen
2015-04-01
Coronary heart disease (CHD) is a disease resulting from the interaction between genetic variations and environmental factors. Zinc finger homeobox 3 (ZFHX3) is a transcription factor and contains a poly-glutamine tract in a compositionally biased region that is encoded by exon 9, containing a cluster of CAG and CAA triplets followed by the polymorphic CAA repeats: (CAG)2(CAA)2(CAG)3CAACAG(CAA)nGCA. Thus, nine successive glutamine residues precede the poly-glutamine tract, encoded by the polymorphic CAA repeats. The aim of this study was to investigate the association of the CAA repeat polymorphism in exon 9 of the ZFHX3 gene with the risk of CHD in a Chinese population. The CAA repeat polymorphism was determined by polymerase chain reaction followed by DNA sequencing in 321 CHD patients. Genotype frequencies were compared using the non-parametric mood median test. Four alleles of CAG(CAA)10GCA, CAG(CAA)8GCA, CAG(CAA)9GCA, and CAG(CAA)11GCA were found in Chinese CHD patients in exon 9 of the ZFHX3 gene. The CAG(CAA)10GCA was a major allele (95.95%), and the CAG(CAA)8GCA was a minor allele (3.58%). The CAG(CAA)9GCA and CAG(CAA)11GCA were rare alleles (0.31% and 0.16%). The CAG(CAA)10GCA allele encodes a poly-glutamine tract of 19 residues. Importantly, the CHD patients homozygous for the CAG(CAA)10GCA allele had a higher risk of CHD, compared to the heterozygous patients carrying a CAG(CAA)8GCA allele. Moreover, the CAG(CAA)10GCA allele was significantly associated with hypertension, diabetes mellitus, or dyslipidemia (P < 0.05). Thus, the CAA repeat polymorphism in exon 9 of the ZFHX3 gene contributes to the CHD susceptibility in the Chinese population.
Liu, Jun; Bhadra, Malini; Sinnakannu, Joanna Rajeswary; Yue, Wan Lin; Tan, Cheryl Weiqi; Rigo, Frank; Ong, S.Tiong; Roca, Xavier
2017-01-01
Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis-acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM-polymorphism-associated TKI-resistant CML and other cancers. PMID:29100409
Liu, Jun; Bhadra, Malini; Sinnakannu, Joanna Rajeswary; Yue, Wan Lin; Tan, Cheryl Weiqi; Rigo, Frank; Ong, S Tiong; Roca, Xavier
2017-09-29
Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis -acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM -polymorphism-associated TKI-resistant CML and other cancers.
Wielandt, Ana María; Vollrath, Valeska; Chianale, José
2004-09-01
There are significant differences in drug responses among different ethnic groups. The multidrug transporter P-gp, encoded by the MDR1 gene, plays a key role in determining drug bioavailability, and an association between a polymorphism in exon 26 (C3435T) and lower P-gp expression has been found. The co-segregation of this polymorphism with the polymorphism in exon 12 (C1236T) and in exon 21 (G2677T/A) determines several MDR1 haplotypes in humans. To characterize the polymorphisms of exons 26, 21 and 12 of the MDR1 gene in different Chilean populations. Using a polymerase chain reaction and restriction fragment length polymorphism technique, we studied the allelic frequencies and the distribution of MDR1 haplotypes in 3 Chilean populations: Mestizo (n=104), Mapuche (n=96, living in the National Reservation of the Huapi Island, Ranico Lake) and Maori (n=52, living in Eastern Island). The frequency of the normal MDR1*1 haplotype, without mutations, was lower in Mapuches than in Mestizos or Maoris (p<0.005) but similar to that reported in Asian population (p=0.739), probably due to the Asian origin of the Amerindian populations. In addition, the MDR1*l haplotype fequency hin Mestizos was similar to the frequency reported in Caucasians (p=0.49), in agreement with the origin of our population, with a strong influence of Caucasian genes from the Spanish conquerors. The MDR1*2 haplotype distribution, with the three polymoyphisms and probably lower multidrug transporter expression, was similar in the three Chilean populations studied (p>0.0.5), but lower than the frequencies reported in Caucasians or Asians (p<0.05). We found significant differences in the frequencies of genetic polymorphisms of the MDR1 gene in Chilean populations, related to the ethnic origins of our ancestors.
Nowacka-Woszuk, J; Switonski, M
2010-02-01
Numerous mutations of the human androgen receptor (AR) gene cause an intersexual phenotype, called the androgen insensitivity syndrome. The intersexual phenotype is also quite often diagnosed in dogs. The aim of this study was to conduct a comparative analysis of the entire coding sequence (eight exons) of the AR gene in healthy and four intersex dogs, as well as in three other canids (the red fox, arctic fox and Chinese raccoon dog). The coding sequence of the studied species appeared to be conserved (similarity above 97%) and polymorphism was found in exon 1 only. Altogether, 2 SNPs were identified in healthy dogs, 14 in red foxes, 16 in arctic foxes and 6 were found in Chinese raccoon dogs, respectively. Moreover, a variable number of tandem repeats (CAG and CAA), encoding an array of glutamines, was also observed in this exon. The CAA codon numbers were invariable within species, but the CAG repeats were polymorphic. The highest number of the CAG and CAA repeats was found in dogs (from 40 to 42) and the observed variability was similar in intersex and healthy dogs. In the other canids the variability fell within the following ranges: 29-37 (red fox), 37-39 (arctic fox) and 29-32 (Chinese raccoon dog). In addition, a polymorphic microsatellite marker in intron 2 was found in the dog, red fox and Chinese raccoon dog. It was concluded that the polymorphism level of the AR gene in the dog was lower than in the other canids and none of the detected polymorphisms, including variability of the CAG tandem repeats, could be related with the intersexual phenotype of the studied dogs.
Tejedor, J. Ramón; Tilgner, Hagen; Iannone, Camilla; Guigó, Roderic; Valcárcel, Juan
2015-01-01
The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease. PMID:25904137
Jha, Ruchira Menka; Koleck, Theresa A; Puccio, Ava M; Okonkwo, David O; Park, Seo-Young; Zusman, Benjamin E; Clark, Robert S B; Shutter, Lori A; Wallisch, Jessica S; Empey, Philip E; Kochanek, Patrick M; Conley, Yvette P
2018-04-19
ABCC8 encodes sulfonylurea receptor 1, a key regulatory protein of cerebral oedema in many neurological disorders including traumatic brain injury (TBI). Sulfonylurea-receptor-1 inhibition has been promising in ameliorating cerebral oedema in clinical trials. We evaluated whether ABCC8 tag single-nucleotide polymorphisms predicted oedema and outcome in TBI. DNA was extracted from 485 prospectively enrolled patients with severe TBI. 410 were analysed after quality control. ABCC8 tag single-nucleotide polymorphisms (SNPs) were identified (Hapmap, r 2 >0.8, minor-allele frequency >0.20) and sequenced (iPlex-Gold, MassArray). Outcomes included radiographic oedema, intracranial pressure (ICP) and 3-month Glasgow Outcome Scale (GOS) score. Proxy SNPs, spatial modelling, amino acid topology and functional predictions were determined using established software programs. Wild-type rs7105832 and rs2237982 alleles and genotypes were associated with lower average ICP (β=-2.91, p=0.001; β=-2.28, p=0.003) and decreased radiographic oedema (OR 0.42, p=0.012; OR 0.52, p=0.017). Wild-type rs2237982 also increased favourable 3-month GOS (OR 2.45, p=0.006); this was partially mediated by oedema (p=0.03). Different polymorphisms predicted 3-month outcome: variant rs11024286 increased (OR 1.84, p=0.006) and wild-type rs4148622 decreased (OR 0.40, p=0.01) the odds of favourable outcome. Significant tag and concordant proxy SNPs regionally span introns/exons 2-15 of the 39-exon gene. This study identifies four ABCC8 tag SNPs associated with cerebral oedema and/or outcome in TBI, tagging a region including 33 polymorphisms. In polymorphisms predictive of oedema, variant alleles/genotypes confer increased risk. Different variant polymorphisms were associated with favourable outcome, potentially suggesting distinct mechanisms. Significant polymorphisms spatially clustered flanking exons encoding the sulfonylurea receptor site and transmembrane domain 0/loop 0 (juxtaposing the channel pore/binding site). This, if validated, may help build a foundation for developing future strategies that may guide individualised care, treatment response, prognosis and patient selection for clinical trials. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
RNA structure in splicing: An evolutionary perspective.
Lin, Chien-Ling; Taggart, Allison J; Fairbrother, William G
2016-09-01
Pre-mRNA splicing is a key post-transcriptional regulation process in which introns are excised and exons are ligated together. A novel class of structured intron was recently discovered in fish. Simple expansions of complementary AC and GT dimers at opposite boundaries of an intron were found to form a bridging structure, thereby enforcing correct splice site pairing across the intron. In some fish introns, the RNA structures are strong enough to bypass the need of regulatory protein factors for splicing. Here, we discuss the prevalence and potential functions of highly structured introns. In humans, structured introns usually arise through the co-occurrence of C and G-rich repeats at intron boundaries. We explore the potentially instructive example of the HLA receptor genes. In HLA pre-mRNA, structured introns flank the exons that encode the highly polymorphic β sheet cleft, making the processing of the transcript robust to variants that disrupt splicing factor binding. While selective forces that have shaped HLA receptor are fairly atypical, numerous other highly polymorphic genes that encode receptors contain structured introns. Finally, we discuss how the elevated mutation rate associated with the simple repeats that often compose structured intron can make structured introns themselves rapidly evolving elements.
2014-01-01
Background Central core disease is a congenital myopathy, characterized by presence of central core-like areas in muscle fibers. Patients have mild or moderate weakness, hypotonia and motor developmental delay. The disease is caused by mutations in the human ryanodine receptor gene (RYR1), which encodes a calcium-release channel. Since the RYR1 gene is huge, containing 106 exons, mutation screening has been limited to three ‘hot spots’, with particular attention to the C-terminal region. Recent next- generation sequencing methods are now identifying multiple numbers of variants in patients, in which interpretation and phenotype prevision is difficult. Case presentation In a Brazilian Caucasian family, clinical, histopathological and molecular analysis identified a new case of central core disease in a 48-year female. Sanger sequencing of the C-terminal region of the RYR1 gene identified two different missense mutations: c.14256 A > C polymorphism in exon 98 and c.14693 T > C in exon 102, which have already been described as pathogenic. Trans-position of the 2 mutations was confirmed because patient’s daughter, mother and sister carried only the exon 98’s mutation, a synonymous variant that was subsequently found in the frequency of 013–0,05 of alleles. Further next generation sequencing study of the whole RYR1 gene in the patient revealed the presence of additional 5 common silent polymorphisms in homozygosis and 8 polymorphisms in heterozygosis. Conclusions Considering that patient’s relatives showed no pathologic phenotype, and the phenotype presented by the patient is within the range observed in other central core disease patients with the same mutation, it was concluded that the c.14256 A > C polymorphism alone is not responsible for disease, and the associated additional silent polymorphisms are not acting as modifiers of the primary pathogenic mutation in the affected patient. The case described above illustrates the present reality where new methods for wide genome screening are becoming more accessible and able to identify a great variety of mutations and polymorphisms of unknown function in patients and their families. PMID:25084811
Organization of the murine Cd22 locus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Che-Leung; Torres, R.M.; Sundeberg, H.A.
1993-07-01
Murine CD22 (mCD22) is a B cell-associated adhesion protein with seven extracellular Ig-like domains that has 62% amino acid identify to its human homologue. Southern analysis on genomic DNA isolated from tissues and cell lines from several mouse strains using mCD22 cDNA demonstrated that the Cd22 locus encoding mCD22 is a single copy gene of [le]30 kb. Digestion of genomic DNA preparations with four restriction endonucleases revealed the presence of restriction fragment length polymorphisms (RFLP) in BALB/c, C57BL/6, and C3H strains vs DBA/2j, NZB, and NZC strains, suggesting the presence of two or more Cd22 alleles. Using a mCD22 cDNAmore » clone derived from the BALB/c strain, the authors isolated genomic clones from a DBA/2 genomic library that contained all the exons necessary to encode the full length mCD22 cDNA. Fifteen exons, including exon 3 that encodes the translation start codon, were identified. Each extracellular Ig-like domain of mCD22 is encoded by a single exon. A comparison between the nucleotide sequences of the BALB/c CD22 cDNA and the exons of the DBA/2j CD22 genomic clones revealed an 18-nucleotide deletion in exon 4 (encoding the most distal Ig-like domain 1 of mCD22) of the DBA/2j genomic sequence in addition to a number of substitutions, insertions, and deletions in other exons. These nucleotide differences were also present in a cDNA clone isolated from total RNA of LPS-activated DBA/2j splenocytes mosome 7, a region sytenic to human chromosome 19q, close to the previously reported loci, Lyb-8 and Mag (a homologue of Cd22). An antibody (CY34) against the Lyb-8.2 B cell marker reacted with a BHK transfectant expressing the full length mCd22 cDNA, thus demonstrating that Lyb-8 and Cd22 loci are identical. Furthermore, a rat anti-mCD22 mAb, NIM-R6, bound to slgM[sup +] DBA/2j B cells, confirming the expression of a CD22 protein by the Cd22[sup a]/lyb-8[sup a] allele. 63 refs., 7 figs., 1 tab.« less
Freytsis, Marina; Wang, Xueding; Peter, Inga; Guillemette, Chantal; Hazarika, Suwagmani; Duan, Su X.; Greenblatt, David J.; Lee, William M.
2013-01-01
Acetaminophen is cleared primarily by hepatic glucuronidation. Polymorphisms in genes encoding the acetaminophen UDP-glucuronosyltransferase (UGT) enzymes could explain interindividual variability in acetaminophen glucuronidation and variable risk for liver injury after acetaminophen overdose. In this study, human liver bank samples were phenotyped for acetaminophen glucuronidation activity and genotyped for the major acetaminophen-glucuronidating enzymes (UGTs 1A1, 1A6, 1A9, and 2B15). Of these, only three linked single nucleotide polymorphisms (SNPs) located in the shared UGT1A-3′UTR region (rs10929303, rs1042640, rs8330) were associated with acetaminophen glucuronidation activity, with rs8330 consistently showing higher acetaminophen glucuronidation at all the tested concentrations of acetaminophen. Mechanistic studies using luciferase-UGT1A-3′UTR reporters indicated that these SNPs do not alter mRNA stability or translation efficiency. However, there was evidence for allelic imbalance and a gene-dose proportional increase in the amount of exon 5a versus exon 5b containing UGT1A mRNA spliced transcripts in livers with the rs8330 variant allele. Cotransfection studies demonstrated an inhibitory effect of exon 5b containing cDNAs on acetaminophen glucuronidation by UGT1A1 and UGT1A6 cDNAs containing exon 5a. In silico analysis predicted that rs8330 creates an exon splice enhancer site that could favor exon 5a (over exon 5b) utilization during splicing. Finally, the prevalence of rs8330 was significantly lower (P = 0.027, χ2 test) in patients who had acute liver failure from unintentional acetaminophen overdose compared with patients with acute liver failure from other causes or a race- or ethnicity-matched population. Together, these findings suggest that rs8330 is an important determinant of acetaminophen glucuronidation and could affect an individual’s risk for acetaminophen-induced liver injury. PMID:23408116
The candidate histocompatibility locus of a Basal chordate encodes two highly polymorphic proteins.
Nydam, Marie L; Netuschil, Nikolai; Sanders, Erin; Langenbacher, Adam; Lewis, Daniel D; Taketa, Daryl A; Marimuthu, Arumugapradeep; Gracey, Andrew Y; De Tomaso, Anthony W
2013-01-01
The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid-secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5' terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant.
Huang, X Y; Yang, Q L; Yuan, J H; Gun, S B
2015-09-08
In this study, 290 Chinese native Yantai black pig piglets were investigated to identify gene polymorphisms, for haplotype reconstruction, and to determine the association between piglet diarrhea and swine leukocyte antigen (SLA) class II DQA exons 2, 3, and 4 by polymerase chain reaction-single stranded conformational polymorphism and cloning sequencing. The results showed that the 5, 8, and 7 genotypes were identified from SLA-DQA exon 2, 3, and 4, respectively, based on the single-stranded conformational polymorphism banding patterns and found a novel allele D in exon 2 and 2 novel mutational sites of allele C (c.4828T>C) and allele F (c.4617T>C) in exon 3. Polymorphism information content testing showed that exon 2 was moderately polymorphic and that exons-3 and -4 loci were highly polymorphic. The piglet diarrhea scores for genotypes AB (1.40 ± 0.14) and AC (1.54 ± 0.17) in exon 2, AA (1.22 ± 0.32), BC (1.72 ± 0.13), DD (1.67 ± 0.35), and CF (1.22 ± 0.45) in exon 3, and AD (2.35 ± 0.25) in exon 4 were significantly higher than those for the other genotypes (P ≤ 0.05) in DQA exons. There were 14 reconstructed haplotypes in the 3 exons from 290 individuals and Hap12 may be the diarrhea-resistant gene. Haplotype distribution was extremely uneven, and the SLA-DQA gene showed genetic linkage. In this study, we identified molecular genetic markers and provided a theoretical foundation for future pig anti-disease resistance breeding.
Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putnam, E.A.; Cho, M.; Milewicz, D.M.
Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-basedmore » exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.« less
Xu, Wen-Ning; Jiang, Zu-Jun; Li, Yong-Hua; Xiao, Hao-Wen; Gao, Yang; Pang, Yan; Ouyang, Lin; Liu, Zeng-Hui; Zhang, Le-Qing; Wang, Yang; Xiao, Yang
2015-10-01
To explore the correlation between MBL ExonI 54 and NFκB1-94ins/del ATTG polymorphism and fever during neutropenia in patients with acute leukaemia (AL) (except M3) after first chemotherapy in Chinese Han population. Blood samples obtained from 76 fever patients with AL during neutropenia episodes were detected to analyse single nucleotide polymorphism (SNP) in the MBL ExonI 54 and NFκB1-94ins/del ATTG gene, and analyse the correlation between above-mentioned 2 polymorphisms and fever during neutropenia of AL patients after chemotherapy. In 76 patients, no correlation were found between MBL ExonI 54 and NFκB1-94ins/del ATTG polymorphism and fever during neutropenia in patients with acute leukaemia after chemotherapy (P > 0.05). No significant relation were found in sex, age, underlying disease, disease status or degrees of neutropenia in febrile neutropenia between MBL ExonI 54 and NFκB1-94ins/del ATTG polymorphism (P > 0.05). However, patients with MBL ExonI 54 mutation presented longer febrile duration with a median of 5 days compared to 3 days of patients with wildtype MBL ExonI 54 genotype (P < 0.05). There is no clear correlation between MBL ExonI 54 and NFκB1-94ins/del ATTG polymorphism and fever during neutropenia in patients with acute leukaemia after chemotherapy. However, the patients with MBL ExonI 54 mutation have been observed to present a longer febrile duration.
Zhang, Li; Tang, Jun-Ling; Liang, Shang-Zheng
2008-06-01
Muscle segment homeobox gene (MSX)1 has been proposed as a gene in which mutations may contribute to nonsyndromic cleft lip with or without cleft palate (NSCL/P). To study MSX1 polymorphisms in NSCL/ P by means of polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), and investigate the association of MSX1 exons 1 polymorphisms with NSCL/P. DNA were extracted from blood samples from NSCL/P and unrelated normal subjects. Genome DNA from peripheral leukocyte with these blood samples were extracted, which was used as template to amplify desired gene fragment of MSX1 exons 1 by means of polymerase chain reaction (PCR). The PCR products were examined by single-strand conformation polymorphism (SSCP). The MSX1 exons 1 polymorphisms were examined by sequencing if mutations were found. MSX1 genes of exon 1 mutation was not been found in the NSCL/P and unrelated normal subjects by SSCP. No correlation between MSX1 exon 1 and NSCL/P was found. MSX1 exon 1 may not be a key gene (susceptibility gene) in NSCL/P.
Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre
2004-07-01
Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.
Structure and polymorphism of the mouse prion protein gene.
Westaway, D; Cooper, C; Turner, S; Da Costa, M; Carlson, G A; Prusiner, S B
1994-01-01
Missense mutations in the prion protein (PrP) gene, overexpression of the cellular isoform of PrP (PrPC), and infection with prions containing the scrapie isoform of PrP (PrPSc) all cause neurodegenerative disease. To understand better the physiology and expression of PrPC, we retrieved mouse PrP gene (Prn-p) yeast artificial chromosome (YAC), cosmid, phage, and cDNA clones. Physical mapping positions Prn-p approximately 300 kb from ecotropic virus integration site number 4 (Evi-4), compatible with failure to detect recombination between Prn-p and Evi-4 in genetic crosses. The Prn-pa allele encompasses three exons, with exons 1 and 2 encoding the mRNA 5' untranslated region. Exon 2 has no equivalent in the Syrian hamster and human PrP genes. The Prn-pb gene shares this intron/exon structure but harbors an approximately 6-kb deletion within intron 2. While the Prn-pb open reading frame encodes two amino acid substitutions linked to prolonged scrapie incubation periods, a deletion of intron 2 sequences also characterizes inbred strains such as RIII/S and MOLF/Ei with shorter incubation periods, making a relationship between intron 2 size and scrapie pathogenesis unlikely. The promoter regions of a and b Prn-p alleles include consensus Sp1 and AP-1 sites, as well as other conserved motifs which may represent binding sites for as yet unidentified transcription factors. Images PMID:7912827
Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.
Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U
1999-01-01
Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia. At the amino acid level hUCP2 has about 55% identity to hUCP1 while hUCP3 is 71% identical to hUCP2. In this study we have deduced the genomic structure of the human UCP2 gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.7 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely that of the hUCP1 gene and is almost conserved in the recently discovered hUCP3 gene as well. The high degree of homology at the nucleotide level and the conservation of the exon /intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 172 children (aged 7 - 13) of Caucasian origin revealed a polymorphism in exon 4 (C to T transition at position 164 of the cDNA resulting in the substitution of an alanine by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.63 and 0.37 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. The allele frequencies of both polymorphisms were not significantly elevated in a subgroup of 25 children characterized by low Resting Metabolic Rates (RMR). So far a direct correlation of the observed genotype with (RMR) and Body Mass Index (BMI) was not evident. Expression studies of the wild type and mutant forms of UCP2 should clarify the functional consequences these polymorphisms may have on energy metabolism and body weight regulation.
Wise, C A; Chiang, L C; Paznekas, W A; Sharma, M; Musy, M M; Ashley, J A; Lovett, M; Jabs, E W
1997-04-01
Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development.
Wise, Carol A.; Chiang, Lydia C.; Paznekas, William A.; Sharma, Mridula; Musy, Maurice M.; Ashley, Jennifer A.; Lovett, Michael; Jabs, Ethylin W.
1997-01-01
Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development. PMID:9096354
Liang, W; Zhang, H L; Liu, Y; Lu, B C; Liu, X; Li, Q; Cao, Y
2014-03-17
Growth and carcass traits are economically important quality characteristics of beef cattle and are complex quantitative traits that are controlled by multiple genes. In this study, 2 candidate genes, H-FABP (encoding the heart fatty acid-binding protein) and PSMC1 (encoding the proteasome 26S subunit of ATPase 1) were investigated in Qinchuan beef cattle of China. PCR-SSCP and DNA sequencing methods were used to detect mutations in the H-FABP and PSMC1 genes in Qinchuan cattle, and a T>C mutation in exon 1 of H-FABP and a T>C mutation in exon 9 of PSMC1 were identified. The association of these 2 single nucleotide polymorphisms with growth and carcass traits of Qinchuan cattle was analyzed. The T>C mutation in H-FABP was significantly associated with body length and dressing percentage (P < 0.05) and the T>C mutation in PSMC1 with body length and hip width (P < 0.05), indicating that both of the 2 mutations in H-FABP and PSMC1 had effects on growth and carcass traits in the Qinchuan beef cattle breed. Thus, the results of our study suggest that the H-FABP and PSMC1 gene polymorphisms could be used as genetic markers in marker-assisted selection for improving Qinchuan beef cattle.
The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome II, and its polymorphisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, M.B.; Itoh, Kazuko; Fujisaku, Atsushi
1993-01-01
Autoantibodies to the ribonucleoprotein Ro/SSA occur in nearly half of the patients with systemic lupus erythematosus and are associated with lymphopenia, photosensitive dermatitis, and pulmonary and renal disease, which suggests that they have an immunopathologic role. The majority of Ro/SSA precipitin-positive patients produce serum antibodies that bind to the 60-kD and 52-kD Ro/SSA proteins. The authors previously isolated and determined the nucleotide sequence of a cDNA clone that encodes the 52-kD form of the human Ro/SSA protein. In the present study, they have determined the chromosomal location of the gene by in situ hybridization to the end of the shortmore » arm of chromosome 11. Hybridization of portions of the cDNA probe to restriction enzyme-digested DNA indicated the gene is composed of at least three exons. The exon encoding the putative zinc fingers of this protein was found to be distinct from that which encodes the leucine zipper. An RFLP of this gene was identified and is associated with the presence of lupus, primarily in black Americans. 60 refs., 3 figs., 3 tabs.« less
Phenotype-genotype correlations in a series of wolfram syndrome families.
Smith, Casey J A; Crock, Patricia A; King, Bruce R; Meldrum, Cliff J; Scott, Rodney J
2004-08-01
Wolfram syndrome is an extremely rare autosomal-recessive disorder that predisposes the development of type 1 diabetes in association with progressive optic atrophy. The genetic basis of this disease has been shown to be due to mutations in the WFS1 gene. The WFS1 gene encodes a novel transmembrane protein called wolframin, which recent evidence suggests may serve as a novel endoplasmic reticulum calcium channel in pancreatic beta-cells and neurons. Genotype-phenotype correlations in this syndrome are becoming apparent and may help in explaining some of the variable characteristics observed in this disease. In this report, we have studied 13 patients with Wolfram syndrome from nine families to further define the relationship between mutation site and type with specific disease characteristics. A severe phenotype was seen in patients with mutations in exon 4 and with a large deletion encompassing most of exon 8. In total, nine novel mutations were identified as well as three new silent polymorphisms. Similar to all other mutation reports, most causative changes identified in the WFS1 gene occurred in exon 8, and only one was identified outside this region in exon 4.
Sabet, Eliza Eskafi; Salehi, Zivar; Khodayari, Siamak; Zarafshan, Samin Sabouhi; Zahiri, Ziba
2014-10-01
About 10%-15% of conceptions are lost spontaneously prior to 20 weeks. Apart from the clinical problems, genetic variations have also been proposed as a susceptibility factor to miscarriage. Glutathione peroxidase 1 (GPX1) and catalase (CAT) encode two antioxidant enzymes that detoxify H2O2 and protect the cells from oxidative damage. A functional polymorphism at codon 198 of the GPX1 gene causes a C/T substitution in exon 2, which encodes for either proline or leucine (Pro198Leu). The CAT gene has a polymorphic site in the promoter region at position -262 (C-262T) which alters the expression and enzyme blood levels, leading to some pathological clinical conditions. In this study, we evaluated the association of these two polymorphisms with the risk of spontaneous abortion. Genomic DNA from 105 cases with spontaneous abortion and 90 healthy women were genotyped using allele-specific PCR (AS-PCR) and polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP). The genetic distributions for GPX1 did not differ significantly between cases and controls (p = 0.680). However, C-262T polymorphism was significantly associated with the risk of the disease (OR, 5.50; 95% CI, 1.43-21.09; p = 0.012). In conclusion, this study indicates that CAT -262T/T genotype confers less susceptibility to spontaneous abortion, while GPX1 Pro198Leu polymorphism may not be correlated with the disease.
Lee, Joseph H; Gurney, Susan; Pang, Deborah; Temkin, Alexis; Park, Naeun; Janicki, Sarah C; Zigman, Warren B; Silverman, Wayne; Tycko, Benjamin; Schupf, Nicole
2012-01-01
Background/Aims. Genetic variants that affect estrogen activity may influence the risk of Alzheimer's disease (AD). In women with Down syndrome, we examined the relation of polymorphisms in hydroxysteroid-17beta-dehydrogenase (HSD17B1) to age at onset and risk of AD. HSD17B1 encodes the enzyme 17β-hydroxysteroid dehydrogenase (HSD1), which catalyzes the conversion of estrone to estradiol. Methods. Two hundred and thirty-eight women with DS, nondemented at baseline, 31-78 years of age, were followed at 14-18-month intervals for 4.5 years. Women were genotyped for 5 haplotype-tagging single-nucleotide polymorphisms (SNPs) in the HSD17B1 gene region, and their association with incident AD was examined. Results. Age at onset was earlier, and risk of AD was elevated from two- to threefold among women homozygous for the minor allele at 3 SNPs in intron 4 (rs676387), exon 6 (rs605059), and exon 4 in COASY (rs598126). Carriers of the haplotype TCC, based on the risk alleles for these three SNPs, had an almost twofold increased risk of developing AD (hazard ratio = 1.8, 95% CI, 1.1-3.1). Conclusion. These findings support experimental and clinical studies of the neuroprotective role of estrogen.
Chen, L P; E, G X; Zhao, Y J; Na, R S; Zhao, Z Q; Zhang, J H; Ma, Y H; Sun, Y W; Zhong, T; Zhang, H P; Huang, Y F
2015-06-18
DRA encodes the alpha chain of the DR heterodimer, is closely linked to DRB and is considered almost monomorphic in major histocompatibility complex region. In this study, we identified the exon 2 of DRA to evaluate the immunogenetic diversity of Chinese south indigenous goat. Two single nucleotide polymorphisms in an untranslated region and one synonymous substitution in coding region were identified. These data suggest that high immunodiversity in native Chinese population.
Davey, Sue; Navarrete, Cristina; Brown, Colin
2017-06-01
Twenty-nine human platelet antigen systems have been described to date, but the majority of current genotyping methods are restricted to the identification of those most commonly associated with alloantibody production in a clinical context. This can result in a protracted investigation if causative human platelet antigens are rare or novel. A targeted next-generation sequencing approach was designed to detect all known human platelet antigens with the additional capability of identifying novel mutations in the encoding genes. A targeted enrichment, high-sensitivity HaloPlex assay was designed to sequence all exons and flanking regions of the six genes known to encode human platelet antigens. Indexed DNA libraries were prepared from 47 previously human platelet antigen-genotyped samples and subsequently combined into one of three pools for sequencing on an Illumina MiSeq platform. The generated FASTQ files were aligned and scrutinized for each human platelet antigen polymorphism using SureCall data analysis software. Forty-six samples were successfully genotyped for human platelet antigens 1 through 29bw, with an average per base coverage depth of 1144. Concordance with historical human platelet antigen genotypes was 100%. A putative novel mutation in Exon 10 of the integrin β-3 (ITGB3) gene from an unsolved case of fetal neonatal alloimmune thrombocytopenia was also detected. A next-generation sequencing-based method that can accurately define all known human platelet antigen polymorphisms was developed. With the ability to sequence up to 96 samples simultaneously, our HaloPlex design could be used for high-throughput human platelet antigen genotyping. This method is also applicable for investigating fetal neonatal alloimmune thrombocytopenia when rare or novel human platelet antigens are suspected. © 2017 AABB.
Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.
von Schnakenburg, C; Rumsby, G
1997-06-01
Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1.
Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.
von Schnakenburg, C; Rumsby, G
1997-01-01
Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1. Images PMID:9192270
Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency.
Péquignot, M O; Dey, R; Zeviani, M; Tiranti, V; Godinot, C; Poyau, A; Sue, C; Di Mauro, S; Abitbol, M; Marsac, C
2001-05-01
Cytochrome c oxidase (COX) deficiency is one of the major causes of Leigh Syndrome (LS), a fatal encephalopathy of infancy or childhood, characterized by symmetrical lesions in the basal ganglia and brainstem. Mutations in the nuclear genes encoding COX subunits have not been found in patients with LS and COX deficiency, but mutations have been identified in SURF1. SURF1 encodes a factor involved in COX biogenesis. To date, 30 different mutations have been reported in 40 unrelated patients. We aim to provide an overview of all known mutations in SURF1, and to propose a common nomenclature. Twelve of the mutations were insertion/deletion mutations in exons 1, 4, 6, 8, and 9; 10 were missense/nonsense mutations in exons 2, 4, 5, 7, and 8; and eight were detected at splicing sites in introns 3 to 7. The most frequent mutation was 312_321del 311_312insAT which was found in 12 patients out of 40. Twenty mutations have been described only once. We also list all polymorphisms discovered to date. Copyright 2001 Wiley-Liss, Inc.
Sam, Soya Sisy; Thomas, Vinod; Sivagnanam, Kumaran; Reddy, Kanipakapatanam Sathyanarayana; Surianarayanan, Gopalakrishnan; Chandrasekaran, Adithan
2007-10-01
Upper aerodigestive tract (UADT) cancers are associated with the tobacco use and alcohol consumption. Certain toxins and carcinogens causing UADT cancers are found to be substrates of polymorphic ABCB1 gene encoded P-glycoprotein efflux pump. This study investigates the association between ABCB1 gene polymorphism at exon 26 (3435C>T) and risk to UADT cancers in Tamilians, a population of south India. The study included 219 unrelated histopathologically confirmed cases and 210 population-based controls. Genomic DNA was extracted from peripheral leukocytes and genotyped for ABCB1 3435C>T polymorphism by PCR-restriction fragment length polymorphism method. The multivariate logistic regression analyses demonstrated that the homozygous ABCB1 TT genotype was significantly associated with an overall increased risk for developing UADT cancers [odds ratio (OR): 2.53; 95% confidence interval (CI): 1.28-5.02]. Further, the determination of gene-environment interaction by stratified analyses have revealed a significant interaction between the smoking and homozygous TT genotype [(OR: 7.52; CI: 1.50-37.70) and (OR: 16.89; CI: 3.87-73.79) for 11-20 and >20 pack-years, respectively]. The strongest interaction was observed among the regular tobacco chewers (OR: 45.29; CI: 8.94-130.56) homozygous for TT genotype. No suggestion, however, of an interaction between the genotypes and the alcohol consumption on the multiplicative scale was made. The ABCB1 gene polymorphism at exon 26 (3435C>T) may be one of the risk factors for susceptibility to UADT cancers. Furthermore, the significant interaction among habitual smokers and tobacco chewers, homozygous for TT genotype modulates the risk to UADT cancers in the Tamilian population of south India.
Szewczuk, M
2017-02-01
As a member of the somatotropic axis, insulin-like growth factor I receptor (IGF1R) seems to be a promising candidate gene. Two silent polymorphisms, identified by MspI and TaqI restriction enzymes, were selected within exon 2, encoding the majority of the putative ligand binding pocket. A total of 1169 cows of four pure breeds (Polish Holstein Friesian, Montbeliarde, Jersey and Holstein Friesian) were genotyped. The T (IGF1R/e2/MspI) and G (IGF1R/e2/TaqI) alleles were found to be prevalent. Three combinations of genotypes (TT/GG, TT/AG and CT/GG) were associated with the highest productivity (milk, protein and fat yields) among all breeds under study, as opposed to individuals carrying the worst CC/AA combination. In view of the specific structure of the ligand binding pocket and the significance of insulin-like growth factor I signalling promoting the development and differentiation in a variety of tissues (not only limited to mammary gland), the existence of missense mutation is unlikely. Potential mutations are likely limited to mRNA transcription and further post-transcriptional modifications. Further investigations should follow searching for the most useful IGF1R haplotypes, associated with higher milk production traits, exerting at the same time positive or neutral impact on health and welfare of individuals. © 2016 Blackwell Verlag GmbH.
Role of interleukin-15 receptor alpha polymorphisms in normal weight obese syndrome.
Di Renzo, L; Gloria-Bottini, F; Saccucci, P; Bigioni, M; Abenavoli, L; Gasbarrini, G; De Lorenzo, A
2009-01-01
Previous published studies have identified a class of women, Normal Weight Obese women (NWO) with normal BMI and high fat content. An important role of Interleukin-15 (IL-15) has been documented in facilitating muscle proliferation and promoting fat depletion. Indeed the presence of three types of IL-15 receptor subunits in fat tissue suggests a direct effect on adipose tissue. We studied three single nucleotide polymorphisms (SNP) of IL-15R-alpha receptor gene and investigated their relationship with NWO phenotype. We considered two classes of women according to their BMI and percent fat mass (percent FAT), class 1: including 72 overweight-obese women (high BMI-high fat mass) and class 2: including 36 NWO (normal BMI, high fat mass). Three sites of Interleukin-15 receptor subunit á gene were examined, located respectively in exon4, exon5 intron-exon border and exon7. Genotyping of the identified polymorphisms was performed by restriction fragment length polymorphism. Haplotype frequency estimation was performed by using the Mendel-University of Chicago program. Odds ratio analyses were calculated by EPISTAT program. Highly significant differences were observed for exon 7- exon5 intron-exon border and exon 4-exon 7 haplotype distribution between class 1 and class 2 women. These results strongly support the hypothesis that genetic variability of the IL-15 receptor has an important role in body fat composition. Our data underscore previous findings that suggest a potential role of IL-15 cytokine in NWO syndrome.
Another face of the Treacher Collins syndrome (TCOF1) gene: identification of additional exons.
So, Rolando B; Gonzales, Bianca; Henning, Dale; Dixon, Jill; Dixon, Michael J; Valdez, Benigno C
2004-03-17
Treacher Collins syndrome (TCS) is characterized by an abnormality in craniofacial development during early embryogenesis. TCS is caused by mutations in the gene TCOF1, which encodes the nucleolar phosphoprotein treacle. Genetic and proteomic characterizations of TCS/treacle are based on the previously reported 26 exons of TCOF1. Here, we report the identification of 231-nucleotide (nt) exon 6A (between exons 6 and 7) and 108-nt exon 16A (between exons 16 and 17). Isoforms with exon 6A are up to 3.7-fold more abundant than alternatively spliced variants without exon 6A, but only minor isoforms contain exon 16A. Exon 6A encodes a peptide sequence containing basic and acidic domains similar to 10 other exons of TCOF1. Unlike the other exons, exon 6A encodes a nuclear localization signal (NLS) which does not, however, alter the nucleolar localization of full-length treacle. The discovery of exons 6A and 16A is relevant to mutational analysis of the TCOF1 gene in TCS patients, and to functional analysis of its gene product.
Millard, T P; Ashton, G H S; Kondeatis, E; Vaughan, R W; Hughes, G R V; Khamashta, M A; Hawk, J L M; McGregor, J M; McGrath, J A
2002-02-01
The Ro 60 kDa protein (Ro60 or SSA2) is the major component of the Ro ribonucleoprotein (Ro RNP) complex, to which an immune response is a specific feature of several autoimmune diseases. The genomic organization and any sequence variation within the DNA encoding Ro60 are unknown. To characterize the Ro60 gene structure and to assess whether any sequence alterations might be associated with serum anti-Ro antibody in subacute cutaneous lupus erythematosus (SCLE), thus potentially providing new insight into disease pathogenesis. The cDNA sequence for Ro60 was obtained from the NCBI database and used for a BLAST search for a clone containing the entire genomic sequence. The intron-exon borders were confirmed by designing intronic primer pairs to flank each exon, which were then used to amplify genomic DNA for automated sequencing from 36 caucasian patients with SCLE (anti-Ro positive) and 49 with discoid LE (DLE, anti-Ro negative), in addition to 36 healthy caucasian controls. Heteroduplex analysis of polymerase chain reaction (PCR) products from patients and controls spanning all Ro60 exons (1-8) revealed a common bandshift in the PCR products spanning exon 7. Sequencing of the corresponding PCR products demonstrated an A > G substitution at nucleotide position 1318-7, within the consensus acceptor splice site of exon 7 (GenBank XM001901). The allele frequencies were major allele A (0.71) and minor allele G (0.29) in 72 control chromosomes, with no significant differences found between SCLE patients, DLE patients and controls. The genomic organization of the DNA encoding the Ro60 protein is described, including a common polymorphism within the consensus acceptor splice site of exon 7. Our delineation of a strategy for the genomic amplification of Ro60 forms a basis for further examination of the pathological functions of the Ro RNP in autoimmune disease.
Identification of protein features encoded by alternative exons using Exon Ontology.
Tranchevent, Léon-Charles; Aubé, Fabien; Dulaurier, Louis; Benoit-Pilven, Clara; Rey, Amandine; Poret, Arnaud; Chautard, Emilie; Mortada, Hussein; Desmet, François-Olivier; Chakrama, Fatima Zahra; Moreno-Garcia, Maira Alejandra; Goillot, Evelyne; Janczarski, Stéphane; Mortreux, Franck; Bourgeois, Cyril F; Auboeuf, Didier
2017-06-01
Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological information. © 2017 Tranchevent et al.; Published by Cold Spring Harbor Laboratory Press.
Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K
2013-09-15
The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Molecular evolution of the leptin exon 3 in some species of the family Canidae.
Chmurzynska, Agata; Zajac, Magdalena; Switonski, Marek
2003-01-01
The structure of the leptin gene seems to be well conserved. The polymorphism of this gene in four species belonging to the Canidae family (the dog (Canis familiaris)--16 different breeds, the Chinese racoon dog (Nyctereutes procyonoides procyonoides), the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus)) were studied with the use of single strand conformation polymorphism (SSCP), restriction fragment length polymorphism (RFLP) and DNA sequencing techniques. For exon 2, all species presented the same SSCP pattern, while in exon 3 some differences were found. DNA sequencing of exon 3 revealed the presence of six nucleotide substitutions, differentiating the studied species. Three of them cause amino acid substitutions as well. For all dog breeds studied, SSCP patterns were identical.
Mutational analysis of the PTPN11 gene in Egyptian patients with Noonan syndrome.
Essawi, Mona L; Ismail, Manal F; Afifi, Hanan H; Kobesiy, Maha M; El Kotoury, Ahmed; Barakat, Maged M
2013-11-01
Noonan syndrome (NS) is inherited as an autosomal dominant disorder with dysmorphic facies, short stature, and cardiac defects, which can be caused by missense mutations in the protein tyrosine phosphatase nonreceptor type 11 (PTPN11) gene, which encodes src homology region 2 domain containing tyrosine phosphatase-2 (SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factors and cytokines. The current study aimed to study the molecular characterization of the PTPN11 gene among Egyptian patients with Noonan syndrome. Eleven exons of the PTPN11 gene were amplified and screened by single stranded conformational polymorphism (SSCP). DNA samples showing band shift in SSCP were subjected to sequencing. Mutational analysis of the PTPN11 gene revealed T→C transition at position 854 in exon 8, predicting Phe285Ser substitution within PTP domain of SHP-2 protein, in one NS patient and -21C→T polymorphism in intron 7 in four other cases. Knowing that NS is phenotypically heterogeneous, molecular characterization of the PTPN11 gene should serve to establish NS diagnosis in patients with atypical features, although lack of a mutation does not exclude the possibility of NS. Copyright © 2012. Published by Elsevier B.V.
Association of aromatase (TTTA)n repeat polymorphisms with central precocious puberty in girls.
Lee, Hae Sang; Kim, Kyung Hee; Hwang, Jin Soon
2014-09-01
Precocious puberty is characterized by early activation of the pituitary-gonadal axis. Oestrogen is the final key factor to start the onset of puberty. The cytochrome P450 19A1 (CYP19A1) gene encodes an aromatase that is responsible for the conversion of androgens to oestrogen, which is a key step in oestrogen biosynthesis. The aim of this study was to identify CYP19A1 gene mutations or polymorphisms in girls with central precocious puberty (CPP). We evaluated the frequency of allelic variants of the CYP19A1 exons and the tetranucleotide tandem repeat (TTTA)n in intron 4 in 203 idiopathic central precocious puberty (CPP) girls and 101 normal healthy women. The genotype analysis of the CYP19A1 (TTTA)n polymorphism revealed six different alleles ranging from seven to 13 repeats. Among the six different repeat alleles detected in this study, the (TTTA)₁₃ repeat allele was only detected in the patient group and carriers of the (TTTA)₁₃ allele were significantly associated with an increased risk of CPP (OR = 1·509, 95% CI = 1·425-1·598, P = 0·033). Carriers of the (TTTA)₁₃ repeat allele were significantly younger at pubertal onset and had higher levels of oestrogen than noncarriers of the (TTTA)₁₃ repeat allele. Although nine polymorphisms were detected in exons of the CYP19A1 gene, no clinical significance was observed. In this study, carriers of a higher repeat (TTTA)₁₃ polymorphism in intron 4 of the CYP19A1 gene had higher levels of oestrogen. Those carrying the (TTTA)₁₃ repeat allele may have a higher risk of developing CPP. © 2014 John Wiley & Sons Ltd.
D'Amora, Paulo; Sato, Hélio; Girão, Manoel J B C; Silva, Ismael D C G; Schor, Eduardo
2006-09-01
To study possible correlation between the prevalence of polymorphisms in the type I interleukin-1 receptor gene and pelvic endometriosis. Genotypes of 223 women were analyzed: 109 women with surgically and histologically confirmed endometriosis and 114 healthy women. Distributions of two single-base polymorphisms of the human interleukin-1 receptor type I (IL-1RI) gene were evaluated: PstI, due to a C-->T transition in exon 1B and BsrBI a C-->A transition at position 52 in exon 1C. Polymorphisms were detected by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism analysis (RFLP) resolved on 3% agarose gels stained with ethidium bromide. Genotypes for PstI polymorphisms did not differ significantly among control and endometriosis (P = 0.058). However, in relation to BsrBI polymorphism, protective risk was observed for the development of endometriosis [OR 0.39-IC 95% (0.2-0.9)]. BsrBI heterozygote genotype (C/A) showed protective effect against endometriosis development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, J.K.; Shaw, M.A.; Barton, C.H.
1994-11-15
Recent interest has focused on the region of conserved synteny between mouse chromosome 1 and human 2q33-q37, particularly over the region encoding the murine macrophage resistance gene Ity/Lsh/Bcg (candidate Nramp) and members of the Il8r interleukin-8 (IL8) receptor gene cluster. In this paper, identification of a restriction fragment length polymorphism in the Il8RB gene in 35 pedigrees previously typed for markers in the 2q33-37 interval provided evidence (lod scores > 3) for linkage between Il8RB and the 2q34-135 markers FN1, TNP1, VIL1, and DES. Physical mapping, using yeast artificial chromosomes isolated with VIL1, confirmed that IL8RA, IL8RB and the IL8RBmore » pseudogene map within the NRAMP-VIL1 interval, with the physical distance (155 kb) from 5{prime} LSH to 3{prime} VIL1 representing {approx}3-fold that observed in the mouse. Partial sequencing of NRAMP confirmed the presence of the N-terminal proline/serine-rich putative SH3 binding domain in exon 2 of the human gene. Further analysis of Brazilian leprosy and visceral leishmaniasis pedigrees identified a rare second allele varying in a 9-nucleotide repeat motif of the exon 2 sequence but segregating independently of the disease phenotype. 38 refs., 4 figs., 3 tabs.« less
Molecular evolution of the leptin exon 3 in some species of the family Canidae
Chmurzynska, Agata; Zajac, Magdalena; Switonski, Marek
2003-01-01
The structure of the leptin gene seems to be well conserved. The polymorphism of this gene in four species belonging to the Canidae family (the dog (Canis familiaris) – 16 different breeds, the Chinese racoon dog (Nyctereutes procyonoides procyonoides), the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus)) were studied with the use of single strand conformation polymorphism (SSCP), restriction fragment length polymorphism (RFLP) and DNA sequencing techniques. For exon 2, all species presented the same SSCP pattern, while in exon 3 some differences were found. DNA sequencing of exon 3 revealed the presence of six nucleotide substitutions, differentiating the studied species. Three of them cause amino acid substitutions as well. For all dog breeds studied, SSCP patterns were identical. PMID:12939206
Argyropoulos, G; Brown, A M; Willi, S M; Zhu, J; He, Y; Reitman, M; Gevao, S M; Spruill, I; Garvey, W T
1998-01-01
Human uncoupling protein 3 (UCP3) is a mitochondrial transmembrane carrier that uncouples oxidative ATP phosphorylation. With the capacity to participate in thermogenesis and energy balance, UCP3 is an important obesity candidate gene. A missense polymorphism in exon 3 (V102I) was identified in an obese and diabetic proband. A mutation introducing a stop codon in exon 4 (R143X) and a terminal polymorphism in the splice donor junction of exon 6 were also identified in a compound heterozygote that was morbidly obese and diabetic. Allele frequencies of the exon 3 and exon 6 splice junction polymorphisms were determined and found to be similar in Gullah-speaking African Americans and the Mende tribe of Sierra Leone, but absent in Caucasians. Moreover, in exon 6-splice donor heterozygotes, basal fat oxidation rates were reduced by 50%, and the respiratory quotient was markedly increased compared with wild-type individuals, implicating a role for UCP3 in metabolic fuel partitioning. PMID:9769326
Gandhi, Manish J; Pendergrass, Thomas W; Cummings, Carrie C; Ihara, Kenji; Blau, C Anthony; Drachman, Jonathan G
2005-10-01
An 11-year-old girl, presenting with fatigue and bruising, was found to be profoundly pancytopenic. Bone marrow exam and clinical evaluation were consistent with aplastic anemia. Family members were studied as potential stem cell donors, revealing that both younger siblings displayed significant thrombocytopenia, whereas both parents had normal blood counts. We evaluated this pedigree to understand the unusually late presentation of congenital amegakaryocytic thrombocytopenia (CAMT). The coding region and the intron/exon junctions of MPL were sequenced from each family member. Vectors representing each of the mutations were constructed and tested for the ability to support growth of Baf3/Mpl(mutant) cells. All three siblings had elevated thrombopoietin levels. Analysis of genomic DNA demonstrated that each parent had mutations/polymorphisms in a single MPL allele and that each child was a compound heterozygote, having inherited both abnormal alleles. The maternal allele encoded a mutation of the donor splice-junction at the exon-3/intron-3 boundary. A mini-gene construct encoding normal vs mutant versions of the intron-3 donor-site demonstrated that physiologic splicing was significantly reduced in the mutant construct. Mutations that incompletely eliminate Mpl expression/function may result in delayed diagnosis of CAMT and confusion with aplastic anemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, K.D.; Handen, J.S.; Rosenberg, H.F.
The Charcot-Leyden crystal (CLC) protein, or eosinophil lysophospholipase, is a characteristic protein of human eosinophils and basophils; recent work has demonstrated that the CLC protein is both structurally and functionally related to the galectin family of {beta}-galactoside binding proteins. The galectins as a group share a number of features in common, including a linear ligand binding site encoded on a single exon. In this work, we demonstrate that the intron-exon structure of the gene encoding CLC is analogous to those encoding the galectins. The coding sequence of the CLC gene is divided into four exons, with the entire {beta}-galactoside bindingmore » site encoded by exon III. We have isolated CLC {beta}-galactoside binding sites from both orangutan (Pongo pygmaeus) and murine (Mus musculus) genomic DNAs, both encoded on single exons, and noted conservation of the amino acids shown to interact directly with the {beta}-galactoside ligand. The most likely interpretation of these results suggests the occurrence of one or more exon duplication and insertion events, resulting in the distribution of this lectin domain to CLC as well as to the multiple galectin genes. 35 refs., 3 figs.« less
Fathy, Mona; Hamed, Mai; Youssif, Omnia; Fawzy, Nahla; Ashour, Wafa
2014-02-01
Environmental tobacco smoke (ETS) is the primary etiologic factor responsible for lung cancer. However, only 10-15 % of smokers develop lung cancer, suggesting a genetic role in modifying individual susceptibility to lung cancer. Antioxidant enzymes and genetic polymorphisms should be considered. The present study aimed to evaluate the role of antioxidant enzyme activity and genetic polymorphisms in modifying the susceptibility to lung cancer among individuals exposed to ETS. A total of 150 male subjects were divided into three groups: 50 lung cancer patients, 50 chronic smokers, and 50 passive smokers. Genotyping of microsomal epoxide hydrolase (mEH) exon 3 (Tyr(113)Hist) and exon 4 (Hist(139)Arg) polymorphisms were done by the polymerase chain reaction-restriction fragment length polymorphism technique. MnSOD (Val(16)Ala) polymorphism was detected by the real time-TaqMan assay. Erythrocyte MnSOD activity was measured spectrophotometrically. ETS-exposed individuals (both active and passive smokers) who carried the His allele of mEH exon3 have a 2.9-fold increased risk of lung cancer (odds ratio [OR] 2.9, P < 0.001). In addition, ETS-exposed carriers of the Arg allele of mEH exon 4 have a 2.1-fold increased risk of lung cancer (OR 2.1, P = 0.024). However, no association between the MnSOD Val(16)Ala polymorphism and lung cancer was detected among ETS-exposed individuals (OR 1.6, P = 0.147), although the lung cancer group had significantly lower MnSOD activity than the chronic or passive smoker groups (P = 0.03). Exons 3 and 4 polymorphisms of the mEH gene may contribute to lung cancer susceptibility through disturbed antioxidant balance. However, this was not the case with the MnSOD Val(16)Ala single-nucleotid polymorphism. Antioxidant enzymes may modulate the influence of ETS exposure on lung cancer risk.
[Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].
Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A
2017-01-01
In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.
Typing of artiodactyl MHC-DRB genes with the help of intronic simple repeated DNA sequences.
Schwaiger, F W; Buitkamp, J; Weyers, E; Epplen, J T
1993-02-01
An efficient oligonucleotide typing method for the highly polymorphic MHC-DRB genes is described for artiodactyls like cattle, sheep and goat. By means of the polymerase chain reaction, the second exon of MHC-DRB is amplified as well as part of the adjacent intron containing a mixed simple repeat sequence. Using this primer combination we were able to amplify the MHC-DRB exons 2 and adjacent introns from all of the investigated 10 species of the family of Bovidae and giraffes. Therefore, the DRB genes of novel artiodactyl species can also be readily studied. Oligonucleotide probes specific for the polymorphisms of ungulate DRB genes are used with which sequences differing in at least one single base can be distinguished. Exonic polymorphism was found to be correlated with the allele lengths and the patterns of the repeat structures. Hence oligonucleotide probes specific for different simple repeats and polymorphic positions serve also for typing across species barriers. The strict correlation of sequence length and exonic polymorphism permits a preselection of specific oligonucleotides for hybridization. Thus more than 20 alleles can already be differentiated from each of the three species.
1997-07-01
minimum region of allelic loss on chromosome 17p 13.3, between polymorphic markers D17S5 and D17S28, in genomic DNA from breast and ovarian tumors (Figure 1...encode proteins of 443 and 227 amino acids, with no known functional motifs. Comparison of genomic and cDNA sequences showed that the genes overlap...is tissue specific (Figure 4). When zoo blots comprised of EcoRI fragments of genomic DNA from various species were probed with the unique exon 1 of
The CIDEA gene V115F polymorphism is associated with obesity in Swedish subjects.
Dahlman, Ingrid; Kaaman, Maria; Jiao, Hong; Kere, Juha; Laakso, Markku; Arner, Peter
2005-10-01
The cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector A (CIDEA) gene is implicated as an important regulator of body weight in mice and humans and is therefore a candidate gene for human obesity. Here, we characterize common CIDEA gene polymorphisms and investigate them for association with obesity in two independent Swedish samples; the first comprised 981 women and the second 582 men. Both samples display a large variation in BMI. The only detected coding polymorphism encodes an exon 4 V115F amino acid substitution, which is associated with BMI in both sexes (P = 0.021 for women, P = 0.023 for men, and P = 0.0015 for joint analysis). These results support a role for CIDEA alleles in human obesity. CIDEA-deficient mice display higher metabolic rate, and the gene cross-talks with tumor necrosis factor-alpha (TNF-alpha) in fat cells. We hypothesize that CIDEA alleles regulate human obesity through impact on basal metabolic rate and adipocyte TNF-alpha signaling.
Do polymorphisms in the TAS1R1 gene contribute to broader differences in human taste intensity?
Rawal, Shristi; Hayes, John E; Wallace, Margaret R; Bartoshuk, Linda M; Duffy, Valerie B
2013-10-01
The TAS1R genes encode heterodimeric receptors that mediate umami (hTAS1R1 + hTAS1R3) and sweet (hTAS1R2 + hTAS1R3) sensations. The question of interest for this study is if TAS1R1 variation associates with differences in overall taste intensity. We leveraged an existing database of adults (n = 92, primarily European American) to test associations between 2 TAS1R1 single nucleotide polymorphisms (SNPs) (intronic rs17492553, C/T and exonic rs34160967, G/A) and intensity of 4 prototypical tastants (NaCl, sucrose, citric acid, and quinine), applied regionally to fungiform and circumvallate loci, and sampled with the whole mouth. Both SNPs were associated with modest shifts in perceived intensities across all taste qualities. Three genotype groups were represented for the intronic SNP-minor allele homozygotes (TT) averaged 40% lower intensities than did CC homozygotes for all regionally applied tastants, as well as whole-mouth NaCl and citric acid. Similar, but less pronounced, intensity differences were seen for the exonic SNP (GG homozygotes reported greater intensities than did the AA/AG group). Our predominantly European American cohort had a low frequency of AA homozygotes, which may have attenuated the SNP-related differences in perceived intensity. These preliminary findings, if replicated, could add TAS1R1 polymorphisms to the repertoire of genotypic and phenotypic markers of heightened taste sensation.
Do Polymorphisms in the TAS1R1 Gene Contribute to Broader Differences in Human Taste Intensity?
2013-01-01
The TAS1R genes encode heterodimeric receptors that mediate umami (hTAS1R1 + hTAS1R3) and sweet (hTAS1R2 + hTAS1R3) sensations. The question of interest for this study is if TAS1R1 variation associates with differences in overall taste intensity. We leveraged an existing database of adults (n = 92, primarily European American) to test associations between 2 TAS1R1 single nucleotide polymorphisms (SNPs) (intronic rs17492553, C/T and exonic rs34160967, G/A) and intensity of 4 prototypical tastants (NaCl, sucrose, citric acid, and quinine), applied regionally to fungiform and circumvallate loci, and sampled with the whole mouth. Both SNPs were associated with modest shifts in perceived intensities across all taste qualities. Three genotype groups were represented for the intronic SNP—minor allele homozygotes (TT) averaged 40% lower intensities than did CC homozygotes for all regionally applied tastants, as well as whole-mouth NaCl and citric acid. Similar, but less pronounced, intensity differences were seen for the exonic SNP (GG homozygotes reported greater intensities than did the AA/AG group). Our predominantly European American cohort had a low frequency of AA homozygotes, which may have attenuated the SNP-related differences in perceived intensity. These preliminary findings, if replicated, could add TAS1R1 polymorphisms to the repertoire of genotypic and phenotypic markers of heightened taste sensation. PMID:24000232
Miao, Yong-Wang; Ha, Fu; Gao, Hua-Shan; Yuan, Feng; Li, Da-Lin; Yuan, Yue-Yun
2012-08-01
To elucidate the genetic characteristics of the bovine Inhibin α subunit (INHA) gene, the polymorphisms in exon 1 of INHA and its bilateral sequences were assayed using PCR with direct sequencing in buffalo, gayal and yak. A comparative analysis was conducted by pooled the results in this study with the published data of INHA on some mammals including some bovine species together. A synonymous substitution c.73C>A was identified in exon 1 of INHA for buffalo, which results in identical encoding product in river and swamp buffalo. In gayal, two non-synonymous but same property substitutions in exon 1 of INHA, viz. c.62 C>T and c.187 G>A, were detected, which lead to p. P21L, p. V63M changes in INHA, respectively. In yak, nucleotide substitution c.62C> T, c.129A>G were found in exon 1 of INHA, the former still causes p. P21L substitution and the latter is synonymous. For the sequence of the 5'-flanking region of INHA examined, no SNPs were found within the species, but a substitution, c. -6T>G, was found. The nucleotide in this site in gayal, yak and cattle was c. -6G, whereas in buffalo it was c. -6T. Meanwhile, a 6-bp deletion, namely c. 262+31_262+36delTCTGAC, was found in the intron of buffalo INHA gene. For this deletion, wild types (+/+) account for main part in river buffalo while mutant types (-/-) are predominant in swamp buffalo. This deletion was not found in gayal, yak and cattle, though these all have another deletion in the intron of INHA, c. 262+78_262+79delTG. The results of sequence alignment showed that the substitutions c. 43A and c. 67G in exon 1 of INHA are specific to buffalo, whereas the substitutions c. 173A and c. 255G are exclusive to gayal, yak and cattle, and c. 24C, c. 47G, c. 174T and c. 206T are specific to goat. Furthermore, there are few differences among gayal, yak and cattle, but there relatively great differences between buffalo, goat and other bovine species regarding the sequences of INHA exon 1.
Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.
Robertson, Hugh M; Warr, Coral G; Carlson, John R
2003-11-25
The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods.
Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster
Robertson, Hugh M.; Warr, Coral G.; Carlson, John R.
2003-01-01
The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods. PMID:14608037
Correlation between metabolic enzyme GSTP1 polymorphisms and susceptibility to lung cancer
WANG, YUFEI; REN, BU; ZHANG, LEI; GUO, ZHANLIN
2015-01-01
The aim of the present study was to determine the frequency distribution and characteristics of polymorphic alleles and genotypes in glutathione S-transferase π 1 (GSTP1) exon 5, and to explore the correlation between GSTP1 exon 5 polymorphisms and susceptibility to lung cancer using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Patients were diagnosed with lung cancer from May 2006 to October 2008 by postoperative pathological examination. A total of 150 patients, including 115 males and 35 females, aged 31–76 years (mean, 57.1 years) were enrolled. The control group consisted of 152 healthy volunteers who received physical examination at outpatient clinics. Genomic DNA was extracted from the peripheral venous blood of the 302 subjects, and the GSTP1 genotype was determined by PCR-RFLP and restricted enzyme digestion of PCR products. GSTP1 polymorphisms were analyzed in the 302 subjects. The C and G allele frequencies of GSTP1 in the control and lung cancer groups showed no significant difference (P=0.135); the frequencies of three different genotypes, A/A, A/G and G/G, of GSTP1 in the control and lung cancer groups exhibited no significant differences between the two groups (P=0.223). GSTP1 genotype frequencies in the study population fitted the Hardy-Weinberg equilibrium, demonstrating that the genotype results of this study conform to this genetic law. Overall, 50.7% of the subjects in the lung cancer group carried the non-A/A genotype of GSTP1, which was higher than the 43.4% of the control group. The risk of lung cancer in subjects with the non-A/A genotype was 1.43-fold higher than that in those with the A/A genotype, but no statistical significance was found (P=0.138). GSTP1 exon 5 polymorphisms were demonstrated to be associated with lung cancer susceptibility on the whole. However, stratified analysis suggested the correlation of GSTP1 exon 5 polymorphisms with lung squamous cell carcinoma risk, and that exon 5 polymorphisms might increase the risk of lung squamous cell carcinoma. Exon 5 GSTP1 polymorphisms were not found to be a strong influencing factor in lung cancer risk, but may play a certain role. PMID:26622518
El-Halawany, Nermin; Abd-El-Monsif, Shawky A; Al-Tohamy Ahmed, F M; Hegazy, Lamees; Abdel-Shafy, Hamdy; Abdel-Latif, Magdy A; Ghazi, Yasser A; Neuhoff, Christiane; Salilew-Wondim, Dessie; Schellander, Karl
2017-03-01
Mastitis is an infectious disease of the mammary gland that leads to reduced milk production and change in milk composition. Complement component C3 plays a major role as a central molecule of the complement cascade involving in killing of microorganisms, either directly or in cooperation with phagocytic cells. C3 cDNA were isolated, from Egyptian buffalo and cattle, sequenced and characterized. The C3 cDNA sequences of buffalo and cattle consist of 5025 and 5019 bp, respectively. Buffalo and cattle C3 cDNAs share 99% of sequence identity with each other. The 4986 bp open reading frame in buffalo encodes a putative protein of 1661 amino acids-as in cattle-and includes all the functional domains. Further, analysis of the C3 cDNA sequences detected six novel single-nucleotide polymorphisms (SNPs) in buffalo and three novel SNPs in cattle. The association analysis of the detected SNPs with milk somatic cell score as an indicator of mastitis revealed that the most significant association in buffalo was found in the C>A substitution (ss: 1752816097) in exon 27, whereas in cattle it was in the C>T substitution (ss: 1752816085) in exon 12. Our findings provide preliminary information about the contribution of C3 polymorphisms to mastitis resistance in buffalo and cattle.
Ruggeri, Rosaria Maddalena; Campennì, Alfredo; Giovinazzo, Salvatore; Saraceno, Giovanna; Vicchio, Teresa Manuela; Carlotta, Dario; Cucinotta, Maria Paola; Micali, Carmelo; Trimarchi, Francesco; Tuccari, Giovanni; Baldari, Sergio; Benvenga, Salvatore
2013-02-01
Autonomously functioning, "hot", thyroid nodules are not common in children and adolescents. Such nodules are not considered alarming because they are assumed to be benign adenomas. Herein, we present a 15-year-old girl with a papillary thyroid carcinoma of 3.5 cm in diameter, which was functionally autonomous and scintigraphically hot. The patient, initially referred to our Endocrine Unit because of a thyroid nodule, returned 6 months later for symptoms of hyperthyroidism. Hyperthyroidism was confirmed biochemically. Radioactive iodine ((131)I) thyroid scintigraphy was consistent with an autonomous thyroid nodule. As per guidelines, the patient underwent surgery and a pathological examination revealed papillary carcinoma, follicular variant. The excised nodule was examined for activating mutations of the thyrotropin receptor (TSHR), Gsα (GNAS1), H-RAS, N-RAS, K-RAS, and BRAF genes by direct sequencing. No mutations were found. Nevertheless, two combined nonfunctioning mutations were detected: a single-nucleotide polymorphism (SNP) of the TSHR gene, in exon 7, at codon 187 (AAT→AAC, both encoding asparagine), and a SNP within exon 8 of the Gsα gene at codon 185 (ATC→ATT, both encoding isoleucine). Both SNPs were also identified in the germline DNA of the patient. The same SNPs were sought in the parents and brother of our patient. Her father was heterozygous for the TSHR SNP, her mother heterozygous for the Gsα SNP, and her brother was wild type. This case demonstrates that the presence of hyperfunctioning thyroid nodule(s) does not rule out cancer and warrants careful evaluation, especially in childhood and adolescence to overlook malignancy.
Hu, Dong Gui; McKinnon, Ross A; Hulin, Julie-Ann; Mackenzie, Peter I; Meech, Robyn
2016-12-27
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2-8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer ( PCGEM1 , PEG3 , EPHA3 , and EFNB2 ) or other types of human cancers ( TOX3 , ST8SIA4 , and SLITRK3 ), and genes that are diagnostic/prognostic biomarkers of prostate cancer ( GRINA3 , and BCHE ).
Interleukin-1beta gene polymorphisms in Taiwanese patients with gout.
Chen, Man-Ling; Huang, Chung-Ming; Tsai, Chang-Hai; Tsai, Fuu-Jen
2005-04-01
The purpose of this study was to examine whether interleukin-1 beta (IL-1beta) promoter and exon 5 gene polymorphisms are markers of susceptibility or clinical manifestations in Taiwanese patients with gout. The study included 196 patients in addition to 103 unrelated healthy control subjects living in central Taiwan. From genomic DNA, polymorphisms of the gene for IL-1beta promoter and IL-1beta exon 5 were typed. Allelic frequencies were compared between the two groups, and the relationship between allelic frequencies and clinical manifestations of gout was evaluated. No significant differences were observed in the allelic frequencies of the IL-1beta promoter between patients with gout and healthy control subjects. Additionally, we did not detect any association of the IL-1beta promoter genotype with the clinical and laboratory profiles of gout patients. However, there was a significant difference between the two groups in terms of hypertriglyceridemia (P=0.0004, chi(2)=12.52, OR 7.14, 95%CI 0.012-0.22). There was also a significant difference in the genotype of IL-1beta exon 5 polymorphism between patients with and without hypertriglyceridemia. Results of the present study suggest that polymorphisms of the IL-1beta promoter and IL-1beta exon 5 are not related to gout patients in central Taiwan.
Ko, Jung Min; Park, Jung Young; Yoo, Han-Wook
2009-01-01
A human GH receptor (GHR) gene exon 3 polymorphism (d3-GHR) has been reported to be associated with responsiveness to GH therapy. We assessed the frequencies of this polymorphism in Korean control and idiopathic short stature (ISS) populations, and analysed short-term growth response to GH therapy according to GHR-exon 3 genotypes in Korean children with ISS. This was a retrospective study in 158 ISS children. Auxological and endocrine parameters were measured, and the GHR-exon 3 genotype was analysed. Allelic frequencies of GHR-exon 3 genotype were compared between the ISS group and a control group. GH had been administered for 62 patients, 52 of whom remained prepubertal after the first follow-up year. Changes in height velocity (HV) and IGF-1 and IGFBP-3 concentrations following GH therapy were compared in patients with these genotypes. There was no difference in GHR-exon 3 genotype frequency between ISS and control groups of Koreans. However, the fl/fl genotype was more frequent in Koreans than in Caucasians. ISS children with d3-GHR showed a significantly higher increment in HV (P = 0.002) and a marginally significant increment in IGF-1 concentration (P = 0.064) at the first year of GH therapy. fl-GHR was more frequently detected in a Korean population than in Caucasians. The growth promotion efficacy of GH therapy differed significantly between ISS patients with and without the d3-GHR allele. These findings indicate that the GHR-exon 3 polymorphism can affect the growth promoting efficacy of short-term GH therapy in Korean children with ISS.
Association of GABA(B)R1 receptor gene polymorphism with obstructive sleep apnea syndrome.
Bayazit, Yildirim A; Yilmaz, Metin; Kokturk, Oguz; Erdal, M Emin; Ciftci, Tansu; Gokdogan, Tuba; Kemaloglu, Yusuf; Ileri, Fikret
2007-01-01
GABA(B)R (gamma-amino butyric acid B receptor)-mediated neurotransmission has been implicated in the pathophysiology of a variety of neuropsychiatric disorders. GABA(B)R1 gene variants were identified by single-strand conformation analysis. The nucleotide exchanges cause a substitution of alanine to valine in exon 1a1 (Ala20Val), a substitution of glycine to serine in exon 7 (Gly489Ser) and a silent C to G nucleotide exchange encoding the amino acid phenylalanine in exon 11 (Phe658Phe). The significance of GABA(B)R1a gene polymorphism in obstructive sleep apnea syndrome (OSAS) as well as the association of these polymorphisms with the polysomnography findings in OSAS patients are not known. In this study, we aimed to assess the significance of 3 different GABA(B)R1 gene polymorphisms (Ala20Val, Gly489Ser and Phe658Phe) in OSAS. Seventy-five patients (23 female and 52 male) with OSAS and 99 healthy volunteers (51 female, 48 male) were included in the study to assess Ala20Val, Gly489Ser and Phe658Phe polymorphisms of the GABA(B)R1 gene. For the Ala20Val variants, there was no significant difference between the genotypes and allele frequencies of the patients and controls, nor between both genders (p > 0.05). For Phe658Phe polymorphism, there was no significant difference between genotypes and allele frequencies of the patients and controls (p > 0.05). However, the C/C genotype was overrepresented and the T/C genotype was less frequent in male than female patients (p = 0.03). The C/C genotype was overrepresented and the T/C genotype was less frequent in male patients than male controls (p = 0.01). For GABA(B)R1-Gly489Ser polymorphism, all of the patients and controls had G/G genotype. The apnea arousal index scores of the male patients with C/C genotype were significantly higher than in the patients with C/T genotype (p = 0.01). The percent total sleep time in non-REM 1 scores of the male patients with T/T genotype were significantly higher than in the patients with T/C genotype (p = 0.021). The percent total sleep time in non-REM 2 scores of the female patients with C/C genotype were significantly higher than in the patients with C/T genotype (p = 0.006). The Ala20Val polymorphism of the GABA(B)R1 gene may be associated with OSAS, whereas Gly489Ser polymorphism does not seem to be involved in OSAS. The C/C variant of the Phe658Phe polymorphism GABA(B)R1 gene seems associated with the occurrence of OSAS and is also associated with some sleep related parameters (apnea arousal index and percent total sleep time in non-REM) recorded by polysomnography. Copyright (c) 2007 S. Karger AG, Basel.
Schwaiger, F W; Weyers, E; Epplen, C; Brün, J; Ruff, G; Crawford, A; Epplen, J T
1993-09-01
Twenty-one different caprine and 13 ovine MHC-DRB exon 2 sequences were determined including part of the adjacent introns containing simple repetitive (gt)n(ga)m elements. The positions for highly polymorphic DRB amino acids vary slightly among ungulates and other mammals. From man and mouse to ungulates the basic (gt)n(ga)m structure is fixed in evolution for 7 x 10(7) years whereas ample variations exist in the tandem (gt)n and (ga)m dinucleotides and especially their "degenerated" derivatives. Phylogenetic trees for the alpha-helices and beta-pleated sheets of the ungulate DRB sequences suggest different evolutionary histories. In hoofed animals as well as in humans DRB beta-sheet encoding sequences and adjacent intronic repeats can be assembled into virtually identical groups suggesting coevolution of noncoding as well as coding DNA. In contrast alpha-helices and C-terminal parts of the first DRB domain evolve distinctly. In the absence of a defined mechanism causing specific, site-directed mutations, double-recombination or gene-conversion-like events would readily explain this fact. The role of the intronic simple (gt)n(ga)m repeat is discussed with respect to these genetic exchange mechanisms during evolution.
