DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, K.D.; Handen, J.S.; Rosenberg, H.F.
The Charcot-Leyden crystal (CLC) protein, or eosinophil lysophospholipase, is a characteristic protein of human eosinophils and basophils; recent work has demonstrated that the CLC protein is both structurally and functionally related to the galectin family of {beta}-galactoside binding proteins. The galectins as a group share a number of features in common, including a linear ligand binding site encoded on a single exon. In this work, we demonstrate that the intron-exon structure of the gene encoding CLC is analogous to those encoding the galectins. The coding sequence of the CLC gene is divided into four exons, with the entire {beta}-galactoside bindingmore » site encoded by exon III. We have isolated CLC {beta}-galactoside binding sites from both orangutan (Pongo pygmaeus) and murine (Mus musculus) genomic DNAs, both encoded on single exons, and noted conservation of the amino acids shown to interact directly with the {beta}-galactoside ligand. The most likely interpretation of these results suggests the occurrence of one or more exon duplication and insertion events, resulting in the distribution of this lectin domain to CLC as well as to the multiple galectin genes. 35 refs., 3 figs.« less
Public antibodies to malaria antigens generated by two LAIR1 insertion modalities.
Pieper, Kathrin; Tan, Joshua; Piccoli, Luca; Foglierini, Mathilde; Barbieri, Sonia; Chen, Yiwei; Silacci-Fregni, Chiara; Wolf, Tobias; Jarrossay, David; Anderle, Marica; Abdi, Abdirahman; Ndungu, Francis M; Doumbo, Ogobara K; Traore, Boubacar; Tran, Tuan M; Jongo, Said; Zenklusen, Isabelle; Crompton, Peter D; Daubenberger, Claudia; Bull, Peter C; Sallusto, Federica; Lanzavecchia, Antonio
2017-08-31
In two previously described donors, the extracellular domain of LAIR1, a collagen-binding inhibitory receptor encoded on chromosome 19 (ref. 1), was inserted between the V and DJ segments of an antibody. This insertion generated, through somatic mutations, broadly reactive antibodies against RIFINs, a type of variant antigen expressed on the surface of Plasmodium falciparum-infected erythrocytes. To investigate how frequently such antibodies are produced in response to malaria infection, we screened plasma from two large cohorts of individuals living in malaria-endemic regions. Here we report that 5-10% of malaria-exposed individuals, but none of the European blood donors tested, have high levels of LAIR1-containing antibodies that dominate the response to infected erythrocytes without conferring enhanced protection against febrile malaria. By analysing the antibody-producing B cell clones at the protein, cDNA and gDNA levels, we characterized additional LAIR1 insertions between the V and DJ segments and discovered a second insertion modality whereby the LAIR1 exon encoding the extracellular domain and flanking intronic sequences are inserted into the switch region. By exon shuffling, this mechanism leads to the production of bispecific antibodies in which the LAIR1 domain is precisely positioned at the elbow between the VH and CH1 domains. Additionally, in one donor the genomic DNA encoding the VH and CH1 domains was deleted, leading to the production of a camel-like LAIR1-containing antibody. Sequencing of the switch regions of memory B cells from European blood donors revealed frequent templated inserts originating from transcribed genes that, in rare cases, comprised exons with orientations and frames compatible with expression. These results reveal different modalities of LAIR1 insertion that lead to public and dominant antibodies against infected erythrocytes and suggest that insertion of templated DNA represents an additional mechanism of antibody diversification that can be selected in the immune response against pathogens and exploited for B cell engineering.
Effects of PTCs on nonsense-mediated mRNA decay are dependent on PTC location.
Moon, Heegyum; Zheng, Xuexiu; Loh, Tiing Jen; Jang, Ha Na; Liu, Yongchao; Jung, Da-Woon; Williams, Darren R; Shen, Haihong
2017-03-01
The récepteur d'origine nantais (RON) gene is a proto-oncogene that is responsible for encoding the human macrophage-stimulating protein (MSP) 1 receptor. MSP activation induces RON-mediated cell dissociation, migration and matrix invasion. Isoforms of RON that exclude exons 5 and 6 encode the RONΔ160 protein, which promotes cell transformation in vitro and tumor metastasis in vivo . Premature termination codons (PTCs) in exons activate the nonsense-mediated mRNA decay (NMD) signaling pathway. The present study demonstrated that PTCs at various locations in the alternative exons 5 and 6 could induce NMD of the majority of the spliced, or partially spliced, isoforms. However, the isoforms that excluded exon 6 or exons 5 and 6 were markedly increased when produced from mutated minigenes with inserted PTCs. Furthermore, the unspliced isoform of intron 5 was not observed to be decreased by the presence of PTCs. Notably, these effects may be dependent on the location of the PTCs. The current study demonstrated a novel mechanism underlying the regulation of NMD in alternative splicing.
Huang, Kristen M; Wu, Junhua; Duncan, Melinda K; Moy, Chris; Dutra, Amalia; Favor, Jack; Da, Tong; Stambolian, Dwight
2006-01-15
Nance-Horan syndrome (NHS) is an X-linked disorder characterized by congenital cataracts, dental anomalies, dysmorphic features and mental retardation. A recent report suggests that the novel gene NHS1 is involved in this disorder due to the presence of point mutations in NHS patients. A possible mouse model for NHS, Xcat, was mapped to a 2.11 Mb interval on the X-chromosome. Sequence and FISH analysis of the X-chromosome region containing the Xcat mutation reveal a large insertion between exons 1 and 2 of the mouse Nhs1 gene. The insertion inhibits the expression of the Nhs1 isoform containing exon 1 and results in exclusive expression of the alternative isoform containing exon 1A. Quantitative RT-PCR of Xcat cDNA shows reduced levels of Nhs1 transcripts. The Nhs1 protein is strongly expressed within the cytoplasm of elongating lens fiber cells from wild-type neonate lens, but is significantly reduced within the Xcat lens. Transient transfection studies of CHO cells with Nhs1-GFP fusion proteins were done to determine whether the amino acids encoded by exon 1 were critical for protein localization. We found the presence of Nhs1 exon 1 critical for localization of the fusion protein to the cytoplasm, whereas fusion proteins lacking Nhs1 exon 1 are predominantly nuclear. These results indicate that the first exon of Nhs1 contains crucial information required for the proper expression and localization of Nhs1 protein. Inhibition of expression of the exon 1 containing isoform results in the abnormal phenotype of Xcat.
Chee, Gab-Joo; Takami, Hideto
2011-01-01
Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes.
Characterization of a novel 132-bp exon of the human maxi-K channel.
Korovkina, V P; Fergus, D J; Holdiman, A J; England, S K
2001-07-01
The large-conductance Ca2+-activated voltage-dependent K+ channel (maxi-K channel) induces a significant repolarizing current that buffers cell excitability. This channel can derive its diversity by alternative splicing of its transcript-producing isoforms that differ in their sensitivity to voltage and intracellular Ca2+. We have identified a novel 132-bp exon of the maxi-K channel from human myometrial cells that encodes 44 amino acids within the first intracellular loop of the channel protein. Distribution analysis reveals that this exon is expressed predominantly in human smooth muscle tissues with the highest abundance in the uterus and aorta and resembles the previously reported distribution of the total maxi-K channel transcript. Single-channel K+ current measurements in fibroblasts transfected with the maxi-K channel containing this novel 132-bp exon demonstrate that the presence of this insert attenuates the sensitivity to voltage and intracellular Ca2+. Alternative splicing to introduce this 132-bp exon into the maxi-K channel may elicit another mode to modulate cell excitability.
Bremer, Jeroen; Bornert, Olivier; Nyström, Alexander; Gostynski, Antoni; Jonkman, Marcel F; Aartsma-Rus, Annemieke; van den Akker, Peter C; Pasmooij, Anna Mg
2016-10-18
The "generalized severe" form of recessive dystrophic epidermolysis bullosa (RDEB-gen sev) is caused by bi-allelic null mutations in COL7A1, encoding type VII collagen. The absence of type VII collagen leads to blistering of the skin and mucous membranes upon the slightest trauma. Because most patients carry exonic point mutations or small insertions/deletions, most exons of COL7A1 are in-frame, and low levels of type VII collagen already drastically improve the disease phenotype, this gene seems a perfect candidate for antisense oligonucleotide (AON)-mediated exon skipping. In this study, we examined the feasibility of AON-mediated exon skipping in vitro in primary cultured keratinocytes and fibroblasts, and systemically in vivo using a human skin-graft mouse model. We show that treatment with AONs designed against exon 105 leads to in-frame exon 105 skipping at the RNA level and restores type VII collagen protein production in vitro. Moreover, we demonstrate that systemic delivery in vivo induces de novo expression of type VII collagen in skin grafts generated from patient cells. Our data demonstrate strong proof-of-concept for AON-mediated exon skipping as a systemic therapeutic strategy for RDEB.
Organization of the murine Cd22 locus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Che-Leung; Torres, R.M.; Sundeberg, H.A.
1993-07-01
Murine CD22 (mCD22) is a B cell-associated adhesion protein with seven extracellular Ig-like domains that has 62% amino acid identify to its human homologue. Southern analysis on genomic DNA isolated from tissues and cell lines from several mouse strains using mCD22 cDNA demonstrated that the Cd22 locus encoding mCD22 is a single copy gene of [le]30 kb. Digestion of genomic DNA preparations with four restriction endonucleases revealed the presence of restriction fragment length polymorphisms (RFLP) in BALB/c, C57BL/6, and C3H strains vs DBA/2j, NZB, and NZC strains, suggesting the presence of two or more Cd22 alleles. Using a mCD22 cDNAmore » clone derived from the BALB/c strain, the authors isolated genomic clones from a DBA/2 genomic library that contained all the exons necessary to encode the full length mCD22 cDNA. Fifteen exons, including exon 3 that encodes the translation start codon, were identified. Each extracellular Ig-like domain of mCD22 is encoded by a single exon. A comparison between the nucleotide sequences of the BALB/c CD22 cDNA and the exons of the DBA/2j CD22 genomic clones revealed an 18-nucleotide deletion in exon 4 (encoding the most distal Ig-like domain 1 of mCD22) of the DBA/2j genomic sequence in addition to a number of substitutions, insertions, and deletions in other exons. These nucleotide differences were also present in a cDNA clone isolated from total RNA of LPS-activated DBA/2j splenocytes mosome 7, a region sytenic to human chromosome 19q, close to the previously reported loci, Lyb-8 and Mag (a homologue of Cd22). An antibody (CY34) against the Lyb-8.2 B cell marker reacted with a BHK transfectant expressing the full length mCd22 cDNA, thus demonstrating that Lyb-8 and Cd22 loci are identical. Furthermore, a rat anti-mCD22 mAb, NIM-R6, bound to slgM[sup +] DBA/2j B cells, confirming the expression of a CD22 protein by the Cd22[sup a]/lyb-8[sup a] allele. 63 refs., 7 figs., 1 tab.« less
Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain
Dembowski, Jill A.; An, Ping; Scoulos-Hanson, Maritsa; Yeo, Gene; Han, Joonhee; Fu, Xiang-Dong; Grabowski, Paula J.
2012-01-01
Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5′ splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide. PMID:23008758
A Novel Assay for the Identification of NOTCH1 PEST Domain Mutations in Chronic Lymphocytic Leukemia
Petroni, Roberta Cardoso; Muto, Nair Hideko; Sitnik, Roberta; de Carvalho, Flavia Pereira; Bacal, Nydia Strachman; Velloso, Elvira Deolinda Rodrigues Pereira; Oliveira, Gislaine Borba; Pinho, João Renato Rebello; Torres, Davi Coe; Mansur, Marcela Braga; Hassan, Rocio; Lorand-Metze, Irene Gyongyvér Heidemarie; Chiattone, Carlos Sérgio; Hamerschlak, Nelson; Mangueira, Cristovão Luis Pitangueira
2016-01-01
Aims. To develop a fast and robust DNA-based assay to detect insertions and deletions mutations in exon 34 that encodes the PEST domain of NOTCH1 in order to evaluate patients with chronic lymphocytic leukemia (CLL). Methods. We designed a multiplexed allele-specific polymerase chain reaction (PCR) combined with a fragment analysis assay to detect specifically the mutation c.7544_7545delCT and possibly other insertions and deletions in exon 34 of NOTCH1. Results. We evaluated our assay in peripheral blood samples from two cohorts of patients with CLL. The frequency of NOTCH1 mutations was 8.4% in the first cohort of 71 unselected CLL patients. We then evaluated a second cohort of 26 CLL patients with known cytogenetic abnormalities that were enriched for patients with trisomy 12. NOTCH1 mutations were detected in 43.7% of the patients with trisomy 12. Conclusions. We have developed a fast and robust assay combining allele-specific PCR and fragment analysis able to detect NOTCH1 PEST domain insertions and deletions. PMID:28074183
Identification and cloning of a gamma 3 subunit splice variant of the human GABA(A) receptor.
Poulsen, C F; Christjansen, K N; Hastrup, S; Hartvig, L
2000-05-31
cDNA sequences encoding two forms of the GABA(A) gamma 3 receptor subunit were cloned from human hippocampus. The nucleotide sequences differ by the absence (gamma 3S) or presence (gamma 3L) of 18 bp located in the presumed intracellular loop between transmembrane region (TM) III and IV. The extra 18 bp in the gamma 3L subunit generates a consensus site for phosphorylation by protein kinase C (PKC). Analysis of human genomic DNA encoding the gamma 3 subunit reveals that the 18 bp insert is contiguous with the upstream proximal exon.
Gene-breaking: A new paradigm for human retrotransposon-mediated gene evolution
Wheelan, Sarah J.; Aizawa, Yasunori; Han, Jeffrey S.; Boeke, Jef D.
2005-01-01
The L1 retrotransposon is the most highly successful autonomous retrotransposon in mammals. This prolific genome parasite may on occasion benefit its host through genome rearrangements or adjustments of host gene expression. In examining possible effects of L1 elements on host gene expression, we investigated whether a full-length L1 element inserted in the antisense orientation into an intron of a cellular gene may actually split the gene's transcript into two smaller transcripts: (1) a transcript containing the upstream exons and terminating in the major antisense polyadenylation site (MAPS) of the L1, and (2) a transcript derived from the L1 antisense promoter (ASP) that includes the downstream exons of the gene. Bioinformatic analysis and experimental follow-up provide evidence for this L1 “gene-breaking” hypothesis. We identified three human genes apparently “broken” by L1 elements, as well as 12 more candidate genes. Most of the inserted L1 elements in our 15 candidate genes predate the human/chimp divergence. If indeed split, the transcripts of these genes may in at least one case encode potentially interacting proteins, and in another case may encode novel proteins. Gene-breaking represents a new mechanism through which L1 elements remodel mammalian genomes. PMID:16024818
Huang, Yulei; Goldberg, Michel; Le, Thuan; Qiang, Ran; Warner, Douglas; Witkowska, Halina Ewa; Liu, Haichuan; Zhu, Li; Denbesten, Pamela; Li, Wu
2012-01-01
Amelogenins containing exons 8 and 9 are alternatively spliced variants of amelogenin. Some amelogenin spliced variants have been found to promote pulp regeneration following pulp exposure. The function of the amelogenin spliced variants with the exons 8 and 9 remains unknown. In this study, we synthesized recombinant leucine rich amelogenin peptide (LRAP, A-4), LRAP plus exons 8 and 9 peptide (LRAP 8, 9) or exons 8 and 9 peptide (P89), to determine their effects on odontoblasts. In vivo analyses were completed following the insertion of agarose beads containing LRAP or LRAP 8, 9 into exposed cavity preparations of rat molars. After 8, 15 or 30 days' exposure, the pulp tissues were analyzed for changes in histomorphometry and cell proliferation by PCNA stainings. In vitro analyses included the effects of the addition of the recombinant proteins or peptide on cell proliferation, differentiation and adhesion of postnatal human dental pulp cells (DPCs). These studies showed that in vivo LRAP 8, 9 enhanced the reparative dentin formation as compared to LRAP. In vitro LRAP 8, 9 promoted DPC proliferation and differentiation to a greater extent than LRAP. These data suggest that amelogenin exons 8 and 9 may be useful in amelogenin-mediated pulp repair. Copyright © 2012 S. Karger AG, Basel.
Large exon size does not limit splicing in vivo.
Chen, I T; Chasin, L A
1994-03-01
Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.
Another face of the Treacher Collins syndrome (TCOF1) gene: identification of additional exons.
So, Rolando B; Gonzales, Bianca; Henning, Dale; Dixon, Jill; Dixon, Michael J; Valdez, Benigno C
2004-03-17
Treacher Collins syndrome (TCS) is characterized by an abnormality in craniofacial development during early embryogenesis. TCS is caused by mutations in the gene TCOF1, which encodes the nucleolar phosphoprotein treacle. Genetic and proteomic characterizations of TCS/treacle are based on the previously reported 26 exons of TCOF1. Here, we report the identification of 231-nucleotide (nt) exon 6A (between exons 6 and 7) and 108-nt exon 16A (between exons 16 and 17). Isoforms with exon 6A are up to 3.7-fold more abundant than alternatively spliced variants without exon 6A, but only minor isoforms contain exon 16A. Exon 6A encodes a peptide sequence containing basic and acidic domains similar to 10 other exons of TCOF1. Unlike the other exons, exon 6A encodes a nuclear localization signal (NLS) which does not, however, alter the nucleolar localization of full-length treacle. The discovery of exons 6A and 16A is relevant to mutational analysis of the TCOF1 gene in TCS patients, and to functional analysis of its gene product.
Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency.
Péquignot, M O; Dey, R; Zeviani, M; Tiranti, V; Godinot, C; Poyau, A; Sue, C; Di Mauro, S; Abitbol, M; Marsac, C
2001-05-01
Cytochrome c oxidase (COX) deficiency is one of the major causes of Leigh Syndrome (LS), a fatal encephalopathy of infancy or childhood, characterized by symmetrical lesions in the basal ganglia and brainstem. Mutations in the nuclear genes encoding COX subunits have not been found in patients with LS and COX deficiency, but mutations have been identified in SURF1. SURF1 encodes a factor involved in COX biogenesis. To date, 30 different mutations have been reported in 40 unrelated patients. We aim to provide an overview of all known mutations in SURF1, and to propose a common nomenclature. Twelve of the mutations were insertion/deletion mutations in exons 1, 4, 6, 8, and 9; 10 were missense/nonsense mutations in exons 2, 4, 5, 7, and 8; and eight were detected at splicing sites in introns 3 to 7. The most frequent mutation was 312_321del 311_312insAT which was found in 12 patients out of 40. Twenty mutations have been described only once. We also list all polymorphisms discovered to date. Copyright 2001 Wiley-Liss, Inc.
Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A
2017-04-01
Functional sites define the diversity of protein functions and are the central object of research of the structural and functional organization of proteins. The mechanisms underlying protein functional sites emergence and their variability during evolution are distinguished by duplication, shuffling, insertion and deletion of the exons in genes. The study of the correlation between a site structure and exon structure serves as the basis for the in-depth understanding of sites organization. In this regard, the development of programming resources that allow the realization of the mutual projection of exon structure of genes and primary and tertiary structures of encoded proteins is still the actual problem. Previously, we developed the SitEx system that provides information about protein and gene sequences with mapped exon borders and protein functional sites amino acid positions. The database included information on proteins with known 3D structure. However, data with respect to orthologs was not available. Therefore, we added the projection of sites positions to the exon structures of orthologs in SitEx 2.0. We implemented a search through database using site conservation variability and site discontinuity through exon structure. Inclusion of the information on orthologs allowed to expand the possibilities of SitEx usage for solving problems regarding the analysis of the structural and functional organization of proteins. Database URL: http://www-bionet.sscc.ru/sitex/ .
Jamroz, E; Paprocka, J; Sokół, M; Popowska, E; Ciara, E
2013-01-01
Ornithine transcarbamylase (OTC) deficiency, an X-linked, semidominant disorder, is the most common inherited de-fect in ureagenesis, resulting in hyperammonaemia type II. The OTC gene, localised on chromosome X, has been mapp-ed to band Xp21.1, proximate to the Duchenne muscular dystrophy (DMD) gene. More than 350 different mutations, including missense, nonsense, splice-site changes, small de-letions or insertions and gross deletions, have been describ-ed so far. Almost all mutations in consensus splicing sites confer a neonatal phenotype. Most mutations in the OTC gene are 'private' and are distributed throughout the gene with a paucity of mutation in the sequence encoding the leader peptide (exon 1 and beginning of exon 2) and in exon 7. They have familial origin or occur de novo. Even with sequencing of the entire reading frame and exon/intron boundaries, only about 80% of the mutations are detected in patients with proven OTC deficiency. The remainder probably occur within the introns or in regulatory domains. The authors present a 4-year-old boy with the unreported missense mutation c.802A>G. The nucleotide transition leads to amino acid substitution Met to Val at codon 268 of the OTC protein.
Identification of protein features encoded by alternative exons using Exon Ontology.
Tranchevent, Léon-Charles; Aubé, Fabien; Dulaurier, Louis; Benoit-Pilven, Clara; Rey, Amandine; Poret, Arnaud; Chautard, Emilie; Mortada, Hussein; Desmet, François-Olivier; Chakrama, Fatima Zahra; Moreno-Garcia, Maira Alejandra; Goillot, Evelyne; Janczarski, Stéphane; Mortreux, Franck; Bourgeois, Cyril F; Auboeuf, Didier
2017-06-01
Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological information. © 2017 Tranchevent et al.; Published by Cold Spring Harbor Laboratory Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, O.; Masters, C.; Lewis, M.B.
1994-09-01
In an 8-year-old girl and her father, both of whom have severe type III OI, we have previously used RNA/RNA hybrid analysis to demonstrate a mismatch in the region of {alpha}1(I) mRNA coding for aa 558-861. We used SSCP to further localize the abnormality to a subregion coding for aa 579-679. This region was subcloned and sequenced. Each patient`s cDNA has a deletion of the sequences coding for the last residue of exon 34, and all of exons 35 and 36 (aa 604-639), followed by an insertion of 156 nt from the 3{prime}-end of intron 36. PCR amplification of leukocytemore » DNA from the patients and the clinically normal paternal grandmother yielded two fragments: a 1007 bp fragment predicted from normal genomic sequences and a 445 bp fragment. Subcloning and sequencing of the shorter genomic PCR product confirmed the presence of a 565 bp genomic deletion from the end of exon 34 to the middle of intron 36. The abnormal protein is apparently synthesized and incorporated into helix. The inserted nucleotides are in frame with the collagenous sequence and contain no stop codons. They encode a 52 aa non-collagenous region. The fibroblast procollagen of the patients has both normal and electrophoretically delayed pro{alpha}(I) bands. The electrophoretically delayed procollagen is very sensitive to pepsin or trypsin digestion, as predicted by its non-collagenous sequence, and cannot be visualized as collagen. This unique OI collagen mutation is an excellent candidate for molecular targeting to {open_quotes}turn off{close_quotes} a dominant mutant allele.« less
Afatinib and Cetuximab in Four Patients With EGFR Exon 20 Insertion-Positive Advanced NSCLC.
van Veggel, Bianca; de Langen, Adrianus J; Hashemi, Sayed M S; Monkhorst, Kim; Heideman, Daniëlle A M; Thunnissen, Erik; Smit, Egbert F
2018-04-24
EGFR exon 20 insertions comprise 4% to 9% of EGFR mutated NSCLC. Despite being an oncogenic driver, they are associated with primary resistance to EGFR tyrosine kinase inhibitors (TKIs). We hypothesized that dual EGFR blockade with afatinib, an irreversible EGFR TKI, and cetuximab, a monoclonal antibody against EGFR, could induce tumor responses. Four patients with EGFR exon 20 insertion-positive NSCLC were treated with afatinib 40 mg once daily and cetuximab 250 mg/m 2 to 500 mg/m 2 every 2 weeks. All patients had stage IV adenocarcinoma of the lung harboring an EGFR exon 20 insertion mutation. Previous lines of treatment consisted of platinum doublet chemotherapy (n = 4) and EGFR TKI (n = 2). Three of four patients showed a partial response according to Response Evaluation Criteria in Solid Tumors (RECIST 1.1). Median progression-free survival was 5.4 months (95% confidence interval: 0.0 - 14.2 months; range 2.7 months - 17.6 months). Toxicity was manageable with appropriate skin management and dose reduction being required in two patients. Dual EGFR blockade with afatinib and cetuximab may induce tumor responses in patients with EGFR exon 20 insertion-positive NSCLC. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers.
Cheng, Jun; Liao, Liao; Zhou, Hui; Gu, Chao; Wang, Lu; Han, Yuepeng
2015-12-01
The ornamental peach cultivar 'Hongbaihuatao (HBH)' can simultaneously bear pink, red, and variegated flowers on a single tree. Anthocyanin content in pink flowers is extremely low, being only 10% that of a red flower. Surprisingly, the expression of anthocyanin structural and potential regulatory genes in white flowers was not significantly lower than that in both pink and red flowers. However, proteomic analysis revealed a GST encoded by a gene-regulator involved in anthocyanin transport (Riant)-which is expressed in the red flower, but almost undetectable in the variegated flower. The Riant gene contains an insertion-deletion (indel) polymorphism in exon 3. In white flowers, the Riant gene is interrupted by a 2-bp insertion in the last exon, which causes a frameshift and a premature stop codon. In contrast, both pink and red flowers that arise from bud sports are heterozygous for the Riant locus, with one functional allele due to the 2-bp deletion or a novel 1-bp insertion. Southern blot analysis indicated that the Riant gene occurs in a single copy in the peach genome and it is not interrupted by a transposon. The function of the Riant gene was confirmed by its ectopic expression in the Arabidopsis tt19 mutant, where it complements the anthocyanin phenotype, but not the proanthocyanidin pigmentation in seed coat. Collectively,these results indicate that a small indel mutation in the Riant gene, which is not the result of a transposon insertion or excision, causes variegated colouration of peach flowers. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers
Cheng, Jun; Liao, Liao; Zhou, Hui; Gu, Chao; Wang, Lu; Han, Yuepeng
2015-01-01
The ornamental peach cultivar ‘Hongbaihuatao (HBH)’ can simultaneously bear pink, red, and variegated flowers on a single tree. Anthocyanin content in pink flowers is extremely low, being only 10% that of a red flower. Surprisingly, the expression of anthocyanin structural and potential regulatory genes in white flowers was not significantly lower than that in both pink and red flowers. However, proteomic analysis revealed a GST encoded by a gene—regulator involved in anthocyanin transport (Riant)—which is expressed in the red flower, but almost undetectable in the variegated flower. The Riant gene contains an insertion-deletion (indel) polymorphism in exon 3. In white flowers, the Riant gene is interrupted by a 2-bp insertion in the last exon, which causes a frameshift and a premature stop codon. In contrast, both pink and red flowers that arise from bud sports are heterozygous for the Riant locus, with one functional allele due to the 2-bp deletion or a novel 1-bp insertion. Southern blot analysis indicated that the Riant gene occurs in a single copy in the peach genome and it is not interrupted by a transposon. The function of the Riant gene was confirmed by its ectopic expression in the Arabidopsis tt19 mutant, where it complements the anthocyanin phenotype, but not the proanthocyanidin pigmentation in seed coat. Collectively,these results indicate that a small indel mutation in the Riant gene, which is not the result of a transposon insertion or excision, causes variegated colouration of peach flowers. PMID:26357885
Juvenile Paget’s Disease With Heterozygous Duplication In TNFRSF11A Encoding RANK
Whyte, Michael P.; Tau, Cristina; McAlister, William H.; Zhang, Xiafang; Novack, Deborah V.; Preliasco, Virginia; Santini-Araujo, Eduardo; Mumm, Steven
2014-01-01
Mendelian disorders of RANKL/OPG/RANK signaling feature the extremes of aberrant osteoclastogenesis and cause either osteopetrosis or rapid turnover skeletal disease. The patients with autosomal dominant accelerated bone remodeling have familial expansile osteolysis, early-onset Paget’s disease of bone, expansile skeletal hyperphosphatasia, or panostotic expansile bone disease due to heterozygous 18-, 27-, 15-, and 12-bp insertional duplications, respectively, within exon 1 of TNFRSF11A that encodes the signal peptide of RANK. Juvenile Paget’s disease (JPD), an autosomal recessive disorder, manifests extremely fast skeletal remodeling, and is usually caused by loss-of-function mutations within TNFRSF11B that encodes OPG. These disorders are ultra-rare. A 13-year-old Bolivian girl was referred at age 3 years. One femur was congenitally short and curved. Then, both bowed. Deafness at age 2 years involved missing ossicles and eroded cochleas. Teeth often had absorbed roots, broke, and were lost. Radiographs had revealed acquired tubular bone widening, cortical thickening, and coarse trabeculation. Biochemical markers indicated rapid skeletal turnover. Histopathology showed accelerated remodeling with abundant osteoclasts. JPD was diagnosed. Immobilization from a femur fracture caused severe hypercalcemia that responded rapidly to pamidronate treatment followed by bone turnover marker and radiographic improvement. No TNFRSF11B mutation was found. Instead, a unique heterozygous 15-bp insertional tandem duplication (87dup15) within exon 1 of TNFRSF11A predicted the same pentapeptide extension of RANK that causes expansile skeletal hyperphosphatasia (84dup15). Single nucleotide polymorphisms in TNFRSF11A and TNFRSF11B possibly impacted her phenotype. Our findings: i) reveal that JPD can be associated with an activating mutation within TNFRSF11A, ii) expand the range and overlap of phenotypes among the mendelian disorders of RANK activation, and iii) call for mutation analysis to improve diagnosis, prognostication, recurrence risk assessment, and perhaps treatment selection among the monogenic disorders of RANKL/OPG/RANK activation. PMID:25063546
Hu, Dong Gui; McKinnon, Ross A; Hulin, Julie-Ann; Mackenzie, Peter I; Meech, Robyn
2016-12-27
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2-8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer ( PCGEM1 , PEG3 , EPHA3 , and EFNB2 ) or other types of human cancers ( TOX3 , ST8SIA4 , and SLITRK3 ), and genes that are diagnostic/prognostic biomarkers of prostate cancer ( GRINA3 , and BCHE ).
Alternative splicing within the ligand binding domain of the human constitutive androstane receptor.
Savkur, Rajesh S; Wu, Yifei; Bramlett, Kelli S; Wang, Minmin; Yao, Sufang; Perkins, Douglas; Totten, Michelle; Searfoss, George; Ryan, Timothy P; Su, Eric W; Burris, Thomas P
2003-01-01
The human constitutive androstane receptor (hCAR; NR1I3) is a member of the nuclear receptor superfamily. The activity of hCAR is regulated by a variety of xenobiotics including clotrimazole and acetaminophen metabolites. hCAR, in turn, regulates a number of genes responsible for xenobiotic metabolism and transport including several cytochrome P450s (CYP 2B5, 2C9, and 3A4) and the multidrug resistance-associated protein 2 (MRP2, ABCC2). Thus, hCAR is believed to be a mediator of drug-drug interactions. We identified two novel hCAR splice variants: hCAR2 encodes a receptor in which alternative splice acceptor sites are utilized resulting in a 4 amino acid insert between exons 6 and 7, and a 5 amino acid insert between 7 and 8, and hCAR3 encodes a receptor with exon 7 completely deleted resulting in a 39 amino acid deletion. Both hCAR2 and hCAR3 mRNAs are expressed in a pattern similar to the initially described MB67 (hCAR1) with some key distinctions. Although the levels of expression vary depending on the tissue examined, hCAR2 and hCAR3 contribute 6-8% of total hCAR mRNA in liver. Analysis of the activity of these variants indicates that both hCAR2 and hCAR3 lose the ability to heterodimerize with RXR and lack transactivation activity in cotransfection experiments where either full-length receptor or GAL4 DNA-binding domain/CAR ligand binding domain chimeras were utilized. Although the role of hCAR2 and hCAR3 is currently unclear, these additional splice variants may provide for increased diversity in terms of responsiveness to xenobiotics.
Patterson, Emily J; Wilk, Melissa; Langlo, Christopher S; Kasilian, Melissa; Ring, Michael; Hufnagel, Robert B; Dubis, Adam M; Tee, James J; Kalitzeos, Angelos; Gardner, Jessica C; Ahmed, Zubair M; Sisk, Robert A; Larsen, Michael; Sjoberg, Stacy; Connor, Thomas B; Dubra, Alfredo; Neitz, Jay; Hardcastle, Alison J; Neitz, Maureen; Michaelides, Michel; Carroll, Joseph
2016-07-01
Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus.
First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome
Beygo, J.; Buiting, K.; Seland, S.; Lüdecke, H.-J.; Hehr, U.; Lich, C.; Prager, B.; Lohmann, D.R.; Wieczorek, D.
2012-01-01
Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1. PMID:22712005
First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome.
Beygo, J; Buiting, K; Seland, S; Lüdecke, H-J; Hehr, U; Lich, C; Prager, B; Lohmann, D R; Wieczorek, D
2012-01-01
Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1.
Musante, Luciana; Kunde, Stella-Amrei; Sulistio, Tina O; Fischer, Ute; Grimme, Astrid; Frints, Suzanna G M; Schwartz, Charles E; Martínez, Francisco; Romano, Corrado; Ropers, Hans-Hilger; Kalscheuer, Vera M
2010-01-01
The polyglutamine binding protein 1 (PQBP1) gene plays an important role in X-linked mental retardation (XLMR). Nine of the thirteen PQBP1 mutations known to date affect the AG hexamer in exon 4 and cause frameshifts introducing premature termination codons (PTCs). However, the phenotype in this group of patients is variable. To investigate the pathology of these PQBP1 mutations, we evaluated their consequences on mRNA and protein expression. RT-PCRs revealed mutation-specific reduction of PQBP1 mRNAs carrying the PTCs that can be partially restored by blocking translation, thus indicating a role for the nonsense-mediated mRNA decay pathway. In addition, these mutations resulted in altered levels of PQBP1 transcripts that skipped exon 4, probably as a result of altering important splicing motifs via nonsense-associated altered splicing (NAS). This hypothesis is supported by transfection experiments using wild-type and mutant PQBP1 minigenes. Moreover, we show that a truncated PQBP1 protein is indeed present in the patients. Remarkably, patients with insertion/deletion mutations in the AG hexamer express significantly increased levels of a PQBP1 isoform, which is very likely encoded by the transcripts without exon 4, confirming the findings at the mRNA level. Our study provides significant insight into the early events contributing to the pathogenesis of the PQBP1 related XLMR disease.
Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.
Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U
1999-01-01
Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia. At the amino acid level hUCP2 has about 55% identity to hUCP1 while hUCP3 is 71% identical to hUCP2. In this study we have deduced the genomic structure of the human UCP2 gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.7 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely that of the hUCP1 gene and is almost conserved in the recently discovered hUCP3 gene as well. The high degree of homology at the nucleotide level and the conservation of the exon /intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 172 children (aged 7 - 13) of Caucasian origin revealed a polymorphism in exon 4 (C to T transition at position 164 of the cDNA resulting in the substitution of an alanine by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.63 and 0.37 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. The allele frequencies of both polymorphisms were not significantly elevated in a subgroup of 25 children characterized by low Resting Metabolic Rates (RMR). So far a direct correlation of the observed genotype with (RMR) and Body Mass Index (BMI) was not evident. Expression studies of the wild type and mutant forms of UCP2 should clarify the functional consequences these polymorphisms may have on energy metabolism and body weight regulation.
Zouheir Habbal, Mohammad; Bou-Assi, Tarek; Zhu, Jun; Owen, Renius; Chehab, Farid F
2014-01-01
Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD). Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb), one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.
Habbal, Mohammad Zouheir; Bou-Assi, Tarek; Zhu, Jun; Owen, Renius; Chehab, Farid F.
2014-01-01
Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD). Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5–16 Mb), one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband’s phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin. PMID:25233259
Hu, Dong Gui; McKinnon, Ross A.; Hulin, Julie-Ann; Mackenzie, Peter I.; Meech, Robyn
2016-01-01
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2–8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer (PCGEM1, PEG3, EPHA3, and EFNB2) or other types of human cancers (TOX3, ST8SIA4, and SLITRK3), and genes that are diagnostic/prognostic biomarkers of prostate cancer (GRINA3, and BCHE). PMID:28035996
Identification of the Pr1 Gene Product Completes the Anthocyanin Biosynthesis Pathway of Maize
Sharma, Mandeep; Cortes-Cruz, Moises; Ahern, Kevin R.; McMullen, Michael; Brutnell, Thomas P.; Chopra, Surinder
2011-01-01
In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3′H encoding gene (Zmf3′h1) and showed by segregation analysis that the red kernel phenotype is linked to this gene. Genetic mapping using SNP markers confirms its position on chromosome 5L. Furthermore, genetic complementation experiments using a CaMV 35S::ZmF3′H1 promoter–gene construct established that the encoded protein product was sufficient to perform a 3′-hydroxylation reaction. The Zmf3′h1-specific transcripts were detected in floral and vegetative tissues of Pr1 plants and were absent in pr1. Four pr1 alleles were characterized: two carry a 24 TA dinucleotide repeat insertion in the 5′-upstream promoter region, a third has a 17-bp deletion near the TATA box, and a fourth contains a Ds insertion in exon1. Genetic and transcription assays demonstrated that the pr1 gene is under the regulatory control of anthocyanin transcription factors red1 and colorless1. The cloning and characterization of pr1 completes the molecular identification of all genes encoding structural enzymes of the anthocyanin pathway of maize. PMID:21385724
Novel insertion in exon 5 of the TCOF1 gene in twin sisters with Treacher Collins syndrome.
Marszałek-Kruk, Bożena Anna; Wójcicki, Piotr; Smigiel, Robert; Trzeciak, Wiesław H
2012-08-01
Treacher Collins syndrome (TCS) is associated with an abnormal differentiation of the first and second pharyngeal arches during fetal development. This causes mostly craniofacial deformities, which require numerous corrective surgeries. TCS is an autosomal dominant disorder and it occurs in the general population at a frequency of 1 in 50,000 live births. The syndrome is caused by mutations in the TCOF1 gene, which encodes the serine/alanine-rich protein named Treacle. Over 120 mutations of the TCOF1 gene responsible for TCS have been described. About 70% of recognized mutations are deletions, which lead to a frame shift, formation of a termination codon, and shortening of the protein product of the gene. Herewith, a new heterozygotic insertion, c.484_668ins185bp, was described in two monozygotic twin sisters suffering from TCS. This mutation was absent in their father, brother, and uncle, indicating a de novo origin. The insertion causes a shift in the reading frame and premature termination of translation at 167 aa. The novel insertion is the longest ever found in the TCOF1 gene and the only one found among monozygotic twin sisters.
Veenstra, Jan A; Khammassi, Hela
2017-04-01
RYamides are arthropod neuropeptides with unknown function. In 2011 two RYamides were isolated from D. melanogaster as the ligands for the G-protein coupled receptor CG5811. The D. melanogaster gene encoding these neuropeptides is highly unusual, as there are four RYamide encoding exons in the current genome assembly, but an exon encoding a signal peptide is absent. Comparing the D. melanogaster gene structure with those from other species, including D. virilis, suggests that the gene is degenerating. RNAseq data from 1634 short sequence read archives at NCBI containing more than 34 billion spots yielded numerous individual spots that correspond to the RYamide encoding exons, of which a large number include the intron-exon boundary at the start of this exon. Although 72 different sequences have been spliced onto this RYamide encoding exon, none codes for the signal peptide of this gene. Thus, the RNAseq data for this gene reveal only noise and no signal. The very small quantities of peptide recovered during isolation and the absence of credible RNAseq data, indicates that the gene is very little expressed, while the RYamide gene structure in D. melanogaster suggests that it might be evolving into a pseudogene. Yet, the identification of the peptides it encodes clearly shows it is still functional. Using region specific antisera, we could localize numerous neurons and enteroendocrine cells in D. willistoni, D. virilis and D. pseudoobscura, but only two adult abdominal neurons in D. melanogaster. Those two neurons project to and innervate the rectal papillae, suggesting that RYamides may be involved in the regulation of water homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M
2000-01-01
Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding. PMID:10727405
Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M
2000-04-01
Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding.
Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole
2002-10-01
A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.
The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates
2010-01-01
Background Transposable elements (TEs) have played an important role in the diversification and enrichment of mammalian transcriptomes through various mechanisms such as exonization and intronization (the birth of new exons/introns from previously intronic/exonic sequences, respectively), and insertion into first and last exons. However, no extensive analysis has compared the effects of TEs on the transcriptomes of mammals, non-mammalian vertebrates and invertebrates. Results We analyzed the influence of TEs on the transcriptomes of five species, three invertebrates and two non-mammalian vertebrates. Compared to previously analyzed mammals, there were lower levels of TE introduction into introns, significantly lower numbers of exonizations originating from TEs and a lower percentage of TE insertion within the first and last exons. Although the transcriptomes of vertebrates exhibit significant levels of exonization of TEs, only anecdotal cases were found in invertebrates. In vertebrates, as in mammals, the exonized TEs are mostly alternatively spliced, indicating that selective pressure maintains the original mRNA product generated from such genes. Conclusions Exonization of TEs is widespread in mammals, less so in non-mammalian vertebrates, and very low in invertebrates. We assume that the exonization process depends on the length of introns. Vertebrates, unlike invertebrates, are characterized by long introns and short internal exons. Our results suggest that there is a direct link between the length of introns and exonization of TEs and that this process became more prevalent following the appearance of mammals. PMID:20525173
Meher, J K; Meher, P K; Dash, G N; Raval, M K
2012-01-01
The first step in gene identification problem based on genomic signal processing is to convert character strings into numerical sequences. These numerical sequences are then analysed spectrally or using digital filtering techniques for the period-3 peaks, which are present in exons (coding areas) and absent in introns (non-coding areas). In this paper, we have shown that single-indicator sequences can be generated by encoding schemes based on physico-chemical properties. Two new methods are proposed for generating single-indicator sequences based on hydration energy and dipole moments. The proposed methods produce high peak at exon locations and effectively suppress false exons (intron regions having greater peak than exon regions) resulting in high discriminating factor, sensitivity and specificity.
Chan, Raymond Tsz-Tong
2018-03-01
Non-small cell lung cancers (NSCLC) harboring the uncommon epidermal growth factor receptor (EGFR) exon 20 insertion mutations are generally thought to be unresponsive to EGFR-tyrosine kinase inhibitor (TKI) therapy. Presented here is a case of stage IV NSCLC harboring an uncommon EGFR exon 20 insertion mutation that was maintained at minimal progressive disease for 54 months, with 36 months on the second-generation TKI afatinib. Contrary to the existing literature, the patient in this case demonstrated a long, durable response to the EGFR-TKI, which was exhibited by a long survival endpoint. This suggests that stability in clinical symptoms might be sufficient to warrant continuation of therapy. © 2018 The Authors. Asia-Pacific Journal of Clinical Oncology Published by John Wiley & Sons Australia, Ltd.
Patterson, Emily J.; Wilk, Melissa; Langlo, Christopher S.; Kasilian, Melissa; Ring, Michael; Hufnagel, Robert B.; Dubis, Adam M.; Tee, James J.; Kalitzeos, Angelos; Gardner, Jessica C.; Ahmed, Zubair M.; Sisk, Robert A.; Larsen, Michael; Sjoberg, Stacy; Connor, Thomas B.; Dubra, Alfredo; Neitz, Jay; Hardcastle, Alison J.; Neitz, Maureen; Michaelides, Michel; Carroll, Joseph
2016-01-01
Purpose Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. Methods We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. Results There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Conclusions Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus. PMID:27447086
Tatsumi, Naoya; Hojo, Nozomi; Sakamoto, Hiroyuki; Inaba, Rena; Moriguchi, Nahoko; Matsuno, Keiko; Fukuda, Mari; Matsumura, Akihide; Hayashi, Seiji; Morimoto, Soyoko; Nakata, Jun; Fujiki, Fumihiro; Nishida, Sumiyuki; Nakajima, Hiroko; Tsuboi, Akihiro; Oka, Yoshihiro; Hosen, Naoki; Sugiyama, Haruo; Oji, Yusuke
2015-01-01
The Wilms’ tumor gene WT1 consists of 10 exons and encodes a zinc finger transcription factor. There are four major WT1 isoforms resulting from alternative splicing at two sites, exon 5 (17AA) and exon 9 (KTS). All major WT1 isoforms are overexpressed in leukemia and solid tumors and play oncogenic roles such as inhibition of apoptosis, and promotion of cell proliferation, migration and invasion. In the present study, a novel alternatively spliced WT1 isoform that had an extended exon 4 (designated as exon 4a) with an additional 153 bp (designated as 4a sequence) at the 3’ end was identified and designated as an Ex4a(+)WT1 isoform. The insertion of exon 4a resulted in the introduction of premature translational stop codons in the reading frame in exon 4a and production of C-terminal truncated WT1 proteins lacking zinc finger DNA-binding domain. Overexpression of the truncated Ex4a(+)WT1 isoform inhibited the major WT1-mediated transcriptional activation of anti-apoptotic Bcl-xL gene promoter and induced mitochondrial damage and apoptosis. Conversely, suppression of the Ex4a(+)WT1 isoform by Ex4a-specific siRNA attenuated apoptosis. These results indicated that the Ex4a(+)WT1 isoform exerted dominant negative effects on anti-apoptotic function of major WT1 isoforms. Ex4a(+)WT1 isoform was endogenously expressed as a minor isoform in myeloid leukemia and solid tumor cells and increased regardless of decrease in major WT1 isoforms during apoptosis, suggesting the dominant negative effects on anti-apoptotic function of major WT1 isoforms. These results indicated that Ex4a(+)WT1 isoform had an important physiological function that regulated oncogenic function of major WT1 isoforms. PMID:26090994
Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.
Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung
2008-01-01
The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.
Vasconcelos, O; Sivakumar, K; Dalakas, M C; Quezado, M; Nagle, J; Leon-Monzon, M; Dubnick, M; Gajdusek, D C; Goldfarb, L G
1995-01-01
Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene. Images Fig. 2 Fig. 4 Fig. 5 PMID:7479776
De novo insertion of an intron into the mammalian sex determining gene, SRY
O’Neill, Rachel J. Waugh; Brennan, Francine E.; Delbridge, Margaret L.; Crozier, Ross H.; Graves, Jennifer A. Marshall
1998-01-01
Two theories have been proposed to explain the evolution of introns within eukaryotic genes. The introns early theory, or “exon theory of genes,” proposes that introns are ancient and that recombination within introns provided new exon structure, and thus new genes. The introns late theory, or “insertional theory of introns,” proposes that ancient genes existed as uninterrupted exons and that introns have been introduced during the course of evolution. There is still controversy as to how intron–exon structure evolved and whether the majority of introns are ancient or novel. Although there is extensive evidence in support of the introns early theory, phylogenetic comparisons of several genes indicate recent gain and loss of introns within these genes. However, no example has been shown of a protein coding gene, intronless in its ancestral form, which has acquired an intron in a derived form. The mammalian sex determining gene, SRY, is intronless in all mammals studied to date, as is the gene from which it recently evolved. However, we report here comparisons of genomic and cDNA sequences that now provide evidence of a de novo insertion of an intron into the SRY gene of dasyurid marsupials. This recently (approximately 45 million years ago) inserted sequence is not homologous with known transposable elements. Our data demonstrate that introns may be inserted as spliced units within a developmentally crucial gene without disrupting its function. PMID:9465071
Vouille, V; Amiche, M; Nicolas, P
1997-09-01
We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drg1g2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drg1g2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drg1g2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.
Gene analysis of steroid 5 alpha-reductase 1 in hyperandrogenic women.
Eminović, Izet; Komel, Radovan; Prezelj, Janez; Karamehić, Jasenko; Gavrankapetanović, Faris; Heljić, Becir
2005-08-01
To examine the gene encoding for 5alpha-reductase type 1 in hyperandrogenic women, and assess the association of its eventual mutations or polymorphisms with the development of the hyperandrogenic female pattern. Sixteen hyperandrogenic women were included in the study. Single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing were performed after polymerase chain reaction amplification of each of the 5 exons of the SRD5A1 gene in both hyperandrogenic and control group (16 participants). Sequence analysis identified the existence of many polymorphisms; in codon 24 of exon 1, GGC (Gly) into GAC (Asp); in codon 30 of exon 1, CGG (Arg) into CGC (Arg); in exon 3 codon 169, ACA to ACG (both encoding for threonine); in exon 5, AGA to AGG (both encoding for arginine, codon 260); and T/C polymorphism in intron 2. Polymorphisms were found in both groups. Polymorphisms of SRD5A1 gene were the same in both hyperandrogenic and healthy women, indicating no significant associations of genetic polymorphisms/variations of SRD5A1 gene with clinical manifestations of hyperandrogenic disorders in women.
Genomic structure and chromosomal mapping of the human CD22 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, G.L.; Kozlow, E.; Kehrl, J.H.
1993-06-01
The human CD22 gene is expressed specifically in B lymphocytes and likely has an important function in cell-cell interactions. A nearly full length human CD22 cDNA clone was used to isolate genomic clones that span the CD22 gene. The CD22 gene is spread over 22 kb of DNA and is composed of 15 exons. The first exon contains the major transcriptional start sites. The translation initiation codon is located in exon 3, which also encodes a portion of the signal peptide. Exons 4 to 10 encode the seven Ig domains of CD22, exon 11 encodes the transmembrane domain, exons 12more » to 15 encode the intracytoplasmic domain of CD22, and exon 15 also contains the 3' untranslated region. A minor form of CD22 mRNA likely results from splicing of exon 5 to exon 8, skipping exons 6 and 7. A 4.6-kb Xbal fragment of the CD22 gene was used to map the chromosomal location of CD22 by fluorescence in situ hybridization. The hybridization locus was identified by combining fluorescent images of the probe with the chromosomal banding pattern generated by an Alu probe. The results demonstrate the CD22 is located within the band region q13.1 of chromosome 19. Two closely clustered major transcription start sites and several minor start sites were mapped by primer extension. Similarly to many other lymphoid-specific genes, the CD22 promoter lacks an obvious TATA box. Approximately 4 kb of DNA 5' of the transcription start sites were sequenced and found to contain multiple Alu elements. Potential binding sites for the transcriptional factors NF-kB, AP-1, and Oct-2 are located within 300 bp 5' of the major transcription start sites. A 400-bp fragment (bp -339 through +71) of the CD22 promoter region was subcloned into a pGEM-chloramphenicol acetyltransferase vector and after transfection into B and T cells was found to be active in both B and T cells. 45 refs., 7 figs., 2 tabs.« less
Computer analysis of protein functional sites projection on exon structure of genes in Metazoa.
Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A
2015-01-01
Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and allow a better understanding of the emergence of biological diversity.
Zhang, Haokun; Kiuchi, Takashi; Wang, Lingyan; Kawamoto, Munetaka; Suzuki, Yutaka; Sugano, Sumio; Banno, Yutaka; Katsuma, Susumu; Shimada, Toru
2017-09-20
"Tanaka's mottled translucent" (otm) is a mutation of the silkworm Bombyx mori that exhibits translucent skin during larval stages. We performed positional cloning of the gene responsible for otm and mapped it to a 364-kb region on chromosome 5 that contains 22 hypothetical protein-coding genes. We performed RNA-seq analysis of the epidermis and fat body of otm larvae and determined that the gene BGIBMGA002619 may be responsible for the otm mutation. BGIBMGA002619 encodes the biosynthesis of lysosome-related organelles complex 1 (BLOC-1) subunit 5, whose ortholog is responsible for the Muted mutant in mouse. Accordingly, we named this gene Bm-muted. We discovered that the expression of Bm-muted in the epidermis and fat body of otm mutants was dramatically suppressed compared with the wild type. We determined the nucleotide sequences of the full-length cDNA and genomic region corresponding to Bm-muted and found that a 538-bp long DNA sequence similar to B. mori transposon Organdy was inserted into the 3' end of the first intron of Bm-muted in two otm strains. The Bm-muted cDNA of otm mutants lacked exon 2, and accordingly generated a premature stop codon in exon 3. In addition, short interfering RNA (siRNA)-mediated knockdown of this gene caused localized partial translucency of larval skin. These data indicate that the mutation in Bm-muted caused the otm-mutant phenotype. We propose that the insertion of Organdy caused a splicing disorder in Bm-muted in the otm mutant, resulting in a null mutation of Bm-muted. This mutation is likely to cause deficiencies in urate granule formation in epidermal cells that result in translucent larval skin. Copyright © 2017 Elsevier B.V. All rights reserved.
[Observation on gene polymorphism of Rh blood group in Chinese Han nationality].
Lan, Jiong-Cai; Wang, Cong-Rong; Wei, Ya-Ming; Zhou, Hua-You; Cao, Qiong; Zhang, Yin-Ze; Jiang, KuReXi; Wu, Da-Lin; Liu, Zhong
2003-12-01
To observe the gene polymorphism of Rh blood group in unrelated random individuals and families for Chinese Han nationality, polymerase chain reaction-sequence specific primer (PCR-SSP) was used to amplify the Rh C/E gene, RhD gene, exons, intron 2 and 10, insert and Rh Box in 160 blood samples of RhD positive unrelated individuals and 71 samples of RhD negative unrelated individuals and 7 samples of families whose probands were RhD-negative. The results showed that RhD genes of RhD-negative individuals with C antigens were polymorphism, three forms were found for D exon including intact, partial deletion and complete deletion exons. Insert fragments and Rh Box were found in most cases of families whose probands were RhD-negative and its inheritance accorded with the Mendel's Law, and it did not affect the expression of RhD gene. "Normal" RhD exon 4 amplifying product was not found in all of the samples. It was concluded that gene structure of the RhD-negative in Chinese was polymorphism, intact, partial deletion and complete deletion exons were found in the individuals with C antigen and probably existed specific D (nf) Ce haplotype. The function of insert was uncertain. The Rh gene sequences of Chinese Han nationality are different from those of Caucasian and the Rh gene library based on Han nationality should be established.
Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins.
Ramírez-Sánchez, Obed; Pérez-Rodríguez, Paulino; Delaye, Luis; Tiessen, Axel
2016-12-01
Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa), average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt)]. Streptophyta have on average only ∼5.7 exons of medium size (∼230nt). Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400nt). Among subcellular compartments, membrane proteins are the largest (∼520aa), whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240aa). Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
Novel mutations of TCOF1 gene in European patients with treacher Collins syndrome
2011-01-01
Background Treacher Collins syndrome (TCS) is one of the most severe autosomal dominant congenital disorders of craniofacial development and shows variable phenotypic expression. TCS is extremely rare, occurring with an incidence of 1 in 50.000 live births. The TCS distinguishing characteristics are represented by down slanting palpebral fissures, coloboma of the eyelid, micrognathia, microtia and other deformity of the ears, hypoplastic zygomatic arches, and macrostomia. Conductive hearing loss and cleft palate are often present. TCS results from mutations in the TCOF1 gene located on chromosome 5, which encodes a serine/alanine-rich nucleolar phospho-protein called Treacle. However, alterations in the TCOF1 gene have been implicated in only 81-93% of TCS cases. Methods In this study, the entire coding regions of the TCOF1 gene, including newly described exons 6A and 16A, were sequenced in 46 unrelated subjects suspected of TCS clinical indication. Results Fifteen mutations were reported, including twelve novel and three already described in 14 sporadic patients and in 3 familial cases. Moreover, seven novel polymorphisms were also described. Most of the mutations characterised were microdeletions spanning one or more nucleotides, in addition to an insertion of one nucleotide in exon 18 and a stop mutation. The deletions and the insertion described cause a premature termination of translation, resulting in a truncated protein. Conclusion This study confirms that almost all the TCOF1 pathogenic mutations fall in the coding region and lead to an aberrant protein. PMID:21951868
Novel mutations of TCOF1 gene in European patients with Treacher Collins syndrome.
Conte, Chiara; D'Apice, Maria Rosaria; Rinaldi, Fabrizio; Gambardella, Stefano; Sangiuolo, Federica; Novelli, Giuseppe
2011-09-27
Treacher Collins syndrome (TCS) is one of the most severe autosomal dominant congenital disorders of craniofacial development and shows variable phenotypic expression. TCS is extremely rare, occurring with an incidence of 1 in 50.000 live births. The TCS distinguishing characteristics are represented by down slanting palpebral fissures, coloboma of the eyelid, micrognathia, microtia and other deformity of the ears, hypoplastic zygomatic arches, and macrostomia. Conductive hearing loss and cleft palate are often present. TCS results from mutations in the TCOF1 gene located on chromosome 5, which encodes a serine/alanine-rich nucleolar phospho-protein called Treacle. However, alterations in the TCOF1 gene have been implicated in only 81-93% of TCS cases. In this study, the entire coding regions of the TCOF1 gene, including newly described exons 6A and 16A, were sequenced in 46 unrelated subjects suspected of TCS clinical indication. Fifteen mutations were reported, including twelve novel and three already described in 14 sporadic patients and in 3 familial cases. Moreover, seven novel polymorphisms were also described. Most of the mutations characterised were microdeletions spanning one or more nucleotides, in addition to an insertion of one nucleotide in exon 18 and a stop mutation. The deletions and the insertion described cause a premature termination of translation, resulting in a truncated protein. This study confirms that almost all the TCOF1 pathogenic mutations fall in the coding region and lead to an aberrant protein.
Three reasons protein disorder analysis makes more sense in the light of collagen
Oates, Matt E.; Tompa, Peter; Gough, Julian
2016-01-01
Abstract We have identified that the collagen helix has the potential to be disruptive to analyses of intrinsically disordered proteins. The collagen helix is an extended fibrous structure that is both promiscuous and repetitive. Whilst its sequence is predicted to be disordered, this type of protein structure is not typically considered as intrinsic disorder. Here, we show that collagen‐encoding proteins skew the distribution of exon lengths in genes. We find that previous results, demonstrating that exons encoding disordered regions are more likely to be symmetric, are due to the abundance of the collagen helix. Other related results, showing increased levels of alternative splicing in disorder‐encoding exons, still hold after considering collagen‐containing proteins. Aside from analyses of exons, we find that the set of proteins that contain collagen significantly alters the amino acid composition of regions predicted as disordered. We conclude that research in this area should be conducted in the light of the collagen helix. PMID:26941008
Birt-Hogg-Dubé syndrome in two Chinese families with mutations in the FLCN gene.
Hou, Xiaocan; Zhou, Yuan; Peng, Yun; Qiu, Rong; Xia, Kun; Tang, Beisha; Zhuang, Wei; Jiang, Hong
2018-01-22
Birt-Hogg-Dubé syndrome is an autosomal dominant hereditary condition caused by mutations in the folliculin-encoding gene FLCN (NM_144997). It is associated with skin lesions such as fibrofolliculoma, acrochordon and trichodiscoma; pulmonary lesions including spontaneous pneumothorax and pulmonary cysts and renal cancer. Genomic DNA was extracted from peripheral venous blood samples of the propositi and their family members. Genetic analysis was performed by whole exome sequencing and Sanger sequencing aiming at corresponding exons in FLCN gene to explore the genetic mutations of these two families. In this study, we performed genetic analysis by whole exome sequencing and Sanger sequencing aiming at corresponding exons in FLCN gene to explore the genetic mutations in two Chinese families. Patients from family 1 mostly suffered from pneumothorax and pulmonary cysts, several of whom also mentioned skin lesions or kidney lesions. While in family 2, only thoracic lesions were found in the patients, without any other clinical manifestations. Two FLCN mutations have been identified: One is an insertion mutation (c.1579_1580insA/p.R527Xfs on exon 14) previously reported in three Asian families (one mainland family and two Taiwanese families); while the other is a firstly reviewed mutation in Asian population (c.649C > T / p.Gln217X on exon 7) that ever been detected in a French family. Overall, The detection of these two mutations expands the spectrum of FLCN mutations and will provide insight into genetic diagnosis and counseling of Birt-Hogg-Dubé syndrome.
Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci.
Mills, D A; McKay, L L; Dunny, G M
1996-06-01
Analysis of a region involved in the conjugative transfer of the lactococcal conjugative element pRS01 has revealed a bacteria] group II intron. Splicing of this lactococcal intron (designated Ll.ltrB) in vivo resulted in the ligation of two exon messages (ltrBE1 and ltrBE2) which encoded a putative conjugative relaxase essential for the transfer of pRS01. Like many group II introns, the Ll.ltrB intron possessed an open reading frame (ltrA) with homology to reverse transcriptases. Remarkably, sequence analysis of ltrA suggested a greater similarity to open reading frames encoded by eukaryotic mitochondrial group II introns than to those identified to date from other bacteria. Several insertional mutations within ltrA resulted in plasmids exhibiting a conjugative transfer-deficient phenotype. These results provide the first direct evidence for splicing of a prokaryotic group II intron in vivo and suggest that conjugative transfer is a mechanism for group II intron dissemination in bacteria.
Computer analysis of protein functional sites projection on exon structure of genes in Metazoa
2015-01-01
Background Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. Results One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. Conclusions These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and allow a better understanding of the emergence of biological diversity. PMID:26693737
A novel sodium bicarbonate cotransporter-like gene in an ancient duplicated region: SLC4A9 at 5q31
Lipovich, Leonard; Lynch, Eric D; Lee, Ming K; King, Mary-Claire
2001-01-01
Background: Sodium bicarbonate cotransporter (NBC) genes encode proteins that execute coupled Na+ and HCO3- transport across epithelial cell membranes. We report the discovery, characterization, and genomic context of a novel human NBC-like gene, SLC4A9, on chromosome 5q31. Results: SLC4A9 was initially discovered by genomic sequence annotation and further characterized by sequencing of long-insert cDNA library clones. The predicted protein of 990 amino acids has 12 transmembrane domains and high sequence similarity to other NBCs. The 23-exon gene has 14 known mRNA isoforms. In three regions, mRNA sequence variation is generated by the inclusion or exclusion of portions of an exon. Noncoding SLC4A9 cDNAs were recovered multiple times from different libraries. The 3' untranslated region is fragmented into six alternatively spliced exons and contains expressed Alu, LINE and MER repeats. SLC4A9 has two alternative stop codons and six polyadenylation sites. Its expression is largely restricted to the kidney. In silico approaches were used to characterize two additional novel SLC4A genes and to place SLC4A9 within the context of multiple paralogous gene clusters containing members of the epidermal growth factor (EGF), ankyrin (ANK) and fibroblast growth factor (FGF) families. Seven human EGF-SLC4A-ANK-FGF clusters were found. Conclusion: The novel sodium bicarbonate cotransporter-like gene SLC4A9 demonstrates abundant alternative mRNA processing. It belongs to a growing class of functionally diverse genes characterized by inefficient highly variable splicing. The evolutionary history of the EGF-SLC4A-ANK-FGF gene clusters involves multiple rounds of duplication, apparently followed by large insertions and deletions at paralogous loci and genome-wide gene shuffling. PMID:11305939
NASA Technical Reports Server (NTRS)
Donoho, Greg; Brenneman, Mark A.; Cui, Tracy X.; Donoviel, Dorit; Vogel, Hannes; Goodwin, Edwin H.; Chen, David J.; Hasty, Paul
2003-01-01
The Brca2 tumor-suppressor gene contributes to genomic stability, at least in part by a role in homologous recombinational repair. BRCA2 protein is presumed to function in homologous recombination through interactions with RAD51. Both exons 11 and 27 of Brca2 code for domains that interact with RAD51; exon 11 encodes eight BRC motifs, whereas exon 27 encodes a single, distinct interaction domain. Deletion of all RAD51-interacting domains causes embryonic lethality in mice. A less severe phenotype is seen with BRAC2 truncations that preserve some, but not all, of the BRC motifs. These mice can survive beyond weaning, but are runted and infertile, and die very young from cancer. Cells from such mice show hypersensitivity to some genotoxic agents and chromosomal instability. Here, we have analyzed mice and cells with a deletion of only the RAD51-interacting region encoded by exon 27. Mice homozygous for this mutation (called brca2(lex1)) have a shorter life span than that of control littermates, possibly because of early onsets of cancer and sepsis. No other phenotype was observed in these animals; therefore, the brca2(lex1) mutation is less severe than truncations that delete some BRC motifs. However, at the cellular level, the brca2(lex1) mutation causes reduced viability, hypersensitivity to the DNA interstrand crosslinking agent mitomycin C, and gross chromosomal instability, much like more severe truncations. Thus, the extreme carboxy-terminal region encoded by exon 27 is important for BRCA2 function, probably because it is required for a fully functional interaction between BRCA2 and RAD51. Copyright 2003 Wiley-Liss, Inc.
The molecular defect of ferrochelatase in a patient with erythropoietic protoporphyria.
Nakahashi, Y; Fujita, H; Taketani, S; Ishida, N; Kappas, A; Sassa, S
1992-01-01
The molecular basis of an inherited defect of ferrochelatase in a patient with erythropoietic protoporphyria (EPP) was investigated. Ferrochelatase is the terminal enzyme in the heme biosynthetic pathway and catalyzes the insertion of ferrous iron into protoporphyrin IX to form heme. In Epstein-Barr virus-transformed lymphoblastoid cells from a proband with EPP, enzyme activity, an immunochemically quantifiable protein, and mRNA content of ferrochelatase were about one-half the normal level. In contrast, the rate of transcription of ferrochelatase mRNA in the proband's cells was normal, suggesting that decreased ferrochelatase mRNA is due to an unstable transcript. cDNA clones encoding ferrochelatase in the proband, isolated by amplification using the polymerase chain reaction, were found to be classified either into those encoding the normal protein or into those encoding an abnormal protein that lacked exon 2 of the ferrochelatase gene, indicating that the proband is heterozygous for the ferrochelatase defect. Genomic DNA analysis revealed that the abnormal allele had a point mutation, C----T, near the acceptor site of intron 1. This point mutation appears to be responsible for the post-transcriptional splicing abnormality resulting in an aberrant transcript of ferrochelatase in this patient. Images PMID:1729699
Canine MPV17 truncation without clinical manifestations
Hänninen, Reetta L.; Ahonen, Saija; Màrquez, Merce; Myöhänen, Maarit J.; Hytönen, Marjo K.; Lohi, Hannes
2015-01-01
ABSTRACT Mitochondrial DNA depletion syndromes (MDS) are often serious autosomal recessively inherited disorders characterized by tissue-specific mtDNA copy number reduction. Many genes, including MPV17, are associated with the hepatocerebral form of MDS. MPV17 encodes for a mitochondrial inner membrane protein with a poorly characterized function. Several MPV17 mutations have been reported in association with a heterogeneous group of early-onset manifestations, including liver disease and neurological problems. Mpv17-deficient mice present renal and hearing defects. We describe here a MPV17 truncation mutation in dogs. We found a 1-bp insertion in exon 4 of the MPV17 gene, resulting in a frameshift and early truncation of the encoded protein. The mutation halves MPV17 expression in the lymphocytes of the homozygous dogs and the truncated protein is not translated in transfected cells. The insertion mutation is recurrent and exists in many unrelated breeds, although is highly enriched in the Boxer breed. Unexpectedly, despite the truncation of MPV17, we could not find any common phenotypes in the genetically affected dogs. The lack of observable phenotype could be due to a late onset, mild symptoms or potential tissue-specific compensatory mechanisms. This study suggests species-specific differences in the manifestation of the MPV17 defects and establishes a novel large animal model to further study MPV17 function and role in mitochondrial biology. PMID:26353863
Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma.
Davis, R J; Bennicelli, J L; Macina, R A; Nycum, L M; Biegel, J A; Barr, F G
1995-12-01
The FKHR gene, which contains a forkhead DNA-binding motif, is fused to either PAX3 or PAX7 by the t(2;13) or t(1;13) translocation in alveolar rhabdomyosarcoma,respectively. These tumors express chimeric transcripts encoding the N-terminal portion of either PAX protein fused to the C-terminal portion of FKHR. To understand the structural basis and functional consequences of these translocations, we characterized the wild-type FKHR gene and its rearrangement in alveolar rhabdomyosarcomas. By isolating and analyzing phage, cosmid and YAC clones, we determined that FKHR consists of three exons spanning 140 kb and that several highly similar loci are present in other genomic regions. Exon 1 encodes the N-terminus of the forkhead domain and is embedded within demethylated CpG island. RNA analyses reveal FKHR transcripts initiate from a TATA-less promoter within this island. Exon 2 encodes the C-terminus of the forkhead domain and a transcription activation domain, whereas exon 3 encodes a large 3' untranslated region. The intron 1-exon 2 boundary precisely matches the FHKR fusion point in the chimeric transcripts found in alveolar rhabdomyosarcomas. Using pulsed-field and fluorescence in situ hybridization analyses, we demonstrate that the 130kb FKHR intron 1 is rearranged in t(2;13)-containing alveolar rhabdomyosarcomas. Our findings indicate that FKHR intron 1 provides a large target for DNA rearrangemnt. Rearrangement of this intron with PAX3 produces two important functional consequences: in-frame fusion of N-terminal PAX3 sequences to the FKHR transcriptional activation domain and disruption of the FKHR DNA binding domain.