Huang, Hongbin; Peng, Cong; Liu, Yong; Liu, Xu; Chen, Qicong; Huang, Zunnan
2016-01-01
Abstract Background: Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Previous publications have investigated the association of NOS1 and ABCB1 polymorphisms with PD risk. However, those studies have provided some contradictory results. Methods: Literature searches were performed using PubMed, Embase, PDgene, China National Knowledge Infrastructure database, and Google Scholar. Odds ratios (ORs) with 95% confidence intervals (CIs) were applied to evaluate the strength of association. Results: The analysis results indicated that NOS1 exon18 polymorphism was associated with developing PD in 4 genetic models (allelic: OR = 1.25, 95%CI 1.09–1.44, P = 0.001; homozygous: OR = 1.79, 95%CI 1.32–2.45, P < 0.001; recessive: OR = 1.70, 95%CI 1.26–2.28, P < 0.001; dominant: OR = 1.22, 95%CI 1.02–1.46, P = 0.03), whereas exon29 polymorphism was not correlated to PD susceptibility. In addition, ABCB1 1236C/T polymorphism was related to PD in the recessive (OR = 0.80, 95%CI 0.66–0.97, P = 0.025) and overdominant (OR = 1.21, 95%CI 1.03–1.43, P = 0.02) models, which might indicate the opposite effects of 2 minor variants of this locus on Parkinson's disease. However, this associated result was not robust enough to withstand statistically significant correction. On the other hand, no association was found between ABCB1 3435C/T polymorphism and the predisposition to PD in 5 genetic models, and such an absence of relationship was further confirmed by subgroup analysis in Caucasians and Asians. Whether the polymorphisms of these 4 loci were linked to PD or not, our study provided some interesting findings that differ from the previous results with regard to their genetic susceptibility. Conclusion: The NOS1 exon18 and ABCB1 1236C/T variants might play a role in the risk of Parkinson's disease, whereas NOS1 exon29 and ABCB1 3435C/T polymorphisms might not contribute to PD susceptibility. PMID:27749554
Li, Jun; Hakata, Yoshiyuki; Takeda, Eri; Liu, Qingping; Iwatani, Yasumasa; Kozak, Christine A.; Miyazawa, Masaaki
2012-01-01
Mouse apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like editing complex 3 (mA3), an intracellular antiviral factor, has 2 allelic variations that are linked with different susceptibilities to beta- and gammaretrovirus infections among various mouse strains. In virus-resistant C57BL/6 (B6) mice, mA3 transcripts are more abundant than those in susceptible BALB/c mice both in the spleen and bone marrow. These strains of mice also express mA3 transcripts with different splicing patterns: B6 mice preferentially express exon 5-deficient (Δ5) mA3 mRNA, while BALB/c mice produce exon 5-containing full-length mA3 mRNA as the major transcript. Although the protein product of the Δ5 mRNA exerts stronger antiretroviral activities than the full-length protein, how exon 5 affects mA3 antiviral activity, as well as the genetic mechanisms regulating exon 5 inclusion into the mA3 transcripts, remains largely uncharacterized. Here we show that mA3 exon 5 is indeed a functional element that influences protein synthesis at a post-transcriptional level. We further employed in vitro splicing assays using genomic DNA clones to identify two critical polymorphisms affecting the inclusion of exon 5 into mA3 transcripts: the number of TCCT repeats upstream of exon 5 and the single nucleotide polymorphism within exon 5 located 12 bases upstream of the exon 5/intron 5 boundary. Distribution of the above polymorphisms among different Mus species indicates that the inclusion of exon 5 into mA3 mRNA is a relatively recent event in the evolution of mice. The widespread geographic distribution of this exon 5-including genetic variant suggests that in some Mus populations the cost of maintaining an effective but mutagenic enzyme may outweigh its antiviral function. PMID:22275865
Genetic variations of VDR/NR1I1 encoding vitamin D receptor in a Japanese population.
Ukaji, Maho; Saito, Yoshiro; Fukushima-Uesaka, Hiromi; Maekawa, Keiko; Katori, Noriko; Kaniwa, Nahoko; Yoshida, Teruhiko; Nokihara, Hiroshi; Sekine, Ikuo; Kunitoh, Hideo; Ohe, Yuichiro; Yamamoto, Noboru; Tamura, Tomohide; Saijo, Nagahiro; Sawada, Jun-ichi
2007-12-01
The vitamin D receptor (VDR) is a transcriptional factor responsive to 1alpha,25-dihydroxyvitamin D(3) and lithocholic acid, and induces expression of drug metabolizing enzymes CYP3A4, CYP2B6 and CYP2C9. In this study, the promoter regions, 14 exons (including 6 exon 1's) and their flanking introns of VDR were comprehensively screened for genetic variations in 107 Japanese subjects. Sixty-one genetic variations including 25 novel ones were found: 9 in the 5'-flanking region, 2 in the 5'-untranslated region (UTR), 7 in the coding exons (5 synonymous and 2 nonsynonymous variations), 12 in the 3'-UTR, 19 in the introns between the exon 1's, and 12 in introns 2 to 8. Of these, one novel nonsynonymous variation, 154A>G (Met52Val), was detected with an allele frequency of 0.005. The single nucleotide polymorphisms (SNPs) that increase VDR expression or activity, -29649G>A, 2T>C and 1592((*)308)C>A tagging linked variations in the 3'-UTR, were detected at 0.430, 0.636, and 0.318 allele frequencies, respectively. Another SNP, -26930A>G, with reduced VDR transcription was found at a 0.028 frequency. These findings would be useful for association studies on VDR variations in Japanese.
[Observation on gene polymorphism of Rh blood group in Chinese Han nationality].
Lan, Jiong-Cai; Wang, Cong-Rong; Wei, Ya-Ming; Zhou, Hua-You; Cao, Qiong; Zhang, Yin-Ze; Jiang, KuReXi; Wu, Da-Lin; Liu, Zhong
2003-12-01
To observe the gene polymorphism of Rh blood group in unrelated random individuals and families for Chinese Han nationality, polymerase chain reaction-sequence specific primer (PCR-SSP) was used to amplify the Rh C/E gene, RhD gene, exons, intron 2 and 10, insert and Rh Box in 160 blood samples of RhD positive unrelated individuals and 71 samples of RhD negative unrelated individuals and 7 samples of families whose probands were RhD-negative. The results showed that RhD genes of RhD-negative individuals with C antigens were polymorphism, three forms were found for D exon including intact, partial deletion and complete deletion exons. Insert fragments and Rh Box were found in most cases of families whose probands were RhD-negative and its inheritance accorded with the Mendel's Law, and it did not affect the expression of RhD gene. "Normal" RhD exon 4 amplifying product was not found in all of the samples. It was concluded that gene structure of the RhD-negative in Chinese was polymorphism, intact, partial deletion and complete deletion exons were found in the individuals with C antigen and probably existed specific D (nf) Ce haplotype. The function of insert was uncertain. The Rh gene sequences of Chinese Han nationality are different from those of Caucasian and the Rh gene library based on Han nationality should be established.
Mukherjee, Srabani; Shaikh, Nuzhat; Khavale, Sushma; Shinde, Gayatri; Meherji, Pervin; Shah, Nalini; Maitra, Anurupa
2009-05-01
Polycystic ovary syndrome (PCOS) is a multigenic disorder, and insulin resistance is one of its hallmark features. Polymorphisms in exon 17 of insulin receptor (INSR) gene are reported to be associated with PCOS. We investigated this association in Indian women and its putative relationship with PCOS associated traits, which has not been explored so far. In this case control study, the polymorphisms were investigated by direct sequencing in 180 women with PCOS and 144 age matched controls. Clinical, anthropometric, biochemical, and hormonal parameters were also estimated. The silent C/T polymorphism at His1058 in exon 17 of INSR was found to be present in our study population. The polymorphic genotype (CT+TT) was significantly associated with PCOS in lean women (chi(2)=8.493, df=1, P=0.004). It showed association with higher fasting insulin levels (P=0.02), homeostasis model assessment of insulin resistance (P=0.005), free androgen index (P=0.03), and lower quantitative insulin sensitivity check index (P=0.004) in lean PCOS women. No other novel or known polymorphism was identified in exon 17 in this cohort. The study shows significant association of C/T polymorphism at His1058 of INSR with PCOS in the lean rather than obese Indian women. Its association with indices of insulin resistance and hyperandrogenemia is also seen in the same group. The findings strengthen the concept that pathogenesis of PCOS is different in lean and obese women.
Alcaide, Miguel; Liu, Mark
2013-01-01
Genes of the Major Histocompatibility Complex (MHC) have become an important marker for the investigation of adaptive genetic variation in vertebrates because of their critical role in pathogen resistance. However, despite significant advances in the last few years the characterization of MHC variation in non-model species still remains a challenging task due to the redundancy and high variation of this gene complex. Here we report the utility of a single pair of primers for the cross-amplification of the third exon of MHC class I genes, which encodes the more polymorphic half of the peptide-binding region (PBR), in oscine passerines (songbirds; Aves: Passeriformes), a group especially challenging for MHC characterization due to the presence of large and complex MHC multigene families. In our survey, although the primers failed to amplify exon 3 from two suboscine passerine birds, they amplified exon 3 of multiple MHC class I genes in all 16 species of oscine songbirds tested, yielding a total of 120 sequences. The 16 songbird species belong to 14 different families, primarily within the Passerida, but also in the Corvida. Using a conservative approach based on the analysis of cloned amplicons (n = 16) from each species, we found between 3 and 10 MHC sequences per individual. Each allele repertoire was highly divergent, with the overall number of polymorphic sites per species ranging from 33 to 108 (out of 264 sites) and the average number of nucleotide differences between alleles ranging from 14.67 to 43.67. Our survey in songbirds allowed us to compare macroevolutionary dynamics of exon 3 between songbirds and non-passerine birds. We found compelling evidence of positive selection acting specifically upon peptide-binding codons across birds, and we estimate the strength of diversifying selection in songbirds to be about twice that in non-passerines. Analysis using comparative methods suggest weaker evidence for a higher GC content in the 3rd codon position of exon 3 in non-passerine birds, a pattern that contrasts with among-clade GC patterns found in other avian studies and may suggests different mutational mechanisms. Our primers represent a useful tool for the characterization of functional and evolutionarily relevant MHC variation across the hyperdiverse songbirds. PMID:23781408
Cosenza, Gianfranco; Macciotta, Nicolò P P; Nudda, Anna; Coletta, Angelo; Ramunno, Luigi; Pauciullo, Alfredo
2017-05-01
The oxytocin receptor, also known as OXTR, is a protein which functions as receptor for the hormone and neurotransmitter oxytocin and the complex oxytocin-oxytocin receptor plays an important role in the uterus during calving. A characterisation of the river buffalo OXTR gene, amino acid sequences and phylogenetic analysis is presented. The DNA regions of the OXTR gene spanning exons 1, 2 and 3 of ten Mediterranean river buffalo DNA samples were analysed and 7 single nucleotide polymorphisms were found. We focused on the g.129C > T SNP detected in exon 3 and responsible for the amino acid replacement CGCArg > TGCCys in position 353. The relative frequency of T allele was of 0·257. An association study between this detected polymorphism and milk fatty acids composition in Italian Mediterranean river buffalo was carried out. The fatty acid composition traits, fatty acid classes and fat percentage of 306 individual milk samples were determined. Associations between OXTR g.129C > T genotype and milk fatty acids composition were tested using a mixed linear model. The OXTR CC genotype was found significantly associated with higher contents of odd branched-chain fatty acids (OBCFA) (P < 0·0006), polyunsaturated FA (PUFA n 3 and n 6) (P < 0·0032 and P < 0·0006, respectively), stearic acid (C18) (P < 0·02) and lower level of palmitic acid (C16) (P < 0·02). The results of this study suggest that the OXTR CC animals might be useful in selection toward the improvement of milk fatty acid composition.
Zhou, Wei; Yuan, Weiming; Huang, Longguang; Wang, Ping; Rong, Xiao; Tang, Juan
2015-07-01
The aim of the present study was to investigate the association of neonatal necrotizing enterocolitis (NEC) with myeloid differentiation-(MD-2) and GM2 activator protein (GM2A) genetic polymorphisms. Gene resequencing of the MD-2 and GM2A gene exons was performed on 42 neonates, diagnosed with NEC (NEC group), as well as in the rs11465996 locus, located in the MD-2 gene promoter region. The aim was to detect the genetic polymorphisms present in the neonates with NEC and compare the functional polymorphic loci with 83 neonates without NEC (control group), who had been born during the same period. A polymorphic locus with abnormal frequency was detected in the exon region of the MD-2 gene. In the NEC group, the frequency of genotypes carrying the low frequency allele (G) in the rs11465996 locus (MD-2 promoter region) was significantly higher compared with the control group (χ(2)=4.388, P=0.036). Furthermore, the frequencies of genotypes carrying the low frequency A and C alleles in the rs1048719 (GM2A gene exon 1) and rs2075783 loci (GM2A intron), respectively, were significantly higher in the NEC group compared with the control group (χ(2)=4.316, P=0.038; and χ(2)=13.717, P=0.000, respectively). In addition, the rs11465996 polymorphism in the MD-2 gene promoter region was found to be associated with the severity of NEC. Furthermore, the rs2075783 polymorphism in the GM2A gene exon 1 and the rs1048719 polymorphism in the intron region of this gene, were associated with the occurrence of NEC. The present study demonstrated that gene polymorphisms of MD-2 and GM2A were associated with the occurrence or severity of NEC; however, further in-depth exploration is required to clarify the associations between genetic predispositions to polymorphisms, and NEC.
Isolation and characterization of major histocompatibility complex class II B genes in cranes.
Kohyama, Tetsuo I; Akiyama, Takuya; Nishida, Chizuko; Takami, Kazutoshi; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi
2015-11-01
In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.
Pauciullo, Alfredo; Erhardt, Georg
2015-01-01
In the present paper, we report for the first time the characterization of llama (Lama glama) caseins at transcriptomic and genetic level. A total of 288 casein clones transcripts were analysed from two lactating llamas. The most represented mRNA populations were those correctly assembled (85.07%) and they encoded for mature proteins of 215, 217, 187 and 162 amino acids respectively for the CSN1S1, CSN2, CSN1S2 and CSN3 genes. The exonic subdivision evidenced a structure made of 21, 9, 17 and 6 exons for the αs1-, β-, αs2- and κ-casein genes respectively. Exon skipping and duplication events were evidenced. Two variants A and B were identified in the αs1-casein gene as result of the alternative out-splicing of the exon 18. An additional exon coding for a novel esapeptide was found to be cryptic in the κ-casein gene, whereas one extra exon was found in the αs2-casein gene by the comparison with the Camelus dromedaries sequence. A total of 28 putative phosphorylated motifs highlighted a complex heterogeneity and a potential variable degree of post-translational modifications. Ninety-six polymorphic sites were found through the comparison of the lama casein cDNAs with the homologous camel sequences, whereas the first description and characterization of the 5’- and 3’-regulatory regions allowed to identify the main putative consensus sequences involved in the casein genes expression, thus opening the way to new investigations -so far- never achieved in this species. PMID:25923814
Pauciullo, Alfredo; Erhardt, Georg
2015-01-01
In the present paper, we report for the first time the characterization of llama (Lama glama) caseins at transcriptomic and genetic level. A total of 288 casein clones transcripts were analysed from two lactating llamas. The most represented mRNA populations were those correctly assembled (85.07%) and they encoded for mature proteins of 215, 217, 187 and 162 amino acids respectively for the CSN1S1, CSN2, CSN1S2 and CSN3 genes. The exonic subdivision evidenced a structure made of 21, 9, 17 and 6 exons for the αs1-, β-, αs2- and κ-casein genes respectively. Exon skipping and duplication events were evidenced. Two variants A and B were identified in the αs1-casein gene as result of the alternative out-splicing of the exon 18. An additional exon coding for a novel esapeptide was found to be cryptic in the κ-casein gene, whereas one extra exon was found in the αs2-casein gene by the comparison with the Camelus dromedaries sequence. A total of 28 putative phosphorylated motifs highlighted a complex heterogeneity and a potential variable degree of post-translational modifications. Ninety-six polymorphic sites were found through the comparison of the lama casein cDNAs with the homologous camel sequences, whereas the first description and characterization of the 5'- and 3'-regulatory regions allowed to identify the main putative consensus sequences involved in the casein genes expression, thus opening the way to new investigations -so far- never achieved in this species.
Hautala, Arto J; Leon, Arthur S; Skinner, James S; Rao, D C; Bouchard, Claude; Rankinen, Tuomo
2007-05-01
We tested the hypothesis that peroxisome proliferator-activated receptor-delta (PPARdelta) gene polymorphisms are associated with cardiorespiratory fitness and plasma lipid responses to endurance training. Associations between the PPARdelta exon 4 +15 C/T and exon 7 +65 A/G polymorphisms and maximal exercise capacity and plasma lipid responses to 20 wk of endurance training were investigated in healthy white (n = 477) and black (n = 264) subjects. In black subjects, the exon 4 +15 C/C homozygotes showed a smaller training-induced increase in maximal oxygen consumption (P = 0.028) than the C/T and T/T genotypes. Similarly, a lower training response in maximal power output was observed in the exon 4 +15 C/C homozygotes (P = 0.005) compared with the heterozygotes and the T/T homozygotes in black subjects, and a similar trend was evident in white subjects (P = 0.087). In white subjects, baseline apolipoprotein A-1 (Apo A-1)levels were higher in the exon 4 +15 C/C (P = 0.011) and exon 7 +65 G/G (P = 0.05) genotypes compared with those in the other genotypes. In white subjects, exon 4 +15 C/C (P = 0.0025) and exon 7 +65 G/G (P = 0.011) genotypes showed significantly greater increases in plasma high-density lipoprotein-cholesterol (HDL-C) levels with endurance training than in the other genotypes, whereas in black subjects the exon 4 +15 CC homozygotes tended to increase (P = 0.057) their Apo A-1 levels more than the T allele carriers. DNA sequence variation in the PPARdelta locus is a potential modifier of changes in cardiorespiratory fitness and plasma HDL-C in healthy individuals in response to regular exercise.
Pirulli, D; Giordano, M; Lessi, M; Spanò, A; Puzzer, D; Zezlina, S; Boniotto, M; Crovella, S; Florian, F; Marangella, M; Momigliano-Richiardi, P; Savoldi, S; Amoroso, A
2001-06-01
Primary hyperoxaluria type 1 is an autosomal recessive disorder of glyoxylate metabolism, caused by a deficiency of alanine:glyoxylate aminotransferase, which is encoded by a single copy gene (AGXT. The aim of this research was to standardize denaturing high-performance liquid chromatography, a new, sensitive, relatively inexpensive, and automated technique, for the detection of AGXT mutation. Denaturing high-performance liquid chromatography was used to analyze in blind the AGXT gene in 20 unrelated Italian patients with primary hyperoxaluria type I previously studied by other standard methods (single-strand conformation polymorphism analysis and direct sequencing) and 50 controls. Denaturing high-performance liquid chromatography allowed us to identify 13 mutations and the polymorphism at position 154 in exon I of the AGXT gene. Hence the method is more sensitive and less time consuming than single-strand conformation polymorphism analysis for the detection of AGXT mutations, thus representing a useful and reliable tool for detecting the mutations responsible for primary hyperoxaluria type 1. The new technology could also be helpful in the search for healthy carriers of AGXT mutations amongst family members and their partners, and for screening of AGXT polymorphisms in patients with nephrolithiasis and healthy populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mebarki, F.; Forest, M.G.; Josso, N.
The androgen insensivity syndrome (AIS) is a recessive X-linked disorder resulting from a deficient function of the androgen receptor (AR). The human AR gene has 3 functional domains: N-terminal encoded by exon 1, DNA-binding domain encoded by exons 2 and 3, and androgen-binding domain encoded by exons 4 to 8. In order to characterize the molecular defects of the AR gene in AIS, the entire coding regions and the intronic bording sequences of the AR gene were amplified by PCR before automatic direct sequencing in 45 patients. Twenty seven different point mutations were found in 32 unrelated AIS patients: 18more » with a complete form (CAIS), 14 with a partial form (PAIS); 18 of these mutations are novel mutations, not published to date. Only 3 mutations were repeatedly found: R804H in 3 families; M780I in 3 families and R774C in 2 families. For 26 patients out of the 32 found to have a mutation, maternal DNA was collected and sequenced: 6 de novo mutations were detected (i.e. 23% of the cases). Finally, no mutation was detected in 13 patients (29%): 7 with CAIS and 6 familial severe PAIS. The latter all presented with perineal hypospadias, micropenis, 4 out of 6 being raised as girl. Diagnosis of AIS in these 13 families in whom no mutation was detected is supported by the following criteria: clinical data, familial history (2 or 3 index cases in the same family), familial segregation of the polymorphic CAG repeat of the AR gene. Mutations in intronic regions or the promoter of the AR gene could not explain all cases of AIS without mutations in the AR coding regions, because AR binding (performed in 9 out of 13) was normal in 6, suggesting the synthesis of an AR protein. This situation led us to speculate that another X-linked factor associated with the AR could be implicated in some cases of AIS.« less
Su, Pen-Hua; Yu, Ju-Shan; Chen, Jia-Yuh; Chen, Suh-Jen; Li, Shuan-Yow; Chen, Hsiao-Neng
2007-10-01
Oculo-auriculo-vertebral spectrum, the exact genetic predisposition of which has not yet been resolved, is characterized by varying degrees of the prevalently unilateral underdevelopment of craniofacial structures and spinal anomalies. Here, we analyzed four cases exhibiting multiple features of oculo-auriculo-vertebral spectrum and one case with Treacher-Collins syndrome. The cranium was analyzed using three-dimensional computed tomography, which reliably identifies craniofacial malformations. We detected one typical oculo-auriculo-vertebral spectrum patient who had a missense mutation in exon 9 of the TCOF1 gene complex and two silent mutations in exons 10 and 23, three partial oculo-auriculo-vertebral spectrum patients who had no detectable mutations in the TCOF1 gene complex, and one Treacher-Collins syndrome patient who had a nonsense mutation in exon 14. All five patients had eight previously reported polymorphic changes in the TCOF1 exons 10, 11, 12, 16, 21, 22, and 23, and four unreported polymorphisms in exons 9, 17, and 22 that were also detected in 51 Taiwanese control patients. These observations strongly suggest that the TCOF1 genetic changes observed in these five patients might be related to oculo-auriculo-vertebral spectrum symptoms.
Genetic Polymorphisms of TLR4 and MICA are Associated with Severity of Trachoma Disease in Tanzania
Abbas, Muneer; Berka, Noureddine; Khraiwesh, Mozna; Ramadan, Ali; Apprey, Victor; Furbert-Harris, Paulette; Quinn, Thomas; Brim, Hassan; Dunston, Georgia
2016-01-01
Aim To examine the association of TLR4 Asp299Gly and MICA exon 5 microsatellites polymorphisms with severity of trachoma in a sub-Saharan East Africa population of Tanzanian villagers. Methods The samples were genotyped for MICA exon 5 microsatellites and the TLR4 299 A/G polymorphism by Restriction Fragment Length Polymorphism (RFLP), and GeneScan®, respectively. The association of TLR4 Asp299Gly and MICA exon 5 microsatellites with inflammatory trachoma (TI) and trichiasis (TI) were examined. Results The results showed an association between TLR4 and MICA polymorphisms and trachoma disease severity, as well as with protection. TLR4 an allele was significantly associated with inflammatory trachoma (p=0.0410), while the G allele (p=0.0410) was associated with protection. Conclusion TLR4 and MICA may modulate the risk of severity to trachoma disease by modulating the immune response to Ct. In addition; the increased frequency of MICA-A9 heterozygote in controls may suggest a positive selection of these alleles in adaptation to environments where Ct is endemic. PMID:27559544
CBS mutations and MTFHR SNPs causative of hyperhomocysteinemia in Pakistani children.
Ibrahim, Shahnaz; Maqbool, Saadia; Azam, Maleeha; Iqbal, Mohammad Perwaiz; Qamar, Raheel
2018-03-29
Three index patients with hyperhomocysteinemia and ocular anomalies were screened for cystathionine beta synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Genotyping of hyperhomocysteinemia associated MTHFR polymorphisms C677T (rs1801133) and A1298C (rs1801131) was done by PCR-restriction fragment length polymorphism. Sanger sequencing was performed for CBS exonic sequences along with consensus splice sites. In the case of MTHFR polymorphisms, all the patients were heterozygous CT for the single nucleotide polymorphism (SNP) C677T and were therefore carriers of the risk allele (T), while the patients were homozygous CC for the risk genotype of the SNP A1298C. CBS sequencing resulted in the identification of two novel mutations, a missense change (c.467T>C; p.Leu156Pro) in exon 7 and an in-frame deletion (c.808_810del; p.Glu270del) in exon 10. In addition, a recurrent missense mutation (c.770C>T; p.Thr257Met) in exon 10 of the gene was also identified. The mutations were present homozygously in the patients and were inherited from the carrier parents. This is the first report from Pakistan where novel as well as recurrent CBS mutations causing hyperhomocysteinemia and lens dislocation in three patients from different families are being reported with the predicted effect of the risk allele of the MTHFR SNP in causing hyperhomocysteinemia.
Hu, Dong Gui; McKinnon, Ross A.; Hulin, Julie-Ann; Mackenzie, Peter I.; Meech, Robyn
2016-01-01
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2–8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer (PCGEM1, PEG3, EPHA3, and EFNB2) or other types of human cancers (TOX3, ST8SIA4, and SLITRK3), and genes that are diagnostic/prognostic biomarkers of prostate cancer (GRINA3, and BCHE). PMID:28035996
Abdoli, R; Zamani, P; Deljou, A; Rezvan, H
2013-07-25
BMPR-1B and GDF9 genes are well known due to their important effects on litter size and mechanisms controlling ovulation rate in sheep. In the present study, polymorphisms of BMPR-1B gene exon 8 and GDF9 gene exon 1 were detected by single strand conformational polymorphism (SSCP) analysis and DNA sequencing methods in 100 Mehraban ewes. The PCR reaction forced to amplify 140 and 380-bp fragments of BMPR-1B and GDF9 genes, respectively. Two single nucleotide polymorphisms (SNPS) were identified in two different SSCP patterns of BMPR-1B gene (CC and CA genotypes) that deduced one amino acid exchange. Also, two SNPS were identified in three different SSCP patterns of GDF9 gene (AA, AG and GG genotypes) that deduced one amino acid exchanges. Two different secondary structures of protein were predicted for BMPR-1B exon 8, but the secondary protein structures predicted for GDF9 exon 1 were similar together. The evaluation of the associations between the SSCP patterns and the protein structure changes with reproduction traits showed that BMPR-1B exon 8 genotypes have significant effects on some of reproduction traits but the GDF9 genotypes did not have any significant effect. The CA genotype of BMPR-1B exon 8 had a significant positive effect on reproduction performance and could be considered as an important and new mutation, affecting the ewes reproduction performance. Marker assisted selection using BMPR-IB gene could be noticed to improve the reproduction traits in Mehraban sheep. Copyright © 2013 Elsevier B.V. All rights reserved.
Tan, Wei; Dean, Michael; Law, Amanda J.
2010-01-01
ErbB4 is a growth factor receptor tyrosine kinase essential for neurodevelopment. Genetic variation in ErbB4 is associated with schizophrenia and risk-associated polymorphisms predict overexpression of ErbB4 CYT-1 isoforms in the brain in the disorder. The molecular mechanism of association is unclear because the polymorphisms flank exon 3 of the gene and reside 700 kb distal to the CYT-1 defining exon. We hypothesized that the polymorphisms are indirectly associated with ErbB4 CYT-1 via splicing of exon 3 on the CYT-1 background. We report via cloning and sequencing of adult and fetal human brain cDNA libraries the identification of novel splice isoforms of ErbB4, whereby exon 3 is skipped (del.3). ErbB4 del.3 transcripts exist as CYT-2 isoforms and are predicted to produce truncated proteins. Furthermore, our data refine the structure of the human ErbB4 gene, clarify that juxtamembrane (JM) splice variants of ErbB4, JM-a and JM-b respectively, are characterized by the replacement of a 75 nucleotide (nt) sequence with a 45-nt insertion, and demonstrate that there are four alternative exons in the gene. Our analyses reveal that novel splice variants of ErbB4 exist in the developing and adult human brain and, given the failure to identify ErbB4 del.3 CYT-1 transcripts, suggest that the association of risk polymorphisms in the ErbB4 gene with CYT-1 transcript levels is not mediated via an exon 3 splicing event. PMID:20886074
Veenstra, Jan A; Khammassi, Hela
2017-04-01
RYamides are arthropod neuropeptides with unknown function. In 2011 two RYamides were isolated from D. melanogaster as the ligands for the G-protein coupled receptor CG5811. The D. melanogaster gene encoding these neuropeptides is highly unusual, as there are four RYamide encoding exons in the current genome assembly, but an exon encoding a signal peptide is absent. Comparing the D. melanogaster gene structure with those from other species, including D. virilis, suggests that the gene is degenerating. RNAseq data from 1634 short sequence read archives at NCBI containing more than 34 billion spots yielded numerous individual spots that correspond to the RYamide encoding exons, of which a large number include the intron-exon boundary at the start of this exon. Although 72 different sequences have been spliced onto this RYamide encoding exon, none codes for the signal peptide of this gene. Thus, the RNAseq data for this gene reveal only noise and no signal. The very small quantities of peptide recovered during isolation and the absence of credible RNAseq data, indicates that the gene is very little expressed, while the RYamide gene structure in D. melanogaster suggests that it might be evolving into a pseudogene. Yet, the identification of the peptides it encodes clearly shows it is still functional. Using region specific antisera, we could localize numerous neurons and enteroendocrine cells in D. willistoni, D. virilis and D. pseudoobscura, but only two adult abdominal neurons in D. melanogaster. Those two neurons project to and innervate the rectal papillae, suggesting that RYamides may be involved in the regulation of water homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Agouti sequence polymorphisms in coyotes, wolves and dogs suggest hybridization.
Schmutz, Sheila M; Berryere, Thomas G; Barta, Jodi L; Reddick, Kimberley D; Schmutz, Josef K
2007-01-01
Domestic dogs have been shown to have multiple alleles of the Agouti Signal Peptide (ASIP) in exon 4 and we wished to determine the level of polymorphism in the common wild canids of Canada, wolves and coyotes, in comparison. All Canadian coyotes and most wolves have banded hairs. The ASIP coding sequence of the wolf did not vary from the domestic dog but one variant was detected in exon 4 of coyotes that did not alter the arginine at this position. Two other differences were found in the sequence flanking exon 4 of coyotes compared with the 45 dogs and 1 wolf. The coyotes also demonstrated a relatively common polymorphism in the 3' UTR sequence that could be used for population studies. One of the ASIP alleles (R96C) in domestic dogs causes a solid black coat color in homozygotes. Although some wolves are melanistic, this phenotype does not appear to be caused by this same mutation. However, one wolf, potentially a dog-wolf hybrid or descendant thereof, was heterozygous for this allele. Likewise 2 coyotes, potentially dog-coyote or wolf-coyote hybrid descendants, were heterozygous for the several polymorphisms in and flanking exon 4. We could conclude that these were coyote-dog hybrids because both were heterozygous for 2 mutations causing fawn coat color in dogs.
Shevah, Orit; Galli-Tsinopoulou, Assimina; Rubinstein, Menachem; Nousia-Arvanitakis, Sanda; Laron, Zvi
2004-03-01
We describe here a 19 month-old girl with classical Laron syndrome (LS). Molecular analysis of the GH receptor gene in the patient and her parents was performed. The patient was found to be heterozygous for a mutation in exon 4 (R43X) and heterozygous for a polymorphism in exon 6 (Gly168Gly). Her mother was also heterozygous for R43X but homozygous for the polymorphism. In the father, a heterozygous polymorphism was found. Contrary to previous assumptions that only homozygous patients express the typical phenotype, this patient shows all the classical features of LS, despite being a heterozygote for a pathological defect.
Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M
2000-01-01
Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding. PMID:10727405
Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M
2000-04-01
Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding.
Rife, Terrie; Rasoul, Bareza; Pullen, Nicholas; Mitchell, David; Grathwol, Kristen; Kurth, Janice
2009-08-01
Transcriptional changes of the enzyme nitric oxide synthase I (NOS1) are believed to play a role in the development of many diseases. The gene for NOS1 has 12 alternative first exons (1A-1L). The 1F exon is one of the most highly utilized first exons in the brain and has a polymorphism ((TG)(m)TA(TG)(n)) located in its promoter region. The polymorphism's length has been suggested to affect NOS1 transcription and play a role in Parkinson's disease (PD); however, the actual influence of the polymorphism on NOS1 transcription has not been studied. To better characterize the links of the polymorphism with PD, a genotyping study was done comparing polymorphism length among 170 PD patients and 150 age-matched controls. The pattern of changes between the two group's allele frequencies shows statistical significance (P = 0.0359). The smallest polymorphism sizes are more predominant among PD patients than controls. To study the effects of this polymorphism on NOS1 gene transcription, reporter gene constructs were made by cloning the NOS1 1F promoter with polymorphism lengths of either 42, 54, or 62 bp in front of the luciferase gene and transfecting them into HeLa or Sk-N-MC cells. NOS1-directed reporter gene constructs with the 62-bp polymorphism increased transcription of luciferase 2.2-fold in HeLa and 1.8-fold in Sk-N-MC cells compared with reporter gene constructs with the 42-bp polymorphism. These data suggest that if smaller polymorphism size contributes to the higher NOS1 levels in PD patients, an as yet unknown transcriptional mechanism is required. Copyright 2009 Wiley-Liss, Inc.
Li, Chun-Xiao; Jiang, Mei-Shan; Chen, Shi-Yi; Lai, Song-Jia
2008-07-01
Single nucleotide polymorphism (SNP) in exon 1 and 3 of fibroblast growth factor (FGF5) gene was studied by DNA sequencing in Yingjing angora rabbit, Tianfu black rabbit and California rabbit. A frameshift mutation (TCT insert) at base position 217 (site A) of exon 1 and a T/C missense mutation at base position 59 (site B) of exon 3 were found in Yingjing angora rabbit with a high frequency; a T/C same-sense mutation at base position 3 (site C) of exon 3 was found with similar frequency in three rabbit breeds. Least square analysis showed that different genotypes had no significant association with wool yield in site A, and had high significant association with wool yield in site B (P<0.01) and significant association with wool yield in site C (P<0.05). It was concluded from the results that FGF5 gene could be the potential major gene affecting wool yield or link with the major gene, and polymorphic loci B and C may be used as molecular markers for im-proving wool yield in angora rabbits.
Duellman, Tyler; Warren, Christopher; Yang, Jay
2014-01-01
Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221
Ethnicity and Prostate Cancer: Vitamin D Genetic and Sociodemographic Factors
2009-03-01
polymorphisms and two SRD5A2 polymorphisms were genotyped: CDX2 (rs17883968; G/A) in the VDR promoter region and FokI (rs10735810; C/T) in VDR exon 2...and V89L (rs523349) and A49T (rs9282858) in exon 1 of the SRD5A2 gene. DNA for genotyping was extracted from blood samples using a QIAamp blood kit...and CYP3A4 . Hum Hered 2002;54:13^21. 33. John EM, Schwartz GG, Koo J, van den Berg D, Ingles SA. Sun exposure, vitamin D receptor gene polymorphisms
Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.
Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung
2008-01-01
The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.
Vasconcelos, O; Sivakumar, K; Dalakas, M C; Quezado, M; Nagle, J; Leon-Monzon, M; Dubnick, M; Gajdusek, D C; Goldfarb, L G
1995-01-01
Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene. Images Fig. 2 Fig. 4 Fig. 5 PMID:7479776
Meher, J K; Meher, P K; Dash, G N; Raval, M K
2012-01-01
The first step in gene identification problem based on genomic signal processing is to convert character strings into numerical sequences. These numerical sequences are then analysed spectrally or using digital filtering techniques for the period-3 peaks, which are present in exons (coding areas) and absent in introns (non-coding areas). In this paper, we have shown that single-indicator sequences can be generated by encoding schemes based on physico-chemical properties. Two new methods are proposed for generating single-indicator sequences based on hydration energy and dipole moments. The proposed methods produce high peak at exon locations and effectively suppress false exons (intron regions having greater peak than exon regions) resulting in high discriminating factor, sensitivity and specificity.
[Polymorphic loci and polymorphism analysis of short tandem repeats within XNP gene].
Liu, Qi-Ji; Gong, Yao-Qin; Guo, Chen-Hong; Chen, Bing-Xi; Li, Jiang-Xia; Guo, Yi-Shou
2002-01-01
To select polymorphic short tandem repeat markers within X-linked nuclear protein (XNP) gene, genomic clones which contain XNP gene were recognized by homologous analysis with XNP cDNA. By comparing the cDNA with genomic DNA, non-exonic sequences were identified, and short tandem repeats were selected from non-exonic sequences by using BCM search Launcher. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five short tandem repeats were identified from XNP gene, two of which were polymorphic. Four and 11 alleles were observed in Chinese population for XNPSTR1 and XNPSTR4, respectively. Heterozygosities were 47% for XNPSTR1 and 70% for XNPSTR4. XNPSTR1 and XNPSTR4 localized within 3' end and intron 10, respectively. Two polymorphic short tandem repeats have been identified within XNP gene and will be useful for linkage analysis and gene diagnosis of XNP gene.
Polymorphism in exon 6 of the human NT5E gene is associated with aortic valve calcification.
Kochan, Zdzislaw; Karbowska, Joanna; Gogga, Patrycja; Kutryb-Zajac, Barbara; Slominska, Ewa M; Smolenski, Ryszard T
2016-12-01
NT5E encodes ecto-5'-nucleotidase (e5NT, CD73) which hydrolyses extracellular AMP to adenosine. Adenosine has been shown to play a protective role against aortic valve calcification (AVC). We identified two nonsynonymous missense single nucleotide polymorphisms (c.1126A > G, p.T376A and c.1136T > C, p.M379T) in exon 6 of the human NT5E gene. Since both substitutions might affect e5NT activity and consequently alter extracellular adenosine levels, we evaluated the association between NT5E alleles and calcific aortic valve disease in 119 patients (95 patients with AVC and 24 controls). In AVC patients, the frequency of the G allele at c.1126 and the frequency of the GG genotype as well as the frequency of the C allele at c.1136, and the frequencies of CC and TC genotypes tended to be higher as compared to controls. The allele and genotype frequencies in AVC patients and controls were also compared to those calculated from the 1000 Genomes Project data for control individuals of European ancestry (n = 503). We found that the frequency of the C allele at c.1136 is significantly higher in patients with AVC than in the European controls (0.111 vs. 0.054, P = 0.0052). Moreover, e5NT activity in aortic valves showed a trend toward lower levels in AVC patients with CC and TC genotypes than in those with the TT genotype. Our findings indicate that the genetic polymorphism of NT5E may contribute to the pathogenesis of calcific aortic valve disease and that the C allele of SNP c.1136 is associated with an increased risk of AVC.
Dinesh, Krishanender; Verma, Archana; Das Gupta, Ishwar; Thakur, Yash Pal; Verma, Nishant; Arya, Ashwani
2015-04-01
Lactoferrin gene is one of the important candidate genes for mastitis resistance. The gene is located on chromosome BTA 22 and consists of 17 exons spanning over 34.5 kb of genomic DNA. The present study was undertaken with the objectives to identify allelic variants in exons 7 and 12 of lactoferrin gene and to analyze association between its genetic variants and incidence of clinical mastitis in Murrah buffalo. The amplification of exons 7 and 12 of lactoferrin gene yielded amplicons of 232- and 461-bp sizes. PCR-restriction fragment length polymorphism (RFLP) analysis of 232-bp amplicon using BccI restriction enzyme revealed three genotypes (AA, AB, and BB) with frequencies of 0.62, 0.22, and 0.16, respectively. The frequencies of two alleles, A and B, were estimated as 0.73 and 0.27. Hpy188I-RFLP for 461-bp amplicon revealed polymorphism with three genotypes, CC, CD, and DD, with respective frequencies of 0.06, 0.39, and 0.56, whereas frequencies for C and D alleles were 0.25 and 0.75. The chi-square (χ(2)) analysis revealed a significant association between incidence of clinical mastitis and genetic variants of exon 7, and animals of AA genotype of exon 7 were found to be least susceptible to mastitis. The findings indicate potential scope for incorporation of lactoferrin gene in selection and breeding of Murrah buffaloes for improved genetic resistance to mastitis.
Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors
Webster, Joshua D; Kiupel, Matti; Yuzbasiyan-Gurkan, Vilma
2006-01-01
Background Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors. Methods In order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations. Results No mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined. Conclusion In conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs. PMID:16579858
Uezato, Akihito; Yamamoto, Naoki; Jitoku, Daisuke; Haramo, Emiko; Hiraaki, Eri; Iwayama, Yoshimi; Toyota, Tomoko; Umino, Masakazu; Umino, Asami; Iwata, Yasuhide; Suzuki, Katsuaki; Kikuchi, Mitsuru; Hashimoto, Tasuku; Kanahara, Nobuhisa; Kurumaji, Akeo; Yoshikawa, Takeo; Nishikawa, Toru
2017-12-01
The synapse-associated protein 97/discs, large homolog 1 of Drosophila (DLG1) gene encodes synaptic scaffold PDZ proteins interacting with ionotropic glutamate receptors including the N-methyl-D-aspartate type glutamate receptor (NMDAR) that is presumed to be hypoactive in brains of patients with schizophrenia. The DLG1 gene resides in the chromosomal position 3q29, the microdeletion of which confers a 40-fold increase in the risk for schizophrenia. In the present study, we performed genetic association analyses for DLG1 gene using a Japanese cohort with 1808 schizophrenia patients and 2170 controls. We detected an association which remained significant after multiple comparison testing between schizophrenia and the single nucleotide polymorphism (SNP) rs3915512 that is located within the newly identified primate-specific exon (exon 3b) of the DLG1 gene and constitutes the exonic splicing enhancer sequence. When stratified by onset age, although it did not survive multiple comparisons, the association was observed in non-early onset schizophrenia, whose onset-age selectivity is consistent with our recent postmortem study demonstrating a decrease in the expression of the DLG1 variant in early-onset schizophrenia. Although the present study did not demonstrate the previously reported association of the SNP rs9843659 by itself, a meta-analysis revealed a significant association between DLG1 gene and schizophrenia. These findings provide a valuable clue for molecular mechanisms on how genetic variations in the primate-specific exon of the gene in the schizophrenia-associated 3q29 locus affect its regulation in the glutamate system and lead to the disease onset around a specific stage of brain development. © 2017 Wiley Periodicals, Inc.
Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle.
Zhao, Q; Davis, M E; Hines, H C
2004-08-01
The Pit-1 gene was studied as a candidate for genetic markers of growth and carcass traits. Angus beef cattle that were divergently selected for high- or low-blood serum IGF-I concentration were used in this study. The single-strand conformation polymorphism method was used to identify polymorphism in the Pit-1 gene including regions from intron 2 to exon 6. Two polymorphisms, Pit1I3H (HinfI) and Pit1I3NL (NlaIII), were detected in intron 3 of the Pit-1 gene. One polymorphism, Pit1I4N (BstNI), was found in intron 4, and a single nucleotide polymorphism, Pit1I5, was found in intron 5. The previously reported polymorphism in exon 6, Pit1E6H (HinfI), was also studied in 416 Angus beef cattle. Associations of the polymorphisms with growth traits, carcass traits, and IGF-I concentration were analyzed using a general linear model procedure. No significant associations were observed between these polymorphisms and growth and carcass traits.
Robakowska-Hyzorek, Dagmara; Oprzadek, Jolanta; Zelazowska, Beata; Olbromski, Rafał; Zwierzchowski, Lech
2010-06-01
Myogenic factor 5 (Myf5), a product of the Myf5 gene, belongs to the MRF family of basic helix-loop-helix transcription factors that regulate myogenesis. Their roles in muscle growth and development make their genes candidates for molecular markers of meat production in livestock, but nucleotide sequence polymorphism has not been thoroughly studied in MRF genes. We detected four single nucleotide polymorphisms (SNPs) within exon 1 of the Myf5 gene, encoding the NH-terminal transactivation domain of the Myf5 protein. Three of these mutations change the amino acid sequence. The distribution of these SNPs was highly skewed in cattle populations; most of the mutations were found in only a few or even single individuals. Of the nine SNPs found in the promoter region of Myf5, one (transversion g.-723G-->T) was represented by all three genotypes distributed in the cattle populations studied. This polymorphism showed an influence on Myf5 gene expression in the longissimus dorsi muscle and was associated with sirloin weight and fat weight in sirloin in carcasses of Holstein-Friesian cattle.
Complement receptor 1 variants confer protection from severe malaria in Odisha, India.
Panda, Aditya K; Panda, Madhumita; Tripathy, Rina; Pattanaik, Sarit S; Ravindran, Balachandran; Das, Bidyut K
2012-01-01
In Plasmodium falciparum infection, complement receptor-1 (CR1) on erythrocyte's surface and ABO blood group play important roles in formation of rosettes which are presumed to be contributory in the pathogenesis of severe malaria. Although several studies have attempted to determine the association of CR1 polymorphisms with severe malaria, observations remain inconsistent. Therefore, a case control study and meta-analysis was performed to address this issue. Common CR1 polymorphisms (intron 27 and exon 22) and blood group were typed in 353 cases of severe malaria (SM) [97 cerebral malaria (CM), 129 multi-organ dysfunction (MOD), 127 non-cerebral severe malaria (NCSM)], 141 un-complicated malaria and 100 healthy controls from an endemic region of Odisha, India. Relevant publications for meta-analysis were searched from the database. The homozygous polymorphisms of CR1 intron 27 and exon 22 (TT and GG) and alleles (T and G) that are associated with low expression of CR1 on red blood cells, conferred significant protection against CM, MOD and malaria deaths. Combined analysis showed significant association of blood group B/intron 27-AA/exon 22-AA with susceptibility to SM (CM and MOD). Meta-analysis revealed that the CR1 exon 22 low expression polymorphism is significantly associated with protection against severe malaria. The results of the present study demonstrate that common CR1 variants significantly protect against severe malaria in an endemic area.
Vouille, V; Amiche, M; Nicolas, P
1997-09-01
We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drg1g2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drg1g2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drg1g2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.
Absence of PITX3 mutation in a Tunisian family with congenital cataract and mental retardation
Chograni, Manèl; Chaabouni, Myriam; Chelly, Imen; Helayem, Mohamed Bechir
2010-01-01
Purpose The PITX3 (pituitary homeobox 3) gene encodes for a homeobox bicoid-like transcription factor. When one allele is mutated, it leads to dominant cataract and anterior segment mesenchymal dysgenesis in humans. When both copies are mutated, homozygous mutation contributes to microphtalmia with brain malformations. In the current study, a family with autosomal recessive congenital cataract (ARCC) associated with mental retardation (MR) was examined to identify PITX3 mutations. Methods Sequencing of the PITX3 gene was performed on two affected and three unaffected members of the studied Tunisian family. The results were analyzed with Sequencing Analysis 5.2 and SeqScape. Results No mutation in the four exons of PITX3 was revealed. Two substitution polymorphisms, c.439C>T and c.930C>A, were detected in exons 3 and 4, respectively. These alterations did not segregate with the disease. Conclusions Although PITX3 was shown to be essential to normal embryonic eye and brain development in vertebrates, we report the absence of PITX3 mutations in a family presenting congenital cataract and mental retardation. PMID:20376326
Meta- and Pooled Analysis of GSTP1 Polymorphism and Lung Cancer: A HuGE-GSEC Review
Chen, Wei; Smith, Daryn W.; Benhamou, Simone; Bouchardy, Christine; Butkiewicz, Dorota; Fong, Kwun M.; Gené, Manuel; Hirvonen, Ari; Kiyohara, Chikako; Larsen, Jill E.; Lin, Pinpin; Raaschou-Nielsen, Ole; Povey, Andrew C.; Reszka, Edyta; Risch, Angela; Schneider, Joachim; Schwartz, Ann G.; Sorensen, Mette; To-Figueras, Jordi; Tokudome, Shinkan; Pu, Yuepu; Yang, Ping; Wenzlaff, Angela S.; Wikman, Harriet; Taioli, Emanuela
2009-01-01
Lung cancer is the most common cancer worldwide. Polymorphisms in genes associated with carcinogen metabolism may modulate risk of disease. Glutathione S-transferase pi (GSTP1) detoxifies polycyclic aromatic hydrocarbons found in cigarette smoke and is the most highly expressed glutathione S-transferase in lung tissue. A polymorphism in the GSTP1 gene, an A-to-G transition in exon 5 (Ile105Val, 313A → 313G), results in lower activity among individuals who carry the valine allele. The authors present a meta- and a pooled analysis of case-control studies that examined the association between this polymorphism in GSTP1 and lung cancer risk (27 studies, 8,322 cases and 8,844 controls and 15 studies, 4,282 cases and 5,032 controls, respectively). Overall, the meta-analysis found no significant association between lung cancer risk and the GSTP1 exon 5 polymorphism. In the pooled analysis, there was an overall association (odds ratio = 1.11, 95% confidence interval: 1.03, 1.21) between lung cancer and carriage of the GSTP1 Val/Val or Ile/Val genotype compared with those carrying the Ile/Ile genotype. Increased risk varied by histologic type in Asians. There appears to be evidence for interaction between amount of smoking, the GSTP1 exon 5 polymorphism, and risk of lung cancer in whites. PMID:19240225
A more accurate detection of codon 72 polymorphism and LOH of the TP53 gene.
Baccouche, Sami; Mabrouk, Imed; Said, Salem; Mosbah, Ali; Jlidi, Rachid; Gargouri, Ali
2003-01-10
The polymorphism at codon 72 of the TP53 gene has been extensively studied for its involvement in cancerogenesis and loss of heterozygosity (LOH) detection. Usually, the exon 4 of the TP53 gene is amplified by polymerase chain reaction (PCR) on DNA extracted from blood and tumor tissues, then digested by AccII. In the case of heterozygosity, the comparison of AccII profile from blood and tumor DNA PCR products allowed the identification of a potential LOH in the TP53 locus. This method can be hindered by a partial AccII digestion and/or DNA contamination of non-tumor cells. To circumvent these problems, we have developed a new approach by using the AccII restriction site between exon 4 and exon 6. The PCR amplification of exon 4-6, followed by AccII digestion allowed us to detect without ambiguity any LOH case.
Genomic structure and chromosomal mapping of the human CD22 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, G.L.; Kozlow, E.; Kehrl, J.H.
1993-06-01
The human CD22 gene is expressed specifically in B lymphocytes and likely has an important function in cell-cell interactions. A nearly full length human CD22 cDNA clone was used to isolate genomic clones that span the CD22 gene. The CD22 gene is spread over 22 kb of DNA and is composed of 15 exons. The first exon contains the major transcriptional start sites. The translation initiation codon is located in exon 3, which also encodes a portion of the signal peptide. Exons 4 to 10 encode the seven Ig domains of CD22, exon 11 encodes the transmembrane domain, exons 12more » to 15 encode the intracytoplasmic domain of CD22, and exon 15 also contains the 3' untranslated region. A minor form of CD22 mRNA likely results from splicing of exon 5 to exon 8, skipping exons 6 and 7. A 4.6-kb Xbal fragment of the CD22 gene was used to map the chromosomal location of CD22 by fluorescence in situ hybridization. The hybridization locus was identified by combining fluorescent images of the probe with the chromosomal banding pattern generated by an Alu probe. The results demonstrate the CD22 is located within the band region q13.1 of chromosome 19. Two closely clustered major transcription start sites and several minor start sites were mapped by primer extension. Similarly to many other lymphoid-specific genes, the CD22 promoter lacks an obvious TATA box. Approximately 4 kb of DNA 5' of the transcription start sites were sequenced and found to contain multiple Alu elements. Potential binding sites for the transcriptional factors NF-kB, AP-1, and Oct-2 are located within 300 bp 5' of the major transcription start sites. A 400-bp fragment (bp -339 through +71) of the CD22 promoter region was subcloned into a pGEM-chloramphenicol acetyltransferase vector and after transfection into B and T cells was found to be active in both B and T cells. 45 refs., 7 figs., 2 tabs.« less
Computer analysis of protein functional sites projection on exon structure of genes in Metazoa.
Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A
2015-01-01
Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and allow a better understanding of the emergence of biological diversity.
Plasmodium vivax rhomboid-like protease 1 gene diversity in Thailand.
Mataradchakul, Touchchapol; Uthaipibull, Chairat; Nosten, Francois; Vega-Rodriguez, Joel; Jacobs-Lorena, Marcelo; Lek-Uthai, Usa
2017-10-01
Plasmodium vivax infection remains a major public health problem, especially along the Thailand border regions. We examined the genetic diversity of this parasite by analyzing single-nucleotide polymorphisms (SNPs) of the P. vivax rhomboid-like protease 1 gene (Pvrom1) in parasites collected from western (Tak province, Thai-Myanmar border) and eastern (Chanthaburi province, Thai-Cambodia border) regions. Data were collected by a cross-sectional survey, consisting of 47 and 45 P. vivax-infected filter paper-spotted blood samples from the western and eastern regions of Thailand, respectively during September 2013 to May 2014. Extracted DNA was examined for presence of P. vivax using Plasmodium species-specific nested PCR. Pvrom1 gene was PCR amplified, sequenced and the SNP diversity was analyzed using F-STAT, DnaSP, MEGA and LIAN programs. Comparison of sequences of the 92 Pvrom1 831-base open reading frames with that of a reference sequence (GenBank acc. no. XM001615211) revealed 17 samples with a total of 8 polymorphic sites, consisting of singleton (exon 3, nt 645) and parsimony informative (exon 1, nt 22 and 39; exon 3, nt 336, 537 and 656; and exon 4, nt 719 and 748) sites, which resulted in six different deduced Pvrom1 variants. Non-synonymous to synonymous substitutions ratio estimated by the DnaSP program was 1.65 indicating positive selection, but the Z-tests of selection showed no significant deviations from neutrality for Pvrom1 samples from western region of Thailand. In addition McDonald Kreitman test (MK) showed not significant, and Fst values are not different between the two regions and the regions combined. Interestingly, only Pvrom1 exon 2 was the most conserved sequences among the four exons. The relatively high degree of Pvrom1 polymorphism suggests that the protein is important for parasite survival in face of changes in both insect vector and human populations. These polymorphisms could serve as a sensitive marker for studying plasmodial genetic diversity. The significance of Pvrom1 conserved exon 2 sequence remains to be investigated. Copyright © 2017 Mahidol University. Published by Elsevier Inc. All rights reserved.
Abo-Al-Ela, Haitham G; El-Magd, Mohammed Abu; El-Nahas, Abeer F; Mansour, Ali A
2014-08-01
Insulin-like growth factor 2 (IGF2) plays an important role in muscle growth and it might be used as a marker for the growth traits selection strategies in farm animals. The objectives of this study were to detect polymorphisms in exon 10 of IGF2 and to determine associations between these polymorphisms and growth traits in Egyptian water buffalo. PCR-single-strand conformation polymorphism (SSCP) and DNA sequencing methods were used to detect any prospective polymorphism. A novel single nucleotide polymorphism (SNP), C287A, was detected. It was a non-synonymous mutation and led to replacement of glutamine (Q) amino acid (aa) by histidine (H) aa. Three different SSCP patterns were observed: AA, AC, and CC, with frequencies of 0.540, 0.325, and 0.135, respectively. Association analyses revealed that the AA individuals had a higher average daily gain (ADG) than other individuals (CC and AC) from birth to 9 months of age. We conclude that the AA genotype in C287A SNP in the exon 10 of the IGF2 gene is associated with the ADG during the age from birth to 9 months and could be used as a potential genetic marker for selection of growth traits in Egyptian buffalo.
Genetic variations in the MCT1 (SLC16A1) gene in the Chinese population of Singapore.
Lean, Choo Bee; Lee, Edmund Jon Deoon
2009-01-01
MCT1(SLC16A1) is the first member of the monocarboxylate transporter (MCT) and its family is involved in the transportation of metabolically important monocarboxylates such as lactate, pyruvate, acetate and ketone bodies. This study identifies genetic variations in SLC16A1 in the ethnic Chinese group of the Singaporean population (n=95). The promoter, coding region and exon-intron junctions of the SLC16A1 gene encoding the MCT1 transporter were screened for genetic variation in the study population by DNA sequencing. Seven genetic variations of SLC16A1, including 4 novel ones, were found: 2 in the promoter region, 2 in the coding exons (both nonsynonymous variations), 2 in the 3' untranslated region (3'UTR) and 1 in the intron. Of the two mutations detected in the promoter region, the -363-855T>C is a novel mutation. The 1282G>A (Val(428)Ile) is a novel SNP and was found as heterozygotic in 4 subjects. The 1470T>A (Asp(490)Glu) was found to be a common polymorphism in this study. Lastly, IVS3-17A>C in intron 3 and 2258 (755)A>G in 3'UTR are novel mutations found to be common polymorphisms in the local Chinese population. To our knowledge, this is the first report of a comprehensive analysis on the MCT1 gene in any population.
Identification and expression analysis of cDNA encoding insulin-like growth factor 2 in horses
KIKUCHI, Kohta; SASAKI, Keisuke; AKIZAWA, Hiroki; TSUKAHARA, Hayato; BAI, Hanako; TAKAHASHI, Masashi; NAMBO, Yasuo; HATA, Hiroshi; KAWAHARA, Manabu
2017-01-01
Insulin-like growth factor 2 (IGF2) is responsible for a broad range of physiological processes during fetal development and adulthood, but genomic analyses of IGF2 containing the 5ʹ- and 3ʹ-untranslated regions (UTRs) in equines have been limited. In this study, we characterized the IGF2 mRNA containing the UTRs, and determined its expression pattern in the fetal tissues of horses. The complete equine IGF2 mRNA sequence harboring another exon approximately 2.8 kb upstream from the canonical transcription start site was identified as a new transcript variant. As this upstream exon did not contain the start codon, the amino acid sequence was identical to the canonical variant. Analysis of the deduced amino acid sequence revealed that the protein possessed two major domains, IlGF and IGF2_C, and analysis of IGF2 sequence polymorphism in fetal tissues of Hokkaido native horse and Thoroughbreds revealed a single nucleotide polymorphism (T to C transition) at position 398 in Thoroughbreds, which caused an amino acid substitution at position 133 in the IGF2 sequence. Furthermore, the expression pattern of the IGF2 mRNA in the fetal tissues of horses was determined for the first time, and was found to be consistent with those of other species. Taken together, these results suggested that the transcriptional and translational products of the IGF2 gene have conserved functions in the fetal development of mammals, including horses. PMID:29151450
Soda, M; Fujitani, M; Michiuchi, R; Shibayama, A; Kanamori, K; Yoshikuni, S; Ohno, Y; Tsuchiya, T; Suzuki, A; Horie, K; Deguchi, T; Itoh, Y; Kitaichi, K
Individual differences in the pharmacokinetics (PK) of tacrolimus (TAC), an immunosuppressive drug, are reportedly associated with single-nucleotide polymorphisms (SNPs) of cytochrome P450 (CYP) 3A5 and multidrug resistance protein 1 (MDR1). We determined the effect of SNPs in CYP3A5 and MDR1 exons 21 and 26 on TAC PK parameters. Thirty-eight Japanese patients who underwent renal transplantation were genotyped for CYP3A5 and exons 21 and 26 of MDR1 with the use of polymerase chain reaction-restriction fragment length polymorphism analysis. TAC concentrations were determined 3 weeks after renal transplantation and PK parameters calculated. The area under the blood concentration-time curve (AUC) in CYP3A5 expressers was significantly higher than that in CYP3A5 nonexpressers (CYP3A5*3/*3). Patients with the MDR1 exon 21 A allele (G2677A) showed higher dose-adjusted AUC (AUC/D) and lower doses of TAC than those who did not possess that allele. Furthermore, patients with both CYP3A5*3/*3 and MDR1 G2677A showed significantly lower TAC doses and higher dose-adjusted trough levels (C/D) and AUC/D than those without those genotypes. There was no significant association between MDR1 exon 26 polymorphism and the PK of TAC. Patients with both CYP3A5*3/*3 and MDR1 G2677A had higher blood TAC concentrations than those without those genotypes. Japanese patients should be carefully monitored for consideration of lower TAC doses, because 24% of Japanese patients have double mutations. Copyright © 2017 Elsevier Inc. All rights reserved.
Qian, Kun; Zhang, Yi; Zhi, Xiuyi
2017-08-20
The aim of this study is to detect the BIM polymorphism in 85 formalin-fixed and parrffin-embedded (FFPE) and some blood samples of advanced lung adenocarcinoma patients and study the relativity betweenthe BIM polymorphism and tyrosine kinase inhibitor (TKI). The correlation between BIM detection of different types of specimens was discussed. There were 85 patients who were diagnosed as advanced lung adenocarcinoma with epidermal growth factor receptor (EGFR) 19 or 21 exon mutation in thoracic surgery of Xuanwu Hospital from February 2013 to November 2014, all of who were received EGFR-TKI as first-line treatment in the study. FFPE and some blood were used to detect the BIM polymorphism. The objective response rate (ORR) and progression-free survival (PFS) of two groups were compared. According to smoking, sex, EGFR mutation and other factors, the single factor analysis was performed, and the correlation between paraffin samples and blood test BIM was compared. The ORR in BIM polymorphism and non-polymorphism groups was no significant differences (P>0.05). The median PFS in BIM polymorphism and non-polymorphism group was 7.1 months and 12.8 months, respectively (P=0.013). Univariate analysis the median PFS, women were longer than men (12.1 months vs 10.7 months, P=0.835); Non-smokers were longer than smokers (12.1 months vs 9.7 months, P=0.974). Group in EGFR exon 21 is longer than group in EGFR exon 19 (12.2 months vs 8.7 months, P=0.303). Detection of BIM gene polymorphism in lung cancer patients with EGFR-TKIs treatment might be helpful for predicting prognosis. But a large sample study is needed.
Altet, Laura; Francino, Olga; Solano-Gallego, Laia; Renier, Corinne; Sánchez, Armand
2002-01-01
The NRAMP1 gene (Slc11a1) encodes an ion transporter protein involved in the control of intraphagosomal replication of parasites and in macrophage activation. It has been described in mice as the determinant of natural resistance or susceptibility to infection with antigenically unrelated pathogens, including Leishmania. Our aims were to sequence and map the canine Slc11a1 gene and to identify mutations that may be associated with resistance or susceptibility to Leishmania infection. The canine Slc11a1 gene has been mapped to dog chromosome CFA37 and covers 9 kb, including a 700-bp promoter region, 15 exons, and a polymorphic microsatellite in intron 1. It encodes a 547-amino-acid protein that has over 87% identity with the Slc11a1 proteins of different mammalian species. A case-control study with 33 resistant and 84 susceptible dogs showed an association between allele 145 of the microsatellite and susceptible dogs. Sequence variant analysis was performed by direct sequencing of the cDNA and the promoter region of four unrelated beagles experimentally infected with Leishmania infantum to search for possible functional mutations. Two of the dogs were classified as susceptible and the other two were classified as resistant based on their immune responses. Two important mutations were found in susceptible dogs: a G-rich region in the promoter that was common to both animals and a complete deletion of exon 11, which encodes the consensus transport motif of the protein, in the unique susceptible dog that needed an additional and prolonged treatment to avoid continuous relapses. A study with a larger dog population would be required to prove the association of these sequence variants with disease susceptibility. PMID:12010961
Zhang, Genxi; Ding, Fuxiang; Wang, Jinyu; Dai, Guojun; Xie, Kaizhou; Zhang, Lijun; Wang, Wei; Zhou, Shenghua
2011-02-01
In our research, single nucleotide polymorphisms (SNPs) of exon regions of the myostatin gene were detected by PCR-SSCP in the Bian chicken and three reference chicken populations (Jinghai, Youxi, and Arbor Acre). Four novel SNPs (G2283A, C7552T, C7638T, and T7661A) were detected. The findings from the least square means showed that Bian chickens with EE and DE genotypes had significantly higher body weight, at 6-18 weeks of age, than those of the DD genotype (P < 0.05). The results suggest that the mutation G2283A, detected in exon 1, has potential as a genetic marker for body weight traits in the Bian chicken.
Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins.
Ramírez-Sánchez, Obed; Pérez-Rodríguez, Paulino; Delaye, Luis; Tiessen, Axel
2016-12-01
Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa), average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt)]. Streptophyta have on average only ∼5.7 exons of medium size (∼230nt). Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400nt). Among subcellular compartments, membrane proteins are the largest (∼520aa), whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240aa). Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
MSX1 and PAX9 investigation in monozygotic twins with variable expression of tooth agenesis.
Lopez, Sofia I N; Mundstock, Karina S; Paixão-Côrtes, Vanessa R; Schüler-Faccini, Lavínia; Mundstock, Carlos A; Bortolini, Maria Cátira; Salzano, Francisco M
2013-12-01
Non-syndromic agenesis of permanent teeth is one of the most common anomalies in human development, a multifactorial characteristic caused by genetic and environmental factors. We describe a pair of monozygotic twins who showed second premolar and third molar agenesis, albeit with different expressions. We studied the DNA of two genes, paired domain box gene 9 (PAX9) and muscle segment homeodomain-homeobox1 (MSX1), encoding transcription factors that earlier studies found were involved in the manifestation of this condition. No specific causative mutation was found. However, we detected a C→T change in MSX1 exon 2 in both twins, suggesting that this polymorphism might be involved in the trait's expression.
Mutation analysis of the Fanconi Anemia Gene FACC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verlander, P.C.; Lin, J.D.; Udono, M.U.
1994-04-01
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. The authors have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. They have identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14.more » Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A [yields] T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in the study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A [yields] T have Jewish ancestry and have a severe phenotype. 19 refs., 1 fig., 3 tabs.« less
Three reasons protein disorder analysis makes more sense in the light of collagen
Oates, Matt E.; Tompa, Peter; Gough, Julian
2016-01-01
Abstract We have identified that the collagen helix has the potential to be disruptive to analyses of intrinsically disordered proteins. The collagen helix is an extended fibrous structure that is both promiscuous and repetitive. Whilst its sequence is predicted to be disordered, this type of protein structure is not typically considered as intrinsic disorder. Here, we show that collagen‐encoding proteins skew the distribution of exon lengths in genes. We find that previous results, demonstrating that exons encoding disordered regions are more likely to be symmetric, are due to the abundance of the collagen helix. Other related results, showing increased levels of alternative splicing in disorder‐encoding exons, still hold after considering collagen‐containing proteins. Aside from analyses of exons, we find that the set of proteins that contain collagen significantly alters the amino acid composition of regions predicted as disordered. We conclude that research in this area should be conducted in the light of the collagen helix. PMID:26941008
Nishita, Y; Abramov, A V; Kosintsev, P A; Lin, L-K; Watanabe, S; Yamazaki, K; Kaneko, Y; Masuda, R
2015-12-01
Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Computer analysis of protein functional sites projection on exon structure of genes in Metazoa
2015-01-01
Background Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. Results One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. Conclusions These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and allow a better understanding of the emergence of biological diversity. PMID:26693737
Lin, Hsiang-Kai; Boatz, Jennifer C.; Krabbendam, Inge E.; Kodali, Ravindra; Hou, Zhipeng; Wetzel, Ronald; Dolga, Amalia M.; Poirier, Michelle A.; van der Wel, Patrick C. A.
2017-01-01
Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells. PMID:28537272
NASA Astrophysics Data System (ADS)
Lin, Hsiang-Kai; Boatz, Jennifer C.; Krabbendam, Inge E.; Kodali, Ravindra; Hou, Zhipeng; Wetzel, Ronald; Dolga, Amalia M.; Poirier, Michelle A.; van der Wel, Patrick C. A.
2017-05-01
Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells.
Baculescu, N
2013-03-15
Polycystic ovary syndrome (PCOS), one of the most common and complex endocrine disorders affecting up to 15 % of reproductive age women, is considered a predominantly hyperandrogenic syndrome according to the Androgen Excess Society. It is generally accepted that androgens determine the characteristic features of PCOS; in this context, a hyperactive androgen receptor (AR) at the levels of the GnRH pulse generator in the hypothalamus and at the granulosa cells in the ovary, skeletal muscle or adipocytes senses initially normal testosterone and dihydrotestosterone as biochemical hyperandrogenism and might be a crucial connection between the vicious circles of the PCOS pathogenesis. Polymorphism of the AR gene has been associated with different androgen pattern diseases. Several studies have demonstrated an association between AR with increased activity encoded by shorter CAG repeat polymorphism in the exon 1 of the AR gene and PCOS, although there are conflicting results in this field. The phenomenon is more complex because the AR activity is determined by the epigenetic effect of X chromosome inactivation (XCI). Moreover, we must evaluate the AR as a dynamic heterocomplex, with a large number of coactivators and corepressors that are essential to its function, thus mediating tissue-specific effects. In theory, any of these factors could modify the activity of AR, which likely explains the inconsistent results obtained when this activity was quantified by only the CAG polymorphism in PCOS.
Zahoor, Insha; Asimi, Ravouf; Haq, Ehtishamul
2015-12-15
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the nervous system with a profound genetic element. It is already known that alterations in Eukaryotic Translation Initiation Factor 2B (EIF2B) gene encoding the five subunits of eIF2B complex cause Vanishing White Matter (VWM) disease of the brain and emerging evidences have advocated certain resemblances between MS and VWM in terms of clinical and epidemiological characteristics, thus validating the association study between EIF2B and MS. Moreover, a recent study has implicated EIF2B5 Ile587Val (rs843358) polymorphism as a susceptibility factor for MS. In order to investigate the association of EIF2B5 Ile587Val polymorphism with MS susceptibility in Kashmir region in India, we screened EIF2B5 Exon 13 in 30 MS patients and 65 controls (a total of 95 participants). During the present course of study, we could not find statistically significant difference in the frequency of Ile587Val between MS patients and controls, thus indicating that such alteration does not appear to influence MS development in Kashmiri population. Our results provide evidence against a major role for Ile587Val polymorphism in MS susceptibility. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Donoho, Greg; Brenneman, Mark A.; Cui, Tracy X.; Donoviel, Dorit; Vogel, Hannes; Goodwin, Edwin H.; Chen, David J.; Hasty, Paul
2003-01-01
The Brca2 tumor-suppressor gene contributes to genomic stability, at least in part by a role in homologous recombinational repair. BRCA2 protein is presumed to function in homologous recombination through interactions with RAD51. Both exons 11 and 27 of Brca2 code for domains that interact with RAD51; exon 11 encodes eight BRC motifs, whereas exon 27 encodes a single, distinct interaction domain. Deletion of all RAD51-interacting domains causes embryonic lethality in mice. A less severe phenotype is seen with BRAC2 truncations that preserve some, but not all, of the BRC motifs. These mice can survive beyond weaning, but are runted and infertile, and die very young from cancer. Cells from such mice show hypersensitivity to some genotoxic agents and chromosomal instability. Here, we have analyzed mice and cells with a deletion of only the RAD51-interacting region encoded by exon 27. Mice homozygous for this mutation (called brca2(lex1)) have a shorter life span than that of control littermates, possibly because of early onsets of cancer and sepsis. No other phenotype was observed in these animals; therefore, the brca2(lex1) mutation is less severe than truncations that delete some BRC motifs. However, at the cellular level, the brca2(lex1) mutation causes reduced viability, hypersensitivity to the DNA interstrand crosslinking agent mitomycin C, and gross chromosomal instability, much like more severe truncations. Thus, the extreme carboxy-terminal region encoded by exon 27 is important for BRCA2 function, probably because it is required for a fully functional interaction between BRCA2 and RAD51. Copyright 2003 Wiley-Liss, Inc.
DU, Zhi-Heng; Liu, Zong-Yue; Bai, Xiu-Juan
2010-06-01
Using single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing, single nucleotide polymorphisms (SNPs) of growth hormone receptor (GHR) gene were detected in an arctic fox population. Correlation analysis between GHR polymorphisms and growth traits were carried out using the appropriate model. Four SNPs, G3A in the 5'UTR, C99T in the first exon, T59C and G65A in the fifth exon were identified on the arctic fox GHR gene. The G3A and C99T polymorphisms of GHR were associated with female fox body weight (Pamp;0.05) and the T59C and G65A polymorphisms of GHR were associated with male fox body weight (Pamp;0.05) and the skin length of the female fox (Pamp;0.01). Therefore, marker assistant selection on body weight and skin length of arctic foxes using these SNPs can be applied to get big and high quality arctic foxes.