Kris, M. G.; Camidge, D. R.; Giaccone, G.; Hida, T.; Li, B. T.; O'Connell, J.; Taylor, I.; Zhang, H.; Arcila, M. E.; Goldberg, Z.; Jänne, P. A.
2015-01-01
Background HER2 mutations and amplifications have been identified as oncogenic drivers in lung cancers. Dacomitinib, an irreversible inhibitor of HER2, EGFR (HER1), and HER4 tyrosine kinases, has demonstrated activity in cell-line models with HER2 exon 20 insertions or amplifications. Here, we studied dacomitinib in patients with HER2-mutant or amplified lung cancers. Patients and methods As a prespecified cohort of a phase II study, we included patients with stage IIIB/IV lung cancers with HER2 mutations or amplification. We gave oral dacomitinib at 30–45 mg daily in 28-day cycles. End points included partial response rate, overall survival, and toxicity. Results We enrolled 30 patients with HER2-mutant (n = 26, all in exon 20 including 25 insertions and 1 missense mutation) or HER2-amplified lung cancers (n = 4). Three of 26 patients with tumors harboring HER2 exon 20 mutations [12%; 95% confidence interval (CI) 2% to 30%] had partial responses lasting 3+, 11, and 14 months. No partial responses occurred in four patients with tumors with HER2 amplifications. The median overall survival was 9 months from the start of dacomitinib (95% CI 7–21 months) for patients with HER2 mutations and ranged from 5 to 22 months with amplifications. Treatment-related toxicities included diarrhea (90%; grade 3/4: 20%/3%), dermatitis (73%; grade 3/4: 3%/0%), and fatigue (57%; grade 3/4: 3%/0%). One patient died on study likely due to an interaction of dacomitinib with mirtazapine. Conclusions Dacomitinib produced objective responses in patients with lung cancers with specific HER2 exon 20 insertions. This observation validates HER2 exon 20 insertions as actionable targets and justifies further study of HER2-targeted agents in specific HER2-driven lung cancers. ClinicalTrials.gov NCT00818441. PMID:25899785
Hartenstein, K.; Sinha, P.; Mishra, A.; Schenkel, H.; Torok, I.; Mechler, B. M.
1997-01-01
A recessive semi-lethal mutation resulting from the insertion of a P-lacW transposon at the cytological position 23A on the polytene chromosomes of Drosophila melanogaster was found to affect the unfolding and expansion of the wings resulting in a loss of venation and a marked decrease in their size. Lethality was polyphasic with numerous animals dying during early larval development and displaying apparently collapsed tracheal trees. The gene was therefore designated as congested-like tracheae, or colt. The colt mutation resulted from the insertion of a P-lacW transposon within the coding region of a 1.4-kb transcript. Wild-type function was restored by inducing a precise excision of the P-lacW transposon, while a deletion of the colt locus, produced by imprecise excision of the P element, showed a phenotype similar to that of the original P insert. The colt gene consists of a single exon and encodes a protein of 306 amino acids made of three tandem repeats, each characterized by two predicted transmembrane segments and a loop domain. The COLT protein shares extensive homology with proteins in the mitochondrial carrier family and particularly with the DIF-1 protein of Caenorhabditis elegans, which has been shown to be maternally required for embryonic tissue differentiation. Our analysis revealed that zygotic colt function is dispensable for normal embryonic morphogenesis but is required for gas-filling of the tracheal system at hatching time of the embryo and for normal epithelial morphogenesis of the wings. PMID:9409834
Scharner, J; Figeac, N; Ellis, J A; Zammit, P S
2015-06-01
Exon skipping, as a therapy to restore a reading frame or switch protein isoforms, is under clinical trial. We hypothesised that removing an in-frame exon containing a mutation could also improve pathogenic phenotypes. Our model is laminopathies: incurable tissue-specific degenerative diseases associated with LMNA mutations. LMNA encodes A-type lamins, that together with B-type lamins, form the nuclear lamina. Lamins contain an alpha-helical central rod domain composed of multiple heptad repeats. Eliminating LMNA exon 3 or 5 removes six heptad repeats, so shortens, but should not otherwise significantly alter, the alpha-helix. Human Lamin A or Lamin C with a deletion corresponding to amino acids encoded by exon 5 (Lamin A/C-Δ5) localised normally in murine lmna-null cells, rescuing both nuclear shape and endogenous Lamin B1/emerin distribution. However, Lamin A carrying pathogenic mutations in exon 3 or 5, or Lamin A/C-Δ3, did not. Furthermore, Lamin A/C-Δ5 was not deleterious to wild-type cells, unlike the other Lamin A mutants including Lamin A/C-Δ3. Thus Lamin A/C-Δ5 function as effectively as wild-type Lamin A/C and better than mutant versions. Antisense oligonucleotides skipped LMNA exon 5 in human cells, demonstrating the possibility of treating certain laminopathies with this approach. This proof-of-concept is the first to report the therapeutic potential of exon skipping for diseases arising from missense mutations.
Hackett, Justin B; Lu, Yan
2017-05-04
In land plants, plastid and mitochondrial RNAs are subject to post-transcriptional C-to-U RNA editing. T-DNA insertions in the ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 gene resulted in reduced photosystem II (PSII) activity and smaller plant and leaf sizes. Exon coverage analysis of the ORRM6 gene showed that orrm6-1 and orrm6-2 are loss-of-function mutants. Compared to other ORRM proteins, ORRM6 affects a relative small number of RNA editing sites. Sanger sequencing of reverse transcription-PCR products of plastid transcripts revealed 2 plastid RNA editing sites that are substantially affected in the orrm6 mutants: psbF-C77 and accD-C794. The psbF gene encodes the β subunit of cytochrome b 559 , an essential component of PSII. The accD gene encodes the β subunit of acetyl-CoA carboxylase, a protein required in plastid fatty acid biosynthesis. Whole-transcriptome RNA-seq demonstrated that editing at psbF-C77 is nearly absent and the editing extent at accD-C794 was significantly reduced. Gene set enrichment pathway analysis showed that expression of multiple gene sets involved in photosynthesis, especially photosynthetic electron transport, is significantly upregulated in both orrm6 mutants. The upregulation could be a mechanism to compensate for the reduced PSII electron transport rate in the orrm6 mutants. These results further demonstrated that Organelle RNA Recognition Motif protein ORRM6 is required in editing of specific RNAs in the Arabidopsis (Arabidopsis thaliana) plastid.
Quantitation of normal CFTR mRNA in CF patients with splice-site mutations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Z.; Olsen, J.C.; Silverman, L.M.
Previously we identified two mutations in introns of the CFTR gene associated with partially active splice sites and unusual clinical phenotypes. One mutation in intron 19 (3849+10 kb C to T) is common in CF patients with normal sweat chloride values; an 84 bp sequence from intron 19, which contains a stop codon, is inserted between exon 19 and exon 20 in most nasal CFTR transcripts. The other mutation in intron 14B (2789+5 G to A) is associated with elevated sweat chloride levels, but mild pulmonary disease; exon 14B (38 bp) is spliced out of most nasal CFTR transcipts. Themore » remaining CFTR cDNA sequences, other than the 84 bp insertion of exon 14B deletion, are identical to the published sequence. To correlate genotype and phenotype, we used quantitative RT-PCR to determine the levels of normally-spliced CFTR mRNA in nasal epithelia from these patients. CFTR cDNA was amplified (25 cycles) by using primers specific for normally-spliced species, {gamma}-actin cDNA was amplified as a standard.« less
MPL mutation profile in JAK2 mutation-negative patients with myeloproliferative disorders.
Ma, Wanlong; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; Uyeji, Jennifer; Albitar, Maher
2011-03-01
Mutations in the thrombopoietin receptor gene (myeloproliferative leukemia, MPL) have been reported in patients with JAK2 V617F-negative chronic myeloproliferative disorders (MPDs). We evaluated the prevalence of MPL mutations relative to JAK2 mutations in patients with suspected MPDs. A total of 2790 patient samples submitted for JAK2 mutation analysis were tested using real-time polymerase chain reaction and bidirectional sequencing of plasma RNA. JAK2 V617F-negative samples were tested for JAK2 exons 12 to 14 mutations, and those with negative results were then tested for mutations in MPL exons 10 and 11. Of the 2790 patients, 529 (18.96%) had V617F, 12 (0.43%) had small insertions or deletions in exon 12, and 7 (0.25%) had other JAK2 mutations in exons 12 to 14. Of the 2242 JAK2 mutation-negative patients, 68 (3.03%) had MPL mutations. W515L was the predominant MPL mutation (n=46; 68%), and 10 (15%) patients had other W515 variants. The remaining MPL mutations (n=12, 17%) were detected at other locations in exons 10 and 11 and included 3 insertion/deletion mutations. The S505N mutation, associated with familial MPD, was detected in 3 patients. Overall, for every 100 V617F mutations in patients with suspected MPDs, there were 12.9 MPL mutations, 2.3 JAK2 exon 12 mutations, and 1.3 JAK2 exons 13 to 14 mutations. These findings suggest that MPL mutation screening should be performed before JAK2 exons 12 to 14 testing in JAK2 V617F-negative patients with suspected MPDs.
Takenouchi, Toshiki; Kuchikata, Tomu; Yoshihashi, Hiroshi; Fujiwara, Mineko; Uehara, Tomoko; Miyama, Sahoko; Yamada, Shiro; Kosaki, Kenjiro
2017-05-01
Among more than 5,000 human monogenic disorders with known causative genes, transposable element insertion of a Long Interspersed Nuclear Element 1 (LINE1, L1) is known as the mechanistic basis in only 13 genetic conditions. Meckel-Gruber syndrome is a rare ciliopathy characterized by occipital encephalocele and cystic kidney disease. Here, we document a boy with occipital encephalocele, post-axial polydactyly, and multicystic renal disease. A medical exome analysis detected a heterozygous frameshift mutation, c.4582_4583delCG p.(Arg1528Serfs*17) in CC2D2A in the maternally derived allele. The further use of a dedicated bioinformatics algorithm for detecting retrotransposon insertions led to the detection of an L1 insertion affecting exon 7 in the paternally derived allele. The complete sequencing and sequence homology analysis of the inserted L1 element showed that the L1 element was classified as L1HS (L1 human specific) and that the element had intact open reading frames in the two L1-encoded proteins. This observation ranks Meckel-Gruber syndrome as only the 14th disorder to be caused by an L1 insertion among more than 5,000 known human genetic disorders. Although a transposable element detection algorithm is not included in the current best-practice next-generation sequencing analysis, the present observation illustrates the utility of such an algorithm, which would require modest computational time and resources. Whether the seemingly infrequent recognition of L1 insertion in the pathogenesis of human genetic diseases might simply reflect a lack of appropriate detection methods remains to be seen. © 2017 Wiley Periodicals, Inc.
Liu, Dong
2013-01-01
Isoleucine is one of the branched-chain amino acids (BCAAs) that are essential substrates for protein synthesis in all organisms. Although the metabolic pathway for isoleucine has been well characterized in higher plants, it is not known whether it plays a specific role in plant development. In this study, an Arabidopsis mutant, lib (low isoleucine biosynthesis), that has defects in both cell proliferation and cell expansion processes during root development, was characterized. The lib mutant carries a T-DNA insertion in the last exon of the OMR1 gene that encodes a threonine deaminase/dehydratase (TD). TD catalyses the deamination and dehydration of threonine, which is the first and also the committed step in the biosynthesis of isoleucine. This T-DNA insertion results in a partial deficiency of isoleucine in lib root tissues but it does not affect its total protein content. Application of exogenous isoleucine or introduction of a wild-type OMR1 gene into the lib mutant can completely rescue the mutant phenotypes. These results reveal an important role for isoleucine in plant development. In addition, microarray analysis indicated that the partial deficiency of isoleucine in the lib mutant triggers a decrease in transcript levels of the genes encoding the major enzymes involved in the BCAA degradation pathway; the analysis also indicated that many genes involved in the biosynthesis of methionine-derived glucosinolates are up-regulated. PMID:23230023
Thiamine-responsive megaloblastic anemia: early diagnosis may be effective in preventing deafness.
Onal, Hasan; Bariş, Safa; Ozdil, Mine; Yeşil, Gözde; Altun, Gürkan; Ozyilmaz, Isa; Aydin, Ahmet; Celkan, Tiraje
2009-01-01
Thiamine-responsive megaloblastic anemia syndrome is an autosomal recessive disorder characterized by diabetes mellitus, megaloblastic anemia and sensorineural hearing loss. Mutations in the SLC19A2 gene, encoding a high-affinity thiamine transporter protein, THTR-1, are responsible for the clinical features associated with thiamine-responsive megaloblastic anemia syndrome in which treatment with pharmacological doses of thiamine correct the megaloblastic anemia and diabetes mellitus. The anemia can recur when thiamine is withdrawn. Thiamine may be effective in preventing deafness if started before two months. Our patient was found homozygous for a mutation, 242insA, in the nucleic acid sequence of exon B, with insertion of an adenine introducing a stop codon at codon 52 in the high-affinity thiamine transporter gene, SLC19A2, on chromosome 1q23.3.
Xu, Y L; Li, L; Wu, K; Peeters, A J; Gage, D A; Zeevaart, J A
1995-07-03
The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yun-Ling; Li, Li; Wu, Keqiang
1995-07-03
The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidasemore » gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6 figs.« less
Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen
2008-01-01
Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.
Cloning and sequencing the genes encoding goldfish and carp ependymin.
Adams, D S; Shashoua, V E
1994-04-20
Ependymins (EPNs) are brain glycoproteins thought to function in optic nerve regeneration and long-term memory consolidation. To date, epn genes have been characterized in two orders of teleost fish. In this study, polymerase chain reactions (PCR) were used to amplify the complete 1.6-kb epn genes, gf-I and cc-I, from genomic DNA of Cypriniformes, goldfish and carp, respectively. Amplified bands were cloned and sequenced. Each gene consists of six exons and five introns. The exon portion of gf-I encodes a predicted 215-amino-acid (aa) protein previously characterized as GF-I, while cc-I encodes a predicted 215-aa protein 95% homologous to GF-I.
Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.
Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M
1991-02-15
The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.
[Variational structure and function of products from IGF-1 gene].
Zhang, Bing-Bing; Wang, Yuan-Liang; Fan, Kai
2008-07-01
The IGF-1 gene, containing six exons, is characterized by the generation of multiple heterogeneous mRNA transcripts and translations. The IGF-1 isoforms being produced arise from the combination of multiple transcription initiation sites, alternate splicing, and different polyadenylation signals. These different mRNAs are translated to distinct circulating and local isoforms. The circulating mature IGF-1 is encoded by exons 3 and 4, and its biological function in growth and development has been intensively studied. The local isoforms of IGF-1 contains the part encoded by exons 3 and 4, and moreover the alternate extension peptide at carboxy-terminal, encoded by exons 5 and 6, is also included in the isoforms. And the functions of local IGF-1 isoforms and E-peptides have been overlooked until recently. Recently investigation shows that cell discrepant response to the overexpression of different IGF-1 isoforms and the E-peptides, and more interestingly, IGF-1Ea, IGF-1Eb (MGF) and MGF E-peptide have potential to promote skeletal muscle regeneration, to prevent cardiac muscle loss and neural damage. The acting mechanism of IGF-1 isoforms differ from the IGF-1, and the isoforms functioned probably by binding to specific E-peptide receptor, instead of binding to the IGF-1R.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, J.; Liu, C.; Koopman, W.J.
Ligation of the Fas cell-surface molecule induces apoptosis. Defective Fas-mediated apoptosis has been associated with spontaneous autoimmunity in mice. Using human Fas/Apo-1 cDNA as a probe, the authors have molecularly cloned and characterized the human Fas chromosomal gene. The gene consists of nine exons and spans more than 26 kilobases of DNA. The lengths of introns vary from > 14 kilobases at the 5` end of the gene to 152 base pairs upstream of the exon encoding the transmembrane domain. The domain structure of the human Fas is encoded by an exon or a set of exons. Primer extension analysismore » revealed three major transcription initiation sites. The promoter region lacked canonical {open_quotes}TATA{close_quotes} and {open_quotes}CAAT{close_quotes} boxes but was a {open_quotes}GC-rich{close_quotes} sequence, and contained consensus sequences for AP-1, GF-1, NY-Y, CP-2, EBP20, and c-myb. These data provide the first characterization of the human Fas gene and insight into its regulatory region. 54 refs., 3 figs., 1 tab.« less
Mabuchi, Akihiko; Manabe, Noriyo; Haga, Nobuhiko; Kitoh, Hiroshi; Ikeda, Toshiyuki; Kawaji, Hiroyuki; Tamai, Kazuya; Hamada, Junichiro; Nakamura, Shigeru; Brunetti-Pierri, Nicola; Kimizuka, Mamori; Takatori, Yoshio; Nakamura, Kozo; Nishimura, Gen; Ohashi, Hirofumi; Ikegawa, Shiro
2003-01-01
Mutations in the gene encoding cartilage oligomeric matrix protein ( COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). More than 40 mutations have been identified; however, genotype-phenotype relationships are not well delineated. Further, mutations other than in-frame insertion/deletions and substitutions have not been found, and currently known mutations are clustered within relatively small regions. Here we report the identification of nine novel and three recurrent COMP mutations in PSACH and MED patients. These include two novel types of mutations; the first, a gross deletion spanning an exon-intron junction, causes an exon deletion. The second, a frameshift mutation that results in a truncation of the C-terminal domain, is the first known truncating mutation in the COMP gene. The remaining mutations, other than a novel exon 18 mutation, affected highly conserved aspartate or cysteine residues in the calmodulin-like repeat (CLR) region. Genotype-phenotype analysis revealed a correlation between the position and type of mutations and the severity of short stature. Mutations in the seventh CLR produced more severe short stature compared with mutations elsewhere in the CLRs ( P=0.0003) and elsewhere in the COMP gene ( P=0.0007). Patients carrying mutations within the five-aspartates repeat (aa 469-473) in the seventh CLR were extremely short (below -6 SD). Patients with deletion mutations were significantly shorter than those with substitution mutations ( P=0.0024). These findings expand the mutation spectrum of the COMP gene and highlight genotype-phenotype relationships, facilitating improved genetic diagnosis and analysis of COMP function in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, E.C.C.; Mullersman, J.E.; Thomas, M.L.
1993-07-01
The leukocyte common antigen-related protein tyrosine phosphatase (LRP) is a widely expressed transmembrane glycoprotein thought to be involved in cell growth and differentiation. Similar to most other transmembrane protein tyrosine phosphatases, LRP contains two tandem cytoplasmic phosphatase domains. To understand further the regulation and evolution of LRP, the authors have isolated and characterized mouse [lambda] genomic clones. Thirteen genomic clones could be divided into two non-overlapping clusters. The first cluster contained the transcription initiation site and the exon encoding most of the 5[prime] untranslated region. The second cluster contained the remaining exons encoding the protein and the 3[prime] untranslated region.more » The gene consists of 22 exons spanning over 75 kb. The distance between exon 1 and exon 2 is at least 25 kb. Characterization of the 5[prime] ends of LRP mRNA by S1 nuclease protection identifies putative initiation start sites within a G/C-rich region. The upstream region does not contain a TATA box. Comparison of the LRP gene structure to the mammalian protein tyrosine phosphatase gene, CD45, shows striking similarities in size and genomic organization. 29 refs., 5 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelinka, L.; McCann, S.; Budde, J.
2011-08-05
Highlights: {yields} Affinity purification of the autoimmune rippling muscle disease immunogenic domain of titin. {yields} Partial sequence analysis confirms that the peptides is in the I band region of titin. {yields} This region of the human titin shows high degree of homology to mouse titin N2-A. -- Abstract: Autoimmune rippling muscle disease (ARMD) is an autoimmune neuromuscular disease associated with myasthenia gravis (MG). Past studies in our laboratory recognized a very high molecular weight skeletal muscle protein antigen identified by ARMD patient antisera as the titin isoform. These past studies used antisera from ARMD and MG patients as probes tomore » screen a human skeletal muscle cDNA library and several pBluescript clones revealed supporting expression of immunoreactive peptides. This study characterizes the products of subcloning the titin immunoreactive domain into pGEX-3X and the subsequent fusion protein. Sequence analysis of the fusion gene indicates the cloned titin domain (GenBank ID: (EU428784)) is in frame and is derived from a sequence of N2-A spanning the exons 248-250 an area that encodes the fibronectin III domain. PCR and EcoR1 restriction mapping studies have demonstrated that the inserted cDNA is of a size that is predicted by bioinformatics analysis of the subclone. Expression of the fusion protein result in the isolation of a polypeptide of 52 kDa consistent with the predicted inferred amino acid sequence. Immunoblot experiments of the fusion protein, using rippling muscle/myasthenia gravis antisera, demonstrate that only the titin domain is immunoreactive.« less
Premraj, Avinash; Nautiyal, Binita; Aleyas, Abi G; Rasool, Thaha Jamal
2015-10-01
Interleukin-26 (IL-26) is a member of the IL-10 family of cytokines. Though conserved across vertebrates, the IL-26 gene is functionally inactivated in a few mammals like rat, mouse and horse. We report here the identification, isolation and cloning of the cDNA of IL-26 from the dromedary camel. The camel cDNA contains a 516 bp open reading frame encoding a 171 amino acid precursor protein, including a 21 amino acid signal peptide. Sequence analysis revealed high similarity with other mammalian IL-26 homologs and the conservation of IL-10 cytokine family domain structure including key amino acid residues. We also report the identification and cloning of four novel transcript variants produced by alternative splicing at the Exon 3-Exon 4 regions of the gene. Three of the alternative splice variants had premature termination codons and are predicted to code for truncated proteins. The transcript variant 4 (Tv4) having an insertion of an extra 120 bp nucleotides in the ORF was predicted to encode a full length protein product with 40 extra amino acid residues. The mRNA transcripts of all the variants were identified in lymph node, where as fewer variants were observed in other tissues like blood, liver and kidney. The expression of Tv2 and Tv3 were found to be up regulated in mitogen induced camel peripheral blood mononuclear cells. IL-26-Tv2 expression was also induced in camel fibroblast cells infected with Camel pox virus in-vitro. The identification of the transcript variants of IL-26 from the dromedary camel is the first report of alternative splicing for IL-26 in a species in which the gene has not been inactivated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of the DLGAP2 Gene Encoding the SAP90/PSD-95-Associated Protein 2 in Schizophrenia
Li, Jun-Ming; Lu, Chao-Lin; Cheng, Min-Chih; Luu, Sy-Ueng; Hsu, Shih-Hsin; Hu, Tsung-Ming; Tsai, Hsin-Yao; Chen, Chia-Hsiang
2014-01-01
Aberrant synaptic dysfunction is implicated in the pathogenesis of schizophrenia. The DLGAP2 gene encoding the SAP90/PSD-95-associated protein 2 (SAPAP2) located at the post-synaptic density of neuronal cells is involved in the neuronal synaptic function. This study aimed to investigate whether the DLGAP2 gene is associated with schizophrenia. We resequenced the putative promoter region and all the exons of the DLGAP2 gene in 523 patients with schizophrenia and 596 non-psychotic controls from Taiwan and conducted a case-control association analysis. We identified 19 known SNPs in this sample. Association analysis of 9 SNPs with minor allele frequency greater than 5% showed no association with schizophrenia. However, we found a haplotype (CCACCAACT) significantly associated with schizophrenia (odds ratio:2.5, p<0.001). We also detected 16 missense mutations and 1 amino acid-insertion mutation in this sample. Bioinformatic analysis showed some of these mutations were damaging or pathological to the protein function, but we did not find increased burden of these mutations in the patient group. Notably, we identified 5 private rare variants in 5 unrelated patients, respectively, including c.−69+9C>T, c.−69+13C>T, c.−69+47C>T, c.−69+55C>T at intron 1 and c.−32A>G at untranslated exon 2 of the DLGAP2 gene. These rare variants were not detected in 559 control subjects. Further reporter gene assay of these rare variants except c.−69+13C>T showed significantly elevated promoter activity than the wild type, suggesting increased DLGAP2 gene expression may contribute to the pathogenesis of schizophrenia. Our results indicate that DLGAP2 is a susceptible gene of schizophrenia. PMID:24416398
Evaluating the protein coding potential of exonized transposable element sequences
Piriyapongsa, Jittima; Rutledge, Mark T; Patel, Sanil; Borodovsky, Mark; Jordan, I King
2007-01-01
Background Transposable element (TE) sequences, once thought to be merely selfish or parasitic members of the genomic community, have been shown to contribute a wide variety of functional sequences to their host genomes. Analysis of complete genome sequences have turned up numerous cases where TE sequences have been incorporated as exons into mRNAs, and it is widely assumed that such 'exonized' TEs encode protein sequences. However, the extent to which TE-derived sequences actually encode proteins is unknown and a matter of some controversy. We have tried to address this outstanding issue from two perspectives: i-by evaluating ascertainment biases related to the search methods used to uncover TE-derived protein coding sequences (CDS) and ii-through a probabilistic codon-frequency based analysis of the protein coding potential of TE-derived exons. Results We compared the ability of three classes of sequence similarity search methods to detect TE-derived sequences among data sets of experimentally characterized proteins: 1-a profile-based hidden Markov model (HMM) approach, 2-BLAST methods and 3-RepeatMasker. Profile based methods are more sensitive and more selective than the other methods evaluated. However, the application of profile-based search methods to the detection of TE-derived sequences among well-curated experimentally characterized protein data sets did not turn up many more cases than had been previously detected and nowhere near as many cases as recent genome-wide searches have. We observed that the different search methods used were complementary in the sense that they yielded largely non-overlapping sets of hits and differed in their ability to recover known cases of TE-derived CDS. The probabilistic analysis of TE-derived exon sequences indicates that these sequences have low protein coding potential on average. In particular, non-autonomous TEs that do not encode protein sequences, such as Alu elements, are frequently exonized but unlikely to encode protein sequences. Conclusion The exaptation of the numerous TE sequences found in exons as bona fide protein coding sequences may prove to be far less common than has been suggested by the analysis of complete genomes. We hypothesize that many exonized TE sequences actually function as post-transcriptional regulators of gene expression, rather than coding sequences, which may act through a variety of double stranded RNA related regulatory pathways. Indeed, their relatively high copy numbers and similarity to sequences dispersed throughout the genome suggests that exonized TE sequences could serve as master regulators with a wide scope of regulatory influence. Reviewers: This article was reviewed by Itai Yanai, Kateryna D. Makova, Melissa Wilson (nominated by Kateryna D. Makova) and Cedric Feschotte (nominated by John M. Logsdon Jr.). PMID:18036258
Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N
2011-11-24
To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.
Vaughn, J C; Mason, M T; Sper-Whitis, G L; Kuhlman, P; Palmer, J D
1995-11-01
We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants.
eMelanoBase: an online locus-specific variant database for familial melanoma.
Fung, David C Y; Holland, Elizabeth A; Becker, Therese M; Hayward, Nicholas K; Bressac-de Paillerets, Brigitte; Mann, Graham J
2003-01-01
A proportion of melanoma-prone individuals in both familial and non-familial contexts has been shown to carry inactivating mutations in either CDKN2A or, rarely, CDK4. CDKN2A is a complex locus that encodes two unrelated proteins from alternately spliced transcripts that are read in different frames. The alpha transcript (exons 1alpha, 2, and 3) produces the p16INK4A cyclin-dependent kinase inhibitor, while the beta transcript (exons 1beta and 2) is translated as p14ARF, a stabilizing factor of p53 levels through binding to MDM2. Mutations in exon 2 can impair both polypeptides and insertions and deletions in exons 1alpha, 1beta, and 2, which can theoretically generate p16INK4A-p14ARF fusion proteins. No online database currently takes into account all the consequences of these genotypes, a situation compounded by some problematic previous annotations of CDKN2A-related sequences and descriptions of their mutations. As an initiative of the international Melanoma Genetics Consortium, we have therefore established a database of germline variants observed in all loci implicated in familial melanoma susceptibility. Such a comprehensive, publicly accessible database is an essential foundation for research on melanoma susceptibility and its clinical application. Our database serves two types of data as defined by HUGO. The core dataset includes the nucleotide variants on the genomic and transcript levels, amino acid variants, and citation. The ancillary dataset includes keyword description of events at the transcription and translation levels and epidemiological data. The application that handles users' queries was designed in the model-view-controller architecture and was implemented in Java. The object-relational database schema was deduced using functional dependency analysis. We hereby present our first functional prototype of eMelanoBase. The service is accessible via the URL www.wmi.usyd.edu.au:8080/melanoma.html. Copyright 2002 Wiley-Liss, Inc.
Sasaki-Haraguchi, Noriko; Ikuyama, Takeshi; Yoshii, Shogo; Takeuchi-Andoh, Tomoko; Frendewey, David; Tani, Tokio
2015-01-01
Exons are ligated in an ordered manner without the skipping of exons in the constitutive splicing of pre-mRNAs with multiple introns. To identify factors ensuring ordered exon joining in constitutive pre-mRNA splicing, we previously screened for exon skipping mutants in Schizosaccharomyces pombe using a reporter plasmid, and characterized three exon skipping mutants named ods1 (ordered splicing 1), ods2, and ods3, the responsible genes of which encode Prp2/U2AF59, U2AF23, and SF1, respectively. They form an SF1-U2AF59-U2AF23 complex involved in recognition of the branch and 3′ splice sites in pre-mRNA. In the present study, we identified a fourth ods mutant, ods4, which was isolated in an exon-skipping screen. The ods4 + gene encodes Cwf16p, which interacts with the NineTeen Complex (NTC), a complex thought to be involved in the first catalytic step of the splicing reaction. We isolated two multi-copy suppressors for the ods4-1 mutation, Srp2p, an SR protein essential for pre-mRNA splicing, and Tif213p, a translation initiation factor, in S. pombe. The overexpression of Srp2p suppressed the exon-skipping phenotype of all ods mutants, whereas Tif213p suppressed only ods4-1, which has a mutation in the translational start codon of the cwf16 gene. We also showed that the decrease in the transcriptional elongation rate induced by drug treatment suppressed exon skipping in ods4-1. We propose that Cwf16p/NTC participates in the early recognition of the branch and 3′ splice sites and cooperates with the SF1-U2AF59-U2AF23 complex to maintain ordered exon joining. PMID:26302002
Gurskaya, N G; Staroverov, D B; Lukyanov, K A
2016-01-01
Alternative splicing is an important mechanism of regulation of gene expression and expansion of proteome complexity. Recently we developed a new fluorescence reporter for quantitative analysis of alternative splicing of a target cassette exon in live cells (Gurskaya et al., 2012). It consists of a specially designed minigene encoding red and green fluorescent proteins (Katushka and TagGFP2) and a fragment of the target gene between them. Skipping or inclusion of the alternative exon induces a frameshift; ie, alternative exon length must not be a multiple of 3. Finally, red and green fluorescence intensities of cells expressing this reporter are used to estimate the percentage of alternative (exon-skipped) and normal (exon-retained) transcripts. Here, we provide a detailed description of design and application of the fluorescence reporter of a target alternative exon splicing in mammalian cell lines. © 2016 Elsevier Inc. All rights reserved.
Is MPP a good prognostic factor in stage III lung adenocarcinoma with EGFR exon 19 mutation?
Zhang, Tian; Wang, Jing; Su, Yanjun; Chen, Xi; Yan, Qingna; Li, Qi; Sun, Leina; Wang, Yuwen; Er, Puchun; Pang, Qingsong; Wang, Ping
2017-06-20
Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein encoded by a gene located in the short arm of chromosome 7. This study aimed to investigate the clinicopathologic characteristics of classic EGFR exon mutation in Chinese patients with TMN stage III lung adenocarcinoma who received radical surgery. A total of 1,801 lung adenocarcinomas were analyzed for mutations in EGFR; 35% exhibited mutation of classic EGFR exons. Clinical and pathologic characteristics of patients with EGFR exon 19 mutation were compared with those who harbored EGFR exon 21 mutation. Patients with EGFR exon 19 mutation had a higher overall survival (OS, p=0.023) than those harboring EGFR exon 21 mutation. Our results demonstrated that patients with a micropapillary pattern (MPP) pathologic type in EGFR exon 19 mutation had a higher OS (p=0.022), and patients with exon 19 mutation were more sensitive to EGFR-tyrosine kinase inhibitors (p=0.032). The results of the current study can be used in decision-making regarding the treatment of patients with classic EGFR exon mutations.
Shang, Yonglei; Tesar, Devin; Hötzel, Isidro
2015-10-01
A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Syrén, Marie-Louise; Tedeschi, Silvana; Cesareo, Laila; Bellantuono, Rosa; Colussi, Giacomo; Procaccio, Mirella; Alì, Anna; Domenici, Raffaele; Malberti, Fabio; Sprocati, Monica; Sacco, Michele; Miglietti, Nunzia; Edefonti, Alberto; Sereni, Fabio; Casari, Giorgio; Coviello, Domenico A; Bettinelli, Alberto
2002-07-01
The SLC12A3 gene encodes the thiazide-sensitive Na-Cl co-transporter (NCCT) expressed in the apical membrane of the distal convoluted tubule of the kidney. Inactivating mutations of this gene are responsible for Gitelman syndrome (GS), a disorder inherited as an autosomal recessive trait. We searched for SLC12A3 gene mutations in 21 Italian patients with the clinical and biochemical features of GS (hypokalemia, hypomagnesemia, metabolic alkalosis, hypocalciuria, and the absence of nephrocalcinosis). All coding regions with their intron-exon boundaries were analyzed using PCR and SSCP techniques followed by sequencing analysis. We identified 21 different mutations evenly distributed throughout the gene without any mutation hot-spot. Fifteen are novel variants, including 12 missense mutations, one deletion, one deletion-insertion and one splice site mutation: R158Q, T163M, W172R, G316V, G374V, G463E, A464T, S615W, V677M, R852S, R958G, C985Y, 2114-2120delACCAAGT, 2144-2158delGCCTTCTACTCGGATinsTG, and 531-2A>G. Copyright 2002 Wiley-Liss, Inc.
Alternative intronic promoters in development and disease.
Vacik, Tomas; Raska, Ivan
2017-05-01
Approximately 20,000 mammalian genes are estimated to encode between 250 thousand and 1 million different proteins. This enormous diversity of the mammalian proteome is caused by the ability of a single-gene locus to encode multiple protein isoforms. Protein isoforms encoded by one gene locus can be functionally distinct, and they can even have antagonistic functions. One of the mechanisms involved in creating this proteome complexity is alternative promoter usage. Alternative intronic promoters are located downstream from their canonical counterparts and drive the expression of alternative RNA isoforms that lack upstream exons. These upstream exons can encode some important functional domains, and proteins encoded by alternative mRNA isoforms can be thus functionally distinct from the full-length protein encoded by canonical mRNA isoforms. Since any misbalance of functionally distinct protein isoforms is likely to have detrimental consequences for the cell and the whole organism, their expression must be precisely regulated. Misregulation of alternative intronic promoters is frequently associated with various developmental defects and diseases including cancer, and it is becoming increasingly clear that this phenomenon deserves more attention.
Lentes, K U; Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M
1999-01-01
Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. Recent studies have shown that the sympathetic nervous system, via norepinephrine (beta-adrenoceptors) and cAMP, as well as thyroid hormones and PPAR gamma ligands seem to be major regulators of UCP expression. From the three different UCPs identified so far by gene cloning UCP1 is expressed exclusively in brown adipocytes while UCP2 is widely expressed. The third analogue, UCP3, is expressed predominantly in human skeletal muscle and was found to exist in a long and a short form. At the amino acid level UCP2 has about 59% homology to UCP1 while UCP3 is 73% identical to UCP2. Both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyper-insulinaemia. Furthermore, there is strong evidence that UCP2, by virtue of its ubiquitous expression, may be important for determining basal metabolic rate. Based on the published full-length cDNA sequence we have deduced the genomic structure of the human UCP2 (hUCP2) gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.4 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely the one found in the human UCP1 gene and is almost conserved in the recently discovered UCP3 gene as well. However, the size of each of the introns in the hUCP2 gene differs from its UCP1 and UCP3 counterparts. It varies from 81 bp (intron 5) to about 3 kb (intron 2). The high degree of homology at the nucleotide level and the conservation of the exon/intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 25 children of caucasian origin (aged 7-13) characterized by low BMR values revealed a point mutation in exon 4 (C to T transition at position 164 of the corresponding cDNA resulting in the substitution of an alanine residue by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.61 and 0.39 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. Expression studies of the wildtype and mutant forms of UCP2 should clarify the functional consequences these mutations may have on energy metabolism and body weight regulation. In addition, mapping of the promoter region and the identification of putative promoter regulatory sequences should give insight into the transcriptional regulation of UCP2 expression--in particular by anyone of the above mentioned factors--in vitro and in vivo.
Graveley, Brenton R.
2008-01-01
Summary Drosophila Dscam encodes 38,016 distinct axon guidance receptors through the mutually exclusive alternative splicing of 95 variable exons. Importantly, known mechanisms that ensure the mutually exclusive splicing of pairs of exons cannot explain this phenomenon in Dscam. I have identified two classes of conserved elements in the Dscam exon 6 cluster, which contains 48 alternative exons—the docking site, located in the intron downstream of constitutive exon 5, and the selector sequences, which are located upstream of each exon 6 variant. Strikingly, each selector sequence is complementary to a portion of the docking site, and this pairing juxtaposes one, and only one, alternative exon to the upstream constitutive exon. The mutually exclusive nature of the docking site:selector sequence interactions suggests that the formation of these competing RNA structures is a central component of the mechanism guaranteeing that only one exon 6 variant is included in each Dscam mRNA. PMID:16213213
Yuan, Junhui; Higuchi, Yujiro; Nagado, Tatsui; Nozuma, Satoshi; Nakamura, Tomonori; Matsuura, Eiji; Hashiguchi, Akihiro; Sakiyama, Yusuke; Yoshimura, Akiko; Takashima, Hiroshi
2013-03-01
DNMT1, encoding DNA methyltransferase 1 (Dnmt1), is a critical enzyme which is mainly responsible for conversion of unmethylated DNA into hemimethylated DNA. To date, two phenotypes produced by DNMT1 mutations have been reported, including hereditary sensory and autonomic neuropathy (HSAN) type IE with mutations in exon 20, and autosomal dominant cerebellar ataxia, deafness, and narcolepsy caused by mutations in exon 21. We report a sporadic case in a Japanese patient with loss of pain and vibration sense, chronic osteomyelitis, autonomic system dysfunctions, hearing loss, and mild dementia, but without definite cerebellar ataxia. Electrophysiological studies revealed absent sensory nerve action potential with nearly normal motor nerve conduction studies. Brain magnetic resonance imaging revealed mild diffuse cerebral and cerebellar atrophy. Using a next-generation sequencing system, 16 candidate genes were analyzed and a novel missense mutation, c.1706A>G (p.His569Arg), was identified in exon 21 of DNMT1. Our findings suggest that mutation in exon 21 of DNMT1 may also produce a HSAN phenotype. Because all reported mutations of DNMT1 are concentrated in exons 20 and 21, which encode the replication focus targeting sequence (RFTS) domain of Dnmt1, the RFTS domain could be a mutation hot spot. © 2013 Peripheral Nerve Society.
Zhong, Wen-Zhao; Zhou, Qing; Wu, Yi-Long
2017-01-01
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) have been established as the standard therapy for EGFR-sensitizing mutant advanced non-small-cell lung cancer (NSCLC). However, patients ultimately develop resistance to these drugs. There are several mechanisms of both primary and secondary resistance to EGFR-TKIs. The primary resistance mechanisms include point mutations in exon 18, deletions or insertions in exon 19, insertions, duplications and point mutations in exon 20 and point mutation in exon 21 of EGFR gene. Secondary resistance to EGFR-TKIs is due to emergence of T790M mutation, activation of alternative signaling pathways, bypassing downstream signaling pathways and histological transformation. Strategies to overcome these intrinsic and acquired resistance mechanisms are complex. With the development of the precision medicine for advanced NSCLC, available systemic and local treatment options have expanded, requiring new clinical algorithms that take into account resistance mechanism. Though combination therapy is emerging as the standard of to overcome resistance mechanisms. Personalized treatment modalities based on molecular diagnosis and monitoring is essential for disease management. Emerging data from the ongoing clinical trials on combination therapy of third generation TKIs and antibodies in EGFR mutant NSCLC are promising for better survival outcomes. PMID:29050366
Cloning and characterization of a novel zinc finger gene in Xp11.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derry, J.M.J.; Jess, U.; Francke, U.
1995-11-20
During a systematic search for open reading frames in chromosome band Xp11.2, a novel gene (ZNF157) that encodes a putative 506-amino-acid protein with the sequence characteristics of a zinc-finger-containing transcription factor was isolated. ZNF157 is encoded by four exons distributed over >20 kb of genomic DNA. The second and third exons contain sequences similar to those of the previously described KRAB-A and KRAB-B domains, motifs that have been shown to mediate transcriptional repression in other members of the protein family. A fourth exon contains 12 zinc finger DNA binding motifs and finger linking regions characteristic of ZNF proteins of themore » Krueppel family. ZNF157 maps to the telomeric end of a cluster of ZNF genes that includes ZNF21, ZNF41, and ZNF81. 19 refs., 2 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampaio, S.O.; Mei, C.; Butcher, E.C.
The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereasmore » the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.« less
Haddad, Diana; Bilcikova, Erika; Witney, Adam A.; Carlton, Jane M.; White, Charles E.; Blair, Peter L.; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C.; Carucci, Daniel J.; Weiss, Walter R.
2004-01-01
We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens. PMID:14977966
Characterization and mapping of the mouse NDP (Norrie disease) locus (Ndp).
Battinelli, E M; Boyd, Y; Craig, I W; Breakefield, X O; Chen, Z Y
1996-02-01
Norrie disease is a severe X-linked recessive neurological disorder characterized by congenital blindness with progressive loss of hearing. Over half of Norrie patients also manifest different degrees of mental retardation. The gene for Norrie disease (NDP) has recently been cloned and characterized. With the human NDP cDNA, mouse genomic phage libraries were screened for the homolog of the gene. Comparison between mouse and human genomic DNA blots hybridized with the NDP cDNA, as well as analysis of phage clones, shows that the mouse NDP gene is 29 kb in size (28 kb for the human gene). The organization in the two species is very similar. Both have three exons with similar-sized introns and identical exon-intron boundaries between exon 2 and 3. The mouse open reading frame is 393 bp and, like the human coding sequence, is encoded in exons 2 and 3. The absence of six nucleotides in the second mouse exon results in the encoded protein being two amino acids smaller than its human counterpart. The overall homology between the human and mouse NDP protein is 95% and is particularly high (99%) in exon 3, consistent with the apparent functional importance of this region. Analysis of transcription initiation sites suggests the presence of multiple start sites associated with expression of the mouse NDP gene. Pedigree analysis of an interspecific mouse backcross localizes the mouse NDP gene close to Maoa in the conserved segment, which runs from CYBB to PFC in both human and mouse.
Yasuda, Hiroyuki; Hamamoto, Junko; Oashi, Ayano; Ishioka, Kota; Arai, Daisuke; Nukaga, Shigenari; Miyawaki, Masayoshi; Kawada, Ichiro; Naoki, Katsuhiko; Costa, Daniel B.; Kobayashi, Susumu S.; Betsuyaku, Tomoko; Soejima, Kenzo
2015-01-01
EGFR mutated lung cancer accounts for a significant subgroup of non-small-cell lung cancer (NSCLC). Over the last decade, multiple EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been developed to target mutated EGFR. However, there is little information regarding mutation specific potency of EGFR-TKIs against various types of EGFR mutations. The purpose of this study is to establish an in vitro model to determine the “therapeutic window” of EGFR-TKIs against various types of EGFR mutations, including EGFR exon 20 insertion mutations. The potency of 1st (erlotinib), 2nd (afatinib) and 3rd (osimertinib and rociletinib) generation EGFR-TKIs was compared in vitro for human lung cancer cell lines and Ba/F3 cells, which exogenously express mutated or wild type EGFR. An in vitro model of mutation specificity was created by calculating the ratio of IC50 values between mutated and wild type EGFR. The in vitro model identified a wide therapeutic window of afatinib for exon 19 deletions and L858R and of osimertinib and rociletinib for T790M positive mutations. The results obtained with our models matched well with previously reported preclinical and clinical data. Interestingly, for EGFR exon 20 insertion mutations, most of which are known to be resistant to 1st and 2nd generation EGFR-TKIS, osimertinib was potent and presented a wide therapeutic window. To our knowledge, this is the first report that has identified the therapeutic window of osimertinib for EGFR exon 20 insertion mutations. In conclusion, this model will provide a preclinical rationale for proper selection of EGFR-TKIs against clinically-relevant EGFR mutations. PMID:26515464
Genomic characterization of two large Alu-mediated rearrangements of the BRCA1 gene.
Peixoto, Ana; Pinheiro, Manuela; Massena, Lígia; Santos, Catarina; Pinto, Pedro; Rocha, Patrícia; Pinto, Carla; Teixeira, Manuel R
2013-02-01
To determine whether a large genomic rearrangement is actually novel and to gain insight about the mutational mechanism responsible for its occurrence, molecular characterization with breakpoint identification is mandatory. We here report the characterization of two large deletions involving the BRCA1 gene. The first rearrangement harbored a 89,664-bp deletion comprising exon 7 of the BRCA1 gene to exon 11 of the NBR1 gene (c.441+1724_oNBR1:c.1073+480del). Two highly homologous Alu elements were found in the genomic sequences flanking the deletion breakpoints. Furthermore, a 20-bp overlapping sequence at the breakpoint junction was observed, suggesting that the most likely mechanism for the occurrence of this rearrangement was nonallelic homologous recombination. The second rearrangement fully characterized at the nucleotide level was a BRCA1 exons 11-15 deletion (c.671-319_4677-578delinsAlu). The case harbored a 23,363-bp deletion with an Alu element inserted at the breakpoints of the deleted region. As the Alu element inserted belongs to a still active AluY family, the observed rearrangement could be due to an insertion-mediated deletion mechanism caused by Alu retrotransposition. To conclude, we describe the breakpoints of two novel large deletions involving the BRCA1 gene and analysis of their genomic context allowed us to gain insight about the respective mutational mechanism.
Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1).
Bachvarov, D R; Hess, J F; Menke, J G; Larrivée, J F; Marceau, F
1996-05-01
Two subtypes of mammalian bradykinin receptors, B1 and B2 (BDKRB1 and BDKRB2), have been defined based on their pharmacological properties. The B1 type kinin receptors have weak affinity for intact BK or Lys-BK but strong affinity for kinin metabolites without the C-terminal arginine (e.g., des-Arg9-BK and Lys-des-Arg9-BK, also called des-Arg10-kallidin), which are generated by kininase I. The B1 receptor expression is up-regulated following tissue injury and inflammation (hyperemia, exudation, hyperalgesia, etc.). In the present study, we have cloned and sequenced the gene encoding human B1 receptor from a human genomic library. The human B1 receptor gene contains three exons separated by two introns. The first and the second exon are noncoding, while the coding region and the 3'-flanking region are located entirely on the third exon. The exon-intron arrangement of the human B1 receptor gene shows significant similarity with the genes encoding the B2 receptor subtype in human, mouse, and rat. Sequence analysis of the 5'-flanking region revealed the presence of a consensus TATA box and of numerous candidate transcription factor binding sequences. Primer extension experiments have shown the existence of multiple transcription initiation sites situated downstream and upstream from the consensus TATA box. Genomic Southern blot analysis indicated that the human B1 receptor is encoded by a single-copy gene.
Mears, Alan J.; Hiriyanna, Suja; Vervoort, Raf; Yashar, Beverly; Gieser, Linn; Fahrner, Stacey; Daiger, Stephen P.; Heckenlively, John R.; Sieving, Paul A.; Wright, Alan F.; Swaroop, Anand
2000-01-01
X-linked forms of retinitis pigmentosa (XLRP) are among the most severe, because of their early onset, often leading to significant vision loss before the 4th decade. Previously, the RP15 locus was assigned to Xp22, by linkage analysis of a single pedigree with “X-linked dominant cone-rod degeneration.” After clinical reevaluation of a female in this pedigree identified her as affected, we remapped the disease to a 19.5-cM interval (DXS1219–DXS993) at Xp11.4-p21.1. This new interval overlapped both RP3 (RPGR) and COD1. Sequencing of the previously published exons of RPGR revealed no mutations, but a de novo insertion was detected in the new RPGR exon, ORF15. The identification of an RPGR mutation in a family with a severe form of cone and rod degeneration suggests that RPGR mutations may encompass a broader phenotypic spectrum than has previously been recognized in “typical” retinitis pigmentosa. PMID:10970770
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solera, J.; Magallon, M.; Martin-Villar, J.
1992-02-01
DNA from a patient with severe hemophilia B was evaluated by RFLP analysis, producing results which suggested the existence of a partial deletion within the factor IX gene. The deletion was further localized and characterized by PCR amplification and sequencing. The altered allele has a 4,442-bp deletion which removes both the donor splice site located at the 5[prime] end of intron d and the two last coding nucleotides located at the 3[prime] end of exon IV in the normal factor IX gene; this fragment has been inserted in inverted orientation. Two homologous sequences have been discovered at the ends ofmore » the deleted DNA fragment.« less
Uemura, Takehiro; Oguri, Tetsuya; Okayama, Minami; Furuta, Hiromi; Kanemitsu, Yoshihiro; Takakuwa, Osamu; Ohkubo, Hirotsugu; Takemura, Masaya; Maeno, Ken; Ito, Yutaka; Niimi, Akio
2017-04-01
We herein report a case of dramatic intracranial response to osimertinib in a poor performance status patient with lung adenocarcinoma harboring the epidermal growth factor receptor ( EGFR ) T790M mutation encoded in exon 20. The patient was a 59-year-old woman with EGFR exon 19 deletion-positive lung adenocarcinoma, who relapsed with multiple brain metastases. Computed tomography-guided biopsy of the left pleural tumor revealed adenocarcinoma harboring an EGFR exon 19 deletion and an EGFR T790M mutation encoded in exon 20. The patient was treated with osimertinib, a third-generation EGFR tyrosine kinase inhibitor. Two days after treatment initiation, the patient displayed profound disturbance of consciousness, possibly due to carcinomatous meningitis, and treatment had to be discontinued due to difficulty in taking osimertinib. However, the patient gradually started to recover consciousness and, after 3 days, she was again able to take osimertinib. One month after the initiation of osimertinib treatment, magnetic resonance imaging revealed an apparent reduction in brain metastases. The patient is currently under continued treatment with osimertinib. At the last follow-up (February, 2017) she exhibited partial response to the treatment.
Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.
2012-01-01
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637
Hypervariable and highly divergent intron-exon organizations in the chordate Oikopleura dioica.
Edvardsen, Rolf B; Lerat, Emmanuelle; Maeland, Anne Dorthea; Flåt, Mette; Tewari, Rita; Jensen, Marit F; Lehrach, Hans; Reinhardt, Richard; Seo, Hee-Chan; Chourrout, Daniel
2004-10-01
Oikopleura dioica is a pelagic tunicate with a very small genome and a very short life cycle. In order to investigate the intron-exon organizations in Oikopleura, we have isolated and characterized ribosomal protein EF-1alpha, Hox, and alpha-tubulin genes. Their intron positions have been compared with those of the same genes from various invertebrates and vertebrates, including four species with entirely sequenced genomes. Oikopleura genes, like Caenorhabditis genes, have introns at a large number of nonconserved positions, which must originate from late insertions or intron sliding of ancient insertions. Both species exhibit hypervariable intron-exon organization within their alpha-tubulin gene family. This is due to localization of most nonconserved intron positions in single members of this gene family. The hypervariability and divergence of intron positions in Oikopleura and Caenorhabditis may be related to the predominance of short introns, the processing of which is not very dependent upon the exonic environment compared to large introns. Also, both species have an undermethylated genome, and the control of methylation-induced point mutations imposes a control on exon size, at least in vertebrate genes. That introns placed at such variable positions in Oikopleura or C. elegans may serve a specific purpose is not easy to infer from our current knowledge and hypotheses on intron functions. We propose that new introns are retained in species with very short life cycles, because illegitimate exchanges including gene conversion are repressed. We also speculate that introns placed at gene-specific positions may contribute to suppressing these exchanges and thereby favor their own persistence.
Molecular Cloning of Drebrin: Progress and Perspectives.
Kojima, Nobuhiko
2017-01-01
Chicken drebrin isoforms were first identified in the optic tectum of developing brain. Although the time course of protein expression was different in each drebrin isoform, the similarity between their protein structures was suggested by biochemical analysis of purified protein. To determine their protein structures, the cloning of drebrin cDNAs was conducted. Comparison between the cDNA sequences shows that all drebrin cDNAs are identical except that the internal insertion sequences are present or absent in their sequences. Chicken drebrin are now classified into three isoforms, namely, drebrins E1, E2, and A. Genomic cloning demonstrated that the three isoforms are generated by an alternative splicing of individual exons encoding the insertion sequences from single drebrin gene. The mechanism should be precisely regulated in cell-type-specific and developmental stage-specific fashion. Drebrin protein, which is well conserved in various vertebrate species, although mammalian drebrin has only two isoforms, namely, drebrin E and drebrin A, is different from chicken drebrin that has three isoforms. Drebrin belongs to an actin-depolymerizing factor homology (ADF-H) domain protein family. Besides the ADF-H domain, drebrin has other domains, including the actin-binding domain and Homer-binding motifs. Diversity of protein isoform and multiple domains of drebrin could interact differentially with the actin cytoskeleton and other intracellular proteins and regulate diverse cellular processes.
Otto, Claudia; Csanadi, Agnes; Fisch, Paul; Werner, Martin; Kayser, Gian
2012-10-22
Lung cancer is the leading cause of death among malignant diseases in humans worldwide. In the last decade development of new targeted drugs for the treatment of non-small cell lung cancer proved to be a promising approach to prolong the otherwise very poor prognosis of patients with advanced UICC stages. Epidermal growth factor receptor (EGFR) has been in the focus of this lung cancer science and specific activating mutations are eligible for the treatment with specific tyrosine kinase inhibitors like gefitinib or erlotinib. Beside typical deletions in exon 19 and point mutations in exons 18 and 21 several insertions in exon 19 have been described and attributed activating properties as well. This is the first European and overall the 5th description in English literature of one of these specific insertions. To elucidate its structural changes leading to the activating properties we performed molecular modeling studies. These revealed conformational and electrostatic force field changes in the kinase domain of EGFR. To not miss uncommon mutations thorough and precise characterization of EGFR hotspots, i. e. at least exons 18, 19 and 21, should therefore be conducted to provide best medical care and to offer lung cancer patients appropriate cancer treatment. The vistual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2209889658102062.
Lentes, Jana; Thomay, Kathrin; Schneider, Dominik T; Bernbeck, Benedikt; Reinhardt, Dirk; Marschalek, Rolf; Meyer, Claus; Schlegelberger, Brigitte; Göhring, Gudrun
2016-01-01
In pediatric acute myeloid leukemia (AML), chromosomal abnormalities leading to a disruption of the lysine methyltransferase 2A (KMT2A) gene in 11q23 are the most frequent rearrangements. Here, we report on the identification of a novel cryptic insertion, ins(11;X)(q23;q28q12), resulting in a translocation of the KMT2A gene in 11q23, leading to a KMT2A-FLNA fusion in a 13-month-old boy with de novo acute myelomonocytic leukemia, who died 38 days after diagnosis. The patient presented a complex karyotype 48∼49,Y,del(X)(q12),+del(X)(q12),+8,ins(11;X)(q23; q28q12),+19. The identified fusion gene was predicted to be out-of-frame (fusion of portions of KMT2A exon 11 with FLNA exon 11). However, RT-PCR experiments demonstrated that a potentially functional transcript was generated by alternative splicing where KMT2A exon 10 was spliced in-frame to the truncated FLNA exon 11. This case report helps to better understand the rare but potentially severe impact of KMT2A- FLNA fusions in infants with AML to improve prognostic stratification of therapy and clinical management. © 2017 S. Karger AG, Basel.
Hatakeyama, Katsunori; Suwabe, Keita; Tomita, Rubens Norio; Kato, Takeyuki; Nunome, Tsukasa; Fukuoka, Hiroyuki; Matsumoto, Satoru
2013-01-01
Clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin, is one of the most economically important diseases of Brassica crops in the world. Although many clubroot resistance (CR) loci have been identified through genetic analysis and QTL mapping, the molecular mechanisms of defense responses against P. brassicae remain unknown. Fine mapping of the Crr1 locus, which was originally identified as a single locus, revealed that it comprises two gene loci, Crr1a and Crr1b. Here we report the map-based cloning and characterization of Crr1a, which confers resistance to clubroot in Brassica rapa. Crr1aG004, cloned from the resistant line G004, encodes a Toll-Interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) protein expressed in the stele and cortex of hypocotyl and roots, where secondary infection of the pathogen occurs, but not in root hairs, where primary infection occurs. Gain-of-function analysis proved that Crr1aG004 alone conferred resistance to isolate Ano-01 in susceptible Arabidopsis and B. rapa. In comparison, the susceptible allele Crr1aA9709 encodes a truncated NB-LRR protein, which lacked more than half of the TIR domain on account of the insertion of a solo-long terminal repeat (LTR) in exon 1 and included several substitutions and insertion-deletions in the LRR domain. This study provides a basis for further molecular analysis of defense mechanisms against P. brassicae and will contribute to the breeding of resistant cultivars of Brassica vegetables by marker-assisted selection. Data deposition The sequence reported in this paper has been deposited in the GenBank database (accession no. AB605024). PMID:23382954
Martins, Rute; Proença, Daniela; Silva, Bruno; Barbosa, Cristina; Silva, Ana Luísa; Faustino, Paula; Romão, Luísa
2012-01-01
Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that selectively recognizes and degrades defective mRNAs carrying premature translation-termination codons. However, several studies have shown that NMD also targets physiological transcripts that encode full-length proteins, modulating their expression. Indeed, some features of physiological mRNAs can render them NMD-sensitive. Human HFE is a MHC class I protein mainly expressed in the liver that, when mutated, can cause hereditary hemochromatosis, a common genetic disorder of iron metabolism. The HFE gene structure comprises seven exons; although the sixth exon is 1056 base pairs (bp) long, only the first 41 bp encode for amino acids. Thus, the remaining downstream 1015 bp sequence corresponds to the HFE 3′ untranslated region (UTR), along with exon seven. Therefore, this 3′ UTR encompasses an exon/exon junction, a feature that can make the corresponding physiological transcript NMD-sensitive. Here, we demonstrate that in UPF1-depleted or in cycloheximide-treated HeLa and HepG2 cells the HFE transcripts are clearly upregulated, meaning that the physiological HFE mRNA is in fact an NMD-target. This role of NMD in controlling the HFE expression levels was further confirmed in HeLa cells transiently expressing the HFE human gene. Besides, we show, by 3′-RACE analysis in several human tissues that HFE mRNA expression results from alternative cleavage and polyadenylation at four different sites – two were previously described and two are novel polyadenylation sites: one located at exon six, which confers NMD-resistance to the corresponding transcripts, and another located at exon seven. In addition, we show that the amount of HFE mRNA isoforms resulting from cleavage and polyadenylation at exon seven, although present in both cell lines, is higher in HepG2 cells. These results reveal that NMD and alternative polyadenylation may act coordinately to control HFE mRNA levels, possibly varying its protein expression according to the physiological cellular requirements. PMID:22530027
Grigelioniene, Giedre; Nevalainen, Pasi I; Reyes, Monica; Thiele, Susanne; Tafaj, Olta; Molinaro, Angelo; Takatani, Rieko; Ala-Houhala, Marja; Nilsson, Daniel; Eisfeldt, Jesper; Lindstrand, Anna; Kottler, Marie-Laure; Mäkitie, Outi; Jüppner, Harald
2017-04-01
Pseudohypoparathyroidism type Ib (PHP1B) is characterized primarily by resistance to parathyroid hormone (PTH) and thus hypocalcemia and hyperphosphatemia, in most cases without evidence for Albright hereditary osteodystrophy (AHO). PHP1B is associated with epigenetic changes at one or several differentially-methylated regions (DMRs) within GNAS, which encodes the α-subunit of the stimulatory G protein (Gsα) and splice variants thereof. Heterozygous, maternally inherited STX16 or GNAS deletions leading to isolated loss-of-methylation (LOM) at exon A/B alone or at all maternal DMRs are the cause of autosomal dominant PHP1B (AD-PHP1B). In this study, we analyzed three affected individuals, the female proband and her two sons. All three revealed isolated LOM at GNAS exon A/B, whereas the proband's healthy maternal grandmother and uncle showed normal methylation at this locus. Haplotype analysis was consistent with linkage to the STX16/GNAS region, yet no deletion could be identified. Whole-genome sequencing of one of the patients revealed a large heterozygous inversion (1,882,433 bp). The centromeric breakpoint of the inversion is located 7,225 bp downstream of GNAS exon XL, but its DMR showed no methylation abnormality, raising the possibility that the inversion disrupts a regulatory element required only for establishing or maintaining exon A/B methylation. Because our three patients presented phenotypes consistent with PHP1B, and not with PHP1A, the Gsα promoter is probably unaffected by the inversion. Our findings expand the spectrum of genetic mutations that lead to LOM at exon A/B alone and thus biallelic expression of the transcript derived from this alternative first GNAS exon. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Ding, Mingquan; Ye, Wuwei; Lin, Lifeng; He, Shae; Du, Xiongming; Chen, Aiqun; Cao, Yuefen; Qin, Yuan; Yang, Fen; Jiang, Yurong; Zhang, Hua; Wang, Xiyin; Paterson, Andrew H.; Rong, Junkang
2015-01-01
Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in the At subgenome HD1 gene (At-GbHD1). In both the At and Dt subgenomes, reduced transcription of GbHD1 genes is caused by this insertion. The disruption of At-HD1 further affects the expression of downstream GbMYB25 and GbHOX3 genes. Analyses of primitive cultivated accessions identified another retrotransposon insertion event in the sixth exon of At-GbHD1 that might predate the previously identified retrotransposon in modern varieties. Although both retrotransposon insertions results in similar phenotypic changes, the timing of these two retrotransposon insertion events fits well with our current understanding of the history of cotton speciation and dispersal. Taken together, the results of genetics mapping, gene expression and association analyses suggest that GbHD1 is an important component that controls stem trichome development and is a promising candidate gene for the T1 locus. The interspecific phenotypic difference in stem trichome traits also may be attributable to HD1 inactivation associated with retrotransposon insertion. PMID:26133897
Toyoda, N; Kleinhaus, N; Larsen, P R
1996-06-01
We analyzed the exon-intron structure of the human type 1 deiodinase gene (dio1) and compared it with that of a patient with suspected congenital type 1 deiodinase (D1) deficiency. The hdio1 gene is identical in exon-intron arrangement to the mouse gene, with coding sequences and a selenocysteine insertion sequence (SECIS) element contained in four exons. There were no mutations in the sequences of exons 1-4 of the patient's genomic DNA. Functional studies by transient expression techniques showed no difference in basal promoter activity or T3 responsiveness between the patient's and the normal dio1 gene. A structural abnormality in the dio1 gene is not a likely explanation for this patient's D1-deficient phenotype.
HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing
Preußner, Marco; Schreiner, Silke; Hung, Lee-Hsueh; Porstner, Martina; Jäck, Hans-Martin; Benes, Vladimir; Rätsch, Gunnar; Bindereif, Albrecht
2012-01-01
CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4–6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL). To address the complex combinatorial splicing of exons 4–6, we investigated hnRNP L/LL protein expression in human B-cells in relation to CD45 splicing patterns, applying RNA-Seq. In addition, mutational and RNA-binding analyses were carried out in HeLa cells. We conclude that hnRNP LL functions as the major CD45 splicing repressor, with two CA elements in exon 6 as its primary target. In exon 4, one element is targeted by both hnRNP L and LL. In contrast, exon 5 was never repressed on its own and only co-regulated with exons 4 and 6. Stable L/LL interaction requires CD45 RNA, specifically exons 4 and 6. We propose a novel model of combinatorial alternative splicing: HnRNP L and LL cooperate on the CD45 pre-mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full repression of the three variable exons. PMID:22402488
2012-01-01
Introduction In recent genome-wide association studies for psoriatic arthritis (PsA) and psoriasis vulgaris, common coding variants in the TRAF3IP2 gene were identified to contribute to susceptibility to both disease entities. The risk allele of p.Asp10Asn (rs33980500) proved to be most significantly associated and to encode a mutant protein with an almost completely disrupted binding property to TRAF6, supporting its impact as a main disease-causing variant and modulator of IL-17 signaling. Methods To identify further variants, exons 2-4 encoding both known TNF-receptor-associated factor (TRAF) binding domains were sequenced in 871 PsA patients. Seven missense variants and one three-base-pair insertion were identified in 0.06% to 1.02% of alleles. Five of these variants were also present in 931 control individuals at comparable frequency. Constructs containing full-length wild-type or mutant TRAF3IP2 were generated and used to analyze functionally all variants for TRAF6-binding in a mammalian two-hybrid assay. Results None of the newly found alleles, though, encoded proteins with different binding properties to TRAF6, or to the cytoplasmic tail of the IL-17-receptor α-chain, suggesting that they do not contribute to susceptibility. Conclusions Thus, the TRAF3IP2-variant p.Asp10Asn is the only susceptibility allele with functional impact on TRAF6 binding, at least in the German population. PMID:22513239
Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G; Simpson, June
2012-01-01
Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants.
Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G.; Simpson, June
2012-01-01
Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants. PMID:22558253
2018-03-07
EGFR Exon 19 Deletion Mutation; EGFR Exon 20 Insertion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR NP_005219.2:p.T790M; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage IV Non-Small Cell Lung Cancer AJCC v7
Significant expansion of exon-bordering protein domains during animal proteome evolution
Liu, Mingyi; Walch, Heiko; Wu, Shaoping; Grigoriev, Andrei
2005-01-01
We present evidence of remarkable genome-wide mobility and evolutionary expansion for a class of protein domains whose borders locate close to the borders of their encoding exons. These exon-bordering domains are more numerous and widely distributed in the human genome than other domains. They also co-occur with more diverse domains to form a larger variety of domain architectures in human proteins. A systematic comparison of nine animal genomes from nematodes to mammals revealed that exon-bordering domains expanded faster than other protein domains in both abundance and distribution, as well as the diversity of co-occurring domains and the domain architectures of harboring proteins. Furthermore, exon-bordering domains exhibited a particularly strong preference for class 1-1 intron phase. Our findings suggest that exon-bordering domains were amplified and interchanged within a genome more often and/or more successfully than other domains during evolution, probably the result of extensive exon shuffling and gene duplication events. The diverse biological functions of these domains underscore the important role they play in the expansion and diversification of animal proteomes. PMID:15640447
Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene.
Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil
2007-11-29
Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.
Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene
Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil
2007-01-01
Background Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Results Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. Conclusion The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains. PMID:18047649
Gao, Meiling; Hu, Liangliang; Li, Yuhong; Weng, Yiqun
2016-10-01
The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway. The Mg-chelatase catalyzes the insertion of Mg(2+) into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.
Mateos, Jesús; Herranz, Raúl; Domingo, Alberto; Sparrow, John; Marco, Roberto
2006-01-01
In Drosophila melanogaster two high molecular weight tropomyosin isoforms, historically named heavy troponins (TnH-33 and TnH-34), are encoded by the Tm1 tropomyosin gene. They are specifically expressed in the indirect flight muscles (IFM). Their N-termini are conventional and complete tropomyosin sequences, but their C-termini consist of different IFM-specific domains that are rich in proline, alanine, glycine and glutamate. The evidence indicates that in Diptera these IFM-specific isoforms are conserved and are not troponins, but heavy tropomyosins (TmH). We report here that they are post-translationally modified by several phosphorylations in their C-termini in mature flies, but not in recently emerged flies that are incapable of flight. From stoichiometric measurements of thin filament proteins and interactions of the TmH isoforms with the standard Drosophila IFM tropomyosin isoform (protein 129), we propose that the TmH N-termini are integrated into the thin filament structural unit as tropomyosin dimers. The phosphorylated C-termini remain unlocated and may be important in IFM stretch-activation. Comparison of the Tm1 and Tm2 gene sequences shows a complete conservation of gene organisation in other Drosophilidae, such as Drosophila pseudoobscura, while in Anopheles gambiae only one exon encodes a single C-terminal domain, though overall gene organization is maintained. Interestingly, in Apis mellifera (hymenopteran), while most of the Tm1 and Tm2 gene features are conserved, the gene lacks any C-terminal exons. Instead these sequences are found at the 3' end of the troponin I gene. In this insect order, as in Lethocerus (hemipteran), the original designation of troponin H (TnH) should be retained. We discuss whether the insertion of the IFM-specific pro-ala-gly-glu-rich domain into the tropomyosin or troponin I genes in different insect orders may be related to proposals that the IFM stretch activation mechanism has evolved independently several times in higher insects.
Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia
Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W.
2011-01-01
To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML. PMID:21989985
Xu, Jin; Xu, Ming; Brown, Taylor; Rossi, Grace C; Hurd, Yasmin L; Inturrisi, Charles E; Pasternak, Gavril W; Pan, Ying-Xian
2013-07-19
The μ-opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, as illustrated by the identification of an array of splice variants generated by both 5' and 3' alternative splicing. The current study reports the identification of another set of splice variants conserved across species that are generated through exon skipping or insertion that encodes proteins containing only a single transmembrane (TM) domain. Using a Tet-Off system, we demonstrated that the truncated single TM variants can dimerize with the full-length 7-TM μ-opioid receptor (MOR-1) in the endoplasmic reticulum, leading to increased expression of MOR-1 at the protein level by a chaperone-like function that minimizes endoplasmic reticulum-associated degradation. In vivo antisense studies suggested that the single TM variants play an important role in morphine analgesia, presumably through modulation of receptor expression levels. Our studies suggest the functional roles of truncated receptors in other G protein-coupled receptor families.
Nakano, Yuko; Kobayashi, Masato; Bonkobara, Makoto; Takanosu, Masamine
2017-06-01
Imatinib-resistance is a major therapeutic problem in human chronic myeloid leukemia, human gastrointestinal stromal tumors, and canine mast cell tumors. In the present study, we identified the secondary mutation c.2006C>T in c-KIT exon 14 in a mast cell tumor obtained from a dog carrying c.1663-1671del in exon 11 and showing resistance to imatinib. The mutation in exon 14 resulted in substitution of threonine with isoleucine at position 669, which was located at the center of the ATP binding site as a gatekeeper and played an important role in binding to imatinib. Transfectants were constructed to survey the functions of these mutations in exons 11 and 14. The transfectant with mutant KIT encoded by c-KIT carrying c.1663-1671del showed constitutive ligand-independent phosphorylation that was suppressed by imatinib, indicating a gain-of-function mutation. Furthermore, the transfectant with mutant KIT encoded by c-KIT carrying both c.1663-1671del and c.2006C>T caused ligand-independent phosphorylation, which was not suppressed by imatinib. From these results, we concluded that the mutation c.2006C>T in c-KIT exon 14 was an imatinib-resistance mutation in a canine mast cell tumor. These findings revealed, for the first time, a mechanism of imatinib resistance in a clinical case of canine mast cell tumor. Copyright © 2017 Elsevier B.V. All rights reserved.
Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar
2015-01-01
We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578
Vysokovsky, A; Saxena, R; Landau, M; Zivelin, A; Eskaraev, R; Rosenberg, N; Seligsohn, U; Inbal, A
2004-10-01
Hereditary factor (F)XIII deficiency is a rare bleeding disorder mostly due to mutations in FXIII A subunit. We studied the molecular basis of FXIII deficiency in patients from 10 unrelated families originating from Israel, India and Tunisia. Exons 2-15 of genomic DNA consisting of coding regions and intron/exon boundaries were amplified and sequenced. Structural analysis of the mutations was undertaken by computer modeling. Seven novel mutations were identified in the FXIIIA gene. The propositus from the Ethiopian-Jewish family was found to be a compound heterozygote for two novel mutations: a 10-bp deletion in exon 12 at nucleotides 1652-1661 (followed by 22 altered amino acids and termination codon) and Ala318Val mutation. The propositus of the Tunisian family was homozygous for C insertion after nucleotide 863 within a stretch of six cytosines of exon 7. This insertion results in generation of eight altered amino acids followed by a termination codon downstream. The propositus from Indian-Jewish origin was found to be homozygous for G to T substitution at IVS 11 [+1] resulting in skipping of exons 10 and 11. In addition to the Ala318Val mutation, three of the novel mutations identified are missense mutations: Arg260Leu, Thr398Asn and Gly210Arg each occurring in a homozygous state in an Israeli-Arab and two Indian families, respectively. Structure-function correlation analysis by computer modeling of the new missense mutations predicted that Gly210Arg will cause protein misfolding, Ala318Val and Thr398Asn will interfere with the catalytic process or protein stability, and Arg260Leu will impair dimerization.
Chen, Mingchen; Wolynes, Peter G.
2017-01-01
Huntington’s disease (HD) is a neurodegenerative disease caused by an abnormal expansion in the polyglutamine (polyQ) track of the Huntingtin (HTT) protein. The severity of the disease depends on the polyQ repeat length, arising only in patients with proteins having 36 repeats or more. Previous studies have shown that the aggregation of N-terminal fragments (encoded by HTT exon 1) underlies the disease pathology in mouse models and that the HTT exon 1 gene product can self-assemble into amyloid structures. Here, we provide detailed structural mechanisms for aggregation of several protein fragments encoded by HTT exon 1 by using the associative memory, water-mediated, structure and energy model (AWSEM) to construct their free energy landscapes. We find that the addition of the N-terminal 17-residue sequence (NT17) facilitates polyQ aggregation by encouraging the formation of prefibrillar oligomers, whereas adding the C-terminal polyproline sequence (P10) inhibits aggregation. The combination of both terminal additions in HTT exon 1 fragment leads to a complex aggregation mechanism with a basic core that resembles that found for the aggregation of pure polyQ repeats using AWSEM. At the extrapolated physiological concentration, although the grand canonical free energy profiles are uphill for HTT exon 1 fragments having 20 or 30 glutamines, the aggregation landscape for fragments with 40 repeats has become downhill. This computational prediction agrees with the critical length found for the onset of HD and suggests potential therapies based on blocking early binding events involving the terminal additions to the polyQ repeats. PMID:28400517
Esmaeili, Rezvan; Abdoli, Nasrin; Yadegari, Fatemeh; Neishaboury, Mohamadreza; Farahmand, Leila; Kaviani, Ahmad; Majidzadeh-A, Keivan
2018-01-01
CD44 encoded by a single gene is a cell surface transmembrane glycoprotein. Exon 2 is one of the important exons to bind CD44 protein to hyaluronan. Experimental evidences show that hyaluronan-CD44 interaction intensifies the proliferation, migration, and invasion of breast cancer cells. Therefore, the current study aimed at investigating the association between specific polymorphisms in exon 2 and its flanking region of CD44 with predisposition to breast cancer. In the current study, 175 Iranian female patients with breast cancer and 175 age-matched healthy controls were recruited in biobank, Breast Cancer Research Center, Tehran, Iran. Single nucleotide polymorphisms of CD44 exon 2 and its flanking were analyzed via polymerase chain reaction and gene sequencing techniques. Association between the observed variation with breast cancer risk and clinico-pathological characteristics were studied. Subsequently, bioinformatics analysis was conducted to predict potential exonic splicing enhancer (ESE) motifs changed as the result of a mutation. A unique polymorphism of the gene encoding CD44 was identified at position 14 nucleotide upstream of exon 2 (A37692→G) by the sequencing method. The A > G polymorphism exhibited a significant association with higher-grades of breast cancer, although no significant relation was found between this polymorphism and breast cancer risk. Finally, computational analysis revealed that the intronic mutation generated a new consensus-binding motif for the splicing factor, SC35, within intron 1. The current study results indicated that A > G polymorphism was associated with breast cancer development; in addition, in silico analysis with ESE finder prediction software showed that the change created a new SC35 binding site.
Uemura, Takehiro; Oguri, Tetsuya; Okayama, Minami; Furuta, Hiromi; Kanemitsu, Yoshihiro; Takakuwa, Osamu; Ohkubo, Hirotsugu; Takemura, Masaya; Maeno, Ken; Ito, Yutaka; Niimi, Akio
2017-01-01
We herein report a case of dramatic intracranial response to osimertinib in a poor performance status patient with lung adenocarcinoma harboring the epidermal growth factor receptor (EGFR) T790M mutation encoded in exon 20. The patient was a 59-year-old woman with EGFR exon 19 deletion-positive lung adenocarcinoma, who relapsed with multiple brain metastases. Computed tomography-guided biopsy of the left pleural tumor revealed adenocarcinoma harboring an EGFR exon 19 deletion and an EGFR T790M mutation encoded in exon 20. The patient was treated with osimertinib, a third-generation EGFR tyrosine kinase inhibitor. Two days after treatment initiation, the patient displayed profound disturbance of consciousness, possibly due to carcinomatous meningitis, and treatment had to be discontinued due to difficulty in taking osimertinib. However, the patient gradually started to recover consciousness and, after 3 days, she was again able to take osimertinib. One month after the initiation of osimertinib treatment, magnetic resonance imaging revealed an apparent reduction in brain metastases. The patient is currently under continued treatment with osimertinib. At the last follow-up (February, 2017) she exhibited partial response to the treatment. PMID:28413660
Results for diffusion-weighted imaging with a fourth-channel gradient insert.
Feldman, Rebecca E; Scholl, Timothy J; Alford, Jamu K; Handler, William B; Harris, Chad T; Chronik, Blaine A
2011-12-01
Diffusion-weighted imaging suffers from motion artifacts and relatively low signal quality due to the long echo times required to permit the diffusion encoding. We investigated the inclusion of a noncylindrical fourth gradient coil, dedicated entirely to diffusion encoding, into the imaging system. Standard three-axis whole body gradients were used during image acquisition, but we designed and constructed an insert coil to perform diffusion encodings. We imaged three phantoms on a 3-T system with a range of diffusion coefficients. Using the insert gradient, we were able to encode b values of greater than 1300 s/mm(2) with an echo time of just 83 ms. Images obtained using the insert gradient had higher signal to noise ratios than those obtained using the whole body gradient: at 500 s/mm(2) there was a 18% improvement in signal to noise ratio, at 1000 s/mm(2) there was a 39% improvement in signal to noise ratio, and at 1350 s/mm(2) there was a 56% improvement in signal to noise ratio. Using the insert gradient, we were capable of doing diffusion encoding at high b values by using relatively short echo times. Copyright © 2011 Wiley Periodicals, Inc.
Exon 11 skipping of SCN10A coding for voltage-gated sodium channels in dorsal root ganglia
Schirmeyer, Jana; Szafranski, Karol; Leipold, Enrico; Mawrin, Christian; Platzer, Matthias; Heinemann, Stefan H
2014-01-01
The voltage-gated sodium channel NaV1.8 (encoded by SCN10A) is predominantly expressed in dorsal root ganglia (DRG) and plays a critical role in pain perception. We analyzed SCN10A transcripts isolated from human DRGs using deep sequencing and found a novel splice variant lacking exon 11, which codes for 98 amino acids of the domain I/II linker. Quantitative PCR analysis revealed an abundance of this variant of up to 5–10% in human, while no such variants were detected in mouse or rat. Since no obvious functional differences between channels with and without the exon-11 sequence were detected, it is suggested that SCN10A exon 11 skipping in humans is a tolerated event. PMID:24763188
Slowly progressive retinitis pigmentosa caused by two novel mutations in the MAK gene.
Gray, Joanna Monika; Orlans, Harry Otway; Shanks, Morag; Clouston, Penny; MacLaren, Robert Elvis
2018-05-21
The growing number of clinical trials currently underway for inherited retinal diseases has highlighted the importance of achieving a molecular diagnosis for all new cases presenting to hospital eye services. The male germ cell-associated kinase (MAK) gene encodes a cilium-associated protein selectively expressed in the retina and testis, and has recently been implicated in autosomal recessive retinitis pigmentosa (RP). Whole exome sequencing has previously identified a homozygous Alu insertion in probands with recessive RP and nonsense and missense mutations have also been reported. Here we describe two novel mutations in different alleles of the MAK gene in a 75-year-old British female, who had a clinical diagnosis of RP () with onset in the fourth decade and no relevant family history. The mutations were established through next generation sequencing of a panel of 111 genes associated with RP and RP-like phenotypes. Two novel null mutations were identified within the MAK gene. The first c.1195_1196delAC p.(Thr399fs), was a two base-pair deletion creating a frame-shift in exon 9 predicted to result in nonsense-mediated decay. The second, c.279-2A>G, involved the splice acceptor consensus site upstream of exon 4, predicted to lead to aberrant splicing. The natural history of this individual's RP is consistent with previously described MAK mutations, being significantly milder than that associated with other photoreceptor ciliopathies. We suggest inclusion of MAK as part of wider genetic testing in all individuals presenting with RP.
COMMUNICATION: Alternative splicing and genomic stability
NASA Astrophysics Data System (ADS)
Cahill, Kevin
2004-06-01
Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.
Langin, D; Laurell, H; Holst, L S; Belfrage, P; Holm, C
1993-01-01
The human hormone-sensitive lipase (HSL) gene encodes a 786-aa polypeptide (85.5 kDa). It is composed of nine exons spanning approximately 11 kb, with exons 2-5 clustered in a 1.1-kb region. The putative catalytic site (Ser423) and a possible lipid-binding region in the C-terminal part are encoded by exons 6 and 9, respectively. Exon 8 encodes the phosphorylation site (Ser551) that controls cAMP-mediated activity and a second site (Ser553) that is phosphorylated by 5'-AMP-activated protein kinase. Human HSL showed 83% identity with the rat enzyme and contained a 12-aa deletion immediately upstream of the phosphorylation sites with an unknown effect on the activity control. Besides the catalytic site motif (Gly-Xaa-Ser-Xaa-Gly) found in most lipases, HSL shows no homology with other known lipases or proteins, except for a recently reported unexpected homology between the region surrounding its catalytic site and that of the lipase 2 of Moraxella TA144, an antarctic psychrotrophic bacterium. The gene of lipase 2, which catalyses lipolysis below 4 degrees C, was absent in the genomic DNA of five other Moraxella strains living at 37 degrees C. The lipase 2-like sequence in HSL may reflect an evolutionarily conserved cold adaptability that might be of critical survival value when low-temperature-mobilized endogenous lipids are the primary energy source (e.g., in poikilotherms or hibernators). The finding that HSL at 10 degrees C retained 3- to 5-fold more of its 37 degrees C catalytic activity than lipoprotein lipase or carboxyl ester lipase is consistent with this hypothesis. Images Fig. 5 PMID:8506334
Arakane, Yasuyuki; Hogenkamp, David G; Zhu, Yu Cheng; Kramer, Karl J; Specht, Charles A; Beeman, Richard W; Kanost, Michael R; Muthukrishnan, Subbaratnam
2004-03-01
Two chitin synthase (CHS) genes of the red flour beetle, Tribolium castaneum, were sequenced and their transcription patterns during development examined. By screening a BAC library of genomic DNA from T. castaneum (Tc) with a DNA probe encoding the catalytic domain of a putative Tribolium CHS, several clones that contained CHS genes were identified. Two distinct PCR products were amplified from these BAC clones and confirmed to be highly similar to CHS genes from other insects, nematodes and fungi. The DNA sequences of these genes, TcCHS1 and TcCHS2, were determined by amplification of overlapping PCR fragments from two of the BAC DNAs and mapped to different linkage groups. Each ORF was identified and full-length cDNAs were also amplified, cloned and sequenced. TcCHS1 and TcCHS2 encode transmembrane proteins of 1558 and 1464 amino acids, respectively. The TcCHS1 gene was found to use alternate exons, each encoding 59 amino acids, a feature not found in the TcCHS2 gene. During development, Tribolium expressed TcCHS1 predominantly in the embryonic and pupal stages, whereas TcCHS2 was prevalent in the late larval and adult stages. The alternate exon 8a of TcCHS1 was utilized over a much broader range of development than exon 8b. We propose that the two isoforms of the TcCHS1 enzyme are used predominantly for the formation of chitin in embryonic and pupal cuticles, whereas TcCHS2 is utilized primarily for the synthesis of peritrophic membrane-associated chitin in the midgut.
Rumpho, Mary E.; Pochareddy, Sirisha; Worful, Jared M.; Summer, Elizabeth J.; Bhattacharya, Debashish; Pelletreau, Karen N.; Tyler, Mary S.; Lee, Jungho; Manhart, James R.; Soule, Kara M.
2009-01-01
Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclear-encoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V. litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V. litorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months. PMID:19995736
Zhang, Dan; Jia, Huan; Li, Weiming; Hou, Yingchun; Lu, Shaoying; He, Shuixiang
2016-01-01
CD44, especially the isoforms with variable exons (CD44v), is a promising biomarker for the detection of cancer. To develop a CD44v-specific probe, we screened a 7-mer phage peptide library against the CD44v3-v10 protein using an improved subtractive method. The consensus sequences with the highest frequency (designated CV-1) emerged after four rounds of panning. The binding affinity and specificity of the CV-1 phage and the synthesized peptide for the region of CD44 encoded by the variable exons were confirmed using enzyme-linked immunosorbent assay and competitive inhibition assays. Furthermore, the binding of the CV-1 probe to gastric cancer cells and tissues was validated using immunofluorescence and immunohistochemistry assays. CV-1 sensitively and specifically bound to CD44v on cancer cells and tissues. Thus, CV-1 has the potential to serve as a promising probe for cancer molecular imaging and target therapy. © 2015 Society for Laboratory Automation and Screening.
Ankyrin-G isoform imbalance and interneuronopathy link epilepsy and bipolar disorder.
Lopez, A Y; Wang, X; Xu, M; Maheshwari, A; Curry, D; Lam, S; Adesina, A M; Noebels, J L; Sun, Q-Q; Cooper, E C
2017-10-01
ANK3, encoding the adaptor protein Ankyrin-G (AnkG), has been implicated in bipolar disorder by genome-wide association studies. ANK3 has multiple alternative first exons, and a bipolar disorder-associated ANK3 variant has been shown to reduce the expression of exon 1b. Here we identify mechanisms through which reduced ANK3 exon 1b isoform expression disrupts neuronal excitation-inhibition balance. We find that parvalbumin (PV) interneurons and principal cells differentially express ANK3 first exon subtypes. PV interneurons express only isoforms containing exon 1b, whereas excitatory principal cells express exon 1e alone or both 1e and 1b. In transgenic mice deficient for exon 1b, PV interneurons lack voltage-gated sodium channels at their axonal initial segments and have increased firing thresholds and diminished action potential dynamic range. These mice exhibit an Ank3 gene dosage-dependent phenotype including behavior changes modeling bipolar disorder, epilepsy and sudden death. Thus ANK3's important association with human bipolar susceptibility may arise from imbalance between AnkG function in interneurons and principal cells and resultant excessive circuit sensitivity and output. AnkG isoform imbalance is a novel molecular endophenotype and potential therapeutic target.
Ankyrin-G isoform imbalance and interneuronopathy link epilepsy and bipolar disorder
Lopez, Angel Y.; Wang, Xinjun; Xu, Mingxuan; Maheshwari, Atul; Curry, Daniel; Lam, Sandi; Adesina, Adekunle M.; Noebels, Jeffrey L.; Sun, Qian-Quan; Cooper, Edward C.
2016-01-01
ANK3, encoding the adaptor protein Ankyrin-G, has been implicated in bipolar disorder by genome wide association studies. ANK3 has multiple alternative first exons, and a bipolar disorder-associated ANK3 variant has been shown to reduce expression of exon 1b. Here we identify mechanisms through which reduced ANK3 exon 1b isoform expression disrupts neuronal excitation-inhibition balance. We find that parvalbumin interneurons and principal cells differentially express ANK3 first exon subtypes. Parvalbumin interneurons express only isoforms containing exon 1b, whereas excitatory principal cells express exon 1e alone, or both 1e and 1b. In transgenic mice deficient for exon 1b, parvalbumin interneurons lack voltage-gated sodium channels at their axonal initial segments and have increased firing thresholds and diminished action potential dynamic range. These mice exhibit an Ank3 gene dosage-dependent phenotype including behavior changes modeling bipolar disorder, epilepsy, and sudden death. Thus, ANK3’s important association with human bipolar susceptibility may arise from imbalance between ankyrin-G function in interneurons and principal cells and resultant excessive circuit sensitivity and output. Ankyrin-G isoform imbalance is a novel molecular endophenotype and potential therapeutic target. PMID:27956739
Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K
2016-06-01
The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.
Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putnam, E.A.; Cho, M.; Milewicz, D.M.
Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-basedmore » exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.« less
Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping.
Gao, Quan Q; Wyatt, Eugene; Goldstein, Jeff A; LoPresti, Peter; Castillo, Lisa M; Gazda, Alec; Petrossian, Natalie; Earley, Judy U; Hadhazy, Michele; Barefield, David Y; Demonbreun, Alexis R; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M
2015-11-02
Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.
Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping
Gao, Quan Q.; Wyatt, Eugene; Goldstein, Jeff A.; LoPresti, Peter; Castillo, Lisa M.; Gazda, Alec; Petrossian, Natalie; Earley, Judy U.; Hadhazy, Michele; Barefield, David Y.; Demonbreun, Alexis R.; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M.
2015-01-01
Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations. PMID:26457733
Khani, Shahrokh C.; Nielsen, Lori; Vogt, Todd M.
1998-01-01
Rhodopsin kinase (RK), a rod photoreceptor cytosolic enzyme, plays a key role in the normal deactivation and recovery of the photoreceptor after exposure to light. To date, three different mutations in the RK locus have been associated with Oguchi disease, an autosomal recessive form of stationary night blindness in man characterized in part by delayed photoreceptor recovery [Yamamoto, S., Sippel, K. C., Berson, E. L. & Dryja, T. P. (1997) Nat. Genet. 15, 175–178]. Two of the mutations involve exon 5, and the remaining mutation occurs in exon 7. Known exon 5 mutations include the deletion of the entire exon sequence [HRK(X5 del)] and a missense change leading to a Val380Asp substitution in the encoded product (HRKV380D). The mutation in exon 7 is a 4-bp deletion in codon 536 leading to premature termination of the encoded polypeptide [HRKS536(4-bp del)]. To provide biochemical evidence for pathogenicity of these mutations, wild-type human rhodopsin kinase (HRK) and mutant forms HRKV380D and HRKS536(4-bp del) were expressed in COS7 cells and their activities were compared. Wild-type HRK catalyzed light-dependent phosphorylation of rhodopsin efficiently. In contrast, both mutant proteins were markedly deficient in catalytic activity with HRKV380D showing virtually no detectible activity and HRKS536(4-bp del) only minimal light-dependent activity. These results provide biochemical evidence to support the pathogenicity of the RK mutations in man. PMID:9501174
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petroulakis, E.; Cao, Z.; Salo, T.
Mutations in the HEXA gene that encodes the {alpha}-subunit of the heterodimeric lysosomal enzyme {beta}-hexosaminidase A, or Hex A ({alpha}{beta}), cause G{sub M2} gangliosidosis, type 1. The infantile form (Tay-Sachs disease) results when there is no residual Hex A activity, while less severe and more variable clinical phenotypes result when residual Hex A activity is present. A non-Jewish male who presented with an acute psychotic episode at age 16 was diagnosed with a subacute encephalopathic form of G{sub M2} gangliosidosis. At age 19, chronic psychosis with intermittent acute exacerbations remains the most disabling symptom in this patient and his affectedmore » brother although both exhibit some ataxia and moderately severe dysarthria. We have found a 4 bp insertion (+TATC 1278) associated with infantile Tay-Sachs disease on one allele; no previously identified mutation was found on the second allele. SSCP analysis detected a shift in exon 13 and sequencing revealed a G1422C mutation in the second allele that results in a Trp474Cys substitution. The presence of the mutation was confirmed by the loss of HaeIII and ScrFI sites in exon 13 PCR products from the subjects and their father. The mutation was introduced into the {alpha}-subunit cDNA and Hex S ({alpha}{alpha}) and Hex A ({alpha}{beta}) were transiently expressed in monkey COS-7 cells. The Trp474Cys mutant protein had approximately 5% and 12% of wild-type Hex S and Hex A activity, respectively. Western blot analysis revealed a small amount of residual mature {alpha}-subunit and a normal level of precursor protein. We conclude that the Trp474Cys mutation is the cause of the Hex A deficiency associated with a subacute (juvenile-onset) phenotype in this patient. Like other mutations in exon 13 of HEXA, it appears to affect intracellular processing. Studies of the defect in intracellular processing are in progress.« less
Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC.
Ahmed, Zubair M; Smith, Tenesha N; Riazuddin, Saima; Makishima, Tomoko; Ghosh, Manju; Bokhari, Sirosh; Menon, Puthezhath S N; Deshmukh, Dilip; Griffith, Andrew J; Riazuddin, Sheikh; Friedman, Thomas B; Wilcox, Edward R
2002-06-01
Human chromosome 11 harbors two Usher type I loci, USHIB and USHIC, which encode myosin VIIA and harmonin, respectively. The USHIC locus overlaps the reported critical interval for nonsyndromic deafness locus DFNB18. We found an IVS12+5G-->C mutation in the USHIC gene, which is associated with nonsyndromic recessive deafness ( DFNB18) segregating in the original family, S-11/12. No other disease-associated mutation was found in the other 27 exons or in the intron-exon boundaries, and the IVS12+5G-->C mutation was not present in 200 representative unaffected individuals ascertained from the same area of India. An exon-trapping assay with a construct harboring IVS12+5G-->C generated wildtype spliced mRNA having exons 11 and 12 and mRNA that skipped exon 12. We conclude that mutations of USHIC can cause both Usher syndrome type IC and nonsyndromic recessive deafness DFNB18.
Kronert, W A; Edwards, K A; Roche, E S; Wells, L; Bernstein, S I
1991-01-01
We show that the molecular lesions in two homozygousviable mutants of the Drosophila muscle myosin heavy chain gene affect an alternative exon (exon 9a) which encodes a portion of the myosin head that is highly conserved among both cytoplasmic and muscle myosins of all organisms. In situ hybridization and Northern blotting analysis in wild-type organisms indicates that exon 9a is used in indirect flight muscles whereas both exons 9a and 9b are utilized in jump muscles. Alternative exons 9b and 9c are used in other larval and adult muscles. One of the mutations in exon 9a is a nonsense allele that greatly reduces myosin RNA stability. It prevents thick filament accumulation in indirect flight muscles and severely reduces the number of thick filaments in a subset of cells of the jump muscles. The second mutation affects the 5' splice site of exon 9a. This results in production of an aberrantly spliced transcript in indirect flight muscles, which prevents thick filament accumulation. Jump muscles of this mutant substitute exon 9b for exon 9a and consequently have normal levels of thick filaments in this muscle type. This isoform substitution does not obviously affect the ultrastructure or function of the jump muscle. Analysis of this mutant illustrates that indirect flight muscles and jump muscles utilize different mechanisms for alternative RNA splicing. Images PMID:1907912
Structure and polymorphism of the mouse prion protein gene.
Westaway, D; Cooper, C; Turner, S; Da Costa, M; Carlson, G A; Prusiner, S B
1994-01-01
Missense mutations in the prion protein (PrP) gene, overexpression of the cellular isoform of PrP (PrPC), and infection with prions containing the scrapie isoform of PrP (PrPSc) all cause neurodegenerative disease. To understand better the physiology and expression of PrPC, we retrieved mouse PrP gene (Prn-p) yeast artificial chromosome (YAC), cosmid, phage, and cDNA clones. Physical mapping positions Prn-p approximately 300 kb from ecotropic virus integration site number 4 (Evi-4), compatible with failure to detect recombination between Prn-p and Evi-4 in genetic crosses. The Prn-pa allele encompasses three exons, with exons 1 and 2 encoding the mRNA 5' untranslated region. Exon 2 has no equivalent in the Syrian hamster and human PrP genes. The Prn-pb gene shares this intron/exon structure but harbors an approximately 6-kb deletion within intron 2. While the Prn-pb open reading frame encodes two amino acid substitutions linked to prolonged scrapie incubation periods, a deletion of intron 2 sequences also characterizes inbred strains such as RIII/S and MOLF/Ei with shorter incubation periods, making a relationship between intron 2 size and scrapie pathogenesis unlikely. The promoter regions of a and b Prn-p alleles include consensus Sp1 and AP-1 sites, as well as other conserved motifs which may represent binding sites for as yet unidentified transcription factors. Images PMID:7912827
Comparative analysis of myostatin gene and promoter sequences of Qinchuan and Red Angus cattle.
He, Y L; Wu, Y H; Quan, F S; Liu, Y G; Zhang, Y
2013-09-04
To better understand the function of the myostatin gene and its promoter region in bovine, we amplified and sequenced the myostatin gene and promoter from the blood of Qinchuan and Red Angus cattle by using polymerase chain reaction. The sequences of Qinchuan and Red Angus cattle were compared with those of other cattle breeds available in GenBank. Exon splice sites were confirmed by mRNA sequencing. Compared to the published sequence (GenBank accession No. AF320998), 69 single nucleotide polymorphisms (SNPs) were identified in the Qinchuan myostatin gene, only one of which was an insertion mutation in Qinchuan cattle. There was a 16-bp insertion in the first 705-bp intron in 3 Qinchuan cattle. A total of 7 SNPs were identified in exon 3, in which the mutation occurred in the third base of the codon and was synonymous. On comparing the Qinchuan myostatin gene sequence to that of Red Angus cattle, a total of 50 SNPs were identified in the first and third exons. In addition, there were 18 SNPs identified in the Qinchuan cattle promoter region compared with those of other cattle compared to the Red Angus cattle myostatin promoter region. breeds (GenBank accession No. AF348479), but only 14 SNPs when compared to the Red Angus cattle myostatin promoter region.
Gonçalves, Ana; Oliveira, Jorge; Coelho, Teresa; Taipa, Ricardo; Melo-Pires, Manuel; Sousa, Mário; Santos, Rosário
2017-10-03
A broad mutational spectrum in the dystrophin ( DMD ) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD , adding to the diversity of mutational events that give rise to D/BMD.
NASA Astrophysics Data System (ADS)
Li, Shengjie; Bai, Junjie; Wang, Lin
2008-08-01
Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.
Species-Specific Exon Loss in Human Transcriptomes
Wang, Jinkai; Lu, Zhi-xiang; Tokheim, Collin J.; Miller, Sara E.; Xing, Yi
2015-01-01
Changes in exon–intron structures and splicing patterns represent an important mechanism for the evolution of gene functions and species-specific regulatory networks. Although exon creation is widespread during primate and human evolution and has been studied extensively, much less is known about the scope and potential impact of human-specific exon loss events. Historically, transcriptome data and exon annotations are significantly biased toward humans over nonhuman primates. This ascertainment bias makes it challenging to discover human-specific exon loss events. We carried out a transcriptome-wide search of human-specific exon loss events, by taking advantage of RNA sequencing (RNA-seq) as a powerful and unbiased tool for exon discovery and annotation. Using RNA-seq data of humans, chimpanzees, and other primates, we reconstructed and compared transcript structures across the primate phylogeny. We discovered 33 candidate human-specific exon loss events, among which six exons passed stringent experimental filters for the complete loss of splicing activities in diverse human tissues. These events may result from human-specific deletion of genomic DNA, or small-scale sequence changes that inactivated splicing signals. The impact of human-specific exon loss events is predominantly regulatory. Three of the six events occurred in the 5′ untranslated region (5′-UTR) and affected cis-regulatory elements of mRNA translation. In SLC7A6, a gene encoding an amino acid transporter, luciferase reporter assays suggested that both a human-specific exon loss event and an independent human-specific single nucleotide substitution in the 5′-UTR increased mRNA translational efficiency. Our study provides novel insights into the molecular mechanisms and evolutionary consequences of exon loss during human evolution. PMID:25398629
Regulation of alternative splicing in Drosophila by 56 RNA binding proteins
Brooks, Angela N.; Duff, Michael O.; May, Gemma; ...
2015-08-20
Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected themore » splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.« less
Liu, Jun; Bhadra, Malini; Sinnakannu, Joanna Rajeswary; Yue, Wan Lin; Tan, Cheryl Weiqi; Rigo, Frank; Ong, S.Tiong; Roca, Xavier
2017-01-01
Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis-acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM-polymorphism-associated TKI-resistant CML and other cancers. PMID:29100409
Liu, Jun; Bhadra, Malini; Sinnakannu, Joanna Rajeswary; Yue, Wan Lin; Tan, Cheryl Weiqi; Rigo, Frank; Ong, S Tiong; Roca, Xavier
2017-09-29
Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis -acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM -polymorphism-associated TKI-resistant CML and other cancers.
Millard, T P; Ashton, G H S; Kondeatis, E; Vaughan, R W; Hughes, G R V; Khamashta, M A; Hawk, J L M; McGregor, J M; McGrath, J A
2002-02-01
The Ro 60 kDa protein (Ro60 or SSA2) is the major component of the Ro ribonucleoprotein (Ro RNP) complex, to which an immune response is a specific feature of several autoimmune diseases. The genomic organization and any sequence variation within the DNA encoding Ro60 are unknown. To characterize the Ro60 gene structure and to assess whether any sequence alterations might be associated with serum anti-Ro antibody in subacute cutaneous lupus erythematosus (SCLE), thus potentially providing new insight into disease pathogenesis. The cDNA sequence for Ro60 was obtained from the NCBI database and used for a BLAST search for a clone containing the entire genomic sequence. The intron-exon borders were confirmed by designing intronic primer pairs to flank each exon, which were then used to amplify genomic DNA for automated sequencing from 36 caucasian patients with SCLE (anti-Ro positive) and 49 with discoid LE (DLE, anti-Ro negative), in addition to 36 healthy caucasian controls. Heteroduplex analysis of polymerase chain reaction (PCR) products from patients and controls spanning all Ro60 exons (1-8) revealed a common bandshift in the PCR products spanning exon 7. Sequencing of the corresponding PCR products demonstrated an A > G substitution at nucleotide position 1318-7, within the consensus acceptor splice site of exon 7 (GenBank XM001901). The allele frequencies were major allele A (0.71) and minor allele G (0.29) in 72 control chromosomes, with no significant differences found between SCLE patients, DLE patients and controls. The genomic organization of the DNA encoding the Ro60 protein is described, including a common polymorphism within the consensus acceptor splice site of exon 7. Our delineation of a strategy for the genomic amplification of Ro60 forms a basis for further examination of the pathological functions of the Ro RNP in autoimmune disease.
Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers.
Wyatt, Eugene J; Demonbreun, Alexis R; Kim, Ellis Y; Puckelwartz, Megan J; Vo, Andy H; Dellefave-Castillo, Lisa M; Gao, Quan Q; Vainzof, Mariz; Pavanello, Rita C M; Zatz, Mayana; McNally, Elizabeth M
2018-05-03
Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.
The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.
Finta, C; Zaphiropoulos, P G
2000-12-30
Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D.
2014-01-01
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D
2014-05-09
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides.