Pan, Zhi-Wen; Lou, Jintu; Luo, Chunfen; Yu, Linjun; Li, Ji-Cheng
2011-10-01
Hirschsprung disease (HSCR, Online Mendelian Inheritance in Man 142623) is a typical developmental disorder of the enteric nervous system in which ganglion cells fail to innervate the lower gastrointestinal tract during embryonic development. SOX10 gene is involved in the normal development of the enteric nervous system. Heterozygous SOX10 mutations have been identified in patients with syndromic HSCR. However, no mutations have been reported to date to be associated to isolated HSCR patient. We thus sought to investigate whether mutations in the SOX10 are associated with isolated HSCR in the Chinese population. Polymerase chain reaction amplification and direct sequencing were used to screen 4 exons of the SOX10 gene for mutations and polymorphisms in 104 patients with sporadic HSCR and 96 ethnically matched controls in Han Chinese populations. In this study, 4 single nucleotide polymorphisms (SNPs) were identified: SNP1: c.18C>T (GAC→GAT) in exon 2; SNP2: c.122G>T (GGC→GTC) in exon 2; SNP3: IVS2+10 (C→G) in intron 2; and SNP4: c.927T>C (CAT→CAC) in exon 4. SNP1 and SNP2 were novel described polymorphisms in the Chinese population. No SOX10 mutations were found in Han Chinese with isolated HSCR. Our results revealed that there was no association between the 4 SNPs of the SOX10 gene and HSCR. This study showed that the SOX10 gene is unlikely to be a major HSCR gene in the Chinese Han population. Copyright © 2011. Published by Elsevier Inc.
Han, R-L; Lan, X-Y; Zhang, L-Z; Ren, G; Jing, Y-J; Li, M-J; Zhang, B; Zhao, M; Guo, Y-K; Kang, X-T; Chen, H
2010-01-01
Visfatin is a peptide that is predominantly expressed in visceral adipose tissue and is hypothesized to be related to obesity and insulin resistance. In this study, a novel silent single-nucleotide polymorphism (SNP) was found in exon 7 of the chicken visfatin gene (also known as PBEF1) by single-stranded conformation polymorphism (SSCP) and DNA sequencing. In total, 836 chickens forming an F2 resource population of Gushi chicken crossed with Anka broiler were genotyped by XbaI forced RFLP, and the associations of this polymorphism with chicken growth, carcass characteristics, and meat quality were analyzed. Significant associations were found between the polymorphism and 4-week body weight (BW4), 6-week body weight (BW6), 4-week body slanting length (BSL4), fat bandwidth (FBW), breast muscle water loss rate (BWLR) and breast muscle fiber density (BFD) (P < 0.05), as well as 4-week breastbone length (BBL4) (P < 0.01). These observations suggested that the polymorphism in exon7 of the visfatin gene had significant effects on the early growth traits of chicken.
Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.
Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P
2003-08-01
The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.
Kandemir, Nurgün; Vurallı, Doğuş; Taşkıran, Ekim; Gönç, Nazlı; Özön, Alev; Alikaşifoğlu, Ayfer; Yılmaz, Engin
2012-01-01
Mutations in the prophet of Pit-1 (PROP-1) gene are responsible for most of the cases of combined pituitary hormone deficiencies (CPHD). We performed this study to determine the prevalence of PROP-1 mutations in a group of Turkish children with CPHD. Fifty-three children with the diagnosis of CPHD were included in this study. Clinical data were obtained from medical files, and hormonal evaluation and genetic screening for PROP-1 mutations were performed. A homozygous S109X mutation was found in the second exon in two brothers, and they had growth hormone (GH) and thyroid-stimulating hormone (TSH) deficiencies and normal prolactin levels. In the third exon of the PROP-1 gene, a heterozygous A142T polymorphism was found in 14 patients and a homozygous A142T polymorphism was found in 3 patients. In the first exon, a homozygous A9A polymorphism was found in 7 patients and a heterozygous A9A polymorphism was found in 31 patients. We assumed that mutations in the PROP-1 gene in cases with CPHD were expected to be more prevalent in our population due to consanguinity, but it was found that these mutations were far less than expected and that it was rare in non-familial cases.
Mandal, Raju Kumar; Mittal, Rama Devi
2018-04-01
DNA repair capacity is essential in maintaining cellular functions and homeostasis. Identification of genetic polymorphisms responsible for reduced DNA repair capacity may allow better cancer prevention. Double strand break repair pathway plays critical roles in maintaining genome stability. Present study was conducted to determine distribution of XRCC3 Exon 7 (C18067T, rs861539) and XRCC7 Intron 8 (G6721T, rs7003908) gene polymorphisms in North Indian population and compare with different populations globally. The genotype assays were performed in 224 normal healthy individuals of similar ethnicity using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Allelic frequencies of wild type were 79% (C) in XRCC3 Exon 7 C > T and 57% (G) in XRCC7 Intron 8 (G > T) 57% (G) observed. On the other hand, the variant allele frequency were 21% (T) in XRCC3 Exon 7 C > T and 43% (T) in XRCC7 Intron 8 G > T respectively. Major differences from other ethnic populations were observed. Our results suggest that frequency in these DNA repair genes exhibit distinctive pattern in India that could be attributed to ethnicity variation. This could assist in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.
Rischewski, J; Schneppenheim, R
2001-01-30
Patients with Fanconi anemia (Fanc) are at risk of developing leukemia. Mutations of the group A gene (FancA) are most common. A multitude of polymorphisms and mutations within the 43 exons of the gene are described. To examine the role of heterozygosity as a risk factor for malignancies, a partially automatized screening method to identify aberrations was needed. We report on our experience with DHPLC (WAVE (Transgenomic)). PCR amplification of all 43 exons from one individual was performed on one microtiter plate on a gradient thermocycler. DHPLC analysis conditions were established via melting curves, prediction software, and test runs with aberrant samples. PCR products were analyzed twice: native, and after adding a WT-PCR product. Retention patterns were compared with previously identified polymorphic PCR products or mutants. We have defined the mutation screening conditions for all 43 exons of FancA using DHPLC. So far, 40 different sequence variations have been detected in more than 100 individuals. The native analysis identifies heterozygous individuals, and the second run detects homozygous aberrations. Retention patterns are specific for the underlying sequence aberration, thus reducing sequencing demand and costs. DHPLC is a valuable tool for reproducible recognition of known sequence aberrations and screening for unknown mutations in the highly polymorphic FancA gene.
Olsson, Linda; Zettermark, Sofia; Biloglav, Andrea; Castor, Anders; Behrendtz, Mikael; Forestier, Erik; Paulsson, Kajsa; Johansson, Bertil
2016-07-01
Cytogenetic analyses of a consecutive series of 67 paediatric (median age 8 years; range 0-17) de novo acute myeloid leukaemia (AML) patients revealed aberrations in 55 (82%) cases. The most common subgroups were KMT2A rearrangement (29%), normal karyotype (15%), RUNX1-RUNX1T1 (10%), deletions of 5q, 7q and/or 17p (9%), myeloid leukaemia associated with Down syndrome (7%), PML-RARA (7%) and CBFB-MYH11 (5%). Single nucleotide polymorphism array (SNP-A) analysis and exon sequencing of 100 genes, performed in 52 and 40 cases, respectively (39 overlapping), revealed ≥1 aberration in 89%; when adding cytogenetic data, this frequency increased to 98%. Uniparental isodisomies (UPIDs) were detected in 13% and copy number aberrations (CNAs) in 63% (median 2/case); three UPIDs and 22 CNAs were recurrent. Twenty-two genes were targeted by focal CNAs, including AEBP2 and PHF6 deletions and genes involved in AML-associated gene fusions. Deep sequencing identified mutations in 65% of cases (median 1/case). In total, 60 mutations were found in 30 genes, primarily those encoding signalling proteins (47%), transcription factors (25%), or epigenetic modifiers (13%). Twelve genes (BCOR, CEBPA, FLT3, GATA1, KIT, KRAS, NOTCH1, NPM1, NRAS, PTPN11, SMC3 and TP53) were recurrently mutated. We conclude that SNP-A and deep sequencing analyses complement the cytogenetic diagnosis of paediatric AML. © 2016 John Wiley & Sons Ltd.
Thomas, M G; Enns, R M; Shirley, K L; Garcia, M D; Garrett, A J; Silver, G A
2007-03-30
Sequence polymorphisms in the growth hormone (GH) gene and its transcriptional regulators, Pit-1 and Prop-1, were evaluated for associations with growth and carcass traits in two populations of Brangus bulls Chihuahuan Desert Rangeland Research Center (CDRRC, N = 248 from 14 sires) and a cooperating breeding program (COOP, N = 186 from 34 sires). Polymorphisms were SNP mutations in intron 4 (C/T) and exon V (C/G) in GH, A/G in exon VI in Pit-1, and A/G in exon III in Prop-1. In the COOP population, bulls of Pit-1 GG genotype had a significantly greater percentage of intramuscular fat than bulls of the AA or AG genotype, and bulls of the Prop-1 AA genotype had significantly greater scrotal circumference than bulls of AG or GG genotypes at ~365 days of age. Also, heterozygous genotypes for the two GH polymorphisms appeared advantageous for traits of muscularity and adiposity in the COOP population. The heterozygous genotype of GH intron 4 SNP was associated with advantages in weight gain, scrotal circumference, and fat thickness in the CDRRC population. The two GH polymorphisms accounted for >/=27.7% of the variation in these traits in the CDRRC population; however, R(2) was <5% in the COOP population. Based on haplotype analyses the two GH SNPs appeared to be in phase; the haplotype analyses also paralleled with the genotype analyses. Polymorphisms in GH and its transcriptional regulators appear to be predictors of growth and carcass traits in Brangus bulls, particularly those with heterozygous GH genotypes.
Polymorphism at codon 36 of the p53 gene.
Felix, C A; Brown, D L; Mitsudomi, T; Ikagaki, N; Wong, A; Wasserman, R; Womer, R B; Biegel, J A
1994-01-01
A polymorphism at codon 36 in exon 4 of the p53 gene was identified by single strand conformation polymorphism (SSCP) analysis and direct sequencing of genomic DNA PCR products. The polymorphic allele, present in the heterozygous state in genomic DNAs of four of 100 individuals (4%), changes the codon 36 CCG to CCA, eliminates a FinI restriction site and creates a BccI site. Including this polymorphism there are four known polymorphisms in the p53 coding sequence.
Hafizi, Atousa; Khatami, Saeid Reza; Galehdari, Hamid; Shariati, Gholamreza; Saberi, Ali Hossein; Hamid, Mohammad
2014-07-01
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic kidney disorders with the incidence of 1 in 1,000 births. ADPKD is genetically heterogeneous with two genes identified: PKD1 (16p13.3, 46 exons) and PKD2 (4q21, 15 exons). Eighty five percent of the patients with ADPKD have at least one mutation in the PKD1 gene. Genetic studies have demonstrated an important allelic variability among patients, but very few data are known about the genetic variation among Iranian populations. In this study, exon direct sequencing of PKD1 was performed in a seven-year old boy with ADPKD and in his parents. The patient's father was ADPKD who was affected without any kidney dysfunction, and the patient's mother was congenitally missing one kidney. Molecular genetic testing found a mutation in all three members of this family. It was a missense mutation GTG>ATG at position 3057 in exon 25 of PKD1. On the other hand, two novel missense mutations were reported just in the 7-year-old boy: ACA>GCA found in exon 15 at codon 2241 and CAC>AAC found in exon 38 at codon 3710. For checking the pathogenicity of these mutations, exons 15, 25, and 38 of 50 unrelated normal cases were sequenced. our findings suggested that GTG>ATG is a polymorphism with high frequency (60%) as well as ACA>GCA and CAC>AAC are polymorphisms with frequencies of 14% and 22%, respectively in the population of Southwest Iran.
Allelic combinations of promoter and exon 2 in DQB1 in dogs and wolves.
Berggren, Karin T; Seddon, Jennifer M
2008-07-01
Polymorphism of PBRs of the major histocompatibility complex (MHC) genes is well recognized, but the polymorphism also extends to proximal promoter regions. Examining DQB1 variability in dogs and wolves, we identified 7 promoter variants and 13 exon 2 alleles among 89 dogs, including a previously unknown DQB1 exon 2 allele, and 8 promoter variants and 9 exon 2 alleles among 85 wolves. As expected from previous studies and from a close chromosomal location, strong linkage disequilibrium was demonstrated in both wolves and dogs by having significantly fewer promoter/exon 2 combinations than expected from simulations of randomized data sets. Interestingly, we noticed weaker haplotypic associations in dogs than in wolves. Dogs had twice as many promoter/exon 2 combinations as wolves and an almost 2-fold difference in the number of exon 2 alleles per promoter variant. This difference was not caused by an admixture of breeds in our group of dogs because the high ratio of observed to expected number of haplotypes persisted within a single dog breed, the German Shepherd. Ewens-Watterson tests indicated that both the promoter and exon 2 are under the balancing selection, and both regions appear to be more recently derived in the dog than in the wolf. Hence, although reasons for the differences are unknown, they may relate to altered selection pressure on patterns of expression. Deviations from normal MHC expression patterns have been associated with autoimmune diseases, which occur frequently in several dog breeds. Further knowledge about these deviations may help us understand the source of such diseases.
Cossins, Judith; Liu, Wei Wei; Belaya, Katsiaryna; Maxwell, Susan; Oldridge, Michael; Lester, Tracy; Robb, Stephanie; Beeson, David
2012-09-01
Congenital myasthenic syndromes (CMS) are a group of inherited diseases that affect synaptic transmission at the neuromuscular junction and result in fatiguable muscle weakness. A subgroup of CMS patients have a recessively inherited limb-girdle pattern of weakness caused by mutations in DOK7. DOK7 encodes DOK7, an adaptor protein that is expressed in the skeletal muscle and heart and that is essential for the development and maintenance of the neuromuscular junction. We have screened the DOK7 gene for mutations by polymerase chain reaction amplification and bi-directional sequencing of exonic and promoter regions and performed acetylcholine receptor (AChR) clustering assays and used exon trapping to determine the pathogenicity of detected variants. Approximately 18% of genetically diagnosed CMSs in the UK have mutations in DOK7, with mutations in this gene identified in more than 60 kinships to date. Thirty-four different pathogenic mutations were identified as well as 27 variants likely to be non-pathogenic. An exon 7 frameshift duplication c.1124_1127dupTGCC is commonly found in at least one allele. We analyse the effect of the common frameshift c.1124_1127dupTGCC and show that 10/11 suspected missense mutations have a deleterious effect on AChR clustering. We identify for the first time homozygous or compound heterozygous mutations that are localized 5' to exon 7. In addition, three silent variants in the N-terminal half of DOK7 are predicted to alter the splicing of the DOK7 RNA transcript. The DOK7 gene is highly polymorphic, and within these many variants, we define a spectrum of mutations that can underlie DOK7 CMS that will inform in managing this disorder.
Mulder, Kevin P.; Cortazar-Chinarro, Maria; Harris, D. James; Crottini, Angelica; Grant, Evan H. Campbell; Fleischer, Robert C.; Savage, Anna E.
2017-01-01
The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa.
Mulder, Kevin P; Cortazar-Chinarro, Maria; Harris, D James; Crottini, Angelica; Campbell Grant, Evan H; Fleischer, Robert C; Savage, Anna E
2017-11-01
The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Xiaoxin; Ma, Xiang; Tao, Yong
2007-06-07
To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.
Ma, Xiang; Tao, Yong
2007-01-01
Purpose To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Methods Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Results Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Conclusions Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS. PMID:17615541
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biery, B.J.; Stein, D.E.; Goodman, S.I.
The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span {approximately}7 kb. Fibroblast DNA from 64 unrelated glutaric academia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in themore » general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits. 13 refs., 5 figs., 3 tabs.« less
Naga, Mazen; Amin, Mona; Algendy, Dina; Elbadry, Ahmed; Fawzi, May; Foda, Ayman; Esmat, Serag; Sabry, Dina; Rashed, Laila; Gabal, Samia; Kamal, Manal
2015-01-01
AIM: To correlate a genetic polymorphism of the low-density lipoprotein (LDL) receptor with antiviral responses in Egyptian chronic hepatitis C virus (HCV) patients. METHODS: Our study included 657 HCV-infected patients with genotype 4 who received interferon-based combination therapy. Patients were divided into two groups based on their response to therapy: 356 were responders, and 301 were non-responders. Patients were compared to 160 healthy controls. All patients and controls underwent a thorough physical examination, measurement of body mass index (BMI) and the following laboratory tests: serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total bilirubin, direct bilirubin, prothrombin time, prothrombin concentration, INR, complete blood count, serum creatinine, fasting blood sugar, HCV antibody, and hepatitis B surface antigen. All HCV patients were further subjected to the following laboratory tests: HCV-RNA using quantitative polymerase chain reaction (PCR), antinuclear antibodies, thyroid-stimulating hormone, an LDL receptor (LDLR) genotype study of LDLR exon8c.1171G>A and exon10c.1413G>A using real-time PCR-based assays, abdominal ultrasonography, ultrasonographic-guided liver biopsy, and histopathological examination of liver biopsies. Correlations of LDL receptor polymorphisms with HAI, METAVIR score, presence of steatosis, and BMI were performed in all cases. RESULTS: There were no statistically significant differences in response rates between the different types of interferon used or LDLR exon10c.1413G>A. However, there was a significant difference in the frequency of the LDL receptor exon8c.1171G>A genotype between cases (AA: 25.9%, GA: 22.2%, GG: 51.9%) and controls (AA: 3.8%, GA: 53.1% and GG: 43.1%) (P < 0.001). There was a statistically significant difference in the frequency of the LDLR exon 8C:1171 G>A polymorphism between responders (AA: 3.6%, GA: 15.2%, GG: 81.2%) and non-responders (AA: 52.2%, GA: 30.6%, GG: 17.2%) (P < 0.001). The G allele of LDL receptor exon8c.1171G>A predominated in cases and controls over the A allele, and a statistically significant association with response to interferon was observed. The frequency of the LDLR exon8c.1171G>A allele in non-responders was: A: 67.4% and G: 32.6 vs A: 11.2% and G: 88.8% in responders (P < 0.001). Therefore, carriers of the A allele exhibited a 16.4 times greater risk for non-response. There was a significant association between LDL receptors exon8 c.1171G>A and HAI (P < 0.011). There was a significant association between LDL receptors exon8c.1171G>A and BMI. The mean BMI level was highest in patients carrying the AA genotype (28.7 ± 4.7 kg/m2) followed by the GA genotype (28.1 ± 4.8 kg/m2). The lowest BMI was the GG genotype (26.6 ± 4.3 kg/m2) (P < 0.001). The only significant associations were found between LDL receptors exon8 c.1171G>A and METAVIR score or steatosis (P < 0.001). CONCLUSION: LDL receptor gene polymorphisms play a role in the treatment response of HCV and the modulation of disease progression in Egyptians infected with chronic HCV. PMID:26494968
Naga, Mazen; Amin, Mona; Algendy, Dina; Elbadry, Ahmed; Fawzi, May; Foda, Ayman; Esmat, Serag; Sabry, Dina; Rashed, Laila; Gabal, Samia; Kamal, Manal
2015-10-21
To correlate a genetic polymorphism of the low-density lipoprotein (LDL) receptor with antiviral responses in Egyptian chronic hepatitis C virus (HCV) patients. Our study included 657 HCV-infected patients with genotype 4 who received interferon-based combination therapy. Patients were divided into two groups based on their response to therapy: 356 were responders, and 301 were non-responders. Patients were compared to 160 healthy controls. All patients and controls underwent a thorough physical examination, measurement of body mass index (BMI) and the following laboratory tests: serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total bilirubin, direct bilirubin, prothrombin time, prothrombin concentration, INR, complete blood count, serum creatinine, fasting blood sugar, HCV antibody, and hepatitis B surface antigen. All HCV patients were further subjected to the following laboratory tests: HCV-RNA using quantitative polymerase chain reaction (PCR), antinuclear antibodies, thyroid-stimulating hormone, an LDL receptor (LDLR) genotype study of LDLR exon8c.1171G>A and exon10c.1413G>A using real-time PCR-based assays, abdominal ultrasonography, ultrasonographic-guided liver biopsy, and histopathological examination of liver biopsies. Correlations of LDL receptor polymorphisms with HAI, METAVIR score, presence of steatosis, and BMI were performed in all cases. There were no statistically significant differences in response rates between the different types of interferon used or LDLR exon10c.1413G>A. However, there was a significant difference in the frequency of the LDL receptor exon8c.1171G>A genotype between cases (AA: 25.9%, GA: 22.2%, GG: 51.9%) and controls (AA: 3.8%, GA: 53.1% and GG: 43.1%) (P < 0.001). There was a statistically significant difference in the frequency of the LDLR exon 8C:1171 G>A polymorphism between responders (AA: 3.6%, GA: 15.2%, GG: 81.2%) and non-responders (AA: 52.2%, GA: 30.6%, GG: 17.2%) (P < 0.001). The G allele of LDL receptor exon8c.1171G>A predominated in cases and controls over the A allele, and a statistically significant association with response to interferon was observed. The frequency of the LDLR exon8c.1171G>A allele in non-responders was: A: 67.4% and G: 32.6 vs A: 11.2% and G: 88.8% in responders (P < 0.001). Therefore, carriers of the A allele exhibited a 16.4 times greater risk for non-response. There was a significant association between LDL receptors exon8 c.1171G>A and HAI (P < 0.011). There was a significant association between LDL receptors exon8c.1171G>A and BMI. The mean BMI level was highest in patients carrying the AA genotype (28.7 ± 4.7 kg/m(2)) followed by the GA genotype (28.1 ± 4.8 kg/m(2)). The lowest BMI was the GG genotype (26.6 ± 4.3 kg/m(2)) (P < 0.001). The only significant associations were found between LDL receptors exon8 c.1171G>A and METAVIR score or steatosis (P < 0.001). LDL receptor gene polymorphisms play a role in the treatment response of HCV and the modulation of disease progression in Egyptians infected with chronic HCV.
Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah
2014-04-01
Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this enigmatic disorder and identify some at-risk women. © 2013 American Society for Bone and Mineral Research.
Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes
Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.
1999-01-01
We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.
Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes.
Jarvi, S I; Goto, R M; Gee, G F; Briles, W E; Miller, M M
1999-01-01
We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbg1 and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of alpha-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.
Genetic basis of human complement C8[beta] deficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, T.; Rittner, C.; Schneider, P.M.
1993-06-01
The eighth component of human complement (c8) is a serum protein consisting of three chains ([alpha], [beta], and [gamma]) and encoded by three different genes, C8A, C8B, and C8G. C8A and C8B are closely linked on chromosome 1p, whereas C8G is located on chromosome 9q. In the serum the [beta] subunit is non-covalently bound to the disulfide-linked [alpha]-[gamma] subunit. Patients with C8[beta] deficiency suffer from recurrent neisserial infections such as meningitis. Exon-specific polymerase chain reaction (PCR) amplification with primer pairs from the flanking intron sequences was used to amplify all 12 C8B exons separately. No difference regarding the exon sizesmore » was observed in a C8[beta]-deficient patient compared with a normal person. Therefore, direct sequence analysis of all exon-specific PCR products from normal and C8[beta]-deficient individuals was carried out. As a cause for C8[beta] deficiency, we found a single C-T exchange in exon 9 leading to a stop codon. An allele-specific PCR system was designed to detect the normal and the deficiency allele simultaneously. Using this approach as well as PCR typing of the Taql polymorphism located in intron 11, five families with 7 C8[beta]-deficient members were investigated. The mutation was not found to be restricted to one of the two Taql RFLP alleles. The mutant allele was observed in all families investigated and can therefore be regarded as a major cause of C8[beta] deficiency in the Caucasian population. In addition, two C8[beta]-deficient patients were found to be heterozygous for the C-T exchange. The molecular basis of the alleles without this point mutation also causing deficiency has not yet been defined. 23 refs., 4 figs., 3 tabs.« less
Screening of SHOX gene sequence variants in Saudi Arabian children with idiopathic short stature.
Alharthi, Abdulla A; El-Hallous, Ehab I; Talaat, Iman M; Alghamdi, Hamed A; Almalki, Matar I; Gaber, Ahmed
2017-10-01
Short stature affects approximately 2%-3% of children, representing one of the most frequent disorders for which clinical attention is sought during childhood. Despite assumed genetic heterogeneity, mutations or deletions in the short stature homeobox-containing gene ( SHOX ) are frequently detected in subjects with short stature. Idiopathic short stature (ISS) refers to patients with short stature for various unknown reasons. The goal of this study was to screen all the exons of SHOX to identify related mutations. We screened all the exons of SHOX for mutations analysis in 105 ISS children patients (57 girls and 48 boys) living in Taif governorate, KSA using a direct DNA sequencing method. Height, arm span, and sitting height were recorded, and subischial leg length was calculated. A total of 30 of 105 ISS patients (28%) contained six polymorphic variants in exons 1, 2, 4, and 6. One mutation was found in the DNA domain binding region of exon 4. Three of these polymorphic variants were novel, while the others were reported previously. There were no significant differences in anthropometric measures in ISS patients with and without identifiable polymorphic variants in SHOX . In Saudi Arabia ISS patients, rather than SHOX , it is possible that new genes are involved in longitudinal growth. Additional molecular analysis is required to diagnose and understand the etiology of this disease.
A TaqI PCR-RFLP detecting a novel SNP in exon 2 of the bovine POU1F1 gene.
Pan, Chuanying; Lan, Xianyong; Chen, Hong; Guo, Yikun; Shu, Jianhong; Lei, Chuzhao; Wang, Xinzhuang
2008-08-01
PCR-SSCP and DNA sequencing methods were applied to reveal three novel single nucleotide polymorphisms (SNPs) in exon 2 of the POU1F1 gene in 963 Chinese cattle belonging to eight breeds. Among them, a silent SNP (NM_174579:c.545G > A) detected by TaqI endonuclease is described. Frequencies of the POU1F1-G allele varied from 0.685 to 1.000. The association of TaqI polymorphism with growth traits was analyzed in 251 Nanyang cattle. No significant associations of the TaqI polymorphism with body weight and average daily gain for different growth periods (6, 12, 18, and 24 months old) were observed (P > 0.05), as well as for body sizes (P > 0.05).
Systematic screening for CYP3A4 genetic polymorphisms in a Han Chinese population.
Hu, Guo-Xin; Dai, Da-Peng; Wang, Hao; Huang, Xiang-Xin; Zhou, Xiao-Yang; Cai, Jie; Chen, Hao; Cai, Jian-Ping
2017-03-01
To systematically investigate the genetic polymorphisms of the CYP3A4 gene in a Han Chinese population. The promoter and exons of CYP3A4 gene in 1114 unrelated, healthy Han Chinese subjects were amplified and genotyped by direct sequencing. In total, five previously reported alleles (*1G, *4, *5, *18B and *23) were detected, of which one allele (*23) was reported for the first time in Han Chinese population. Additionally, seven novel exonic variants were also identified and designated as new alleles CYP3A4*28-*34. This study provides the most comprehensive data of CYP3A4 polymorphisms in Han Chinese population and detects the largest number of novel CYP3A4 alleles in one ethnic group.
Zorc, Minja; Kunej, Tanja
2016-05-01
MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a starting point for further functional studies and association studies with poultry production and health traits and the basis for systematic screening of exonic miRNAs and missense/miRNA seed polymorphisms in other genomes.
Mhc class II B gene evolution in East African cichlid fishes.
Figueroa, F; Mayer, W E; Sültmann, H; O'hUigin, C; Tichy, H; Satta, Y; Takezaki, N; Takahata, N; Klein, J
2000-06-01
A distinctive feature of essential major histocompatibility complex (Mhc) loci is their polymorphism characterized by large genetic distances between alleles and long persistence times of allelic lineages. Since the lineages often span several successive speciations, we investigated the behavior of the Mhc alleles during or close to the speciation phase. We sequenced exon 2 of the class II B locus 4 from 232 East African cichlid fishes representing 32 related species. The divergence times of the (sub)species ranged from 6,000 to 8.4 million years. Two types of evolutionary analysis were used to elucidate the pattern of exon 2 sequence divergence. First, phylogenetic methods were applied to reconstruct the most likely evolutionary pathways leading from the last common ancestor of the set to the extant sequences, and to assess the probable mechanisms involved in allelic diversification. Second, pairwise comparisons of sequences were carried out to detect differences seemingly incompatible with origin by nonparallel point mutations. The analysis revealed point mutations to be the most important mechanism behind allelic divergences, with recombination playing only an auxiliary part. Comparison of sequences from related species revealed evidence of random allelic (lineage) losses apparently associated with speciation. Sharing of identical alleles could be demonstrated between species that diverged 2 million years ago. The phylogeny of the exon was incongruent with that of the flanking introns, indicating either a high degree of convergent evolution at the peptide-binding region-encoding sites, or intron homogenization.
Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma.
Davis, R J; Bennicelli, J L; Macina, R A; Nycum, L M; Biegel, J A; Barr, F G
1995-12-01
The FKHR gene, which contains a forkhead DNA-binding motif, is fused to either PAX3 or PAX7 by the t(2;13) or t(1;13) translocation in alveolar rhabdomyosarcoma,respectively. These tumors express chimeric transcripts encoding the N-terminal portion of either PAX protein fused to the C-terminal portion of FKHR. To understand the structural basis and functional consequences of these translocations, we characterized the wild-type FKHR gene and its rearrangement in alveolar rhabdomyosarcomas. By isolating and analyzing phage, cosmid and YAC clones, we determined that FKHR consists of three exons spanning 140 kb and that several highly similar loci are present in other genomic regions. Exon 1 encodes the N-terminus of the forkhead domain and is embedded within demethylated CpG island. RNA analyses reveal FKHR transcripts initiate from a TATA-less promoter within this island. Exon 2 encodes the C-terminus of the forkhead domain and a transcription activation domain, whereas exon 3 encodes a large 3' untranslated region. The intron 1-exon 2 boundary precisely matches the FHKR fusion point in the chimeric transcripts found in alveolar rhabdomyosarcomas. Using pulsed-field and fluorescence in situ hybridization analyses, we demonstrate that the 130kb FKHR intron 1 is rearranged in t(2;13)-containing alveolar rhabdomyosarcomas. Our findings indicate that FKHR intron 1 provides a large target for DNA rearrangemnt. Rearrangement of this intron with PAX3 produces two important functional consequences: in-frame fusion of N-terminal PAX3 sequences to the FKHR transcriptional activation domain and disruption of the FKHR DNA binding domain.
Pettigrew, Christopher; Wayte, Nicola; Lovelock, Paul K; Tavtigian, Sean V; Chenevix-Trench, Georgia; Spurdle, Amanda B; Brown, Melissa A
2005-01-01
Introduction Aberrant pre-mRNA splicing can be more detrimental to the function of a gene than changes in the length or nature of the encoded amino acid sequence. Although predicting the effects of changes in consensus 5' and 3' splice sites near intron:exon boundaries is relatively straightforward, predicting the possible effects of changes in exonic splicing enhancers (ESEs) remains a challenge. Methods As an initial step toward determining which ESEs predicted by the web-based tool ESEfinder in the breast cancer susceptibility gene BRCA1 are likely to be functional, we have determined their evolutionary conservation and compared their location with known BRCA1 sequence variants. Results Using the default settings of ESEfinder, we initially detected 669 potential ESEs in the coding region of the BRCA1 gene. Increasing the threshold score reduced the total number to 464, while taking into consideration the proximity to splice donor and acceptor sites reduced the number to 211. Approximately 11% of these ESEs (23/211) either are identical at the nucleotide level in human, primates, mouse, cow, dog and opossum Brca1 (conserved) or are detectable by ESEfinder in the same position in the Brca1 sequence (shared). The frequency of conserved and shared predicted ESEs between human and mouse is higher in BRCA1 exons (2.8 per 100 nucleotides) than in introns (0.6 per 100 nucleotides). Of conserved or shared putative ESEs, 61% (14/23) were predicted to be affected by sequence variants reported in the Breast Cancer Information Core database. Applying the filters described above increased the colocalization of predicted ESEs with missense changes, in-frame deletions and unclassified variants predicted to be deleterious to protein function, whereas they decreased the colocalization with known polymorphisms or unclassified variants predicted to be neutral. Conclusion In this report we show that evolutionary conservation analysis may be used to improve the specificity of an ESE prediction tool. This is the first report on the prediction of the frequency and distribution of ESEs in the BRCA1 gene, and it is the first reported attempt to predict which ESEs are most likely to be functional and therefore which sequence variants in ESEs are most likely to be pathogenic. PMID:16280041
Polymorphisms within the canine MLPH gene are associated with dilute coat color in dogs
Philipp, Ute; Hamann, Henning; Mecklenburg, Lars; Nishino, Seiji; Mignot, Emmanuel; Günzel-Apel, Anne-Rose; Schmutz, Sheila M; Leeb, Tosso
2005-01-01
Background Pinschers and other dogs with coat color dilution show a characteristic pigmentation phenotype. The fur colors are a lighter shade, e.g. silvery grey (blue) instead of black and a sandy color (Isabella fawn) instead of red or brown. In some dogs the coat color dilution is sometimes accompanied by hair loss and recurrent skin inflammation, the so called color dilution alopecia (CDA) or black hair follicular dysplasia (BHFD). In humans and mice a comparable pigmentation phenotype without any documented hair loss is caused by mutations within the melanophilin gene (MLPH). Results We sequenced the canine MLPH gene and performed a mutation analysis of the MLPH exons in 6 Doberman Pinschers and 5 German Pinschers. A total of 48 sequence variations was identified within and between the breeds. Three families of dogs showed co-segregation for at least one polymorphism in an MLPH exon and the dilute phenotype. No single polymorphism was identified in the coding sequences or at splice sites that is likely to be causative for the dilute phenotype of all dogs examined. In 18 German Pinschers a mutation in exon 7 (R199H) was consistently associated with the dilute phenotype. However, as this mutation was present in homozygous state in four dogs of other breeds with wildtype pigmentation, it seems unlikely that this mutation is truly causative for coat color dilution. In Doberman Pinschers as well as in Large Munsterlanders with BHFD, a set of single nucleotide polymorphisms (SNPs) around exon 2 was identified that show a highly significant association to the dilute phenotype. Conclusion This study provides evidence that coat color dilution is caused by one or more mutations within or near the MLPH gene in several dog breeds. The data on polymorphisms that are strongly associated with the dilute phenotype will allow the genetic testing of Pinschers to facilitate the breeding of dogs with defined coat colors and to select against Large Munsterlanders carrying BHFD. PMID:15960853
Polymorphisms within the canine MLPH gene are associated with dilute coat color in dogs.
Philipp, Ute; Hamann, Henning; Mecklenburg, Lars; Nishino, Seiji; Mignot, Emmanuel; Günzel-Apel, Anne-Rose; Schmutz, Sheila M; Leeb, Tosso
2005-06-16
Pinschers and other dogs with coat color dilution show a characteristic pigmentation phenotype. The fur colors are a lighter shade, e.g. silvery grey (blue) instead of black and a sandy color (Isabella fawn) instead of red or brown. In some dogs the coat color dilution is sometimes accompanied by hair loss and recurrent skin inflammation, the so called color dilution alopecia (CDA) or black hair follicular dysplasia (BHFD). In humans and mice a comparable pigmentation phenotype without any documented hair loss is caused by mutations within the melanophilin gene (MLPH). We sequenced the canine MLPH gene and performed a mutation analysis of the MLPH exons in 6 Doberman Pinschers and 5 German Pinschers. A total of 48 sequence variations was identified within and between the breeds. Three families of dogs showed co-segregation for at least one polymorphism in an MLPH exon and the dilute phenotype. No single polymorphism was identified in the coding sequences or at splice sites that is likely to be causative for the dilute phenotype of all dogs examined. In 18 German Pinschers a mutation in exon 7 (R199H) was consistently associated with the dilute phenotype. However, as this mutation was present in homozygous state in four dogs of other breeds with wildtype pigmentation, it seems unlikely that this mutation is truly causative for coat color dilution. In Doberman Pinschers as well as in Large Munsterlanders with BHFD, a set of single nucleotide polymorphisms (SNPs) around exon 2 was identified that show a highly significant association to the dilute phenotype. This study provides evidence that coat color dilution is caused by one or more mutations within or near the MLPH gene in several dog breeds. The data on polymorphisms that are strongly associated with the dilute phenotype will allow the genetic testing of Pinschers to facilitate the breeding of dogs with defined coat colors and to select against Large Munsterlanders carrying BHFD.
Milivojevic, Verica; Kranzler, Henry R.; Gelernter, Joel; Burian, Linda; Covault, Jonathan
2010-01-01
Background Studies of alcohol effects in rodents and in vitro implicate endogenous neuroactive steroids as key mediators of alcohol effects at GABAA receptors. We used a case-control sample to test the association with alcohol dependence (AD) of single nucleotide polymorphisms (SNPs) in the genes encoding two key enzymes required for the generation of endogenous neuroactive steroids: 5α–reductase, type I (5α-R) and 3α-hydroxysteroid dehydrogenase, type 2 (3α-HSD), both of which are expressed in human brain. Methods We focused on markers previously associated with a biological phenotype. For 5α-R, we examined the synonymous SRD5A1 exon 1 SNP rs248793, which has been associated with the ratio of dihydrotestosterone to testosterone. For 3α-HSD, we examined the non-synonymous AKR1C3 SNP rs12529 (H5Q), which has been associated with bladder cancer. The SNPs were genotyped in a sample of 1,083 non-Hispanic Caucasians including 552 controls and 531 subjects with AD. Results The minor allele for both SNPs was more common among controls than subjects with AD: SRD5A1 rs248793 C-allele (χ2(1)=7.6, p=0.006) and AKR1C3 rs12529 G-allele (χ2(1)=14.6, p=0.0001). There was also an interaction of these alleles such that the “protective” effect of the minor allele at each marker for AD was conditional on the genotype of the second marker. Conclusions We found evidence of an association with AD of polymorphisms in two genes encoding neuroactive steroid biosynthetic enzymes, providing indirect evidence that neuroactive steroids are important mediators of alcohol effects in humans. PMID:21323680
Milivojevic, Verica; Kranzler, Henry R; Gelernter, Joel; Burian, Linda; Covault, Jonathan
2011-05-01
Studies of alcohol effects in rodents and in vitro implicate endogenous neuroactive steroids as key mediators of alcohol effects at GABA(A) receptors. We used a case-control sample to test the association with alcohol dependence (AD) of single nucleotide polymorphisms in the genes encoding two key enzymes required for the generation of endogenous neuroactive steroids: 5α-reductase, type I (5α-R), and 3α-hydroxysteroid dehydrogenase, type 2 (3α-HSD), both of which are expressed in human brain. We focused on markers previously associated with a biological phenotype. For 5α-R, we examined the synonymous SRD5A1 exon 1 SNP rs248793, which has been associated with the ratio of dihydrotestosterone to testosterone. For 3α-HSD, we examined the nonsynonymous AKR1C3 SNP rs12529 (H5Q), which has been associated with bladder cancer. The SNPs were genotyped in a sample of 1,083 non-Hispanic Caucasians including 552 controls and 531 subjects with AD. The minor allele for both SNPs was more common among controls than subjects with AD: SRD5A1 rs248793 C-allele (χ(2)(1) = 7.6, p = 0.006) and AKR1C3 rs12529 G-allele (χ(2)(1) = 14.6, p = 0.0001). There was also an interaction of these alleles such that the "protective" effect of the minor allele at each marker for AD was conditional on the genotype of the second marker. We found evidence of an association with AD of polymorphisms in two genes encoding neuroactive steroid biosynthetic enzymes, providing indirect evidence that neuroactive steroids are important mediators of alcohol effects in humans. Copyright © 2011 by the Research Society on Alcoholism.
Pharmacogenetically driven treatments for alcoholism: are we there yet?
Arias, Albert J; Sewell, R Andrew
2012-06-01
Pharmacogenetic analyses of treatments for alcohol dependence attempt to predict treatment response and side-effect risk for specific medications. We review the literature on pharmacogenetics relevant to alcohol dependence treatment, and describe state-of-the-art methods of pharmacogenetic research in this area. Two main pharmacogenetic study designs predominate: challenge studies and treatment-trial analyses. Medications studied include US FDA-approved naltrexone and acamprosate, both indicated for treating alcohol dependence, as well as several investigational (and off-label) treatments such as sertraline, olanzapine and ondansetron. The best-studied functional genetic variant relevant to alcoholism treatment is rs1799971, a single-nucleotide polymorphism in exon 1 of the OPRM1 gene that encodes the μ-opioid receptor. Evidence from clinical trials suggests that the presence of the variant G allele of rs1799971 may predict better treatment response to opioid receptor antagonists such as naltrexone. Evidence from clinical trials also suggests that several medications interact pharmacogenetically with variation in genes that encode proteins involved in dopaminergic and serotonergic neurotransmission. Variation in the DRD4 gene, which encodes the dopamine D(4) receptor, may predict better response to naltrexone and olanzapine. A polymorphism in the serotonin transporter gene SLC6A4 promoter region appears related to differential treatment response to sertraline depending on the subject's age of onset of alcoholism. Genetic variation in SLC6A4 may also be associated with better treatment response to ondansetron. Initial pharmacogenetic efforts in alcohol research have identified functional variants with potential clinical utility, but more research is needed to further elucidate the mechanism of these pharmacogenetic interactions and their moderators in order to translate them into clinical practice.
Distribution of MICA alleles and haplotypes associated with HLA in the Korean population.
Pyo, Chul-Woo; Hur, Seong-Suk; Kim, Yang-Kyum; Choi, Hee-Baeg; Kim, Tae-Yoon; Kim, Tai-Gyu
2003-03-01
The MICA (MHC class I chain-related gene A) is a polymorphic gene located 46 kb centromeric of the HLA-B gene, and is preferentially expressed in epithelial cells and intestinal mucosa. The MICA gene, similar to human leukocyte antigen (HLA) class I, displays a high degree of genetic polymorphism in exons 2, 3, 4, and 5, amounting to 54 alleles. In this study, we investigated the polymorphisms at exons coding for extracellular domains (exons 2, 3, and 4), and the GCT repeat polymorphism at the transmembrane (exon 5) of MICA in 199 unrelated healthy Koreans. Eight alleles were observed in the Korean population, with allele frequencies for MICA*010, MICA*00201, MICA*027, MICA*004, MICA*012, MICA*00801, MICA*00901, and MICA*00701 being 18.3%, 17.8%, 13.6%, 12.3%, 11.1%, 10.8%, 10.6%, and 3.3%, respectively. Strong linkage disequilibria were also observed between the MICA and HLA-B gene-MICA*00201-B58, MICA*004-B44, MICA*00701-B27, MICA*00801-B60, MICA*00901-B51, MICA*010-B62, MICA*012-B54, and MICA*027-B61. In the analysis of the haplotypes of HLA class I genes (HLA-A, B, and C) and the MICA, the most common haplotype was MICA*004-A33-B44-Cw*07, followed by MICA*00201-A2-B58-Cw*0302 and MICA*012-A2-B54-Cw*0102. The MICA null haplotype might be identified in the HLA-B48 homozygous individual. These results will provide an understanding of the role of MICA in transplantation, disease association, and population analyses in Koreans.
Scharner, J; Figeac, N; Ellis, J A; Zammit, P S
2015-06-01
Exon skipping, as a therapy to restore a reading frame or switch protein isoforms, is under clinical trial. We hypothesised that removing an in-frame exon containing a mutation could also improve pathogenic phenotypes. Our model is laminopathies: incurable tissue-specific degenerative diseases associated with LMNA mutations. LMNA encodes A-type lamins, that together with B-type lamins, form the nuclear lamina. Lamins contain an alpha-helical central rod domain composed of multiple heptad repeats. Eliminating LMNA exon 3 or 5 removes six heptad repeats, so shortens, but should not otherwise significantly alter, the alpha-helix. Human Lamin A or Lamin C with a deletion corresponding to amino acids encoded by exon 5 (Lamin A/C-Δ5) localised normally in murine lmna-null cells, rescuing both nuclear shape and endogenous Lamin B1/emerin distribution. However, Lamin A carrying pathogenic mutations in exon 3 or 5, or Lamin A/C-Δ3, did not. Furthermore, Lamin A/C-Δ5 was not deleterious to wild-type cells, unlike the other Lamin A mutants including Lamin A/C-Δ3. Thus Lamin A/C-Δ5 function as effectively as wild-type Lamin A/C and better than mutant versions. Antisense oligonucleotides skipped LMNA exon 5 in human cells, demonstrating the possibility of treating certain laminopathies with this approach. This proof-of-concept is the first to report the therapeutic potential of exon skipping for diseases arising from missense mutations.
Billaut-Laden, Ingrid; Allorge, Delphine; Crunelle-Thibaut, Aurélie; Rat, Emmanuel; Cauffiez, Christelle; Chevalier, Dany; Houdret, Nicole; Lo-Guidice, Jean-Marc; Broly, Franck
2006-08-01
Rhodanese or thiosulfate sulfurtransferase (TST) is a mitochondrial matrix enzyme that plays roles in cyanide detoxification, the formation of iron-sulfur proteins and the modification of sulfur-containing enzymes. Transsulfuration reaction catalyzed by TST is also involved in H(2)S detoxification. To date, no polymorphism of the human TST gene had been reported. We developed a screening strategy based on a PCR-SSCP method to search for mutations in the 3 exons of TST and their proximal flanking regions. This strategy has been applied to DNA samples from 50 unrelated French individuals of Caucasian origin. Eleven polymorphisms consisting in seven nucleotide substitutions in non-coding regions, two silent mutations and two missense mutations were characterized. The functional consequences of the identified mutations were assessed in vivo by measurement of erythrocyte TST activity and/or in vitro using heterologous expression in Saccharomyces cerevisiae or transient transfection assay in HT29 and Caco-2 cell lines. The P(285)A variant appears to encode a protein with a 50% decrease of in vitro intrinsic clearance compared to the wild-type enzyme. Additionally, the six polymorphisms located upstream the ATG initiation codon are responsible for a significant decrease (ranging from 40% to 73%) in promoter activity of a reporter gene compared to the corresponding wild-type sequence. This work constitutes the first report of the existence of a functional genetic polymorphism affecting TST activity and should be of great help to investigate certain disorders for which impairment of CN(-) or H(2)S detoxification have been suggested to be involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amosenko, F.A.; Sazonova, M.A.; Kapranov, N.I.
1995-04-01
Allelic frequencies of three polymorphic markers in the CFTR gene were estimated on chromosomes derived from cystic fibrosis (CF) patients and healthy donors from Moscow and the Moscow region. These polymorphic markers are tetranucleotide tandem repeats GATT in intron 6B, M470V in exon 10, and T854T in exon 14 (fragment A). Frequencies at allele 1 of the M470V marker, along with allele 2 of GATT and T854T, are two times higher for CF patients without {Delta}F508 mutation than for healthy donors, and there is linkage disequilibrium of these alleles of the polymorphic markers analyzed with the CF gene. Allele 1more » of M470V and T854T markers, as well as allele 2 of the GATT marker (six repeats), are absolutely linked to mutation F508 of the CFTR gene. Using the polymorphic markers studied, family analysis of CF was carried out in two families. 10 refs., 1 fig., 1 tab.« less
The DRD4 exon 3 VNTR polymorphism and addiction-related phenotypes: a review
McGeary, John
2009-01-01
In addition to the large literatures on associations of the DRD4 VNTR polymorphism with ADHD and personality traits, there is an emerging literature linking this variant to addiction and addiction-related phenotypes. When only diagnosis-based studies are considered, an inconsistent picture emerges raising doubts as to the relevance of this polymorphism to addiction. However the use of multiple levels of analysis in examining the importance of this polymorphism has raised the possibility of an urge-related “intermediate phenotype” that puts one at risk for developing addiction but may not be found in all persons with an addiction diagnosis. From cellular assays through neuroimaging and behavioral phenotypes, these studies highlight the power of the “intermediate phenotype” approach and suggest a possible explanation of the mixed findings when diagnosis is used as the phenotype. Strengths and weaknesses of alternative DRD4 VNTR genotype grouping strategies are discussed. In sum, converging evidence across multiple methodologies supports the possibility of a robust relationship between the DRD4 exon 3 VNTR polymorphism and urge for addictive substances. PMID:19336242
Sirdah, Mahmoud M; Shubair, Mohammad E; Al-Kahlout, Mustafa S; Al-Tayeb, Jamal M; Prchal, Josef T; Reading, N Scott
2017-07-01
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked inherited enzymopathic disorder affecting more than 500 million people worldwide. It has so far been linked to 217 distinct genetic variants in the exons and exon-intron boundaries of the G6PD gene, giving rise to a wide range of biochemical heterogeneity and clinical manifestations. Reports from different settings suggested the association of intronic and other mutations outside the reading frame of the G6PD gene with reduced enzyme activity and presenting clinical symptoms. The present study aimed to investigate any association of other variations apart of the exonic or exonic intronic boundaries in the development of G6PD deficiency. Sixty-seven unrelated Palestinian children admitted to the pediatric hospital with hemolytic crises due to G6PD deficiency were studied. In our Palestinian cohort of 67 [59 males (M) and 8 females (F)] G6PD-deficient children, previously hospitalized for acute hemolytic anemia due to favism, molecular sequencing of the G6PD gene revealed four cases (3M and 1F) that did not have any of the variants known to cause G6PD deficiency, but the 3' UTR c.*+357A>G (rs1050757) polymorphism in association with IVS 11 (c.1365-13T>C; rs2071429), and c.1311C>T (rs2230037). We now provide an additional evidence form Palestinian G6PD-deficient subjects for a possible role of 3' UTR c.*+357 A>G, c.1365-13T>C, and/or c.1311C>T polymorphism for G6PD deficiency, suggesting that not only a single variation in the exonic or exonic intronic boundaries, but also a haplotype of G6PD should considered as a cause for G6PD deficiency.
Molecular characterization of the vitamin D receptor (VDR) gene in Holstein cows.
Ali, Mayar O; El-Adl, Mohamed A; Ibrahim, Hussam M M; Elseedy, Youssef Y; Rizk, Mohamed A; El-Khodery, Sabry A
2018-06-01
Vitamin D plays a vital role in calcium homeostasis, growth, and immunoregulation. Because little is known about the vitamin D receptor (VDR) gene in cattle, the aim of the present investigation was to present the molecular characterization of exons 5 and 6 of the VDR gene in Holstein cows. DNA extraction, genomic sequencing, phylogenetic analysis, synteny mapping and single nucleotide gene polymorphism analysis of the VDR gene were performed to assess blood samples collected from 50 clinically healthy Holstein cows. The results revealed the presence of a 450-base pair (bp) nucleotide sequence that resembled exons 5 and 6 with intron 5 enclosed between these exons. Sequence alignment and phylogenetic analysis revealed a close relationship between the sequenced VDR region and that found in Hereford cattle. A close association between this region and the corresponding region in small ruminants was also documented. Moreover, a single nucleotide polymorphism (SNP) that caused the replacement of a glutamate with an arginine in the deduced amino acid sequence was detected at position 7 of exon 5. In conclusion, Holstein and Hereford cattle differ with respect to exon 5 of the VDR gene. Phylogenetic analysis of the VDR gene based on nucleotide sequence produced different results from prior analyses based on amino acid sequence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Drögemüller, Cord; Philipp, Ute; Haase, Bianca; Günzel-Apel, Anne-Rose; Leeb, Tosso
2007-01-01
Coat color dilution in several breeds of dog is characterized by a specific pigmentation phenotype and sometimes accompanied by hair loss and recurrent skin inflammation, the so-called color dilution alopecia or black hair follicular dysplasia. Coat color dilution (d) is inherited as a Mendelian autosomal recessive trait. In a previous study, MLPH polymorphisms showed perfect cosegregation with the dilute phenotype within breeds. However, different dilute haplotypes were found in different breeds, and no single polymorphism was identified in the coding sequence that was likely to be causative for the dilute phenotype. We resequenced the 5'-region of the canine MLPH gene and identified a strong candidate single nucleotide polymorphism within the nontranslated exon 1, which showed perfect association to the dilute phenotype in 65 dilute dogs from 7 different breeds. The A/G polymorphism is located at the last nucleotide of exon 1 and the mutant A-allele is predicted to reduce splicing efficiency 8-fold. An MLPH mRNA expression study using quantitative reverse transcriptase-polymerase chain reaction confirmed that dd animals had only about approximately 25% of the MLPH transcript compared with DD animals. These results provide preliminary evidence that the reported regulatory MLPH mutation might represent a causal mutation for coat color dilution in dogs.
Obuchi, N; Takahashi, M; Nouchi, T; Satoh, M; Arimura, T; Ueda, K; Akai, J; Ota, M; Naruse, T; Inoko, H; Numano, F; Kimura, A
2001-06-01
MHC class I chain-related gene A (MICA) is located close to HLA-B gene and expressed in epithelial cells. The MICA gene is reported to be highly polymorphic as are the classical class I genes. To further assess the polymorphism in the MICA gene, we analyzed a total of 60 HLA-homozygous cells for the sequences spanning exons 2-6. In the analysis, four new MICA alleles were identified and six variations were recognized in exon 6. MICA*017, which was identified in three HLA-B57 homozygous cells (DBB, DEM and WIN), differed from MICA*002 in exon 3 and had a guanine deletion at the 3' end of exon 4. MICA*015 identified in an HLA-B45 homozygous cell (OMW) also had the same deletion that causes a frameshift mutation resulting in complete change of the transmembrane region and premature termination in the cytoplasmic tail; these alleles have a long hydrophobic leucine-rich region instead of the alanine repeat in the transmembrane region and terminate at the second position in the cytoplasmic domain. The frameshift deletion was found only in HLA-B45- or -B57-positive panels tested, suggesting a strong linkage disequilibrium between the deletion and B45 or B57. MICA*048, which was different in exon 5 from MICA*008, was identified in an HLA-B61 homozygous cell (TA21), while MICA*00901 identified in HLA-B51 homozygous cells (LUY and KT2) was distinguished from MICA*009 by exon 6.
Dutta, Shruti; Guhathakurta, Subhrangshu; Sinha, Swagata; Chatterjee, Anindita; Ahmed, Shabina; Ghosh, Saurabh; Gangopadhyay, Prasanta K; Singh, Manoranjan; Usha, Rajamma
2007-01-05
Autism is a neurodevelopmental disorder with high heritability factor and the reelin gene, which codes for an extracellular matrix protein involved with neuronal migration and lamination is being investigated as a positional and functional candidate gene for autism. It is located on chromosome 7q22 within the autism susceptible locus (AUTS1); identified in earlier genome scans and several investigations have been carried out on various ethnic groups to assess possible association and linkage of the gene with autism. However, the findings are still inconclusive. In the present study which represents the first report of such a study on the Indian population, genotyping analyses of CGG repeat polymorphism at 5'UTR, two single nucleotide polymorphisms (SNP) at exon 6 and exon 50 were performed in 73 autistic subjects, 129 parents, and 80 controls. The allelic distributions of the repeat polymorphism and exon 50 T/C SNP were quite different from earlier reports in other populations. Allelic and genotypic distribution of the markers did not show any differences between the cases and controls. While our preliminary data on family-based association studies on 58 trios showed no preferential transmission of any allele from the parents to the affected offspring, TDT and HHRR analyses revealed significant paternal transmission distortions for 10- and > or =11-repeat alleles of CGG repeat polymorphism. Thus, the present study suggests that 5'UTR of reelin gene may have a role in the susceptibility towards autism with the paternal transmission and non-transmission respectively of 10- and > or =11-repeat alleles, to the affected offspring.
Effects of mannose-binding lectin polymorphisms on irinotecan-induced febrile neutropenia.
van der Bol, Jessica M; de Jong, Floris A; van Schaik, Ron H; Sparreboom, Alex; van Fessem, Marianne A; van de Geijn, Fleur E; van Daele, Paul L; Verweij, Jaap; Sleijfer, Stefan; Mathijssen, Ron H
2010-01-01
Mannose-binding lectin (MBL) is important in the innate immune response. MBL2 gene polymorphisms affect MBL expression, and genotypes yielding low MBL levels have been associated with an elevated risk for infections in hematological cancer patients undergoing chemotherapy. However, these reported associations are inconsistent, and data on patients with solid tumors are lacking. Here, we investigated the effects of MBL2 genotypes on irinotecan-induced febrile neutropenia in patients with solid tumors. Irinotecan-treated patients were genotyped for the MBL2 gene. Two promoter (-550 H/L and -221 X/Y) and three exon polymorphisms (52 A/D, 54 A/B, and 57 A/C) were determined, together with known risk factors for irinotecan-induced toxicity. Neutropenia and febrile neutropenia were recorded during the first course. Of the 133 patients, 28% experienced severe neutropenia and 10% experienced febrile neutropenia. No associations were found between exon polymorphisms and febrile neutropenia. However, patients with the H/H promoter genotype, associated with high MBL levels, experienced significantly more febrile neutropenia than patients with the H/L and L/L genotypes (20% versus 13% versus 5%). Moreover, patients with the HYA haplotype encountered significantly more febrile neutropenia than patients without this high MBL-producing haplotype (16% versus 4%). In the subgroup with wild-type exon polymorphisms (A/A), patients with the high MBL promoter phenotype had the highest incidence of febrile neutropenia, regardless of known risk factors. Patients with high MBL2 promoter genotypes and haplotypes seem more at risk for developing febrile neutropenia. If confirmed, these preliminary findings may contribute to more individualized approaches of irinotecan treatment.
Effects of PTCs on nonsense-mediated mRNA decay are dependent on PTC location.
Moon, Heegyum; Zheng, Xuexiu; Loh, Tiing Jen; Jang, Ha Na; Liu, Yongchao; Jung, Da-Woon; Williams, Darren R; Shen, Haihong
2017-03-01
The récepteur d'origine nantais (RON) gene is a proto-oncogene that is responsible for encoding the human macrophage-stimulating protein (MSP) 1 receptor. MSP activation induces RON-mediated cell dissociation, migration and matrix invasion. Isoforms of RON that exclude exons 5 and 6 encode the RONΔ160 protein, which promotes cell transformation in vitro and tumor metastasis in vivo . Premature termination codons (PTCs) in exons activate the nonsense-mediated mRNA decay (NMD) signaling pathway. The present study demonstrated that PTCs at various locations in the alternative exons 5 and 6 could induce NMD of the majority of the spliced, or partially spliced, isoforms. However, the isoforms that excluded exon 6 or exons 5 and 6 were markedly increased when produced from mutated minigenes with inserted PTCs. Furthermore, the unspliced isoform of intron 5 was not observed to be decreased by the presence of PTCs. Notably, these effects may be dependent on the location of the PTCs. The current study demonstrated a novel mechanism underlying the regulation of NMD in alternative splicing.
Mao, H G; Dong, X Y; Cao, H Y; Xu, N Y; Yin, Z Z
2018-04-01
1. Diacylglycerol acyltransferase (DGAT) plays an important role in the synthesis of triacylglycerol, but its effects on meat quality and carcass composition in pigeons are unclear. In this study, single-nucleotide polymorphisms (SNPs) in the exons of the DGAT2 gene were identified and analysed by using DNA sequencing methods in 200 domestic pigeons (Columba livia). The associations between DGAT2 polymorphisms and carcass and meat quality traits were also analysed. 2. Sequencing results showed that 5 nucleotide mutations were detected in exons 3, 4, 5 and 6 of the DGAT2 gene. The analysis revealed three genotypes (AA, AB and BB) in G18398T and G22484C, in which the AA genotype and A allele had the highest frequency. 3. In the SNP of G18398T located in exon 5, individuals with genotype BB had significantly higher meat quality and lower abdominal fat content than those with AA or AB genotype. In the SNP of G22484C located in exon 6, the genotype AA showed highest carcass trait values, while the genotype BB represented better meat quality, compared to AA and AB genotypes. 4. The results imply that DGAT2 gene has a close relationship with carcass and meat quality traits in pigeons, and the SNPs of G18398T and G22484C can be used as genetic markers for marker-assisted breeding in pigeon.
Juvenile Paget’s Disease With Heterozygous Duplication In TNFRSF11A Encoding RANK
Whyte, Michael P.; Tau, Cristina; McAlister, William H.; Zhang, Xiafang; Novack, Deborah V.; Preliasco, Virginia; Santini-Araujo, Eduardo; Mumm, Steven
2014-01-01
Mendelian disorders of RANKL/OPG/RANK signaling feature the extremes of aberrant osteoclastogenesis and cause either osteopetrosis or rapid turnover skeletal disease. The patients with autosomal dominant accelerated bone remodeling have familial expansile osteolysis, early-onset Paget’s disease of bone, expansile skeletal hyperphosphatasia, or panostotic expansile bone disease due to heterozygous 18-, 27-, 15-, and 12-bp insertional duplications, respectively, within exon 1 of TNFRSF11A that encodes the signal peptide of RANK. Juvenile Paget’s disease (JPD), an autosomal recessive disorder, manifests extremely fast skeletal remodeling, and is usually caused by loss-of-function mutations within TNFRSF11B that encodes OPG. These disorders are ultra-rare. A 13-year-old Bolivian girl was referred at age 3 years. One femur was congenitally short and curved. Then, both bowed. Deafness at age 2 years involved missing ossicles and eroded cochleas. Teeth often had absorbed roots, broke, and were lost. Radiographs had revealed acquired tubular bone widening, cortical thickening, and coarse trabeculation. Biochemical markers indicated rapid skeletal turnover. Histopathology showed accelerated remodeling with abundant osteoclasts. JPD was diagnosed. Immobilization from a femur fracture caused severe hypercalcemia that responded rapidly to pamidronate treatment followed by bone turnover marker and radiographic improvement. No TNFRSF11B mutation was found. Instead, a unique heterozygous 15-bp insertional tandem duplication (87dup15) within exon 1 of TNFRSF11A predicted the same pentapeptide extension of RANK that causes expansile skeletal hyperphosphatasia (84dup15). Single nucleotide polymorphisms in TNFRSF11A and TNFRSF11B possibly impacted her phenotype. Our findings: i) reveal that JPD can be associated with an activating mutation within TNFRSF11A, ii) expand the range and overlap of phenotypes among the mendelian disorders of RANK activation, and iii) call for mutation analysis to improve diagnosis, prognostication, recurrence risk assessment, and perhaps treatment selection among the monogenic disorders of RANKL/OPG/RANK activation. PMID:25063546
Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen
2008-01-01
Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.
Pydiura, Nikolay; Pirko, Yaroslav; Galinousky, Dmitry; Postovoitova, Anastasiia; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav
2018-06-08
Flax (Linum usitatissimum L.) is a valuable food and fiber crop cultivated for its quality fiber and seed oil. α-, β-, γ-tubulins and actins are the main structural proteins of the cytoskeleton. α- and γ-tubulin and actin genes have not been characterized yet in the flax genome. In this study, we have identified 6 α-tubulin genes, 13 β-tubulin genes, 2 γ-tubulin genes, and 15 actin genes in the flax genome and analysed the phylogenetic relationships between flax and A. thaliana tubulin and actin genes. Six α-tubulin genes are represented by 3 paralogous pairs, among 13 β-tubulin genes 7 different isotypes can be distinguished, 6 of which are encoded by two paralogous genes each. γ-tubulin is represented by a paralogous pair of genes one of which may be not functional. Fifteen actin genes represent 7 paralogous pairs - 7 actin isotypes and a sequentially duplicated copy of one of the genes of one of the isotypes. Exon-intron structure analysis has shown intron length polymorphism within the β-tubulin genes and intron number variation among the α-tubulin gene: 3 or 4 introns are found in two or four genes, respectively. Intron positioning occurs at conservative sites, as observed in numerous other plant species. Flax actin genes show both intron length polymorphisms and variation in the number of intron that may be 2 or 3. These data will be useful to support further studies on the specificity, functioning, regulation and evolution of the flax cytoskeleton proteins. This article is protected by copyright. All rights reserved.
Behl, Jyotsna Dhingra; Mishra, Priyanka; Verma, N K; Niranjan, S K; Dangi, P S; Sharma, Rekha; Behl, Rahul
2016-03-15
The present study was undertaken to characterize the genetic variation present in lymphoxin A gene (LTA gene) encoding for the lymphotoxin A protein also known as tumor necrosis factor beta, a cytokine produced by lymphocytes, known to be cytotoxic for a wide range of tumor cells both in vitro and in vivo, and, which is essential for normal immunological development; in 40 animals of 5 diverse Bos indicus Indian zebu cattle breeds. These breeds survive under the harsh and tough tropical climatic conditions of various parts of the Indian subcontinent. The LTA gene in the present study was observed to contain 33 SNPs and 3 small insertion/deletion polymorphisms. Four SNPs occurred in the coding regions of the gene viz. g.1327A>G and g.1400C>T in exon 2 and g.1840C>T and g.1942C>T in exon 3, of which the SNP g.1327A>G in exon 2 resulted in a non-synonymous amino acid change G38D. This amino acid change was however predicted not be affecting the protein function in any manner. The gene contained putative transcription factor binding sites for the c-Re1 and for Pax-4 transcription factors. A putative promoter region was also predicted on the reverse DNA strand from position 894 to 644. Several repeat elements and microsatellite repeats were detected to be occurring across the 3.2kb LTA gene sequence. The study showed the occurrence of 40 genotypes and 48 most probable haplotypes. The genotypes at the observed SNP positions in the LTA gene were in near Hardy-Weinberg equilibrium. A negative Tajima's D value that was not significant statistically at P>0.10 indicated that the neutral mutation hypothesis could not be excluded. The genetic variations observed in the LTA gene in the present study have not been reported earlier and these could possibly be used as molecular markers for further studies involving association of the gene variability with disease resistance/tolerance traits. Copyright © 2015 Elsevier B.V. All rights reserved.
SEQassembly: A Practical Tools Program for Coding Sequences Splicing
NASA Astrophysics Data System (ADS)
Lee, Hongbin; Yang, Hang; Fu, Lei; Qin, Long; Li, Huili; He, Feng; Wang, Bo; Wu, Xiaoming
CDS (Coding Sequences) is a portion of mRNA sequences, which are composed by a number of exon sequence segments. The construction of CDS sequence is important for profound genetic analysis such as genotyping. A program in MATLAB environment is presented, which can process batch of samples sequences into code segments under the guide of reference exon models, and splice these code segments of same sample source into CDS according to the exon order in queue file. This program is useful in transcriptional polymorphism detection and gene function study.
Cloning and sequencing the genes encoding goldfish and carp ependymin.
Adams, D S; Shashoua, V E
1994-04-20
Ependymins (EPNs) are brain glycoproteins thought to function in optic nerve regeneration and long-term memory consolidation. To date, epn genes have been characterized in two orders of teleost fish. In this study, polymerase chain reactions (PCR) were used to amplify the complete 1.6-kb epn genes, gf-I and cc-I, from genomic DNA of Cypriniformes, goldfish and carp, respectively. Amplified bands were cloned and sequenced. Each gene consists of six exons and five introns. The exon portion of gf-I encodes a predicted 215-amino-acid (aa) protein previously characterized as GF-I, while cc-I encodes a predicted 215-aa protein 95% homologous to GF-I.
Pourvali, Katayoun; Abbasi, Mehrnaz; Mottaghi, Azadeh
2016-01-01
Diabetes Mellitus (DM) is a chronic heterogeneous disorder and oxidative stress is a key participant in the development and progression of it and its complications. Anti-oxidant status can affect vulnerability to oxidative damage, onset and progression of diabetes and diabetes complications. Superoxide dismutase 2 (SOD2) is one of the major antioxidant defense systems against free radicals. SOD2 is encoded by the nuclear SOD2 gene located on the human chromosome 6q25 and the Ala16Val polymorphism has been identified in exon 2 of the human SOD2 gene. Ala16Val (rs4880) is the most commonly studied SOD2 single nucleotide polymorphism (SNP) in SOD2 gene. This SNP changes the amino acid at position 16 from valine (Val) to alanine (Ala), which has been shown to cause a conformational change in the target sequence of manganese superoxide dismutase (MnSOD) and also affects MnSOD activity in mitochondria. Ala16Val SNP and changes in the activity of the SOD2 antioxidant enzyme have been associated with altered progression and risk of different diseases. Association of this SNP with diabetes and some of its complications have been studied in numerous studies. This review evaluated how rs4880, oxidative stress and antioxidant status are associated with diabetes and its complications although some aspects of this line still remain unclear. PMID:27141263
Yu, Wei; Tu, Dan; Hong, Fuchang; Wang, Jing; Liu, Xiaoli; Cai, Yumao; Xu, Ruiwei; Zhao, Guanglu; Wang, Feng; Pan, Hong; Wu, Shinan; Feng, Tiejian; Wang, Binbin
2015-09-01
Male sexual orientation is thought to have a genetic component. However, previous studies have failed to generate positive results from among candidate genes. Catechol-O-methyltransferase (COMT), located on chromosome 22, has six exons, spans 27 kb, and encodes a protein of 271 amino acids. COMT has an important role in regulating the embryonic levels of catecholamine neurotransmitters (such as dopamine, norepinephrine, and epinephrine) and estrogens. COMT is also thought to be related to sexual orientation. This study aimed to investigate the relationship between the COMT Val158Met variant and male sexual orientation. We performed association analysis of the COMT gene single nucleotide polymorphism, Val158Met, in 409 homosexual cases and 387 heterosexual control Chinese men. COMT polymorphism status was determined using a polymerase chain reaction-based assay. Polymerase chain reaction was performed to genotype the COMT Val158Met polymorphism. The frequency differences of the genotype and alleles distribution between the male homosexual and control groups. Significant differences, both in genotype and alleles, between male homosexual individuals and controls indicated a genetic component related to male homosexuality. The Val allele recessive model could be an interrelated genetic model of the cause of male homosexuality. The COMT Val158Met variant might be associated with male sexual orientation and a recessive model was suggested. © 2015 International Society for Sexual Medicine.
Mömke, Stefanie; Kerkmann, Andrea; Wöhlke, Anne; Ostmeier, Miriam; Hewicker-Trautwein, Marion; Ganter, Martin; Kijas, James; Distl, Ottmar
2011-01-01
Junctional epidermolysis bullosa (JEB) is a hereditary mechanobullous skin disease in humans and animals. A Herlitz type JEB was identified in German Black Headed Mutton (BHM) sheep and affected lambs were reproduced in a breeding trial. Affected lambs showed skin and mucous membranes blistering and all affected lambs died within the first weeks of life. The pedigree data were consistent with a monogenic autosomal recessive inheritance. Immunofluorescence showed a reduced expression of laminin 5 protein which consists of 3 subunits encoded by the genes LAMA3, LAMB3 and LAMC2. We screened these genes for polymorphisms. Linkage and genome-wide association analyses identified LAMC2 as the most likely candidate for HJEB. A two base pair deletion within exon 18 of the LAMC2 gene (FM872310:c.2746delCA) causes a frameshift mutation resulting in a premature stop codon (p.A928*) 13 triplets downstream of this mutation and in addition, introduces an alternative splicing of exon 18 LAMC2. This deletion showed a perfect co-segregation with HJEB in all 740 analysed BHM sheep. Identification of the LAMC2 deletion means an animal model for HJEB is now available to develop therapeutic approaches of relevance to the human form of this disease. PMID:21573221
Structure and polymorphism of the mouse myelin/oligodendrocyte glycoprotein gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daubas, P.; Pham-Dinh, D.; Dautigny, A.
1994-09-01
The authors have isolated and characterized genomic clones containing the mouse myelin/oligodendrocyte glycoprotein (MOG) gene. It spans a region of 12.5 kb and consists of eight exons. Its exon-intron structure differs from that of classical MHC-class I genes, with which it is linked in the mouse genome. Nucleotide sequencing of the 5{prime} flanking region revelas that it contains several putative protein-binding sites, some of them in common with other myelin gene promoters. One intragenic polymorphism has been identified: it consists of a GA repeat, defining at least three alleles in mouse inbred strains, and is easily detectable using the polymerasemore » chain reaction method.« less
Yang, Q L; Huang, X Y; Kong, J J; Zhao, S G; Liu, L X; Gun, S B
2016-08-19
Piglet diarrhea is one of the primary factors that affects the benefits of the swine industry. Recent studies have shown that exon 2 of the swine leukocyte antigen-DQA gene is associated with piglet resistance to diarrhea; however, the contributions of additional exon coding regions of this gene remain unclear. Here, we detected and sequenced variants in the exon 3 region and examined their associations with diarrhea infection in 425 suckling piglets using the polymerase chain reaction-single-strand conformational polymorphism and sequencing analysis. The results revealed that exon 3 of the swine leukocyte antigen-DQA gene is highly polymorphic and pivotal to both diarrhea susceptibility and resistance in piglets. We identified 14 genotypes (AA, AB, BB, BC, CC, EE, EF, BE, BF, CF, DD, DH, GG, and GF) and eight alleles (A-H) that were generated by 14 nucleotide variants, eight of which were novel, and three nucleotide deletions. Statistical analyses revealed that the genotypes AB and EF were associated with resistance to diarrheal disease (P < 0.05), and the genotype DD may contribute to diarrhea susceptibility but was unique to Large White pigs (P > 0.05). These results elucidate the genetic and immunological background to piglet diarrhea, and provide useful information for resistance breeding programs.
Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.
Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M
1991-02-15
The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.
[Variational structure and function of products from IGF-1 gene].
Zhang, Bing-Bing; Wang, Yuan-Liang; Fan, Kai
2008-07-01
The IGF-1 gene, containing six exons, is characterized by the generation of multiple heterogeneous mRNA transcripts and translations. The IGF-1 isoforms being produced arise from the combination of multiple transcription initiation sites, alternate splicing, and different polyadenylation signals. These different mRNAs are translated to distinct circulating and local isoforms. The circulating mature IGF-1 is encoded by exons 3 and 4, and its biological function in growth and development has been intensively studied. The local isoforms of IGF-1 contains the part encoded by exons 3 and 4, and moreover the alternate extension peptide at carboxy-terminal, encoded by exons 5 and 6, is also included in the isoforms. And the functions of local IGF-1 isoforms and E-peptides have been overlooked until recently. Recently investigation shows that cell discrepant response to the overexpression of different IGF-1 isoforms and the E-peptides, and more interestingly, IGF-1Ea, IGF-1Eb (MGF) and MGF E-peptide have potential to promote skeletal muscle regeneration, to prevent cardiac muscle loss and neural damage. The acting mechanism of IGF-1 isoforms differ from the IGF-1, and the isoforms functioned probably by binding to specific E-peptide receptor, instead of binding to the IGF-1R.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, J.; Liu, C.; Koopman, W.J.