Basic anatomy and tumor biology of the RPS6KA6 gene that encodes the p90 ribosomal S6 kinase-4
Sun, Yuan; Cao, Shousong; Yang, Min; Wu, Sihong; Wang, Zhe; Lin, Xiukun; Song, Xiangrang; Liao, D.J.
2012-01-01
The RPS6KA6 gene encodes the p90 ribosomal S6 kinase-4 (RSK4) that is still largely uncharacterized. In this study we identified a new RSK4 transcription initiation site and several alternative splice sites with a 5’RACE approach. The resulting mRNA variants encompass four possible first start codons. The first 15 nucleotides (nt) of exon 22 in mouse and the penultimate exon in both human (exon 21) and mouse (exon 24) RSK4 underwent alternative splicing, although the penultimate exon deleted variant appeared mainly in cell clines, but not in most normal tissues. Demethylation agent 5-azacytidine inhibited the deletion of the penultimate exon whereas two indolocarbazole-derived inhibitors of cyclin dependent kinase 4 or 6 induced deletion of the first 39 nt from exon 21 of human RSK4. In all human cancer cell lines studied, the 90-kD wild type RSK4 was sparse but, surprisingly, several isoforms at or smaller than 72-kD were expressed as detected by seven different antibodies. On immunoblots, each of these smaller isoforms often appeared as a duplet or triplet and the levels of these isoforms varied greatly among different cell lines and culture conditions. Cyclin D1 inhibited RSK4 expression and serum starvation enhanced the inhibition, whereas c-Myc and RSK4 inhibited cyclin D1. The effects of RSK4 on cell growth, cell death and chemoresponse depended on the mRNA variant or the protein isoform expressed, on the specificity of the cell lines, as well as on the anchorage-dependent or -independent growth conditions and the in vivo situation. Moreover, we also observed that even a given cDNA might be expressed to multiple proteins; therefore, when using a cDNA, one needs to exclude this possibility before attribution of the biological results from the cDNA to the anticipated protein. Collectively, our results suggest that whether RSK4 is oncogenic or tumor suppressive depends on many factors. PMID:22614021
Lack of mutations in the leptin receptor gene in severely obese children.
Dias, Natasha Favoretto; Fernandes, Ariana Ester; Melo, Maria Edna de; Reinhardt, Heidi Lui; Cercato, Cintia; Villares, Sandra Mara Ferreira; Halpern, Alfredo; Mancini, Marcio C
2012-04-01
To analyze the LEPR gene in obese children and to investigate the associations between molecular findings and anthropometric and metabolic features. Thirty-two patients were evaluated regarding anthropometric characteristics, blood pressure, heart rate, serum glucose, insulin, leptin levels, and lipid profile. The molecular study consisted of the amplification and automatic sequencing of the coding region of LEPR in order to investigate new mutations. We identified a high prevalence of metabolic disorders: impaired fasting glucose in 12.5% of the patients, elevated HOMA-IR in 85.7%, low HDL-cholesterol levels in 46.9%, high triglyceride levels in 40.6%, and hypertension in 58.6% of the patients. The molecular study identified 6 already described allelic variants: rs1137100 (exon-2), rs1137101 (exon-4), rs1805134 (exon-7), rs8179183 (exon-12), rs1805096 (exon-18), and the deletion/insertion of the pentanucleotide CTTTA at 3'untranslated region. The frequency of alleles observed in this cohort is similar to that described in the literature, and was not correlated with any clinical feature. The molecular findings in the analysis of the LEPR did not seem to be implicated in the etiology of obesity in these patients.
Shirts, Brian H; Salipante, Stephen J; Casadei, Silvia; Ryan, Shawnia; Martin, Judith; Jacobson, Angela; Vlaskin, Tatyana; Koehler, Karen; Livingston, Robert J; King, Mary-Claire; Walsh, Tom; Pritchard, Colin C
2014-10-01
Single-exon inversions have rarely been described in clinical syndromes and are challenging to detect using Sanger sequencing. We report the case of a 40-year-old woman with adenomatous colon polyps too numerous to count and who had a complex inversion spanning the entire exon 10 in APC (the gene encoding for adenomatous polyposis coli), causing exon skipping and resulting in a frameshift and premature protein truncation. In this study, we employed complete APC gene sequencing using high-coverage next-generation sequencing by ColoSeq, analysis with BreakDancer and SLOPE software, and confirmatory transcript analysis. ColoSeq identified a complex small genomic rearrangement consisting of an inversion that results in translational skipping of exon 10 in the APC gene. This mutation would not have been detected by traditional sequencing or gene-dosage methods. We report a case of adenomatous polyposis resulting from a complex single-exon inversion. Our report highlights the benefits of large-scale sequencing methods that capture intronic sequences with high enough depth of coverage-as well as the use of informatics tools-to enable detection of small pathogenic structural rearrangements.
Genomic structure and expression of STM2, the chromosome 1 familial Alzheimer disease gene.
Levy-Lahad, E; Poorkaj, P; Wang, K; Fu, Y H; Oshima, J; Mulligan, J; Schellenberg, G D
1996-06-01
Mutations in the gene STM2 result in autosomal dominant familial Alzheimer disease. To screen for mutations and to identify regulatory elements for this gene, the genomic DNA sequence and intron-exon structure were determined. Twelve exons including 10 coding exons were identified in a genomic region spanning 23,737 bp. The first 2 exons encode the 5'-untranslated region. Expression analysis of STM2 indicates that two transcripts of 2.4 and 2.8 kb are found in skeletal muscle, pancreas, and heart. In addition, a splice variant of the 2.4-kb transcript was identified that is the result of the use of an alternative splice acceptor site located in exon 10. The use of this site results in a transcript lacking a single glutamate. The promotor for this gene and the alternatively spliced exons leading to the 2.8-kb form of the gene remain to be identified. Expression of STM2 was high in skeletal muscle and pancreas, with comparatively low levels observed in brain. This expression pattern is intriguing since in Alzheimer disease, pathology and degeneration are observed only in the central nervous system.
Genomic structure and expression of STM2, the chromosome 1 familial Alzheimer disease gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy-Lahad, E.; Wang, Kai; Fu, Ying Hui
1996-06-01
Mutations in the gene STM2 result in autosomal dominant familial Alzheimer disease. To screen for mutations and to identify regulatory elements for this gene, the genomic DNA sequence and intron-exon structure were determined. Twelve exons including 10 coding exons were identified in a genomic region spanning 23, 737 bp. The first 2 exons encode the 5{prime}-untranslated region. Expression analysis of STM2 indicates that two transcripts of 2.4 and 2.8 kb are found in skeletal muscle, pancreas, and heart. In addition, a splice variant of the 2.4-kb transcript was identified that is the result of the use of an alternative splicemore » acceptor site located in exon 10. The use of this site results in a transcript lacking a single glutamate. The promotor for this gene and the alternatively spliced exons leading to the 2.8-kb form of the gene remain to be identified. Expression of STM2 was high in skeletal muscle and pancreas, with comparatively low levels observed in brain. This expression pattern is intriguing since in Alzheimer disease, pathology and degeneration are observed only in the central nervous system. 19 refs., 2 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Dingding; Ye, Guangming; Liu, Tingting
2010-05-28
14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1' insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal {alpha}-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3more » epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.« less
Identification of NADPH oxidase family members associated with cold stress in strawberry.
Zhang, Yunting; Li, Yali; He, Yuwei; Hu, Wenjie; Zhang, Yong; Wang, Xiaorong; Tang, Haoru
2018-04-01
NADPH oxidase is encoded by a small gene family (Respiratory burst oxidase homologs, Rbohs ) and plays an important role in regulating various biological processes. However, little information about this gene family is currently available for strawberry. In this study, a total of seven Rboh genes were identified from strawberry through genomewide analysis. Gene structure analysis showed the number of exons ranged from 10 to 23, implying that this variation occurred in FvRboh genes by the insertion and distribution of introns; the order and approximate size of exons were relatively conserved. FvRbohC was predicted to localize to the thylakoid membrane of the chloroplast, while other members were computed to localize to the plasma membrane, indicating different functions. Amino acid sequence alignment, conserved domain, and motif analysis showed that all identified FvRbohs had typical features of plant Rbohs. Phylogenetic analysis of Rbohs from strawberry, grape, Arabidopsis, and rice suggested that the FvRbohs could be divided into five subgroups and showed a closer relationship with those from grape and Arabidopsis than those from rice. The expression patterns of FvRboh genes in root, stem, leaf, flower, and fruit revealed robust tissue specificity. The expression levels of FvRbohA and FvRbohD were quickly induced by cold stress, followed by an increase in NADPH oxidase activity, leading to O2- accumulation and triggering the antioxidant reaction by the transient increases in SOD activity. This suggested these two genes may be involved in cold stress and defense responses in strawberry.
Gitelman syndrome in a South African family presenting with hypokalaemia and unusual food cravings.
van der Merwe, Pieter Du Toit; Rensburg, Megan A; Haylett, William L; Bardien, Soraya; Davids, M Razeen
2017-01-26
Gitelman syndrome (GS) is an autosomal recessive renal tubular disorder characterised by renal salt wasting with hypokalaemia, metabolic alkalosis, hypomagnesaemia and hypocalciuria. It is caused by mutations in SLC12A3 encoding the sodium-chloride cotransporter on the apical membrane of the distal convoluted tubule. We report a South African family with five affected individuals presenting with hypokalaemia and unusual food cravings. The affected individuals and two unaffected first degree relatives were enrolled into the study. Phenotypes were evaluated through history, physical examination and biochemical analysis of blood and urine. Mutation screening was performed by sequencing of SLC12A3, and determining the allele frequencies of the sequence variants found in this family in 117 ethnically matched controls. The index patient, her sister, father and two aunts had a history of severe salt cravings, fatigue and tetanic episodes, leading to consumption of large quantities of salt and vinegar. All affected individuals demonstrated hypokalaemia with renal potassium wasting. Genetic analysis revealed that the pseudo-dominant pattern of inheritance was due to compound heterozygosity with two novel mutations: a S546G substitution in exon 13, and insertion of AGCCCC at c.1930 in exon 16. These variants were present in the five affected individuals, but only one variant each in the unaffected family members. Neither variant was found in any of the controls. The diagnosis of GS was established in five members of a South African family through clinical assessment, biochemical analysis and mutation screening of the SLC12A3 gene, which identified two novel putative pathogenic mutations.
Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice.
Orfanos, Zacharias; Sparrow, John C
2013-01-01
During muscle development myosin molecules form symmetrical thick filaments, which integrate with the thin filaments to produce the regular sarcomeric lattice. In Drosophila indirect flight muscles (IFMs) the details of this process can be studied using genetic approaches. The weeP26 transgenic line has a GFP-encoding exon inserted into the single Drosophila muscle myosin heavy chain gene, Mhc. The weeP26 IFM sarcomeres have a unique MHC-GFP-labelling pattern restricted to the sarcomere core, explained by non-translation of the GFP exon following alternative splicing. Characterisation of wild-type IFM MHC mRNA confirmed the presence of an alternately spliced isoform, expressed earlier than the major IFM-specific isoform. The two wild-type IFM-specific MHC isoforms differ by the presence of a C-terminal 'tailpiece' in the minor isoform. The sequential expression and assembly of these two MHCs into developing thick filaments suggest a role for the tailpiece in initiating A-band formation. The restriction of the MHC-GFP sarcomeric pattern in weeP26 is lifted when the IFM lack the IFM-specific myosin binding protein flightin, suggesting that it limits myosin dissociation from thick filaments. Studies of flightin binding to developing thick filaments reveal a progressive binding at the growing thick filament tips and in a retrograde direction to earlier assembled, proximal filament regions. We propose that this flightin binding restricts myosin molecule incorporation/dissociation during thick filament assembly and explains the location of the early MHC isoform pattern in the IFM A-band.
Takeda, Masayuki; Sakai, Kazuko; Hayashi, Hidetoshi; Tanaka, Kaoru; Tanizaki, Junko; Takahama, Takayuki; Haratani, Koji; Nishio, Kazuto; Nakagawa, Kazuhiko
2018-04-20
Unlike common epidermal growth factor receptor gene ( EGFR ) mutations that confer sensitivity to tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC), mutations in exon 20 of either EGFR or the human EGFR2 gene ( HER2 ) are associated with insensitivity to EGFR-TKIs, with treatment options for patients with such mutations being limited. Clinical characteristics, outcome of EGFR-TKI or nivolumab treatment, and the presence of coexisting mutations were reviewed for NSCLC patients with exon-20 mutations of EGFR or HER2 as detected by routine application of an amplicon-based next-generation sequencing panel. Between July 2013 and June 2017, 206 patients with pathologically confirmed lung cancer were screened for genetic alterations including HER2 and EGFR mutations. Ten patients harbored HER2 exon-20 insertions (one of whom also carried an exon-19 deletion of EGFR ), and 12 patients harbored EGFR exon-20 mutations. Five of the 13 patients with EGFR mutations were treated with EGFR-TKIs, two of whom manifested a partial response, two stable disease, and one progressive disease. Among the seven patients treated with nivolumab, one patient manifested a partial response, three stable disease, and three progressive disease, with most (86%) of these patients discontinuing treatment as a result of disease progression within 4 months. The H1047R mutation of PIK3CA detected in one patient was the only actionable mutation coexisting with the exon-20 mutations of EGFR or HER2 . Potentially actionable mutations thus rarely coexist with exon-20 mutations of EGFR or HER2 , and EGFR-TKIs and nivolumab show limited efficacy in patients with such exon-20 mutations.
Sun, Shunchang; Zhang, Wenwu; Chen, Xi; Song, Huiwen
2015-04-01
Coronary heart disease (CHD) is a disease resulting from the interaction between genetic variations and environmental factors. Zinc finger homeobox 3 (ZFHX3) is a transcription factor and contains a poly-glutamine tract in a compositionally biased region that is encoded by exon 9, containing a cluster of CAG and CAA triplets followed by the polymorphic CAA repeats: (CAG)2(CAA)2(CAG)3CAACAG(CAA)nGCA. Thus, nine successive glutamine residues precede the poly-glutamine tract, encoded by the polymorphic CAA repeats. The aim of this study was to investigate the association of the CAA repeat polymorphism in exon 9 of the ZFHX3 gene with the risk of CHD in a Chinese population. The CAA repeat polymorphism was determined by polymerase chain reaction followed by DNA sequencing in 321 CHD patients. Genotype frequencies were compared using the non-parametric mood median test. Four alleles of CAG(CAA)10GCA, CAG(CAA)8GCA, CAG(CAA)9GCA, and CAG(CAA)11GCA were found in Chinese CHD patients in exon 9 of the ZFHX3 gene. The CAG(CAA)10GCA was a major allele (95.95%), and the CAG(CAA)8GCA was a minor allele (3.58%). The CAG(CAA)9GCA and CAG(CAA)11GCA were rare alleles (0.31% and 0.16%). The CAG(CAA)10GCA allele encodes a poly-glutamine tract of 19 residues. Importantly, the CHD patients homozygous for the CAG(CAA)10GCA allele had a higher risk of CHD, compared to the heterozygous patients carrying a CAG(CAA)8GCA allele. Moreover, the CAG(CAA)10GCA allele was significantly associated with hypertension, diabetes mellitus, or dyslipidemia (P < 0.05). Thus, the CAA repeat polymorphism in exon 9 of the ZFHX3 gene contributes to the CHD susceptibility in the Chinese population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, L.; Serneels, L.; Hilliker, C.
1994-08-01
The authors have cloned the mouse gene coding for {alpha}{sub 2}-macroglobulin in overlapping {lambda} clones and have analyzed its structure. The gene contains 36 exons, coding for the 4.8-kb cDNA that we cloned previously. Including putative control elements in the 5{prime} flanking region, the gene covers about 45 kb. A region of 3.8 kb, stretching from 835 bases upstream of the cDNA start site to exon 4, including all intervening sequences, was sequenced completely. The analysis demonstrated that the putative promoter region of the mouse A2M gene differed considerably from the known promoter sequences of the human A2M gene andmore » of the rat acute-phas A2M gene. Comparison of the exon-intron structure of all known genes of the A2M family confirmed that the rat acute phase A2M gene is more closely related to the human gene than to the mouse A2M gene. To generate mice with the A2M gene inactivated, an insertion type of construct containing 7.5 kb of genomic DNA of the mouse strain 129/J, encompassing exons 16 to 19, was synthesized. A hygromycin marker gene was embedded in intron 17. After electroporation, 198 hygromycin-resistant ES cell lines were isolated and analyzed by Southern blotting. Five ES cell lines were obtained with one allele of the mouse A2M gene targeted by this insertion construct, demonstrating that the position and the characteristics of the vector served the intended goal.« less
Hiraoka, M; Berinstein, D M; Trese, M T; Shastry, B S
2001-01-01
Retinopathy of prematurity (ROP) is a leading cause of blindness in premature children. It is a multifactorial disorder which causes fibrovascular tissue changes that affect the retina in low birth-weight and short gestational age infants. To determine the prevalence of Norrie disease (ND) gene mutations, clinical examination and molecular genetic analyses were performed in 100 pre-term babies of different ethnic backgrounds who developed advanced ROP. The leukocyte DNA was extracted, amplified by the polymerase chain reaction (PCR), and analyzed by single-strand conformation polymorphism (SSCP), G/T and C/A scanning, and by DNA sequencing. All three exons, including splice sites and the 3'-untranslated region, were screened. Of the 100 patients analyzed, 2 patients with advanced ROP showed a mobility shift in the DNA. In 1 patient, this mobility shift was caused by the insertion of an additional 12-bp CT repeat in exon 1, and in the second patient, there was a 14-bp deletion in the same exon of the ND gene, as evidenced by direct sequencing of the amplified products. Similar analyses of exons 2 and 3 and the 3'-untranslated region failed to detect additional mutations in the gene. None of the 130 normal, unrelated controls revealed similar changes. Taking into account the above results, as well as those of other studies, it appears that the ND gene mutations can account for 3% of cases of advanced ROP. Although the ND gene is not frequently involved in advanced ROP, the present large-scale study further supports the hypothesis that genetic influences may play an important role in the development of severe ROP in some premature infants.
Dimitrova, Desislava; Ruscito, Ilary; Olek, Sven; Richter, Rolf; Hellwag, Alexander; Türbachova, Ivana; Woopen, Hannah; Baron, Udo; Braicu, Elena Ioana; Sehouli, Jalid
2016-09-01
Germline mutations in BRCA1 gene have been reported in up to 20 % of epithelial ovarian cancer (EOC) patients. Distinct clinical characteristics have been attributed to this special EOC population. We hypothesized that mutations in different BRCA1 gene exons may differently affect the clinical course of the disease. The aim of this study was to analyze, in a large cohort of primary EOCs, the clinical impact of mutations in BRCA1 gene exon 11, the largest exon of the gene sequence encoding the 60 % of BRCA1 protein. Two hundred sixty-three primary EOC patients, treated between 2000 and 2008 at Charité University Hospital of Berlin, were included. Patients' blood samples were obtained from the Tumor Ovarian Cancer (TOC) Network ( www.toc-network.de ). Direct sequencing of BRCA1 gene exon 11 was performed for each patient to detect mutations. Based on their BRCA1 exon 11 mutational status, patients were compared regarding clinico-pathological variables and survival. Mutations in BRCA1 exon 11 were found in 18 out of 263 patients (6.8 %). Further 10/263 (3.8 %) cases showed variants of uncertain significance (VUS). All exon 11 BRCA1-positive tumors (100 %) were Type 2 ovarian carcinomas (p = 0.05). Age at diagnosis was significantly younger in Type 2 exon 11 mutated patients (p = 0.01). On multivariate analysis, BRCA1 exon 11 mutational status was not found to be an independent predictive factor for optimal cytoreduction, platinum response, or survival. Mutations in BRCA1 gene exon 11 seem to predispose women to exclusively develop a Type 2 ovarian cancer at younger age. Exon 11 BRCA1-mutated EOC patients showed distinct clinico-pathological features but similar clinical outcome with respect to sporadic EOC patients.
Speed, Haley E.; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M.; Ochoa, Christine F.; Gupta, Natasha; Liu, Shunan
2015-01-01
SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan–McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3G). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3G/G mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3G/G mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3G/G mouse that was engineered with such future experiments in mind. PMID:26134648
von Schnakenburg, C; Hulton, S A; Milford, D V; Roper, H P; Rumsby, G
1998-01-01
Two unrelated patients of Pakistani origin presented with primary hyperoxaluria type 1 (PH1) at 4 months and 3 years of age, respectively. While the younger patient failed to thrive and suffered from early renal failure, the older one showed a relatively benign history with urolithiasis as the main feature of the disease. In both patients the diagnosis was confirmed by assessment of alanine:glyoxylate aminotransferase catalytic and immunoreactivity in liver biopsy specimens. The underlying genetic defect was found to be a combined deletion and insertion in exon 8 which alters the reading frame of the protein. The nucleotide change introduces a Stu1 restriction site which facilitated typing of additional family members. Both patients and a further affected brother were homozygous for this mutation, while their parents were heterozygous for it. This mutation is the first deletion/insertion identified in PH1. Although rare in our PH1 patient cohort (2.5% of alleles), the finding of 2 homozygous apparently unrelated individuals of the same ethnic origin suggests that it may prove worthwhile to screen other Asian patients for this mutation. These PH1 cases present further evidence that factors other than genotype contribute significantly to the clinical presentation and severity of PH1.
Gonçalves, Ana; Coelho, Teresa; Melo-Pires, Manuel; Sousa, Mário
2017-01-01
A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD. PMID:28972564
MIYAGAWA, Shuji; MATSUNARI, Hitomi; WATANABE, Masahito; NAKANO, Kazuaki; UMEYAMA, Kazuhiro; SAKAI, Rieko; TAKAYANAGI, Shuko; TAKEISHI, Toki; FUKUDA, Tooru; YASHIMA, Sayaka; MAEDA, Akira; EGUCHI, Hiroshi; OKUYAMA, Hiroomi; NAGAYA, Masaki; NAGASHIMA, Hiroshi
2015-01-01
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs. PMID:26227017
Miyagawa, Shuji; Matsunari, Hitomi; Watanabe, Masahito; Nakano, Kazuaki; Umeyama, Kazuhiro; Sakai, Rieko; Takayanagi, Shuko; Takeishi, Toki; Fukuda, Tooru; Yashima, Sayaka; Maeda, Akira; Eguchi, Hiroshi; Okuyama, Hiroomi; Nagaya, Masaki; Nagashima, Hiroshi
2015-01-01
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs.
Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T
1993-12-22
The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.
Recombining overlapping BACs into a single larger BAC.
Kotzamanis, George; Huxley, Clare
2004-01-06
BAC clones containing entire mammalian genes including all the transcribed region and long range controlling elements are very useful for functional analysis. Sequenced BACs are available for most of the human and mouse genomes and in many cases these contain intact genes. However, large genes often span more than one BAC, and single BACs covering the entire region of interest are not available. Here we describe a system for linking two or more overlapping BACs into a single clone by homologous recombination. The method was used to link a 61-kb insert carrying the final 5 exons of the human CFTR gene onto a 160-kb BAC carrying the first 22 exons. Two rounds of homologous recombination were carried out in the EL350 strain of bacteria which can be induced for the Red genes. In the first round, the inserts of the two overlapping BACs were subcloned into modified BAC vectors using homologous recombination. In the second round, the BAC to be added was linearised with the very rare-cutting enzyme I-PpoI and electroporated into recombination efficient EL350 bacteria carrying the other BAC. Recombined BACs were identified by antibiotic selection and PCR screening and 10% of clones contained the correctly recombined 220-kb BAC. The system can be used to link the inserts from any overlapping BAC or PAC clones. The original orientation of the inserts is not important and desired regions of the inserts can be selected. The size limit for the fragments recombined may be larger than the 61 kb used here and multiple BACs in a contig could be combined by alternating use of the two pBACLink vectors. This system should be of use to many investigators wishing to carry out functional analysis on large mammalian genes which are not available in single BAC clones.
Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart
NASA Astrophysics Data System (ADS)
Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.
1996-06-01
cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.
Kück, Ulrich; Choquet, Yves; Schneider, Michel; Dron, Michel; Bennoun, Pierre
1987-01-01
The two homologous genes for the P700 chlorophyll a-apoproteins (ps1A1 and ps1A2) are encoded by the plastom in the green alga Chlamydomonas reinhardii. The structure and organization of the two genes were determined by comparison with the homologous genes from maize using data from heterologous hybridizations as well as from DNA and RNA sequencing. While the ps1A2 (736 codons) gene shows a continuous gene organization, the ps1A1 (754 codons) gene possesses some unusual features. The discontinuous gene is split into three separate exons which are scattered around the circular chloroplast genome. Exon 1 (86 bp) is separated by ∼50 kb from exon 2 (198 bp), which is located ∼ 90 kb apart from exon 3 (1984 bp). All exons are flanked by intronic sequences of group II. Transcription analysis reveals that the ps1A2 gene hybridizes with a 2.8-kb transcript, while all exon regions of the ps1A1 gene are homologous to a mature mRNA of 2.7 kb. From our data we conclude that the three distantly separated exonic sequences of the ps1A1 gene constitute a functional gene which probably operates by a trans-splicing mechanism. ImagesFig. 3.Fig. 5.Fig. 6. PMID:16453785
Li, Chun-Xiao; Jiang, Mei-Shan; Chen, Shi-Yi; Lai, Song-Jia
2008-07-01
Single nucleotide polymorphism (SNP) in exon 1 and 3 of fibroblast growth factor (FGF5) gene was studied by DNA sequencing in Yingjing angora rabbit, Tianfu black rabbit and California rabbit. A frameshift mutation (TCT insert) at base position 217 (site A) of exon 1 and a T/C missense mutation at base position 59 (site B) of exon 3 were found in Yingjing angora rabbit with a high frequency; a T/C same-sense mutation at base position 3 (site C) of exon 3 was found with similar frequency in three rabbit breeds. Least square analysis showed that different genotypes had no significant association with wool yield in site A, and had high significant association with wool yield in site B (P<0.01) and significant association with wool yield in site C (P<0.05). It was concluded from the results that FGF5 gene could be the potential major gene affecting wool yield or link with the major gene, and polymorphic loci B and C may be used as molecular markers for im-proving wool yield in angora rabbits.
Bottom-up design of small molecules that stimulate exon 10 skipping in mutant MAPT pre-mRNA.
Luo, Yiling; Disney, Matthew D
2014-09-22
One challenge in chemical biology is to develop small molecules that control cellular protein content. The amount and identity of proteins are influenced by the RNAs that encode them; thus, protein content in a cell could be affected by targeting mRNA. However, RNA has been traditionally difficult to target with small molecules. In this report, we describe controlling the protein products of the mutated microtubule-associated protein tau (MAPT) mature mRNA with a small molecule. MAPT mutations in exon 10 are associated with inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17), an incurable disease that is directly caused by increased inclusion of exon 10 in MAPT mRNA. Recent studies have shown that mutations within a hairpin at the MAPT exon 10-intron junction decrease the thermodynamic stability of the RNA, increasing binding to U1 snRNP and thus exon 10 inclusion. Therefore, we designed small molecules that bind and stabilize a mutant MAPT by using Inforna, a computational approach based on information about RNA-small-molecule interactions. The optimal compound selectively bound the mutant MAPT hairpin and thermodynamically stabilized its folding, facilitating exon 10 exclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Kretsinger, R. H.; Nakayama, S.
1993-01-01
In the previous three reports in this series we demonstrated that the EF-hand family of proteins evolved by a complex pattern of gene duplication, transposition, and splicing. The dendrograms based on exon sequences are nearly identical to those based on protein sequences for troponin C, the essential light chain myosin, the regulatory light chain, and calpain. This validates both the computational methods and the dendrograms for these subfamilies. The proposal of congruence for calmodulin, troponin C, essential light chain, and regulatory light chain was confirmed. There are, however, significant differences in the calmodulin dendrograms computed from DNA and from protein sequences. In this study we find that introns are distributed throughout the EF-hand domain and the interdomain regions. Further, dendrograms based on intron type and distribution bear little resemblance to those based on protein or on DNA sequences. We conclude that introns are inserted, and probably deleted, with relatively high frequency. Further, in the EF-hand family exons do not correspond to structural domains and exon shuffling played little if any role in the evolution of this widely distributed homolog family. Calmodulin has had a turbulent evolution. Its dendrograms based on protein sequence, exon sequence, 3'-tail sequence, intron sequences, and intron positions all show significant differences.
Nakamura, Atsuko; Fukuda, Atsunori; Sakai, Shingo; Tanaka, Yoshiyuki
2006-01-01
We isolated two cDNA clones (OsCLC-1 and OsCLC-2) homologous to tobacco CLC-Nt1, which encodes a voltage-gated chloride channel, from rice (Oryza sativa L. ssp. japonica, cv. Nipponbare). The deduced amino acid sequences were highly conserved (87.9% identity with each other). Southern blot analysis of the rice genomic DNA revealed that OsCLC-1 and OsCLC-2 were single-copy genes on chromosomes 4 and 2, respectively. OsCLC-1 was expressed in most tissues, whereas OsCLC-2 was expressed only in the roots, nodes, internodes and leaf sheaths. The level of expression of OsCLC-1, but not of OsCLC-2, was increased by treatment with NaCl. Both genes could partly substitute for GEF1, which encodes the sole chloride channel in yeast, by restoring growth under ionic stress. These results indicate that both genes are chloride channel genes. The proteins from both genes were immunochemically detected in the tonoplast fraction. Tagged synthetic green fluorescent protein which was fused to OsCLC-1 or OsCLC-2 localized in the vacuolar membranes. These results indicate that the proteins may play a role in the transport of chloride ions across the vacuolar membrane. We isolated loss-of-function mutants of both genes from a panel of rice mutants produced by the insertion of a retrotransposon, Tos17, in the exon region, and found inhibition of growth at all life stages.
Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders.
Craig, Catherine L; Riekel, Christian
2002-12-01
The known silk fibroins and fibrous glues are thought to be encoded by members of the same gene family. All silk fibroins sequenced to date contain regions of long-range order (crystalline regions) and/or short-range order (non-crystalline regions). All of the sequenced fibroin silks (Flag or silk from flagelliform gland in spiders; Fhc or heavy chain fibroin silks produced by Lepidoptera larvae) are made up of hierarchically organized, repetitive arrays of amino acids. Fhc fibroin genes are characterized by a similar molecular genetic architecture of two exons and one intron, but the organization and size of these units differs. The Flag, Ser (sericin gene) and BR (Balbiani ring genes; both fibrous proteins) genes are made up of multiple exons and introns. Sequences coding for crystalline and non-crystalline protein domains are integrated in the repetitive regions of Fhc and MA exons, but not in the protein glues Ser1 and BR-1. Genetic 'hot-spots' promote recombination errors in Fhc, MA, and Flag. Codon bias, structural constraint, point mutations, and shortened coding arrays may be alternative means of stabilizing precursor mRNA transcripts. Differential regulation of gene expression and selective splicing of the mRNA transcript may allow rapid adaptation of silk functional properties to different physical environments.
Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish
Zardoya, Rafael; Abouheif, Ehab; Meyer, Axel
1996-01-01
The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established. PMID:8917540
Zardoya, R; Abouheif, E; Meyer, A
1996-11-12
The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established.
Gabreski, Nicole A.; Vaghasia, Janki K.; Novakova, Silvia S.; McDonald, Neil Q.; Pierchala, Brian A.
2016-01-01
Rearranged during transfection (RET), a receptor tyrosine kinase that is activated by the glial cell line-derived neurotrophic factor family ligands (GFLs), plays a crucial role in the development and function of the nervous system and additionally is required for kidney development and spermatogenesis. RET encodes a transmembrane receptor that is 20 exons long and produces two known protein isoforms differing in C-terminal amino acid composition, referred to as RET9 and RET51. Studies of human pheochromocytomas identified two additional novel transcripts involving the skipping of exon 3 or exons 3, 4, and 5 and are referred to as RETΔE3 and RETΔE345, respectively. Here we report the presence of RetΔE3 and RetΔE345 in zebrafish, mice, and rats and show that these transcripts are dynamically expressed throughout development of the CNS, peripheral nervous system, and kidneys. We further explore the biochemical properties of these isoforms, demonstrating that, like full-length RET, RETΔE3 and RETΔE345 are trafficked to the cell surface, interact with all four GFRα co-receptors, and have the ability to heterodimerize with full-length RET. Signaling experiments indicate that RETΔE3 is phosphorylated in a similar manner to full-length RET. RETΔE345, in contrast, displays higher baseline autophosphorylation, specifically on the catalytic tyrosine, Tyr905, and also on one of the most important signaling residues, Tyr1062. These data provide the first evidence for a physiologic role of these isoforms in RET pathway function. PMID:27226544
Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd
2015-01-01
The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) – secreted by the placenta, and lutropin (LH) – produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor’s leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region of the receptor. PMID:26441830
Eykelenboom, Jennifer E.; Briggs, Gareth J.; Bradshaw, Nicholas J.; Soares, Dinesh C.; Ogawa, Fumiaki; Christie, Sheila; Malavasi, Elise L.V.; Makedonopoulou, Paraskevi; Mackie, Shaun; Malloy, Mary P.; Wear, Martin A.; Blackburn, Elizabeth A.; Bramham, Janice; McIntosh, Andrew M.; Blackwood, Douglas H.; Muir, Walter J.; Porteous, David J.; Millar, J. Kirsty
2012-01-01
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1–597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117). PMID:22547224
The ATRX cDNA is prone to bacterial IS10 element insertions that alter its structure.
Valle-García, David; Griffiths, Lyra M; Dyer, Michael A; Bernstein, Emily; Recillas-Targa, Félix
2014-01-01
The SWI/SNF-like chromatin-remodeling protein ATRX has emerged as a key factor in the regulation of α-globin gene expression, incorporation of histone variants into the chromatin template and, more recently, as a frequently mutated gene across a wide spectrum of cancers. Therefore, the availability of a functional ATRX cDNA for expression studies is a valuable tool for the scientific community. We have identified two independent transposon insertions of a bacterial IS10 element into exon 8 of ATRX isoform 2 coding sequence in two different plasmids derived from a single source. We demonstrate that these insertion events are common and there is an insertion hotspot within the ATRX cDNA. Such IS10 insertions produce a truncated form of ATRX, which significantly compromises its nuclear localization. In turn, we describe ways to prevent IS10 insertion during propagation and cloning of ATRX-containing vectors, including optimal growth conditions, bacterial strains, and suggested sequencing strategies. Finally, we have generated an insertion-free plasmid that is available to the community for expression studies of ATRX.