Ligation of the Fas cell-surface molecule induces apoptosis. Defective Fas-mediated apoptosis has been associated with spontaneous autoimmunity in mice. Using human Fas/Apo-1 cDNA as a probe, the authors have molecularly cloned and characterized the human Fas chromosomal gene. The gene consists of nine exons and spans more than 26 kilobases of DNA. The lengths of introns vary from > 14 kilobases at the 5` end of the gene to 152 base pairs upstream of the exon encoding the transmembrane domain. The domain structure of the human Fas is encoded by an exon or a set of exons. Primer extension analysismore » revealed three major transcription initiation sites. The promoter region lacked canonical {open_quotes}TATA{close_quotes} and {open_quotes}CAAT{close_quotes} boxes but was a {open_quotes}GC-rich{close_quotes} sequence, and contained consensus sequences for AP-1, GF-1, NY-Y, CP-2, EBP20, and c-myb. These data provide the first characterization of the human Fas gene and insight into its regulatory region. 54 refs., 3 figs., 1 tab.« less
Cloning, tissue expression and polymorphisms of chicken Krüppel-like factor 7 gene.
Zhang, Zhi-Wei; Wang, Zhi-Peng; Zhang, Kun; Wang, Ning; Li, Hui
2013-07-01
Krüppel-like factor 7 (KLF7) has been extensively studied in mammalian species, but its role in birds is still unclear. In the current study, cloning and sequencing showed that the full-length coding region of chicken KLF7 (Gallus gallus KLF7, gKLF7) was 891 bp long, encoding 296 amino acids. In addition, real-time RT-PCR analysis showed that gKLF7 was broadly expressed in all 15 chicken tissues selected, and its expression was significantly different in spleen, proventriculus, abdominal fat, brain, leg muscle, gizzard and heart between fat and lean broilers at 7 weeks of age. Additionally, one novel single nucleotide polymorphism (SNP), XM_426569.3: c. A141G, was identified in the second exon of gKLF7. Association analysis showed that this locus was significantly associated with fatness traits in Arbor Acres broiler random population and the eighth generation of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) population (P < 0.05). These results suggest that gKLF7 might be a candidate gene for chicken fatness traits. © 2013 Japanese Society of Animal Science.
Shirak, A; Golik, M; Lee, B-Y; Howe, A E; Kocher, T D; Hulata, G; Ron, M; Seroussi, E
2008-11-01
Lipocalins are involved in the binding of small molecules like sex steroids. We show here that the previously reported tilapia male-specific protein (MSP) is a lipocalin encoded by a variety of paralogous and homologous genes in different tilapia species. Exon-intron boundaries of MSP genes were typical of the six-exon genomic structure of lipocalins, and the transcripts were capable of encoding 200 amino-acid polypeptides that consisted of a putative signal peptide and a lipocalin domain. Cysteine residues are conserved in positions analogous to those forming the three disulfide bonds characteristic of the ligand pocket. The calculated molecular mass of the secreted MSP (20.4 kDa) was less than half of that observed, suggesting that it is highly glycosylated like its homologue tributyltin-binding protein. Analysis of sequence variations revealed three types of paralogs MSPA, MSPB and MSPC. Expression of both MSPA and MSPB was detected in testis. In haploid Oreochromis niloticus embryos, each of these types consisted of two closely related paralogs, and asymmetry between MSP copy numbers on the maternal (six copies) and the paternal (three copies) chromosomes was observed. Using this polymorphism we mapped MSPA and MSPC to linkage group 12 of an F(2) mapping family derived from a cross between O. niloticus and Oreochromis aureus. Females with high MSP copy number were more frequent by more than twofold than males. Gender-MSPC combinations showed significant deviation from expected Mendelian segregation (P=0.009) suggesting elimination of males with MSPC copies. We discuss different hypotheses to explain this elimination, including possibility for allelic conflict resulted by the hybridization.
Genetic and functional analysis of the gene encoding GAP-43 in schizophrenia.
Shen, Yu-Chih; Tsai, Ho-Min; Cheng, Min-Chih; Hsu, Shih-Hsin; Chen, Shih-Fen; Chen, Chia-Hsiang
2012-02-01
In earlier reports, growth-associated protein 43 (GAP-43) has been shown to be critical for initial establishment or reorganization of synaptic connections, a process thought to be disrupted in schizophrenia. Additionally, abnormal GAP-43 expression in different brain regions has been linked to this disorder in postmortem brain studies. In this study, we investigated the involvement of the gene encoding GAP-43 in the susceptibility to schizophrenia. We searched for genetic variants in the promoter region and 3 exons (including both UTR ends) of the GAP-43 gene using direct sequencing in a sample of patients with schizophrenia (n=586) and non-psychotic controls (n=576), both being Han Chinese from Taiwan, and conducted an association and functional study. We identified 11 common polymorphisms in the GAP-43 gene. SNP and haplotype-based analyses displayed no associations with schizophrenia. Additionally, we identified 4 rare variants in 5 out of 586 patients, including 1 variant located at the promoter region (c.-258-4722G>T) and 1 synonymous (V110V) and 2 missense (G150R and P188L) variants located at exon 2. No rare variants were found in the control subjects. The results of the reporter gene assay demonstrated that the regulatory activity of construct containing c.-258-4722T was significantly lower as compared to the wild type construct (c.-258-4722G; p<0.001). In silico analysis also demonstrated the functional relevance of other rare variants. Our study lends support to the hypothesis of multiple rare mutations in schizophrenia, and it provides genetic clues that indicate the involvement of GAP-43 in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.
Effects of Mannose-Binding Lectin Polymorphisms on Irinotecan-Induced Febrile Neutropenia
de Jong, Floris A.; van Schaik, Ron H.; Sparreboom, Alex; van Fessem, Marianne A.; van de Geijn, Fleur E.; van Daele, Paul L.; Verweij, Jaap; Sleijfer, Stefan; Mathijssen, Ron H.
2010-01-01
Objective. Mannose-binding lectin (MBL) is important in the innate immune response. MBL2 gene polymorphisms affect MBL expression, and genotypes yielding low MBL levels have been associated with an elevated risk for infections in hematological cancer patients undergoing chemotherapy. However, these reported associations are inconsistent, and data on patients with solid tumors are lacking. Here, we investigated the effects of MBL2 genotypes on irinotecan-induced febrile neutropenia in patients with solid tumors. Patients and Methods. Irinotecan-treated patients were genotyped for the MBL2 gene. Two promoter (−550 H/L and −221 X/Y) and three exon polymorphisms (52 A/D, 54 A/B, and 57 A/C) were determined, together with known risk factors for irinotecan-induced toxicity. Neutropenia and febrile neutropenia were recorded during the first course. Results. Of the 133 patients, 28% experienced severe neutropenia and 10% experienced febrile neutropenia. No associations were found between exon polymorphisms and febrile neutropenia. However, patients with the H/H promoter genotype, associated with high MBL levels, experienced significantly more febrile neutropenia than patients with the H/L and L/L genotypes (20% versus 13% versus 5%). Moreover, patients with the HYA haplotype encountered significantly more febrile neutropenia than patients without this high MBL-producing haplotype (16% versus 4%). In the subgroup with wild-type exon polymorphisms (A/A), patients with the high MBL promoter phenotype had the highest incidence of febrile neutropenia, regardless of known risk factors. Conclusion. Patients with high MBL2 promoter genotypes and haplotypes seem more at risk for developing febrile neutropenia. If confirmed, these preliminary findings may contribute to more individualized approaches of irinotecan treatment. PMID:20930093
Zhang, Yang; Zhu, Zhen; Xu, Qi; Chen, Guohong
2014-01-07
Primers based on the cDNA sequence of the goose growth hormone (GH) gene in GenBank were designed to amplify exon 2 of the GH gene in Huoyan goose. A total of 552 individuals were brooded in one batch and raised in Liaoning and Jiangsu Provinces, China. Single nucleotide polymorphisms (SNPs) of exon 2 in the GH gene were detected by the polymerase chain reaction (single strand conformation polymorphism method). Homozygotes were subsequently cloned, sequenced and analyzed. Two SNP mutations were detected, and 10 genotypes (referred to as AA, BB, CC, DD, AB, AC, AD, BC, BD and CD) were obtained. Allele D was predominant, and the frequencies of the 10 genotypes fit the Hardy-Weinberg equilibrium in the male, female and whole populations according to the chi-square test. Based on SNP types, the 10 genotypes were combined into three main genotypes. Multiple comparisons were carried out between different genotypes and production traits when the geese were 10 weeks old. Some indices of production performance were significantly (p < 0.05) associated with the genotype. Particularly, geese with genotype AB or BB were highly productive. Thus, these genotypes may serve as selection markers for production traits in Huoyan geese.
NASA Astrophysics Data System (ADS)
Ma, Ruiqin; He, Feng; Wen, Haishen; Li, Jifang; Shi, Bao; Shi, Dan; Liu, Miao; Mu, Weijie; Zhang, Yuanqing; Hu, Jian; Han, Weiguo; Zhang, Jianan; Wang, Qingqing; Yuan, Yuren; Liu, Qun
2012-03-01
As a specific gene of fish, cytochrome P450c17-II ( CYP17-II) gene plays a key role in the growth, development an reproduction level of fish. In this study, the single-stranded conformational polymorphism (SSCP) technique was used to characterize polymorphisms within the coding region of CYP17-II gene in a population of 75 male Japanese flounder ( Paralichthys olivaceus). Three single nucleotide polymorphisms (SNPs) were identified in CYP17-II gene of Japanese flounder. They were c.G594A (p.G188R), c.G939A and c.G1502A (p.G490D). SNP1 (c.G594A), located in exon 4 of CYP17-II gene, was significantly associated with gonadosomatic index (GSI). Individuals with genotype GG of SNP1 had significantly lower GSI ( P < 0.05) than those with genotype AA or AG. SNP2 (c.G939A) located at the CpG island of CYP17-II gene. The mutation changed the methylation of exon 6. Individuals with genotype AA of SNP2 had significantly lower serum testosterone (T) level and hepatosomatic index (HSI) compared to those with genotype GG. The results suggested that SNP2 could influence the reproductive endocrine of male Japanese flounder. However, the SNP3 (c.G1502A) located in exon 9 did not affect the four measured reproductive traits. This study showed that CYP17-II gene could be a potentially useful candidate gene for the research of genetic breeding and physiological aspects of Japanese flounder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, E.C.C.; Mullersman, J.E.; Thomas, M.L.
1993-07-01
The leukocyte common antigen-related protein tyrosine phosphatase (LRP) is a widely expressed transmembrane glycoprotein thought to be involved in cell growth and differentiation. Similar to most other transmembrane protein tyrosine phosphatases, LRP contains two tandem cytoplasmic phosphatase domains. To understand further the regulation and evolution of LRP, the authors have isolated and characterized mouse [lambda] genomic clones. Thirteen genomic clones could be divided into two non-overlapping clusters. The first cluster contained the transcription initiation site and the exon encoding most of the 5[prime] untranslated region. The second cluster contained the remaining exons encoding the protein and the 3[prime] untranslated region.more » The gene consists of 22 exons spanning over 75 kb. The distance between exon 1 and exon 2 is at least 25 kb. Characterization of the 5[prime] ends of LRP mRNA by S1 nuclease protection identifies putative initiation start sites within a G/C-rich region. The upstream region does not contain a TATA box. Comparison of the LRP gene structure to the mammalian protein tyrosine phosphatase gene, CD45, shows striking similarities in size and genomic organization. 29 refs., 5 figs., 1 tab.« less
Han, Xin-Rui; Wen, Xin; Wang, Shan; Fan, Shao-Hua; Zhuang, Juan; Wang, Yong-Jian; Zhang, Zi-Feng; Li, Meng-Qiu; Hu, Bin; Shan, Qun; Sun, Chun-Hui; Bao, Ya-Xing; Wu, Dong-Mei; Lu, Jun; Zheng, Yuan-Lin
2017-08-04
Graves' disease is an autoimmune process in which the thyroid gland is triggered by autoantibodies, resulting in hyperthyroidism. The purpose of the present study is to elucidate whether exon-1 49 A/G and promoter region 318C/T polymorphisms in the CTLA-4 gene. This study consisted of 653 eligible patients with Graves' disease. After receiving 131I radionuclide therapy, these patients were classified into the remission and non-remission groups. A logistic regression-based model was used to analyze independent factors affecting the patient response to 131I radionuclide therapy. The results showed that CTLA-4 49 A/G was closely related to the efficacy of 131 I treatment for Graves' disease (AG + GG vs. AA: OR = 6.543, 95%CI = 2.611 ∼ 16.40, P < 0.001; G vs. A: OR = 3.482, 95%CI = 2.457 ∼ 4.934, P < 0.001). Moreover, the findings revealed that haplotype A-C (P < 0.001, OR = 3.592, 95%CI: 2.451 ∼ 5.262) and G-C (P < 0.001, OR = 0.282, 95%CI: 0.204 ∼ 0.391) were associated with the efficacy of 131 I therapy in treating Graves' disease. Logistic regression analysis indicated that thyroid weight (OR = 0.963, 95%CI = 0.944 ∼ 0.982, P < 0.001) and CTLA-4 exon-1 49 A/G polymorphism (OR = 0.334, 95%CI = 0.233 ∼ 0.478, P < 0.001) independently affect the efficacy of 131 I therapy in Graves' disease. These data indicated that CTLA-4 exon-1 49 A/G polymorphism may be associated with patient response to radionuclide 131 I therapy in Graves' disease. © 2017 Wiley Periodicals, Inc.
Evaluating the protein coding potential of exonized transposable element sequences
Piriyapongsa, Jittima; Rutledge, Mark T; Patel, Sanil; Borodovsky, Mark; Jordan, I King
2007-01-01
Background Transposable element (TE) sequences, once thought to be merely selfish or parasitic members of the genomic community, have been shown to contribute a wide variety of functional sequences to their host genomes. Analysis of complete genome sequences have turned up numerous cases where TE sequences have been incorporated as exons into mRNAs, and it is widely assumed that such 'exonized' TEs encode protein sequences. However, the extent to which TE-derived sequences actually encode proteins is unknown and a matter of some controversy. We have tried to address this outstanding issue from two perspectives: i-by evaluating ascertainment biases related to the search methods used to uncover TE-derived protein coding sequences (CDS) and ii-through a probabilistic codon-frequency based analysis of the protein coding potential of TE-derived exons. Results We compared the ability of three classes of sequence similarity search methods to detect TE-derived sequences among data sets of experimentally characterized proteins: 1-a profile-based hidden Markov model (HMM) approach, 2-BLAST methods and 3-RepeatMasker. Profile based methods are more sensitive and more selective than the other methods evaluated. However, the application of profile-based search methods to the detection of TE-derived sequences among well-curated experimentally characterized protein data sets did not turn up many more cases than had been previously detected and nowhere near as many cases as recent genome-wide searches have. We observed that the different search methods used were complementary in the sense that they yielded largely non-overlapping sets of hits and differed in their ability to recover known cases of TE-derived CDS. The probabilistic analysis of TE-derived exon sequences indicates that these sequences have low protein coding potential on average. In particular, non-autonomous TEs that do not encode protein sequences, such as Alu elements, are frequently exonized but unlikely to encode protein sequences. Conclusion The exaptation of the numerous TE sequences found in exons as bona fide protein coding sequences may prove to be far less common than has been suggested by the analysis of complete genomes. We hypothesize that many exonized TE sequences actually function as post-transcriptional regulators of gene expression, rather than coding sequences, which may act through a variety of double stranded RNA related regulatory pathways. Indeed, their relatively high copy numbers and similarity to sequences dispersed throughout the genome suggests that exonized TE sequences could serve as master regulators with a wide scope of regulatory influence. Reviewers: This article was reviewed by Itai Yanai, Kateryna D. Makova, Melissa Wilson (nominated by Kateryna D. Makova) and Cedric Feschotte (nominated by John M. Logsdon Jr.). PMID:18036258
Identification of true EST alignments for recognising transcribed regions.
Ma, Chuang; Wang, Jia; Li, Lun; Duan, Mo-Jie; Zhou, Yan-Hong
2011-01-01
Transcribed regions can be determined by aligning Expressed Sequence Tags (ESTs) with genome sequences. The kernel of this strategy is to effectively distinguish true EST alignments from spurious ones. In this study, three measures including Direction Check, Identity Check and Terminal Check were introduced to more effectively eliminate spurious EST alignments. On the basis of these introduced measures and other widely used measures, a computational tool, named ESTCleanser, has been developed to identify true EST alignments for obtaining reliable transcribed regions. The performance of ESTCleanser has been evaluated on the well-annotated human ENCyclopedia of DNA Elements (ENCODE) regions using human ESTs in the dbEST database. The evaluation results show that the accuracy of ESTCleanser at exon and intron levels is more remarkably enhanced than that of UCSC-spliced EST alignments. This work would be helpful to EST-based researches on finding new genes, complementing genome annotation, recognising alternative splicing events and Single Nucleotide Polymorphisms (SNPs), etc.
Rankinen, T; Pérusse, L; Dériaz, O; Thériault, G; Chagnon, M; Nadeau, A; Bouchard, C
1999-03-01
To investigate whether genetic variations in the genes encoding the alpha and beta subunits of the Na,K-ATPase are linked with hemodynamic phenotypes. Cross-sectional data based on 533 subjects (no antihypertensive medication) were obtained from 150 families of phase 2 of the Quebec Family Study, together with longitudinal data from 338 subjects (105 families) who had been measured 12 years earlier in phase 1 of the Quebec Family Study. Restriction fragment length polymorphisms were examined at the alpha 2 (exon 1 and exon 21-22 with BglII) and beta 1 (Msp I and Pvu II) loci of Na,K-ATPase. Hemodynamic phenotypes measured included systolic and diastolic blood pressure, heart rate and rate-pressure product at rest and during low-intensity exercise. Sib-pair analysis revealed relatively strong linkages (P = 0.0003-0.002) between the resting heart rate and rate-pressure product and the alpha 2 exon 21-22 marker and alpha 2 haplotype. Moreover, the alpha 2 exon 21-22 marker showed suggestive linkages (P = 0.01 to 0.043) with resting systolic blood pressure and exercise diastolic blood pressure, heart rate and rate-pressure product, and the alpha 2 haplotype with exercise diastolic blood pressure and rate-pressure product and the 12-year change in resting systolic blood pressure (P = 0.03 to 0.05). Both the beta 1 Msp I marker and the beta 1 haplotype were linked with the resting rate-pressure product (P = 0.007 and 0.003, respectively), and all beta 1 markers showed linkage with the change in resting systolic blood pressure (P = 0.00005 to 0.024). In men, there was a significant (P = 0.01) interaction between the alpha 2 exon 21-22 genotype and the postglucose plasma insulin level with regard to resting systolic blood pressure. These data suggest that the alpha 2 and beta 1 genes of Na,K-ATPase contribute to the regulation of hemodynamic phenotypes in healthy subjects.
Shehjar, Faheem; Afroze, Dil; Misgar, Raiz A; Malik, Sajad A; Laway, Bashir A
2018-04-01
Graves' disease (GD) is a multigenic, organ specific autoimmune disorder with a strong genetic predisposition and IL-1β has been shown to be involved in its pathogenesis. The present study was aimed to determine the genetic associations between polymorphisms of IL-1β gene promoter region (-511 T>C) (rs16944), exon 5 (+3954 C>T) (rs1143634) and IL-1RN gene VNTR (rs2234663) polymorphism in patients with GD in ethnic Kashmiri population. A total of 135 Graves' disease patients and 150 healthy individuals were included in the study. PCR and PCR-based restriction analysis methods were done for IL-1RN VNTR and IL-1β gene polymorphisms respectively. We found statistically significant increased frequencies of the C/C + CT genotype (P = 0.001; odds ratio (OR) = 5.04, 95% confidence interval (CI) = 3.02-8.42) and the C allele (P = 0.001; OR = 3.10, 95% CI = 2.14-4.50) in IL-1β gene promoter polymorphism (rs16944) with GD patients compared to normal controls. Also in the exon 5 (rs1143634), a significant increase in frequency of the C/C homozygous genotype (P = 0.001; OR = 0.18, 95% CI = 0.11-0.30) and C allele (P = 0.001; OR = 0.31, 95% CI = 0.20-0.48) was observed in GD cases as against controls. For IL-1RN VNTR (rs2234663), we didn't observe any significant difference in the allelic and genotypic frequencies between cases and controls. Our findings suggest that both promoter and exon polymorphisms of IL-1β gene have a significant role in the risk of developing GD, whereas IL-1RN VNTR has no association with GD. Copyright © 2018. Published by Elsevier Inc.
Gul, Ali; Ateş, Ömer; Özer, Samet; Kasap, Tuba; Ensari, Emel; Demir, Osman; Sönmezgöz, Ergün
2017-09-01
Obesity, one of the most common disorders observed in clinical practice, has been associated with energy metabolism-related protein genes such as uncoupling proteins (UCPs). Herein, we evaluated UCPs as candidate genes for obesity and its morbidities. A total of 268 obese and 185 nonobese children and adolescents were enrolled in this study. To determine dyslipidemia, hypertension, and insulin resistance, laboratory tests were derived from fasting blood samples. UCP1-3826 A/G, UCP2 exon 8 deletion/insertion (del/ins), and UCP3-55C/T variants were also genotyped, and the relationships among the polymorphisms of these UCPs and obesity morbidities were investigated. The mean ages of the obese and control groups were 11.61 ± 2.83 and 10.74 ± 3.36 years, respectively. The respective genotypic frequencies of the AA, AG, and GG genotypes of UCP1 were 46.3%, 33.2%, and 20.5% in obese subjects and 46.5%, 42.2%, and 11.4% in the controls (p = 0.020). G alleles were more frequent in obese subjects with hypertriglyceridemia (42.9%; p = 0.048) than in those without, and the GG genotype presented an odds ratio for obesity of 2.02 (1.17-3.47; p = 0.010). The polymorphisms of UCP2 exon 8 del/ins and UCP3-55C/T did not influence obesity risk (p > 0.05). The I (ins) allele was associated with low HDL cholesterolemia (p = 0.023). The GG genotype of the UCP1-3826 A/G polymorphism appears to contribute to the onset of childhood obesity in Turkish children. The GG genotype of UCP1, together with the del/del genotype of the UCP2 polymorphism, may increase the risk of obesity with synergistic effects. The ins allele of the UCP2 exon 8 del/ins polymorphism may contribute to low HDL cholesterolemia.
Variants in the human intestinal fatty acid binding protein 2 gene in obese subjects.
Sipiläinen, R; Uusitupa, M; Heikkinen, S; Rissanen, A; Laakso, M
1997-08-01
Fatty acid binding protein 2 gene (FABP2) has been proposed to be an important candidate gene for insulin resistance; therefore, it also could be a promising candidate gene for obesity. We screened the whole coding region of the FABP2 gene in 40 obese nondiabetic Finnish subjects. Furthermore, we investigated the effects of the codon 54 polymorphism of this gene (Ala-->Thr) on insulin levels and basal metabolic rate in 170 obese subjects. The frequencies of the variants found in exon 4 (GTA-->GTG) and 3'-noncoding region (GCGCA-->GCACA), as well as the allele frequencies for the variable lengths of the ATT repeat sequence in intron 2 did not differ between the obese subjects and nonobese controls. The frequency of threonine-encoding allele in codon 54 of the FABP2 gene did not differ between obese and control subjects (28 vs. 29%, respectively). In the obese group there were no differences in gender distribution, age, weight, body mass index, lean body mass, percentage of body fat, waist circumference, and waist-to-hip ratio among the individuals homozygous for Ala54, heterozygous for Thr54, and homozygous for Thr54-encoding alleles. Similarly, fasting serum insulin, glucose, lipids and lipoprotein concentrations, basal metabolic rate (adjusted for lean body mass and age), respiratory quotient, and rates of glucose and lipid oxidation did not differ among the groups. We conclude that obesity is not associated with specific variants in the FABP2 gene. Furthermore, the codon 54 Ala to Thr polymorphism of this gene does not influence insulin levels or basal metabolic rate in obese Finns.
Castelli, Erick C; Mendes-Junior, Celso T; Sabbagh, Audrey; Porto, Iane O P; Garcia, André; Ramalho, Jaqueline; Lima, Thálitta H A; Massaro, Juliana D; Dias, Fabrício C; Collares, Cristhianna V A; Jamonneau, Vincent; Bucheton, Bruno; Camara, Mamadou; Donadi, Eduardo A
2015-12-01
HLA-E is a non-classical Human Leucocyte Antigen class I gene with immunomodulatory properties. Whereas HLA-E expression usually occurs at low levels, it is widely distributed amongst human tissues, has the ability to bind self and non-self antigens and to interact with NK cells and T lymphocytes, being important for immunosurveillance and also for fighting against infections. HLA-E is usually the most conserved locus among all class I genes. However, most of the previous studies evaluating HLA-E variability sequenced only a few exons or genotyped known polymorphisms. Here we report a strategy to evaluate HLA-E variability by next-generation sequencing (NGS) that might be used to other HLA loci and present the HLA-E haplotype diversity considering the segment encoding the entire HLA-E mRNA (including 5'UTR, introns and the 3'UTR) in two African population samples, Susu from Guinea-Conakry and Lobi from Burkina Faso. Our results indicate that (a) the HLA-E gene is indeed conserved, encoding mainly two different protein molecules; (b) Africans do present several unknown HLA-E alleles presenting synonymous mutations; (c) the HLA-E 3'UTR is quite polymorphic and (d) haplotypes in the HLA-E 3'UTR are in close association with HLA-E coding alleles. NGS has proved to be an important tool on data generation for future studies evaluating variability in non-classical MHC genes. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Molecular mechanisms for protein-encoded inheritance
Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David
2013-01-01
Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598
Lentes, K U; Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M
1999-01-01
Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. Recent studies have shown that the sympathetic nervous system, via norepinephrine (beta-adrenoceptors) and cAMP, as well as thyroid hormones and PPAR gamma ligands seem to be major regulators of UCP expression. From the three different UCPs identified so far by gene cloning UCP1 is expressed exclusively in brown adipocytes while UCP2 is widely expressed. The third analogue, UCP3, is expressed predominantly in human skeletal muscle and was found to exist in a long and a short form. At the amino acid level UCP2 has about 59% homology to UCP1 while UCP3 is 73% identical to UCP2. Both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyper-insulinaemia. Furthermore, there is strong evidence that UCP2, by virtue of its ubiquitous expression, may be important for determining basal metabolic rate. Based on the published full-length cDNA sequence we have deduced the genomic structure of the human UCP2 (hUCP2) gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.4 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely the one found in the human UCP1 gene and is almost conserved in the recently discovered UCP3 gene as well. However, the size of each of the introns in the hUCP2 gene differs from its UCP1 and UCP3 counterparts. It varies from 81 bp (intron 5) to about 3 kb (intron 2). The high degree of homology at the nucleotide level and the conservation of the exon/intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 25 children of caucasian origin (aged 7-13) characterized by low BMR values revealed a point mutation in exon 4 (C to T transition at position 164 of the corresponding cDNA resulting in the substitution of an alanine residue by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.61 and 0.39 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. Expression studies of the wildtype and mutant forms of UCP2 should clarify the functional consequences these mutations may have on energy metabolism and body weight regulation. In addition, mapping of the promoter region and the identification of putative promoter regulatory sequences should give insight into the transcriptional regulation of UCP2 expression--in particular by anyone of the above mentioned factors--in vitro and in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campeau, E.; Leon-Del-Rio, A.; Gravel, R.A.
Propionic acidemia is a rare autosomal recessive disorder characterized by a deficiency of the mitochondrial biotin-dependent enzyme, propionyl-CoA carboxylase (PCC). PCC has the structure {alpha}{sub 4}{beta}{sub 4}, with the {alpha} subunit containing the biotin prosthetic group. This study is concerned with defining the spectrum of mutations occurring in the PCCA gene encoding the {alpha} subunit. Mutations were initially assigned to this gene through complementation experiments done after somatic fusion of patient fibroblasts. The analyses were performed on PCR-amplified reverse transcripts of fibroblast RNA. The mutations were identified by single strand conformational polymorphism analysis and direct sequencing of PCR products. Threemore » candidate disease-causing mutations and one DNA polymorphism were identified in the {alpha} subunit sequence in different patients: (1) a 3 bp deletion {triangle}CTG{sub 2058-2060}, which eliminates Cys687 near the biotin binding site (Lys669); (2) T{sub 611}{r_arrow}A which converts Met204 to Lys in a highly conserved region matching that of an ATP binding site; (3) An {approximately}50 bp deletion near the 3{prime} end of the cDNA which likely corresponds to the loss of an exon due to a splicing defect; and (4) a 3 bp insertion, +CAG{sub 2203}, located downstream of the stop codon, which is likely a DNA polymorphism. In order to determine the effect of the Cys687 deletion on the biotinylation of PCC, we expressed the mutation in a 67 amino acid C-terminal fragment of the PCC {alpha} subunit in E. coli in which biotinylation is directed by the bacterial biotin ligase. While the mutant peptide was expressed at about half-normal levels, the biotinylation of the peptide that was present was reduced to only {approximately}20% normal. We suggest, therefore, that the absence of PCC activity due to {triangle}Cys687 results at least in part from defective biotinylation of an unstable protein.« less
Sasaki-Haraguchi, Noriko; Ikuyama, Takeshi; Yoshii, Shogo; Takeuchi-Andoh, Tomoko; Frendewey, David; Tani, Tokio
2015-01-01
Exons are ligated in an ordered manner without the skipping of exons in the constitutive splicing of pre-mRNAs with multiple introns. To identify factors ensuring ordered exon joining in constitutive pre-mRNA splicing, we previously screened for exon skipping mutants in Schizosaccharomyces pombe using a reporter plasmid, and characterized three exon skipping mutants named ods1 (ordered splicing 1), ods2, and ods3, the responsible genes of which encode Prp2/U2AF59, U2AF23, and SF1, respectively. They form an SF1-U2AF59-U2AF23 complex involved in recognition of the branch and 3′ splice sites in pre-mRNA. In the present study, we identified a fourth ods mutant, ods4, which was isolated in an exon-skipping screen. The ods4 + gene encodes Cwf16p, which interacts with the NineTeen Complex (NTC), a complex thought to be involved in the first catalytic step of the splicing reaction. We isolated two multi-copy suppressors for the ods4-1 mutation, Srp2p, an SR protein essential for pre-mRNA splicing, and Tif213p, a translation initiation factor, in S. pombe. The overexpression of Srp2p suppressed the exon-skipping phenotype of all ods mutants, whereas Tif213p suppressed only ods4-1, which has a mutation in the translational start codon of the cwf16 gene. We also showed that the decrease in the transcriptional elongation rate induced by drug treatment suppressed exon skipping in ods4-1. We propose that Cwf16p/NTC participates in the early recognition of the branch and 3′ splice sites and cooperates with the SF1-U2AF59-U2AF23 complex to maintain ordered exon joining. PMID:26302002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomatsu, Shunji; Fukuda, Seiji; Yamagishi, Atsushi
1996-05-01
We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations: V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resultedmore » in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation. 48 refs., 5 figs., 1 tab.« less
Mutational screening of FGFR1, CER1, and CDON in a large cohort of trigonocephalic patients.
Jehee, Fernanda Sarquis; Alonso, Luis G; Cavalcanti, Denise P; Kim, Chong; Wall, Steven A; Mulliken, John B; Sun, Miao; Jabs, Ethylin Wang; Boyadjiev, Simeon A; Wilkie, Andrew O M; Passos-Bueno, Maria Rita
2006-03-01
Screen the known craniosynostotic related gene, FGFR1 (exon 7), and two new identified potential candidates, CER1 and CDON, in patients with syndromic and nonsyndromic metopic craniosynostosis to determine if they might be causative genes. Using single-strand conformational polymorphisms (SSCPs), denaturing high-performance liquid chromatography, and/or direct sequencing, we analyzed a total of 81 patients for FGFR1 (exon 7), 70 for CER1, and 44 for CDON. Patients were ascertained in the Centro de Estudos do Genoma Humano in São Paulo, Brazil (n = 39), the Craniofacial Unit, Oxford, U.K. (n = 23), and the Johns Hopkins University, Baltimore, Maryland (n = 31). Clinical inclusion criteria included a triangular head and/or forehead, with or without a metopic ridge, and a radiographic documentation of metopic synostosis. Both syndromic and nonsyndromic patients were studied. No sequence alterations were found for FGFR1 (exon 7). Different patterns of SSCP migration for CER1 compatible with the segregation of single nucleotide polymorphisms reported in the region were identified. Seventeen sequence alterations were detected in the coding region of CDON, seven of which are new, but segregation analysis in parents and homology studies did not indicate a pathological role. FGFR1 (exon 7), CER1, and CDON are not related to trigonocephaly in our sample and should not be considered as causative genes for metopic synostosis. Screening of FGFR1 (exon 7) for diagnostic purposes should not be performed in trigonocephalic patients.
Feltus, F A; Singh, H P; Lohithaswa, H C; Schulze, S R; Silva, T D; Paterson, A H
2006-04-01
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.
Feltus, F.A.; Singh, H.P.; Lohithaswa, H.C.; Schulze, S.R.; Silva, T.D.; Paterson, A.H.
2006-01-01
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. PMID:16607031
Yue, M; Tian, Y G; Wang, Y J; Gu, Y; Bayaer, N; Hu, Q; Gu, W W
2014-02-27
The IGF-1 gene is an important regulating factor that has a growth-promoting effect on growth hormone. The IGF-1 gene promotes muscle cell differentiation in the muscle cell formation process. The IGF-1 gene also regulates the growth of skeletal muscle during skeletal muscle growth. In addition, the IGF-1 gene plays an important role in the formation of mammals and poultry embryos, and the process of postnatal growth. The IGF-1 gene has been implicated as a candidate gene for the regulation of pig growth traits. We analyzed exon 3 of the IGF-1 gene polymorphism in Tibetan miniature pigs (N = 128) by polymerase chain reaction-single-strand conformation polymorphism and DNA sequencing. One single nucleotide polymorphism (T40C) was found on exon 3 of the IGF-1 gene. Statistical analysis of genotype frequencies revealed that the T allele was dominant in Tibetan miniature pigs at the T40C locus. The association analysis showed that the IGF-1 mutation had an effect on the body weight, body length, and chest circumference of pigs aged 6-8 months. In addition, the IGF-1 mutation had an effect on body weight in pigs aged 9-11 months (P < 0.05). We speculated that the pigs with the TT genotype grow more rapidly compared to those with the TC genotype. The TC genotype of the Tibetan miniature pig has a smaller body type. This information provides a theoretical basis for the genetic background of Tibetan miniature pigs.
Gurskaya, N G; Staroverov, D B; Lukyanov, K A
2016-01-01
Alternative splicing is an important mechanism of regulation of gene expression and expansion of proteome complexity. Recently we developed a new fluorescence reporter for quantitative analysis of alternative splicing of a target cassette exon in live cells (Gurskaya et al., 2012). It consists of a specially designed minigene encoding red and green fluorescent proteins (Katushka and TagGFP2) and a fragment of the target gene between them. Skipping or inclusion of the alternative exon induces a frameshift; ie, alternative exon length must not be a multiple of 3. Finally, red and green fluorescence intensities of cells expressing this reporter are used to estimate the percentage of alternative (exon-skipped) and normal (exon-retained) transcripts. Here, we provide a detailed description of design and application of the fluorescence reporter of a target alternative exon splicing in mammalian cell lines. © 2016 Elsevier Inc. All rights reserved.
Schizophrenia and neurotrophin-3 alleles.
Jŏnsson, E; Brené, S; Zhang, X R; Nimgaonkar, V L; Tylec, A; Schalling, M; Sedvall, G
1997-05-01
Studies of brain anatomy and premorbid functioning indicate that schizophrenia may be of neurodevelopmental origin. In the neurotrophic factor neurotrophin-3 (NT-3) gene, the A3/147-bp allele in a dinucleotide repeat polymorphism located in the promoter region was found to be associated with schizophrenia in a Japanese study. Another NT-3 polymorphism (Glu63Gly) indicated an association with schizophrenic patients with a putative neurodevelopmental form of the disease. We examined Swedish schizophrenic patients (n = 109) and control subjects (n = 78) for the same two NT-3 polymorphisms, as well as a third silent exonic polymorphism (at Pro55). No significant difference was found between the two groups. However, in a meta-analysis including the present and previous studies of Caucasian subjects, the A3/147-bp allele frequency was found to be significantly higher in the schizophrenic patients. In the present study, carriers of the A3/147 bp allele tended to have an earlier age of onset and to display more extrapyramidal symptoms. In the silent exonic polymorphism (at Pro55), female schizophrenic patients had higher adenine and lower guanine allele frequencies than control female subjects. Together with previous studies, the results provide some support for an association between the NT-3 gene and certain forms of schizophrenia. This warrants further investigation of NT-3 and other neurotrophic factors with additional polymorphisms and larger patient samples.
Ng, M C Y; Baum, L; So, W-Y; Lam, V K L; Wang, Y; Poon, E; Tomlinson, B; Cheng, S; Lindpaintner, K; Chan, J C N
2006-07-01
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. In DN patients, triglyceride (TG) level is elevated and lipoprotein lipase (LPL) activity, which hydrolyzes TG, is decreased. The LPL S447X and apolipoprotein E (APOE) exon 4 polymorphisms affect TG levels, and the APOC3 -455T>C polymorphism affects LPL activity. Our aim was to examine the association of these polymorphisms with nephropathy in type 2 diabetes. We examined these polymorphisms in a case-control study of type 2 diabetic patients including 374 with DN and 392 without DN. LPL 447X-containing genotypes (447X+) were significantly decreased in DN patients [18.6 vs 25.6%, odds ratio (OR) = 0.66, p = 0.02], as were APOE epsilon3/epsilon3 genotypes (64.8 vs 73.1%, OR = 0.68, p = 0.01). In addition, combinations of genotypes [APOE epsilon3/epsilon3 and LPL 447X+ (OR = 0.56), APOC3 CC and LPL 447X+ (OR = 0.31), APOE epsilon3/epsilon3 and APOC3 CC (OR = 0.61] were protective for DN compared with the most common combination of the respective polymorphisms. Our findings suggest the importance of interactions among lipid genes in modulating the risk of DN.
Braz, Adriana F; Costalonga, Everlayny F; Trarbach, Ericka B; Scalco, Renata C; Malaquias, Alexsandra C; Guerra-Junior, Gil; Antonini, Sonir R R; Mendonca, Berenice B; Arnhold, Ivo J P; Jorge, Alexander A L
2014-09-01
There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.
Is MPP a good prognostic factor in stage III lung adenocarcinoma with EGFR exon 19 mutation?
Zhang, Tian; Wang, Jing; Su, Yanjun; Chen, Xi; Yan, Qingna; Li, Qi; Sun, Leina; Wang, Yuwen; Er, Puchun; Pang, Qingsong; Wang, Ping
2017-06-20
Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein encoded by a gene located in the short arm of chromosome 7. This study aimed to investigate the clinicopathologic characteristics of classic EGFR exon mutation in Chinese patients with TMN stage III lung adenocarcinoma who received radical surgery. A total of 1,801 lung adenocarcinomas were analyzed for mutations in EGFR; 35% exhibited mutation of classic EGFR exons. Clinical and pathologic characteristics of patients with EGFR exon 19 mutation were compared with those who harbored EGFR exon 21 mutation. Patients with EGFR exon 19 mutation had a higher overall survival (OS, p=0.023) than those harboring EGFR exon 21 mutation. Our results demonstrated that patients with a micropapillary pattern (MPP) pathologic type in EGFR exon 19 mutation had a higher OS (p=0.022), and patients with exon 19 mutation were more sensitive to EGFR-tyrosine kinase inhibitors (p=0.032). The results of the current study can be used in decision-making regarding the treatment of patients with classic EGFR exon mutations.
NASA Astrophysics Data System (ADS)
Liu, Meng; Liu, Yuan; Hui, Min; Song, Chengwen; Cui, Zhaoxia
2017-03-01
Clip domain serine proteases (cSPs) and their homologs (SPHs) play an important role in various biological processes that are essential components of extracellular signaling cascades, especially in the innate immune responses of invertebrates. Here, polymorphisms of PtcSP and PtSPH from the swimming crab Portunus trituberculatus were investigated to explore their association with resistance/susceptibility to Vibrio alginolyticus. Polymorphic loci were identified using Clustal X, and characterized with SPSS 16.0 software, and then the significance of genotype and allele frequencies between resistant and susceptible stocks was determined by a χ 2 test. A total of 109 and 77 single nucleotide polymorphisms (SNPs) were identified in the genomic fragments of PtcSP and PtSPH, respectively. Notably, nearly half of PtSPH polymorphisms were found in the non-coding exon 1. Fourteen SNPs investigated were significantly associated with susceptibility/resistance to V. alginolyticus ( P <0.05). Among them, eight SNPs were observed in introns, and one synonymous, four non-synonymous SNPs and one ins-del were found in coding exons. In addition, five simple sequence repeats (SSRs) were detected in intron 3 of PtcSP. Although there was no statistically significant difference of allele frequencies, the SSRs showed different polymorphic alleles on the basis of the repeat number between resistant and susceptible stocks. After further validation, polymorphisms investigated here might be applied to select potential molecular markers of P. trituberculatus with resistance to V. alginolyticus.
Alternative intronic promoters in development and disease.
Vacik, Tomas; Raska, Ivan
2017-05-01
Approximately 20,000 mammalian genes are estimated to encode between 250 thousand and 1 million different proteins. This enormous diversity of the mammalian proteome is caused by the ability of a single-gene locus to encode multiple protein isoforms. Protein isoforms encoded by one gene locus can be functionally distinct, and they can even have antagonistic functions. One of the mechanisms involved in creating this proteome complexity is alternative promoter usage. Alternative intronic promoters are located downstream from their canonical counterparts and drive the expression of alternative RNA isoforms that lack upstream exons. These upstream exons can encode some important functional domains, and proteins encoded by alternative mRNA isoforms can be thus functionally distinct from the full-length protein encoded by canonical mRNA isoforms. Since any misbalance of functionally distinct protein isoforms is likely to have detrimental consequences for the cell and the whole organism, their expression must be precisely regulated. Misregulation of alternative intronic promoters is frequently associated with various developmental defects and diseases including cancer, and it is becoming increasingly clear that this phenomenon deserves more attention.
Wägner, Ana M.; Cloos, Paul; Bergholdt, Regine; Eising, Stefanie; Brorsson, Caroline; Stalhut, Martin; Christgau, Stephan; Nerup, Jørn; Pociot, Flemming
2008-01-01
BACKGROUND: Posttranslational protein modifications have been implicated in the development of autoimmunity. Protein L-isoaspartate (D-aspartate) O-methyltransferase (PIMT) repairs modified proteins and is encoded by PCMT1, located in a region linked to type 1 diabetes (T1D), namely IDDM5. AIM: To evaluate the association between genetic variations in the PCMT1 gene and T1D. METHODS: Firstly, PCMT1 was sequenced in 26 patients with T1D (linked to IDDM5) and 10 control subjects. The variations found in PCMT1 were then tested (alone and interacting with a functional polymorphism in SUMO4 and with HLA) for association with T1D in 253 families (using transmission disequilibrium test). In a third step, the association of the functional variation in PCMT1 (rs4816) with T1D was analyzed in 778 T1D patients and 749 controls (using chi-square test). In vitro promoter activity was assessed by transfecting INS-1E cells with PCMT1 promoter constructs and a reporter gene, with or without cytokine stimulation. RESULTS: Four polymorphisms in complete linkage disequilibrium were identified in PCMT1 (5' to the gene (rs11155676), exon 5 (rs4816) and exon 8 (rs7818 and rs4552)). In the whole cohort of 253 families, the allele associated with increased PIMT enzyme activity (rs4816, allele A) was less frequently transmitted to the affected than to the non-affected offspring (46% vs. 53%, p = 0.099). This finding was even more evident in the subset of families where the proband had high-risk SUMO4 (p = 0.069) or low-risk HLA (p = 0.086). Surprisingly, in the case-control study with 778 cases and 749 controls, an inverse trend was found (40.36% of patients and 36.98% of controls had the allele, p = 0.055). PCMT1 promoter activity increased with cytokine stimulation, but no differences were detected between the constructs adjacent to rs11155676. CONCLUSION: PCMT1 was virtually associated with T1D in groups defined by other risk genes (SUMO4 and HLA). A general association in a not further defined sample of T1D patients was not evident. Verification in a larger population is needed. PMID:19290383
Zhang, Y R; Li, Y K; Fu, C Z; Wang, J L; Wang, H B; Zan, L S
2014-10-07
Beef cattle breeding programs focus on improving important economic traits, including growth rates, and meat quantity and quality. Molecular marker-assisted selection based on genetic variation represents a potential method for breeding genetically improved livestock with better economic traits. Smoothened (SMO) protein is a signal transducer that contributes to the regulation of both osteogenesis and adipogenesis through the hedgehog pathway. In this study, we detected polymorphisms in the bovine SMO gene of Qinchuan cattle, and we analyzed their associations with body measurement traits (BMTs) and meat quality traits (MQTs). Using DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism, 3 novel single nucleotide polymorphisms were identified in the SMO gene of 562 cattle: 1 G > C mutation on exon 9 (G21234C) and 2 C > T mutations on exon 11 (C22424T and C22481T). Association analysis showed that polymorphisms on both the G21234C and C22424T loci significantly affected certain BMTs and MQTs (P < 0.05 or P < 0.01), whereas those on the C22481T locus did not (P > 0.05). Therefore, the SMO gene could be used as a candidate gene to alter BMTs and MQTs in Qinchuan cattle or for marker-assisted selection to breed cattle with superior BMTs and MQTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riess, O.; Weber, B.; Hayden, M.R.
1992-10-01
The finding of a mutation in the beta subunit of the cyclic GMP (cGMP) phosphodiesterase gene causing retinal degeneration in mice (the Pdeb gene) prompted a search for disease-causing mutations in the human phosphodiesterase gene (PDEB gene) in patients with retinitis pigmentosa. All 22 exons including 196 bp of the 5[prime] region of the PDEB gene have been assessed for mutations by using single-strand conformational polymorphism analysis in 14 patients from 13 unrelated families with autosomal recessive retinitis pigmentosa (ARRP). No disease-causing mutations were found in this group of affected individuals of seven different ancestries. However, a frequent intronic andmore » two exonic polymorphisms (Leu[sup 489][yields]Gln and Gly[sup 842][yields]Gly) were identified. Segregation analysis using these polymorphic sites excludes linkage of ARRP to the PDEB gene in a family with two affected children. 43 refs., 3 figs., 2 tabs.« less
Cao, Shuanghe; Carver, Brett F; Zhu, Xinkai; Fang, Tilin; Chen, Yihua; Hunger, Robert M; Yan, Liuling
2010-07-01
Leaf rust, caused by Puccinia triticina Eriks, is one of the most common and persistent wheat diseases in the US Great Plains. We report that the Lr34 gene was mapped in the center of a QTL for leaf rust reaction and explained 18-35% of the total phenotypic variation in disease severity of adult plants in a Jagger x 2174 population of recombinant inbred lines (RILs) field-tested for 3 years. The sequence of the complete Lr34 gene was determined for the susceptible Jagger allele and for the resistant 2174 allele. The two alleles had exactly the same sequence as the resistant allele reported previously in Chinese Spring at three polymorphic sites in intron 4, exon 11, and exon 12. A G/T polymorphism was found in exon 22, where a premature stop codon was found in the susceptible Jagger allele (Lr34E22s), confirming a previous report, due to a point mutation compared with the resistant 2174 allele (Lr34E22r). We have experimentally demonstrated a tight association between the point mutation at exon 22 of Lr34 and leaf rust susceptibility in a segregating biparental population. A PCR marker was developed to distinguish between the Lr34E22r and Lr34E22s alleles. A survey of 33 local hard winter wheat cultivars indicated that 7 cultivars carry the Lr34E22s allele and 26 cultivars carry the Lr34E22r allele. This study significantly improves our genetic understanding of allelic variation in the Lr34 gene and provides a functional molecular tool to improve leaf rust resistance in a major US wheat gene pool.
Graveley, Brenton R.
2008-01-01
Summary Drosophila Dscam encodes 38,016 distinct axon guidance receptors through the mutually exclusive alternative splicing of 95 variable exons. Importantly, known mechanisms that ensure the mutually exclusive splicing of pairs of exons cannot explain this phenomenon in Dscam. I have identified two classes of conserved elements in the Dscam exon 6 cluster, which contains 48 alternative exons—the docking site, located in the intron downstream of constitutive exon 5, and the selector sequences, which are located upstream of each exon 6 variant. Strikingly, each selector sequence is complementary to a portion of the docking site, and this pairing juxtaposes one, and only one, alternative exon to the upstream constitutive exon. The mutually exclusive nature of the docking site:selector sequence interactions suggests that the formation of these competing RNA structures is a central component of the mechanism guaranteeing that only one exon 6 variant is included in each Dscam mRNA. PMID:16213213
Bosch, T M; Doodeman, V D; Smits, P H M; Meijerman, I; Schellens, J H M; Beijnen, J H
2006-01-01
A possible explanation for the wide interindividual variability in toxicity and efficacy of drug therapy is variation in genes encoding drug-metabolizing enzymes and drug transporters. The allelic frequency of these genetic variants, linkage disequilibrium (LD), and haplotype of these polymorphisms are important parameters in determining the genetic differences between patients. The aim of this study was to explore the frequencies of polymorphisms in drug-metabolizing enzymes (CYP1A1, CYP2C9, CYP2C19, CYP3A4, CYP2D6, CYP3A5, DPYD, UGT1A1, GSTM1, GSTP1, GSTT1) and drug transporters (ABCB1[MDR1] and ABCC2[MRP2]), and to investigate the LD and perform haplotype analysis of these polymorphisms in a Dutch population. Blood samples were obtained from 100 healthy volunteers and genomic DNA was isolated and amplified by PCR. The amplification products were sequenced and analyzed for the presence of polymorphisms by sequence alignment. In the study population, we identified 13 new single nucleotide polymorphisms (SNPs) in Caucasians and three new SNPs in non-Caucasians, in addition to previously recognized SNPs. Three of the new SNPs were found within exons, of which two resulted in amino acid changes (A428T in CYP2C9 resulting in the amino acid substitution D143V; and C4461T in ABCC2 in a non-Caucasian producing the amino acid change T1476M). Several LDs and haplotypes were found in the Caucasian individuals. In this Dutch population, the frequencies of 16 new SNPs and those of previously recognized SNPs were determined in genes coding for drug-metabolizing enzymes and drug transporters. Several LDs and haplotypes were also inferred. These data are important for further research to help explain the interindividual pharmacokinetic and pharmacodynamic variability in response to drug therapy.
Yuan, Junhui; Higuchi, Yujiro; Nagado, Tatsui; Nozuma, Satoshi; Nakamura, Tomonori; Matsuura, Eiji; Hashiguchi, Akihiro; Sakiyama, Yusuke; Yoshimura, Akiko; Takashima, Hiroshi
2013-03-01
DNMT1, encoding DNA methyltransferase 1 (Dnmt1), is a critical enzyme which is mainly responsible for conversion of unmethylated DNA into hemimethylated DNA. To date, two phenotypes produced by DNMT1 mutations have been reported, including hereditary sensory and autonomic neuropathy (HSAN) type IE with mutations in exon 20, and autosomal dominant cerebellar ataxia, deafness, and narcolepsy caused by mutations in exon 21. We report a sporadic case in a Japanese patient with loss of pain and vibration sense, chronic osteomyelitis, autonomic system dysfunctions, hearing loss, and mild dementia, but without definite cerebellar ataxia. Electrophysiological studies revealed absent sensory nerve action potential with nearly normal motor nerve conduction studies. Brain magnetic resonance imaging revealed mild diffuse cerebral and cerebellar atrophy. Using a next-generation sequencing system, 16 candidate genes were analyzed and a novel missense mutation, c.1706A>G (p.His569Arg), was identified in exon 21 of DNMT1. Our findings suggest that mutation in exon 21 of DNMT1 may also produce a HSAN phenotype. Because all reported mutations of DNMT1 are concentrated in exons 20 and 21, which encode the replication focus targeting sequence (RFTS) domain of Dnmt1, the RFTS domain could be a mutation hot spot. © 2013 Peripheral Nerve Society.
Cloning and characterization of a novel zinc finger gene in Xp11.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derry, J.M.J.; Jess, U.; Francke, U.
1995-11-20
During a systematic search for open reading frames in chromosome band Xp11.2, a novel gene (ZNF157) that encodes a putative 506-amino-acid protein with the sequence characteristics of a zinc-finger-containing transcription factor was isolated. ZNF157 is encoded by four exons distributed over >20 kb of genomic DNA. The second and third exons contain sequences similar to those of the previously described KRAB-A and KRAB-B domains, motifs that have been shown to mediate transcriptional repression in other members of the protein family. A fourth exon contains 12 zinc finger DNA binding motifs and finger linking regions characteristic of ZNF proteins of themore » Krueppel family. ZNF157 maps to the telomeric end of a cluster of ZNF genes that includes ZNF21, ZNF41, and ZNF81. 19 refs., 2 figs.« less
Iemitsu, Motoyuki; Maeda, Seiji; Otsuki, Takeshi; Sugawara, Jun; Tanabe, Takumi; Jesmin, Subrina; Kuno, Shinya; Ajisaka, Ryuichi; Miyauchi, Takashi; Matsuda, Mitsuo
2006-05-01
Increase in arterial stiffness is associated with aging, which is improved by regular exercise. Endothelin (ET) system has crucial roles in regulating vascular tone and in the progression of atherosclerosis. We hypothesized that molecular variations (ie, gene polymorphisms) in ET-related gene might affect exercise-induced improvement in arterial stiffness with age in human subjects. The present study provides a cross-sectional investigation of 191 healthy middle-aged and older (65+/-1 years) human subjects to clarify the relationship between the regular exercise-induced improvement of arterial stiffness and the gene polymorphisms of ET converting enzyme (ECE)-1, ECE-2, ET-A receptor (ET-A), and ET-B receptor (ET-B). The study subjects were divided into active and inactive groups based on the median value (186 kcal/d) of energy expenditure. Brachial-ankle arterial pulse wave velocity (baPWV) was used to evaluate arterial stiffness. All individuals were genotyped for 4 different polymorphisms of the ET system: 2013(+289)A/G in intron 17 of ECE-1, 669(+17)T/C in intron 5 of ECE-2, 958A/G in exon 6 of ET-A, and 831A/G in exon 4 of ET-B. The baseline baPWV was significantly lower in the active group without any change in blood pressure. Polymorphisms in ECE-1 influenced basal blood pressure. Polymorphisms in ECE-1 and ECE-2 had no effect on baPWV between active and inactive groups. However, polymorphisms in both ET-A and ET-B affected baPWV in the 2 groups. The present results suggest that differences in ET-A and ET-B polymorphisms may influence the response of the vascular wall to exercise whereas ECE-1 polymorphisms may affect basal blood pressure.
Presence of the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease.
Clark-Feoktistova, Y; Ruenes-Domech, C; García-Bacallao, E F; Roblejo-Balbuena, H; Feoktistova, L; Clark-Feoktistova, I; Jay-Herrera, O; Collazo-Mesa, T
2018-06-10
Wilson's disease is characterized by the accumulation of copper in different organs, mainly affecting the liver, brain, and cornea, and is caused by mutations in the ATP7B gene. More than 120 polymorphisms in the ATP7B gene have been reported in the medical literature. The aim of the present study was to identify the conformational changes in the exon 3 region of the ATP7B gene and detect the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease. A descriptive study was conducted at the Centro Nacional de Genética Médica and the Instituto Nacional de Gastroenterología within the time frame of 2007-2012 and included 105 patients with a clinical diagnosis of Wilson's disease. DNA extraction was performed through the salting-out method and the fragment of interest was amplified using the polymerase chain reaction technique. The conformational shift changes in the exon 3 region and the presence of the p.L456V polymorphism were identified through the Single-Strand Conformation Polymorphism analysis. The so-called b and c conformational shift changes, corresponding to the p.L456V polymorphism in the heterozygous and homozygous states, respectively, were identified. The allelic frequency of the p.L456V polymorphism in the 105 Cuban patients that had a clinical diagnosis of Wilson's disease was 41% and liver-related symptoms were the most frequent in the patients with that polymorphism. The p.L456V polymorphism was identified in 64 Cuban patients clinically diagnosed with Wilson's disease, making future molecular study through indirect methods possible. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.
Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer.
Hirata, Hiroshi; Hinoda, Yuji; Kawamoto, Ken; Kikuno, Nobuyuki; Suehiro, Yutaka; Okayama, Naoko; Tanaka, Yuichiro; Dahiya, Rajvir
2008-05-01
The mismatch repair system is a DNA repair mechanism that corrects mispaired bases during DNA replication errors. Cancer cells deficient in MMR proteins have a 10(2) to 10(3)-fold increase in the mutation rate. Single nucleotide polymorphisms of mismatch repair genes have been shown to cause a decrease in DNA repair activity. We hypothesized that mismatch repair gene polymorphism could be a risk factor for prostate cancer and p53 Pro/Pro genotype carriers could influence MSH3 and MSH6 polymorphisms. DNA samples from 110 patients with prostate cancer and 110 healthy controls were analyzed by single strand conformational polymorphism and polymerase chain reaction-restriction fragment length polymorphism to determine the genotypic frequency of 5 polymorphic loci on 2 MMR genes (MSH3 and MSH6) and p53 codon72. The chi-square test was applied to compare genotype frequency between patients and controls. A significant increase in the G/A+A/A genotype of MSH3 Pro222Pro was observed in patients compared to controls (OR 1.87, 95% CI 1.0-3.5). The frequency of A/G + G/G genotypes of MSH3 exon23 Thr1036Ala also tended to increase in patients (OR 1.57, 95% CI 0.92-2.72). In p53 codon72 Arg/Pro + Pro/Pro carriers the frequency of the AG + GG genotype of MSH3 exon23 was significantly increased in patients compared to controls (OR 2.1, 95% CI 1.05-4.34). To our knowledge this is the first report of the association of MSH3 gene polymorphisms in prostate cancer. These results suggest that the MSH3 polymorphism may be a risk factor for prostate cancer.
Işleten, Banu; Durmaz, Burak; Durmaz, Berrin; Onay, Hüseyin; Ozkınay, Ferda; Durmaz, Asude; Turan, Volkan; Oztekin, Kemal
2013-10-01
To investigate the association between C421T polymorphism within exon 4, C575T polymorphism within exon 6 of the RANK gene and bone mineral density (BMD) variations in postmenopausal Turkish women. One hundred seventy-eight postmenopausal women (patients = 100 and controls = 78) who applied to Ege University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, for osteoporosis examination were analyzed. BMDs of the lumbar spine and femoral sites were measured. Patient and control groups were established based on their T-score values being above and/or below -1. After venous blood sampling, C421T and C575T polymorphisms of the RANK gene were assessed through PCR process following DNA extraction. Genotype frequencies for the C421T and C575T polymorphisms were compared between the control group and the patient group. No significant difference was detected between the two groups for both polymorphisms. There was also no significant difference between the control and patient groups in terms of the combined genotype (p = 0.752) and the combined haplotype analysis of the C421T and C575T polymorphisms (p = 0.723). In the control and patient groups separately, no significant differences in BMD values either at the femoral sites or at the lumbar spine were detected between the combined genotypes of the two polymorphisms. The genotypes, combined genotypes and allele frequencies of C421T and C575T polymorphisms of the RANK gene have not been found to be associated with BMD in Turkish women. Further studies including both sexes and more cases are required.
Liskova, Petra; Tuft, Stephen J.; Gwilliam, Rhian; Ebenezer, Neil D.; Jirsova, Katerina; Prescott, Quincy; Martincova, Radka; Pretorius, Marike; Sinclair, Neil; Boase, David L.; Jeffrey, Margaret J.; Deloukas, Panos; Hardcastle, Alison J.; Filipec, Martin; Bhattacharya, Shomi S.
2009-01-01
We describe the search for mutations in six unrelated Czech and four unrelated British families with posterior polymorphous corneal dystrophy (PPCD); a relatively rare eye disorder. Coding exons and intron/exon boundaries of all three genes (VSX1, COL8A2, and ZEB1/TCF8) previously reported to be implicated in the pathogenesis of this disorder were screened by DNA sequencing. Four novel pathogenic mutations were identified in four families; two deletions, one nonsense, and one duplication within exon 7 in the ZEB1 gene located at 10p11.2. We also genotyped the Czech patients to test for a founder haplotype and lack of disease segregation with the 20p11.2 locus we previously described. Although a systematic clinical examination was not performed, our investigation does not support an association between ZEB1 changes and self reported non-ocular anomalies. In the remaining six families no disease causing mutations were identified thereby indicating that as yet unidentified gene(s) are likely to be responsible for PPCD. PMID:17437275
Duplication polymorphisms in exon 4 of κ-casein gene in yak breeds/populations.
Pingcuo, S; Gao, J; Jiang, Z R; Jin, S Y; Fu, C Y; Liu, X; Huang, L; Zheng, Y C
2015-08-28
The objective of this study was to compare 12 bp-duplication polymorphisms in exon 4 of the κ-casein gene among 3 breeds/populations of yak (Bos grunniens). Genomic DNA was extracted from yak blood or muscle samples (N = 211) and a partial sequence of exon 4 of κ-casein gene was amplified by polymerase chain reaction. A polyacrylamide gel electrophoresis assay of the products (169 bp) revealed 2 variants. These variants differed in a 12-bp duplication of the nucleotide sequence corresponding to amino acids 147-150 (Glu-Ala-Ser-Pro) or 148-151 (Ala-Ser-Pro-Glu). The genotype frequency and gene frequency of the 2 κ-casein variants differed among the 3 yak breeds/populations. The long form of the κ-casein gene was the predominant allele, and the Jiulong yak showed the highest frequency of the short form variant of the κ-casein gene. In addition, 2 nucleotide differences resulting in amino acid substitutions were also identified in yaks. These results are significant for designing a breeding strategy to improve the genetic makeup of yak herds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampaio, S.O.; Mei, C.; Butcher, E.C.
The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereasmore » the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.« less
Haddad, Diana; Bilcikova, Erika; Witney, Adam A.; Carlton, Jane M.; White, Charles E.; Blair, Peter L.; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C.; Carucci, Daniel J.; Weiss, Walter R.
2004-01-01
We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens. PMID:14977966
Hutcheson, Kelly A; Paluru, Prasuna C; Bernstein, Steven L; Koh, Jamie; Rappaport, Eric F; Leach, Richard A; Young, Terri L
2005-07-14
Retinopathy of prematurity (ROP) is a leading cause of visual loss in the pediatric population. Mutations in the Norrie disease gene (NDP) are associated with heritable retinal vascular disorders, and have been found in a small subset of patients with severe retinopathy of prematurity. Varying rates of progression to threshold disease in different races may have a genetic basis, as recent studies suggest that the incidence of NDP mutations may vary in different groups. African Americans, for example, are less likely to develop severe degrees of ROP. We screened a large cohort of ethnically diverse patients for mutations in the entire NDP. A total of 143 subjects of different ethnic backgrounds were enrolled in the study. Fifty-four patients had severe ROP (Stage 3 or worse). Of these, 38 were threshold in at least one eye (with a mean gestational age of 26.1 weeks and mean birth weight of 788.4 g). There were 36 patients with mild or no ROP, 31 parents with no history of retinal disease or prematurity, and 22 wild type (normal) controls. There were 70 African American subjects, 55 Caucasians, and 18 of other races. Severe ROP was noted in 29 African American subjects, 17 Caucasians, and 8 of other races. Seven polymerase chain reaction primer pairs spanning the NDP were optimized for denaturing high performance liquid chromatography and direct sequencing. Three primer pairs covered the coding region, and the remaining four spanned the 3' and 5' untranslated regions (UTR). Six of 54 (11%) infants with severe ROP had polymorphisms in the NDP. Five of the infants were African American, and one was Caucasian. Two parents were heterozygous for the same polymorphism as their child. One parent-child pair had a single base pair (bp) insertion in the 3' UTR region. Another parent-child pair had two mutations: a 14 bp deletion in the 5' UTR region of exon 1 and a single nucleotide polymorphism in the 5' UTR region of exon 2. No coding region sequence changes were found. No polymorphisms were observed in infants with mild or no ROP, or in the wild type controls. Of the six sequence alterations found, five were novel nucleotide changes: One in the 5' UTR region of exon 2, and four in the 3' UTR region of exon 3. The extent of NDP polymorphisms in this large, racially diverse group of infants is moderate. NDP polymorphisms may play a role in the pathogenesis of ROP, but do not appear to be a major causative factor.
Blaisdell, Carol J; Howard, Timothy D; Stern, Augustus; Bamford, Penelope; Bleecker, Eugene R; Stine, O Colin
2004-01-01
Background Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease. Methods The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1) > 70% and < 40%). Results PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene. Conclusions CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity. PMID:15507145
Gene polymorphisms of fibrinolytic enzymes in coal workers' pneumoconiosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.C.; Tseng, J.C.; Hua, C.C.
2006-03-15
The authors assessed the gene polymorphisms of missense C/T polymorphism in exon 6 of the urokinase-plasminogen activator (PLAU) gene (PLAU P141L), A/u-repeat in intron 8 of the tissue-type plasminogen activator (PLAT) gene (PLAT TPA25 Alu insertion), and 4G/5G in the promoter region of the serine proteinase inhibitor, clade E (SERPINE) or plasminogen activator inhibitor type 1 gene (SERPINE1 -675 4G/5G) in 153 healthy volunteers and 154 retired coal miners with coal miners' pneumoconiosis (CWP). The CWP subjects included 94 individuals with simple pneumoconiosis and 60 individuals with progressive massive fibrosis presenting with worse pulmonary function. The distributions of genotypes ofmore » these three genes did not differ between the control and CWP subjects or between subjects with simple pneumoconiosis and those with progressive massive fibrosis. However, by assessing duration of work and its interaction with genotypes by means of logistic regression, the authors found the missense C/T polymorphism in exon 6 of the PLAU gene to be an effect modifier of the association between work duration and the development of progressive massive fibrosis.« less
Poi, M J; Yen, T; Li, J; Song, H; Lang, J C; Schuller, D E; Pearl, D K; Casto, B C; Tsai, M D; Weghorst, C M
2001-01-01
The INK4a-ARF locus is located on human chromosome 9p21 and is known to encode two functionally distinct tumor-suppressor genes. The p16(INK4a) (p16) tumor-suppressor gene product is a negative regulator of cyclin-dependent kinases 4 and 6, which in turn positively regulate progression of mammalian cells through the cell cycle. The p14(ARF) tumor-suppressor gene product specifically interacts with human double minute 2, leading to the subsequent stabilization of p53 and G(1) arrest. Previous investigations analyzing the p16 gene in squamous cell carcinomas of the head and neck (SCCHNs) have suggested the predominate inactivating events to be homozygous gene deletions and hypermethylation of the p16 promoter. Somatic mutational inactivation of p16 has been reported to be low (0-10%, with a combined incidence of 25 of 279, or 9%) and to play only a minor role in the development of SCCHN. The present study examined whether this particular mechanism of INK4a/ARF inactivation, specifically somatic mutation, has been underestimated in SCCHN by determining the mutational status of the p16 and p14(ARF) genes in 100 primary SCCHNs with the use of polymerase chain reaction technology and a highly sensitive, nonradioactive modification of single-stranded conformational polymorphism (SSCP) analysis termed "cold" SSCP. Exons 1alpha, 1beta, and 2 of INK4a/ARF were amplified using intron-based primers or a combination of intron- and exon-based primers. A total of 27 SCCHNs (27%) exhibited sequence alterations in this locus, 22 (22%) of which were somatic sequence alterations and five (5%) of which were a single polymorphism in codon 148. Of the 22 somatic alterations, 20 (91%) directly or indirectly involved exon 2, and two (9%) were located within exon 1alpha. No mutations were found in exon 1beta. All 22 somatic mutations would be expected to yield altered p16 proteins, but only 15 of them should affect p14(ARF) proteins. Specific somatic alterations included microdeletions or insertions (nine of 22, 41%), a microrearrangement (one of 22, 5%), and single nucleotide substitutions (12 of 22, 56%). In addition, we analyzed the functional characteristics of seven unique mutant p16 proteins identified in this study by assessing their ability to inhibit cyclin-dependent kinase 4 activity. Six of the seven mutant proteins tested exhibited reduced function compared with wild-type p16, ranging from minor decreases of function (twofold to eightfold) in four samples to total loss of function (29- to 38-fold decrease) in two other samples. Overall, somatic mutation of the INK4a/ARF tumor suppressor locus, resulting in functionally deficient p16 and possibly p14(ARF) proteins, seems to be a prevalent event in the development of SCCHN. Mol. Carcinog. 30:26-36, 2001. Copyright 2001 Wiley-Liss, Inc.
Characterization and mapping of the mouse NDP (Norrie disease) locus (Ndp).
Battinelli, E M; Boyd, Y; Craig, I W; Breakefield, X O; Chen, Z Y
1996-02-01
Norrie disease is a severe X-linked recessive neurological disorder characterized by congenital blindness with progressive loss of hearing. Over half of Norrie patients also manifest different degrees of mental retardation. The gene for Norrie disease (NDP) has recently been cloned and characterized. With the human NDP cDNA, mouse genomic phage libraries were screened for the homolog of the gene. Comparison between mouse and human genomic DNA blots hybridized with the NDP cDNA, as well as analysis of phage clones, shows that the mouse NDP gene is 29 kb in size (28 kb for the human gene). The organization in the two species is very similar. Both have three exons with similar-sized introns and identical exon-intron boundaries between exon 2 and 3. The mouse open reading frame is 393 bp and, like the human coding sequence, is encoded in exons 2 and 3. The absence of six nucleotides in the second mouse exon results in the encoded protein being two amino acids smaller than its human counterpart. The overall homology between the human and mouse NDP protein is 95% and is particularly high (99%) in exon 3, consistent with the apparent functional importance of this region. Analysis of transcription initiation sites suggests the presence of multiple start sites associated with expression of the mouse NDP gene. Pedigree analysis of an interspecific mouse backcross localizes the mouse NDP gene close to Maoa in the conserved segment, which runs from CYBB to PFC in both human and mouse.
Dériaz, O; Dionne, F; Pérusse, L; Tremblay, A; Vohl, M C; Côté, G; Bouchard, C
1994-02-01
The aim of this study was to investigate in 261 subjects from 58 families the association between DNA variation at the genes coding for the Na,K-ATPase peptides and resting metabolic rate (RMR), respiratory quotient (RQ), and percent body fat (%FAT). Five restriction fragment length polymorphisms (RFLP) at three Na,K-ATPase genes were determined: one at the alpha 1 locus (BglII), and two at the beta locus (beta MspI and beta PvuII). Haplotypes were determined from the two variable sites of the alpha 2 gene (alpha 2 haplotypes) and the beta gene (beta haplotypes). There was a strong trend for %FAT to be related to the RFLP generated by BglII at the alpha 2 exons 21-22 in males (P = 0.06) and females (P = 0.05). RQ was (a) associated with the BglII RFLP at the alpha 2 exon 1 (P = 0.02) and with the alpha 2 8.0 kb/4.3 kb haplotype (P = 0.04) and (b) linked with the beta gene MspI marker (P = 0.04) and with the beta 5.3 kb/5.1 kb haplotype (P = 0.008) based on sib-pair analysis. The present study suggests that the genes encoding Na,K-ATPase may be associated or linked with RQ and perhaps with %FAT but not with RMR.
Viranaicken, Wildriss; Gasmi, Laila; Chaumet, Alexandre; Durieux, Christiane; Georget, Virginie; Denoulet, Philippe; Larcher, Jean-Christophe
2011-01-01
Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins. PMID:21811582
Dopamine D4 receptor gene polymorphism and personality traits in healthy volunteers.
Persson, M L; Wasserman, D; Geijer, T; Frisch, A; Rockah, R; Michaelovsky, E; Apter, A; Weizman, A; Jönsson, E G; Bergman, H
2000-01-01
An association between long alleles of a variable number tandem repeat (VNTR) polymorphism in the dopamine receptor D4 gene and the extraversion related personality traits Excitement and Novelty Seeking has been reported in healthy subjects. In an attempt to replicate the previous findings, 256 healthy Caucasian volunteers were analysed for a potential relationship between the dopamine receptor D4 exon III VNTR polymorphism and Extraversion as assessed by the Revised Neo Personality Inventory (NEO PI-R). The present study did not yield evidence for an association between Extraversion and the dopamine receptor D4 polymorphism.
DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk.
Stern, M C; Umbach, D M; van Gils, C H; Lunn, R M; Taylor, J A
2001-02-01
Bladder cancer is the sixth most common cancer in the United States. The main identified risk factor is cigarette smoking, which is estimated to contribute to up to 50% of new cases in men and 20% in women. Besides containing other carcinogens, cigarette smoke is a rich source of reactive oxygen species (ROS) that can induce a variety of DNA damage, some of which is repaired by the base excision repair (BER) pathway. The XRCC1 gene protein plays an important role in BER by serving as a scaffold for other repair enzymes and by recognizing single-strand DNA breaks. Three polymorphisms that induce amino acid changes have been found in codon 194 (exon 6), codon 280 (exon 9), and codon 399 (exon 10) of this gene. We tested whether polymorphisms in XRCC1 were associated with bladder cancer risk and whether this association was modified by cigarette smoking. Therefore, we genotyped for the three polymorphisms in 235 bladder cancer cases and 213 controls who had been frequency matched to cases on age, sex, and ethnicity. We found no evidence of an association between the codon 280 variant and bladder cancer risk [odds ratio (OR), 1.2; 95% confidence interval (CI), 0.6-2.6]. We found some evidence of a protective effect for subjects that carried at least one copy of the codon 194 variant allele relative to those homozygous for the common allele (OR, 0.59; 95% CI, 0.3-1.0). The combined analysis with smoking history suggested a possible gene-exposure interaction; however, the results were not statistically significant. Similarly, for the codon 399 polymorphism, our data suggested a protective effect of the homozygous variant genotype relative to carriers of either one or two copies of the common allele (OR, 0.70; 95% CI, 0.4-1.3), and provided limited evidence, albeit not statistically significant, for a gene-smoking interaction.
Hein, David W; Zhang, Xiaoyan; Doll, Mark A
2018-02-01
Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the acetylation of arylamine carcinogens. Single nucleotide polymorphisms in the NAT2 coding exon present in NAT2 haplotypes encode allozymes with reduced N-acetyltransferase activity towards the N-acetylation of arylamine carcinogens and the O-acetylation of their N-hydroxylated metabolites. NAT2 acetylator phenotype modifies urinary bladder cancer risk following exposures to arylamine carcinogens such as 4-aminobiphenyl. 4, 4'-methylene bis (2-chloroaniline) (MOCA) is a Group 1 carcinogen for which a role of the NAT2 acetylation polymorphism on cancer risk is unknown. We investigated the role of NAT2 and the genetic acetylation polymorphism on both MOCA N-acetylation and N-hydroxy-MOCA O-acetylation. MOCA N-acetylation exhibited a robust gene dose response in rabbit liver cytosol and in cryopreserved human hepatocytes derived from individuals of rapid, intermediate and slow acetylator NAT2 genotype. MOCA exhibited about 4-fold higher affinity for recombinant human NAT2 than NAT1. Recombinant human NAT2*4 (reference) and 15 variant recombinant human NAT2 allozymes catalyzed both the N-acetylation of MOCA and the O-acetylation of N-hydroxy-MOCA. Human NAT2 5, NAT2 6, NAT2 7 and NAT2 14 allozymes catalyzed MOCA N-acetylation and N-hydroxy-O-acetylation at rates much lower than the reference NAT2 4 allozyme. In conclusion, our results show that NAT2 acetylator genotype has an important role in MOCA metabolism and suggest that risk assessments related to MOCA exposures consider accounting for NAT2 acetylator phenotype in the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
The role of genetics in chronic wasting disease of North American cervids
Robinson, Stacie J.; Samuel, Michael D.; O'Rourke, Katherine; Johnson, Chad J.
2012-01-01
Chronic wasting disease (CWD) is a major concern for the management of North American cervid populations. This fatal prion disease has led to declines in populations which have high CWD prevalence and areas with both high and low infection rates have experienced economic losses in wildlife recreation and fears of potential spill-over into livestock or humans. Research from human and veterinary medicine has established that the prion protein gene (Prnp) encodes the protein responsible for transmissible spongiform encephalopathies (TSEs). Polymorphisms in the Prnp gene can lead to different prion forms that moderate individual susceptibility to and progression of TSE infection. Prnp genes have been sequenced in a number of cervid species including those currently infected by CWD (elk, mule deer, white-tailed deer, moose) and those for which susceptibility is not yet determined (caribou, fallow deer, sika deer). Over thousands of sequences examined, the Prnp gene is remarkably conserved within the family Cervidae; only 16 amino acid polymorphisms have been reported within the 256 amino acid open reading frame in the third exon of the Prnp gene. Some of these polymorphisms have been associated with lower rates of CWD infection and slower progression of clinical CWD. Here we review the body of research on Prnp genetics of North American cervids. Specifically, we focus on known polymorphisms in the Prnp gene, observed genotypic differences in CWD infection rates and clinical progression, mechanisms for genetic TSE resistance related to both the cervid host and the prion agent and potential for natural selection for CWD-resistance. We also identify gaps in our knowledge that require future research.
Schrimpf, Rahel; Dierks, Claudia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar
2014-01-01
A consistently high level of stallion fertility plays an economically important role in modern horse breeding. We performed a genome-wide association study for estimated breeding values of the paternal component of the pregnancy rate per estrus cycle (EBV-PAT) in Hanoverian stallions. A total of 228 Hanoverian stallions were genotyped using the Equine SNP50 Beadchip. The most significant association was found on horse chromosome 6 for a single nucleotide polymorphism (SNP) within phospholipase C zeta 1 (PLCz1). In the close neighbourhood to PLCz1 is located CAPZA3 (capping protein (actin filament) muscle Z-line, alpha 3). The gene PLCz1 encodes a protein essential for spermatogenesis and oocyte activation through sperm induced Ca2+-oscillation during fertilization. We derived equine gene models for PLCz1 and CAPZA3 based on cDNA and genomic DNA sequences. The equine PLCz1 had four different transcripts of which two contained a premature termination codon. Sequencing all exons and their flanking sequences using genomic DNA samples from 19 Hanoverian stallions revealed 47 polymorphisms within PLCz1 and one SNP within CAPZA3. Validation of these 48 polymorphisms in 237 Hanoverian stallions identified three intronic SNPs within PLCz1 as significantly associated with EBV-PAT. Bioinformatic analysis suggested regulatory effects for these SNPs via transcription factor binding sites or microRNAs. In conclusion, non-coding polymorphisms within PLCz1 were identified as conferring stallion fertility and PLCz1 as candidate locus for male fertility in Hanoverian warmblood. CAPZA3 could be eliminated as candidate gene for fertility in Hanoverian stallions.
Schrimpf, Rahel; Dierks, Claudia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar
2014-01-01
A consistently high level of stallion fertility plays an economically important role in modern horse breeding. We performed a genome-wide association study for estimated breeding values of the paternal component of the pregnancy rate per estrus cycle (EBV-PAT) in Hanoverian stallions. A total of 228 Hanoverian stallions were genotyped using the Equine SNP50 Beadchip. The most significant association was found on horse chromosome 6 for a single nucleotide polymorphism (SNP) within phospholipase C zeta 1 (PLCz1). In the close neighbourhood to PLCz1 is located CAPZA3 (capping protein (actin filament) muscle Z-line, alpha 3). The gene PLCz1 encodes a protein essential for spermatogenesis and oocyte activation through sperm induced Ca2+-oscillation during fertilization. We derived equine gene models for PLCz1 and CAPZA3 based on cDNA and genomic DNA sequences. The equine PLCz1 had four different transcripts of which two contained a premature termination codon. Sequencing all exons and their flanking sequences using genomic DNA samples from 19 Hanoverian stallions revealed 47 polymorphisms within PLCz1 and one SNP within CAPZA3. Validation of these 48 polymorphisms in 237 Hanoverian stallions identified three intronic SNPs within PLCz1 as significantly associated with EBV-PAT. Bioinformatic analysis suggested regulatory effects for these SNPs via transcription factor binding sites or microRNAs. In conclusion, non-coding polymorphisms within PLCz1 were identified as conferring stallion fertility and PLCz1 as candidate locus for male fertility in Hanoverian warmblood. CAPZA3 could be eliminated as candidate gene for fertility in Hanoverian stallions. PMID:25354211
Gu, Wanjun; Gurguis, Christopher I.; Zhou, Jin J.; Zhu, Yihua; Ko, Eun-A.; Ko, Jae-Hong; Wang, Ting; Zhou, Tong
2015-01-01
Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases. PMID:26454016
Adato, A; Weil, D; Kalinski, H; Pel-Or, Y; Ayadi, H; Petit, C; Korostishevsky, M; Bonne-Tamir, B
1997-10-01
Usher syndrome types I (USH1A-USH1E) are a group of autosomal recessive diseases characterized by profound congenital hearing loss, vestibular areflexia, and progressive visual loss due to retinitis pigmentosa. The human myosin VIIA gene, located on 11q14, has been shown to be responsible for Usher syndrome type 1B (USH1B). Haplotypes were constructed in 28 USH1 families by use of the following polymorphic markers spanning the USH1B locus: D11S787, D11S527, D11S1789, D11S906, D11S4186, and OMP. Affected individuals and members of their families from 12 different ethnic origins were screened for the presence of mutations in all 49 exons of the myosin VIIA gene. In 15 families myosin VIIA mutations were detected, verifying their classification as USH1B. All these mutations are novel, including three missense mutations, one premature stop codon, two splicing mutations, one frameshift, and one deletion of >2 kb comprising exons 47 and 48, a part of exon 49, and the introns between them. Three mutations were shared by more than one family, consistent with haplotype similarities. Altogether, 16 USH1B haplotypes were observed in the 15 families; most haplotypes were population specific. Several exonic and intronic polymorphisms were also detected. None of the 20 known USH1B mutations reported so far in other world populations were identified in our families.
Woodcock, Eric A.; Lundahl, Leslie H.; Burmeister, Margit; Greenwald, Mark K.
2017-01-01
Background Heroin’s analgesic, euphoric and dependence-producing effects are primarily mediated by the mu opioid receptor (MOR). A single gene, OPRM1, encodes the MOR. The functional polymorphism A118G, located in exon 1 of the OPRM1 gene, results in anatomically-specific reductions in MOR expression, which may alter an individual’s response to heroin. In prior studies 118G (rare allele) carriers demonstrated significantly greater opioid tolerance, overdose vulnerability, and pain sensitivity than 118AA homozygotes. Those findings suggest OPRM1 genotype may impact characteristics of heroin use. Methods The present pilot study characterized the impact of OPRM1 genotype (rs1799971, 118G allele carriers vs. 118AA homozygotes) on heroin-use phenotypes associated with heroin dependence severity in a sample of male, Caucasian chronic heroin users (n = 86). Results Results indicate that 118G allele carriers reported significantly more heroin use-related consequences and heroin-quit attempts, and were more likely to have sought treatment for their heroin use than 118AA homozygotes. Conclusions These preliminary findings, consistent with extant data, illustrate a role for OPRM1 allelic variation on heroin use characteristics, and provide support for considering genotype in heroin treatment and relapse prevention. PMID:25911999
Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1).
Bachvarov, D R; Hess, J F; Menke, J G; Larrivée, J F; Marceau, F
1996-05-01
Two subtypes of mammalian bradykinin receptors, B1 and B2 (BDKRB1 and BDKRB2), have been defined based on their pharmacological properties. The B1 type kinin receptors have weak affinity for intact BK or Lys-BK but strong affinity for kinin metabolites without the C-terminal arginine (e.g., des-Arg9-BK and Lys-des-Arg9-BK, also called des-Arg10-kallidin), which are generated by kininase I. The B1 receptor expression is up-regulated following tissue injury and inflammation (hyperemia, exudation, hyperalgesia, etc.). In the present study, we have cloned and sequenced the gene encoding human B1 receptor from a human genomic library. The human B1 receptor gene contains three exons separated by two introns. The first and the second exon are noncoding, while the coding region and the 3'-flanking region are located entirely on the third exon. The exon-intron arrangement of the human B1 receptor gene shows significant similarity with the genes encoding the B2 receptor subtype in human, mouse, and rat. Sequence analysis of the 5'-flanking region revealed the presence of a consensus TATA box and of numerous candidate transcription factor binding sequences. Primer extension experiments have shown the existence of multiple transcription initiation sites situated downstream and upstream from the consensus TATA box. Genomic Southern blot analysis indicated that the human B1 receptor is encoded by a single-copy gene.
Bakhtiar, R; Abdolmohammadi, A; Hajarian, H; Nikousefat, Z; Kalantar-Neyestanaki, D
2017-12-01
In this study, semen samples were collected from 96 Sanjabi rams in order to investigate the IGF-1 gene polymorphisms and their relationship with the characteristics of semen quality and testicular size. The dimensions of scrotal length, width and circumference were measured during autumn and spring over two years. Blood samples were simultaneously collected from jugular vein to extract DNA. PCR was performed using specific primers to amplify 294 and 272bp fragments including 5' regulatory region and exon 3 of IGF-1 gene, respectively. PCR products were digested by BFOI and Eco88l restriction enzymes, respectively. Two genotypes including AA (194 and 100bp), AB (294, 194 and 100bp) and all possible genotypes including CC (182 and 90bp), CT (272, 182, and 90bp) and TT (272bp) were observed for 5' flanking region and exon 3 of IGF-1 gene, respectively. The significant differences among IGF-1 genotypes for testicular dimensions were not observed. However, the polymorphism of 5' flanking region in the studied population had significant effect on individual motility and percent morphology traits. Animals with AB genotype had significantly higher individual motility compared with AA genotype (P < 0.05). Also, animals with AA genotype had significantly the highest percent morphology compared with AB genotype (P < 0.1). The exon 3 of IGF-1 gene had significant effect on individual motility, concentration, morphology and water test traits. Animals with CT genotype had the highest sperm concentration (P < 0.1) and water test (P < 0.05) compared to CC and TT genotypes. Moreover, animals with TT genotype had significantly the highest percent morphology compared with other genotypes (P < 0.05). Briefly, the results indicated that individual motility, concentration, percent morphology and water test traits could be in association with IGF-1 genotypes. It might be concluded that polymorphisms in IGF-1gene can be considered to develop male fertility in future and for using in selection process of better animals under masker assisted selection programs. Copyright © 2017 Elsevier Inc. All rights reserved.
Genetic polymorphisms in the formaldehyde dehydrogenase gene and their biological significance.
Just, Walter; Zeller, Jasmin; Riegert, Clarissa; Speit, Günter
2011-11-30
The GSH-dependent formaldehyde dehydrogenase (FDH) is the most important enzyme for the metabolic inactivation of formaldehyde. We studied three polymorphisms of this gene with the intention to elucidate their relevance for inter-individual differences in the protection against the (geno-)toxicity of FA. The first polymorphism (rs11568816) was investigated using real-time PCR and restriction fragment analysis in 150 subjects. However, we did not find the polymorphic sequence in any of the subjects. We studied a second polymorphism (rs17028487), representing a base exchange (c.*114A>G) in exon 9 of the FDH gene. We analyzed 70 subjects with the SNaPshot Primer Extension method and subsequent analysis in a ABI PRISM 3100, but no variant allele was identified. A third polymorphism, rs13832 in exon 9 (c.*493G>T), was studied in a group of 105 subjects by the SNaPshot Primer Extension method. 43 of the subjects were heterozygous for the polymorphism (G/T), 46 homozygous for the T allele, and 16 were homozygous for the G-allele. Real-time RT-PCR measurements of FDH mRNA did not indicate a significant difference in transcript levels between the heterozygous and the homozygous groups. The in vitro comet assay after FA exposure of blood samples obtained from 5 homozygous GG and 3 homozygous TT subjects did not lead to a significant difference between these two groups. Altogether, our study did not identify biologically relevant polymorphisms in transcribed regions of the FDH gene, which may lead to inter-individual differences in the metabolic inactivation of FA. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Bukowski, Karol; Woźniak, Katarzyna
2018-03-09
Genetic polymorphism is associated with the occurrence of at least 2 different alleles in the locus with a frequency higher than 1% in the population. Among polymorphisms we can find single nucleotide polymorphism (SNP) and polymorphism of variable number of tandem repeats. The presence of certain polymorphisms in genes encoding DNA repair enzymes is associated with the speed and efficiency of DNA repair and can protect or expose humans to the effects provoked by xenobiotics. Chemicals, such as lead, arsenic pesticides are considered to exhibit strong toxicity. There are many different polymorphisms in genes encoding DNA repair enzymes, which determine the speed and efficiency of DNA damage repair induced by these xenobiotics. In the case of lead, the influence of various polymorphisms, such as APE1 (apurinic/apyrimidinic endonuclease 1) (rs1130409), hOGG1 (human 8-oxoguanine glycosylase) (rs1052133), XRCC1 (X-ray repair cross-complementing protein group 1) (rs25487), XRCC1 (rs1799782) and XRCC3 (X-ray repair cross-complementing protein group 3) (rs861539) were described. For arsenic polymorphisms, such as ERCC2 (excision repair cross-complementing) (rs13181), XRCC3 (rs861539), APE1 (rs1130409) and hOGG1 (rs1052133) were examined. As to pesticides, separate and combined effects of polymorphisms in genes encoding DNA repair enzymes, such as XRCC1 (rs1799782), hOGG1 (rs1052133), XRCC4 (X-ray repair cross-complementing protein group 4) (rs28360135) and the gene encoding the detoxification enzyme PON1 paraoxonase (rs662) were reported. Med Pr 2018;69(2):225-235. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsugu, H.; Horowitz, R.; Gibson, N.
1994-12-01
Sera from approximately 30% of patients with systemic lupus erythematosus (SLE) contain high titers of autoantibodies that bind to the 52-kDa Ro/SSA protein. We previously detected polymorphisms in the 52-kDa Ro/SSA gene (SSA1) with restriction enzymes, one of which is strongly associated with the presence of SLE (P < 0.0005) in African Americans. A higher disease frequency and more severe forms of the disease are commonly noted among these female patients. To determine the location and nature of this polymorphism, we obtained two clones that span 8.5 kb of the 52-kDa Ro/SSA locus including its upstream regulatory region. Six exonsmore » were identified, and their nucleotide sequences plus adjacent noncoding regions were determined. No differences were found between these exons and the coding region of one of the reported cDNAs. The disease-associated polymorphic site suggested by a restriction enzyme map and confirmed by DNA amplification and nucleotide sequencing was present upstream of exon 1. This polymorphism may be a genetic marker for a disease-related variation in the coding region for the protein or in the upstream regulatory region of this gene. Although this RFLP is present in Japanese, it is not associated with lupus in this race. 41 refs., 4 figs., 2 tabs.« less
McClure, Matthew C; Bickhart, Derek; Null, Dan; Vanraden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B; Van Tassell, Curtis P; Sonstegard, Tad S
2014-01-01
The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array.
McClure, Matthew C.; Bickhart, Derek; Null, Dan; VanRaden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B.; Van Tassell, Curtis P.; Sonstegard, Tad S.
2014-01-01
The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array. PMID:24667746
Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamino, K.; Anderson, L.; O'dahl, S.
1992-11-01
A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in amore » Glu[yields]Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu[yields]Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambigously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond [theta] = .10 for the Volga German kindreds, [theta] = .20 for early-onset non-Volga Germans, and [theta] = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. 49 refs., 6 figs., 4 tabs.« less
Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.
Ma, Xiang; Li, Xiaoxin; Wang, Lihua
2008-01-01
To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.
Uemura, Takehiro; Oguri, Tetsuya; Okayama, Minami; Furuta, Hiromi; Kanemitsu, Yoshihiro; Takakuwa, Osamu; Ohkubo, Hirotsugu; Takemura, Masaya; Maeno, Ken; Ito, Yutaka; Niimi, Akio
2017-04-01
We herein report a case of dramatic intracranial response to osimertinib in a poor performance status patient with lung adenocarcinoma harboring the epidermal growth factor receptor ( EGFR ) T790M mutation encoded in exon 20. The patient was a 59-year-old woman with EGFR exon 19 deletion-positive lung adenocarcinoma, who relapsed with multiple brain metastases. Computed tomography-guided biopsy of the left pleural tumor revealed adenocarcinoma harboring an EGFR exon 19 deletion and an EGFR T790M mutation encoded in exon 20. The patient was treated with osimertinib, a third-generation EGFR tyrosine kinase inhibitor. Two days after treatment initiation, the patient displayed profound disturbance of consciousness, possibly due to carcinomatous meningitis, and treatment had to be discontinued due to difficulty in taking osimertinib. However, the patient gradually started to recover consciousness and, after 3 days, she was again able to take osimertinib. One month after the initiation of osimertinib treatment, magnetic resonance imaging revealed an apparent reduction in brain metastases. The patient is currently under continued treatment with osimertinib. At the last follow-up (February, 2017) she exhibited partial response to the treatment.
Chee, Gab-Joo; Takami, Hideto
2011-01-01
Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes.
Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.
2012-01-01
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637
Vacca, G M; Dettori, M L; Balia, F; Luridiana, S; Mura, M C; Carcangiu, V; Pazzola, M
2013-09-01
The purpose was to analyze the growth hormone GH1/GH2-N and GH2-Z gene copies and to assess their possible association with milk traits in Sarda sheep. Two hundred multiparous lactating ewes were monitored. The two gene copies were amplified separately and each was used as template for a nested PCR, to investigate single strand conformation polymorphism (SSCP) of the 5'UTR, exon-1, exon-5 and 3'UTR DNA regions. SSCP analysis revealed marked differences in the number of polymorphic patterns between the two genes. Sequencing revealed five nucleotide changes at the GH1/GH2-N gene. Five nucleotide changes occurred at the GH2-Z gene: one was located in exon-5 (c.556G > A) and resulted in a putative amino acid substitution G186S. All the nucleotide changes were copy-specific, except c.*30delT, which was common to both GH1/GH2-N and GH2-Z. Variability in the promoter regions of each gene might have consequences on the expression level, due to the involvement in potential transcription factor binding sites. Both gene copies influenced milk yield. A correlation with milk protein and casein content was also evidenced. These results may have implications that make them useful for future breeding strategies in dairy sheep breeding.
Esteller, M.; GarcÃa, A.; MartÃnez-Palones, J. M.; Xercavins, J.; Reventós, J.
1997-01-01
A case-control study was designed to identify associations between polymorphisms at p53, cytochrome P-450 (CYP1A1) and glutathione-S-transferases and endometrial cancer susceptibility. Among all polymorphisms analysed, an insertional variant in p53 (P53PIN3) and two polymorphisms in the 3'-end and exon 7 of CYP1A1 showed significant association with enhanced endometrial cancer risk. Images Figure 1 Figure 2 PMID:9155064
Martins, Rute; Proença, Daniela; Silva, Bruno; Barbosa, Cristina; Silva, Ana Luísa; Faustino, Paula; Romão, Luísa
2012-01-01
Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that selectively recognizes and degrades defective mRNAs carrying premature translation-termination codons. However, several studies have shown that NMD also targets physiological transcripts that encode full-length proteins, modulating their expression. Indeed, some features of physiological mRNAs can render them NMD-sensitive. Human HFE is a MHC class I protein mainly expressed in the liver that, when mutated, can cause hereditary hemochromatosis, a common genetic disorder of iron metabolism. The HFE gene structure comprises seven exons; although the sixth exon is 1056 base pairs (bp) long, only the first 41 bp encode for amino acids. Thus, the remaining downstream 1015 bp sequence corresponds to the HFE 3′ untranslated region (UTR), along with exon seven. Therefore, this 3′ UTR encompasses an exon/exon junction, a feature that can make the corresponding physiological transcript NMD-sensitive. Here, we demonstrate that in UPF1-depleted or in cycloheximide-treated HeLa and HepG2 cells the HFE transcripts are clearly upregulated, meaning that the physiological HFE mRNA is in fact an NMD-target. This role of NMD in controlling the HFE expression levels was further confirmed in HeLa cells transiently expressing the HFE human gene. Besides, we show, by 3′-RACE analysis in several human tissues that HFE mRNA expression results from alternative cleavage and polyadenylation at four different sites – two were previously described and two are novel polyadenylation sites: one located at exon six, which confers NMD-resistance to the corresponding transcripts, and another located at exon seven. In addition, we show that the amount of HFE mRNA isoforms resulting from cleavage and polyadenylation at exon seven, although present in both cell lines, is higher in HepG2 cells. These results reveal that NMD and alternative polyadenylation may act coordinately to control HFE mRNA levels, possibly varying its protein expression according to the physiological cellular requirements. PMID:22530027
Grigelioniene, Giedre; Nevalainen, Pasi I; Reyes, Monica; Thiele, Susanne; Tafaj, Olta; Molinaro, Angelo; Takatani, Rieko; Ala-Houhala, Marja; Nilsson, Daniel; Eisfeldt, Jesper; Lindstrand, Anna; Kottler, Marie-Laure; Mäkitie, Outi; Jüppner, Harald
2017-04-01
Pseudohypoparathyroidism type Ib (PHP1B) is characterized primarily by resistance to parathyroid hormone (PTH) and thus hypocalcemia and hyperphosphatemia, in most cases without evidence for Albright hereditary osteodystrophy (AHO). PHP1B is associated with epigenetic changes at one or several differentially-methylated regions (DMRs) within GNAS, which encodes the α-subunit of the stimulatory G protein (Gsα) and splice variants thereof. Heterozygous, maternally inherited STX16 or GNAS deletions leading to isolated loss-of-methylation (LOM) at exon A/B alone or at all maternal DMRs are the cause of autosomal dominant PHP1B (AD-PHP1B). In this study, we analyzed three affected individuals, the female proband and her two sons. All three revealed isolated LOM at GNAS exon A/B, whereas the proband's healthy maternal grandmother and uncle showed normal methylation at this locus. Haplotype analysis was consistent with linkage to the STX16/GNAS region, yet no deletion could be identified. Whole-genome sequencing of one of the patients revealed a large heterozygous inversion (1,882,433 bp). The centromeric breakpoint of the inversion is located 7,225 bp downstream of GNAS exon XL, but its DMR showed no methylation abnormality, raising the possibility that the inversion disrupts a regulatory element required only for establishing or maintaining exon A/B methylation. Because our three patients presented phenotypes consistent with PHP1B, and not with PHP1A, the Gsα promoter is probably unaffected by the inversion. Our findings expand the spectrum of genetic mutations that lead to LOM at exon A/B alone and thus biallelic expression of the transcript derived from this alternative first GNAS exon. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Analysis of Ethnic Admixture in Prostate Cancer
2006-12-01
low penetrant genes have been identified as potential PCA suscept- ibility genes. These candidate genes include SRD5A2 (MIM 607306), CYP3A4 (MIM 124010...progression [13]. The CDH1gene is located at 16q22.1 and consists of 16 exons spanning approximately 100 kb of genomic DNA. Several polymorphisms, germline and...upstreamof theATGstart site and all 16 exons of CDH1 were screened for DNA sequence variation by denaturing high-performance liquid chro- matography
Analysis of protocadherin alpha gene enhancer polymorphism in bipolar disorder and schizophrenia
Pedrosa, Erika; Stefanescu, Radu; Margolis, Benjamin; Petruolo, Oriana; Lo, Yungtai; Nolan, Karen; Novak, Tomas; Stopkova, Pavla; Lachman, Herbert M.
2008-01-01
Cadherins and protocadherins are cell adhesion proteins that play an important role in neuronal migration, differentiation and synaptogenesis, properties that make them targets to consider in schizophrenia (SZ) and bipolar disorder (BD) pathogenesis. Consequently, allelic variation occurring in protocadherin and cadherin encoding genes that map to regions of the genome mapped in SZ and BD linkage studies are particularly strong candidates to consider. One such set of candidate genes is the 5q31-linked PCDH family, which consists of more than 50 exons encoding three related, though distinct family members – α, β, and γ – which can generate thousands of different protocadherin proteins through alternative promoter usage and cis-alternative splicing. In this study, we focused on a SNP, rs31745, which is located in a putative PCDHα enhancer mapped by ChIP-chip using antibodies to covalently modified histone H3. A striking increase in homozygotes for the minor allele at this locus was detected in patients with BD. Molecular analysis revealed that the SNP causes allele-specific changes in binding to a brain protein. The findings suggest that the 5q31-linked PCDH locus should be more thoroughly considered as a disease-susceptibility locus in psychiatric disorders. PMID:18508241
HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing
Preußner, Marco; Schreiner, Silke; Hung, Lee-Hsueh; Porstner, Martina; Jäck, Hans-Martin; Benes, Vladimir; Rätsch, Gunnar; Bindereif, Albrecht
2012-01-01
CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4–6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL). To address the complex combinatorial splicing of exons 4–6, we investigated hnRNP L/LL protein expression in human B-cells in relation to CD45 splicing patterns, applying RNA-Seq. In addition, mutational and RNA-binding analyses were carried out in HeLa cells. We conclude that hnRNP LL functions as the major CD45 splicing repressor, with two CA elements in exon 6 as its primary target. In exon 4, one element is targeted by both hnRNP L and LL. In contrast, exon 5 was never repressed on its own and only co-regulated with exons 4 and 6. Stable L/LL interaction requires CD45 RNA, specifically exons 4 and 6. We propose a novel model of combinatorial alternative splicing: HnRNP L and LL cooperate on the CD45 pre-mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full repression of the three variable exons. PMID:22402488
Polymorphic Imprinting of SLC38A4 Gene in Bovine Placenta.
Xu, Da; Zhang, Cui; Li, Junliang; Wang, Guannan; Chen, Weina; Li, Dongjie; Li, Shijie
2018-05-21
Imprinted genes are characterized by monoallelic expression that is dependent on parental origin. Comparative analysis of imprinted genes between species is a powerful tool for understanding the biological significance of genomic imprinting. The slc38a4 gene encodes a neutral amino acid transporter and is identified as imprinted in mice. In this study, the imprinting status of SLC38A4 was assessed in bovine adult tissues and placenta using a polymorphism-based approach. Results indicate that SLC38A4 is not imprinted in eight adult bovine tissues including heart, liver, spleen, lung, kidney, muscle, fat, and brain. It was interesting to note that SLC38A4 showed polymorphic status in five heterogeneous placentas, with three exhibiting paternal monoallelic expression and two exhibiting biallelic expression. Monoallelic expression of imprinted genes is generally associated with allele-specific differentially methylation regions (DMRs) of CpG islands (CGIs)-encompassed promoter; therefore, the DNA methylation statuses of three CGIs in the SLC38A4 promoter and exon 1 region were tested in three placentas (two exhibiting paternal monoallelic and one showing biallelic expression of SLC38A4) and their corresponding paternal sperms. Unexpectedly, extreme hypomethylation (< 3%) of the DNA was observed in all the three detected placentas and their corresponding paternal sperms. The absence of DMR in bovine SLC38A4 promoter region implied that DNA methylation of these three CGIs does not directly or indirectly affect the polymorphic imprinting of SLC38A4 in bovine placenta. This suggested other epigenetic features other than DNA methylation are needed in regulating the imprinting of bovine SLC38A4, which is different from that of mouse with respect to a DMR existence at the mouse's slc38a4 promoter region. Although further work is needed, this first characterization of polymorphic imprinting status of SLC38A4 in cattle placenta provides valuable information on investigating the genomic imprinting phenomenon itself.
Chowbay, Balram; Cumaraswamy, Sivathasan; Cheung, Yin Bun; Zhou, Qingyu; Lee, Edmund J D
2003-02-01
Intestinal cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) both play a vital role in the metabolism of oral cyclosporine (CsA). We investigated the genetic polymorphisms in CYP3A4(promoter region and exons 5, 7 and 9) and MDR1 (exons 12, 21 and 26) genes and the impact of these polymorphisms on the pharmacokinetics of oral CsA in stable heart transplant patients (n = 14). CYP3A4 polymorphisms were rare in the Asian population and transplant patients. Haplotype analysis revealed 12 haplotypes in the Chinese, eight in the Malays and 10 in the Indians. T-T-T was the most common haplotype in all ethnic groups. The frequency of the homozygous mutant genotype at all three loci (TT-TT-TT) was highest in the Indians (31%) compared to 19% and 15% in the Chinese and Malays, respectively. In heart transplant patients, CsA exposure (AUC(0-4 h), AUC(0-12 h) and C(max)) was high in patients with the T-T-T haplotypes compared to those with C-G-C haplotypes. These findings suggest that haplotypes rather than genotypes influence CsA disposition in transplant patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuppens, H.; Marynen, P.; Cassiman, J.J.
1993-12-01
The authors have previously shown that about 85% of the mutations in 194 Belgian cystic fibrosis alleles could be detected by a reverse dot-blot assay. In the present study, 50 Belgian chromosomes were analyzed for mutations in the cystic fibrosis transmembrane conductance regulator gene by means of direct solid phase automatic sequencing of PCR products of individual exons. Twenty-six disease mutations and 14 polymorphisms were found. Twelve of these mutations and 3 polymorphisms were not described before. With the exception of one mutant allele carrying two mutations, these mutations were the only mutations found in the complete coding region andmore » their exon/intron boundaries. The total sensitivity of mutant CF alleles that could be identified was 98.5%. Given the heterogeneity of these mutations, most of them very rare, CFTR mutation screening still remains rather complex in the population, and population screening, whether desirable or not, does not appear to be technically feasible with the methods currently available. 24 refs., 1 fig., 2 tabs.« less
Shevah, Orit; Rubinstein, Menachem; Laron, Zvi
2004-10-01
Laron Syndrome, first described in Israel, is a form of dwarfism similar to isolated growth hormone deficiency caused by molecular defects in the GH receptor gene. To characterize the molecular defects of the GH-R in Laron syndrome patients followed in our clinic. Of the 63 patients in the cohort, we investigated 31 patients and 32 relatives belonging to several ethnic origins. Molecular analysis of the GH-R gene was performed using the single strand conformation polymorphism and DNA sequencing techniques. Eleven molecular defects including a novel mutation were found. Twenty-two patients carried mutations in the extracellular domain, one in the transmembrane domain, and 3 siblings with typical Laron syndrome presented a normal GH-R. Of interest are, on one hand, different mutations within the same ethnic groups: W-15X and 5, 6 exon deletion in Jewish-Iraqis, and E180 splice and 5, 6 exon deletion in Jewish-Moroccans; and on the other hand, identical findings in patients from distinct regions: the 785-1 G to T mutation in an Israeli-Druze and a Peruvian patient. A polymorphism in exon 6, Gly168Gly, was found in 15 probands. One typical Laron patient from Greece was heterozygous for R43X in exon 4 and heterozygous for Gly168Gly. In addition, a novel mutation in exon 5: substitution of T to G replacing tyrosine 86 for aspartic acid (Y86D) is described. This study demonstrates: a) an increased focal incidence of Laron syndrome in different ethnic groups from our area with a high incidence of consanguinity; and b) a relationship between molecular defects of the GH-R, ethnic group and geographic area.
Zhang, Junfeng; Zhan, Zhen; Wu, Juan; Zhang, Chunbing; Yang, Yaping; Tong, Shujuan; Sun, Zheng; Qin, Lei; Yang, Xuewen; Dong, Wei
2013-01-01
The epidermal growth factor receptor (EGFR) gene plays a key role in tumor survival, invasion, angiogenesis, and metastatic spread. Recent studies showed that gastric cancer (GC) was associated with polymorphisms of the EGFR gene and environmental influences, such as lifestyle factors. In this study, seven known SNPs in EGFR exons were investigated in a high-risk Chinese population in Jiangsu province to test whether genetic variants of EGFR exons and lifestyle are associated with an increased risk of GC. A hospital-based case-control study was performed in Jiangsu province. The results showed that smoking, drinking and preference for salty food were significantly associated with the risk of GC. The differences of lifestyle between males and females might be as the reason of higher incidence rates in males than those in females. Seven exon SNPs were genotyped rs2227983,rs2072454,rs17337023,rs1050171,rs1140475, rs2293347, and rs28384375. It was noted that the variant rs2072454 T allele and TT genotype were significantly associated with an increased risk of GC. Interestingly, our result suggested the ACAGCA haplotype might be associated with decreased risk of GC. However, no significant association was examined between the other six SNPs and the risk of GC both in the total population and the age-matching population even with gender differences. Smoking, drinking and preference for salty food were significantly associated with the risk of GC in Jiangsu province with gender differences. Although only one SNP (rs2072454) was significantly associated with an increased risk of GC, combined the six EGFR exon SNPs together may be useful for predicting the risk of GC.
Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G; Simpson, June
2012-01-01
Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants.
Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G.; Simpson, June
2012-01-01
Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants. PMID:22558253
Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer
Hirata, Hiroshi; Hinoda, Yuji; Kawamoto, Ken; Kikuno, Nobuyuki; Suehiro, Yutaka; Okayama, Naoko; Tanaka, Yuichiro; Dahiya, Rajvir
2014-01-01
Purpose The mismatch repair (MMR) system is a DNA repair mechanism that corrects mispaired bases during DNA replication errors. Cancer cells deficient in the MMR proteins have a 102 –103-fold increase in the mutation rate. Single nucleotide polymorphisms (SNPs) of MMR genes have been shown to cause a reduction in DNA repair activity. We hypothesized that mismatch repair gene polymorphism could be a risk factor for prostate cancer (PC) and that p53 Pro/Pro genotype carriers could influence MSH3 and MSH6 polymorphisms. Material and Methods DNA samples from 110 cases of prostate cancer and healthy controls (n=110) were analyzed by SSCP and PCR-RFLP to determine the genotypic frequency of five different polymorphic loci on two MMR genes (MSH3 and MSH6) and p53 codon72. The chi-square test was applied to compare the genotype frequency between patients and controls. Results A significant increase in the G/A+A/A genotype of MSH3 Pro222Pro was observed in patients compared to controls (OR, 1.87; 95% CI, 1.0–3.5). The frequency of A/G + G/G genotypes of MSH3 exon23 Thr1036Ala also tended to increase in patients (OR, 1.57; 95% CI, 0.92–2.72). Among p53 codon72 Arg/Pro + Pro/Pro carriers, the frequency of the AG + GG genotype of MSH3 exon23 was significantly increased in patients compared to controls (OR = 2.1, 95% CI; 1.05–4.34). Conclusion This is the first report on the association of MSH3 gene polymorphisms in prostate cancer. These results suggest that the MSH3 polymorphism may be a risk factor for prostate cancer. PMID:18355840
Lehman, D M; Leach, R J; Johnson-Pais, T; Hamlington, J; Fowler, S; Almasy, L; Duggirala, R; Stern, M P; Abboud, H E
2006-09-01
Albuminuria, a hallmark of diabetic nephropathy, has been shown to be significantly heritable in multiple studies. Therefore, the identification of genes that affect susceptibility to albuminuria may lead to novel avenues of intervention. Current evidence suggests that the podocyte and slit diaphragm play a key role in controlling the selective sieve of the glomerular filtration barrier, and podocyte-specific genes have been identified that are necessary for maintaining its integrity. We therefore investigated the role of gene variants of tight junction protein (TJP1) which encodes another slit diaphragm-associated protein zona occludens 1 as risk factors for albuminuria in the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), which consists of extended Mexican-American families with a high prevalence of type 2 diabetes. Albuminuria, defined as an albumin (mg/dl) to creatinine (mg/dl) ratio (ACR) of 0.03, which is approximately equivalent to a urinary albumin excretion (UAE) >30 mg/day, was present in a total of 14.9% of participants, and 31% had type 2 diabetes. The TJP1 exons, flanking intronic sequence, and putative proximal promoter regions were investigated in this population. Twentynine polymorphisms, including 7 nonsynonymous SNPs, were identified and genotyped in all subjects of this study for association analysis. Three sets of correlated SNPs, which include 3 exonic SNPs, were nominally associated with ACR (p value range 0.007-0.049); however, the association with the discrete trait albuminuria was not significant (p value range 0.094-0.338). We conclude that these variants in TJP1 do not appear to be major determinants for albuminuria in the SAFDGS; however, they may play a minor role in its severity in this Mexican-American population. Further examination of the TJP1 gene region in this and other cohorts will be useful to determine whether ZO-1 plays a significant role in glomerular permselectivity.
First example of an FY*01 allele associated with weakened expression of Fya on red blood cells.
Arndt, Patricia A; Horn, Trina; Keller, Jessica A; Heri, Suzanne M; Keller, Margaret A
2015-01-01
Duffy antigens are important in immunohematology. the reference allele for the Duffy gene (FY) is FY*02, which encodes Fy(b). An A>G single nucleotide polymorphism (SNP) at coding nucleotide (c.) 125 in exon 2 defines the FY*01 allele, which encodes the antithetical Fy(a). A C>T SNP at c.265 in the FY*02 allele is associated with weakening of Fy(b) expression on red blood cells (R BCs) (called Fy(x)). until recently, this latter change had not been described on a FY*01 background allele. Phenotype-matched units were desired for a multi-transfused Vietnamese fetus with α-thalassemia. Genotyping of the fetus using a microarray assay that interrogates three SNPs (c.1-67, c.125, and c.265) in FY yielded indeterminate results for the predicted Duffy phenotype. Genomic sequencing of FY exon 2 showed that the fetal sample had one wild-type FY*01 allele and one new FY*01 allele with the c.265C>T SNP, which until recently had only been found on the FY*02 allele. Genotyping performed on samples from the proband's parents indicated that the father had the same FY genotype as the fetus. Flow cytometry, which has been previously demonstrated as a useful method to study antigen strength on cells, was used to determine if this new FY*01 allele was associated with reduced Fy(a) expression on the father's RBCs. Median fluorescence intensity of the father's RBCs (after incubation with anti-FY(a) and fluorescein-labeled anti-IgG) was similar to known FY*01 heterozygotes. and significantly weaker than known FY*01 homozygotes. In conclusion, the fetus and father both had one normal FY*01 allele and one new FY*01W.01, is associated with weakened expression of Fy(a) on RBCs.
El-Din, Mennat Allah Kamal; Khorshied, Mervat Mamdooh; El-Saadany, Zainab Ali; El-Banna, Marwa Ahmed; Reda Khorshid, Ola M
2013-12-01
Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous neoplasm. Although several genetic and environmental factors have been postulated, no obvious risk factors have been emerged for DLBCL in the general population. DNA repair systems are responsible for maintaining the integrity of the genome and protecting it against genetic alterations that can lead to malignant transformation. The current study aimed at investigating the possible role of ERCC2/XPD Arg156Arg, Asp312Asn and Lys751Gln genetic polymorphisms as risk factors for DLBCL in Egypt. The study included 81 DLBCL patients and 100 healthy controls. Genotyping of the studied genetic polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism technique. Our results revealed that there was no statistical difference encountered in the distribution of -Asp312Asn and -Lys751Gln polymorphic genotypes between DLBCL cases and controls, thus it could not considered as molecular risk factors for DLBCL in Egyptians. However, Arg156Arg polymorphism at exon-6 conferred twofold increased risk of DLBCL (OR 2.034, 95 %CI 1.015-4.35, p = 0.43), and the risk increased when co-inherited with Lys751Gln at exon-23 (OR 3.304, 95 %CI 1.113-9.812, p = 0.038). In conclusion, ERCC2/XPD Arg156Arg polymorphism might be considered as a genetic risk factor for DLBCL in Egyptians, whether alone or conjoined with Lys751Gln.
Prion gene haplotypes of U.S. cattle
Clawson, Michael L; Heaton, Michael P; Keele, John W; Smith, Timothy PL; Harhay, Gregory P; Laegreid, William W
2006-01-01
Background Bovine spongiform encephalopathy (BSE) is a fatal neurological disorder characterized by abnormal deposits of a protease-resistant isoform of the prion protein. Characterizing linkage disequilibrium (LD) and haplotype networks within the bovine prion gene (PRNP) is important for 1) testing rare or common PRNP variation for an association with BSE and 2) interpreting any association of PRNP alleles with BSE susceptibility. The objective of this study was to identify polymorphisms and haplotypes within PRNP from the promoter region through the 3'UTR in a diverse sample of U.S. cattle genomes. Results A 25.2-kb genomic region containing PRNP was sequenced from 192 diverse U.S. beef and dairy cattle. Sequence analyses identified 388 total polymorphisms, of which 287 have not previously been reported. The polymorphism alleles define PRNP by regions of high and low LD. High LD is present between alleles in the promoter region through exon 2 (6.7 kb). PRNP alleles within the majority of intron 2, the entire coding sequence and the untranslated region of exon 3 are in low LD (18.0 kb). Two haplotype networks, one representing the region of high LD and the other the region of low LD yielded nineteen different combinations that represent haplotypes spanning PRNP. The haplotype combinations are tagged by 19 polymorphisms (htSNPS) which characterize variation within and across PRNP. Conclusion The number of polymorphisms in the prion gene region of U.S. cattle is nearly four times greater than previously described. These polymorphisms define PRNP haplotypes that may influence BSE susceptibility in cattle. PMID:17092337
Identification of POMC exonic variants associated with substance dependence and body mass index.
Wang, Fan; Gelernter, Joel; Kranzler, Henry R; Zhang, Huiping
2012-01-01
Risk of substance dependence (SD) and obesity has been linked to the function of melanocortin peptides encoded by the proopiomelanocortin gene (POMC). POMC exons were Sanger sequenced in 280 African Americans (AAs) and 308 European Americans (EAs). Among them, 311 (167 AAs and 114 EAs) were affected with substance (alcohol, cocaine, opioid and/or marijuana) dependence and 277 (113 AAs and164 EAs) were screened controls. We identified 23 variants, including two common polymorphisms (rs10654394 and rs1042571) and 21 rare variants; 12 of which were novel. We used logistic regression to analyze the association between the two common variants and SD or body mass index (BMI), with sex, age, and ancestry proportion as covariates. The common variant rs1042571 in the 3'UTR was significantly associated with BMI in EAs (Overweight: P(adj) = 0.005; Obese: P(adj) = 0.018; Overweight+Obese: P(adj) = 0.002) but not in AAs. The common variant, rs10654394, was not associated with BMI and neither common variant was associated with SD in either population. To evaluate the association between the rare variants and SD or BMI, we collapsed rare variants and tested their prevalence using Fisher's exact test. In AAs, rare variants were nominally associated with SD overall and with specific SD traits (SD: P(FET,1df) = 0.026; alcohol dependence: P(FET,1df) = 0.027; cocaine dependence: P(FET,1df) = 0.007; marijuana dependence: P(FET,1df) = 0.050) (the P-value from cocaine dependence analysis survived Bonferroni correction). There was no such effect in EAs. Although the frequency of the rare variants did not differ significantly between the normal-weight group and the overweight or obese group in either population, certain rare exonic variants occurred only in overweight or obese subjects without SD. These findings suggest that POMC exonic variants may influence risk for both SD and elevated BMI, in a population-specific manner. However, common and rare variants in this gene may exert different effects on these two phenotypes.
[Polymorphism of CD209 and TLR3 genes in populations of North Eurasia].
Barkhash, A V; Babenko, V N; Voevoda, M I; Romaschenko, A G
2016-06-01
The DC-SIGN (dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin) and TLR3 (toll-like receptor 3) proteins are key effectors of the innate immunity and particularly play an important role in the organism’s antiviral defense as pattern-recognition receptors. Previously, we demonstrated that certain genotypes and alleles of single nucleotide polymorphisms (SNPs) rs2287886 (G/A) in the promoter region of the CD209 gene (encoding DC-SIGN) and rs3775291 (G/A, Leu412Phe) in the exon 4 of the TLR3 gene are associated with human predisposition to tick-borne encephalitis in the Russian population. In the present work, the distribution of genotype and allele frequencies for these SNPs was studied in seven populations of North Eurasia, including Caucasians (Russians and Germans (from Altai region)), Central Asian Mongoloids (Altaians, Khakass, Tuvinians, and Shorians), and Arctic Mongoloids (Chukchi). It was found that the CD209 gene rs2287886 SNP A/A genotype and A allele, as well as the TLR3 gene rs3775291 SNP G/G genotype and G allele (the frequencies of which in our previous studies were increased in tick-borne encephalitis patients as compared with the population control (Russian citizens of Novosibirsk)), are preserved with a high frequency in Central Asian Mongoloids (who for a long time regularly came in contact with tick-borne encephalitis virus in places of their habitation). We suggested that predisposition to tick-borne encephalitis in Central Asian Mongoloid populations can be predetermined by a different set of genes and their polymorphisms than in the Russian population.
Significant expansion of exon-bordering protein domains during animal proteome evolution
Liu, Mingyi; Walch, Heiko; Wu, Shaoping; Grigoriev, Andrei
2005-01-01
We present evidence of remarkable genome-wide mobility and evolutionary expansion for a class of protein domains whose borders locate close to the borders of their encoding exons. These exon-bordering domains are more numerous and widely distributed in the human genome than other domains. They also co-occur with more diverse domains to form a larger variety of domain architectures in human proteins. A systematic comparison of nine animal genomes from nematodes to mammals revealed that exon-bordering domains expanded faster than other protein domains in both abundance and distribution, as well as the diversity of co-occurring domains and the domain architectures of harboring proteins. Furthermore, exon-bordering domains exhibited a particularly strong preference for class 1-1 intron phase. Our findings suggest that exon-bordering domains were amplified and interchanged within a genome more often and/or more successfully than other domains during evolution, probably the result of extensive exon shuffling and gene duplication events. The diverse biological functions of these domains underscore the important role they play in the expansion and diversification of animal proteomes. PMID:15640447
Halley, Andrew C; Boretsky, Melanie; Puts, David A; Shriver, Mark
2016-11-01
Polymorphisms in the dopamine D4 receptor (DRD4) have previously been shown to associate with a variety of human behavioral phenotypes, including ADHD pathology, alcohol and tobacco craving, financial risk-taking in males, and broader personality traits such as novelty seeking. Recent research has linked the presence of a 7-repeat (7R) allele in a 48-bp variable number of tandem repeats (VNTR) along exon III of DRD4 to age at first sexual intercourse, sexual desire, arousal and function, and infidelity and promiscuity. We hypothesized that carriers of longer DRD4 alleles may report interest in a wider variety of sexual behaviors and experiences than noncarriers. Participants completed a 37-item questionnaire measuring sexual interests as well as Cloninger's Temperament and Character Inventory, and were genotyped for the 48-bp VNTR on exon III of DRD4. Based on our final genotyped sample of female (n = 139) and male (n = 115) participants, we found that 7R carriers reported interest in a wider variety of sexual behaviors (r = 0.16) within a young adult heterosexual sample of European descent. To our knowledge, this is the first reported association between DRD4 exon III VNTR genotype and interest in a variety of sexual behaviors. We discuss these findings within the context of DRD4 research and broader trends in human evolutionary history.
Pastor, André F.; Moura, Laís Rodrigues; Neto, José W.D.; Nascimento, Eduardo J.M.; Calzavara-Silva, Carlos E.; Gomes, Ana Lisa V.; da Silva, Ana Maria; Cordeiro, Marli T.; Braga-Neto, Ulisses; Crovella, Sergio; Gil, Laura H.V.G.; Marques, Ernesto T.A.; Acioli-Santos, Bartolomeu
2013-01-01
Four genetic polymorphisms located at the promoter (C-257T) and coding regions of CFH gene (exon 2 G257A, exon 14 A2089G and exon 19 G2881T) were investigated in 121 dengue patients (DENV-3) in order to assess the relationship between allele/haplotypes variants and clinical outcomes. A statistical value was found between the CFH-257T allele (TT/TC genotypes) and reduced susceptibility to severe dengue (SD). Statistical associations indicate that individuals bearing a T allele presented significantly higher protein levels in plasma. The –257T variant is located within a NF-κB binding site, suggesting that this variant might have effect on the ability of the CFH gene to respond to signals via the NF-κB pathway. The G257A allelic variant showed significant protection against severe dengue. When CFH haplotypes effect was considered, the ancestral CG/CG promoter-exon 2 SNP genotype showed significant risk to SD either in a general comparison (ancestral × all variant genotypes), as well as in individual genotypes comparison (ancestral × each variant genotype), where the most prevalent effect was observed in the CG/CG × CA/TG comparison. These findings support the involvement of –257T, 257A allele variants and haplotypes on severe dengue phenotype protection, related with high basal CFH expression. PMID:23747994
Bison PRNP genotyping and potential association with Brucella spp. seroprevalence
Seabury, C.M.; Halbert, N.D.; Gogan, P.J.P.; Templeton, J.W.; Derr, J.N.
2005-01-01
The implication that host cellular prion protein (PrPC) may function as a cell surface receptor and/or portal protein for Brucella abortus in mice prompted an evaluation of nucleotide and amino acid variation within exon 3 of the prion protein gene (PRNP) for six US bison populations. A non-synonymous single nucleotide polymorphism (T50C), resulting in the predicted amino acid replacement M17T (Met ??? Thr), was identified in each population. To date, no variation (T50: Met) has been detected at the corresponding exon 3 nucleotide and/or amino acid position for domestic cattle. Notably, 80% (20 of 25) of the Yellowstone National Park bison possessing the C/C genotype were Brucella spp. seropositive, representing a significant (P = 0.021) association between seropositivity and the C/C genotypic class. Moreover, significant differences in the distribution of PRNP exon 3 alleles and genotypes were detected between Yellowstone National Park bison and three bison populations that were either founded from seronegative stock or previously subjected to test-and-slaughter management to eradicate brucellosis. Unlike domestic cattle, no indel polymorphisms were detected within the corresponding regions of the putative bison PRNP promoter, intron 1, octapeptide repeat region or 3???-untranslated region for any population examined. This study provides the first evidence of a potential association between nucleotide variation within PRNP exon 3 and the presence of Brucella spp. antibodies in bison, implicating PrPC in the natural resistance of bison to brucellosis infection. ?? 2005 International Society for Animal Genetics.
The Androgen Receptor Gene Mutations Database.
Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M
1998-01-01
The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).
The Androgen Receptor Gene Mutations Database.
Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M
1998-01-01
The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). PMID:9399843
Bremer, Jeroen; Bornert, Olivier; Nyström, Alexander; Gostynski, Antoni; Jonkman, Marcel F; Aartsma-Rus, Annemieke; van den Akker, Peter C; Pasmooij, Anna Mg
2016-10-18
The "generalized severe" form of recessive dystrophic epidermolysis bullosa (RDEB-gen sev) is caused by bi-allelic null mutations in COL7A1, encoding type VII collagen. The absence of type VII collagen leads to blistering of the skin and mucous membranes upon the slightest trauma. Because most patients carry exonic point mutations or small insertions/deletions, most exons of COL7A1 are in-frame, and low levels of type VII collagen already drastically improve the disease phenotype, this gene seems a perfect candidate for antisense oligonucleotide (AON)-mediated exon skipping. In this study, we examined the feasibility of AON-mediated exon skipping in vitro in primary cultured keratinocytes and fibroblasts, and systemically in vivo using a human skin-graft mouse model. We show that treatment with AONs designed against exon 105 leads to in-frame exon 105 skipping at the RNA level and restores type VII collagen protein production in vitro. Moreover, we demonstrate that systemic delivery in vivo induces de novo expression of type VII collagen in skin grafts generated from patient cells. Our data demonstrate strong proof-of-concept for AON-mediated exon skipping as a systemic therapeutic strategy for RDEB.
Effects of energy expenditure gene polymorphisms on obesity-related traits in obese children.
Csernus, Katalin; Pauler, Gábor; Erhardt, Éva; Lányi, Éva; Molnár, Dénes
2015-01-01
To assess the frequencies of common polymorphisms of genes associated with energy expenditure among Hungarian obese children and investigate their influences on obesity-related traits and metabolic complications of common childhood obesity. In a total of 528 obese children (age 13.2±2.6 years) an oral glucose tolerance test and determination of fasting serum lipid levels were carried out, blood pressure and resting energy expenditure were measured and the children were genotyped for the following gene polymorphisms: Trp64Arg of β3-adrenoreceptor (ADRB3), -3826 A/G of uncoupling protein (UCP)-1, exon 8 45 bp del/ins and -866 G/A of UCP-2, -55 C/T of UCP-3, and Pro12Ala of peroxisome-proliferator activated receptor gamma-2. Carriers of the ADRB3 Arg64 allele had a significantly higher relative body weight and relative body mass index compared with non-carriers. The UCP-2 exon 8 del/ins polymorphism was associated with higher degree of obesity, insulin resistance, dyslipideamia and lower adjusted metabolic rate. Children with UCP-3 -55 T/T genotype had a significantly lower adjusted metabolic rate than the C allele carriers. We found evidence for associations between common polymorphisms of the ADRB3, the UCP-2 and UCP-3 genes and basic metabolic rate as well as level and metabolic consequences of common obesity among Hungarian school-aged children. Copyright © 2014 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Huang, Hai; Wei, Yun; Meng, Zining; Zhang, Yong; Liu, Xiaochun; Guo, Liang; Luo, Jian; Chen, Guohua; Lin, Haoran
2014-01-01
In mammals, leptin has been demonstrated to perform important roles in many physiological activities and to influence development, growth, metabolism and reproduction. However, in fish, its function is still unclear. Duplicate leptin genes, leptin-a and leptin-b, have been identified in the orange-spotted grouper. In the present study, the polymorphisms in the leptin-b gene of the orange-spotted grouper were detected, and the relation between these polymorphisms and 12 growth traits were analyzed. Six polymorphisms (including 3 single nucleotide polymorphisms (c.14G>A, c.93A>G, c.149G>A) in exon 1, 2 SNPs (c.181A>G, c.193G>A) in intron 1, and 1 SNP (c.360C>T) in exon 2) were identified and genotyped from 200 different individuals. The results revealed that the SNP c.149G>A was significantly associated with growth traits, that the heterozygous mutation genotype GA having negative effects on growth traits. However, the other five SNPs (c.14G>A, c.93A>G, c.181A>G, c.193G>A, c.360C>T) did not show significant associations with all the growth traits. Compared with our findings in leptin-a gene, the results suggested that the leptin-a hormone has more important physiological effects in fish bodies than the leptin-b type. Moreover, leptin genes were supposed to be one class of major candidate genes of regulating growth traits in the orange-spotted grouper. PMID:25003640
Adoligbe, C; Zan, Linsen; Farougou, S; Wang, Hongbao; Ujjan, J A
2012-04-01
The objective of this research was to detect bovine GDF10 gene polymorphism and analyze its association with body measurement traits (BMT) of animals sampled from 6 different Chinese indigenous cattle populations. The populations included Xuelong (Xl), Luxi (Lx), Qinchuan (Qc), Jiaxian red (Jx), Xianang (Xn) and Nanyang (Ny). Blood samples were taken from a total of 417 female animals stratified into age categories of 12-36 months. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was employed to find out GDF10 single polymorphism nucleotide (SNPs) and explore their possible association with BMT. Sequence analysis of GDF10 gene revealed 3 SNPs in total: 1 in exon1 (G142A) and 2 in exon3 (A11471G, and T12495C). G142A and T12495C SNPs are both synonymous mutation. They showed 2 genotypes namely respectively (GG, GA) and (PP and PB). A11471G SNP is a missense mutation leading to the change of Alanine to Threonine amino acid. It showed three genotypes namely AA, BB and AB. Analysis of association of polymorphism with body measurement traits at the three locus showed that there were significant effects on BMT in Qc, Jx and Ny cattle population. These results suggest that the GDF10 gene might have potential effects on body measurement traits in the above mentioned cattle populations and could be used for marker-assisted selection.
Nakano, Yuko; Kobayashi, Masato; Bonkobara, Makoto; Takanosu, Masamine
2017-06-01
Imatinib-resistance is a major therapeutic problem in human chronic myeloid leukemia, human gastrointestinal stromal tumors, and canine mast cell tumors. In the present study, we identified the secondary mutation c.2006C>T in c-KIT exon 14 in a mast cell tumor obtained from a dog carrying c.1663-1671del in exon 11 and showing resistance to imatinib. The mutation in exon 14 resulted in substitution of threonine with isoleucine at position 669, which was located at the center of the ATP binding site as a gatekeeper and played an important role in binding to imatinib. Transfectants were constructed to survey the functions of these mutations in exons 11 and 14. The transfectant with mutant KIT encoded by c-KIT carrying c.1663-1671del showed constitutive ligand-independent phosphorylation that was suppressed by imatinib, indicating a gain-of-function mutation. Furthermore, the transfectant with mutant KIT encoded by c-KIT carrying both c.1663-1671del and c.2006C>T caused ligand-independent phosphorylation, which was not suppressed by imatinib. From these results, we concluded that the mutation c.2006C>T in c-KIT exon 14 was an imatinib-resistance mutation in a canine mast cell tumor. These findings revealed, for the first time, a mechanism of imatinib resistance in a clinical case of canine mast cell tumor. Copyright © 2017 Elsevier B.V. All rights reserved.
Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar
2015-01-01
We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578
Judith D. Toms; Lori S. Eggert; Wayne J. Arendt; John Faaborg
2012-01-01
While testing genetic sexing techniques in Ovenbirds (Seiurus aurocapilla),we found a genetic polymorphism in the ATP5A1 gene in 38% of individuals. The Z ' allele included changes in both intronic and exonic portions of the sequenced region, but there was no evidence that this changed the resulting ATP synthase product. Males that had one or more copies of...
Dériaz, O; Dionne, F; Pérusse, L; Tremblay, A; Vohl, M C; Côté, G; Bouchard, C
1994-01-01
The aim of this study was to investigate in 261 subjects from 58 families the association between DNA variation at the genes coding for the Na,K-ATPase peptides and resting metabolic rate (RMR), respiratory quotient (RQ), and percent body fat (%FAT). Five restriction fragment length polymorphisms (RFLP) at three Na,K-ATPase genes were determined: one at the alpha 1 locus (BglII), and two at the beta locus (beta MspI and beta PvuII). Haplotypes were determined from the two variable sites of the alpha 2 gene (alpha 2 haplotypes) and the beta gene (beta haplotypes). There was a strong trend for %FAT to be related to the RFLP generated by BglII at the alpha 2 exons 21-22 in males (P = 0.06) and females (P = 0.05). RQ was (a) associated with the BglII RFLP at the alpha 2 exon 1 (P = 0.02) and with the alpha 2 8.0 kb/4.3 kb haplotype (P = 0.04) and (b) linked with the beta gene MspI marker (P = 0.04) and with the beta 5.3 kb/5.1 kb haplotype (P = 0.008) based on sib-pair analysis. The present study suggests that the genes encoding Na,K-ATPase may be associated or linked with RQ and perhaps with %FAT but not with RMR. PMID:7509349
Novel mutations of TCOF1 gene in European patients with treacher Collins syndrome
2011-01-01
Background Treacher Collins syndrome (TCS) is one of the most severe autosomal dominant congenital disorders of craniofacial development and shows variable phenotypic expression. TCS is extremely rare, occurring with an incidence of 1 in 50.000 live births. The TCS distinguishing characteristics are represented by down slanting palpebral fissures, coloboma of the eyelid, micrognathia, microtia and other deformity of the ears, hypoplastic zygomatic arches, and macrostomia. Conductive hearing loss and cleft palate are often present. TCS results from mutations in the TCOF1 gene located on chromosome 5, which encodes a serine/alanine-rich nucleolar phospho-protein called Treacle. However, alterations in the TCOF1 gene have been implicated in only 81-93% of TCS cases. Methods In this study, the entire coding regions of the TCOF1 gene, including newly described exons 6A and 16A, were sequenced in 46 unrelated subjects suspected of TCS clinical indication. Results Fifteen mutations were reported, including twelve novel and three already described in 14 sporadic patients and in 3 familial cases. Moreover, seven novel polymorphisms were also described. Most of the mutations characterised were microdeletions spanning one or more nucleotides, in addition to an insertion of one nucleotide in exon 18 and a stop mutation. The deletions and the insertion described cause a premature termination of translation, resulting in a truncated protein. Conclusion This study confirms that almost all the TCOF1 pathogenic mutations fall in the coding region and lead to an aberrant protein. PMID:21951868
Novel mutations of TCOF1 gene in European patients with Treacher Collins syndrome.
Conte, Chiara; D'Apice, Maria Rosaria; Rinaldi, Fabrizio; Gambardella, Stefano; Sangiuolo, Federica; Novelli, Giuseppe
2011-09-27
Treacher Collins syndrome (TCS) is one of the most severe autosomal dominant congenital disorders of craniofacial development and shows variable phenotypic expression. TCS is extremely rare, occurring with an incidence of 1 in 50.000 live births. The TCS distinguishing characteristics are represented by down slanting palpebral fissures, coloboma of the eyelid, micrognathia, microtia and other deformity of the ears, hypoplastic zygomatic arches, and macrostomia. Conductive hearing loss and cleft palate are often present. TCS results from mutations in the TCOF1 gene located on chromosome 5, which encodes a serine/alanine-rich nucleolar phospho-protein called Treacle. However, alterations in the TCOF1 gene have been implicated in only 81-93% of TCS cases. In this study, the entire coding regions of the TCOF1 gene, including newly described exons 6A and 16A, were sequenced in 46 unrelated subjects suspected of TCS clinical indication. Fifteen mutations were reported, including twelve novel and three already described in 14 sporadic patients and in 3 familial cases. Moreover, seven novel polymorphisms were also described. Most of the mutations characterised were microdeletions spanning one or more nucleotides, in addition to an insertion of one nucleotide in exon 18 and a stop mutation. The deletions and the insertion described cause a premature termination of translation, resulting in a truncated protein. This study confirms that almost all the TCOF1 pathogenic mutations fall in the coding region and lead to an aberrant protein.
Molecular evaluation of five cardiac genes in Doberman Pinschers with dilated cardiomyopathy.
Meurs, Kathryn M; Hendrix, Kristina P; Norgard, Michelle M
2008-08-01
To sequence the exonic and splice site regions of 5 cardiac genes associated with the human form of familial dilated cardiomyopathy (DCM) in Doberman Pinschers with DCM and to identify a causative mutation. 5 unrelated Doberman Pinschers with DCM and 2 unaffected Labrador Retrievers (control dogs). Exonic and splice site regions of the 5 genes encoding the cardiac proteins troponin C, lamin A/C, cysteine- and glycine-rich protein 3, cardiac troponin T, and the beta-myosin heavy chain were sequenced. Sequences were compared for nucleotide changes between affected dogs and the published canine sequences and 2 control dogs. Base pair changes were considered to be causative for DCM if they were present in an affected dog but not in the control dogs or published sequences and if they involved a conserved amino acid and changed that amino acid to a different polarity, acid-base status, or structure. A causative mutation for DCM in Doberman Pinschers was not identified, although single nucleotide polymorphisms were detected in some dogs in the cysteine- and glycine-rich protein 3, beta-myosin heavy chain, and troponin T genes. Mutations in 5 of the cardiac genes associated with the development of DCM in humans did not appear to be causative for DCM in Doberman Pinschers. Continued evaluation of additional candidate genes or a focused approach with an association analysis is warranted to elucidate the molecular cause of this important cardiac disease in Doberman Pinschers.
A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.
Liu, H X; Cartegni, L; Zhang, M Q; Krainer, A R
2001-01-01
Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.
Chen, Mingchen; Wolynes, Peter G.
2017-01-01
Huntington’s disease (HD) is a neurodegenerative disease caused by an abnormal expansion in the polyglutamine (polyQ) track of the Huntingtin (HTT) protein. The severity of the disease depends on the polyQ repeat length, arising only in patients with proteins having 36 repeats or more. Previous studies have shown that the aggregation of N-terminal fragments (encoded by HTT exon 1) underlies the disease pathology in mouse models and that the HTT exon 1 gene product can self-assemble into amyloid structures. Here, we provide detailed structural mechanisms for aggregation of several protein fragments encoded by HTT exon 1 by using the associative memory, water-mediated, structure and energy model (AWSEM) to construct their free energy landscapes. We find that the addition of the N-terminal 17-residue sequence (NT17) facilitates polyQ aggregation by encouraging the formation of prefibrillar oligomers, whereas adding the C-terminal polyproline sequence (P10) inhibits aggregation. The combination of both terminal additions in HTT exon 1 fragment leads to a complex aggregation mechanism with a basic core that resembles that found for the aggregation of pure polyQ repeats using AWSEM. At the extrapolated physiological concentration, although the grand canonical free energy profiles are uphill for HTT exon 1 fragments having 20 or 30 glutamines, the aggregation landscape for fragments with 40 repeats has become downhill. This computational prediction agrees with the critical length found for the onset of HD and suggests potential therapies based on blocking early binding events involving the terminal additions to the polyQ repeats. PMID:28400517
Uemura, Takehiro; Oguri, Tetsuya; Okayama, Minami; Furuta, Hiromi; Kanemitsu, Yoshihiro; Takakuwa, Osamu; Ohkubo, Hirotsugu; Takemura, Masaya; Maeno, Ken; Ito, Yutaka; Niimi, Akio
2017-01-01
We herein report a case of dramatic intracranial response to osimertinib in a poor performance status patient with lung adenocarcinoma harboring the epidermal growth factor receptor (EGFR) T790M mutation encoded in exon 20. The patient was a 59-year-old woman with EGFR exon 19 deletion-positive lung adenocarcinoma, who relapsed with multiple brain metastases. Computed tomography-guided biopsy of the left pleural tumor revealed adenocarcinoma harboring an EGFR exon 19 deletion and an EGFR T790M mutation encoded in exon 20. The patient was treated with osimertinib, a third-generation EGFR tyrosine kinase inhibitor. Two days after treatment initiation, the patient displayed profound disturbance of consciousness, possibly due to carcinomatous meningitis, and treatment had to be discontinued due to difficulty in taking osimertinib. However, the patient gradually started to recover consciousness and, after 3 days, she was again able to take osimertinib. One month after the initiation of osimertinib treatment, magnetic resonance imaging revealed an apparent reduction in brain metastases. The patient is currently under continued treatment with osimertinib. At the last follow-up (February, 2017) she exhibited partial response to the treatment. PMID:28413660
Udagawa, Chihiro; Tada, Naomi; Asano, Junzo; Ishioka, Katsumi; Ochiai, Kazuhiko; Bonkobara, Makoto; Tsuchida, Shuichi; Omi, Toshinori
2014-12-11
The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. The aim of this study was to examine the genetic association between polymorphisms in UCP2 and UCP3 and metabolic data in dogs. We identified 10 SNPs (9 intronic and 1 exonic) and 4 indels (intronic) in UCP2, and 13 SNPs (11 intronic and 2 exonic) and one indel (exonic) in UCP3, by DNA sequence analysis of 11 different dog breeds (n=119). An association study between these UCP2 and UCP3 variants and the biochemical parameters of glucose, total cholesterol, lactate dehydrogenase and triglyceride in Labrador Retrievers (n=50) showed that none of the UCP2 polymorphisms were significantly associated with the levels of these parameters. However, four UCP3 SNPs (intron 1) were significantly associated with total cholesterol levels. In addition, the allele frequencies of two of the four SNPs associated with higher total cholesterol levels in a breed that is susceptible to hypercholesterolemia (Shetland Sheepdogs, n=30), compared with the control breed (Shiba, n=30). The results obtained from a limited number of individuals suggest that the UCP3 gene in dogs may be associated with total cholesterol levels. The examination of larger sample sizes and further analysis will lead to increased precision of these results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffon, N.; Pilon, C.; Martres, M.P.
1996-02-16
DNA fragments from a genomic library were used to establish the partial structure of the human dopamine D{sub 3} receptor gene (DRD3). Its coding sequence contains 6 exons and stretches over 40,000 base pairs. The complete DRD3 transcript and three shorter variants, in which the second and/or third exon are deleted, were detected in similar proportions in brains from four controls and three psychiatric patients. The Msp I polymorphism was localized in the fifth intron of the gene, 40,000 base pairs downstream the Bal I polymorphism and a PCR-based method was developed for genotyping this polymorphism. The distributions of themore » Msp I and Bal I genotypes were not independent in 297 individuals ({chi}{sup 2} = 10.5, df = 4, P = 0.03), but only a weak association was found between allele 1 of the Bal I polymorphism and allele 2 of the Msp I polymorphism ({chi}{sup 2} = 3.99, df = 1, P = 0.04). The previously reported association between homozygosity at both alleles of the Bal I polymorphism and schizophrenia was presently maintained in an extended sample, comprising 119 DSM-III-R chronic schizophrenics and 85 controls ({chi}{sup 2}= 5.3, df = 1, P = 0.02) and found more important in males than in females. The presence of the Bal I allele 2 is associated with an early age at onset, particularly in males (df = 35, t value = 2.6, P = 0.014). In the same sample, allelic frequencies, genotype counts, and proportion of homozygotes for the Msp I polymorphism did not differ between schizophrenics and controls ({chi}{sup 2}= 0.06, df = 1, P = 0.80, {chi}{sup 2} = 0.22, df = 1, P = 0.90 and {chi}{sup 2} = 0.16, df = 1, P = 0.69, respectively). The large distance of the Msp I polymorphism from the Bal I polymorphism and its localization in the 3{prime} part of the gene may explain the discrepant results obtained with the two polymorphisms. 36 refs., 2 figs., 4 tabs.« less
2013-01-01
Background APOAI, a member of the APOAI/CIII/IV/V gene cluster on chromosome 11q23-24, encodes a major protein component of HDL that has been associated with serum lipid levels. The aim of this study was to determine the genetic association of polymorphisms in the APOAI promoter region with plasma lipid levels in a cohort of healthy Kuwaiti volunteers. Methods A 435 bp region of the APOAI promoter was analyzed by re-sequencing in 549 Kuwaiti samples. DNA was extracted from blood taken from 549 healthy Kuwaiti volunteers who had fasted for the previous 12 h. Univariate and multivariate analysis was used to determine allele association with serum lipid levels. Results The target sequence included a partial segment of the promoter region, 5’UTR and exon 1 located between nucleotides −141 to +294 upstream of the APOAI gene on chromosome 11. No novel single nucleotide polymorphisms (SNPs) were observed. The sequences obtained were deposited with the NCBI GenBank with accession number [GenBank: JX438706]. The allelic frequencies for the three SNPs were as follows: APOAI rs670G = 0.807; rs5069C = 0.964; rs1799837G = 0.997 and found to be in HWE. A significant association (p < 0.05) was observed for the APOAI rs670 polymorphism with increased serum LDL-C. Multivariate analysis showed that APOAI rs670 was an independent predictive factor when controlling for age, sex and BMI for both LDL-C (OR: 1.66, p = 0.014) and TC (OR: 1.77, p = 0.006) levels. Conclusion This study is the first to report sequence analysis of the APOAI promoter in an Arab population. The unexpected positive association found between the APOAI rs670 polymorphism and increased levels of LDL-C and TC may be due to linkage disequilibrium with other polymorphisms in candidate and neighboring genes known to be associated with lipid metabolism and transport. PMID:24028463
Al-Bustan, Suzanne A; Al-Serri, Ahmad E; Annice, Babitha G; Alnaqeeb, Majed A; Ebrahim, Ghada A
2013-09-12
APOAI, a member of the APOAI/CIII/IV/V gene cluster on chromosome 11q23-24, encodes a major protein component of HDL that has been associated with serum lipid levels. The aim of this study was to determine the genetic association of polymorphisms in the APOAI promoter region with plasma lipid levels in a cohort of healthy Kuwaiti volunteers. A 435 bp region of the APOAI promoter was analyzed by re-sequencing in 549 Kuwaiti samples. DNA was extracted from blood taken from 549 healthy Kuwaiti volunteers who had fasted for the previous 12 h. Univariate and multivariate analysis was used to determine allele association with serum lipid levels. The target sequence included a partial segment of the promoter region, 5'UTR and exon 1 located between nucleotides -141 to +294 upstream of the APOAI gene on chromosome 11. No novel single nucleotide polymorphisms (SNPs) were observed. The sequences obtained were deposited with the NCBI GenBank with accession number [GenBank: JX438706]. The allelic frequencies for the three SNPs were as follows: APOAI rs670G = 0.807; rs5069C = 0.964; rs1799837G = 0.997 and found to be in HWE. A significant association (p < 0.05) was observed for the APOAI rs670 polymorphism with increased serum LDL-C. Multivariate analysis showed that APOAI rs670 was an independent predictive factor when controlling for age, sex and BMI for both LDL-C (OR: 1.66, p = 0.014) and TC (OR: 1.77, p = 0.006) levels. This study is the first to report sequence analysis of the APOAI promoter in an Arab population. The unexpected positive association found between the APOAI rs670 polymorphism and increased levels of LDL-C and TC may be due to linkage disequilibrium with other polymorphisms in candidate and neighboring genes known to be associated with lipid metabolism and transport.