Wiedmer, Michaela; Oevermann, Anna; Borer-Germann, Stephanie E.; Gorgas, Daniela; Shelton, G. Diane; Drögemüller, Michaela; Jagannathan, Vidhya; Henke, Diana; Leeb, Tosso
2015-01-01
We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs. PMID:26596647
Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy
Amoasii, Leonela; Long, Chengzu; Li, Hui; Mireault, Alex A.; Shelton, John M.; Sanchez-Ortiz, Efrain; McAnally, John R.; Bhattacharyya, Samadrita; Schmidt, Florian; Grimm, Dirk; Hauschka, Stephen D.; Bassel-Duby, Rhonda; Olson, Eric N.
2017-01-01
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders. PMID:29187645
Global Identification and Characterization of Transcriptionally Active Regions in the Rice Genome
Stolc, Viktor; Deng, Wei; He, Hang; Korbel, Jan; Chen, Xuewei; Tongprasit, Waraporn; Ronald, Pamela; Chen, Runsheng; Gerstein, Mark; Wang Deng, Xing
2007-01-01
Genome tiling microarray studies have consistently documented rich transcriptional activity beyond the annotated genes. However, systematic characterization and transcriptional profiling of the putative novel transcripts on the genome scale are still lacking. We report here the identification of 25,352 and 27,744 transcriptionally active regions (TARs) not encoded by annotated exons in the rice (Oryza. sativa) subspecies japonica and indica, respectively. The non-exonic TARs account for approximately two thirds of the total TARs detected by tiling arrays and represent transcripts likely conserved between japonica and indica. Transcription of 21,018 (83%) japonica non-exonic TARs was verified through expression profiling in 10 tissue types using a re-array in which annotated genes and TARs were each represented by five independent probes. Subsequent analyses indicate that about 80% of the japonica TARs that were not assigned to annotated exons can be assigned to various putatively functional or structural elements of the rice genome, including splice variants, uncharacterized portions of incompletely annotated genes, antisense transcripts, duplicated gene fragments, and potential non-coding RNAs. These results provide a systematic characterization of non-exonic transcripts in rice and thus expand the current view of the complexity and dynamics of the rice transcriptome. PMID:17372628
Yokozaki, H; Tahara, H; Oue, N; Tahara, E
2000-01-01
A new transcription variant of hepatocyte growth factor/scatter factor (HGF/SF) was cloned from human gastric cancer cell line HSC-39. Northern blot analysis of eight human gastric cancer cell lines (TMK-1, MKN-1, MKN-7, MKN-28, MKN-45, MKN-74, KATO-III and HSC-39) demonstrated that HSC-39 cells expressed a 1.3 kb abnormal HGF/SF transcript. Screening of 1 x 10(6) colonies of cDNA library from HSC-39 constructed in pAP3neo mammalian expression vector selected four positive clones containing HGF/SF transcript. Among them, two contained a 1.3 kbp insert detecting the identical transcript to that obtained with HGF/SF probe by Northern blotting. Deoxynucleotide sequencing of the 1.3 kbp insert revealed that it was composed of a part of HGF/SF cDNA from exon 14 to exon 18, corresponding to the whole sequence of HGF/SF light chain, with 5' 75 nucleotides unrelated to any sequence involved in HGF/SF.
Bulldog dwarfism in Dexter cattle is caused by mutations in ACAN.
Cavanagh, Julie A L; Tammen, Imke; Windsor, Peter A; Bateman, John F; Savarirayan, Ravi; Nicholas, Frank W; Raadsma, Herman W
2007-11-01
Bulldog dwarfism in Dexter cattle is one of the earliest single-locus disorders described in animals. Affected fetuses display extreme disproportionate dwarfism, reflecting abnormal cartilage development (chondrodysplasia). Typically, they die around the seventh month of gestation, precipitating a natural abortion. Heterozygotes show a milder form of dwarfism, most noticeably having shorter legs. Homozygosity mapping in candidate regions in a small Dexter pedigree suggested aggrecan (ACAN) as the most likely candidate gene. Mutation screening revealed a 4-bp insertion in exon 11 (2266_2267insGGCA) (called BD1 for diagnostic testing) and a second, rarer transition in exon 1 (-198C>T) (called BD2) that cosegregate with the disorder. In chondrocytes from cattle heterozygous for the insertion, mutant mRNA is subject to nonsense-mediated decay, showing only 8% of normal expression. Genotyping in Dexter families throughout the world shows a one-to-one correspondence between genotype and phenotype at this locus. The heterozygous and homozygous-affected Dexter cattle could prove invaluable as a model for human disorders caused by mutations in ACAN.
The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome II, and its polymorphisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, M.B.; Itoh, Kazuko; Fujisaku, Atsushi
1993-01-01
Autoantibodies to the ribonucleoprotein Ro/SSA occur in nearly half of the patients with systemic lupus erythematosus and are associated with lymphopenia, photosensitive dermatitis, and pulmonary and renal disease, which suggests that they have an immunopathologic role. The majority of Ro/SSA precipitin-positive patients produce serum antibodies that bind to the 60-kD and 52-kD Ro/SSA proteins. The authors previously isolated and determined the nucleotide sequence of a cDNA clone that encodes the 52-kD form of the human Ro/SSA protein. In the present study, they have determined the chromosomal location of the gene by in situ hybridization to the end of the shortmore » arm of chromosome 11. Hybridization of portions of the cDNA probe to restriction enzyme-digested DNA indicated the gene is composed of at least three exons. The exon encoding the putative zinc fingers of this protein was found to be distinct from that which encodes the leucine zipper. An RFLP of this gene was identified and is associated with the presence of lupus, primarily in black Americans. 60 refs., 3 figs., 3 tabs.« less
DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse.
Corcoran, Martin M; Hammarsund, Marianne; Zhu, Chaoyong; Lerner, Mikael; Kapanadze, Bagrat; Wilson, Bill; Larsson, Catharina; Forsberg, Lars; Ibbotson, Rachel E; Einhorn, Stefan; Oscier, David G; Grandér, Dan; Sangfelt, Olle
2004-08-01
Our group previously identified two novel genes, RFP2/LEU5 and DLEU2, within a 13q14.3 genomic region of loss seen in various malignancies. However, no specific inactivating mutations were found in these or other genes in the vicinity of the deletion, suggesting that a nonclassical tumor-suppressor mechanism may be involved. Here, we present data showing that the DLEU2 gene encodes a putative noncoding antisense RNA, with one exon directly overlapping the first exon of the RFP2/LEU5 gene in the opposite orientation. In addition, the RFP2/LEU5 transcript can be alternatively spliced to produce either several monocistronic transcripts or a putative bicistronic transcript encoding two separate open-reading frames, adding to the complexity of the locus. The finding that these gene structures are conserved in the mouse, including the putative bicistronic RFP2/LEU5 transcript as well as the antisense relationship with DLEU2, further underlines the significance of this unusual organization and suggests a biological function for DLEU2 in the regulation of RFP2/LEU5. Copyright 2004 Wiley-Liss, Inc.
Molecular evolution of the crustacean hyperglycemic hormone family in ecdysozoans
2010-01-01
Background Crustacean Hyperglycemic Hormone (CHH) family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary history. CHH family peptides exist in insects (Ion Transport Peptides) and may be present in all ecdysozoans as well. In order to extend the evolutionary study to the entire family, CHH family peptides were thus searched in taxa outside decapods, where they have been, to date, poorly investigated. Results CHH family peptides were characterized by molecular cloning in a branchiopod crustacean, Daphnia magna, and in a collembolan, Folsomia candida. Genes encoding such peptides were also rebuilt in silico from genomic sequences of another branchiopod, a chelicerate and two nematodes. These sequences were included in updated datasets to build phylogenies of the CHH family in pancrustaceans. These phylogenies suggest that peptides found in Branchiopoda and Collembola are more closely related to insect ITPs than to crustacean CHHs. Datasets were also used to support a phylogenetic hypothesis about pancrustacean relationships, which, in addition to gene structures, allowed us to propose two evolutionary scenarios of this multigenic family in ecdysozoans. Conclusions Evolutionary scenarios suggest that CHH family genes of ecdysozoans originate from an ancestral two-exon gene, and genes of arthropods from a three-exon one. In malacostracans, the evolution of the CHH family has involved several duplication, insertion or deletion events, leading to neuropeptides with a wide variety of functions, as observed in decapods. This family could thus constitute a promising model to investigate the links between gene duplications and functional divergence. PMID:20184761
Multiplex screening for RB1 germline mutations in 106 patients with hereditary retinoblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohmann, D.R.; Brandt, B.; Passarge, E.
1994-09-01
The identification of germline mutations in the retinoblastoma susceptibility gene (RB1) is important for genetic counseling in hereditary retinoblastoma. Due to the complex genomic organization of this gene and the heterogeneity of mutations, efficient screening procedures are important for rapid mutation detection. We have developed methods based on simultaneous analysis of multiple regions of this gene in an ABI automated DNA fragment analyzer to examine 106 patients with hereditary retinoblastoma in which no alteration was identified by Southern blot hybridization. Primers for the amplification of all 27 exons of the RB1 gene as well as the promoter and poly(A) signalmore » sequences were labelled with distinct fluorescent dyes (FAM, HEX, TAMRA) to enable simultaneous electrophoretic analysis of PCR products with similar mobility. PCR fragments distinguishable by size or color were co-amplified by multiplex PCR and analyzed for length by GENESCAN analysis. Using this approach, small deletions ranging from 1 bp to 22 bp were identified in 24 patients (23%). Short sequence repeats or polypyrimidine runs were present in the vicinity of most of these deletions. In 4 patients (4%), insertions from 1 bp to 4 bp were found. The majority of length mutations resulted in a truncated gene product due to frameshift and premature termination. No mutation was identified in exons 25 to 27 possibly indicating that the encoded protein domains have minor functional importance. In order to screen for base substitutions that are not detectable by fragment length analysis, we adapted heteroduplex analysis for the use in the DNA fragment analyzer. During the optimization of this method we detected 10 single base substitutions most of which generated stop codons. Intriguingly, two identical missense mutations were identified in two unrelated families with a low-penetrance phenotype.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornstein, P.; Shingu, T.; LaMarca, M.E.
1994-09-01
We have identified a new murine gene, termed gene X, that spans the 6 kb interval separating GC from TSP3. Mutations in GC result in Gaucher disease, the most common lysosomal storage disorder. Gene X and GC are transcribed convergently; their major polyadenylation sites are separated by only 431 bp. On the other hand, gene X and TSP3 are transcribed divergently and share a bidirectional promoter. The cDNA for gene X encodes a 317 amino acid protein, without either a signal sequence or N-linked glycosylation. Gene X is expressed ubiquitously in tissues of the young adult mouse, but no closemore » homologues have been found in the DNA or protein data bases. A targeted point mutation was introduced into the GC gene (Asn to Ser in exon 9) by homologous recombination in embryonic stem cells to establish a mouse model for a mild form of Gaucher disease. In the process, a PGK-neomycin gene cassette was inserted in the 3{prime} flanking region of GC as a selectable marker, in a sequence that was subsequently identified as exon 8 of gene X. Mice homozygous for the combined mutation die early in gestation. Since the amino acid mutation in humans is associated with milder type 1 Gaucher disease, we conclude that gene X is essential for embryonic development in mice. The locations of human and murine GC, gene X and TSP3 are similar, but the human genome includes a duplication that has produced GC and gene X pseudogenes. We are currently studying the possible functional interactions of GC, gene X and TSP3 in both mice and humans.« less
Gennero, Isabelle; Edouard, Thomas; Rashad, Mona; Bieth, Eric; Conte-Aurio, Françoise; Marin, Françoise; Tauber, Maithé; Salles, Jean Pierre; El Kholy, Mohamed
2007-07-01
Deletions and mutations in the growth hormone receptor (GHR) gene are the underlying etiology of Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS), an autosomal recessive disease. Most patients are distributed in or originate from Mediterranean and Middle-Eastern countries. Sixty mutations have been described so far. We report a novel mutation in the GHR gene in a patient with LS. Genomic DNA sequencing of exon 5 revealed a TT insertion at nucleotide 422 after codon 122. The insertion resulted in a frameshift introducing a premature termination codon that led to a truncated receptor. We present clinical, biochemical and molecular evidence of LS as the result of this homozygous insertion.
Behl, Jyotsna Dhingra; Mishra, Priyanka; Verma, N K; Niranjan, S K; Dangi, P S; Sharma, Rekha; Behl, Rahul
2016-03-15
The present study was undertaken to characterize the genetic variation present in lymphoxin A gene (LTA gene) encoding for the lymphotoxin A protein also known as tumor necrosis factor beta, a cytokine produced by lymphocytes, known to be cytotoxic for a wide range of tumor cells both in vitro and in vivo, and, which is essential for normal immunological development; in 40 animals of 5 diverse Bos indicus Indian zebu cattle breeds. These breeds survive under the harsh and tough tropical climatic conditions of various parts of the Indian subcontinent. The LTA gene in the present study was observed to contain 33 SNPs and 3 small insertion/deletion polymorphisms. Four SNPs occurred in the coding regions of the gene viz. g.1327A>G and g.1400C>T in exon 2 and g.1840C>T and g.1942C>T in exon 3, of which the SNP g.1327A>G in exon 2 resulted in a non-synonymous amino acid change G38D. This amino acid change was however predicted not be affecting the protein function in any manner. The gene contained putative transcription factor binding sites for the c-Re1 and for Pax-4 transcription factors. A putative promoter region was also predicted on the reverse DNA strand from position 894 to 644. Several repeat elements and microsatellite repeats were detected to be occurring across the 3.2kb LTA gene sequence. The study showed the occurrence of 40 genotypes and 48 most probable haplotypes. The genotypes at the observed SNP positions in the LTA gene were in near Hardy-Weinberg equilibrium. A negative Tajima's D value that was not significant statistically at P>0.10 indicated that the neutral mutation hypothesis could not be excluded. The genetic variations observed in the LTA gene in the present study have not been reported earlier and these could possibly be used as molecular markers for further studies involving association of the gene variability with disease resistance/tolerance traits. Copyright © 2015 Elsevier B.V. All rights reserved.
Speed, Haley E; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M; Ochoa, Christine F; Gupta, Natasha; Liu, Shunan; Powell, Craig M
2015-07-01
SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan-McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3(G)). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3(G/G) mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3(G/G) mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3(G/G) mouse that was engineered with such future experiments in mind. Copyright © 2015 the authors 0270-6474/15/359648-18$15.00/0.
Sagara, N; Kirikoshi, H; Terasaki, H; Yasuhiko, Y; Toda, G; Shiokawa, K; Katoh, M
2001-04-06
Frizzled-1 (FZD1)-FZD10 are seven-transmembrane-type WNT receptors, and SFRP1-SFRP5 are soluble-type WNT antagonists. These molecules are encoded by mutually distinct genes. We have previously isolated and characterized the 7.7-kb FZD4 mRNA, encoding a seven-transmembrane receptor with the extracellular cysteine-rich domain (CRD). Here, we have cloned and characterized FZD4S, a splicing variant of the FZD4 gene. FZD4S, corresponding to the 10.0-kb FZD4 mRNA, consisted of exon 1, intron 1, and exon 2 of the FZD4 gene. FZD4S encoded a soluble-type polypeptide with the N-terminal part of CRD, and was expressed in human fetal kidney. Injection of synthetic FZD4S mRNA into the ventral marginal zone of Xenopus embryos at the 4-cell stage did not induce axis duplication by itself, but augmented the axis duplication potential of coinjected Xwnt-8 mRNA. These results indicate that the FZD4 gene gives rise to soluble-type FZD4S as well as seven-transmembrane-type FZD4 due to alternative splicing, and strongly suggest that FZD4S plays a role as a positive regulator of the WNT signaling pathway. Copyright 2001 Academic Press.
Presence of a novel exon 2E encoding a putative transmembrane protein in human IL-33 gene.
Tominaga, Shin-ichi; Hayakawa, Morisada; Tsuda, Hidetoshi; Ohta, Satoshi; Yanagisawa, Ken
2013-01-18
Interleukin-33 (IL-33) is a dual-function molecule that regulates gene expression in nuclei and, as a cytokine, conveys proinflammatory signals from outside of cells via its specific receptor ST2L. There are still a lot of questions about localization and processing of IL-33 gene products. In the course of re-evaluating human IL-33 gene, we found distinct promoter usage depending on the cell type, similar to the case in the ST2 gene. Furthermore, we found a novel exon 2E in the conventional intron 2 whose open reading frame corresponded to a transmembrane protein of 131 amino acids. Dependence of exon 2E expression on differentiation of HUVEC cells is of great interest in relation to human IL-33 function. Copyright © 2012 Elsevier Inc. All rights reserved.
Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome.
Ahmed, Zubair M; Riazuddin, Saima; Aye, Sandar; Ali, Rana A; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B
2008-10-01
Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be composed of 35 exons and encodes a variety of isoforms with 3-11 ectodomains (ECs), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations, we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1, we identified homozygous mutant alleles (one missense, one splice site, three nonsense and two deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date, in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1.
Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome
Ahmed, Zubair M.; Riazuddin, Saima; Aye, Sandar; Ali, Rana A.; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P.; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B.
2009-01-01
Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be comprised of 35 exons and encodes a variety of isoforms with 3 to 11 ectodomains (EC), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1 we identified homozygous mutant alleles (1 missense, 1 splice site, 3 nonsense and 2 deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1. PMID:18719945
Bridging the Synaptic Gap: Neuroligins and Neurexin I in Apis mellifera
Biswas, Sunita; Russell, Robyn J.; Jackson, Colin J.; Vidovic, Maria; Ganeshina, Olga; Oakeshott, John G.; Claudianos, Charles
2008-01-01
Vertebrate studies show neuroligins and neurexins are binding partners in a trans-synaptic cell adhesion complex, implicated in human autism and mental retardation disorders. Here we report a genetic analysis of homologous proteins in the honey bee. As in humans, the honeybee has five large (31–246 kb, up to 12 exons each) neuroligin genes, three of which are tightly clustered. RNA analysis of the neuroligin-3 gene reveals five alternatively spliced transcripts, generated through alternative use of exons encoding the cholinesterase-like domain. Whereas vertebrates have three neurexins the bee has just one gene named neurexin I (400 kb, 28 exons). However alternative isoforms of bee neurexin I are generated by differential use of 12 splice sites, mostly located in regions encoding LNS subdomains. Some of the splice variants of bee neurexin I resemble the vertebrate α- and β-neurexins, albeit in vertebrates these forms are generated by alternative promoters. Novel splicing variations in the 3′ region generate transcripts encoding alternative trans-membrane and PDZ domains. Another 3′ splicing variation predicts soluble neurexin I isoforms. Neurexin I and neuroligin expression was found in brain tissue, with expression present throughout development, and in most cases significantly up-regulated in adults. Transcripts of neurexin I and one neuroligin tested were abundant in mushroom bodies, a higher order processing centre in the bee brain. We show neuroligins and neurexins comprise a highly conserved molecular system with likely similar functional roles in insects as vertebrates, and with scope in the honeybee to generate substantial functional diversity through alternative splicing. Our study provides important prerequisite data for using the bee as a model for vertebrate synaptic development. PMID:18974885
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asai, Hirohide; Hirano, Makito; Kiriyama, Takao
Intranuclear events due to mutations in the Parkin gene remain elusive in autosomal recessive juvenile parkinsonism (ARJP). We identified a mutant PARKIN protein in fibroblast cultures from a pair of siblings with ARJP who were homozygous for the exon 4-deleted Parkin gene. Disease was mild in one patient and debilitating in the other. The detected mutant, encoded by a transcript lacking exon 3 as well as exon 4, is an in-frame deletion that removes 121 aa, resulting in a 344-aa protein (PaDel3,4). Cell culture and transfection studies revealed negative correlations between expression levels of PaDel3,4 and those of cell cyclemore » proteins, including cyclin E, CDK2, ppRb, and E2F-1, and demonstrated that GFP-PaDel3,4 entered nucleus and ubiquitinated cyclin E as a part of SCF{sup hSel-10} ligase complex in the patient cells. In addition, nuclear localization signal-tagged PaDel3,4 expressed in the transfected patient cells most effectively ubiquitinated cyclin E and reduced DNA damage, protecting cells from oxidative stress. Antisense-oligonucleotide treatment promoted skipping of exon 3 and thus generated PaDel3,4, increasing cell survival. Collectively, we propose that naturally- and experimentally-induced exon skipping at least partly restores the mutant Parkin gene deficit, providing a molecular basis for the development of therapeutic exon skipping.« less
Lesmana, Harry; Dyer, Lisa; Li, Xia; Denton, James; Griffiths, Jenna; Chonat, Satheesh; Seu, Katie G; Heeney, Matthew M; Zhang, Kejian; Hopkin, Robert J; Kalfa, Theodosia A
2018-03-01
Pyruvate kinase deficiency (PKD) is the most frequent red blood cell enzyme abnormality of the glycolytic pathway and the most common cause of hereditary nonspherocytic hemolytic anemia. Over 250 PKLR-gene mutations have been described, including missense/nonsense, splicing and regulatory mutations, small insertions, small and gross deletions, causing PKD and hemolytic anemia of variable severity. Alu retrotransposons are the most abundant mobile DNA sequences in the human genome, contributing to almost 11% of its mass. Alu insertions have been associated with a number of human diseases either by disrupting a coding region or a splice signal. Here, we report on two unrelated Middle Eastern patients, both born from consanguineous parents, with transfusion-dependent hemolytic anemia, where sequence analysis revealed a homozygous insertion of AluYb9 within exon 6 of the PKLR gene, causing precipitous decrease of PKLR RNA levels. This Alu element insertion consists a previously unrecognized mechanism underlying pathogenesis of PKD. © 2017 Wiley Periodicals, Inc.
Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A; Díaz, Begoña
2014-01-01
Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.
Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A.; Díaz, Begoña
2014-01-01
Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5′RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene. PMID:25259869
Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng
2015-01-01
In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. © 2015 by the Association of Clinical Scientists, Inc.
Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice.
Gedicke-Hornung, Christina; Behrens-Gawlik, Verena; Reischmann, Silke; Geertz, Birgit; Stimpel, Doreen; Weinberger, Florian; Schlossarek, Saskia; Précigout, Guillaume; Braren, Ingke; Eschenhagen, Thomas; Mearini, Giulia; Lorain, Stéphanie; Voit, Thomas; Dreyfus, Patrick A; Garcia, Luis; Carrier, Lucie
2013-07-01
Exon skipping mediated by antisense oligoribonucleotides (AON) is a promising therapeutic approach for genetic disorders, but has not yet been evaluated for cardiac diseases. We investigated the feasibility and efficacy of viral-mediated AON transfer in a Mybpc3-targeted knock-in (KI) mouse model of hypertrophic cardiomyopathy (HCM). KI mice carry a homozygous G>A transition in exon 6, which results in three different aberrant mRNAs. We identified an alternative variant (Var-4) deleted of exons 5-6 in wild-type and KI mice. To enhance its expression and suppress aberrant mRNAs we designed AON-5 and AON-6 that mask splicing enhancer motifs in exons 5 and 6. AONs were inserted into modified U7 small nuclear RNA and packaged in adeno-associated virus (AAV-U7-AON-5+6). Transduction of cardiac myocytes or systemic administration of AAV-U7-AON-5+6 increased Var-4 mRNA/protein levels and reduced aberrant mRNAs. Injection of newborn KI mice abolished cardiac dysfunction and prevented left ventricular hypertrophy. Although the therapeutic effect was transient and therefore requires optimization to be maintained over an extended period, this proof-of-concept study paves the way towards a causal therapy of HCM. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
Wise, C A; Chiang, L C; Paznekas, W A; Sharma, M; Musy, M M; Ashley, J A; Lovett, M; Jabs, E W
1997-04-01
Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development.
Wise, Carol A.; Chiang, Lydia C.; Paznekas, William A.; Sharma, Mridula; Musy, Maurice M.; Ashley, Jennifer A.; Lovett, Michael; Jabs, Ethylin W.
1997-01-01
Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development. PMID:9096354
Schulte, W; Töpfer, R; Stracke, R; Schell, J; Martini, N
1997-04-01
Three genes coding for different multifunctional acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) isoenzymes from Brassica napus were isolated and divided into two major classes according to structural features in their 5' regions: class I comprises two genes with an additional coding exon of approximately 300 bp at the 5' end, and class II is represented by one gene carrying an intron of 586 bp in its 5' untranslated region. Fusion of the peptide sequence encoded by the additional first exon of a class I ACCase gene to the jellyfish Aequorea victoria green fluorescent protein (GFP) and transient expression in tobacco protoplasts targeted GFP to the chloroplasts. In contrast to the deduced primary structure of the biotin carboxylase domain encoded by the class I gene, the corresponding amino acid sequence of the class II ACCase shows higher identity with that of the Arabidopsis ACCase, both lacking a transit peptide. The Arabidopsis ACCase has been proposed to be a cytosolic isoenzyme. These observations indicate that the two classes of ACCase genes encode plastidic and cytosolic isoforms of multi-functional, eukaryotic type, respectively, and that B. napus contains at least one multi-functional ACCase besides the multi-subunit, prokaryotic type located in plastids. Southern blot analysis of genomic DNA from B. napus, Brassica rapa, and Brassica oleracea, the ancestors of amphidiploid rapeseed, using a fragment of a multi-functional ACCase gene as a probe revealed that ACCase is encoded by a multi-gene family of at least five members.
Histone Code Modulation by Oncogenic PWWP-Domain Protein in Breast Cancers
2010-06-01
athanogene 4 * DDHD2 DDHD domain containing 2 * PPAPDC1B phosphatidic acid phosphatase type 2 domain containing 1B * WHSC1L1 Wolf-Hirschhorn syndrome...from alternative splicing of exon 10. The WHSC1L1 long isoform encodes a 1437 amino acid protein containing 2 PWWP domains, 2 PHD-type zinc finger...motifs, a TANG2 domain, an AWS domain and a SET domain. The short isoform encodes a 645 amino acid protein containing a PWWP domain only. Our western
An Abundant Evolutionarily Conserved CSB-PiggyBac Fusion Protein Expressed in Cockayne Syndrome
Newman, John C.; Bailey, Arnold D.; Fan, Hua-Ying; Pavelitz, Thomas; Weiner, Alan M.
2008-01-01
Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein. PMID:18369450
Novel FAM20A mutation causes autosomal recessive amelogenesis imperfecta.
Volodarsky, Michael; Zilberman, Uri; Birk, Ohad S
2015-06-01
To relate the peculiar phenotype of amelogenesis imperfecta in a large Bedouin family to the genotype determined by whole genome linkage analysis. Amelogenesis imperfecta (AI) is a broad group of inherited pathologies affecting enamel formation, characterized by variability in phenotypes, causing mutations and modes of inheritance. Autosomal recessive or compound heterozygous mutations in FAM20A, encoding sequence similarity 20, member A, have been shown to cause several AI phenotypes. Five members from a large consanguineous Bedouin family presented with hypoplastic amelogenesis imperfecta with unerupted and resorbed permanent molars. Following Soroka Medical Center IRB approval and informed consent, blood samples were obtained from six affected offspring, five obligatory carriers and two unaffected siblings. Whole genome linkage analysis was performed followed by Sanger sequencing of FAM20A. The sequencing unravelled a novel homozygous deletion mutation in exon 11 (c.1523delC), predicted to insert a premature stop codon (p.Thr508Lysfs*6). We provide an interesting case of novel mutation in this rare disorder, in which the affected kindred is unique in the large number of family members sharing a similar phenotype. Copyright © 2015 Elsevier Ltd. All rights reserved.
Endangered Species Hold Clues to Human Evolution
Bejerano, Gill; Salama, Sofie R.; Haussler, David
2010-01-01
We report that 18 conserved, and by extension functional, elements in the human genome are the result of retroposon insertions that are evolving under purifying selection in mammals. We show evidence that 1 of the 18 elements regulates the expression of ASXL3 during development by encoding an alternatively spliced exon that causes nonsense-mediated decay of the transcript. The retroposon that gave rise to these functional elements was quickly inactivated in the mammalian ancestor, and all traces of it have been lost due to neutral decay. However, the tuatara has maintained a near-ancestral version of this retroposon in its extant genome, which allows us to connect the 18 human elements to the evolutionary events that created them. We propose that conservation efforts over more than 100 years may not have only prevented the tuatara from going extinct but could have preserved our ability to understand the evolutionary history of functional elements in the human genome. Through simulations, we argue that species with historically low population sizes are more likely to harbor ancient mobile elements for long periods of time and in near-ancestral states, making these species indispensable in understanding the evolutionary origin of functional elements in the human genome. PMID:20332163
A novel helper phage enabling construction of genome-scale ORF-enriched phage display libraries.
Gupta, Amita; Shrivastava, Nimisha; Grover, Payal; Singh, Ajay; Mathur, Kapil; Verma, Vaishali; Kaur, Charanpreet; Chaudhary, Vijay K
2013-01-01
Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.
[A study of PDE6B gene mutation and phenotype in Chinese cases with retinitis pigmentosa].
Cui, Yun; Zhao, Kan-xing; Wang, Li; Wang, Qing; Zhang, Wei; Chen, Wei-ying; Wang, Li-ming
2003-01-01
To identify the mutation spectrum of phosphodiesterase beta subunit (PDE6B) gene, the incidence in Chinese patients with retinitis pigmentosa (RP) and their clinical phenotypic characteristics. Screening of mutations within PDE6B gene was performed using polymerase chain reaction-heteroduplex-single strand conformation polymorphism (PCR-SSCP) and DNA sequence in 35 autosomal recessive (AR) RP and 55 sporadic RP cases. The phenotypes of the patients with the gene mutation were examined and analyzed. Novel complex heterozygous variants of PDE6B gene in a sporadic case, a T to C transversion in codon 323 resulting in the substitution of Gly by Ser and 2 base pairs (bp: G and T) insert between the 27th-28th bp upstream of the 5'-end of exon 10 were both present in a same isolate RP. But they are not found in 100 unrelated healthy individuals. Ocular findings showed diffuse pigmentary retinal degeneration in the midperipheral and peripheral fundi, optic atrophy and vessel attenuation. Multi-focal ERG indicated that the rod function was more severely deteriorated. A mutation was found in a case with RP in a ARRP family, a G to A transversion at 19th base upstream 5'-end of exon 11 (within intron 10) of PDE6B gene. A sporadic RP carried a sequence variant of PDE6B gene, a G to C transition, at the 15th base adjacent to the 3'-end of exon l8. In another isolate case with RP was found 2 bp (GT) insert between 31st and 32nd base upstream 5'-end of exon 4 (in intron 3) of PDE6B gene. There are novel complex heterozygous mutations of PDE6B gene responsible for a sporadic RP patient in China. This gene mutation associated with rod deterioration and RP. Several DNA variants were found in introns of PDE6B gene in national population.
Phenotype-genotype correlations in a series of wolfram syndrome families.
Smith, Casey J A; Crock, Patricia A; King, Bruce R; Meldrum, Cliff J; Scott, Rodney J
2004-08-01
Wolfram syndrome is an extremely rare autosomal-recessive disorder that predisposes the development of type 1 diabetes in association with progressive optic atrophy. The genetic basis of this disease has been shown to be due to mutations in the WFS1 gene. The WFS1 gene encodes a novel transmembrane protein called wolframin, which recent evidence suggests may serve as a novel endoplasmic reticulum calcium channel in pancreatic beta-cells and neurons. Genotype-phenotype correlations in this syndrome are becoming apparent and may help in explaining some of the variable characteristics observed in this disease. In this report, we have studied 13 patients with Wolfram syndrome from nine families to further define the relationship between mutation site and type with specific disease characteristics. A severe phenotype was seen in patients with mutations in exon 4 and with a large deletion encompassing most of exon 8. In total, nine novel mutations were identified as well as three new silent polymorphisms. Similar to all other mutation reports, most causative changes identified in the WFS1 gene occurred in exon 8, and only one was identified outside this region in exon 4.
The end of a monolith: Deconstructing the Cnn-Polo interaction.
Eisman, Robert C; Phelps, Melissa A S; Kaufman, Thomas C
2016-04-02
In Drosophila melanogaster a functional pericentriolar matrix (PCM) at mitotic centrosomes requires Centrosomin-Long Form (Cnn-LF) proteins. Moreover, tissue culture cells have shown that the centrosomal localization of both Cnn-LF and Polo kinase are co-dependent, suggesting a direct interaction. Our recent study found Cnn potentially binds to and is phosphorylated by Polo kinase at 2 residues encoded by Exon1A, the initiating exon of a subset of Cnn isoforms. These interactions are required for the centrosomal localization of Cnn-LF in syncytial embryos and a mutation of either phosphorylation site is sufficient to block localization of both mutant and wild-type Cnn when they are co-expressed. Immunoprecipitation experiments show that Cnn-LF interacts directly with mitotically activated Polo kinase and requires the 2 phosphorylation sites in Exon1A. These IP experiments also show that Cnn-LF proteins form multimers. Depending on the stoichiometry between functional and mutant peptides, heteromultimers exhibit dominant negative or positive trans-complementation (rescue) effects on mitosis. Additionally, following the completion of meiosis, Cnn-Short Form (Cnn-SF) proteins are required for polar body formation in embryos, a process previously shown to require Polo kinase. These findings, when combined with previous work, clearly demonstrate the complexity of cnn and show that a view of cnn as encoding a single peptide is too simplistic.
The end of a monolith: Deconstructing the Cnn-Polo interaction
2016-01-01
ABSTRACT In Drosophila melanogaster a functional pericentriolar matrix (PCM) at mitotic centrosomes requires Centrosomin-Long Form (Cnn-LF) proteins. Moreover, tissue culture cells have shown that the centrosomal localization of both Cnn-LF and Polo kinase are co-dependent, suggesting a direct interaction. Our recent study found Cnn potentially binds to and is phosphorylated by Polo kinase at 2 residues encoded by Exon1A, the initiating exon of a subset of Cnn isoforms. These interactions are required for the centrosomal localization of Cnn-LF in syncytial embryos and a mutation of either phosphorylation site is sufficient to block localization of both mutant and wild-type Cnn when they are co-expressed. Immunoprecipitation experiments show that Cnn-LF interacts directly with mitotically activated Polo kinase and requires the 2 phosphorylation sites in Exon1A. These IP experiments also show that Cnn-LF proteins form multimers. Depending on the stoichiometry between functional and mutant peptides, heteromultimers exhibit dominant negative or positive trans-complementation (rescue) effects on mitosis. Additionally, following the completion of meiosis, Cnn-Short Form (Cnn-SF) proteins are required for polar body formation in embryos, a process previously shown to require Polo kinase. These findings, when combined with previous work, clearly demonstrate the complexity of cnn and show that a view of cnn as encoding a single peptide is too simplistic. PMID:27096551
Guimond, A; Moss, T
1992-07-11
XUBF is a Xenopus ribosomal transcription factor of the HMG-box family which contains five tandemly disposed homologies to the HMG1 & 2 DNA binding domains. XUBF has been isolated as a protein doublet and two cDNAs encoding the two molecular weight variants have been characterised. The major two forms of xUBF identified differ by the presence or absence of a 22 amino acid segment lying between HMG-boxes 3 and 4. Here we show that the mRNAs for these two forms of xUBF are regulated during development and differentiation over a range of nearly 20 fold. By isolating two of the xUBF genes, it was possible to show that both encoded the variable 22 amino acid segment in exon 12. Oocyte splicing assays and the sequencing of PCR-generated cDNA fragments, demonstrated that the transcripts from one of these genes were differentially spliced in a developmentally regulated manner. Transcripts from the second gene were found to be predominantly or exclusively spliced to produce the lower molecular weight form of xUBF. Expression of a high molecular weight form from yet a third gene was also detected. Although the intron-exon structures of the Xenopus and mouse UBF genes were found to be essentially identical, the differential splicing of exon 8 found in mammals, was not detected in Xenopus.