Exon 11 skipping of SCN10A coding for voltage-gated sodium channels in dorsal root ganglia
Schirmeyer, Jana; Szafranski, Karol; Leipold, Enrico; Mawrin, Christian; Platzer, Matthias; Heinemann, Stefan H
2014-01-01
The voltage-gated sodium channel NaV1.8 (encoded by SCN10A) is predominantly expressed in dorsal root ganglia (DRG) and plays a critical role in pain perception. We analyzed SCN10A transcripts isolated from human DRGs using deep sequencing and found a novel splice variant lacking exon 11, which codes for 98 amino acids of the domain I/II linker. Quantitative PCR analysis revealed an abundance of this variant of up to 5–10% in human, while no such variants were detected in mouse or rat. Since no obvious functional differences between channels with and without the exon-11 sequence were detected, it is suggested that SCN10A exon 11 skipping in humans is a tolerated event. PMID:24763188
CYP3A4*18: it is not rare allele in Japanese population.
Yamamoto, Takehito; Nagafuchi, Nobue; Ozeki, Takeshi; Kubota, Takahiro; Ishikawa, Hiroshi; Ogawa, Seishi; Yamada, Yasuhiko; Hirai, Hisamaru; Iga, Tatsuji
2003-01-01
We sequenced all 13 exons of the CYP3A4 gene derived from 48 Japanese subjects. One subject possess the 20070 T>C mutation in the exon 10 (result in leu293Pro substitution, namely CYP3A4(*)18), as heterozygote. Thus, we investigated the frequency of CYP3A4(*)18 in 118 Japanese population using polymerase chain reaction-restriction fragment length polymorphism with Msp I and determined that the frequency of the CYP3A4(*)18 allele was 1.3%.
Patel, Hinal; Mansuri, Mohmmad Shoab; Singh, Mala; Begum, Rasheedunnisa; Shastri, Minal; Misra, Ambikanandan
2016-01-01
Autoimmune hypothyroidism is known to be caused by immune responses related to the thyroid gland and its immunological feature includes presence of autoimmune antibodies. Therefore the aim was to analyze presence of anti-TPO antibodies in hypothyroidism patients in Gujarat. Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) is one of the susceptibility genes for various autoimmune diseases. Hence, exon1 +49A/G and 3’UTR CT60A/G single nucleotide polymorphisms (SNPs) in CTLA4 and its mRNA expression levels were investigated in autoimmune hypothyroidism patients. Thyroglobulin (TG) is known to be associated with autoimmune thyroid disorders and thus exon 33 (E33) SNP in TG was investigated. We analyzed the presence of anti-TPO antibodies in the plasma samples of 84 hypothyroidism patients and 62 controls by ELISA. PCR-RFLP technique was used for genotyping of polymorphisms. sCTLA4 and flCTLA4 mRNA expression levels were assessed by real time PCR. 59.52% of hypothyroid patients had anti-TPO antibodies in their circulation. The genotype and allele frequencies differed significantly for +49A/G (p = 0.0004 for +49AG, p = 0.0019 for +49GG & p = 0.0004 for allele), CT60 (p = 0.0110 for CT60AG, p = 0.0005 for CT60GG & p<0.0001 for allele) and TG E33 (p = 0.0003 for E33TC p<0.0001 for E33CC& p<0.0001 for allele) SNPs between patients and controls. Patients had significantly decreased mRNA levels of both sCTLA4 (p = 0.0017) and flCTLA4 (p<0.0001) compared to controls. +49A/G and CT60 polymorphisms of CTLA4 were in moderate linkage disequilibrium. Logistic regression analysis indicated significant association of CT49A/G, CT60A/G and TG exon 33 polymorphisms with susceptibility to autoimmune hypothyroidism when adjusted for age and gender. Our results suggest +49A/G and CT60 polymorphism of CTLA4 and E33 polymorphism of TG may be genetic risk factors for autoimmune hypothyroidism susceptibility and down regulation of both forms of CTLA4 advocates the crucial role of CTLA4 in pathogenesis of autoimmune hypothyroidism. PMID:26963610
Tria, Antje; Hiort, Olaf; Sinnecker, Gernot H G
2004-01-01
Defects in the steroid 5alpha-reductase type 2 (SRD5A2) activity cause decreased formation of dihydrotestosterone (DHT) from testosterone (T), resulting in defective masculinization of external genitalia; the T/DHT ratio is increased. We investigated 10 patients with elevated T/DHT ratios in whom mutations in the SRD5A2 and AR genes had been excluded to find out whether structural alterations of the SRD5A1 gene could contribute to their genital malformations. Single-strand conformation polymorphism analysis and direct sequencing were used to detect variations in the SRD5A1 gene of the patients and of 49 adult fertile men who served as controls. The sequence analysis of exon 3 of the SRD5A1 gene indicated an adenine-to-guanine change (ACA vs. ACG), both triplets encoding the amino acid residue threonine. The ACG sequence was detected in 57% of all subjects and was equally distributed in patients and controls. The T/DHT ratio was significantly higher in controls with the ACG variant as compared with those having the ACA variant. However, no particular sequence aberration was found in the SRD5A1 genes of either group. Mutant SRD5A1 isoenzyme does not seem to play a crucial role in the development of hypospadias. Copyright 2004 S. Karger AG, Basel
Li, Yanwei; Kang, Xing; Yang, Ge; Dai, Penggao; Chen, Chao; Wang, Huijuan
2016-09-01
CYP2W1 is an orphan member of the cytochrome P450 superfamily. Recently, CYP2W1 has gained great research interest because of its unknown enzymatic function and tumor-specific expression property. This study aims to investigate the genetic polymorphisms of the CYP2W1 gene in Chinese populations and explore the functions of the detected variants. All of the nine exons and exon-intron junction regions of the CYP2W1 gene were sequenced in 150 Chinese subjects, including 50 Han Chinese, 50 Tibetans, and 50 Uighurs. A total of 26 genetic variants were identified in this study, and 19 polymorphisms were detected in each population. Frequency comparison between populations showed that nine variants exhibited significantly different allelic distributions. A total of 12 different haplotypes were inferred from 150 samples by using the genotype data of nine exonic variants found in this study. CYP2W1*1A, *1B, *2, *4, and *6 were detected as the main alleles/haplotypes. Moreover, one, three, and two ethnically specific haplotypes were observed in the Han, Tibetan, and Uighur samples, respectively. Then, the effects of four detected missense mutations (Ala181Thr, Gly376Ser, Val432Ile, and Pro488Leu) on the CYP2W1 protein function were predicted using three in silico tools: Polymorphism Phenotyping v2, Sorts Intolerant from Tolerant, and MutationTaster. The results showed that Gly376Ser and Pro488Leu may have deleterious effects. In summary, this study showed that the genetic pattern of CYP2W1 is interethnically different among the three Chinese populations, and this finding can extend our understanding of population genetics of CYP2W1 in the Chinese population. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Kwan, Patrick; Poon, Wai Sang; Ng, Ho-Keung; Kang, David E; Wong, Virginia; Ng, Ping Wing; Lui, Colin H T; Sin, Ngai Chuen; Wong, Ka S; Baum, Larry
2008-11-01
Many antiepileptic drugs (AEDs) prevent seizures by blocking voltage-gated brain sodium channels. However, treatment is ineffective in 30% of epilepsy patients, which might, at least in part, result from polymorphisms of the sodium channel genes. We investigated the association of AED responsiveness with genetic polymorphisms and correlated any association with mRNA expression of the neuronal sodium channels. We performed genotyping of tagging and candidate single nucleotide polymorphisms (SNPs) of SCN1A, 2A, and 3A in 471 Chinese epilepsy patients (272 drug responsive and 199 drug resistant). A total of 27 SNPs were selected based on the HapMap database. Genotype distributions in drug-responsive and drug-resistant patients were compared. SCN2A mRNA was quantified by real-time PCR in 24 brain and 57 blood samples. Its level was compared between patients with different genotypes of an SCN2A SNP found to be associated with drug responsiveness. SCN2A IVS7-32A>G (rs2304016) A alleles were associated with drug resistance (odds ratio = 2.1, 95% confidence interval: 1.2-3.7, P=0.007). Haplotypes containing the IVS7-32A>G allele A were also associated with drug resistance. IVS7-32A>G is located within the putative splicing branch site for splicing exons 7 and 9. PCR of reverse-transcribed RNA from blood or brain of patients with different IVS7-32A>G genotypes using primers in exons 7 and 9 showed no skipping of exon 8, and real-time PCR showed no difference in SCN2A mRNA levels among genotypes. Results of this study suggest an association between SCN2A IVS7-32A>G and AED responsiveness, without evidence of an effect on splicing or mRNA expression.
Grossen, Christine; Keller, Lukas; Biebach, Iris; Croll, Daniel
2014-01-01
The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection. PMID:24945814
COMMUNICATION: Alternative splicing and genomic stability
NASA Astrophysics Data System (ADS)
Cahill, Kevin
2004-06-01
Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.
Langin, D; Laurell, H; Holst, L S; Belfrage, P; Holm, C
1993-01-01
The human hormone-sensitive lipase (HSL) gene encodes a 786-aa polypeptide (85.5 kDa). It is composed of nine exons spanning approximately 11 kb, with exons 2-5 clustered in a 1.1-kb region. The putative catalytic site (Ser423) and a possible lipid-binding region in the C-terminal part are encoded by exons 6 and 9, respectively. Exon 8 encodes the phosphorylation site (Ser551) that controls cAMP-mediated activity and a second site (Ser553) that is phosphorylated by 5'-AMP-activated protein kinase. Human HSL showed 83% identity with the rat enzyme and contained a 12-aa deletion immediately upstream of the phosphorylation sites with an unknown effect on the activity control. Besides the catalytic site motif (Gly-Xaa-Ser-Xaa-Gly) found in most lipases, HSL shows no homology with other known lipases or proteins, except for a recently reported unexpected homology between the region surrounding its catalytic site and that of the lipase 2 of Moraxella TA144, an antarctic psychrotrophic bacterium. The gene of lipase 2, which catalyses lipolysis below 4 degrees C, was absent in the genomic DNA of five other Moraxella strains living at 37 degrees C. The lipase 2-like sequence in HSL may reflect an evolutionarily conserved cold adaptability that might be of critical survival value when low-temperature-mobilized endogenous lipids are the primary energy source (e.g., in poikilotherms or hibernators). The finding that HSL at 10 degrees C retained 3- to 5-fold more of its 37 degrees C catalytic activity than lipoprotein lipase or carboxyl ester lipase is consistent with this hypothesis. Images Fig. 5 PMID:8506334
Arakane, Yasuyuki; Hogenkamp, David G; Zhu, Yu Cheng; Kramer, Karl J; Specht, Charles A; Beeman, Richard W; Kanost, Michael R; Muthukrishnan, Subbaratnam
2004-03-01
Two chitin synthase (CHS) genes of the red flour beetle, Tribolium castaneum, were sequenced and their transcription patterns during development examined. By screening a BAC library of genomic DNA from T. castaneum (Tc) with a DNA probe encoding the catalytic domain of a putative Tribolium CHS, several clones that contained CHS genes were identified. Two distinct PCR products were amplified from these BAC clones and confirmed to be highly similar to CHS genes from other insects, nematodes and fungi. The DNA sequences of these genes, TcCHS1 and TcCHS2, were determined by amplification of overlapping PCR fragments from two of the BAC DNAs and mapped to different linkage groups. Each ORF was identified and full-length cDNAs were also amplified, cloned and sequenced. TcCHS1 and TcCHS2 encode transmembrane proteins of 1558 and 1464 amino acids, respectively. The TcCHS1 gene was found to use alternate exons, each encoding 59 amino acids, a feature not found in the TcCHS2 gene. During development, Tribolium expressed TcCHS1 predominantly in the embryonic and pupal stages, whereas TcCHS2 was prevalent in the late larval and adult stages. The alternate exon 8a of TcCHS1 was utilized over a much broader range of development than exon 8b. We propose that the two isoforms of the TcCHS1 enzyme are used predominantly for the formation of chitin in embryonic and pupal cuticles, whereas TcCHS2 is utilized primarily for the synthesis of peritrophic membrane-associated chitin in the midgut.
Sacco, James; Ruplin, Andrew; Skonieczny, Paul; Ohman, Michael
2017-01-01
In humans, reduced activity of the enzyme monoamine oxidase type A (MAOA) due to genetic polymorphisms within the MAOA gene leads to increased brain neurotransmitter levels associated with aggression. In order to study MAOA genetic diversity in dogs, we designed a preliminary study whose objectives were to identify novel alleles in functionally important regions of the canine MAOA gene, and to investigate whether the frequencies of these polymorphisms varied between five broad breed groups (ancient, herding, mastiff, modern European, and mountain). Fifty dogs representing these five breed groups were sequenced. A total of eleven polymorphisms were found. Seven were single nucleotide polymorphisms (SNPs; two exonic, two intronic and three in the promoter), while four were repeat intronic variations. The most polymorphic loci were repeat regions in introns 1, 2 (7 alleles) and 10 (3 alleles), while the exonic and the promoter regions were highly conserved. Comparison of the allele frequencies of certain microsatellite polymorphisms among the breed groups indicated a decreasing or increasing trend in the number of repeats at different microsatellite loci, as well as the highest genetic diversity for the ancient breeds and the lowest for the most recent mountain breeds, perhaps attributable to canine domestication and recent breed formation. While a specific promoter SNP (-212A > G) is rare in the dog, it is the major allele in wolves. Replacement of this ancestral allele in domestic dogs may lead to the deletion of heat shock factor binding sites on the MAOA promoter. Dogs exhibit significant variation in certain intronic regions of the MAOA gene, while the coding and promoter regions are well-conserved. Distinct genetic differences were observed between breed groups. Further studies are now required to establish whether such polymorphisms are associated in any way with MAOA level and canine behaviour including aggression.
Zakizadeh, S; Reissmann, M; Rahimi, G; Javaremi, A Nejati; Reinecke, P; Mirae-Ashtiani, S R; Shahrbabak, M Moradi
2007-08-01
The aim of this study was to estimate the allele frequencies in polymorphic site of exon six of POU1F1 gene in three Iranian native and Holstein cattle. Genomic DNA was extracted from 3 Iranian native cattle breeds, including 97 Mazandarani, 87 Sarabi, 112 Golpaygani and also 110 Holstein cattle. A 451 bp fragment of intron 5 and exon 6 were amplified and digested with HinfI restriction enzyme. Frequencies of allele A were 0.37, 0.27, 0.34 and 0.21 for Mazandarani, Sarabi, Golpaygani and Holstein cattle, respectively. Significant differences in genotype frequencies were found between Mazandarani or Golpaygani and Holstein cattle. No significant differences in genotype frequencies were found between Sarabi and Holstein cattle. Transition A to G in nucleotide 1256 is responsible for HinfI(-) allele. No significant association was observed between POU1F1 polymorphism and milk production. Differences in allelic frequency between native Bos indicus breeds (Mazandarani, Golpaygani) and Holstein at the present study might be due to differences in origin breeds, low number of samples and/or as the effect of natural selection in native breeds.
Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R.
1996-07-26
Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found inmore » only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.« less
Variable continental distribution of polymorphisms in the coding regions of DNA-repair genes.
Mathonnet, Géraldine; Labuda, Damian; Meloche, Caroline; Wambach, Tina; Krajinovic, Maja; Sinnett, Daniel
2003-01-01
DNA-repair pathways are critical for maintaining the integrity of the genetic material by protecting against mutations due to exposure-induced damages or replication errors. Polymorphisms in the corresponding genes may be relevant in genetic epidemiology by modifying individual cancer susceptibility or therapeutic response. We report data on the population distribution of potentially functional variants in XRCC1, APEX1, ERCC2, ERCC4, hMLH1, and hMSH3 genes among groups representing individuals of European, Middle Eastern, African, Southeast Asian and North American descent. The data indicate little interpopulation differentiation in some of these polymorphisms and typical FST values ranging from 10 to 17% at others. Low FST was observed in APEX1 and hMSH3 exon 23 in spite of their relatively high minor allele frequencies, which could suggest the effect of balancing selection. In XRCC1, hMSH3 exon 21 and hMLH1 Africa clusters either with Middle East and Europe or with Southeast Asia, which could be related to the demographic history of human populations, whereby human migrations and genetic drift rather than selection would account for the observed differences.
Rumpho, Mary E.; Pochareddy, Sirisha; Worful, Jared M.; Summer, Elizabeth J.; Bhattacharya, Debashish; Pelletreau, Karen N.; Tyler, Mary S.; Lee, Jungho; Manhart, James R.; Soule, Kara M.
2009-01-01
Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclear-encoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V. litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V. litorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months. PMID:19995736
Campillo, José Antonio; López-Hernández, Ruth; Martínez-Banaclocha, Helios; Bolarín, José Miguel; Gimeno, Lourdes; Mrowiec, Anna; López, Manuela; Las Heras, Beatriz; Minguela, Alfredo; Moya-Quiles, Maria Rosa; Legáz, Isabel; Frías-Iniesta, José Francisco; García-Alonso, Ana María; Álvarez-López, María Rocío; Martínez-Escribano, Jorge Antonio; Muro, Manuel
2015-01-01
A limited number of studies have been performed so far on the polymorphism in the transmembrane region (exon 5) of the major histocompatibility complex class I chain-related gene A (MICA) in patients with melanoma. However, the influence of MICA polymorphism in extracellular domains (exons 2, 3, and 4) has not been investigated on melanoma disease. This study aims to characterize the influence of extracellular MICA polymorphism, and its previously described linkage disequilibrium with HLA-B locus, on patients with cutaneous melanoma from southeastern Spain. For this purpose, MICA and HLA-B genotyping was performed in 233 patients and 200 ethnically matched controls by luminex technology. Patients were classified according to the presence of methionine or valine at codon 129 of MICA gene. We found a high frequency of MICA(*)009 in melanoma patients compared with controls (P = 0.002, Pc = 0.03). Our results also showed an association between MICA(*)009 and HLA-B(*)51 alleles in both patients and controls. This association was stronger in patients than controls (P = 0.015). However, a multivariate logistic regression model showed that neither MICA(*)009 nor the combination MICA(*)009/HLA-B(*)51 was associated with melanoma susceptibility. No relationship was observed between MICA-129 dimorphism and melanoma nor when MICA polymorphism was evaluated according to clinical findings at diagnosis.
Trujillano, D; Ramos, M D; González, J; Tornador, C; Sotillo, F; Escaramis, G; Ossowski, S; Armengol, L; Casals, T; Estivill, X
2013-07-01
Here we have developed a novel and much more efficient strategy for the complete molecular characterisation of the cystic fibrosis (CF) transmembrane regulator (CFTR) gene, based on multiplexed targeted resequencing. We have tested this approach in a cohort of 92 samples with previously characterised CFTR mutations and polymorphisms. After enrichment of the pooled barcoded DNA libraries with a custom NimbleGen SeqCap EZ Choice array (Roche) and sequencing with a HiSeq2000 (Illumina) sequencer, we applied several bioinformatics tools to call mutations and polymorphisms in CFTR. The combination of several bioinformatics tools allowed us to detect all known pathogenic variants (point mutations, short insertions/deletions, and large genomic rearrangements) and polymorphisms (including the poly-T and poly-thymidine-guanine polymorphic tracts) in the 92 samples. In addition, we report the precise characterisation of the breakpoints of seven genomic rearrangements in CFTR, including those of a novel deletion of exon 22 and a complex 85 kb inversion which includes two large deletions affecting exons 4-8 and 12-21, respectively. This work is a proof-of-principle that targeted resequencing is an accurate and cost-effective approach for the genetic testing of CF and CFTR-related disorders (ie, male infertility) amenable to the routine clinical practice, and ready to substitute classical molecular methods in medical genetics.
Yaghi, Layale; Poras, Isabelle; Simoes, Renata T; Donadi, Eduardo A; Tost, Jörg; Daunay, Antoine; de Almeida, Bibiana Sgorla; Carosella, Edgardo D; Moreau, Philippe
2016-09-27
HLA-G is an immune checkpoint molecule with specific relevance in cancer immunotherapy. It was first identified in cytotrophoblasts, protecting the fetus from maternal rejection. HLA-G tissue expression is very restricted but induced in numerous malignant tumors such as glioblastoma, contributing to their immune escape. Hypoxia occurs during placenta and tumor development and was shown to activate HLA-G. We aimed to elucidate the mechanisms of HLA-G activation under conditions combining hypoxia-mimicking treatment and 5-aza-2'deoxycytidine, a DNA demethylating agent used in anti-cancer therapy which also induces HLA-G. Both treatments enhanced the amount of HLA-G mRNA and protein in HLA-G negative U251MG glioma cells. Electrophoretic Mobility Shift Assays and luciferase reporter gene assays revealed that HLA-G upregulation depends on Hypoxia Inducible Factor-1 (HIF-1) and a hypoxia responsive element (HRE) located in exon 2. A polymorphic HRE at -966 bp in the 5'UT region may modulate the magnitude of the response mediated by the exon 2 HRE. We suggest that therapeutic strategies should take into account that HLA-G expression in response to hypoxic tumor environment is dependent on HLA-G gene polymorphism and DNA methylation state at the HLA-G locus.
Fayaz, Shima; Fard-Esfahani, Pezhman; Fard-Esfahani, Armaghan; Mostafavi, Ehsan; Meshkani, Reza; Mirmiranpour, Hossein; Khaghani, Shahnaz
2012-01-01
Homologous recombination (HR) is the major pathway for repairing double strand breaks (DSBs) in eukaryotes and XRCC2 is an essential component of the HR repair machinery. To evaluate the potential role of mutations in gene repair by HR in individuals susceptible to differentiated thyroid carcinoma (DTC) we used high resolution melting (HRM) analysis, a recently introduced method for detecting mutations, to examine the entire XRCC2 coding region in an Iranian population. HRM analysis was used to screen for mutations in three XRCC2 coding regions in 50 patients and 50 controls. There was no variation in the HRM curves obtained from the analysis of exons 1 and 2 in the case and control groups. In exon 3, an Arg188His polymorphism (rs3218536) was detected as a new melting curve group (OR: 1.46; 95%CI: 0.432–4.969; p = 0.38) compared with the normal melting curve. We also found a new Ser150Arg polymorphism in exon 3 of the control group. These findings suggest that genetic variations in the XRCC2 coding region have no potential effects on susceptibility to DTC. However, further studies with larger populations are required to confirm this conclusion. PMID:22481871
Zhang, Dan; Jia, Huan; Li, Weiming; Hou, Yingchun; Lu, Shaoying; He, Shuixiang
2016-01-01
CD44, especially the isoforms with variable exons (CD44v), is a promising biomarker for the detection of cancer. To develop a CD44v-specific probe, we screened a 7-mer phage peptide library against the CD44v3-v10 protein using an improved subtractive method. The consensus sequences with the highest frequency (designated CV-1) emerged after four rounds of panning. The binding affinity and specificity of the CV-1 phage and the synthesized peptide for the region of CD44 encoded by the variable exons were confirmed using enzyme-linked immunosorbent assay and competitive inhibition assays. Furthermore, the binding of the CV-1 probe to gastric cancer cells and tissues was validated using immunofluorescence and immunohistochemistry assays. CV-1 sensitively and specifically bound to CD44v on cancer cells and tissues. Thus, CV-1 has the potential to serve as a promising probe for cancer molecular imaging and target therapy. © 2015 Society for Laboratory Automation and Screening.
Ankyrin-G isoform imbalance and interneuronopathy link epilepsy and bipolar disorder.
Lopez, A Y; Wang, X; Xu, M; Maheshwari, A; Curry, D; Lam, S; Adesina, A M; Noebels, J L; Sun, Q-Q; Cooper, E C
2017-10-01
ANK3, encoding the adaptor protein Ankyrin-G (AnkG), has been implicated in bipolar disorder by genome-wide association studies. ANK3 has multiple alternative first exons, and a bipolar disorder-associated ANK3 variant has been shown to reduce the expression of exon 1b. Here we identify mechanisms through which reduced ANK3 exon 1b isoform expression disrupts neuronal excitation-inhibition balance. We find that parvalbumin (PV) interneurons and principal cells differentially express ANK3 first exon subtypes. PV interneurons express only isoforms containing exon 1b, whereas excitatory principal cells express exon 1e alone or both 1e and 1b. In transgenic mice deficient for exon 1b, PV interneurons lack voltage-gated sodium channels at their axonal initial segments and have increased firing thresholds and diminished action potential dynamic range. These mice exhibit an Ank3 gene dosage-dependent phenotype including behavior changes modeling bipolar disorder, epilepsy and sudden death. Thus ANK3's important association with human bipolar susceptibility may arise from imbalance between AnkG function in interneurons and principal cells and resultant excessive circuit sensitivity and output. AnkG isoform imbalance is a novel molecular endophenotype and potential therapeutic target.
Ankyrin-G isoform imbalance and interneuronopathy link epilepsy and bipolar disorder
Lopez, Angel Y.; Wang, Xinjun; Xu, Mingxuan; Maheshwari, Atul; Curry, Daniel; Lam, Sandi; Adesina, Adekunle M.; Noebels, Jeffrey L.; Sun, Qian-Quan; Cooper, Edward C.
2016-01-01
ANK3, encoding the adaptor protein Ankyrin-G, has been implicated in bipolar disorder by genome wide association studies. ANK3 has multiple alternative first exons, and a bipolar disorder-associated ANK3 variant has been shown to reduce expression of exon 1b. Here we identify mechanisms through which reduced ANK3 exon 1b isoform expression disrupts neuronal excitation-inhibition balance. We find that parvalbumin interneurons and principal cells differentially express ANK3 first exon subtypes. Parvalbumin interneurons express only isoforms containing exon 1b, whereas excitatory principal cells express exon 1e alone, or both 1e and 1b. In transgenic mice deficient for exon 1b, parvalbumin interneurons lack voltage-gated sodium channels at their axonal initial segments and have increased firing thresholds and diminished action potential dynamic range. These mice exhibit an Ank3 gene dosage-dependent phenotype including behavior changes modeling bipolar disorder, epilepsy, and sudden death. Thus, ANK3’s important association with human bipolar susceptibility may arise from imbalance between ankyrin-G function in interneurons and principal cells and resultant excessive circuit sensitivity and output. Ankyrin-G isoform imbalance is a novel molecular endophenotype and potential therapeutic target. PMID:27956739
Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K
2016-06-01
The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.
Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping.
Gao, Quan Q; Wyatt, Eugene; Goldstein, Jeff A; LoPresti, Peter; Castillo, Lisa M; Gazda, Alec; Petrossian, Natalie; Earley, Judy U; Hadhazy, Michele; Barefield, David Y; Demonbreun, Alexis R; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M
2015-11-02
Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.
Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping
Gao, Quan Q.; Wyatt, Eugene; Goldstein, Jeff A.; LoPresti, Peter; Castillo, Lisa M.; Gazda, Alec; Petrossian, Natalie; Earley, Judy U.; Hadhazy, Michele; Barefield, David Y.; Demonbreun, Alexis R.; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M.
2015-01-01
Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations. PMID:26457733
Pastor, André F; Rodrigues Moura, Laís; Neto, José W D; Nascimento, Eduardo J M; Calzavara-Silva, Carlos E; Gomes, Ana Lisa V; Silva, Ana Maria da; Cordeiro, Marli T; Braga-Neto, Ulisses; Crovella, Sergio; Gil, Laura H V G; Marques, Ernesto T A; Acioli-Santos, Bartolomeu
2013-09-01
Four genetic polymorphisms located at the promoter (C-257T) and coding regions of CFH gene (exon 2 G257A, exon 14 A2089G and exon 19 G2881T) were investigated in 121 dengue patients (DENV-3) in order to assess the relationship between allele/haplotypes variants and clinical outcomes. A statistical value was found between the CFH-257T allele (TT/TC genotypes) and reduced susceptibility to severe dengue (SD). Statistical associations indicate that individuals bearing a T allele presented significantly higher protein levels in plasma. The -257T variant is located within a NF-κB binding site, suggesting that this variant might have effect on the ability of the CFH gene to respond to signals via the NF-κB pathway. The G257A allelic variant showed significant protection against severe dengue. When CFH haplotypes effect was considered, the ancestral CG/CG promoter-exon 2 SNP genotype showed significant risk to SD either in a general comparison (ancestral × all variant genotypes), as well as in individual genotypes comparison (ancestral × each variant genotype), where the most prevalent effect was observed in the CG/CG × CA/TG comparison. These findings support the involvement of -257T, 257A allele variants and haplotypes on severe dengue phenotype protection, related with high basal CFH expression. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Khani, Shahrokh C.; Nielsen, Lori; Vogt, Todd M.
1998-01-01
Rhodopsin kinase (RK), a rod photoreceptor cytosolic enzyme, plays a key role in the normal deactivation and recovery of the photoreceptor after exposure to light. To date, three different mutations in the RK locus have been associated with Oguchi disease, an autosomal recessive form of stationary night blindness in man characterized in part by delayed photoreceptor recovery [Yamamoto, S., Sippel, K. C., Berson, E. L. & Dryja, T. P. (1997) Nat. Genet. 15, 175–178]. Two of the mutations involve exon 5, and the remaining mutation occurs in exon 7. Known exon 5 mutations include the deletion of the entire exon sequence [HRK(X5 del)] and a missense change leading to a Val380Asp substitution in the encoded product (HRKV380D). The mutation in exon 7 is a 4-bp deletion in codon 536 leading to premature termination of the encoded polypeptide [HRKS536(4-bp del)]. To provide biochemical evidence for pathogenicity of these mutations, wild-type human rhodopsin kinase (HRK) and mutant forms HRKV380D and HRKS536(4-bp del) were expressed in COS7 cells and their activities were compared. Wild-type HRK catalyzed light-dependent phosphorylation of rhodopsin efficiently. In contrast, both mutant proteins were markedly deficient in catalytic activity with HRKV380D showing virtually no detectible activity and HRKS536(4-bp del) only minimal light-dependent activity. These results provide biochemical evidence to support the pathogenicity of the RK mutations in man. PMID:9501174
Paskulin, D D; Cunha-Filho, J S L; Souza, C A B; Bortolini, M C; Hainaut, P; Ashton-Prolla, P
2012-01-01
p53 has a crucial role in human fertility by regulating the expression of leukemia inhibitory factor (LIF), a secreted cytokine critical for blastocyst implantation. To examine whether TP53 polymorphisms may be involved with in vitro fertilization (IVF) failure and endometriosis (END), we have assessed the associations between TP53 polymorphism in intron 2 (PIN2; G/C, intron 2), PIN3 (one (N, non-duplicated) or two (D, duplicated) repeats of a 16-bp motif, intron 3) and polymorphism in exon 4 (PEX4; C/G, p.P72R, exon 4) in 98 women with END and 115 women with post-IVF failure. In addition, 134 fertile women and 300 women unselected with respect to fertility-related features were assessed. TP53 polymorphisms and haplotypes were identified by amplification refractory mutation system polymerase chain reaction. TP53 PIN3 and PEX4 were associated with both END (P=0.042 and P=0.007, respectively) and IVF (P=0.004 and P=0.009, respectively) when compared with women both selected and unselected for fertility-related features. Haplotypes D-C and N-C were related to higher risk for END (P=0.002, P=0.001, respectively) and failure of IVF (P=0.018 and P=0.002, respectively) when compared with the Fertile group. These results support that specific TP53 haplotypes are associated with an increased risk of END-associated infertility and with post-IVF failure. PMID:23013791
Molecular defects leading to human complement component C6 deficiency in an African-American family
Zhu, Z-B; Totemchokchyakarn, K; Atkinson, T P; Volanakis, J E
1998-01-01
Complement component C6 deficiency (C6D) was diagnosed in a 16-year-old African-American male with meningococcal meningitis. The patient's father and two brothers also had C6D, but gave no history of meningitis or other neisserial infection. By using exon-specific polymerase chain reaction (PCR)/single-strand conformation polymorphism as a screening step and nucleotide sequencing of target exons, we determined that the proband was a compound heterozygote for two C6 gene mutations. The first, 1195delC located in exon 7, is a novel mutation, while the second, 1936delG in exon 12, has been described before to cause C6D in an unrelated African-American individual. Both mutations result in premature termination codons and C6 null alleles. Allele-specific PCR indicated that the proband's two brothers also inherited the 1195delC mutation from their heterozygous mother and the 1936delG mutation from their homozygous father. PMID:9472666
Lantinga-van Leeuwen, I S; Kooistra, H S; Mol, J A; Renier, C; Breen, M; van Oost, B A
2000-01-01
Abnormalities in the genes encoding Pit-1 and Prop-1 have been reported to cause combined pituitary hormone deficiency (CPHD) in mice and humans. In dogs, a similar phenotype has been described in the German shepherd breed. We have previously reported that the Pit-1 gene (POU1F1) is not mutated in affected German shepherd dogs. In this study, we report the isolation and mapping of the canine Prop-1 gene (PROP1), and we assessed the involvement of PROP1 in German shepherd dog dwarfism. The canine PROP1 gene was found to contain three exons, encoding a 226 amino acid protein. The deduced amino acid sequence was 79% and 84% homologous with the mouse and human Prop-1 protein, respectively. Using fluorescence in situ hybridization, PROP1 was mapped to canine chromosome 11. Further mapping with a canine radiation hybrid panel showed co-localization with the polymorphic DNA marker AHT137. Sequence analysis of genomic DNA from dwarf German shepherd dogs revealed no alterations in the PROP1 gene. Moreover, linkage analysis of AHT137 revealed no co-segregation between the PROP1 locus and the CPHD phenotype, excluding this gene as candidate for canine CPHD and providing a new spontaneous model of hypopituitarism. Copyright 2000 S. Karger AG, Basel
Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC.
Ahmed, Zubair M; Smith, Tenesha N; Riazuddin, Saima; Makishima, Tomoko; Ghosh, Manju; Bokhari, Sirosh; Menon, Puthezhath S N; Deshmukh, Dilip; Griffith, Andrew J; Riazuddin, Sheikh; Friedman, Thomas B; Wilcox, Edward R
2002-06-01
Human chromosome 11 harbors two Usher type I loci, USHIB and USHIC, which encode myosin VIIA and harmonin, respectively. The USHIC locus overlaps the reported critical interval for nonsyndromic deafness locus DFNB18. We found an IVS12+5G-->C mutation in the USHIC gene, which is associated with nonsyndromic recessive deafness ( DFNB18) segregating in the original family, S-11/12. No other disease-associated mutation was found in the other 27 exons or in the intron-exon boundaries, and the IVS12+5G-->C mutation was not present in 200 representative unaffected individuals ascertained from the same area of India. An exon-trapping assay with a construct harboring IVS12+5G-->C generated wildtype spliced mRNA having exons 11 and 12 and mRNA that skipped exon 12. We conclude that mutations of USHIC can cause both Usher syndrome type IC and nonsyndromic recessive deafness DFNB18.
Characterization of a novel 132-bp exon of the human maxi-K channel.
Korovkina, V P; Fergus, D J; Holdiman, A J; England, S K
2001-07-01
The large-conductance Ca2+-activated voltage-dependent K+ channel (maxi-K channel) induces a significant repolarizing current that buffers cell excitability. This channel can derive its diversity by alternative splicing of its transcript-producing isoforms that differ in their sensitivity to voltage and intracellular Ca2+. We have identified a novel 132-bp exon of the maxi-K channel from human myometrial cells that encodes 44 amino acids within the first intracellular loop of the channel protein. Distribution analysis reveals that this exon is expressed predominantly in human smooth muscle tissues with the highest abundance in the uterus and aorta and resembles the previously reported distribution of the total maxi-K channel transcript. Single-channel K+ current measurements in fibroblasts transfected with the maxi-K channel containing this novel 132-bp exon demonstrate that the presence of this insert attenuates the sensitivity to voltage and intracellular Ca2+. Alternative splicing to introduce this 132-bp exon into the maxi-K channel may elicit another mode to modulate cell excitability.
Kronert, W A; Edwards, K A; Roche, E S; Wells, L; Bernstein, S I
1991-01-01
We show that the molecular lesions in two homozygousviable mutants of the Drosophila muscle myosin heavy chain gene affect an alternative exon (exon 9a) which encodes a portion of the myosin head that is highly conserved among both cytoplasmic and muscle myosins of all organisms. In situ hybridization and Northern blotting analysis in wild-type organisms indicates that exon 9a is used in indirect flight muscles whereas both exons 9a and 9b are utilized in jump muscles. Alternative exons 9b and 9c are used in other larval and adult muscles. One of the mutations in exon 9a is a nonsense allele that greatly reduces myosin RNA stability. It prevents thick filament accumulation in indirect flight muscles and severely reduces the number of thick filaments in a subset of cells of the jump muscles. The second mutation affects the 5' splice site of exon 9a. This results in production of an aberrantly spliced transcript in indirect flight muscles, which prevents thick filament accumulation. Jump muscles of this mutant substitute exon 9b for exon 9a and consequently have normal levels of thick filaments in this muscle type. This isoform substitution does not obviously affect the ultrastructure or function of the jump muscle. Analysis of this mutant illustrates that indirect flight muscles and jump muscles utilize different mechanisms for alternative RNA splicing. Images PMID:1907912
Association of SRD5A2 gene mutations with risk of hypospadias in the Iranian population.
Rahimi, M; Ghanbari, M; Fazeli, Z; Rouzrokh, M; Omrani, S; Mirfakhraie, R; Omrani, M D
2017-04-01
Hypospadias is one of the most common forms of congenital malformation of the male external genitalia worldwide. The ratio in the Iranian population is one in 250 live male births. The conversion of testosterone to dihydrotestosterone (DHT) in the presence of steroid 5α-reductase 2, which is encoded by SRD5A2 gene, plays an important role in the normal development of the male reproductive system. We examined whether SRD5A2 gene mutations (V89L and A49T polymorphisms) are associated with the risk of hypospadias in the Iranian population. We performed exons sequencing for SRD5A2 gene in 109 hypospadias patients. We identified two new mutations in the subgroups of affected cases: including a substitution of the nucleotide T > A in the codon 73 [c.219T > A (p.Leu73_Ser74insHisPro)] and an insertion of an extra A nucleotide in the codon 77 [c.229insA* (p.Gly77*)]. Additionally, we performed PCR-RFLP for the two identified polymorphisms and revealed that V89L [OR = 5.8, 95% CI (3.8-8.8), p value < 0.001] and A49T [OR = 10.16, 95% CI (3.94-26.25), p value < 0.001] are significantly associated with hypospadias occurrence in patients. Our haplotype analysis further indicated that the Leu-Ala haplotype increases risk of hypospadias; conversely, the Val-Ala haplotype decreases the risk of hypospadias in the studied patients. This study demonstrates that polymorphisms in the SRD5A2 gene could be considered as a risk factor for hypospadias disease emergence.
Polymorphisms and Tissue Expression of the Feline Leukocyte Antigen Class I Loci FLAI-E, -H and -K
Holmes, Jennifer C.; Holmer, Savannah G.; Ross, Peter; Buntzman, Adam S.; Frelinger, Jeffrey A.; Hess, Paul R.
2013-01-01
Cytotoxic CD8+ T-cell immunosurveillance for intracellular pathogens, such as viruses, is controlled by classical major histocompatibility complex (MHC) class Ia molecules, and ideally, these antiviral T-cell populations are defined by the specific peptide and restricting MHC allele. Surprisingly, despite the utility of the cat in modeling human viral immunity, little is known about the Feline Leukocyte Antigen class I complex (FLAI). Only a few coding sequences with uncertain locus origin and expression patterns have been reported. Of 19 class I genes, 3 loci - FLAI-E, -H and -K – are predicted to encode classical molecules, and our objective was to evaluate their status by analyzing polymorphisms and tissue expression. Using locus-specific, PCR-based genotyping, we amplified 33 FLAI-E, -H, and -K alleles from 12 cats of various breeds, identifying, for the first time, alleles across 3 distinct loci in a feline species. Alleles shared the expected polymorphic and invariant sites in the α1/α2 domains, and full-length cDNA clones possessed all characteristic class Ia exons. Alleles could be assigned to a specific locus with reasonable confidence, although there was evidence of potentially confounding interlocus recombination between FLAI-E and -K. Only FLAI-E, -H and -K-origin alleles were amplified from cDNAs of multiple tissue types. We also defined hypervariable regions across these genes, which permitted the assignment of names to both novel and established alleles. As predicted, FLAI-E, -H, and -K fulfill the major criteria of class Ia genes. These data represent a necessary prerequisite for studying epitope-specific antiviral CD8+ T-cell responses in cats. PMID:23812210
van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O
1992-01-01
Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671
NASA Astrophysics Data System (ADS)
Li, Shengjie; Bai, Junjie; Wang, Lin
2008-08-01
Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.
Polymorphisms at the Ligand Binding Site of the Vitamin D Receptor Gene and Osteomalacia
Ak, Duygu Gezen; Kahraman, Hakkí; Dursun, Erdinç; Duman, Belgin Süsleyici; Erensoy, Nevin; Alagöl, Faruk; Tanakol, Refik; Yılmazer, Selma
2005-01-01
Vitamin D receptor (VDR) gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD) and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p = 0.08). Also no association between biochemical data and VDR gene polymorphisms was observed. PMID:16403954
Species-Specific Exon Loss in Human Transcriptomes
Wang, Jinkai; Lu, Zhi-xiang; Tokheim, Collin J.; Miller, Sara E.; Xing, Yi
2015-01-01
Changes in exon–intron structures and splicing patterns represent an important mechanism for the evolution of gene functions and species-specific regulatory networks. Although exon creation is widespread during primate and human evolution and has been studied extensively, much less is known about the scope and potential impact of human-specific exon loss events. Historically, transcriptome data and exon annotations are significantly biased toward humans over nonhuman primates. This ascertainment bias makes it challenging to discover human-specific exon loss events. We carried out a transcriptome-wide search of human-specific exon loss events, by taking advantage of RNA sequencing (RNA-seq) as a powerful and unbiased tool for exon discovery and annotation. Using RNA-seq data of humans, chimpanzees, and other primates, we reconstructed and compared transcript structures across the primate phylogeny. We discovered 33 candidate human-specific exon loss events, among which six exons passed stringent experimental filters for the complete loss of splicing activities in diverse human tissues. These events may result from human-specific deletion of genomic DNA, or small-scale sequence changes that inactivated splicing signals. The impact of human-specific exon loss events is predominantly regulatory. Three of the six events occurred in the 5′ untranslated region (5′-UTR) and affected cis-regulatory elements of mRNA translation. In SLC7A6, a gene encoding an amino acid transporter, luciferase reporter assays suggested that both a human-specific exon loss event and an independent human-specific single nucleotide substitution in the 5′-UTR increased mRNA translational efficiency. Our study provides novel insights into the molecular mechanisms and evolutionary consequences of exon loss during human evolution. PMID:25398629
Mai, Ingrid; Perloff, Elke S; Bauer, Steffen; Goldammer, Mark; Johne, Andreas; Filler, Guido; Budde, Klemens; Roots, Ivar
2004-11-01
This retrospective study investigated the influence of MDR1 haplotypes derived from the polymorphisms 2677G > T (exon 21) and 3435C > T (exon 26) on the pharmacokinetics of the immunosuppressant drug tacrolimus in 73 renal transplant patients. Based on both variants of SNPs 2677 and 3435, four different haplotypes and eight different genotypes were identified in the study sample. Tacrolimus trough concentrations (C(0)) were compared between different SNP variants and genotypes, as well as between carriers and noncarriers of each haplotype. Additionally, CYP3A5 genotype (6956G > A) was determined. No significant differences were observed between groups. Differences in mean tacrolimus C(0) values between carriers and noncarriers of each haplotype ranged from -0.04 microg/litre (95% confidence interval: -0.53 to 0.60) to -23 microg/litre (-1.07 to 1.53). No association was found between CYP3A5*1/*3 genotype and tacrolimus Co concentractions. MDR1 haplotypes derived from the SNPs 2677G > T (exon 21) and 3435C > T (exon 26) do not influence the pharmacokinetics of tacrolimus in renal transplant patients.
A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers.
Cheng, Jun; Liao, Liao; Zhou, Hui; Gu, Chao; Wang, Lu; Han, Yuepeng
2015-12-01
The ornamental peach cultivar 'Hongbaihuatao (HBH)' can simultaneously bear pink, red, and variegated flowers on a single tree. Anthocyanin content in pink flowers is extremely low, being only 10% that of a red flower. Surprisingly, the expression of anthocyanin structural and potential regulatory genes in white flowers was not significantly lower than that in both pink and red flowers. However, proteomic analysis revealed a GST encoded by a gene-regulator involved in anthocyanin transport (Riant)-which is expressed in the red flower, but almost undetectable in the variegated flower. The Riant gene contains an insertion-deletion (indel) polymorphism in exon 3. In white flowers, the Riant gene is interrupted by a 2-bp insertion in the last exon, which causes a frameshift and a premature stop codon. In contrast, both pink and red flowers that arise from bud sports are heterozygous for the Riant locus, with one functional allele due to the 2-bp deletion or a novel 1-bp insertion. Southern blot analysis indicated that the Riant gene occurs in a single copy in the peach genome and it is not interrupted by a transposon. The function of the Riant gene was confirmed by its ectopic expression in the Arabidopsis tt19 mutant, where it complements the anthocyanin phenotype, but not the proanthocyanidin pigmentation in seed coat. Collectively,these results indicate that a small indel mutation in the Riant gene, which is not the result of a transposon insertion or excision, causes variegated colouration of peach flowers. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Platinum coat color in red fox (Vulpes vulpes) is caused by a mutation in an autosomal copy of KIT.
Johnson, J L; Kozysa, A; Kharlamova, A V; Gulevich, R G; Perelman, P L; Fong, H W F; Vladimirova, A V; Oskina, I N; Trut, L N; Kukekova, A V
2015-04-01
The red fox (Vulpes vulpes) demonstrates a variety of coat colors including platinum, a common phenotype maintained in farm-bred fox populations. Foxes heterozygous for the platinum allele have a light silver coat and extensive white spotting, whereas homozygosity is embryonic lethal. Two KIT transcripts were identified in skin cDNA from platinum foxes. The long transcript was identical to the KIT transcript of silver foxes, whereas the short transcript, which lacks exon 17, was specific to platinum. The KIT gene has several copies in the fox genome: an autosomal copy on chromosome 2 and additional copies on the B chromosomes. To identify the platinum-specific KIT sequence, the genomes of one platinum and one silver fox were sequenced. A single nucleotide polymorphism (SNP) was identified at the first nucleotide of KIT intron 17 in the platinum fox. In platinum foxes, the A allele of the SNP disrupts the donor splice site and causes exon 17, which is part of a segment that encodes a conserved tyrosine kinase domain, to be skipped. Complete cosegregation of the A allele with the platinum phenotype was confirmed by linkage mapping (LOD 25.59). All genotyped farm-bred platinum foxes from Russia and the US were heterozygous for the SNP (A/G), whereas foxes with different coat colors were homozygous for the G allele. Identification of the platinum mutation suggests that other fox white-spotting phenotypes, which are allelic to platinum, would also be caused by mutations in the KIT gene. © 2015 Stichting International Foundation for Animal Genetics.
A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers
Cheng, Jun; Liao, Liao; Zhou, Hui; Gu, Chao; Wang, Lu; Han, Yuepeng
2015-01-01
The ornamental peach cultivar ‘Hongbaihuatao (HBH)’ can simultaneously bear pink, red, and variegated flowers on a single tree. Anthocyanin content in pink flowers is extremely low, being only 10% that of a red flower. Surprisingly, the expression of anthocyanin structural and potential regulatory genes in white flowers was not significantly lower than that in both pink and red flowers. However, proteomic analysis revealed a GST encoded by a gene—regulator involved in anthocyanin transport (Riant)—which is expressed in the red flower, but almost undetectable in the variegated flower. The Riant gene contains an insertion-deletion (indel) polymorphism in exon 3. In white flowers, the Riant gene is interrupted by a 2-bp insertion in the last exon, which causes a frameshift and a premature stop codon. In contrast, both pink and red flowers that arise from bud sports are heterozygous for the Riant locus, with one functional allele due to the 2-bp deletion or a novel 1-bp insertion. Southern blot analysis indicated that the Riant gene occurs in a single copy in the peach genome and it is not interrupted by a transposon. The function of the Riant gene was confirmed by its ectopic expression in the Arabidopsis tt19 mutant, where it complements the anthocyanin phenotype, but not the proanthocyanidin pigmentation in seed coat. Collectively,these results indicate that a small indel mutation in the Riant gene, which is not the result of a transposon insertion or excision, causes variegated colouration of peach flowers. PMID:26357885
Primary hyperoxaluria: genotype-phenotype correlation.
Pirulli, Doroti; Marangella, Martino; Amoroso, Antonio
2003-01-01
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by a deficiency of alanine-glyoxylate aminotransferase (AGT), which is encoded by a single copy gene (AGXT). Molecular diagnosis was used in conjunction with clinical, biochemical and enzymological data to evaluate genotype-phenotype correlation. Patients can present a severe form of PH1, an adult form and a mild to moderate decrease in renal function. Biochemical diagnosis is made by plasma, urine and dialyzate oxalate and glycolate assays, and by liver AGT activity and pyridoxine responsitivity. Molecular genetic diagnosis can be made using different techniques, for example, the single strand conformation polymorphism technique (SSCP), followed by the sequencing of the 11 AGXT exons. The disease is clinically and genetically classified as highly heterogeneous. Mutant alleles can be recognised in 80- 90% of chromosomes, depending on the techniques used. Mutations in exons 1, 2, 4 and 10 are more frequent in Italian patients. Normalized AGT activity seems to be lower in the severe form than in the adult form. Double heterozygous patients present a lower age at disease onset and they were more frequent in the more severe than in mild severe disease. The 444T>C mutation was more frequent in the severe form, while the opposite was observed for 630G>A. 630G>A mutation homozygotes had a higher AGT residual activity. The presence of allelic heterogeneity of the AGXT could be responsible, to some extent, for the phenotypic heterogeneity in PH1. Homozygous genotypes were more frequent than expected and were associated with a less severe form of the disease.
AGXT gene mutations and their influence on clinical heterogeneity of type 1 primary hyperoxaluria.
Amoroso, A; Pirulli, D; Florian, F; Puzzer, D; Boniotto, M; Crovella, S; Zezlina, S; Spanò, A; Mazzola, G; Savoldi, S; Ferrettini, C; Berutti, S; Petrarulo, M; Marangella, M
2001-10-01
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder that is caused by a deficiency of alanine: glyoxylate aminotransferase (AGT), which is encoded by a single copy gene (AGXT). Molecular diagnosis was used in conjunction with clinical, biochemical, and enzymological data to evaluate genotype-phenotype correlation. Twenty-three unrelated, Italian PH1 patients were studied, 20 of which were grouped according to severe form of PH1 (group A), adult form (group B), and mild to moderate decrease in renal function (group C). All 23 patients were analyzed by using the single-strand conformation polymorphism technique followed by the sequencing of the 11 AGXT exons. Relevant chemistries, including plasma, urine and dialyzate oxalate and glycolate assays, liver AGT activity, and pyridoxine responsiveness, were performed. Both mutant alleles were found in 21 out of 23 patients, and 13 different mutations were recognized in exons 1, 2, 4, and 10. Normalized AGT activity was lower in the severe form than in the adult form (P < 0.05). Double heterozygous patients presented a lower age at the onset of the disease (P = 0.025), and they were more frequent in group A (75%) than in the group B (14%; P = 0.0406). The T444C mutation was more frequent in the severe form (P < 0.05), and the opposite was observed for G630A (P < 0.05). G630A mutation homozygotes had a higher AGT residual activity (P = 0.00001). This study confirms the allelic heterogeneity of the AGXT, which could to some extent be responsible for the phenotypic heterogeneity in PH1.
New genetic variants of LATS1 detected in urinary bladder and colon cancer.
Saadeldin, Mona K; Shawer, Heba; Mostafa, Ahmed; Kassem, Neemat M; Amleh, Asma; Siam, Rania
2014-01-01
LATS1, the large tumor suppressor 1 gene, encodes for a serine/threonine kinase protein and is implicated in cell cycle progression. LATS1 is down-regulated in various human cancers, such as breast cancer, and astrocytoma. Point mutations in LATS1 were reported in human sarcomas. Additionally, loss of heterozygosity of LATS1 chromosomal region predisposes to breast, ovarian, and cervical tumors. In the current study, we investigated LATS1 genetic variations including single nucleotide polymorphisms (SNPs), in 28 Egyptian patients with either urinary bladder or colon cancers. The LATS1 gene was amplified and sequenced and the expression of LATS1 at the RNA level was assessed in 12 urinary bladder cancer samples. We report, the identification of a total of 29 variants including previously identified SNPs within LATS1 coding and non-coding sequences. A total of 18 variants were novel. Majority of the novel variants, 13, were mapped to intronic sequences and un-translated regions of the gene. Four of the five novel variants located in the coding region of the gene, represented missense mutations within the serine/threonine kinase catalytic domain. Interestingly, LATS1 RNA steady state levels was lost in urinary bladder cancerous tissue harboring four specific SNPs (16045 + 41736 + 34614 + 56177) positioned in the 5'UTR, intron 6, and two silent mutations within exon 4 and exon 8, respectively. This study identifies novel single-base-sequence alterations in the LATS1 gene. These newly identified variants could potentially be used as novel diagnostic or prognostic tools in cancer.
Regulation of alternative splicing in Drosophila by 56 RNA binding proteins
Brooks, Angela N.; Duff, Michael O.; May, Gemma; ...
2015-08-20
Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected themore » splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.« less
Wang, Hong; Wei, Sisi; Chen, Dan; Ying, Li; Zhou, Qing; Li, Gang; Li, Joyce; Gao, Jimin; Kato, Naoya; Hu, Wei; Li, Yigang; Wang, Yuepeng
2015-01-01
The role of genetic abnormality of δ-sarcoglycan (δ-SG) gene in dilated (DCM) and hypertrophied (HCM) cardiomyopathy patients is still unfolding. In this study we first defined the promoter region and then searched for polymorphisms/mutations among the promoter, 5'-untranslated region, and the encoding exons in δ-SG gene in 104 Chinese patients with DCM, 145 with HCM, and 790 normal controls. Two novel polymorphisms were found, an 11 base-pair (bp) deletion (c.-100~-110; -) in the promoter region and a missense polymorphism of A848G resulting in p.Q283R in the highly conserved C-terminus. The prevalence of homozygous genotype -/- of c.-100~-110 was slightly higher in DCM (14.42%) and HCM patients (14.48%), as compared with normal controls (11.01%). The prevalence of genotype of 848A/G was significantly higher in DCM (6.73%; OR = 9.43; p = 0.0002), but not in HCM patients (1.38%; OR = 1.37; p = 0.62), as compared with controls (0.76%). Haplotype -_G consisting c.-100~-110 and A848G was associated with increased risk of DCM (OR = 17.27; 95%CI = 3.19–93.56; p = 0.001) but not associated with HCM (OR = 1.90; 95%CI = 0.38–9.55; p = 0.44). Co-occurrence of the genotypes -/- of c.-100~-110 and 848A/G was found in 5 patients with DCM (4.81%; OR = 39.85; p = 0.0001), none of HCM patients, and only 1 of the controls (0.13%). Both polymorphisms were also found in the Japanese population, but not in the Africans and Caucasians. C.-100~-110 resulted in a decrease of δ-SG promoter activity to 64±3% of the control level (p<0.01). Both co-immunoprecipitation and in vitro protein pull-down assays demonstrated that δ-SG-283R interacts normally to β- and γ-SG, but significantly decreased localization of β/δ/γ-SG on the plasma membrane. In conclusion, haplotype -_G composed of c.-100~-110 and A848G confers higher susceptibility to DCM in the Mongoloid population. PMID:26720722
Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers.
Wyatt, Eugene J; Demonbreun, Alexis R; Kim, Ellis Y; Puckelwartz, Megan J; Vo, Andy H; Dellefave-Castillo, Lisa M; Gao, Quan Q; Vainzof, Mariz; Pavanello, Rita C M; Zatz, Mayana; McNally, Elizabeth M
2018-05-03
Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.
A new ALF from Litopenaeus vannamei and its SNPs related to WSSV resistance
NASA Astrophysics Data System (ADS)
Liu, Jingwen; Yu, Yang; Li, Fuhua; Zhang, Xiaojun; Xiang, Jianhai
2014-11-01
Anti-lipopolysaccharide factors (ALFs) are basic components of the crustacean immune system that defend against a range of pathogens. The cDNA sequence of a new ALF, designated nLvALF2, with an open reading frame encoding 132 amino acids was cloned. Its deduced amino acid sequence contained the conserved functional domain of ALFs, the LPS binding domain (LBD). Its genomic sequence consisted of three exons and four introns. nLvALF2 was mainly expressed in the Oka organ and gills of shrimps. The transcriptional level of nLvALF2 increased significantly after white spot syndrome virus (WSSV) infection, suggesting its important roles in protecting shrimps from WSSV. Single nucleotide polymorphisms (SNPs) were found in the genomic sequence of nLvALF2, of which 38 were analyzed for associations with the susceptibility/resistance of shrimps to WSSV. The loci g.2422 A>G, g.2466 T>C, and g.2529 G>A were significantly associated with the resistance to WSSV ( P<0.05). These SNP loci could be developed as markers for selection of WSSV-resistant varieties of Litopenaeus vannamei.
Sequence variants of the DFNB31 gene among Usher syndrome patients of diverse origin
Aller, Elena; Jaijo, Teresa; van Wijk, Erwin; Ebermann, Inga; Kersten, Ferry; García-García, Gema; Voesenek, Krysta; Aparisi, María José; Hoefsloot, Lies; Cremers, Cor; Díaz-Llopis, Manuel; Pennings, Ronald; Bolz, Hanno J.; Kremer, Hannie; Millán, José M.
2010-01-01
Purpose It has been demonstrated that mutations in deafness, autosomal recessive 31 (DFNB31), the gene encoding whirlin, is responsible for nonsyndromic hearing loss (NSHL; DFNB31) and Usher syndrome type II (USH2D). We screened DFNB31 in a large cohort of patients with different clinical subtypes of Usher syndrome (USH) to determine the prevalence of DFNB31 mutations among USH patients. Methods DFNB31 was screened in 149 USH2, 29 USH1, six atypical USH, and 11 unclassified USH patients from diverse ethnic backgrounds. Mutation detection was performed by direct sequencing of all coding exons. Results We identified 38 different variants among 195 patients. Most variants were clearly polymorphic, but at least two out of the 15 nonsynonymous variants (p.R350W and p.R882S) are predicted to impair whirlin structure and function, suggesting eventual pathogenicity. No putatively pathogenic mutation was found in the second allele of patients with these mutations. Conclusions DFNB31 is not a major cause of USH. PMID:20352026
The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.
Finta, C; Zaphiropoulos, P G
2000-12-30
Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D.
2014-01-01
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D
2014-05-09
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides.
Basic anatomy and tumor biology of the RPS6KA6 gene that encodes the p90 ribosomal S6 kinase-4
Sun, Yuan; Cao, Shousong; Yang, Min; Wu, Sihong; Wang, Zhe; Lin, Xiukun; Song, Xiangrang; Liao, D.J.
2012-01-01
The RPS6KA6 gene encodes the p90 ribosomal S6 kinase-4 (RSK4) that is still largely uncharacterized. In this study we identified a new RSK4 transcription initiation site and several alternative splice sites with a 5’RACE approach. The resulting mRNA variants encompass four possible first start codons. The first 15 nucleotides (nt) of exon 22 in mouse and the penultimate exon in both human (exon 21) and mouse (exon 24) RSK4 underwent alternative splicing, although the penultimate exon deleted variant appeared mainly in cell clines, but not in most normal tissues. Demethylation agent 5-azacytidine inhibited the deletion of the penultimate exon whereas two indolocarbazole-derived inhibitors of cyclin dependent kinase 4 or 6 induced deletion of the first 39 nt from exon 21 of human RSK4. In all human cancer cell lines studied, the 90-kD wild type RSK4 was sparse but, surprisingly, several isoforms at or smaller than 72-kD were expressed as detected by seven different antibodies. On immunoblots, each of these smaller isoforms often appeared as a duplet or triplet and the levels of these isoforms varied greatly among different cell lines and culture conditions. Cyclin D1 inhibited RSK4 expression and serum starvation enhanced the inhibition, whereas c-Myc and RSK4 inhibited cyclin D1. The effects of RSK4 on cell growth, cell death and chemoresponse depended on the mRNA variant or the protein isoform expressed, on the specificity of the cell lines, as well as on the anchorage-dependent or -independent growth conditions and the in vivo situation. Moreover, we also observed that even a given cDNA might be expressed to multiple proteins; therefore, when using a cDNA, one needs to exclude this possibility before attribution of the biological results from the cDNA to the anticipated protein. Collectively, our results suggest that whether RSK4 is oncogenic or tumor suppressive depends on many factors. PMID:22614021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlich, H.; Zangenberg, G.; Bugawan, T.
The rate at which allelic diversity at the HLA class I and class II loci evolves has been the subject of considerable controversy as have the mechanisms which generate new alleles. The patchwork pattern of polymorphism, particularly within the second exon of the HLA-DPB1 locus where the polymorphic sequence motifs are localized to 6 discrete regions, is consistent with the hypothesis that much of the allelic sequence variation may have been generated by segmental exchange (gene conversion). To measure the rate of new DPB1 variant generation, we have developed a strategy in which DPB1 second exon sequences are amplified frommore » pools of FACS-sorted sperm (n=50) from a heterozygous sperm donor. Pools of sperm from these heterozygous individuals are amplified with an allele-specific primer for one allele and analyzed with sequence-specific oligonucleotide probes (SSOP) complementary to the other allele. This screening procedure, which is capable of detecting a single variant molecule in a pool of parental alleles, allows the identification of new variants that have been generated by recombination and/or gene conversion between the two parental alleles. To control for potential PCR artifacts, the same screening procedure was carried out with mixtures of sperm from DPB1 *0301/*0301 and DPB1 *0401/ 0401 individuals. Pools containing putative new variants DPB1 alleles were analyzed further by cloning into M13 and sequencing the M13 clones. Our current estimate is that about 1/10,000 sperm from these heterozygous individuals represents a new DPB1 allele generated by micro-gene conversion within the second exon.« less
Zou, Fanggeng; Gopalraj, Rangaraj K.; Lok, Johann; Zhu, Haiyan; Ling, I-Fang; Simpson, James F.; Tucker, H. Michael; Kelly, Jeremiah F.; Younkin, Samuel G.; Dickson, Dennis W.; Petersen, Ronald C; Graff-Radford, Neill R.; Bennett, David A.; Crook, Julia E.; G.Younkin, Steven; Estus, Steven
2008-01-01
Since apoE allele status is the predominant Alzheimers disease (AD) genetic risk factor, functional single nucleotide polymorphisms (SNP)s in brain apoE receptors represent excellent candidates for association with AD. Recently, we identified a SNP, rs688, as modulating the splicing efficiency of low-density lipoprotein receptor (LDLR) exon 12 in the female human liver and in minigene transfected HepG2 cells. Moreover, the rs688T minor allele associated with significantly higher LDL and total cholesterol in women in the Framingham Offspring Study. Since LDLR is a major apoE receptor in the brain, we hypothesized that rs688 modulates LDLR splicing in neural tissues and associates with AD. To evaluate this hypothesis, we first transfected LDLR minigenes into SH-SY5Y neuroblastoma cells and found that rs688T reduces exon 12 inclusion in this neural model. We then evaluated rs688 association with exon 12 splicing efficiency in vivo by quantifying LDLR splicing in human anterior cingulate tissue obtained at autopsy; the rs688T allele associated with decreased LDLR exon 12 splicing efficiency in aged men but not women. Lastly, we evaluated whether rs688 associates with AD by genotyping DNA from 1,457 men and 2,055 women drawn from three case-control series. The rs688T/T genotype was associated with increased AD odds in males (recessive model, odds ratio (OR) of 1.49, 95% confidence interval (CI) of 1.13−1.97, uncorrected p=0.005), but not in females. In summary, these studies identify a functional apoE receptor SNP that is associated with AD in a sex-dependent fashion. PMID:18065781
Characterization of a splicing mutation in group A xeroderma pigmentosum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satokata, Ichiro; Tanaka, Kiyoji; Miura, Naoyuki
1990-12-01
The molecular basis of group A xeroderma pigmentosum (WP) was investigated by comparison of the nucleotide sequences of multiple clones of the XP group A complementing gene (XPAC) from a patient with group A XP with that of a normal gene. The clones showed a G {r arrow} C substitution at the 3{prime} splice acceptor site of intron 3, which altered the obligatory AG acceptor dinucleotide to AC. Nucleotide sequencing of cDNAs amplified by the polymerase chain reaction revealed that this single base substitution abolishes the canonical 3{prime} splice site, thus creating two abnormally spliced mRNA forms. The larger formmore » is identical with normal mRNA except for a dinucleotide deletion at the 5{prime} end of exon 4. This deletion results in a frameshift with premature translation termination in exon 4. The smaller form has a deletion of the entire exon 3 and the dinucleotide at the 5{prime} end of exon 4. The result of a transfection study provided additional evidence that this single base substitution is the disease-causing mutation. This single base substitution creates a new cleavage site for the restriction nuclease AlwNI. Analysis of AlwNI restriction fragment length polymorphism showed a high frequency of this mutation in Japanese patients with group A XP: 16 of 21 unrelated Japanese patients were homozygous and 4 were heterozygous for this mutation. However, 11 Caucasians and 2 Blacks with group A XP did not have this mutant allele. The polymorphic AlwNI restriction fragments are concluded to be useful for diagnosis of group A XP in Japanese subjects, including prenatal cases and carriers.« less
Polymorphism of BMP4 gene in Indian goat breeds differing in prolificacy.
Sharma, Rekha; Ahlawat, Sonika; Maitra, A; Roy, Manoranjan; Mandakmale, S; Tantia, M S
2013-12-10
Bone morphogenetic proteins (BMPs) are members of the TGF-β (transforming growth factor-beta) superfamily, of which BMP4 is the most important due to its crucial role in follicular growth and differentiation, cumulus expansion and ovulation. Reproduction is a crucial trait in goat breeding and based on the important role of BMP4 gene in reproduction it was considered as a possible candidate gene for the prolificacy of goats. The objective of the present study was to detect polymorphism in intronic, exonic and 3' un-translated regions of BMP4 gene in Indian goats. Nine different goat breeds (Barbari, Beetal, Black Bengal, Malabari, Jakhrana (Twinning>40%), Osmanabadi, Sangamneri (Twinning 20-30%), Sirohi and Ganjam (Twinning<10%)) differing in prolificacy and geographic distribution were employed for polymorphism scanning. Cattle sequence (AC_000167.1) was used to design primers for the amplification of a targeted region followed by direct DNA sequencing to identify the genetic variations. Single nucleotide polymorphisms (SNPs) were not detected in exon 3, the intronic region and the 3' flanking region. A SNP (G1534A) was identified in exon 2. It was a non-synonymous mutation resulting in an arginine to lysine change in a corresponding protein sequence. G to A transition at the 1534 locus revealed two genotypes GG and GA in the nine investigated goat breeds. The GG genotype was predominant with a genotype frequency of 0.98. The GA genotype was present in the Black Bengal as well as Jakhrana breed with a genotype frequency of 0.02. A microsatellite was identified in the 3' flanking region, only 20 nucleotides downstream from the termination site of the coding region, as a short sequence with more than nineteen continuous and repeated CA dinucleotides. Since the gene is highly evolutionarily conserved, identification of a non-synonymous SNP (G1534A) in the coding region gains further importance. To our knowledge, this is the first report of a mutation in the coding region of the caprine BMP4 gene. But whether the reproduction trait of goat is associated with the BMP4 polymorphism, needs to be further defined by association studies in more populations so as to delineate an effect on it. © 2013 Elsevier B.V. All rights reserved.
Yin, Z Z; Dong, X Y; Dong, D J; Ma, Y Z
2016-10-01
Single nucleotide polymorphisms (SNPs) in the exons of the myogenic factor 5 (MYF5) and Kruppel-like factor 15 (KLF15) genes were identified and analysed by using DNA sequencing methods in 60 female domestic pigeons (Columba livia). Five SNPs (T5067A, C5084T, C5101T, T5127A and C5154G) were detected in exon 3 of MYF5 and 6 SNPs (C1398T, C1464T, G1542A, C1929T, G1965A and A2355G) were found in exon 2 of KLF15, respectively. The analysis revealed three genotypes, in which the AA genotype was dominant and the A allele showed a dominant advantage. For the MYF5 gene, the C5084T and T5127A SNP genotypes were significantly associated with carcass traits of pigeons. Within those two SNPs, the BB genotype showed relatively higher trait association values than those of AA or AB genotypes. No significant association was observed between the KLF15 SNP genotypes and carcass traits. These results indicated that the MYF5 gene is a potential major gene affecting carcass traits in domestic pigeons. The BB genotype of the C5084T and T5127A SNPs could be a potential candidate genetic marker for marker-assisted selection in pigeon.
Yaghi, Layale; Poras, Isabelle; Simoes, Renata T.; Donadi, Eduardo A.; Tost, Jörg; Daunay, Antoine; de Almeida, Bibiana Sgorla; Carosella, Edgardo D.; Moreau, Philippe
2016-01-01
HLA-G is an immune checkpoint molecule with specific relevance in cancer immunotherapy. It was first identified in cytotrophoblasts, protecting the fetus from maternal rejection. HLA-G tissue expression is very restricted but induced in numerous malignant tumors such as glioblastoma, contributing to their immune escape. Hypoxia occurs during placenta and tumor development and was shown to activate HLA-G. We aimed to elucidate the mechanisms of HLA-G activation under conditions combining hypoxia-mimicking treatment and 5-aza-2′deoxycytidine, a DNA demethylating agent used in anti-cancer therapy which also induces HLA-G. Both treatments enhanced the amount of HLA-G mRNA and protein in HLA-G negative U251MG glioma cells. Electrophoretic Mobility Shift Assays and luciferase reporter gene assays revealed that HLA-G upregulation depends on Hypoxia Inducible Factor-1 (HIF-1) and a hypoxia responsive element (HRE) located in exon 2. A polymorphic HRE at −966 bp in the 5′UT region may modulate the magnitude of the response mediated by the exon 2 HRE. We suggest that therapeutic strategies should take into account that HLA-G expression in response to hypoxic tumor environment is dependent on HLA-G gene polymorphism and DNA methylation state at the HLA-G locus. PMID:27577073
Shirts, Brian H; Salipante, Stephen J; Casadei, Silvia; Ryan, Shawnia; Martin, Judith; Jacobson, Angela; Vlaskin, Tatyana; Koehler, Karen; Livingston, Robert J; King, Mary-Claire; Walsh, Tom; Pritchard, Colin C
2014-10-01
Single-exon inversions have rarely been described in clinical syndromes and are challenging to detect using Sanger sequencing. We report the case of a 40-year-old woman with adenomatous colon polyps too numerous to count and who had a complex inversion spanning the entire exon 10 in APC (the gene encoding for adenomatous polyposis coli), causing exon skipping and resulting in a frameshift and premature protein truncation. In this study, we employed complete APC gene sequencing using high-coverage next-generation sequencing by ColoSeq, analysis with BreakDancer and SLOPE software, and confirmatory transcript analysis. ColoSeq identified a complex small genomic rearrangement consisting of an inversion that results in translational skipping of exon 10 in the APC gene. This mutation would not have been detected by traditional sequencing or gene-dosage methods. We report a case of adenomatous polyposis resulting from a complex single-exon inversion. Our report highlights the benefits of large-scale sequencing methods that capture intronic sequences with high enough depth of coverage-as well as the use of informatics tools-to enable detection of small pathogenic structural rearrangements.
Genomic structure and expression of STM2, the chromosome 1 familial Alzheimer disease gene.
Levy-Lahad, E; Poorkaj, P; Wang, K; Fu, Y H; Oshima, J; Mulligan, J; Schellenberg, G D
1996-06-01
Mutations in the gene STM2 result in autosomal dominant familial Alzheimer disease. To screen for mutations and to identify regulatory elements for this gene, the genomic DNA sequence and intron-exon structure were determined. Twelve exons including 10 coding exons were identified in a genomic region spanning 23,737 bp. The first 2 exons encode the 5'-untranslated region. Expression analysis of STM2 indicates that two transcripts of 2.4 and 2.8 kb are found in skeletal muscle, pancreas, and heart. In addition, a splice variant of the 2.4-kb transcript was identified that is the result of the use of an alternative splice acceptor site located in exon 10. The use of this site results in a transcript lacking a single glutamate. The promotor for this gene and the alternatively spliced exons leading to the 2.8-kb form of the gene remain to be identified. Expression of STM2 was high in skeletal muscle and pancreas, with comparatively low levels observed in brain. This expression pattern is intriguing since in Alzheimer disease, pathology and degeneration are observed only in the central nervous system.
Genomic structure and expression of STM2, the chromosome 1 familial Alzheimer disease gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy-Lahad, E.; Wang, Kai; Fu, Ying Hui
1996-06-01
Mutations in the gene STM2 result in autosomal dominant familial Alzheimer disease. To screen for mutations and to identify regulatory elements for this gene, the genomic DNA sequence and intron-exon structure were determined. Twelve exons including 10 coding exons were identified in a genomic region spanning 23, 737 bp. The first 2 exons encode the 5{prime}-untranslated region. Expression analysis of STM2 indicates that two transcripts of 2.4 and 2.8 kb are found in skeletal muscle, pancreas, and heart. In addition, a splice variant of the 2.4-kb transcript was identified that is the result of the use of an alternative splicemore » acceptor site located in exon 10. The use of this site results in a transcript lacking a single glutamate. The promotor for this gene and the alternatively spliced exons leading to the 2.8-kb form of the gene remain to be identified. Expression of STM2 was high in skeletal muscle and pancreas, with comparatively low levels observed in brain. This expression pattern is intriguing since in Alzheimer disease, pathology and degeneration are observed only in the central nervous system. 19 refs., 2 figs., 3 tabs.« less
Marez, D; Legrand, M; Sabbagh, N; Lo Guidice, J M; Spire, C; Lafitte, J J; Meyer, U A; Broly, F
1997-06-01
The polymorphic cytochrome P450 CYP2D6 is involved in the metabolism of various drugs of wide therapeutic use and is a presumed susceptibility factor for certain environmentally-induced diseases. Our aim was to define the mutations and alleles of the CYP2D6 gene and to evaluate their frequencies in the European population. Using polymerase chain reaction-single strand conformation polymorphism analysis, 672 unrelated subjects were screened for mutations in the 9 exons of the gene and their exon-intron boundaries. A total of 48 point mutations were identified, of which 29 were novel. Mutations 1749 G-->C, 2938 C-->T and 4268 G-->C represented 52.6%, 34.3% and 52.9% of the mutations in the total population, respectively. Of the eight detrimental mutations detected, the 1934 G-->A, the 1795 Tdel and the 2637 Adel accounted for 65.8%, 6.2% and 4.8% respectively, within the poor metabolizer subgroup. Fifty-three different alleles were characterized from the mutation pattern and by allele-specific sequencing. They are derived from three major alleles, namely the wild-type CYP2D6*1A, the functional CYP2D6*2 and the null CYP2D6*4A. Five allelic variants (CYP2D6*1A, *2, *2B, *4A and *5) account for about 87% of all alleles, while the remaining alleles occur with a frequency of 0.1%-2.7%. These data provide a solid basis for future epidemiological, clinical as well as interethnic studies of the CYP2D6 polymorphism and highlight that the described single strand conformation polymorphism method can be successfully used in designing such studies.
Mura, M C; Luridiana, S; Bodano, S; Daga, C; Cosso, G; Diaz, M L; Bini, P P; Carcangiu, V
2014-10-01
In several species, circadian changes in melatonin concentrations play a key role in the photoperiodic control of seasonality. In sheep, two silent mutations in the melatonin receptor 1A gene (MTNR1A) at positions 606 and 612 of the exon II are associated with seasonal reproduction. However, in some sheep breeds, no relationships have been found between MTNR1A polymorphisms and reproductive seasonality. This lack of relationship could be due to effects of breed, body condition, age, and/or environmental conditions. Thus, the present study was conducted with the Sarda sheep breed with the aim of documenting the effect of MTNR1A gene polymorphisms on reproductive resumption and to evaluate whether such this effect was modified by differences in body condition score (BCS) and age. Six hundred three- to six-year-old multiparous ewes with BCSs between 2.5 and 3.5 were selected. Genomic DNA was extracted and subjected to PCR to amplify the ovine exon II of the MTNR1A gene. The amplicons were subjected to digestion with the restriction enzymes RsaI and MnlI to detect the T606C and A612G polymorphisms, respectively. Ewes carrying the G/G, G/A, C/C, and C/T genotypes exhibited higher fertility rates (P<0.05) and fewer numbers of days between the introduction of rams and parturition (P<0.05) than did the A/A and T/T genotypes. The data revealed that the MTNR1A gene polymorphisms influenced spring reproductive resumption in the Sarda sheep breed. Moreover, the data also indicated that, over the limited ranges evaluated in this study, BCS and age had no significant influence on reproductive activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Haiying; Liu, Chao; Yang, Guiqin; Li, Hui; Dai, Jin; Cong, Yuyan; Li, Xuejian
2012-01-01
Insulin-like growth factor binding protein-3 (IGFBP-3) gene is important for regulation of growth and development in mammals. The present investigation was carried out to study DNA polymorphism by PCR-RFLP of IGFBP-3 gene and its effect on fibre traits of Chinese Inner Mongolian cashmere goats. The fibre traits data investigated were cashmere fibre diameter, combed cashmere weight, cashmere fibre length and guard hair length. Four hundred and forty-four animals were used to detect polymorphisms in the hircine IGFBP-3 gene. A 316-bp fragment of the IGFBP-3 gene in exon 2 was amplified and digested with HaeIII restriction enzyme. Three patterns of restriction fragments were observed in the populations. The frequency of AA, AB and BB genotypes was 0.58, 0.33 and 0.09 respectively. The allelic frequency of the A and B allele was 0.75 and 0.25 respectively. Nucleotide sequencing revealed a C>G transition in the exon 2 region of the IGFBP-3 gene resulting in R158G change which caused the polymorphism. Least squares analysis revealed a significant effect of genotypes on cashmere weight (p<0.0001), cashmere fibre length (p<0.001) and hair length (p<0.05) of the animals. The effect of genotypes on cashmere fibre diameter was not statistically significant (p>0.05). The animals of AB and BB genotypes showed higher cashmere weight, cashmere fibre length and hair length than the animals possessing AA genotype. These results suggested that polymorphisms in the hircine IGFBP-3 gene might be a potential molecular marker for cashmere weight in cashmere goats. PMID:25049511
Dettori, Maria Luisa; Pazzola, Michele; Pira, Emanuela; Puggioni, Ornella; Vacca, Giuseppe Massimo
2015-11-01
The variability of the promoter region and the 3'UTR (exon-7) of the BLG gene, encoding the β-lactoglobulin, was investigated by sequencing in 263 lactating Sarda goats in order to assess its association with milk traits. Milk traits included: milk yield, fat, total protein and lactose content, pH, daily fat and protein yield (DFPY), freezing point, milk energy, somatic cell count, total microbial mesophilic count, rennet coagulation time (RCT), curd firming rate (k20) and curd firmness (a30). A total of 7 polymorphic sites were detected and the sequence analysed was given accession number KM817769. Only three SNPs (c.-381C>T, c.-323C>T and c.*420C>A) had minor allele frequency higher than 0.05. The effects of farm, stage of lactation and the interaction farm × stage of lactation significantly influenced all the milk traits (P T and c.*420C>A (P T (P < 0.001). The c.-381TT homozygous goats showed lower pH, RCT and k20 than c.-381CT (P < 0.05). In conclusion the polymorphism of the goat BLG gene did not affect the total protein content of the Sarda goat milk, and only weakly influenced RCT and k20. On the other hand, an interesting effect on milk yields and DFPY emerged in two SNPs. This information might be useful in dairy goat breeding programs.
Juan, Wen Chun; Roca, Xavier; Ong, S. Tiong
2014-01-01
Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3′ end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes. PMID:24743263
Juan, Wen Chun; Roca, Xavier; Ong, S Tiong
2014-01-01
Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3' end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.
Dimitrova, Desislava; Ruscito, Ilary; Olek, Sven; Richter, Rolf; Hellwag, Alexander; Türbachova, Ivana; Woopen, Hannah; Baron, Udo; Braicu, Elena Ioana; Sehouli, Jalid
2016-09-01
Germline mutations in BRCA1 gene have been reported in up to 20 % of epithelial ovarian cancer (EOC) patients. Distinct clinical characteristics have been attributed to this special EOC population. We hypothesized that mutations in different BRCA1 gene exons may differently affect the clinical course of the disease. The aim of this study was to analyze, in a large cohort of primary EOCs, the clinical impact of mutations in BRCA1 gene exon 11, the largest exon of the gene sequence encoding the 60 % of BRCA1 protein. Two hundred sixty-three primary EOC patients, treated between 2000 and 2008 at Charité University Hospital of Berlin, were included. Patients' blood samples were obtained from the Tumor Ovarian Cancer (TOC) Network ( www.toc-network.de ). Direct sequencing of BRCA1 gene exon 11 was performed for each patient to detect mutations. Based on their BRCA1 exon 11 mutational status, patients were compared regarding clinico-pathological variables and survival. Mutations in BRCA1 exon 11 were found in 18 out of 263 patients (6.8 %). Further 10/263 (3.8 %) cases showed variants of uncertain significance (VUS). All exon 11 BRCA1-positive tumors (100 %) were Type 2 ovarian carcinomas (p = 0.05). Age at diagnosis was significantly younger in Type 2 exon 11 mutated patients (p = 0.01). On multivariate analysis, BRCA1 exon 11 mutational status was not found to be an independent predictive factor for optimal cytoreduction, platinum response, or survival. Mutations in BRCA1 gene exon 11 seem to predispose women to exclusively develop a Type 2 ovarian cancer at younger age. Exon 11 BRCA1-mutated EOC patients showed distinct clinico-pathological features but similar clinical outcome with respect to sporadic EOC patients.
Hedayati, Mehdi; Zarif Yeganeh, Marjan; Sheikhol Eslami, Sara; Rezghi Barez, Shekoofe; Hoghooghi Rad, Laleh; Azizi, Fereidoun
2011-01-01
Medullary thyroid carcinoma occurs in both sporadic (75%) and hereditary (25%) forms. The missense mutations of RET proto-oncogene in MTC development have been well demonstrated. To investigate the spectrum of predominant RET germline mutations in exons 10, 11, and 16 in hereditary MTC in Iranian population, 217 participants were included. Genomic DNAs were extracted from the leukocytes using the standard Salting Out/Proteinase K method. Mutation detection was performed through PCR-RFLP and DNA sequencing. In 217 participants, 43 missense mutations were identified in exons 10 (6%), 11 (13%), and 16 (0.9%). Moreover, a novel germline mutation was detected in exon 11 (S686N). Also four different polymorphisms were found in intron 16 in eight patients. The obtained data showed the frequency profile of RET mutations in Iranian individuals with MTC (19.8%). The most frequent mutation in our population was C634G whereas in most population it was C634R. Altogether, these results underline the importance of the genetic background of family members of any patient with MTC. PMID:21765987
Splendore, Alessandra; Fanganiello, Roberto D; Masotti, Cibele; Morganti, Lucas S C; Passos-Bueno, M Rita
2005-05-01
Recently, a novel exon was described in TCOF1 that, although alternatively spliced, is included in the major protein isoform. In addition, most published mutations in this gene do not conform to current mutation nomenclature guidelines. Given these observations, we developed an online database of TCOF1 mutations in which all the reported mutations are renamed according to standard recommendations and in reference to the genomic and novel cDNA reference sequences (www.genoma.ib.usp.br/TCOF1_database). We also report in this work: 1) results of the first screening for large deletions in TCOF1 by Southern blot in patients without mutation detected by direct sequencing; 2) the identification of the first pathogenic mutation in the newly described exon 6A; and 3) statistical analysis of pathogenic mutations and polymorphism distribution throughout the gene.
Richardson, David S; Westerdahl, Helena
2003-12-01
The Great reed warbler (GRW) and the Seychelles warbler (SW) are congeners with markedly different demographic histories. The GRW is a normal outbred bird species while the SW population remains isolated and inbred after undergoing a severe population bottleneck. We examined variation at Major Histocompatibility Complex (MHC) class I exon 3 using restriction fragment length polymorphism, denaturing gradient gel electrophoresis and DNA sequencing. Although genetic variation was higher in the GRW, considerable variation has been maintained in the SW. The ten exon 3 sequences found in the SW were as diverged from each other as were a random sub-sample of the 67 sequences from the GRW. There was evidence for balancing selection in both species, and the phylogenetic analysis showing that the exon 3 sequences did not separate according to species, was consistent with transspecies evolution of the MHC.
NASA Astrophysics Data System (ADS)
Sekar, Nishu; Yeole, Samiksha; Pradeep, Rashmi; Prabhu, Yogamaya D.; Renu, Kaviyarasi; Ramgir, Shalaka S.; Abilash, V. G.
2017-11-01
Polycystic ovary syndrome is an endocrine disorder. Irregular menstrual cycle, acne, facial hair and elevated androgen levels are the most common signs for PCOS. PCOS has an estimated prevalence of 4-12% among reproductive age women, thus making it a forerunner in female infertility. FSHR plays an important role in FSH signaling pathway making it an important gene for PCOS. In this study, we aim to focus on any association between the FSHR gene and PCOS. Our study was to evaluate any polymorphism of exon 1 of FSHR gene associated with PCOS.PCR-RFLP technique was performed on the PCOS samples. Hormonal changes were found in the patients. Exon 1 inactivation mutation of FSHR gene was not observed in the patient sample. A study of this association needs to be done using large sample size.
MIYAGAWA, Shuji; MATSUNARI, Hitomi; WATANABE, Masahito; NAKANO, Kazuaki; UMEYAMA, Kazuhiro; SAKAI, Rieko; TAKAYANAGI, Shuko; TAKEISHI, Toki; FUKUDA, Tooru; YASHIMA, Sayaka; MAEDA, Akira; EGUCHI, Hiroshi; OKUYAMA, Hiroomi; NAGAYA, Masaki; NAGASHIMA, Hiroshi
2015-01-01
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs. PMID:26227017
Miyagawa, Shuji; Matsunari, Hitomi; Watanabe, Masahito; Nakano, Kazuaki; Umeyama, Kazuhiro; Sakai, Rieko; Takayanagi, Shuko; Takeishi, Toki; Fukuda, Tooru; Yashima, Sayaka; Maeda, Akira; Eguchi, Hiroshi; Okuyama, Hiroomi; Nagaya, Masaki; Nagashima, Hiroshi
2015-01-01
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs.
Kalemkerian, P B; Metz, G E; Peral-Garcia, P; Echeverria, M G; Giovambattista, G; Díaz, S
2012-12-01
Polymorphisms at Major Histocompatibility Complex (MHC) genes have been associated with resistance/susceptibility to infectious diseases in domestic animals. The aim of this investigation was to evaluate whether polymorphisms of the DRA gene the Equine Lymphocyte Antigen is associated with susceptibility to Equine Arteritis Virus (EAV) infection in horses in Argentina. The equine DRA gene was screened for polymorphisms using Pyrosequencing® Technology which allowed the detection of three ELA-DRA exon 2 alleles. Neither allele frequencies nor genotypic differentiation exhibited any statistically significant (P-values=0.788 and 0.745) differences between the EAV-infected and no-infected horses. Fisher's exact test and OR calculations did not show any significant association. As a consequence, no association could be established between the serological condition and ELA-DRA. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart
NASA Astrophysics Data System (ADS)
Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.
1996-06-01
cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.
Kück, Ulrich; Choquet, Yves; Schneider, Michel; Dron, Michel; Bennoun, Pierre
1987-01-01
The two homologous genes for the P700 chlorophyll a-apoproteins (ps1A1 and ps1A2) are encoded by the plastom in the green alga Chlamydomonas reinhardii. The structure and organization of the two genes were determined by comparison with the homologous genes from maize using data from heterologous hybridizations as well as from DNA and RNA sequencing. While the ps1A2 (736 codons) gene shows a continuous gene organization, the ps1A1 (754 codons) gene possesses some unusual features. The discontinuous gene is split into three separate exons which are scattered around the circular chloroplast genome. Exon 1 (86 bp) is separated by ∼50 kb from exon 2 (198 bp), which is located ∼ 90 kb apart from exon 3 (1984 bp). All exons are flanked by intronic sequences of group II. Transcription analysis reveals that the ps1A2 gene hybridizes with a 2.8-kb transcript, while all exon regions of the ps1A1 gene are homologous to a mature mRNA of 2.7 kb. From our data we conclude that the three distantly separated exonic sequences of the ps1A1 gene constitute a functional gene which probably operates by a trans-splicing mechanism. ImagesFig. 3.Fig. 5.Fig. 6. PMID:16453785
Iemitsu, Motoyuki; Maeda, Seiji; Otsuki, Takeshi; Sugawara, Jun; Kuno, Shinya; Ajisaka, Ryuichi; Matsuda, Mitsuo
2008-04-01
An increase in arterial stiffness with advancing age is associated with several pathological states, including hypertension and arteriosclerosis. Regular exercise improves the aging-induced increase in arterial stiffness and has a protective effect against these diseases. However, not all individuals respond to exercise to the same extent. Atrial natriuretic peptide (ANP) is involved in the regulation of basal blood pressure, blood flow, and vascular tone. The present study was designed to clarify whether gene polymorphisms in ANP-related genes affect exercise-induced improvements in arterial stiffness. We performed a cross-sectional study of 291 healthy middle-aged and older Japanese subjects (63+/-1 years), examining the relationship between daily physical activity-induced improvements in arterial stiffness, estimated by brachial-ankle arterial pulse wave velocity (baPWV), and the gene polymorphisms of valine32methionine (V32M: 664G>A) in exon 1 of ANP and asparagine521aspartic acid (N521D: 1780A>G) in exon 8 of the ANP clearance receptor (NPR-C). The baseline baPWV was significantly lower in the active group, but no differences were seen in blood pressure. Active subjects with the ANP-VV genotype had significantly lower baPWV and higher plasma ANP levels compared with inactive subjects, but there were no variations related to the VM+MM genotype. Additionally, baPWV and plasma ANP levels were negatively correlated in ANP-VV genotype subjects, but were not correlated in VM+MM individuals. Our results suggest that ANP polymorphism in older Japanese subjects may affect the cardiovascular response to regular exercise.
Sikka, Seema; Sikka, Pranav
2014-01-01
Background: Human papillomavirus (HPV) and p53 alterations are speculated to play a role in carcinogenesis. This study was carried out to find out the association of HPV and p53 with precancerous lesions of the oral cavity such as leukoplakia: The objective of this study was to find the association among human papilloma virus (HPV) 16 infections and p53 polymorphism in tobacco using the oral leukoplakia patients. Methods: A total of 91 oral leukoplakia patients and 100 controls were randomly selected from the out-patient department of a tertiary care dental hospital of North-east India. Blood samples were drawn incisional biopsy was performed from the lesion proper and the tissue was processed for histopathological grading. Cytological smears were taken from the lesional site of leukoplakia patients and buccal mucosa of controls. The rate of HPV infection and p53 polymorphism was detected with the help of polymerase chain reaction, gel electrophoresis and deoxyribonucleic acid sequencing. Results: The rate of HPV 16 infection was found significantly high in the oral leukoplakia patients. No particular p53 genotype at exon 4 of codon 72 was found to be associated with oral leukoplakia, but “C” allele (proline) at exon 4 of codon 72 was significantly raised in these patients. Conclusions: Oral leukoplakia, a well-known pre-cancerous lesion, has been shown to be associated with tobacco, but certain other factors like HPV infection and p53 polymorphism may play an important role in its development. PMID:24829730
Laddha, Naresh C.; Dwivedi, Mitesh; Gani, Amina R.; Mansuri, Mohmmad Shoab; Begum, Rasheedunnisa
2013-01-01
Genetic polymorphisms in TNFB are involved in the regulation of its expression and are found to be associated with various autoimmune diseases. The aim of the present study was to determine whether TNFB +252A/G (rs909253) and exon 3 C/A (rs1041981) polymorphisms are associated with vitiligo susceptibility, and expression of TNFB and ICAM1 affects the disease onset and progression. We have earlier reported the role of TNFA in autoimmune pathogenesis of vitiligo, and we now show the involvement of TNFB in vitiligo pathogenesis. The two polymorphisms investigated in the TNFB were in strong linkage disequilibrium and significantly associated with vitiligo. TNFB and ICAM1 transcripts were significantly increased in patients compared to controls. Active vitiligo patients showed significant increase in TNFB transcripts compared to stable vitiligo. The genotype-phenotype analysis revealed that TNFB expression levels were higher in patients with GG and AA genotypes as compared to controls. Patients with the early age of onset and female patients showed higher TNFB and ICAM1 expression. Overall, our findings suggest that the increased TNFB transcript levels in vitiligo patients could result, at least in part, from variations at the genetic level which in turn leads to increased ICAM1 expression. For the first time, we show that TNFB +252A/G and exon 3 C/A polymorphisms are associated with vitiligo susceptibility and influence the TNFB and ICAM1 expression. Moreover, the study also emphasizes influence of TNFB and ICAM1 on the disease progression, onset and gender bias for developing vitiligo. PMID:24312346
Chen, Zhengshuai; Li, Jingjie; Chen, Peng; Wang, Fengjiao; Zhang, Ning; Yang, Min; Jin, Tianbo; Chen, Chao
2016-09-01
1. Detection of CYP3A5 variant alleles, and knowledge about their allelic frequency in Uyghur ethnic groups, is important to establish the clinical relevance of screening for these polymorphisms to optimize pharmacotherapy. 2. We used DNA sequencing to investigate the promoter, exons and surrounding introns, and 3'-untranslated region of the CYP3A5 gene in 96 unrelated healthy Uyghur individuals. We also used SIFT and PolyPhen-2 to predict the protein function of the novel non-synonymous mutation in CYP3A5 coding regions. 3. We found 24 different CYP3A5 polymorphisms in the Uyghur population, three of which were novel: the synonymous mutation 43C > T in exon 1, two mutations 32120C > G and 32245T > C in 3'-untranslated region, and we detected the allele frequencies of CYP3A5*1 and *3 as 64.58% and 35.42%, respectively. While no subjects with CYP3A5*6 were identified. Other identified genotypes included the heterozygous genotype 1A/3A (59.38%) and 1A/3E (11.46%), which lead to decreased enzyme activity. In addition, the frequency of haplotype "TTAGGT" was the most prevalent with 0.781. 4. Our data provide new information regarding CYP3A5 genetic polymorphisms in Uyghur individuals, which may help to improve individualization of drug therapy and offer a preliminary basis for more rational use of drugs.
Chang, Ya-Sian; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng Mao; Chang, Jan-Gowth
2016-02-01
There have been many different mutations reported for the large adenomatous polyposis coli (APC) tumor suppressor gene. APC mutations result in inactivation of APC tumor suppressor action, allowing the progression of tumorigenesis. The present study utilized a highly efficient method to identify APC mutations and investigated the association between the APC genetic variants Y486Y, A545A, T1493T, and D1822V and susceptibility to oral squamous cell carcinoma (OSCC). High-resolution melting (HRM) analysis was used to characterize APC mutations. Genomic DNA was extracted from 83 patient specimens of OSCC and 50 blood samples from healthy control subjects. The 14 exons and mutation cluster region of exon 15 were screened by HRM analysis. All mutations were confirmed by direct DNA sequencing. Three mutations and 4 single nucleotide polymorphisms (SNPs) were found in this study. The mutations were c.573T>C (Y191Y) in exon 5, c.1005A>G (L335L) in exon 9, and c.1488A>T (T496T) in exon 11. Two SNPs, c.4479G>A (T1493T) and c.5465A>T (D1822V), were located in exon 15, whereas c.1458T>C (Y486Y) and c.1635G>A (A545A) were located in exon 11 and 13, respectively. There was no observed association between OSCC risk and genotype for any of the 4 APC SNPs. The mutation of APC is rare in Taiwanese patients with OSCC. HRM analysis is a reliable, accurate, and fast screening method for APC mutations.
Bottom-up design of small molecules that stimulate exon 10 skipping in mutant MAPT pre-mRNA.
Luo, Yiling; Disney, Matthew D
2014-09-22
One challenge in chemical biology is to develop small molecules that control cellular protein content. The amount and identity of proteins are influenced by the RNAs that encode them; thus, protein content in a cell could be affected by targeting mRNA. However, RNA has been traditionally difficult to target with small molecules. In this report, we describe controlling the protein products of the mutated microtubule-associated protein tau (MAPT) mature mRNA with a small molecule. MAPT mutations in exon 10 are associated with inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17), an incurable disease that is directly caused by increased inclusion of exon 10 in MAPT mRNA. Recent studies have shown that mutations within a hairpin at the MAPT exon 10-intron junction decrease the thermodynamic stability of the RNA, increasing binding to U1 snRNP and thus exon 10 inclusion. Therefore, we designed small molecules that bind and stabilize a mutant MAPT by using Inforna, a computational approach based on information about RNA-small-molecule interactions. The optimal compound selectively bound the mutant MAPT hairpin and thermodynamically stabilized its folding, facilitating exon 10 exclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Yulei; Goldberg, Michel; Le, Thuan; Qiang, Ran; Warner, Douglas; Witkowska, Halina Ewa; Liu, Haichuan; Zhu, Li; Denbesten, Pamela; Li, Wu
2012-01-01
Amelogenins containing exons 8 and 9 are alternatively spliced variants of amelogenin. Some amelogenin spliced variants have been found to promote pulp regeneration following pulp exposure. The function of the amelogenin spliced variants with the exons 8 and 9 remains unknown. In this study, we synthesized recombinant leucine rich amelogenin peptide (LRAP, A-4), LRAP plus exons 8 and 9 peptide (LRAP 8, 9) or exons 8 and 9 peptide (P89), to determine their effects on odontoblasts. In vivo analyses were completed following the insertion of agarose beads containing LRAP or LRAP 8, 9 into exposed cavity preparations of rat molars. After 8, 15 or 30 days' exposure, the pulp tissues were analyzed for changes in histomorphometry and cell proliferation by PCNA stainings. In vitro analyses included the effects of the addition of the recombinant proteins or peptide on cell proliferation, differentiation and adhesion of postnatal human dental pulp cells (DPCs). These studies showed that in vivo LRAP 8, 9 enhanced the reparative dentin formation as compared to LRAP. In vitro LRAP 8, 9 promoted DPC proliferation and differentiation to a greater extent than LRAP. These data suggest that amelogenin exons 8 and 9 may be useful in amelogenin-mediated pulp repair. Copyright © 2012 S. Karger AG, Basel.
Mutations in the PDE6B gene in autosomal recessive retinitis pigmentosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danciger, M.; Blaney, J.; Gao, Y.Q.
1995-11-01
We have studied 24 small families with presumed autosomal recessive inheritance of retinitis pigmentosa by a combination of haplotype analysis and exon screening. Initial analysis of the families was made with a dinucleotide repeat polymorphism adjacent to the gene for rod cGMP-phosphodiesterase (PDE6B). This was followed by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism electrophoresis (SSCPE) of the 22 exons and a portion of the 5{prime} untranslated region of the PDE6B gene in the probands of each family in which the PDE6B locus could not be ruled out from segregating with disease. Two probands were found with compoundmore » heterozygous mutations: Gly576Asp and His620(1-bp del) mutations were present in one proband, and a Lys706X null mutation and an AG to AT splice acceptor site mutation in intron 2 were present in the other. Only the affecteds of each of the two families carried both corresponding mutations. 29 refs., 3 figs., 1 tab.« less
Enamelin/ameloblastin gene polymorphisms in autosomal amelogenesis imperfecta among Syrian families.
Dashash, Mayssoon; Bazrafshani, Mohamed Riza; Poulton, Kay; Jaber, Saaed; Naeem, Emad; Blinkhorn, Anthony Stevenson
2011-02-01
This study was undertaken to investigate whether a single G deletion within a series of seven G residues (codon 196) at the exon 9-intron 9 boundary of the enamelin gene ENAM and a tri-nucleotide deletion at codon 180 in exon 7 (GGA vs deletion) of ameloblastin gene AMBN could have a role in autosomal amelogenesis imperfecta among affected Syrian families. A new technique - size-dependent, deletion screening - was developed to detect nucleotide deletion in ENAM and AMBN genes. Twelve Syrian families with autosomal-dominant or -recessive amelogenesis imperfecta were included. A homozygous/heterozygous mutation in the ENAM gene (152/152, 152/153) was identified in affected members of three families with autosomal-dominant amelogenesis imperfecta and one family with autosomal-recessive amelogenesis imperfecta. A heterozygous mutation (222/225) in the AMBN gene was identified. However, no disease causing mutations was found. The present findings provide useful information for the implication of ENAM gene polymorphism in autosomal-dominant/-recessive amelogenesis imperfecta. Further investigations are required to identify other genes responsible for the various clinical phenotypes. © 2010 Blackwell Publishing Asia Pty Ltd.
Bhattarai, Dinesh; Chen, Xing; Ur Rehman, Zia; Hao, Xingjie; Ullah, Farman; Dad, Rahim; Talpur, Hira Sajjad; Kadariya, Ishwari; Cui, Lu; Fan, Mingxia; Zhang, Shujun
2017-02-01
The objective of the studies presented in this Research Communication was to investigate the association of single nucleotide polymorphisms present in the MAP4K4 gene with different milk traits in dairy cows. Based on previous QTL fine mapping results on bovine chromosome 11, the MAP4K4 gene was selected as a candidate gene to evaluate its effect on somatic cell count and milk traits in ChineseHolstein cows. Milk production traits including milk yield, fat percentage, and protein percentage of each cow were collected using 305 d lactation records. Association between MAP4K4 genotype and different traits and Somatic Cell Score (SCS) was performed using General Linear Regression Model of R. Two SNPs at exon 18 (c.2061T > G and c.2196T > C) with genotype TT in both SNPs were found significantly higher for somatic SCS. We found the significant effect of exon 18 (c.2061T > G) on protein percentage, milk yield and SCS. We identified SNPs at different location of MAP4K4 gene of the cattle and several of them were significantly associated with the somatic cell score and other different milk traits. Thus, MAP4K4 gene could be a useful candidate gene for selection of dairy cattle against mastitis and the identified polymorphisms might potentially be strong genetic markers.
Ibeagha-Awemu, Eveline M.; Kgwatalala, Patrick; Ibeagha, Aloysius E.
2008-01-01
Genetic variations through their effects on gene expression and protein function underlie disease susceptibility in farm animal species. The variations are in the form of single nucleotide polymorphisms, deletions/insertions of nucleotides or whole genes, gene or whole chromosomal rearrangements, gene duplications, and copy number polymorphisms or variants. They exert varying degrees of effects on gene action, such as substitution of an amino acid for another, shift in reading frame and premature termination of translation, and complete deletion of entire exon(s) or gene(s) in diseased individuals. These factors influence gene function by affecting mRNA splicing pattern or by altering/eliminating protein function. Elucidating the genetic bases of diseases under the control of many genes is very challenging, and it is compounded by several factors, including host × pathogen × environment interactions. In this review, the genetic variations that underlie several diseases of livestock (under monogenic and polygenic control) are analyzed. Also, factors hampering research efforts toward identification of genetic influences on animal disease identification and control are highlighted. A better understanding of the factors analyzed could be better harnessed to effectively identify and control, genetically, livestock diseases. Finally, genetic control of animal diseases can reduce the costs associated with diseases, improve animal welfare, and provide healthy animal products to consumers, and should be given more attention. PMID:18350334
Analysis of CYP3A4 genetic polymorphisms in Han Chinese.
Zhou, Qing; Yu, Xiaomin; Shu, Chang; Cai, Yimei; Gong, Wei; Wang, Xumin; Wang, Duen-mei; Hu, Songnian
2011-06-01
Our study aimed to comprehensively investigate the genetic polymorphisms of CYP3A4 in Han Chinese. We sequenced the gene regions of CYP3A4, including its promoter, exons, surrounding introns and 3' untranslated region (3'UTR), from 100 unrelated-healthy Han Chinese individuals. We detected 11 SNPs, three of which are novel. According to in silico functional prediction of novel variants, 20148 A>G in exon 10, resulting in substitution of Tyr319 with Cys (CYP3A4*21), may induce dramatic alteration of protein conformation, and 26908 G>A in 3'UTR may disrupt post-transcriptional regulation. We identified five alleles in Han Chinese, the allele frequencies of CYP3A4*1, *5, *6, *18 and *21 are 97, 0.5, 1, 1 and 0.5%, respectively. Haplotype inference revealed 14 haplotypes, of which the major haplotype CYP3A4*1A constitutes 59% of the total chromosomes. We also examined the possible role of natural selection in shaping the variation of CYP3A4 and confirmed a trend, consistent with the action of positive selection. We systematically screened the genetic polymorphisms of CYP3A4 in Han Chinese, highlighted possible functional impairment of the novel allele and summarized the distinct allele and haplotype frequency distribution, with an emphasis on detecting the footprint of recent positive selection on the CYP3A4 gene in Han Chinese.
Balasubramaniam, Shandiya; Bray, Rebecca D; Mulder, Raoul A; Sunnucks, Paul; Pavlova, Alexandra; Melville, Jane
2016-05-21
The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC.
Koç Öztürk, Leyla; Ulucan, Korkut; Akyüz, Serap; Furuncuoğlu, Halit; Bayer, Hikmet; Yarat, Ayşen
2012-05-01
The aim of this study was to investigate carbonic anhydrase (CA) VI Exon 2 single nucleotide polymorphism (SNP) and its possible association with salivary parameters in type 2 diabetic patients compared to healthy adults. Caries status was measured by using the DMFT (number of decayed, missing, and filled teeth) index. Unstimulated whole saliva and blood samples were taken. SNPs of CA gene exon 2 were determined by PCR and DNA sequencing. Salivary CA activity and buffering capacity were determined by the method of Verpoorte and Ericson, respectively. Furthermore, salivary pH was measured with pH paper and salivary flow rate was calculated. Salivary buffering capacity and pH were significantly lower in diabetic patients than those of healthy subjects (P < 0.05). Salivary flow rate, CA activity and DMFT levels did not differ between groups (P > 0.05). Four SNPs were detected; their pubmed database number are rs2274327 (C/T), rs2274328 (A/C), rs2274329 (G/C) and rs2274330. While first three of those were responsible for amino acid changes, the last one was not. The frequencies of SNPs were not significant between groups (P > 0.05). Positive significant correlation was found between CA activity and the frequency of SNPs. There was no correlation between the SNPs frequencies and pH or buffering capacity. SNPs found in this study may be related to salivary CA activity in diabetics.
Huang, Yu-Fang; Chen, Mei-Lien; Liou, Saou-Hsing; Chen, Ming-Feng; Uang, Shi-Nian; Wu, Kuen-Yuh
2011-06-10
This study elucidates the association of acrylamide metabolites, N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA), N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-cysteine (GAMA2), and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-cysteine (GAMA3) in urine with genetic polymorphisms of the metabolic enzymes cytochrome P450 2E1 (CYP2E1), microsomal epoxide hydrolase (mEH) in exon 3 and exon 4, glutathione transferase theta (GSTT1) and mu (GSTM1), involved in the activation and detoxification of acrylamide (AA) in humans. Eighty-five workers were recruited, including 51 AA-exposed workers and 34 administrative staffs serve as controls. Personal air sampling was performed for the exposed workers. Each subject provided pre- and post-shift urine samples and blood samples. Urinary AAMA, GAMA2 and GAMA3 levels were simultaneously quantified using liquid chromatography-electronspray ionization/tandem mass spectrometry (LC-ESI-MS/MS). CYP2E1, mEH (in exon 3 and exon 4), GSTT1, and GSTM1 were analyzed using polymerase chain reaction (PCR). Our results reveal that AA personal exposures ranged from 4.37 × 10⁻³ to 113.61 μg/m³ with a mean at 15.36 μg/m³. The AAMA, GAMA2, and GAMA3 levels in the exposed group significantly exceeded those in controls. The GAMAs (the sum of GAMA2 and GAMA3)/AAMA ratios, potentially reflecting the proportion of AA metabolized to glycidamide (GA), varied from 0.003 to 0.456, and indicate high inter-individual variability in the metabolism of AA to GA in this study population. Multivariate regression analysis demonstrates that GSTM1 genotypes significantly modify the excretion of urinary AAMA and the GAMAs/AAMA ratio, exon 4 of mEH was significantly associated with the urinary GAMAs levels after adjustment for AA exposures. These results suggest that mEH and/or GSTM1 may be associated with the formation of urinary AAMA and GAMAs. Further study may be needed to shed light on the role of both enzymes in AA metabolism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
TZORTZATOS, GERASIMOS; ARAVIDIS, CHRISTOS; LINDBLOM, ANNIKA; MINTS, MIRIAM; THAM, EMMA
2015-01-01
Cowden syndrome (CS) is an autosomal dominant disorder characterized by multiple hamartomas in the breast, thyroid and endometrium, with a prevalence of 1 per 250,000. Females with CS have a 21–28% lifetime risk of developing uterine cancer. Germline mutations in the phosphatase and tensin homolog (PTEN) gene, a tumor suppressor gene, are responsible for 30–80% of CS cases. PTEN is a nine-exon gene, located on chromosome 10q23.3, which encodes the 403 amino acid PTEN protein. It negatively regulates the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway, affecting various cellular processes and signaling pathways. The present study examined whether PTEN mutations are present in CS-like families with uterine cancer (UC). UC patients underwent surgery at Karolinska University Hospital, Stockholm, Sweden (2008–2012). Pedigrees were analyzed and 54 unrelated CS-like families were identified. CS-like families were defined as having at least one occurrence of uterine cancer and one of breast cancer, as well as at least one additional Cowden-associated tumor (uterine, breast, thyroid, colon or kidney cancer) in the same individual or in first-degree relatives. Genomic DNA was amplified using polymerase chain reaction, and DNA sequencing analysis of all nine exons of the PTEN gene was conducted. No germline PTEN mutations or polymorphisms were identified. Germline PTEN mutations are rare in CS-like families with uterine cancer, therefore, genetic screening must be restricted to patients that meet the strict National Comprehensive Cancer Network criteria. Gynecologists must be aware of the CS criteria and identify potential cases of CS in females where uterine cancer is the sentinel cancer. PMID:25789042
Myelin protein zero gene sequencing diagnoses Charcot-Marie-Tooth Type 1B disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Y.; Zhang, H.; Madrid, R.
1994-09-01
Charcot-Marie-Tooth disease (CMT), the most common genetic neuropathy, affects about 1 in 2600 people in Norway and is found worldwide. CMT Type 1 (CMT1) has slow nerve conduction with demyelinated Schwann cells. Autosomal dominant CMT Type 1B (CMT1B) results from mutations in the myelin protein zero gene which directs the synthesis of more than half of all Schwann cell protein. This gene was mapped to the chromosome 1q22-1q23.1 borderline by fluorescence in situ hybridization. The first 7 of 7 reported CMT1B mutations are unique. Thus the most effective means to identify CMT1B mutations in at-risk family members and fetuses ismore » to sequence the entire coding sequence in dominant or sporadic CMT patients without the CMT1A duplication. Of the 19 primers used in 16 pars to uniquely amplify the entire MPZ coding sequence, 6 primer pairs were used to amplify and sequence the 6 exons. The DyeDeoxy Terminator cycle sequencing method used with four different color fluorescent lables was superior to manual sequencing because it sequences more bases unambiguously from extracted genomic DNA samples within 24 hours. This protocol was used to test 28 CMT and Dejerine-Sottas patients without CMT1A gene duplication. Sequencing MPZ gene-specific amplified fragments identified 9 polymorphic sites within the 6 exons that encode the 248 amino acid MPZ protein. The large number of major CMT1B mutations identified by single strand sequencing are being verified by reverse strand sequencing and when possible, by restriction enzyme analysis. This protocol can be used to distringuish CMT1B patients from othre CMT phenotypes and to determine the CMT1B status of relatives both presymptomatically and prenatally.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suchi, Mariko; Mizuno, Haruo; Tsuboi, Takashi
Uridine monophosphate (UMP) synthase is a bifunctional enzyme catalyzing the last two steps of de novo pyrimidine biosynthesis, orotate phosphoribosyltransferase (OPRT) and orotidine-5{prime}-monophosphate decarboxylase (ODC). Loss of either enzymatic activity results in hereditary orotic aciduria, a rare autosomal recessive disorder characterized by retarded growth, anemia, and excessive urinary excretion of orotic acid. We have isolated the UMP synthase chromosomal gene from a {lambda}EMBL-3 human genomic library and report a single-copy gene spanning {approximately}15 kb. The UMP synthase genomic structure encodes six exons ranging in size from 115 bp to 672 bp, and all splicing junctions adhere to the canonical GT/AGmore » rule. Cognate promoter elements implicated in glucocorticoid- and cAMP-mediated regulation as well as in liver-, myeloid-, and lymphocyte-specific expression are located within the 5{prime} flanking sequence. Molecular investigation of UMP synthase deficiency in a Japanese orotic aciduria patient revealed mutations R96G (A- to-G transition; nt 286) and G429R (G-to-C transversion; nt 1285) in one allele and V109G (T-to-G transversion; nt 326) in the other allele. Expression of human UMP synthase cDNAs containing these mutations in pyrimidine auxotrophic Escherichia coli and in recombinant baculovirus-infected Sf21 cells demonstrates impaired activity presumably associated with the urinary orotic acid substrate accumulations observed in vivo. We further establish the identity of two polymorphisms, G213A ({nu} = .26) and 440 Gpoly ({nu} = .27) located in exons 3 and 6, respectively, which did not significantly compromise either OPRT or ODC function. 76 refs., 5 figs., 7 tabs.« less
Velliquette, Randall W; Hue-Roye, Kim; Lomas-Francis, Christine; Gillen, Barbara; Schierts, Jennifer; Gentzkow, Kristie; Peyrard, Thierry; von Zabern, Inge; Flegel, Willy A; Rodberg, Karen; Debnath, Asim K; Lee, Soohee; Reid, Marion E
2013-11-01
The numerous antigens in the Kell blood group system result from missense nucleotide changes in KEL. Antibodies to antigens in this system can be clinically important. We describe six probands whose plasma contained antibodies to high-prevalence Kell antigens and discuss their relationship. Polymerase chain reaction amplification, direct sequencing, restriction fragment length polymorphism assays, hemagglutination, flow cytometry, and protein modeling were performed by standard methods. Proband 1 (KUCI) and her serologically compatible sister were heterozygous for a nucleotide change in Exon 11 (KEL*1271C/T; Ala424Val). Proband 2 (KANT) was heterozygous for KEL*1283G/T (Arg428Leu) and KEL*1216C/T (Arg406Stop) in Exon 11. Red blood cells (RBCs) from Proband 1 and her sister were not agglutinated by plasma from Proband 2; however, RBCs from Proband 2 were agglutinated by plasma from Proband 1. Probands 3, 4, 5, and 6 had the KEL*1391C>T change associated with the previously reported KETI- phenotype. Proband 5 was also homozygous for KEL*905T>C encoding the K11-K17+ phenotype. Hemagglutination studies revealed an association between KUCI, KANT, KETI, and K11. Protein modeling indicated that whereas Ala424 and Arg428 are clustered, Val302 and Thr464 are not. Ala424 in the Kell glycoprotein is associated with the high-prevalence Kell antigen, KUCI (ISBT 006032), which is detected by the antibody of Proband 1. Arg428 is associated with the high-prevalence Kell antigen, KANT (ISBT 006033). The association between KUCI, KANT, KETI, and K11 and the results of protein modeling are discussed. © 2013 New York Blood Center. Transfusion © 2013 American Association of Blood Banks.
Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders.
Craig, Catherine L; Riekel, Christian
2002-12-01
The known silk fibroins and fibrous glues are thought to be encoded by members of the same gene family. All silk fibroins sequenced to date contain regions of long-range order (crystalline regions) and/or short-range order (non-crystalline regions). All of the sequenced fibroin silks (Flag or silk from flagelliform gland in spiders; Fhc or heavy chain fibroin silks produced by Lepidoptera larvae) are made up of hierarchically organized, repetitive arrays of amino acids. Fhc fibroin genes are characterized by a similar molecular genetic architecture of two exons and one intron, but the organization and size of these units differs. The Flag, Ser (sericin gene) and BR (Balbiani ring genes; both fibrous proteins) genes are made up of multiple exons and introns. Sequences coding for crystalline and non-crystalline protein domains are integrated in the repetitive regions of Fhc and MA exons, but not in the protein glues Ser1 and BR-1. Genetic 'hot-spots' promote recombination errors in Fhc, MA, and Flag. Codon bias, structural constraint, point mutations, and shortened coding arrays may be alternative means of stabilizing precursor mRNA transcripts. Differential regulation of gene expression and selective splicing of the mRNA transcript may allow rapid adaptation of silk functional properties to different physical environments.
Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish
Zardoya, Rafael; Abouheif, Ehab; Meyer, Axel
1996-01-01
The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established. PMID:8917540
Zardoya, R; Abouheif, E; Meyer, A
1996-11-12
The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established.
Gabreski, Nicole A.; Vaghasia, Janki K.; Novakova, Silvia S.; McDonald, Neil Q.; Pierchala, Brian A.
2016-01-01
Rearranged during transfection (RET), a receptor tyrosine kinase that is activated by the glial cell line-derived neurotrophic factor family ligands (GFLs), plays a crucial role in the development and function of the nervous system and additionally is required for kidney development and spermatogenesis. RET encodes a transmembrane receptor that is 20 exons long and produces two known protein isoforms differing in C-terminal amino acid composition, referred to as RET9 and RET51. Studies of human pheochromocytomas identified two additional novel transcripts involving the skipping of exon 3 or exons 3, 4, and 5 and are referred to as RETΔE3 and RETΔE345, respectively. Here we report the presence of RetΔE3 and RetΔE345 in zebrafish, mice, and rats and show that these transcripts are dynamically expressed throughout development of the CNS, peripheral nervous system, and kidneys. We further explore the biochemical properties of these isoforms, demonstrating that, like full-length RET, RETΔE3 and RETΔE345 are trafficked to the cell surface, interact with all four GFRα co-receptors, and have the ability to heterodimerize with full-length RET. Signaling experiments indicate that RETΔE3 is phosphorylated in a similar manner to full-length RET. RETΔE345, in contrast, displays higher baseline autophosphorylation, specifically on the catalytic tyrosine, Tyr905, and also on one of the most important signaling residues, Tyr1062. These data provide the first evidence for a physiologic role of these isoforms in RET pathway function. PMID:27226544
Ala397Asp mutation of myosin VIIA gene segregating in a Spanish family with type-Ib Usher syndrome.
Espinós, C; Millán, J M; Sánchez, F; Beneyto, M; Nájera, C
1998-06-01
In the current study, 12 Spanish families affected by type-I Usher syndrome, that was previously linked to chromosome 11q, were screened for the presence of mutations in the N-terminal coding portion of the motor domain of the myosin VIIA gene by single-strand conformation polymorphism analysis of the first 14 exons. A mutation (Ala397Asp) segregating with the disease was identified, and several polymorphisms were also detected. It is presumed that the other USHIB mutations in these families could be located in the unscreened regions of the gene.
Molecular and immunohistochemical analysis of P53 in phaeochromocytoma.
Dahia, P. L.; Aguiar, R. C.; Tsanaclis, A. M.; Bendit, I.; Bydlowski, S. P.; Abelin, N. M.; Toledo, S. P.
1995-01-01
We searched for mutations of the p53 gene in 25 phaeochromocytomas using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of the entire conserved region of the gene, encompassing exons 4-8; expression of the p53 protein was assessed by immunohistochemistry. No mutations were found, while a polymorphism in codon 72 was observed. Immunohistochemistry revealed nuclear p53 overexpression in one tumour sample. We conclude that mutations of the 'hotspot' region of the p53 gene do not seem to play a role in the pathogenesis of phaeochromocytoma. Images Figure 1 Figure 2 Figure 3 PMID:7577469
Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd
2015-01-01
The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) – secreted by the placenta, and lutropin (LH) – produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor’s leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region of the receptor. PMID:26441830
Eykelenboom, Jennifer E.; Briggs, Gareth J.; Bradshaw, Nicholas J.; Soares, Dinesh C.; Ogawa, Fumiaki; Christie, Sheila; Malavasi, Elise L.V.; Makedonopoulou, Paraskevi; Mackie, Shaun; Malloy, Mary P.; Wear, Martin A.; Blackburn, Elizabeth A.; Bramham, Janice; McIntosh, Andrew M.; Blackwood, Douglas H.; Muir, Walter J.; Porteous, David J.; Millar, J. Kirsty
2012-01-01
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1–597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117). PMID:22547224
Novel mutations in the TULP1 gene causing autosomal recessive retinitis pigmentosa.
Paloma, E; Hjelmqvist, L; Bayés, M; García-Sandoval, B; Ayuso, C; Balcells, S; Gonzàlez-Duarte, R
2000-03-01
To assess the contribution of TULP1 to autosomal recessive retinitis pigmentosa (arRP). Fifteen exons of the gene were screened by single-strand conformation polymorphism analysis of 7 (of 49) arRP pedigrees showing cosegregation with TULP1 locus markers. In one of the seven families two allelic mutations, IVS4-2delAGA and c.937delC, were found in exons 5 and 10, respectively. Two novel mutations in TULP1 were found to be associated with arRP. That they both compromise the gene product supports their pathogenicity. This gene was present in no more than 2% of a panel of 49 Spanish families affected by arRP.
Huang, Kristen M; Wu, Junhua; Duncan, Melinda K; Moy, Chris; Dutra, Amalia; Favor, Jack; Da, Tong; Stambolian, Dwight
2006-01-15
Nance-Horan syndrome (NHS) is an X-linked disorder characterized by congenital cataracts, dental anomalies, dysmorphic features and mental retardation. A recent report suggests that the novel gene NHS1 is involved in this disorder due to the presence of point mutations in NHS patients. A possible mouse model for NHS, Xcat, was mapped to a 2.11 Mb interval on the X-chromosome. Sequence and FISH analysis of the X-chromosome region containing the Xcat mutation reveal a large insertion between exons 1 and 2 of the mouse Nhs1 gene. The insertion inhibits the expression of the Nhs1 isoform containing exon 1 and results in exclusive expression of the alternative isoform containing exon 1A. Quantitative RT-PCR of Xcat cDNA shows reduced levels of Nhs1 transcripts. The Nhs1 protein is strongly expressed within the cytoplasm of elongating lens fiber cells from wild-type neonate lens, but is significantly reduced within the Xcat lens. Transient transfection studies of CHO cells with Nhs1-GFP fusion proteins were done to determine whether the amino acids encoded by exon 1 were critical for protein localization. We found the presence of Nhs1 exon 1 critical for localization of the fusion protein to the cytoplasm, whereas fusion proteins lacking Nhs1 exon 1 are predominantly nuclear. These results indicate that the first exon of Nhs1 contains crucial information required for the proper expression and localization of Nhs1 protein. Inhibition of expression of the exon 1 containing isoform results in the abnormal phenotype of Xcat.
Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy
Amoasii, Leonela; Long, Chengzu; Li, Hui; Mireault, Alex A.; Shelton, John M.; Sanchez-Ortiz, Efrain; McAnally, John R.; Bhattacharyya, Samadrita; Schmidt, Florian; Grimm, Dirk; Hauschka, Stephen D.; Bassel-Duby, Rhonda; Olson, Eric N.
2017-01-01
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders. PMID:29187645
Global Identification and Characterization of Transcriptionally Active Regions in the Rice Genome
Stolc, Viktor; Deng, Wei; He, Hang; Korbel, Jan; Chen, Xuewei; Tongprasit, Waraporn; Ronald, Pamela; Chen, Runsheng; Gerstein, Mark; Wang Deng, Xing
2007-01-01
Genome tiling microarray studies have consistently documented rich transcriptional activity beyond the annotated genes. However, systematic characterization and transcriptional profiling of the putative novel transcripts on the genome scale are still lacking. We report here the identification of 25,352 and 27,744 transcriptionally active regions (TARs) not encoded by annotated exons in the rice (Oryza. sativa) subspecies japonica and indica, respectively. The non-exonic TARs account for approximately two thirds of the total TARs detected by tiling arrays and represent transcripts likely conserved between japonica and indica. Transcription of 21,018 (83%) japonica non-exonic TARs was verified through expression profiling in 10 tissue types using a re-array in which annotated genes and TARs were each represented by five independent probes. Subsequent analyses indicate that about 80% of the japonica TARs that were not assigned to annotated exons can be assigned to various putatively functional or structural elements of the rice genome, including splice variants, uncharacterized portions of incompletely annotated genes, antisense transcripts, duplicated gene fragments, and potential non-coding RNAs. These results provide a systematic characterization of non-exonic transcripts in rice and thus expand the current view of the complexity and dynamics of the rice transcriptome. PMID:17372628
DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse.
Corcoran, Martin M; Hammarsund, Marianne; Zhu, Chaoyong; Lerner, Mikael; Kapanadze, Bagrat; Wilson, Bill; Larsson, Catharina; Forsberg, Lars; Ibbotson, Rachel E; Einhorn, Stefan; Oscier, David G; Grandér, Dan; Sangfelt, Olle
2004-08-01
Our group previously identified two novel genes, RFP2/LEU5 and DLEU2, within a 13q14.3 genomic region of loss seen in various malignancies. However, no specific inactivating mutations were found in these or other genes in the vicinity of the deletion, suggesting that a nonclassical tumor-suppressor mechanism may be involved. Here, we present data showing that the DLEU2 gene encodes a putative noncoding antisense RNA, with one exon directly overlapping the first exon of the RFP2/LEU5 gene in the opposite orientation. In addition, the RFP2/LEU5 transcript can be alternatively spliced to produce either several monocistronic transcripts or a putative bicistronic transcript encoding two separate open-reading frames, adding to the complexity of the locus. The finding that these gene structures are conserved in the mouse, including the putative bicistronic RFP2/LEU5 transcript as well as the antisense relationship with DLEU2, further underlines the significance of this unusual organization and suggests a biological function for DLEU2 in the regulation of RFP2/LEU5. Copyright 2004 Wiley-Liss, Inc.
Lankarani, Kamran B; Karbasi, Ashraf; Kalantari, Tahereh; Yarmohammadi, Hooman; Saberi-Firoozi, Mehdi; Alizadeh-Naeeni, Mahvash; Taghavi, Ali R; Fattahi, Mahammad R; Ghaderi, Abbas
2006-02-01
Ulcerative colitis (UC) is a multifactorial disease associated with dysregulated immunity. Recently, cytotoxic T lymphocyte associated antigen 4 (CTLA-4) gene polymorphisms have been reported in association with several autoimmune diseases in several populations. In the present study, the possible implication of the CTLA-4 gene as a risk factor for UC in the Iranian population was investigated. One hundred UC patients and 100 healthy subjects were studied. CTLA-4 exon 1 position 49 (A/G: codon 17: Thr/Ala) polymorphisms were investigated by polymerase chain reaction single strand confirmation polymorphism method. Four of the patients and one of the healthy controls were excluded from the study because of incomplete DNA extraction. The allele frequencies of A and G in 96 patients (A: 66.1%; G: 33.9%) were not significantly different from the 99 control subjects (A: 63.1%; G: 36.9%, P > 0.05). No significant differences in the distribution of genotype frequencies were observed between A + 49G gene polymorphisms and UC in the Iranian population (P > 0.05). CTLA-4 polymorphism is not associated with UC in the Iranian population.
Xing, Wen-Rui; Hou, Bei-Wei; Guan, Jing-Jiao; Luo, Jing; Ding, Xiao-Yu
2013-04-01
The LEAFY (LFY) homologous gene of Dendrobium moniliforme (L.) Sw. was cloned by new primers which were designed based on the conservative region of known sequences of orchid LEAFY gene. Partial LFY homologous gene was cloned by common PCR, then we got the complete LFY homologous gene Den LFY by Tail-PCR. The complete sequence of DenLFY gene was 3 575 bp which contained three exons and two introns. Using BLAST method, comparison analysis among the exon of LFY homologous gene indicted that the DenLFY gene had high identity with orchids LFY homologous, including the related fragment of PhalLFY (84%) in Phalaenopsis hybrid cultivar, LFY homologous gene in Oncidium (90%) and in other orchid (over 80%). Using MP analysis, Dendrobium is found to be the sister to Oncidium and Phalaenopsis. Homologous analysis demonstrated that the C-terminal amino acids were highly conserved. When the exons and introns were separately considered, exons and the sequence of amino acid were good markers for the function research of DenLFY gene. The second intron can be used in authentication research of Dendrobium based on the length polymorphism between Dendrobium moniliforme and Dendrobium officinale.
Sagara, N; Kirikoshi, H; Terasaki, H; Yasuhiko, Y; Toda, G; Shiokawa, K; Katoh, M
2001-04-06
Frizzled-1 (FZD1)-FZD10 are seven-transmembrane-type WNT receptors, and SFRP1-SFRP5 are soluble-type WNT antagonists. These molecules are encoded by mutually distinct genes. We have previously isolated and characterized the 7.7-kb FZD4 mRNA, encoding a seven-transmembrane receptor with the extracellular cysteine-rich domain (CRD). Here, we have cloned and characterized FZD4S, a splicing variant of the FZD4 gene. FZD4S, corresponding to the 10.0-kb FZD4 mRNA, consisted of exon 1, intron 1, and exon 2 of the FZD4 gene. FZD4S encoded a soluble-type polypeptide with the N-terminal part of CRD, and was expressed in human fetal kidney. Injection of synthetic FZD4S mRNA into the ventral marginal zone of Xenopus embryos at the 4-cell stage did not induce axis duplication by itself, but augmented the axis duplication potential of coinjected Xwnt-8 mRNA. These results indicate that the FZD4 gene gives rise to soluble-type FZD4S as well as seven-transmembrane-type FZD4 due to alternative splicing, and strongly suggest that FZD4S plays a role as a positive regulator of the WNT signaling pathway. Copyright 2001 Academic Press.
Garuti, R; Lelli, N; Barozzini, M; Tiozzo, R; Ghisellini, M; Simone, M L; Li Volti, S; Garozzo, R; Mollica, F; Vergoni, W; Bertolini, S; Calandra, S
1996-03-01
In the present study we report two novel partial deletions of the LDL-R gene. The first (FH Siracusa), found in an FH-heterozygote, consists of a 20 kb deletion spanning from the 5' flanking region to the intron 2 of the LDL-receptor gene. The elimination of the promoter and the first two exons prevents the transcription of the deleted allele, as shown by Northern blot analysis of LDL-R mRNA isolated from the proband's fibroblasts. The second deletion (FH Reggio Emilia), which eliminates 11 nucleotides of exon 10, was also found in an FH heterozygote. The characterization of this deletion was made possible by a combination of techniques such as single strand conformation polymorphism (SSCP) analysis, direct sequence of exon 10 and cloning of the normal and deleted exon 10 from the proband's DNA. The 11 nt deletion occurs in a region of exon 10 which contains three triplets (CTG) and two four-nucleotides (CTGG) direct repeats. This structural feature might render this region more susceptible to a slipped mispairing during DNA duplication. Since this deletion causes a shift of the BamHI site at the 5' end of exon 10, a method has been devised for its rapid screening which is based on the PCR amplification of exon 10 followed by BamHI digestion. FH Reggio Emilia deletion produces a shift in the reading frame downstream from Lys458, leading to a sequence of 51 novel amino acids before the occurrence of a premature stop codon (truncated receptor). However, since RT-PCR failed to demonstrate the presence of the mutant LDL-R mRNA in proband fibroblasts, it is likely that the amount of truncated receptor produced in these cells is negligible.
Zhang, Wu; Stoehlmacher, Jan; Park, David J; Yang, Dongyun; Borchard, Erin; Gil, Ji; Tsao-Wei, Denice D; Yun, Jim; Gordon, Michael; Press, Oliver A; Rhodes, Katrin; Groshen, Susan; Lenz, Heinz-Josef
2005-07-01
Researchers have recently reported an association between the epidermal growth factor receptor (EGFR) pathway and platinum-chemotherapy sensitivity in cancer patients. The (CA)(n) repeat polymorphism in intron 1 of the EGFR gene has been identified and found to alter EGFR expression in vitro as well as in vivo. A higher number of these CA repeats is associated with lower EGFR levels, whereas a low number of repeats is associated with higher EGFR levels. A second key polymorphism within the EGFR pathway (HER1 R497K) is a single nucleotide change (G-A) in codon 497 of the EGFR gene, which leads to an arginine-lysine substitution in the extracellular domain of subdomain IV. Furthermore, interleukin-8 (IL-8), recently identified as an EGFR downstream effector, plays a vital role in tumor angiogenesis and progression. Three other polymorphisms, each related to the IL-8 gene, have also been identified as playing a pivotal role in the EGFR pathway: T-251A in the promoter region of the IL-8 gene, G+2607C in exon 2 of the IL-8 receptor CXCR1 gene, and C+785T in exon 11 of the IL-8 receptor CXCR2 gene. In this study, we employed a 5'-end 33P-gATP-labeled polymerase chain reaction (PCR) protocol as well as the PCR-restriction fragment length polymorphism method in order to determine the genotypes for the previously mentioned polymorphisms in 105 patients with metastatic colorectal cancer. Tests were conducted to establish whether these polymorphisms could predict clinical outcome to 5-flourouracil/oxaliplatin chemotherapy. Among all patients assessed, those possessing < 20 EGFR CA repeats were more likely to show disease progression than were patients with >or= 20 CA repeats (P = 0.019; log-rank test). Also, patients with the CXCR1 GC genotype were found to have an increased relative risk of time to tumor progression that was 1.55 (95% CI, 0.8-3.0) times that of patients with the homozygous GG genotype (P = 0.17; log-rank test). Overall, our data suggest that gene polymorphisms active in the EGFR pathway may be associated with the sensitivity of colorectal cancer patients to platinum-based chemotherapy.
Presence of a novel exon 2E encoding a putative transmembrane protein in human IL-33 gene.
Tominaga, Shin-ichi; Hayakawa, Morisada; Tsuda, Hidetoshi; Ohta, Satoshi; Yanagisawa, Ken
2013-01-18
Interleukin-33 (IL-33) is a dual-function molecule that regulates gene expression in nuclei and, as a cytokine, conveys proinflammatory signals from outside of cells via its specific receptor ST2L. There are still a lot of questions about localization and processing of IL-33 gene products. In the course of re-evaluating human IL-33 gene, we found distinct promoter usage depending on the cell type, similar to the case in the ST2 gene. Furthermore, we found a novel exon 2E in the conventional intron 2 whose open reading frame corresponded to a transmembrane protein of 131 amino acids. Dependence of exon 2E expression on differentiation of HUVEC cells is of great interest in relation to human IL-33 function. Copyright © 2012 Elsevier Inc. All rights reserved.
A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota
Lapidot, Moshe; Karniel, Uri; Gelbart, Dana; Fogel, Doron; Evenor, Dalia; Kutsher, Yaarit; Makhbash, Zion; Nahon, Sahadia; Shlomo, Haviva; Chen, Lea; Reuveni, Moshe; Levin, Ilan
2015-01-01
Tomato yellow leaf curl virus (TYLCV) is a devastating disease of tomato (Solanum lycopersicum) that can be effectively controlled by the deployment of resistant cultivars. The TYLCV-resistant line TY172 carries a major recessive locus for TYLCV resistance, designated ty-5, on chromosome 4. In this study, the association between 27 polymorphic DNA markers, spanning the ty-5 locus, and the resistance characteristics of individual plants inoculated with TYLCV in 51 segregating recombinant populations were analyzed. These analyses localized ty-5 into a 425 bp region containing two transversions: one in the first exon of a gene encoding the tomato homolog of the messenger RNA surveillance factor Pelota (Pelo), and a second in its proximal promoter. Analyses of susceptible and resistant lines revealed that the relative transcript level of the gene remained unchanged, regardless of whether the plants were infected with TYLCV or not. This suggests that the polymorphism discovered in the coding region of the gene controls the resistance. Silencing of Pelo in a susceptible line rendered the transgenic plants highly resistant, while in the resistant line TY172 had no effect on symptom development. In addition, over-expression of the susceptible allele of the gene in the resistant TY172 line rendered it susceptible, while over-expression of the resistant allele in susceptible plants had no effect. These results confirm that Pelo is the gene controlling resistance at the ty-5 locus. Pelo, implicated in the ribosome recycling-phase of protein synthesis, offers an alternative route to promote resistance to TYLCV and other viruses. PMID:26448569
Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.
2010-01-01
Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.
Gibbs, Daniel; Yang, Zhenglin; Constantine, Ryan; Ma, Xiang; Camp, Nicola J; Yang, Xian; Chen, Hayou; Jorgenson, Adam; Hau, Vincent; Dewan, Andrew; Zeng, Jiexi; Harmon, Jennifer; Buehler, Jeanette; Brand, John M; Hoh, Josephine; Cameron, D Joshua; Dixit, Manjusha; Tong, Zongzhong; Zhang, Kang
2008-02-01
Age-related macular degeneration (AMD) is a complex disorder with genetic and environmental influences. The genetic influences affecting AMD are not well understood and few genes have been consistently implicated and replicated for this disease. A polymorphism (rs11200638) in a transcription factor binding site of the HTRA1 gene has been described, in previous reports, as being most significantly associated with AMD. In this paper, we investigate haplotype association and individual polymorphic association by genotyping additional variants in the AMD risk-associated region of chromosome 10q26. We demonstrate that rs11200638 in the promoter region and rs2293870 in exon 1 of HTRA1, are among the most significantly associated variants for advanced forms of AMD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tay, J.S.H.; Liu, Y.; Low, P.S.
A length polymorphism at the 5{prime} untranslated region of exon 1 and an RFLP (Dde I) in intron 5 (nt 160) of the ATIII gene were amplified by polymerase chain reaction with primers of published sequences. DNA fragments were size-fractionated by agarose gel electrophoresis (3% NuSieve and 1% Seakem GTG) and photographed over a UV transilluminator. A strong linkage disequilibrium was observed between these two polymorphisms of the ATIII gene in the Chinese ({chi}{sup 2} = 63.7; {triangle} 0.42, P < 0.001). The estimated frequencies of the three haplotypes were found to be 0.37 for SD+, 0.40 for LD+ andmore » 0.23 for LD-.« less
Charoensook, Rangsun; Gatphayak, Kesinee; Sharifi, Ahmad Reza; Chaisongkram, Chavin; Brenig, Bertram; Knorr, Christoph
2012-04-01
Heat shock proteins act as molecular chaperones that have preferentially been transcribed in response to severe perturbations of the cellular homeostasis such as heat stress. Here the traits respiration rate (RR), rectal temperature (RT), pack cell volume (PCV) and the individual heat tolerance coefficient (HTC) were recorded as physiological responses on heat stress (environmental temperatures) in Bos taurus (crossbred Holstein Friesian; HF) and B. indicus (Thai native cattle: White Lamphun; WL and Mountain cattle; MT) animals (n = 47) in Thailand. Polymorphisms of the heat shock protein 90-kDa beta gene (HSP90AB1) were evaluated by comparative sequencing. Nine single nucleotide polymorphisms (SNP) were identified, i.e. three in exons 10 and 11, five in introns 8, 9, 10 and 11, and one in the 3'UTR. The exon 11 SNP g.5082C>T led to a missense mutation (alanine to valine). During the period of extreme heat (in the afternoon) RR and RT were elevated in each of the three breeds, whereas the PCV decreased. Mountain cattle and White Lamphun heifers recorded significantly better physiologic parameters (p < 0.05) in all traits considered, including or particularly HTC than Holstein Friesian heifers. The association analysis revealed that the T allele at SNP g.4338T>C within intron 3 improved the heat tolerance (p < 0.05). Allele T was exclusively found in White Lamphun animals and to 84% in Mountain cattle. Holstein Friesian heifers revealed an allele frequency of only 18%. Polymorphisms within HSP90AB1 were not causative for the physiological responses; however, we propose that they should at least be used as genetic markers to select appropriate breeds for hot climates.
Ding, X Z; Liang, C N; Guo, X; Xing, C F; Bao, P J; Chu, M; Pei, J; Zhu, X S; Yan, P
2012-01-01
Lipoprotein lipase (LPL) is considered as a key enzyme in the lipid deposition and metabolism in tissues. It is assumed to be a major candidate gene for genetic markers in lipid deposition. Therefore, the polymorphisms of the LPL gene and associations with carcass traits and viscera fat content were examined in 398 individuals from five yak (Bos grunniens) breeds using PCR-SSCP analysis and DNA sequencing. A novel nucleotide polymorphism (SNP)-C→T (nt19913) was identified located in exon 7 in the coding region of the LPL gene, which replacement was responsible for a Phe-to-Ser substitution at amino acid. Two alleles (A and B) and three genotypes designed as AA, AB and BB were detected in the PCR products. The frequencies of allele A were 0.7928, 0.7421, 0.7357, 0.6900 and 0.7083 for Tianzhu white yak (WY), Gannan yak (GY), Qinghai-Plateau yak (PY), Xinjiang yak (XY) and Datong yak (DY), respectively. The SNP loci was in Hardy-Weinberg equilibrium in five yak populations (P>0.05). Polymorphism of LPL gene was shown to be associated with carcass traits and lipid deposition. Least squares analysis revealed that there was a significant effect on live-weight (LW) (P<0.01), average daily weight gain (ADG) and carcass weight (P<0.05). Individuals with genotype BB had lower mean values than those with genotype AA and AB for loin eye area and viscera fat weight (% of LW) in 25-36 months (P<0.05). The results indicated that LPL gene is a strong candidate gene that affects carcass traits and fat deposition in yak.
Foster, R; Byrnes, E; Meldrum, C; Griffith, R; Ross, G; Upjohn, E; Braue, A; Scott, R; Varigos, G; Ferrao, P; Ashman, L K
2008-11-01
The receptor tyrosine kinase c-KIT plays a key role in normal mast cell development. Point mutations in c-KIT have been associated with sporadic or familial mastocytosis. Two unrelated pairs of apparently identical twins affected by cutaneous mastocytosis attending the Mastocytosis Clinic at the Royal Children's Hospital, Melbourne, provided an opportunity to assess the possible contribution of c-KIT germline mutations or polymorphisms in this disease. Tissue biopsy, blood and/or buccal swab specimens were collected from 10 children with mastocytosis. To detect germline mutations/polymorphisms in c-KIT, we studied all coding exons by denaturing high pressure liquid chromatography. Exons showing mismatches were examined by direct sequencing. The influence of the substitution identified was further examined by expressing the variant form of c-KIT in factor-dependent FDC-P1 cells. In both pairs of twins, a heterozygous ATG to CTG transition in codon 541 was observed, resulting in the substitution of a methionine residue in the transmembrane domain by leucine (M541L). In each case, one parent was also heterozygous for this allele. Expression of M541L KIT in FDC-P1 cells enabled them to grow in human KIT ligand (stem cell factor, SCF) but did not confer factor independence. Compared with cells expressing wild-type KIT at a similar level, M541L KIT-expressing cells displayed enhanced growth at low levels of SCF, and heightened sensitivity to the KIT inhibitor, imatinib mesylate. The data suggest that the single nucleotide polymorphism resulting in the substitution M541L may predispose to paediatric mastocytosis.
A novel germline PALB2 deletion in Polish breast and ovarian cancer patients.
Dansonka-Mieszkowska, Agnieszka; Kluska, Anna; Moes, Joanna; Dabrowska, Michalina; Nowakowska, Dorota; Niwinska, Anna; Derlatka, Pawel; Cendrowski, Krzysztof; Kupryjanczyk, Jolanta
2010-02-02
PALB2 protein was recently identified as a partner of BRCA1 and BRCA2 which determines their proper function in DNA repair. Initially, the entire coding sequence of the PALB2 gene with exon/intron boundaries was evaluated by the PCR-SSCP and direct sequencing methods on 70 ovarian carcinomas. Sequence variants of interest were further studied on enlarged groups of ovarian carcinomas (total 339 non-consecutive ovarian carcinomas), blood samples from 334 consecutive sporadic and 648 consecutive familial breast cancer patients, and 1310 healthy controls from central Poland. Ten types of sequence variants were detected, and among them four novel polymorphisms: c.2996+58T>C in intron 9; c.505C>A (p.L169I), c.618T>G (p.L206L), both in exon 4; and c.2135C>T (A712V) in exon 5 of the PALB2 gene. Another two polymorphisms, c.212-58A>C and c.2014G>C (E672Q) were always detected together, both in cancer (7.5% of patients) and control samples (4.9% of controls, p = 0.2). A novel germline truncating mutation, c.509_510delGA (p.R170fs) was found in exon 4: in 2 of 339 (0.6%) unrelated ovarian cancer patients, in 4 of 648 (0.6%) unrelated familial breast cancer patients, and in 1 of 1310 controls (0.08%, p = 0.1, p = 0.044, respectively). One ovarian cancer patient with the PALB2 mutation had also a germline nonsense mutation of the BRCA2 gene. The c.509_510delGA is a novel PALB2 mutation that increases the risk of familial breast cancer. Occurrence of the same PALB2 alteration in seven unrelated women suggests that c.509_510delGA (p.R170fs) is a recurrent mutation for Polish population.
ABCB1 polymorphisms are associated with clozapine plasma levels in psychotic patients.
Consoli, Giorgio; Lastella, Marianna; Ciapparelli, Antonio; Catena Dell'Osso, Mario; Ciofi, Laura; Guidotti, Emanuele; Danesi, Romano; Dell'Osso, Liliana; Del Tacca, Mario; Di Paolo, Antonello
2009-08-01
ABCB1 is a transmembrane transporter that is expressed in excretory organs (kidneys and liver), in intestine mucosa and on the blood-brain barrier. Because of the particular distribution of the protein, the activity of ABCB1 may significantly affect drug pharmacokinetics during absorption and distribution. Of note, several SNPs of ABCB1 are known and many of them affect transporter activity and/or expression. In this view, changes in the pharmacokinetics of drugs that are ABCB1 substrates could be clinically relevant and the evaluation of ABCB1 SNPs should deserve particular attention. Therefore, the aim of the present study was to investigate the possible association between ABCB1 polymorphisms and clozapine plasma levels in psychotic patients. c.1236C>T (exon 12), c.2677G>T (exon 21) and c.3435C>T (exon 26) SNPs of ABCB1 were evaluated by PCR techniques, while plasma levels of clozapine and norclozapine were measured by HPLC in 40 men (aged, 47.6 +/- 16.6 years, median: 42 years) and 20 women (aged 40.7 +/- 11.4 years, median: 38 years) 1 month after the start of clozapine administration. A total of three SNPs were in Hardy-Weinberg equilibrium, with a calculated frequency of the wild-type alleles of 0.54, 0.55 and 0.45 for SNPs on exons 12, 21 and 26, respectively. Patients with c.3435CC or c.2677GG genotypes had significantly lower dose-normalized clozapine levels than those who were heterozygous or TT carriers. More interestingly, c.3435CC patients (15 subjects) needed significantly higher daily doses of clozapine (246 +/- 142 mg/day) compared with the remaining 24 CT and 21 TT patients (140 +/- 90 mg/day) in order to achieve the same clinical benefit. c.3435CC patients require higher clozapine doses to achieve the same plasma concentrations as CT or TT patients, and ABCB1 genotyping should be considered as a novel strategy that should improve drug use.
A proline-to-histidine mutation in POU1F1 is associated with production traits in dairy cattle.
Huang, W; Maltecca, C; Khatib, H
2008-10-01
POU class 1 homeobox 1 (POU1F1) is a member of the tissue-specific POU-containing transcription factor family. The expression of POU1F1 in mammalian pituitary gland controls the transcription of the genes encoding growth hormone, prolactin (PRL) and the subunits of thyroid-stimulating hormone. In addition, some genes in the JAK/STAT signalling pathway downstream of POU1F1 have been shown to be associated with different production traits in dairy cattle. To investigate whether the POU1F1 gene is associated with economically important traits in dairy cattle, a pooled DNA sequencing approach was used to identify single nucleotide polymorphisms (SNPs) in the gene. An SNP in exon 3 of POU1F1 that changes a proline to a histidine was identified. A total of 2141 individuals from two North American Holstein cattle resource populations were genotyped for this SNP using a modified PCR-RFLP method. Statistical analyses revealed significant association of POU1F1 variants with milk yield and productive life, which makes POU1F1 a possible candidate for marker-assisted selection in dairy cattle breeding programmes.
Grzes, M; Nowacka-Woszuk, J; Szczerbal, I; Czerwinska, J; Gracz, J; Switonski, M
2009-01-01
The gene encoding myostatin (MSTN), due to its crucial function for growth of skeletal muscle mass, is an important candidate for muscularity. In this study we analyzed the nucleotide sequence and FISH localization of this gene in 4 canids, including 3 farm species. The nucleotide sequence of the MSTN coding fragment turned out to be highly conserved, since its identity among the studied species was very high and varied between 99.4 and 99.7%. Only 1, widely spread, silent single nucleotide polymorphism (SNP) was found in exon 1 of the Chinese raccoon dog. The MSTN gene was localized close to the centromere in one-armed chromosomes of the dog (37q11) and bi-armed chromosomes of the red fox (16p11) and arctic fox (10q11), with an exception of the Chinese raccoon dog chromosome (2q14-q21). This chromosome is orthologous to 3 canine chromosomes and thus the MSTN was found more interstitially. Our results are in agreement with the hypothesis that karyotypes of the canids evolved mainly through centric fusion/fission events, while tandem fusions occurred rarely. (c) 2009 S. Karger AG, Basel.
Haplotypes and effects on growth traits of bovine Wnt7a gene in Chinese Qinchuan cattle.
Xue, Jing; Sun, Yujia; Guo, Wenjiao; Yang, Ziqi; Tian, Huibin; Zhang, Chunlei; Lei, Chuzhao; Lan, Xianyong; Chen, Hong
2013-07-25
Wnt7a is a member of the WNT gene family, which encodes secreted signaling proteins and responds to many biological processes. Specifically Wnt7a influences satellite stem cells and regulates the regenerative potential of the muscle. However, similar researches about the bovine Wnt7a gene are lacking. Therefore, in this study, polymorphisms of the bovine Wnt7a gene were detected in 488 individuals from Chinese Qinchuan cattle by DNA pooling, forced PCR-RFLP, and DNA sequencing methods. 3 novel SNPs were identified, two SNPs (g.T4926C and g.A21943G) were in the intron and the last one (g.C63777T) was in the exon. Five haplotypes involved in these three variant sites in the Wnt7a gene were identified and their effects on growth traits were analyzed. The results revealed that haplotype 1 had the highest haplotype frequencies and was highly significantly associated with body height (P<0.01), body weight (P<0.05), chest width (P<0.05) and height at hip cross (P<0.01) respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Zurovcová, Martina; Ayala, Francisco J
2002-01-01
A new developmental gene family, recently identified in D. melanogaster, has been called imaginal disc growth factors (IDGF) because the proteins promote growth of cell lineages derived from imaginal discs. These are the first genes reported that encode polypeptide factors with mitotic activity in invertebrates. Characteristics such as similar arrangement of introns and exons, small size, and different cytological localization make this family an excellent candidate for evolutionary studies. We focus on the loci Idgf1 and Idgf3, two genes that possess the most distinctive features. We examine the pattern of intra- and interspecific nucleotide variation in the sequences from 20 isogenic lines of D. melanogaster and sequences from D. simulans and D. yakuba. While MK, HKA, and Tajima's tests of neutrality fail to reject a neutral model of molecular evolution, Fu and Li's test with outgroup and McDonald's test suggest that balancing selection is modulating the evolution of the Idgf1 locus. The rate of recombination between the two loci is high enough to uncouple any linkage disequilibrium arising between Idgf1 and Idgf3, despite their close physical proximity. PMID:12242232
Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome.
Ahmed, Zubair M; Riazuddin, Saima; Aye, Sandar; Ali, Rana A; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B
2008-10-01
Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be composed of 35 exons and encodes a variety of isoforms with 3-11 ectodomains (ECs), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations, we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1, we identified homozygous mutant alleles (one missense, one splice site, three nonsense and two deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date, in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1.
Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome
Ahmed, Zubair M.; Riazuddin, Saima; Aye, Sandar; Ali, Rana A.; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P.; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B.
2009-01-01
Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be comprised of 35 exons and encodes a variety of isoforms with 3 to 11 ectodomains (EC), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1 we identified homozygous mutant alleles (1 missense, 1 splice site, 3 nonsense and 2 deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1. PMID:18719945
Bridging the Synaptic Gap: Neuroligins and Neurexin I in Apis mellifera
Biswas, Sunita; Russell, Robyn J.; Jackson, Colin J.; Vidovic, Maria; Ganeshina, Olga; Oakeshott, John G.; Claudianos, Charles
2008-01-01
Vertebrate studies show neuroligins and neurexins are binding partners in a trans-synaptic cell adhesion complex, implicated in human autism and mental retardation disorders. Here we report a genetic analysis of homologous proteins in the honey bee. As in humans, the honeybee has five large (31–246 kb, up to 12 exons each) neuroligin genes, three of which are tightly clustered. RNA analysis of the neuroligin-3 gene reveals five alternatively spliced transcripts, generated through alternative use of exons encoding the cholinesterase-like domain. Whereas vertebrates have three neurexins the bee has just one gene named neurexin I (400 kb, 28 exons). However alternative isoforms of bee neurexin I are generated by differential use of 12 splice sites, mostly located in regions encoding LNS subdomains. Some of the splice variants of bee neurexin I resemble the vertebrate α- and β-neurexins, albeit in vertebrates these forms are generated by alternative promoters. Novel splicing variations in the 3′ region generate transcripts encoding alternative trans-membrane and PDZ domains. Another 3′ splicing variation predicts soluble neurexin I isoforms. Neurexin I and neuroligin expression was found in brain tissue, with expression present throughout development, and in most cases significantly up-regulated in adults. Transcripts of neurexin I and one neuroligin tested were abundant in mushroom bodies, a higher order processing centre in the bee brain. We show neuroligins and neurexins comprise a highly conserved molecular system with likely similar functional roles in insects as vertebrates, and with scope in the honeybee to generate substantial functional diversity through alternative splicing. Our study provides important prerequisite data for using the bee as a model for vertebrate synaptic development. PMID:18974885
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asai, Hirohide; Hirano, Makito; Kiriyama, Takao
Intranuclear events due to mutations in the Parkin gene remain elusive in autosomal recessive juvenile parkinsonism (ARJP). We identified a mutant PARKIN protein in fibroblast cultures from a pair of siblings with ARJP who were homozygous for the exon 4-deleted Parkin gene. Disease was mild in one patient and debilitating in the other. The detected mutant, encoded by a transcript lacking exon 3 as well as exon 4, is an in-frame deletion that removes 121 aa, resulting in a 344-aa protein (PaDel3,4). Cell culture and transfection studies revealed negative correlations between expression levels of PaDel3,4 and those of cell cyclemore » proteins, including cyclin E, CDK2, ppRb, and E2F-1, and demonstrated that GFP-PaDel3,4 entered nucleus and ubiquitinated cyclin E as a part of SCF{sup hSel-10} ligase complex in the patient cells. In addition, nuclear localization signal-tagged PaDel3,4 expressed in the transfected patient cells most effectively ubiquitinated cyclin E and reduced DNA damage, protecting cells from oxidative stress. Antisense-oligonucleotide treatment promoted skipping of exon 3 and thus generated PaDel3,4, increasing cell survival. Collectively, we propose that naturally- and experimentally-induced exon skipping at least partly restores the mutant Parkin gene deficit, providing a molecular basis for the development of therapeutic exon skipping.« less
Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A
2017-04-01
Functional sites define the diversity of protein functions and are the central object of research of the structural and functional organization of proteins. The mechanisms underlying protein functional sites emergence and their variability during evolution are distinguished by duplication, shuffling, insertion and deletion of the exons in genes. The study of the correlation between a site structure and exon structure serves as the basis for the in-depth understanding of sites organization. In this regard, the development of programming resources that allow the realization of the mutual projection of exon structure of genes and primary and tertiary structures of encoded proteins is still the actual problem. Previously, we developed the SitEx system that provides information about protein and gene sequences with mapped exon borders and protein functional sites amino acid positions. The database included information on proteins with known 3D structure. However, data with respect to orthologs was not available. Therefore, we added the projection of sites positions to the exon structures of orthologs in SitEx 2.0. We implemented a search through database using site conservation variability and site discontinuity through exon structure. Inclusion of the information on orthologs allowed to expand the possibilities of SitEx usage for solving problems regarding the analysis of the structural and functional organization of proteins. Database URL: http://www-bionet.sscc.ru/sitex/ .
Polymorphism of the prion protein gene (PRNP) in two Chinese indigenous cattle breeds.
Qin, L H; Zhao, Y M; Bao, Y H; Bai, W L; Chong, J; Zhang, G L; Zhang, J B; Zhao, Z H
2011-08-01
Prion protein (PRNP) gene has been located at position q17 of chromosome 13 in cattle. The polymorphisms of PRNP gene might be associated with BSE susceptibility. In the present work, we investigated the polymorphisms of PRNP gene, including SNP in exon 3, 23-bp indel in promoter region, 12-bp indel in intron 1 in 2 Chinese indigenous cattle breeds of northeast China. Eighty-six animals from Yanbian (34) and Chinese Red Steppes (52) were genotyped at PRNP locus by analyzing genomic DNA. A total of 4 single nucleotide polymorphism (SNP) sites were revealed in the PRNP gene exon 3 of the 2 cattle breeds investigated. Three of these SNPs were non-synonymous mutations that resulted in the amino acid exchanges (K119N, S154N, and M177V), and one is silent nucleotide substitutions (A234G). The two amino acid mutations of S154N and M177V were detected only in Yanbian with a very low frequency (0.0147), and they appears to be absent in Chinese Red Steppes. The average gene heterozygosity (He), effective allele numbers (Ne), Shannon's information index (I) and polymorphism information content (PIC) were 0.3088, 1.5013, 0.3814 and 0.2000 in Yanbian, respectively, being relatively higher than that of Chinese Red Steppes (0.2885, 1.4985, 0.3462 and 0.1873, respectively). In 23-bp indel and 12-bp indel loci, three different genotypes were identified in both Yanbian and Chinese Red Steppes breeds. Based 23- and 12-bp indels, four haplotypes was constructed in the 2 Chinese cattle breeds, of which the 23-bp (-)/12-bp (-) was main haplotypes accounting for more than 50% of the total in both Yanbian and Chinese Red Steppes breeds. These results might be useful in understanding the genetic characteristics of PRNP gene in Chinese indigenous cattle breeds.
Gajewska, Beata; Kaźmierczak, Beata; Kuźma-Kozakiewicz, Magdalena; Jamrozik, Zygmunt; Barańczyk-Kuźma, Anna
2015-01-01
Glutathione S-transferase pi (GSTP1) is a crucial enzyme in detoxification of electrophilic compounds and organic peroxides. Together with Se-dependent glutathione peroxidase (Se-GSHPx) it protects cells against oxidative stress which may be a primary factor implicated in motor neuron disease (MND) pathogenesis. We investigated GSTP1 polymorphisms and their relationship with GST and Se-GSTPx activities in a cohort of Polish patients with MND. Results were correlated with clinical phenotypes. The frequency of genetic variants for GSTP1 exon 5 (I105V) and exon 6 (A114V) was studied in 104 patients and 100 healthy controls using real-time polymerase chain reaction. GST transferase activity was determined in serum with 1-chloro-2,4-dinitrobenzene, its peroxidase activity with cumene hydroperoxide, and Se-GSHPx activity with hydrogen peroxide. There were no differences in the prevalence of GSTP1 polymorphism I105V and A114V between MND and controls, however the occurrence of CT variant in codon 114 was associated with a higher risk for MND. GSTP1 polymorphisms were less frequent in classic ALS than in progressive bulbar palsy. In classic ALS C* (heterozygous I /V and A /V) all studied activities were significantly lower than in classic ALS A* (homozygous I /I and A/A). GST peroxidase activity and Se-GSHPx activity were lower in classic ALS C* than in control C*, but in classic ALS A* Se-GSHPx activity was significantly higher than in control A*. It can be concluded that the presence of GSTP1 A114V but not I105V variant increases the risk of MND, and combined GSTP1 polymorphisms in codon 105 and 114 may result in lower protection of MND patients against the toxicity of electrophilic compounds, organic and inorganic hydroperoxides.
Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V
2018-01-01
Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.
NASA Astrophysics Data System (ADS)
Sofyanti, Ervina; Boel, Trelia; Soegiharto, Benny; Ilyas, Syafruddin; Irani Nainggolan, Lidya; Auerkari, Elza Ibrahim
2018-03-01
Pituitary Homeobox 2 (PITX2), is an active gene as a paired-related homeobox gene that encodes multiple isoforms. Its Nodal pathway in determination of left-right patterning during embryogenesis has been reported in satellite cells and expressed in adult human skeletal muscle. PITX2A and PITX2B are produced by alternative splicing and used of different promoters. PITX2C uses an alternative promoter located upstream of exon 4. PITX2D is produced by PITX2C alternative promoter and differential splicing. The 5’-primers and 3’- antisense primer were unique for each isoforms. Variability measurement in vertical dimension showed stronger genetic component than sagittal. This study aims to obtain the genotype marker of vertical mandibular asymmetry related to PITX2A and PITX2D isoform by visualization of the amplified product on stained gel to allele specific oligonucleotide between the case and control with Restriction Fragment Length Polymorphism (RFLP). Determination of vertical mandibular asymmetry based on condylar height asymmetry index of pre-treatment panoramic radiograph using Kjellberg’s technique whilst vertical mandibular growth pattern using lateral cephalogram. The differences of condylar height asymmetry in case-control based on vertical growth pattern was compared using Pearson’s chi-squared test. DNA extraction of 129 out-coming orthodontic patients in Universitas Sumatera Utara Dental Hospital were obtained from Buccal swab. Then DNA samples were amplified by Polymerase chain reaction (PCR) and digested with NciI restriction enzyme prior to electrophoresis visualization. There was no significant statistical difference in vertical mandibular asymmetry compared to vertical mandibular growth pattern. The RFLP analysis did not show any polymorphism for PITX2A and PITX2D isoform. All of the samples showed wild type homozygote. Further analysis method, except RFLP, were required to understand the genetic factor in the variance of vertical mandibular asymmetry.
Wang, Danxin; Poi, Ming J.; Sun, Xiaochun; Gaedigk, Andrea; Leeder, J. Steven; Sadee, Wolfgang
2014-01-01
Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of 25% of clinically used drugs. Genetic polymorphisms cause substantial variation in CYP2D6 activity and serve as biomarkers guiding drug therapy. However, genotype–phenotype relationships remain ambiguous except for poor metabolizers carrying null alleles, suggesting the presence of yet unknown genetic variants. Searching for regulatory CYP2D6 polymorphisms, we find that a SNP defining the CYP2D6*2 allele, rs16947 [R296C, 17–60% minor allele frequency (MAF)], previously thought to convey normal activity, alters exon 6 splicing, thereby reducing CYP2D6 expression at least 2-fold. In addition, two completely linked SNPs (rs5758550/rs133333, MAF 13–42%) increase CYP2D6 transcription more than 2-fold, located in a distant downstream enhancer region (>100 kb) that interacts with the CYP2D6 promoter. In high linkage disequilibrium (LD) with each other, rs16947 and the enhancer SNPs form haplotypes that affect CYP2D6 enzyme activity in vivo. In a pediatric cohort of 164 individuals, rs16947 alone (minor haplotype frequency 28%) was associated with reduced CYP2D6 metabolic activity (measured as dextromethorphan/metabolite ratios), whereas rs5758550/rs133333 alone (frequency 3%) resulted in increased CYP2D6 activity, while haplotypes containing both rs16947 and rs5758550/rs133333 were similar to the wild-type. Other alleles used in biomarker panels carrying these variants such as CYP2D6*41 require re-evaluation of independent effects on CYP2D6 activity. The occurrence of two regulatory variants of high frequency and in high LD, residing on a long haplotype, highlights the importance of gene architecture, likely shaped by evolutionary selection pressures, in determining activity of encoded proteins. PMID:23985325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumbroso, R.; Vasiliou, M.; Beitel, L.K.
1994-09-01
Exon 1 at the X-linked androgen receptor (AR) locus encodes an N-terminal modulatory domain that contains two large homopolyamino acid tracts: (CAG;glutamine;Gln){sub 11-33} and (GGN;Glycine;Cly){sub 15-27}. Certain AR mutations cause partial androgen insensitivity (PAI) with frank genital ambiguity that may engender appreciable parental anxiety and patient morbidity. If the AR mutation in a PAI family is unknown, the AR`s intragenic trinucleotide repeat polymorphisms may be used for prenatal diagnosis. However, intergenerational instability of repeat-size may be worrisome, particularly when the information alleles differ by only a few repeats. Here, we report the discovery of a codon-usage (silent substitution) variant inmore » the GGN repeat, and describe its use as a source of complementary information for prenatal diagnosis. The standard sense sequence of the (GGN){sub n} tract is (GGT){sub 3} GGG(GGT){sub 2} (GGC){sub 9-21}. On 4 of 27 X chromosomes we noted that the internal GGT sequence was expanded to 3 or 4 repeats. We used an internal (GGT){sub 4} repeat in a total (GGN){sub 24} tract together with a (CAG){sub 20} tract to distinguish an X chromosome with a mutant AR allele from another X chromosome, bearing a normal allele, that had an internal (GGT){sub 2} repeat in a total (GGN){sub 23} tract together with a (CAG){sub 21} tract. Subsequently, we found the base change leading to a pathogenic amino acid substitution (M779I) in codon 6 of the mutant AR gene in an affected maternal aunt and the fetus at risk. This confirmed the prenatal diagnosis based on the intragenic trinucleotide repeat polymorphisms, and it strengthened the prediction of external genital ambiguity using our previous experience with M779I in another family.« less
Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A; Díaz, Begoña
2014-01-01
Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.
Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A.; Díaz, Begoña
2014-01-01
Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5′RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene. PMID:25259869
Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng
2015-01-01
In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. © 2015 by the Association of Clinical Scientists, Inc.
Zeng, Qian-Qian; He, Ke; Sun, Dan-Dan; Ma, Mei-Ying; Ge, Yun-Fa; Fang, Sheng-Guo; Wan, Qiu-Hong
2016-02-18
The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic pattern indicate that interlocus recombination accounts for much of the allelic variation in IA2. Analysis of the population differentiation implied that homogenous balancing selection plays an important part in maintaining an even distribution of MHC variations. The natural barrier of the Yangtze River and heterogeneous balancing selection might help shape the NYR-SYR genetic structure in golden pheasants.
Schulte, W; Töpfer, R; Stracke, R; Schell, J; Martini, N
1997-04-01
Three genes coding for different multifunctional acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) isoenzymes from Brassica napus were isolated and divided into two major classes according to structural features in their 5' regions: class I comprises two genes with an additional coding exon of approximately 300 bp at the 5' end, and class II is represented by one gene carrying an intron of 586 bp in its 5' untranslated region. Fusion of the peptide sequence encoded by the additional first exon of a class I ACCase gene to the jellyfish Aequorea victoria green fluorescent protein (GFP) and transient expression in tobacco protoplasts targeted GFP to the chloroplasts. In contrast to the deduced primary structure of the biotin carboxylase domain encoded by the class I gene, the corresponding amino acid sequence of the class II ACCase shows higher identity with that of the Arabidopsis ACCase, both lacking a transit peptide. The Arabidopsis ACCase has been proposed to be a cytosolic isoenzyme. These observations indicate that the two classes of ACCase genes encode plastidic and cytosolic isoforms of multi-functional, eukaryotic type, respectively, and that B. napus contains at least one multi-functional ACCase besides the multi-subunit, prokaryotic type located in plastids. Southern blot analysis of genomic DNA from B. napus, Brassica rapa, and Brassica oleracea, the ancestors of amphidiploid rapeseed, using a fragment of a multi-functional ACCase gene as a probe revealed that ACCase is encoded by a multi-gene family of at least five members.
Yanovski, J A; Diament, A L; Sovik, K N; Nguyen, T T; Li, H; Sebring, N G; Warden, C H
2000-06-01
Little is known about genes that affect childhood body weight. The objective of this study was to examine the association between alleles of the mitochondrial uncoupling protein 2 (UCP2) gene and obesity because UCP2 may influence energy expenditure. We related UCP2 genotype to body composition and resting energy expenditure in 105 children aged 6-10 y. Overweight children and nonoverweight children of overweight parents were genotyped for a 45-base pair deletion/insertion (del/ins) in 3'-untranslated region of exon 8 and for an exon 4 C to T transition. Eighty-nine children were genotyped for the exon 8 allele: 50 children had del/del, 33 had del/ins, and 6 had ins/ins. Mean (+/-SD) body mass index (BMI; in kg/m(2)) was greater for children with del/ins (24.1 +/- 5.9) than for children with del/del (20.4 +/- 4.8; P < 0.001). BMI of ins/ins children (23.7 +/- 7.8) was not significantly different from that of del/ins children. A greater BMI in del/ins children was independent of race and sex. Body composition was also different according to UCP2 genotype. All body circumferences and skinfold thicknesses examined were significantly greater in del/ins than in del/del children. Body fat mass as determined by dual-energy X-ray absorptiometry was also greater in del/ins than in del/del children (P < 0.005). For 104 children genotyped at exon 4, no significant differences in BMI or body composition were found among the 3 exon 4 genotypes. Neither resting energy expenditure nor respiratory quotient were different according to UCP2 exon 4 or exon 8 genotype. The exon 8 ins/del polymorphism of UCP2 appears to be associated with childhood-onset obesity. The UCP2/UCP3 genetic locus may play a role in childhood body weight.
Yanovski, J.A.; Diament, A.L.; Sovik, K.N.; Nguyen, T.T.; Li, H.; Sebring, N.G.; Warden, C.H.
2015-01-01
Background Little is known about genes affecting childhood body weight. Objective To examine alleles of the mitochondrial uncoupling protein-2 (UCP2) gene for association with obesity, since UCP2 may influence energy expenditure. Design We related UCP2 genotype to body composition, and to resting energy expenditure, in 105 children aged 6–10y. Overweight children and non-overweight children of overweight parents were genotyped for a 45 bp deletion/insertion (del/ins) in 3’ UTR of exon 8 and for an exon 4 C to T transition. Results 89 children were genotyped for the exon 8 allele: 50 children had del/del, 33 del/ins, and 6 ins/ins. Body mass index (BMI) was greater for del/ins (24.1 ± 5.9 kg/m2) than for del/del (20.4 ± 4.8 kg/m2, p<0.001). BMI of ins/ins (23.7 ± 7.8 kg/m2) was not different from del/ins. This effect was independent of race and gender (ANOVAs, p< 0.05). Body composition was also different according to UCP2 genotype. All body circumferences and skin fold thicknesses examined were significantly greater in del/ins than in del/del. DXA body fat mass (p<0.005) was also greater in del/ins than del/del. For 104 children genotyped at exon 4, no significant differences in BMI or body composition were found among the three exon 4 genotypes. Neither resting energy expenditure nor respiratory quotient were different according to UCP2 exon 4 or exon 8 genotype. Conclusion The exon 8 ins/del polymorphism of UCP2 appears to be associated with childhood-onset obesity. The UCP2/UCP3 genetic locus may play a role in childhood body weight. PMID:10837279
Histone Code Modulation by Oncogenic PWWP-Domain Protein in Breast Cancers
2010-06-01
athanogene 4 * DDHD2 DDHD domain containing 2 * PPAPDC1B phosphatidic acid phosphatase type 2 domain containing 1B * WHSC1L1 Wolf-Hirschhorn syndrome...from alternative splicing of exon 10. The WHSC1L1 long isoform encodes a 1437 amino acid protein containing 2 PWWP domains, 2 PHD-type zinc finger...motifs, a TANG2 domain, an AWS domain and a SET domain. The short isoform encodes a 645 amino acid protein containing a PWWP domain only. Our western
An Abundant Evolutionarily Conserved CSB-PiggyBac Fusion Protein Expressed in Cockayne Syndrome
Newman, John C.; Bailey, Arnold D.; Fan, Hua-Ying; Pavelitz, Thomas; Weiner, Alan M.
2008-01-01
Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein. PMID:18369450
p53 in pure epithelioid PEComa: an immunohistochemistry study and gene mutation analysis.
Bing, Zhanyong; Yao, Yuan; Pasha, Theresa; Tomaszewski, John E; Zhang, Paul J
2012-04-01
Pure epithelioid PEComa (PEP; so-called epithelioid angiomyolipoma) is rare and is more often associated with aggressive behaviors. The pathogenesis of PEP has been poorly understood. The authors studied p53 expression and gene mutation in PEPs by immunohistochemistry, single-strand conformation polymorphism, and direct sequencing in paraffin material from 8 PEPs. A group of classic angiomyolipomas (AMLs) were also analyzed for comparison. Five PEPs were from kidneys and 1 each from the heart, the liver, and the uterus. PEPs showed much stronger p53 nuclear staining (Allred score 6.4 ± 2.5) than the classic AML (2.3 ± 2.9) (P < .01). There was no p53 single-strand conformation polymorphism identified in either the PEPs or the 8 classic AMLs. p53 mutation analyses by direct sequencing of exons 5 to 9 showed 4 mutations in 3 of 8 PEPs but none in any of the 8 classic AMLs. The mutations included 2 missense mutations in a hepatic PEComa and 2 silent mutations in 2 renal PEPs. Both the missense mutations in the hepatic PEComa involved the exon 5, one involving codon 165, with change from CAG to CAC (coding amino acid changed from glutamine to histidine), and the other involving codon 182, with change from TGC to TAC (coding amino acid changed from cysteine to tyrosine). The finding of stronger p53 expression and mutations in epithelioid angiomyolipomas might have contributed to their less predictable behavior. However, the abnormal p53 expression cannot be entirely explained by p53 mutations in the exons examined in the PEPs.
Matthews, Luke J; Butler, Paul M
2011-07-01
Numerous lines of evidence suggest that Homo sapiens evolved as a distinct species in Africa by 150,000 years before the present (BP) and began major migrations out-of-Africa ∼50,000 BP. By 20,000 BP, our species had effectively colonized the entire Old World, and by 12,000 BP H. sapiens had a global distribution. We propose that this rapid migration into new habitats selected for individuals with low reactivity to novel stressors. Certain dopamine receptor D4 (DRD4) polymorphisms are associated with low neuronal reactivity and increased exploratory behavior, novelty seeking, and risk taking, collectively considered novelty-seeking trait (NS). One previous report (Chen et al.: Evol Hum Behav 20 (1999) 309-324) demonstrated a correlation between migratory distance and the seven-repeat (7R) VNTR DRD4 allele at exon 3 for human populations. This study, however, failed to account for neutral genetic processes (drift and admixture) that might create such a correlation in the absence of natural selection. Furthermore, additional loci surrounding DRD4 are now recognized to influence NS. Herein we account for neutral genetic structure by modeling the nonindependence of neutral allele frequencies between human populations. We retest the DRD4 exon 3 alleles, and also test two other loci near DRD4 that are associated with NS. We conclude there is an association between migratory distance and DRD4 exon 3 2R and 7R alleles that cannot be accounted for by neutral genetic processes alone. Copyright © 2011 Wiley-Liss, Inc.
Wang, Xiuge; Cui, Xiaohui; Zhang, Yan; Hao, Haisheng; Ju, Zhihua; Liu, Deyu; Jiang, Qiang; Yang, Chunhong; Sun, Yan; Wang, Changfa; Huang, Jinming; Zhu, Huabin
2017-11-01
RAB, member of RAS oncogene family like 2B (RABL2B) is a member of a poorly characterised clade of the RAS GTPase superfamily, which plays an essential role in male fertility, sperm intraflagellar transport and tail assembly. In the present study, we identified a novel RABL2B splice variant in bovine testis and spermatozoa. This splice variant, designated RABL2B-TV, is characterised by exon 2 skipping. Moreover, a single nucleotide polymorphism (SNP), namely c.125G>A, was found within the exonic splicing enhancer (ESE) motif, indicating that the SNP caused the production of the RABL2B-TV aberrant splice variant. This was demonstrated by constructing a pSPL3 exon capturing vector with different genotypes and transfecting these vectors into murine Leydig tumour cell line (MLTC-1) cells. Expression of the RABL2B-TV transcript was lower in semen from high- versus low-performance bulls. Association analysis showed that sperm deformity rate was significantly lower in Chinese Holstein bulls with the GG or GA genotype than in bulls with the AA genotype (P<0.05). In addition, initial sperm motility was significantly higher in individuals with the GG or GA genotype than in individuals with the AA genotype (P<0.05). The findings of the present study suggest that the difference in semen quality in bulls with different RABL2B genotypes is generated via an alternative splicing mechanism caused by a functional SNP within the ESE motif.
Sui, M X; Wang, H H; Wang, Z W
2015-11-24
The current study aimed to investigate the coding sequence, polymorphisms, and expression of the RERG gene in indigenous Chinese goats. cDNA of RERG, obtained through reverse transcription PCR was analyzed using bioinformatic techniques. Polymorphisms in the exon regions of the RERG gene were identified and their associations with growth traits in three varieties of indigenous Chinese goats were investigated. Expression of the RERG gene in three goat breeds of the same age was detected using real-time quantitative PCR. The results revealed that the cDNA of RERG, which contained a complete open reading frame of 20-620 bp, was 629 bp in length. The associated accession numbers in GenBank are JN672576, JQ917222, and JN580309 for the QianBei Ma goat, the GuiZhou white goat, and the GuiZhou black goat, respectively. Four consistent SNP sites were found in the exon regions of the RERG gene for the three goat breeds. mRNA expression of the RERG gene differed between different tissues in adult goats of same age. The highest expression was observed in lung and spleen tissues, while the lowest expression was recorded in thymus gland tissue. In addition, the expression of the RERG gene in the muscle of Guizhou white goat, GuiZhou black goat, and QianBei Ma goat decreased sequentially. Our results lay the foundations for further investigation into the role of the RERG gene in goat growth traits.
Zhou, J P; Dong, C H
2013-09-04
The traits particularly important for milk production include milk yield, protein percentage, fat percentage, and the somatic cell score. Alpha-lactalbumin (α-LA) is an important whey protein of cow milk, and is also present in the milk of many other mammalian species. In this study, we analyzed the genetic polymorphisms of the α-LA gene and their relationship to milk production traits (milk yield, protein percentage, fat percentage, and somatic cell score) in Chinese Holstein cows. The goal of this study was to contribute further molecular genetic information related to dairy cattle, to determine the molecular markers that are most closely linked with milk production traits, and to provide a scientific basis for the improvement of economically relevant traits in cows. Fluorescence-based conformation-sensitive gel electrophoresis, DNA sequencing, and ligation detection reaction techniques were used to analyze genetic variations of the α-LA gene (5'-UTR, exons 1, 2, 3, 4, and 3'-UTR) in 923 Chinese Holstein cows. One novel single nucleotide polymorphism (SNP), α-LA2516, was identified in exon 4 of the α-LA gene. Allele frequencies were as follows: T 0.674, C 0.326. Association analysis revealed that α-LA2516 was not associated with milk yield, protein percentage, fat percentage, or somatic cell score (P > 0.05). These findings suggest that the SNP α-LA2516 in the α-LA gene likely does not have potential as a molecular marker for milk production traits in Chinese Holstein cows.
[Gene polymorphisms in patients with Down's syndrome].
Kuz'mina, N S; Ushenkova, L I; Shagirova, Zh M; Sheĭkhaev, G O; Mikhaĭlov, V F; Kurbatova, L A; Mazurik, V K; Rubanovich, A V; Zasukhina, G D
2009-01-01
Polymorphisms of glutation-S-transferase (GSTM1, GSTT1 GSTP1) and methylentetrahydrofolate reductase (MTHFR) genes have been studied in DNA from blood lymphocytes of 18 patients with Down's syndrome and 61 controls. Frequencies of normal alleles of GST genotypes were lower in patients as compared to the controls. A DNA analysis of 11 patients and 17 controls revealed the presence of mutations in region 246-250 of exon 7 of the p53 gene in 4 patients. Mutations were not found in the control group. Due to the small sample size, the results of this study should be interpreted with caution and need replication in larger studies.
No association detected between a D{sub 3} receptor gene-expressed variant and schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothschild, L.G.; Badner, J.; Cravchik, A.
1996-04-09
A missense polymorphism (glycine to serine) in the first exon of the dopamine D{sub 3} (DRD3) gene was examined in a sib-pairs schizophrenia collection by the transmission test for linkage disequilibrium (TDT). No association due to linkage disequilibrium was detected using TDT. Additionally, no evidence for excess homozygosity was found. 26 refs., 3 tabs.
Gui, Linsheng; Jiang, Bijie; Zhang, Yaran; Zan, Linsen
2015-03-15
Silent information regulator 6 (SIRT6) belongs to the family of class III nicotinamide adenine dinucleotide (NAD)-dependent deacetylase and plays an essential role in DNA repair and metabolism. This study was conducted to detect potential polymorphisms of the bovine SIRT6 gene and explore their relationships with body measurement and carcass quality in Qinchuan cattle. Four sequence variants (SVs) were identified in intron 6, exon 7, exon 9, and 3' UTR, via sequencing technology conducted in 468 individual Qinchuan cattle. Eleven different haplotypes were identified, of which two major haplotypes had a frequency of 45.7% (-CACT-) and 14.8% (-CGTC-). Three SVs (SV2, SV3 and SV4) were significantly associated with some of the body measurements and carcass quality traits (P<0.05 or P<0.01), and the H2H7 (CC-GA-TT-TC) diplotype had better performance than other combinations. Our results suggest that some polymorphisms in SIRT6 are associated with production traits and may be used as candidates for marker-assisted selection (MAS) and management in beef cattle breeding programs. Copyright © 2015 Elsevier B.V. All rights reserved.
2010-01-01
β-tubulins are structural components of microtubules and the targets of benzimidazole fungicides used to control many diseases of agricultural importance. Intron polymorphisms in the intron-rich genes of these proteins have been used in phylogeographic investigations of phytopathogenic fungi. In this work, we sequenced 2764 nucleotides of the β-tubulin gene (Pp tubB) in samples of Phakopsora pachyrhizi collected from seven soybean fields in Brazil. Pp tubB contained an open reading frame of 1341 nucleotides, including nine exons and eight introns. Exon length varied from 14 to 880 nucleotides, whereas intron length varied from 76 to 102 nucleotides. The presence of only four polymorphic sites limited the usefulness of Pp tubB for phylogeographic studies in P. pachyrhizi. The gene structures of Pp tubB and orthologous β-tubulin genes of Melampsora lini and Uromyces viciae-fabae were highly conserved. The amino acid substitutions in β-tubulin proteins associated with the onset of benzimidazole resistance in model organisms, especially at His 6 , Glu 198 and Phe 200 , were absent from the predicted sequence of the P. pachyrhizi β-tubulin protein. PMID:21637494
Ahn, Myung-Ju; Park, Shin-Young; Kim, Won Kyu; Cho, Ju Hwan; Chang, Brian Junho; Kim, Dong Jo; Ahn, Jin Seok; Park, Keunchil; Han, Joong-Soo
2012-01-01
Phospholipase D (PLD) has an important role in various biological functions including vesicular transport, endocytosis, exocytosis, cell migration, and mitosis. These cellular biological processes are deregulated in the development of various human tumors. In order to explore the relationship between the PLD1 gene and risk of non-small cell lung cancer (NSCLC), single nucleotide polymorphisms (SNP) in the PLD1 exon region were surveyed in 211 NSCLC patients and 205 normal controls. In this study, we identified six SNPs at exon 23 in the PLD1 gene. Among the six SNPs, the most notable was a heterozygous A to C transition at nucleotide 2698 (A2698C, p<0.001). In addition, the genotype frequencies of A2744C (AC+CC) and A2756C (AC+CC) were associated with gender (female, A2744C and A2756C: p=0.071) in NSCLC patients. Interestingly, although the SNP A2698C did not cause change in amino acid, correlation between odd ratio of NSCLC patients and the SNP A2698C was observed to be statistically significant. PMID:23675264
The end of a monolith: Deconstructing the Cnn-Polo interaction.
Eisman, Robert C; Phelps, Melissa A S; Kaufman, Thomas C
2016-04-02
In Drosophila melanogaster a functional pericentriolar matrix (PCM) at mitotic centrosomes requires Centrosomin-Long Form (Cnn-LF) proteins. Moreover, tissue culture cells have shown that the centrosomal localization of both Cnn-LF and Polo kinase are co-dependent, suggesting a direct interaction. Our recent study found Cnn potentially binds to and is phosphorylated by Polo kinase at 2 residues encoded by Exon1A, the initiating exon of a subset of Cnn isoforms. These interactions are required for the centrosomal localization of Cnn-LF in syncytial embryos and a mutation of either phosphorylation site is sufficient to block localization of both mutant and wild-type Cnn when they are co-expressed. Immunoprecipitation experiments show that Cnn-LF interacts directly with mitotically activated Polo kinase and requires the 2 phosphorylation sites in Exon1A. These IP experiments also show that Cnn-LF proteins form multimers. Depending on the stoichiometry between functional and mutant peptides, heteromultimers exhibit dominant negative or positive trans-complementation (rescue) effects on mitosis. Additionally, following the completion of meiosis, Cnn-Short Form (Cnn-SF) proteins are required for polar body formation in embryos, a process previously shown to require Polo kinase. These findings, when combined with previous work, clearly demonstrate the complexity of cnn and show that a view of cnn as encoding a single peptide is too simplistic.
The end of a monolith: Deconstructing the Cnn-Polo interaction
2016-01-01
ABSTRACT In Drosophila melanogaster a functional pericentriolar matrix (PCM) at mitotic centrosomes requires Centrosomin-Long Form (Cnn-LF) proteins. Moreover, tissue culture cells have shown that the centrosomal localization of both Cnn-LF and Polo kinase are co-dependent, suggesting a direct interaction. Our recent study found Cnn potentially binds to and is phosphorylated by Polo kinase at 2 residues encoded by Exon1A, the initiating exon of a subset of Cnn isoforms. These interactions are required for the centrosomal localization of Cnn-LF in syncytial embryos and a mutation of either phosphorylation site is sufficient to block localization of both mutant and wild-type Cnn when they are co-expressed. Immunoprecipitation experiments show that Cnn-LF interacts directly with mitotically activated Polo kinase and requires the 2 phosphorylation sites in Exon1A. These IP experiments also show that Cnn-LF proteins form multimers. Depending on the stoichiometry between functional and mutant peptides, heteromultimers exhibit dominant negative or positive trans-complementation (rescue) effects on mitosis. Additionally, following the completion of meiosis, Cnn-Short Form (Cnn-SF) proteins are required for polar body formation in embryos, a process previously shown to require Polo kinase. These findings, when combined with previous work, clearly demonstrate the complexity of cnn and show that a view of cnn as encoding a single peptide is too simplistic. PMID:27096551
Guimond, A; Moss, T
1992-07-11
XUBF is a Xenopus ribosomal transcription factor of the HMG-box family which contains five tandemly disposed homologies to the HMG1 & 2 DNA binding domains. XUBF has been isolated as a protein doublet and two cDNAs encoding the two molecular weight variants have been characterised. The major two forms of xUBF identified differ by the presence or absence of a 22 amino acid segment lying between HMG-boxes 3 and 4. Here we show that the mRNAs for these two forms of xUBF are regulated during development and differentiation over a range of nearly 20 fold. By isolating two of the xUBF genes, it was possible to show that both encoded the variable 22 amino acid segment in exon 12. Oocyte splicing assays and the sequencing of PCR-generated cDNA fragments, demonstrated that the transcripts from one of these genes were differentially spliced in a developmentally regulated manner. Transcripts from the second gene were found to be predominantly or exclusively spliced to produce the lower molecular weight form of xUBF. Expression of a high molecular weight form from yet a third gene was also detected. Although the intron-exon structures of the Xenopus and mouse UBF genes were found to be essentially identical, the differential splicing of exon 8 found in mammals, was not detected in Xenopus.
Kongchum, Pawapol; Hallerman, Eric M; Hulata, Gideon; David, Lior; Palti, Yniv
2011-01-01
Induction of innate immune pathways is critical for early host defense, but there is limited understanding of how teleost fishes recognize pathogen molecules and activate these pathways. In mammals, cells of the innate immune system detect pathogenic molecular structures using pattern recognition receptors (PRRs). TLR9 functions as a PRR that recognizes CpG motifs in bacterial and viral DNA and requires adaptor molecules MyD88 and TRAF6 for signal transduction. Here we report full-length cDNA isolation, structural characterization and tissue mRNA expression analysis of the common carp (cc) TLR9, MyD88 and TRAF6 gene orthologs. The ccTLR9 open-reading frame (ORF) is predicted to encode a 1064-amino acid (aa) protein. We found that MyD88 and TRAF6 genes are duplicated in common carp. This is the first report of TRAF6 duplication in a vertebrate genome and stronger evidence in support of MyD88 duplication is provided. The ccMyD88a and b ORFs are predicted to encode 288-aa and 284-aa peptides, respectively. They share 91% aa sequence identity between paralogs. The ccTRAF6a and b ORFs are both predicted to encode 543-aa peptides sharing 95% aa sequence identity between paralogs. The ccTLR9 gene is contained in a single large exon. The ccMyD88a and ccMyD88b coding sequences span five exons. The TRAF6b gene spans six exons. PCR amplification to obtain the entire coding sequence of ccTRAF6a gene was not successful. The 2104-bp fragment amplified covers the 3' end of the gene and it contains a partial sequence of one exon and three complete exons. The predicated protein domains of the ccTLR9, ccMyD88 and ccTRAF6 are conserved and resemble orthologs from other vertebrates. Real-time quantitative PCR assays of the ccTLR9, MyD88a and b, and TRAF6a and b gene transcripts in healthy common carp indicated that mRNA expression varied between tissues. Differential expression of duplicate copies were found for ccMyD88 and ccTRAF6 in white and red muscle tissues, suggesting that paralogs may have evolved and attained a new function. The genomic information we describe in this paper provides evidence of sequence and structural conservation of immune response genes in common carp. Published by Elsevier Ltd.
Li, Dan; Zhao, Yunjiao; Lin, Aiqing; Li, Shi; Feng, Jiang
2017-01-01
Genetic diversity is one of the pillars of conservation biology research. High genetic diversity and abundant genetic variation in an organism may be suggestive of capacity to adapt to various environmental changes. The major histocompatibility complex (MHC) is known to be highly polymorphic and plays an important role in immune function. It is also considered an ideal model system to investigate genetic diversity in wildlife populations. The Rufous-backed Bunting (Emberiza jankowskii) is an endangered species that has experienced a sharp decline in both population and habitat size. Many historically significant populations are no longer present in previously populated regions, with only three breeding populations present in Inner Mongolia (i.e., the Aolunhua, Gahaitu and Lubei557 populations). Efforts focused on facilitating the conservation of the Rufous-backed Bunting (Emberiza jankowskii) are becoming increasingly important. However, the genetic diversity of E. jankowskii has not been investigated. In the present study, polymorphism in exon 2 of the MHCIIB of E. jankowskii was investigated. This polymorphism was subsequently compared with a related species, the Meadow Bunting (Emberiza cioides). A total of 1.59 alleles/individual were detected in E. jankowskii and 1.73 alleles/individual were identified in E. cioides. The maximum number of alleles per individual from the three E. jankowskii populations suggest the existence of at least three functional loci, while the maximum number of alleles per individual from the three E. cioides populations suggest the presence of at least four functional loci. Two of the alleles were shared between the E. jankowskii and E. cioides. Among the 12 unique alleles identified in E. jankowskii, 10.17 segregating sites per allele were detected, and the nucleotide diversity was 0.1865. Among the 17 unique alleles identified in E. cioides, eight segregating sites per allele were detected, and the nucleotide diversity was 0.1667. Overall, compared to other passerine birds, a relatively low level of MHC polymorphism was revealed in E. jankowskii, which was similar to that in E. cioides. Positive selection was detected by PAML/SLAC/FEL analyses in the region encoding the peptide-binding region in both species, and no recombination was detected. Phylogenetic analysis showed that the alleles from E. jankowskii and E. cioides belong to the same clade and the two species shared similar alleles, suggesting the occurrence of a trans-species polymorphism between the two Emberiza species. PMID:28149689
Rinaldi, C; Bramanti, P; Famà, A; Scimone, C; Donato, L; Antognelli, C; Alafaci, C; Tomasello, F; D'Angelo, R; Sidoti, A
2015-01-01
It is already known that the conditions of increased oxidative stress are associated to a greater susceptibility to vascular malformations including cerebral cavernous malformations (CCMs). These are vascular lesions of the CNS characterized by abnormally enlarged capillary cavities that can occur sporadically or as a familial autosomal dominant condition with incomplete penetrance and variable clinical expression attributable to mutations in three different genes: CCM1(Krit1), CCM2 (MGC4607) and CCM3 (PDCD10). Polymorphisms in the genes encoding for enzymes involved in the antioxidant systems such as glyoxalase I (GLO I) and paraoxonase I (PON I) could influence individual susceptibility to the vascular malformations. A single nucleotide polymorphism was identified in the exon 4 of GLO 1 gene that causes an amino acid substitution of Ala for Glu (Ala111Glu). Two common polymorphisms have been described in the coding region of PON1, which lead to glutamine → arginine substitution at 192 (Q192R) and a leucine → methionine substitution at 55 (L55M). The polymorphisms were characterized in 59 patients without mutations in the CCM genes versus 213 healthy controls by PCR/RFLP methods using DNA from lymphocytes. We found that the frequency of patients carrying the GLO1 A/E genotype among the case group (56%) was four-fold higher than among the controls (14.1%). In the cohort of CCM patients, an increase in the frequency of PON192 Q/R genotype was observed (39% in the CCM group versus 3.7% in the healthy controls). Similarly, an increase was observed in the proportion of individuals with the genotype R/R in the disease group (5%) in respect to the normal healthy cohort (0.5%). Finally, the frequency of the PON55 heterozygotes L/M genotype was 29% in patients with CCMs and 4% in the healthy controls. The same trend was observed in PON55 homozygous M/M genotype frequency (CCMs 20% vs controls 10%). The present study aimed to investigate the possible association of GLO1 A111E, PON1 Q192R and L55M polymorphisms with the risk of CCMs. We found that individuals with the GLO1 A /E genotype, PON192/QR-RR genotypes and PON55/LM-MM genotypes had a significantly higher risk of CCMs compared with the other genotypes. However, because CCM is a heterogeneous disease, other additional factors might be involved in the initiation and progression of CCM disease.
Deletion of the Mouse Slc30a8 Gene Encoding Zinc Transporter-8 Results in Impaired Insulin Secretion
Pound, Lynley D.; Sarkar, Suparna; Benninger, Richard K. P.; Wang, Yingda; Suwanichkul, Adisak; Shadoan, Melanie K.; Printz, Richard L.; Oeser, James K.; Lee, Catherine E.; Piston, David W.; McGuinness, Owen P.; Hutton, John C.; Powell, David R.; O’Brien, Richard M.
2010-01-01
Synopsis The Slc30a8 gene encodes the islet-specific zinc transporter ZnT-8, which provides zinc for insulin-hexamer formation. Polymorphic variants in amino acid 325 of human ZnT-8 are associated with altered susceptibility to type 2 diabetes and ZnT-8 autoantibody epitope specificity changes in type 1 diabetes. To assess the physiological importance of ZnT-8, mice carrying a Slc30a8 exon 3 deletion were analyzed histologically and phenotyped for energy metabolism and pancreatic hormone secretion. No gross anatomical or behavioral changes or differences in body weight were observed between wild type and ZnT-8 −/− mice and ZnT-8 −/− mouse islets were indistinguishable from wild type in terms of their numbers, size and cellular composition. However, total zinc content was markedly reduced in ZnT-8 −/− mouse islets, as evaluated both by Timm’s histochemical staining of pancreatic sections and direct measurements in isolated islets. Blood glucose levels were unchanged in 16 week old, 6 hr fasted animals of either gender, however, plasma insulin concentrations were reduced in both female (~31%) and male (~47%) ZnT-8 −/− mice. Intraperitoneal glucose tolerance tests demonstrated no impairment in glucose clearance in male ZnT-8 −/− mice but glucose-stimulated insulin secretion from isolated islets was reduced ~33% relative to wild type littermates. In summary, Slc30a8 gene deletion is accompanied by a modest impairment in insulin secretion without major alterations in glucose metabolism. PMID:19450229
Leukocyte Chemotactic Factor 2 (LECT2)-Associated Renal Amyloidosis: A Case Series
Murphy, Charles L.; Wang, Shuching; Kestler, Daniel; Larsen, Christopher; Benson, Don; Weiss, Deborah T.; Solomon, Alan
2010-01-01
Background Renal amyloidosis is characterized by the pathologic deposition within glomeruli and/or interstitium of congophilic fibrils most often comprised of either immunoglobulin light chains or serum amyloid A-related protein and, less commonly, mutated forms of apolipoproteins AI or AII, lysozyme, fibrinogen, gelsolin, or transthyretin. Study Design Case Series. Setting and Participants Ten patients with renal amyloidosis who had an amyloidogenic protein that was not identified by routine immunohistochemistry. Outcomes Clinical, pathologic, biochemical, and genetic characteristics. Measurements Tandem mass spectrometry was used to analyze fibrils extracted from sections of formalin-fixed, paraffin-embedded amyloid-containing kidney biopsy blocks. Results The chemical analyses revealed peptides corresponding to the carboxy-terminal portion of the leukocyte chemotactic factor 2 (LECT2) molecule; further, the deposits were immunostained by an anti-human LECT2 monoclonal antibody. Plasma specimens were available from 2 individuals where the concentration of LECT2 in these samples was within normal limits. Additionally, in 4 of the cases analyzed at the molecular level, isolation of genomic DNA and PCR amplification of LECT2-encoding exons evidenced no mutations; however, all were homozygous for the G allele encoding valine at position 40 in the mature protein, a finding that was confirmed by restriction enzyme analysis of the polymorphic site. Limitations Causality is not addressed. Conclusions Based on our studies, we posit that LECT2-associated renal amyloidosis represents a unique and perhaps not uncommon disease, especially among Mexican Americans, the pathogenesis, extent, and prognosis of which remain to be determined. PMID:20951486
The USH2A c.2299delG mutation: dating its common origin in a Southern European population
Aller, Elena; Larrieu, Lise; Jaijo, Teresa; Baux, David; Espinós, Carmen; González-Candelas, Fernando; Nájera, Carmen; Palau, Francesc; Claustres, Mireille; Roux, Anne-Françoise; Millán, José M
2010-01-01
Usher syndrome type II is the most common form of Usher syndrome. USH2A is the main responsible gene of the three known to be disease causing. It encodes two isoforms of the protein usherin. This protein is part of an interactome that has an essential role in the development and function of inner ear hair cells and photoreceptors. The gene contains 72 exons spanning over a region of 800 kb. Although numerous mutations have been described, the c.2299delG mutation is the most prevalent in several populations. Its ancestral origin was previously suggested after the identification of a common core haplotype restricted to 250 kb in the 5′ region that encodes the short usherin isoform. By extending the haplotype analysis over the 800 kb region of the USH2A gene with a total of 14 intragenic single nucleotide polymorphisms, we have been able to define 10 different c.2299delG haplotypes, showing high variability but preserving the previously described core haplotype. An exhaustive c.2299delG/control haplotype study suggests that the major source of variability in the USH2A gene is recombination. Furthermore, we have evidenced twice the amount of recombination hotspots located in the 500 kb region that covers the 3′ end of the gene, explaining the higher variability observed in this region when compared with the 250 kb of the 5′ region. Our data confirm the common ancestral origin of the c.2299delG mutation. PMID:20145675
Jamroz, E; Paprocka, J; Sokół, M; Popowska, E; Ciara, E
2013-01-01
Ornithine transcarbamylase (OTC) deficiency, an X-linked, semidominant disorder, is the most common inherited de-fect in ureagenesis, resulting in hyperammonaemia type II. The OTC gene, localised on chromosome X, has been mapp-ed to band Xp21.1, proximate to the Duchenne muscular dystrophy (DMD) gene. More than 350 different mutations, including missense, nonsense, splice-site changes, small de-letions or insertions and gross deletions, have been describ-ed so far. Almost all mutations in consensus splicing sites confer a neonatal phenotype. Most mutations in the OTC gene are 'private' and are distributed throughout the gene with a paucity of mutation in the sequence encoding the leader peptide (exon 1 and beginning of exon 2) and in exon 7. They have familial origin or occur de novo. Even with sequencing of the entire reading frame and exon/intron boundaries, only about 80% of the mutations are detected in patients with proven OTC deficiency. The remainder probably occur within the introns or in regulatory domains. The authors present a 4-year-old boy with the unreported missense mutation c.802A>G. The nucleotide transition leads to amino acid substitution Met to Val at codon 268 of the OTC protein.
Liang, Xing-huan; Qin, Ying-fen; Ma, Yan; Xie, Xin-rong; Xie, Kai-qing; Luo, Zuo-jie
2006-06-01
To investigate the relationship between the polymorphic (AT)n repeats in 3ountranslated region of exon 4 of CTLA4 gene [CTLA4(AT)n] and Graveso disease (GD) in Zhuang nationality population of Guangxi province. The studied groups comprised 48 patients with GD and 44 normal controls. Amplification of target DNA was carried out by polymerase chain reaction (PCR). The amplified products were run by 8% polyacrylamide gel electrophoresis, and then followed by 0.1% silver staining. Some of amplified products were sequenced directly. Nineteen alleles of CTLA4 gene microsatellite polymorphism were found in Guangxi Zhuang nationality individuals. The 106 bp long allele was apparently increased in patients with GD of Zhuang nationality but not in healthy controls (P< 0.05). CTLA4 gene microsatellite polymorphism is strongly associated with Graveso disease in Zhuang nationality population of Guangxi province. CTLA4(AT)n 106 bp may be the susceptible gene in GD patients of Zhuang nationality in Guangxi; 19 alleles of CTLA4 gene microsatellite polymorphism were found in Guangxi Zhuang nationality individuals.
A family of splice variants of CstF-64 expressed in vertebrate nervous systems
Shankarling, Ganesh S; Coates, Penelope W; Dass, Brinda; MacDonald, Clinton C
2009-01-01
Background Alternative splicing and polyadenylation are important mechanisms for creating the proteomic diversity necessary for the nervous system to fulfill its specialized functions. The contribution of alternative splicing to proteomic diversity in the nervous system has been well documented, whereas the role of alternative polyadenylation in this process is less well understood. Since the CstF-64 polyadenylation protein is known to be an important regulator of tissue-specific polyadenylation, we examined its expression in brain and other organs. Results We discovered several closely related splice variants of CstF-64 – collectively called βCstF-64 – that could potentially contribute to proteomic diversity in the nervous system. The βCstF-64 splice variants are found predominantly in the brains of several vertebrate species including mice and humans. The major βCstF-64 variant mRNA is generated by inclusion of two alternate exons (that we call exons 8.1 and 8.2) found between exons 8 and 9 of the CstF-64 gene, and contains an additional 147 nucleotides, encoding 49 additional amino acids. Some variants of βCstF-64 contain only the first alternate exon (exon 8.1) while other variants contain both alternate exons (8.1 and 8.2). In mice, the predominant form of βCstF-64 also contains a deletion of 78 nucleotides from exon 9, although that variant is not seen in any other species examined, including rats. Immunoblot and 2D-PAGE analyses of mouse nuclear extracts indicate that a protein corresponding to βCstF-64 is expressed in brain at approximately equal levels to CstF-64. Since βCstF-64 splice variant family members were found in the brains of all vertebrate species examined (including turtles and fish), this suggests that βCstF-64 has an evolutionarily conserved function in these animals. βCstF-64 was present in both pre- and post-natal mice and in different regions of the nervous system, suggesting an important role for βCstF-64 in neural gene expression throughout development. Finally, experiments in representative cell lines suggest that βCstF-64 is expressed in neurons but not glia. Conclusion This is the first report of a family of splice variants encoding a key polyadenylation protein that is expressed in a nervous system-specific manner. We propose that βCstF-64 contributes to proteomic diversity by regulating alternative polyadenylation of neural mRNAs. PMID:19284619
Huang, Meixian; Inukai, Takeshi; Kagami, Keiko; Abe, Masako; Shinohara, Tamao; Watanabe, Atsushi; Somazu, Shinpei; Oshiro, Hiroko; Goi, Kumiko; Goto, Hiroaki; Minegishi, Masayoshi; Iwamoto, Shotaro; Urayama, Kevin Y; Sugita, Kanji
2018-02-01
Glucocorticoid (GC) shows antileukaemic activity via binding to the GC receptor (GR). The human GR gene has 4 splicing variants besides the functional isoform GRα, but their significance in GC sensitivity of acute lymphoblastic leukaemia (ALL) has been inconsistent. Additionally, several studies evaluated the relevance of GR gene single nucleotide polymorphisms (SNPs) in the GC sensitivity of ALL, but the current cumulative evidence appears inconclusive. Addressing limitations in previous studies, we used a large series of B-cell precursor ALL (BCP-ALL) cell lines established from Japanese patients to comprehensively examine all 5 splicing variants of the GR gene and candidate SNPs, and their association with GC-sensitivity. We performed real-time reverse transcription polymerase chain reaction (RT-PCR) analyses with 10 sets of primers that differentially quantify the 5 isoforms in different combinations, and the strongest correlations with GC sensitivity were observed for the real-time RT-PCR of exons 7 and 8 (prednisolone sensitivity; r = -0.534, R 2 = 0.29, P = 1.4 × 10 -6 ) and exons 8 and 9a (r = -0.583, R 2 = 0.34, P = 7.6 × 10 -8 ), both specific for GRα and GRγ isoforms. In contrast, the real-time RT-PCR of junction of exons 3g and 4 and exon 4, specific for GRγ isoform alone, did not show significant correlation with GC sensitivity (prednisolone sensitivity; r = -0.403, R 2 = 0.16, P = 4.6 × 10 -4 ). These observations are consistent with the notion that GRα plays a central role in the GC-mediated proapoptotic activity in BCP-ALL. In addition, a promoter region SNP genotype (rs72555796) showed a significant association with GC sensitivity (prednisolone sensitivity; P = .010) and tended to show an association with GR gene expression (RT-PCR of exons 7 and 8; P = .170). These findings indicate that isoform profiles and SNP genotypes of the GR gene may be useful indicators of GC sensitivity in BCP-ALL. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.; Fleischer, D.T.; Whitehead, W.T.
1995-05-15
Hereditary C5 deficiency has been reported in several families of different ethnic backgrounds and from different geographic regions, but the molecular genetic defect causing C5 deficiency has not been delineated in any of them. To examine the molecular basis of C5 deficiency in the African-American population, the exons and intron/exon boundaries of the C5 structural genes from three C5-deficient (C5D) African-American families were sequenced, revealing two nonsense mutations. The nonsense mutations are located in exon 1 (C{sup 84}AG to TAG) in two of the C5D families (Rhode Island and North Carolina) and in exon 36 (C{sup 4521}GA to TGA) inmore » the third C5D family (New York). The exon 1 and 36 mutations are contained in codons that encode the first amino acid of the C5 {beta}-chain (Gln{sup 1} to Stop) and residue 1458 in the {alpha}-chain (Arg{sup 1458} to Stop), respectively. Allele-specific PCR and sequence analyses demonstrated that the exon 1 mutation is present in only one of the C5 null genes in both the Rhode Island and North Carolina families, and the exon 36 mutation is contained in only one C5 null gene in the New York family. Neither of the nonsense mutations was found in the European or Caucasian-American C5D individuals examined. Collectively, these data indicate that: (1) C5 deficiency is caused by several different molecular genetic defects, (2) C5 deficiency in the African-American population can be explained in part by two distinct nonsense mutations in exons 1 and 36, and (3) compound heterozygosity exists in all of the reported African-American C5D families. 44 refs., 5 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, P.S.; Liu, Y.; Saha, N.
A length polymorphism at the 5{prime} untranslated region of the ATIII gene has been described as having been detected by polymerase chain reaction (PCR) with a frequency of 0.75 for the short allele (S) in the Caucasian population. This length polymorphism of the ATIII gene has been studied in 251 Chinese healthy subjects. Genomic DNA was amplified by PCR with primers of published sequences. Fragments of the amplified DNA were separated by agarose gel electrophoresis (3% NuSieve and 1% Seakem GTG) and photographed on a UV transilluminator. The frequency of the short allele (S) was found to be significantly lowermore » (0.37) than that in the Caucasians (0.75). The distribution of genotypes of this polymorphism of the ATIII gene was at Hardy-Weinberg equilibrium. The large difference of allelic frequencies in the Mongoloid and Caucasian populations makes it a useful marker for population studies.« less
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Thomas, M. J.; Centrella, M.; Rotwein, P.
1995-01-01
Insulin-like growth factor I (IGF-I) is a locally synthesized anabolic growth factor for bone. IGF-I synthesis by primary fetal rat osteoblasts (Ob) is stimulated by agents that increase the intracellular cAMP concentration, including prostaglandin E2 (PGE2). Previous studies with Ob cultures demonstrated that PGE2 enhanced IGF-I transcription through selective use of IGF-I promoter 1, with little effect on IGF-I messenger RNA half-life. Transient transfection of Ob cultures with an array of promoter 1-luciferase reporter fusion constructs has now allowed localization of a potential cis-acting promoter element(s) responsible for cAMP-stimulated gene expression to the 5'-untranslated region (5'-UTR) of IGF-I exon 1, within a segment lacking a consensus cAMP response element. Our evidence derives from three principal observations: 1) a transfection construct containing only 122 nucleotides (nt) of promoter 1 and 328 nt of the 5'-UTR retained full PGE2-stimulated reporter expression; 2) maximal PGE2-driven reporter expression required the presence of nt 196 to 328 of exon 1 when tested within the context of IGF-I promoter 1; 3) cotransfection of IGF-I promoter-luciferase-reporter constructs with a plasmid encoding the alpha-isoform of the catalytic subunit of murine cAMP-dependent protein kinase (PKA) produced results comparable to those seen with PGE2 treatment, whereas cotransfection with a plasmid encoding a mutant regulatory subunit of PKA that cannot bind cAMP blocked PGE2-induced reporter expression. Deoxyribonuclease I footprinting of the 5'-UTR of exon 1 demonstrated protected sequences at HS3A, HS3B, and HS3D, three of six DNA-protein binding sites previously characterized with rat liver nuclear extracts. Of these three regions, only the HS3D binding site is located within the functionally identified hormonally responsive segment of IGF-I exon 1. These results directly implicate PKA in the control of IGF-I gene transcription by PGE2 and identify a segment of IGF-I exon 1 as being essential for this hormonal regulation.
Dodds, Chris M; Henson, Richard N; Suckling, John; Miskowiak, Kamilla W; Ooi, Cinly; Tait, Roger; Soltesz, Fruzsina; Lawrence, Phil; Bentley, Graham; Maltby, Kay; Skeggs, Andrew; Miller, Sam R; McHugh, Simon; Bullmore, Edward T; Nathan, Pradeep J
2013-01-01
It has been suggested that the BDNF Val66Met polymorphism modulates episodic memory performance via effects on hippocampal neural circuitry. However, fMRI studies have yielded inconsistent results in this respect. Moreover, very few studies have examined the effect of met allele load on activation of memory circuitry. In the present study, we carried out a comprehensive analysis of the effects of the BDNF polymorphism on brain responses during episodic memory encoding and retrieval, including an investigation of the effect of met allele load on memory related activation in the medial temporal lobe. In contrast to previous studies, we found no evidence for an effect of BDNF genotype or met load during episodic memory encoding. Met allele carriers showed increased activation during successful retrieval in right hippocampus but this was contrast-specific and unaffected by met allele load. These results suggest that the BDNF Val66Met polymorphism does not, as previously claimed, exert an observable effect on neural systems underlying encoding of new information into episodic memory but may exert a subtle effect on the efficiency with which such information can be retrieved.
Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni
2011-01-01
Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR–SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR–SNP of the exon 8 (3′-UTR) is specific to the Tunisian population. PMID:21559051
Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni
2011-08-01
Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR-SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR-SNP of the exon 8 (3'-UTR) is specific to the Tunisian population.
Tabish, M; Clegg, R A; Rees, H H; Fisher, M J
1999-04-01
The cAMP-dependent protein kinase (protein kinase A, PK-A) is multifunctional in nature, with key roles in the control of diverse aspects of eukaryotic cellular activity. In the case of the free-living nematode, Caenorhabditis elegans, a gene encoding the PK-A catalytic subunit has been identified and two isoforms of this subunit, arising from a C-terminal alternative-splicing event, have been characterized [Gross, Bagchi, Lu and Rubin (1990) J. Biol. Chem. 265, 6896-6907]. Here we report the occurrence of N-terminal alternative-splicing events that, in addition to generating a multiplicity of non-myristoylatable isoforms, also generate the myristoylated variant(s) of the catalytic subunit that we have recently characterized [Aspbury, Fisher, Rees and Clegg (1997) Biochem. Biophys. Res. Commun. 238, 523-527]. The gene spans more than 36 kb and is divided into a total of 13 exons. Each of the mature transcripts contains only 7 exons. In addition to the already characterized exon 1, the 5'-untranslated region and first intron actually contain 5 other exons, any one of which may be alternatively spliced on to exon 2 at the 5' end of the pre-mRNA. This N-terminal alternative splicing occurs in combination with either of the already characterized C-terminal alternative exons. Thus, C. elegans expresses at least 12 different isoforms of the catalytic subunit of PK-A. The significance of this unprecedented structural diversity in the family of PK-A catalytic subunits is discussed.
Identification of new mutations in primary hyperoxaluria type 1 (PH1).
von Schnakenburg, C; Rumsby, G
1998-01-01
Primary hyperoxaluria type 1 (PH1) is caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). The AGXT gene, which codes for the 392 amino acid protein, has been mapped to chromosome 2q37.3. In order to identify new mutations in the AGXT gene we studied 79 PH1 patients using single strand conformation polymorphism analysis. In addition to a cluster of new mutations in exon 7 we report five novel mutations in exons 2, 4, 5, 9 and 10. These are T444C, G640A, G690A, 1008-1010delGCG and G1171A. These five new mutations contribute to our knowledge of the AGXT gene. Their possible consequences for PH1 phenotype and enzyme activity are discussed.
Heatley, Susan L.; Pietra, Gabriella; Lin, Jie; Widjaja, Jacqueline M. L.; Harpur, Christopher M.; Lester, Sue; Rossjohn, Jamie; Szer, Jeff; Schwarer, Anthony; Bradstock, Kenneth; Bardy, Peter G.; Mingari, Maria Cristina; Moretta, Lorenzo; Sullivan, Lucy C.; Brooks, Andrew G.
2013-01-01
Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a “mimic” of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a “polymorphic hot spot” within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors. PMID:23335510
Heatley, Susan L; Pietra, Gabriella; Lin, Jie; Widjaja, Jacqueline M L; Harpur, Christopher M; Lester, Sue; Rossjohn, Jamie; Szer, Jeff; Schwarer, Anthony; Bradstock, Kenneth; Bardy, Peter G; Mingari, Maria Cristina; Moretta, Lorenzo; Sullivan, Lucy C; Brooks, Andrew G
2013-03-22
Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a "mimic" of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a "polymorphic hot spot" within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors.
Terenzi, Fulvia; Ladd, Andrea N
2010-01-01
Muscleblind-like (MBNL) proteins have been shown to regulate pre-mRNA alternative splicing, and MBNL1 has been implicated in regulating fetal-to-adult transitions in alternative splicing in the heart. MBNL1 is highly conserved, exhibiting more than 95% identity at the amino acid level between birds and mammals. To investigate MBNL1 expression during embryonic heart development, we examined MBNL1 transcript and protein expression in the embryonic chicken heart from the formation of the primitive heart tube through cardiac morphogenesis (embryonic days 1.5 through 8). MBNL1 transcript levels remained steady throughout these stages, whereas MBNL1 protein levels increased and exhibited a shift in isoforms. MBNL1 has several alternatively spliced exons. Using RT-PCR, we determined that the inclusion of one of these, exon 5, decreases dramatically during cardiac morphogenesis. This developmental transition is conserved in mice. Functional analyses of MBNL1 isoforms containing or lacking exon 5-encoded sequences revealed that exon 5 is important for the regulation of the subcellular localization, RNA binding affinity, and alternative splicing activity of MBNL1 proteins. A second MBNL protein, MBNL2, is also expressed in the embryonic heart. We found that MBNL2 exon 5, which is paralogous to MBNL1 exon 5, is similarly regulated during embryonic heart development. Analysis of MBNL1 and MBNL2 transcripts in several embryonic tissues in chicken and mouse indicate that exon 5 alternative splicing is highly conserved and tissue-specific. Thus, we propose that conserved developmental stage- and tissue-specific alternative splicing of MBNL transcripts is an important mechanism by which MBNL activity is regulated during embryonic development.