Kongchum, Pawapol; Hallerman, Eric M; Hulata, Gideon; David, Lior; Palti, Yniv
2011-01-01
Induction of innate immune pathways is critical for early host defense, but there is limited understanding of how teleost fishes recognize pathogen molecules and activate these pathways. In mammals, cells of the innate immune system detect pathogenic molecular structures using pattern recognition receptors (PRRs). TLR9 functions as a PRR that recognizes CpG motifs in bacterial and viral DNA and requires adaptor molecules MyD88 and TRAF6 for signal transduction. Here we report full-length cDNA isolation, structural characterization and tissue mRNA expression analysis of the common carp (cc) TLR9, MyD88 and TRAF6 gene orthologs. The ccTLR9 open-reading frame (ORF) is predicted to encode a 1064-amino acid (aa) protein. We found that MyD88 and TRAF6 genes are duplicated in common carp. This is the first report of TRAF6 duplication in a vertebrate genome and stronger evidence in support of MyD88 duplication is provided. The ccMyD88a and b ORFs are predicted to encode 288-aa and 284-aa peptides, respectively. They share 91% aa sequence identity between paralogs. The ccTRAF6a and b ORFs are both predicted to encode 543-aa peptides sharing 95% aa sequence identity between paralogs. The ccTLR9 gene is contained in a single large exon. The ccMyD88a and ccMyD88b coding sequences span five exons. The TRAF6b gene spans six exons. PCR amplification to obtain the entire coding sequence of ccTRAF6a gene was not successful. The 2104-bp fragment amplified covers the 3' end of the gene and it contains a partial sequence of one exon and three complete exons. The predicated protein domains of the ccTLR9, ccMyD88 and ccTRAF6 are conserved and resemble orthologs from other vertebrates. Real-time quantitative PCR assays of the ccTLR9, MyD88a and b, and TRAF6a and b gene transcripts in healthy common carp indicated that mRNA expression varied between tissues. Differential expression of duplicate copies were found for ccMyD88 and ccTRAF6 in white and red muscle tissues, suggesting that paralogs may have evolved and attained a new function. The genomic information we describe in this paper provides evidence of sequence and structural conservation of immune response genes in common carp. Published by Elsevier Ltd.
Yanovski, J A; Diament, A L; Sovik, K N; Nguyen, T T; Li, H; Sebring, N G; Warden, C H
2000-06-01
Little is known about genes that affect childhood body weight. The objective of this study was to examine the association between alleles of the mitochondrial uncoupling protein 2 (UCP2) gene and obesity because UCP2 may influence energy expenditure. We related UCP2 genotype to body composition and resting energy expenditure in 105 children aged 6-10 y. Overweight children and nonoverweight children of overweight parents were genotyped for a 45-base pair deletion/insertion (del/ins) in 3'-untranslated region of exon 8 and for an exon 4 C to T transition. Eighty-nine children were genotyped for the exon 8 allele: 50 children had del/del, 33 had del/ins, and 6 had ins/ins. Mean (+/-SD) body mass index (BMI; in kg/m(2)) was greater for children with del/ins (24.1 +/- 5.9) than for children with del/del (20.4 +/- 4.8; P < 0.001). BMI of ins/ins children (23.7 +/- 7.8) was not significantly different from that of del/ins children. A greater BMI in del/ins children was independent of race and sex. Body composition was also different according to UCP2 genotype. All body circumferences and skinfold thicknesses examined were significantly greater in del/ins than in del/del children. Body fat mass as determined by dual-energy X-ray absorptiometry was also greater in del/ins than in del/del children (P < 0.005). For 104 children genotyped at exon 4, no significant differences in BMI or body composition were found among the 3 exon 4 genotypes. Neither resting energy expenditure nor respiratory quotient were different according to UCP2 exon 4 or exon 8 genotype. The exon 8 ins/del polymorphism of UCP2 appears to be associated with childhood-onset obesity. The UCP2/UCP3 genetic locus may play a role in childhood body weight.
Yanovski, J.A.; Diament, A.L.; Sovik, K.N.; Nguyen, T.T.; Li, H.; Sebring, N.G.; Warden, C.H.
2015-01-01
Background Little is known about genes affecting childhood body weight. Objective To examine alleles of the mitochondrial uncoupling protein-2 (UCP2) gene for association with obesity, since UCP2 may influence energy expenditure. Design We related UCP2 genotype to body composition, and to resting energy expenditure, in 105 children aged 6–10y. Overweight children and non-overweight children of overweight parents were genotyped for a 45 bp deletion/insertion (del/ins) in 3’ UTR of exon 8 and for an exon 4 C to T transition. Results 89 children were genotyped for the exon 8 allele: 50 children had del/del, 33 del/ins, and 6 ins/ins. Body mass index (BMI) was greater for del/ins (24.1 ± 5.9 kg/m2) than for del/del (20.4 ± 4.8 kg/m2, p<0.001). BMI of ins/ins (23.7 ± 7.8 kg/m2) was not different from del/ins. This effect was independent of race and gender (ANOVAs, p< 0.05). Body composition was also different according to UCP2 genotype. All body circumferences and skin fold thicknesses examined were significantly greater in del/ins than in del/del. DXA body fat mass (p<0.005) was also greater in del/ins than del/del. For 104 children genotyped at exon 4, no significant differences in BMI or body composition were found among the three exon 4 genotypes. Neither resting energy expenditure nor respiratory quotient were different according to UCP2 exon 4 or exon 8 genotype. Conclusion The exon 8 ins/del polymorphism of UCP2 appears to be associated with childhood-onset obesity. The UCP2/UCP3 genetic locus may play a role in childhood body weight. PMID:10837279
Circular permutant GFP insertion folding reporters
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2008-06-24
Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.
Circular permutant GFP insertion folding reporters
Waldo, Geoffrey S; Cabantous, Stephanie
2013-02-12
Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.
Circular permutant GFP insertion folding reporters
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2011-06-14
Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.
Circular permutant GFP insertion folding reporters
Waldo, Geoffrey S.; Cabantous, Stephanie
2013-04-16
Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.
A family of splice variants of CstF-64 expressed in vertebrate nervous systems
Shankarling, Ganesh S; Coates, Penelope W; Dass, Brinda; MacDonald, Clinton C
2009-01-01
Background Alternative splicing and polyadenylation are important mechanisms for creating the proteomic diversity necessary for the nervous system to fulfill its specialized functions. The contribution of alternative splicing to proteomic diversity in the nervous system has been well documented, whereas the role of alternative polyadenylation in this process is less well understood. Since the CstF-64 polyadenylation protein is known to be an important regulator of tissue-specific polyadenylation, we examined its expression in brain and other organs. Results We discovered several closely related splice variants of CstF-64 – collectively called βCstF-64 – that could potentially contribute to proteomic diversity in the nervous system. The βCstF-64 splice variants are found predominantly in the brains of several vertebrate species including mice and humans. The major βCstF-64 variant mRNA is generated by inclusion of two alternate exons (that we call exons 8.1 and 8.2) found between exons 8 and 9 of the CstF-64 gene, and contains an additional 147 nucleotides, encoding 49 additional amino acids. Some variants of βCstF-64 contain only the first alternate exon (exon 8.1) while other variants contain both alternate exons (8.1 and 8.2). In mice, the predominant form of βCstF-64 also contains a deletion of 78 nucleotides from exon 9, although that variant is not seen in any other species examined, including rats. Immunoblot and 2D-PAGE analyses of mouse nuclear extracts indicate that a protein corresponding to βCstF-64 is expressed in brain at approximately equal levels to CstF-64. Since βCstF-64 splice variant family members were found in the brains of all vertebrate species examined (including turtles and fish), this suggests that βCstF-64 has an evolutionarily conserved function in these animals. βCstF-64 was present in both pre- and post-natal mice and in different regions of the nervous system, suggesting an important role for βCstF-64 in neural gene expression throughout development. Finally, experiments in representative cell lines suggest that βCstF-64 is expressed in neurons but not glia. Conclusion This is the first report of a family of splice variants encoding a key polyadenylation protein that is expressed in a nervous system-specific manner. We propose that βCstF-64 contributes to proteomic diversity by regulating alternative polyadenylation of neural mRNAs. PMID:19284619
A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein.
Li, W; Shaw, J E
1993-01-01
A variant C. elegans Tc4 transposable element, Tc4-rh1030, has been sequenced and is 3483 bp long. The Tc4 element that had been analyzed previously is 1605 bp long, consists of two 774-bp nearly perfect inverted terminal repeats connected by a 57-bp loop, and lacks significant open reading frames. In Tc4-rh1030, by comparison, a 2343-bp novel sequence is present in place of a 477-bp segment in one of the inverted repeats. The novel sequence of Tc4-rh1030 is present about five times per haploid genome and is invariably associated with Tc4 elements; we have used the designation Tc4v to denote this variant subfamily of Tc4 elements. Sequence analysis of three cDNA clones suggests that a Tc4v element contains at least five exons that could encode a novel basic protein of 537 amino acid residues. On northern blots, a 1.6-kb Tc4v-specific transcript was detected in the mutator strain TR679 but not in the wild-type strain N2; Tc4 elements are known to transpose in TR679 but appear to be quiescent in N2. We have analyzed transcripts produced by an unc-33 gene that has the Tc4-rh1030 insertional mutation in its transcribed region; all or almost all of the Tc4v sequence is frequently spliced out of the mutant unc-33 transcripts, sometimes by means of non-consensus splice acceptor sites. Images PMID:8382791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.; Fleischer, D.T.; Whitehead, W.T.
1995-05-15
Hereditary C5 deficiency has been reported in several families of different ethnic backgrounds and from different geographic regions, but the molecular genetic defect causing C5 deficiency has not been delineated in any of them. To examine the molecular basis of C5 deficiency in the African-American population, the exons and intron/exon boundaries of the C5 structural genes from three C5-deficient (C5D) African-American families were sequenced, revealing two nonsense mutations. The nonsense mutations are located in exon 1 (C{sup 84}AG to TAG) in two of the C5D families (Rhode Island and North Carolina) and in exon 36 (C{sup 4521}GA to TGA) inmore » the third C5D family (New York). The exon 1 and 36 mutations are contained in codons that encode the first amino acid of the C5 {beta}-chain (Gln{sup 1} to Stop) and residue 1458 in the {alpha}-chain (Arg{sup 1458} to Stop), respectively. Allele-specific PCR and sequence analyses demonstrated that the exon 1 mutation is present in only one of the C5 null genes in both the Rhode Island and North Carolina families, and the exon 36 mutation is contained in only one C5 null gene in the New York family. Neither of the nonsense mutations was found in the European or Caucasian-American C5D individuals examined. Collectively, these data indicate that: (1) C5 deficiency is caused by several different molecular genetic defects, (2) C5 deficiency in the African-American population can be explained in part by two distinct nonsense mutations in exons 1 and 36, and (3) compound heterozygosity exists in all of the reported African-American C5D families. 44 refs., 5 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Thomas, M. J.; Centrella, M.; Rotwein, P.
1995-01-01
Insulin-like growth factor I (IGF-I) is a locally synthesized anabolic growth factor for bone. IGF-I synthesis by primary fetal rat osteoblasts (Ob) is stimulated by agents that increase the intracellular cAMP concentration, including prostaglandin E2 (PGE2). Previous studies with Ob cultures demonstrated that PGE2 enhanced IGF-I transcription through selective use of IGF-I promoter 1, with little effect on IGF-I messenger RNA half-life. Transient transfection of Ob cultures with an array of promoter 1-luciferase reporter fusion constructs has now allowed localization of a potential cis-acting promoter element(s) responsible for cAMP-stimulated gene expression to the 5'-untranslated region (5'-UTR) of IGF-I exon 1, within a segment lacking a consensus cAMP response element. Our evidence derives from three principal observations: 1) a transfection construct containing only 122 nucleotides (nt) of promoter 1 and 328 nt of the 5'-UTR retained full PGE2-stimulated reporter expression; 2) maximal PGE2-driven reporter expression required the presence of nt 196 to 328 of exon 1 when tested within the context of IGF-I promoter 1; 3) cotransfection of IGF-I promoter-luciferase-reporter constructs with a plasmid encoding the alpha-isoform of the catalytic subunit of murine cAMP-dependent protein kinase (PKA) produced results comparable to those seen with PGE2 treatment, whereas cotransfection with a plasmid encoding a mutant regulatory subunit of PKA that cannot bind cAMP blocked PGE2-induced reporter expression. Deoxyribonuclease I footprinting of the 5'-UTR of exon 1 demonstrated protected sequences at HS3A, HS3B, and HS3D, three of six DNA-protein binding sites previously characterized with rat liver nuclear extracts. Of these three regions, only the HS3D binding site is located within the functionally identified hormonally responsive segment of IGF-I exon 1. These results directly implicate PKA in the control of IGF-I gene transcription by PGE2 and identify a segment of IGF-I exon 1 as being essential for this hormonal regulation.
Tabish, M; Clegg, R A; Rees, H H; Fisher, M J
1999-04-01
The cAMP-dependent protein kinase (protein kinase A, PK-A) is multifunctional in nature, with key roles in the control of diverse aspects of eukaryotic cellular activity. In the case of the free-living nematode, Caenorhabditis elegans, a gene encoding the PK-A catalytic subunit has been identified and two isoforms of this subunit, arising from a C-terminal alternative-splicing event, have been characterized [Gross, Bagchi, Lu and Rubin (1990) J. Biol. Chem. 265, 6896-6907]. Here we report the occurrence of N-terminal alternative-splicing events that, in addition to generating a multiplicity of non-myristoylatable isoforms, also generate the myristoylated variant(s) of the catalytic subunit that we have recently characterized [Aspbury, Fisher, Rees and Clegg (1997) Biochem. Biophys. Res. Commun. 238, 523-527]. The gene spans more than 36 kb and is divided into a total of 13 exons. Each of the mature transcripts contains only 7 exons. In addition to the already characterized exon 1, the 5'-untranslated region and first intron actually contain 5 other exons, any one of which may be alternatively spliced on to exon 2 at the 5' end of the pre-mRNA. This N-terminal alternative splicing occurs in combination with either of the already characterized C-terminal alternative exons. Thus, C. elegans expresses at least 12 different isoforms of the catalytic subunit of PK-A. The significance of this unprecedented structural diversity in the family of PK-A catalytic subunits is discussed.
Albinism due to transposable element insertion in fish.
Koga, A; Hori, H
1997-12-01
The i locus of the medaka fish, Oryzias latipes, is responsible for tyrosinase expression, and several mutant alleles have been identified. The genotype i1/i1 exhibits a complete albino phenotype, having pale orange-red skin and red eyes. This mutant lacks in vivo tyrosinase activity. The genotype i4/i4, on the other hand, shows a quasi-albino phenotype with skin as bright as that of i1/i1 but with red-wine-colored eyes. At the light microscope level, reduced pigmentation is observed both in the skin and eyes of this mutant. The tyrosinase genes for the i1 and the i4 alleles were cloned and sequenced, and compared with that of the wild-type tyrosinase gene. The i1 allele was found to contain a 1.9-kb transposable element in the 1st exon, and the i4 allele was found to contain a 4.7-kb transposable element in the 5th exon. Both i1 and i4 are alleles that were found in a commercial breeding population. The insertion of a transposable element thus appears to constitute a natural cause of mutations that cause albinism in this organism.
Holdys, Joanna; Gronek, Piotr; Kryściak, Jakub; Stanisławski, Daniel
2013-01-01
Uncoupling proteins 2 and 3 (UCP2 and UCP3) as mitochondrial electron transporters are involved in regulation of ATP production and energy dissipation as heat. Energy efficiency plays an important role in physical performance, especially in aerobic fitness. The aim of this study was to examine the association between maximal oxygen uptake and genetic variants of the UCP2 and UCP3 genes. The studies were carried out in a group of 154 men and 85 women, professional athletes representing various sports and fitness levels and students of the University of Physical Education in Poznań. Physiological and molecular procedures were used, i.e. direct measurement of maximum oxygen uptake (VO₂max) and analysis of an insertion/deletion (I/D) polymorphism in the 3'untranslated region of exon 8 of the UCP2 gene and a C>T substitution in exon 5 (Y210Y) of the UCP3 gene. No statistically significant associations were found, only certain trends. Insertion allele (I) of the I/D UCP2 and the T allele of the UCP3 gene were favourable in obtaining higher VO₂max level and might be considered as endurance-related alleles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, G.A.; Blitzer, M.G.; Mules, E.H.
A study was undertaken to characterize the mutation(s) responsible for Tay-Sachs disease (TSD) in a Cajun population in southwest Louisiana and to identify the origins of these mutations. Eleven of 12 infantile TSD alleles examined in six families had the [beta]-hexosaminidase A (Hex A) [alpha]-subunit exon 11 insertion mutation that is present in approximately 70% of Ashkenazi Jewish TSD heterozygotes. The mutation in the remaining allele was a single-base transition in the donor splice site of the [alpha]-subunit intron 9. To determine the origins of these two mutations in the Cajun population, the TSD carrier status was enzymatically determined formore » 90 members of four of the six families, and extensive pedigrees were constructed for all carriers. A single ancestral couple from France was found to be common to most of the carriers of the exon 11 insertion. Pedigree data suggest that this mutation has been in the Cajun population since its founding over 2 centuries ago and that it may be widely distributed within the population. In contrast, the intron 9 mutation apparently was introduced within the last century and probably is limited to a few Louisiana families. 29 refs., 4 figs.« less
ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs
Kapitonov, Vladimir V.; Makarova, Kira S.
2015-01-01
ABSTRACT Bacterial genomes encode numerous homologs of Cas9, the effector protein of the type II CRISPR-Cas systems. The homology region includes the arginine-rich helix and the HNH nuclease domain that is inserted into the RuvC-like nuclease domain. These genes, however, are not linked to cas genes or CRISPR. Here, we show that Cas9 homologs represent a distinct group of nonautonomous transposons, which we denote ISC (insertion sequences Cas9-like). We identify many diverse families of full-length ISC transposons and demonstrate that their terminal sequences (particularly 3′ termini) are similar to those of IS605 superfamily transposons that are mobilized by the Y1 tyrosine transposase encoded by the TnpA gene and often also encode the TnpB protein containing the RuvC-like endonuclease domain. The terminal regions of the ISC and IS605 transposons contain palindromic structures that are likely recognized by the Y1 transposase. The transposons from these two groups are inserted either exactly in the middle or upstream of specific 4-bp target sites, without target site duplication. We also identify autonomous ISC transposons that encode TnpA-like Y1 transposases. Thus, the nonautonomous ISC transposons could be mobilized in trans either by Y1 transposases of other, autonomous ISC transposons or by Y1 transposases of the more abundant IS605 transposons. These findings imply an evolutionary scenario in which the ISC transposons evolved from IS605 family transposons, possibly via insertion of a mobile group II intron encoding the HNH domain, and Cas9 subsequently evolved via immobilization of an ISC transposon. IMPORTANCE Cas9 endonucleases, the effectors of type II CRISPR-Cas systems, represent the new generation of genome-engineering tools. Here, we describe in detail a novel family of transposable elements that encode the likely ancestors of Cas9 and outline the evolutionary scenario connecting different varieties of these transposons and Cas9. PMID:26712934
Marques, Alexandra T; Antunes, Agostinho; Fernandes, Pedro A; Ramos, Maria J
2006-01-01
Background The Aβ-binding alcohol dehydrogenase/17β-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10) is an enzyme involved in pivotal metabolic processes and in the mitochondrial dysfunction seen in the Alzheimer's disease. Here we use comparative genomic analyses to study the evolution of the HADH2 gene encoding ABAD/HSD10 across several eukaryotic species. Results Both vertebrate and nematode HADH2 genes showed a six-exon/five-intron organization while those of the insects had a reduced and varied number of exons (two to three). Eutherian mammal HADH2 genes revealed some highly conserved noncoding regions, which may indicate the presence of functional elements, namely in the upstream region about 1 kb of the transcription start site and in the first part of intron 1. These regions were also conserved between Tetraodon and Fugu fishes. We identified a conserved alternative splicing event between human and dog, which have a nine amino acid deletion, causing the removal of the strand βF. This strand is one of the seven strands that compose the core β-sheet of the Rossman fold dinucleotide-binding motif characteristic of the short chain dehydrogenase/reductase (SDR) family members. However, the fact that the substrate binding cleft residues are retained and the existence of a shared variant between human and dog suggest that it might be functional. Molecular adaptation analyses across eutherian mammal orthologues revealed the existence of sites under positive selection, some of which being localized in the substrate-binding cleft and in the insertion 1 region on loop D (an important region for the Aβ-binding to the enzyme). Interestingly, a higher than expected number of nonsynonymous substitutions were observed between human/chimpanzee and orangutan, with six out of the seven amino acid replacements being under molecular adaptation (including three in loop D and one in the substrate binding loop). Conclusion Our study revealed that HADH2 genes maintained a reasonable conserved organization across a large evolutionary distance. The conserved noncoding regions identified among mammals and between pufferfishes, the evidence of an alternative splicing variant conserved between human and dog, and the detection of positive selection across eutherian mammals, may be of importance for further research on ABAD/HSD10 function and its implication in the Alzheimer's disease. PMID:16899120
Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred
2014-01-01
Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield. PMID:25333064
Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred
2014-09-01
Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield.
Kim, Dong Seon; Hahn, Yoonsoo
2012-11-13
Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.
The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations
Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns
2015-01-01
Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253
Poi, M J; Yen, T; Li, J; Song, H; Lang, J C; Schuller, D E; Pearl, D K; Casto, B C; Tsai, M D; Weghorst, C M
2001-01-01
The INK4a-ARF locus is located on human chromosome 9p21 and is known to encode two functionally distinct tumor-suppressor genes. The p16(INK4a) (p16) tumor-suppressor gene product is a negative regulator of cyclin-dependent kinases 4 and 6, which in turn positively regulate progression of mammalian cells through the cell cycle. The p14(ARF) tumor-suppressor gene product specifically interacts with human double minute 2, leading to the subsequent stabilization of p53 and G(1) arrest. Previous investigations analyzing the p16 gene in squamous cell carcinomas of the head and neck (SCCHNs) have suggested the predominate inactivating events to be homozygous gene deletions and hypermethylation of the p16 promoter. Somatic mutational inactivation of p16 has been reported to be low (0-10%, with a combined incidence of 25 of 279, or 9%) and to play only a minor role in the development of SCCHN. The present study examined whether this particular mechanism of INK4a/ARF inactivation, specifically somatic mutation, has been underestimated in SCCHN by determining the mutational status of the p16 and p14(ARF) genes in 100 primary SCCHNs with the use of polymerase chain reaction technology and a highly sensitive, nonradioactive modification of single-stranded conformational polymorphism (SSCP) analysis termed "cold" SSCP. Exons 1alpha, 1beta, and 2 of INK4a/ARF were amplified using intron-based primers or a combination of intron- and exon-based primers. A total of 27 SCCHNs (27%) exhibited sequence alterations in this locus, 22 (22%) of which were somatic sequence alterations and five (5%) of which were a single polymorphism in codon 148. Of the 22 somatic alterations, 20 (91%) directly or indirectly involved exon 2, and two (9%) were located within exon 1alpha. No mutations were found in exon 1beta. All 22 somatic mutations would be expected to yield altered p16 proteins, but only 15 of them should affect p14(ARF) proteins. Specific somatic alterations included microdeletions or insertions (nine of 22, 41%), a microrearrangement (one of 22, 5%), and single nucleotide substitutions (12 of 22, 56%). In addition, we analyzed the functional characteristics of seven unique mutant p16 proteins identified in this study by assessing their ability to inhibit cyclin-dependent kinase 4 activity. Six of the seven mutant proteins tested exhibited reduced function compared with wild-type p16, ranging from minor decreases of function (twofold to eightfold) in four samples to total loss of function (29- to 38-fold decrease) in two other samples. Overall, somatic mutation of the INK4a/ARF tumor suppressor locus, resulting in functionally deficient p16 and possibly p14(ARF) proteins, seems to be a prevalent event in the development of SCCHN. Mol. Carcinog. 30:26-36, 2001. Copyright 2001 Wiley-Liss, Inc.
Terenzi, Fulvia; Ladd, Andrea N
2010-01-01
Muscleblind-like (MBNL) proteins have been shown to regulate pre-mRNA alternative splicing, and MBNL1 has been implicated in regulating fetal-to-adult transitions in alternative splicing in the heart. MBNL1 is highly conserved, exhibiting more than 95% identity at the amino acid level between birds and mammals. To investigate MBNL1 expression during embryonic heart development, we examined MBNL1 transcript and protein expression in the embryonic chicken heart from the formation of the primitive heart tube through cardiac morphogenesis (embryonic days 1.5 through 8). MBNL1 transcript levels remained steady throughout these stages, whereas MBNL1 protein levels increased and exhibited a shift in isoforms. MBNL1 has several alternatively spliced exons. Using RT-PCR, we determined that the inclusion of one of these, exon 5, decreases dramatically during cardiac morphogenesis. This developmental transition is conserved in mice. Functional analyses of MBNL1 isoforms containing or lacking exon 5-encoded sequences revealed that exon 5 is important for the regulation of the subcellular localization, RNA binding affinity, and alternative splicing activity of MBNL1 proteins. A second MBNL protein, MBNL2, is also expressed in the embryonic heart. We found that MBNL2 exon 5, which is paralogous to MBNL1 exon 5, is similarly regulated during embryonic heart development. Analysis of MBNL1 and MBNL2 transcripts in several embryonic tissues in chicken and mouse indicate that exon 5 alternative splicing is highly conserved and tissue-specific. Thus, we propose that conserved developmental stage- and tissue-specific alternative splicing of MBNL transcripts is an important mechanism by which MBNL activity is regulated during embryonic development.
Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1
Boddu, Ravindra; Yang, Chaozhe; O’Connor, Amber K.; Hendrickson, Robert Curtis; Boone, Braden; Cui, Xiangqin; Garcia-Gonzalez, Miguel; Igarashi, Peter; Onuchic, Luiz F.; Germino, Gregory G.
2014-01-01
Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. PMID:24984783
Tan, Wei; Dean, Michael; Law, Amanda J.
2010-01-01
ErbB4 is a growth factor receptor tyrosine kinase essential for neurodevelopment. Genetic variation in ErbB4 is associated with schizophrenia and risk-associated polymorphisms predict overexpression of ErbB4 CYT-1 isoforms in the brain in the disorder. The molecular mechanism of association is unclear because the polymorphisms flank exon 3 of the gene and reside 700 kb distal to the CYT-1 defining exon. We hypothesized that the polymorphisms are indirectly associated with ErbB4 CYT-1 via splicing of exon 3 on the CYT-1 background. We report via cloning and sequencing of adult and fetal human brain cDNA libraries the identification of novel splice isoforms of ErbB4, whereby exon 3 is skipped (del.3). ErbB4 del.3 transcripts exist as CYT-2 isoforms and are predicted to produce truncated proteins. Furthermore, our data refine the structure of the human ErbB4 gene, clarify that juxtamembrane (JM) splice variants of ErbB4, JM-a and JM-b respectively, are characterized by the replacement of a 75 nucleotide (nt) sequence with a 45-nt insertion, and demonstrate that there are four alternative exons in the gene. Our analyses reveal that novel splice variants of ErbB4 exist in the developing and adult human brain and, given the failure to identify ErbB4 del.3 CYT-1 transcripts, suggest that the association of risk polymorphisms in the ErbB4 gene with CYT-1 transcript levels is not mediated via an exon 3 splicing event. PMID:20886074
Adrion, Jeffrey R.; Song, Michael J.; Schrider, Daniel R.; Hahn, Matthew W.
2017-01-01
Abstract Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species. PMID:28338986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittig, S.; Siggaard, C.; Pedersen, E.B.
1996-01-01
Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation wasmore » unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. 63 refs., 5 figs., 6 tabs.« less
Short, Stephen; Peterkin, Tessa; Guille, Matthew; Patient, Roger; Sharpe, Colin
2015-01-01
Vertebrate NCoR-family co-repressors play central roles in the timing of embryo and stem cell differentiation by repressing the activity of a range of transcription factors. They interact with nuclear receptors using short linear motifs (SLiMs) termed co-repressor for nuclear receptor (CoRNR) boxes. Here, we identify the pathway leading to increasing co-repressor diversity across the deuterostomes. The final complement of CoRNR boxes arose in an ancestral cephalochordate, and was encoded in one large exon; the urochordates and vertebrates then split this region between 10 and 12 exons. In Xenopus, alternative splicing is prevalent in NCoR2, but absent in NCoR1. We show for one NCoR1 exon that alternative splicing can be recovered by a single point mutation, suggesting NCoR1 lost the capacity for alternative splicing. Analyses in Xenopus and zebrafish identify that cellular context, rather than gene sequence, predominantly determines species differences in alternative splicing. We identify a pathway to diversity for the NCoR family beginning with the addition of a SLiM, followed by gene duplication, the generation of alternatively spliced isoforms and their differential deployment. PMID:26289800
Multi-step splicing of sphingomyelin synthase linear and circular RNAs.
Filippenkov, Ivan B; Sudarkina, Olga Yu; Limborska, Svetlana A; Dergunova, Lyudmila V
2018-05-15
The SGMS1 gene encodes the enzyme sphingomyelin synthase 1 (SMS1), which is involved in the regulation of lipid metabolism, apoptosis, intracellular vesicular transport and other significant processes. The SGMS1 gene is located on chromosome 10 and has a size of 320 kb. Previously, we showed that dozens of alternative transcripts of the SGMS1 gene are present in various human tissues. In addition to mRNAs that provide synthesis of the SMS1 protein, this gene participates in the synthesis of non-coding transcripts, including circular RNAs (circRNAs), which include exons of the 5'-untranslated region (5'-UTR) and are highly represented in the brain. In this study, using the high-throughput technology RNA-CaptureSeq, many new SGMS1 transcripts were identified, including both intronic unspliced RNAs (premature RNAs) and RNAs formed via alternative splicing. Recursive exons (RS-exons) that can participate in the multi-step splicing of long introns of the gene were also identified. These exons participate in the formation of circRNAs. Thus, multi-step splicing may provide a variety of linear and circular RNAs of eukaryotic genes in tissues. Copyright © 2018 Elsevier B.V. All rights reserved.
The Status of Exon Skipping as a Therapeutic Approach to Duchenne Muscular Dystrophy
Lu, Qi-Long; Yokota, Toshifumi; Takeda, Shin'ichi; Garcia, Luis; Muntoni, Francesco; Partridge, Terence
2011-01-01
Duchenne muscular dystrophy (DMD) is associated with mutations in the dystrophin gene that disrupt the open reading frame whereas the milder Becker's form is associated with mutations which leave an in-frame mRNA transcript that can be translated into a protein that includes the N- and C- terminal functional domains. It has been shown that by excluding specific exons at, or adjacent to, frame-shifting mutations, open reading frame can be restored to an out-of-frame mRNA, leading to the production of a partially functional Becker-like dystrophin protein. Such targeted exclusion can be achieved by administration of oligonucleotides that are complementary to sequences that are crucial to normal splicing of the exon into the transcript. This principle has been validated in mouse and canine models of DMD with a number of variants of oligonucleotide analogue chemistries and by transduction with adeno-associated virus (AAV)-small nuclear RNA (snRNA) reagents encoding the antisense sequence. Two different oligonucleotide agents are now being investigated in human trials for splicing out of exon 51 with some early indications of success at the biochemical level. PMID:20978473
Rittig, S.; Robertson, G. L.; Siggaard, C.; Kovács, L.; Gregersen, N.; Nyborg, J.; Pedersen, E. B.
1996-01-01
Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. Images Figure 3 PMID:8554046
Shark IgW C region diversification through RNA processing and isotype switching.
Zhang, Cecilia; Du Pasquier, Louis; Hsu, Ellen
2013-09-15
Sharks and skates represent the earliest vertebrates with an adaptive immune system based on lymphocyte Ag receptors generated by V(D)J recombination. Shark B cells express two classical Igs, IgM and IgW, encoded by an early, alternative gene organization consisting of numerous autonomous miniloci, where the individual gene cluster carries a few rearranging gene segments and one C region, μ or ω. We have characterized eight distinct Ig miniloci encoding the nurse shark ω H chain. Each cluster consists of VH, D, and JH segments and six to eight C domain exons. Two interspersed secretory exons, in addition to the 3'-most C exon with tailpiece, provide the gene cluster with the ability to generate at least six secreted isoforms that differ as to polypeptide length and C domain combination. All clusters appear to be functional, as judged by the capability for rearrangement and absence of defects in the deduced amino acid sequence. We previously showed that IgW VDJ can perform isotype switching to μ C regions; in this study, we found that switching also occurs between ω clusters. Thus, C region diversification for any IgW VDJ can take place at the DNA level by switching to other ω or μ C regions, as well as by RNA processing to generate different C isoforms. The wide array of pathogens recognized by Abs requires different disposal pathways, and our findings demonstrate complex and unique pathways for C effector function diversity that evolved independently in cartilaginous fishes.
Samson, Marie-Laure
2008-01-01
Background The Drosophila gene embryonic lethal abnormal visual system (elav) is the prototype of a gene family present in all metazoans. Its members encode structurally conserved neuronal proteins with three RNA Recognition Motifs (RRM) but they paradoxically act at diverse levels of post-transcriptional regulation. In an attempt to understand the history of this family, we searched for orthologs in eleven completely sequenced genomes, including those of humans, D. melanogaster and C. elegans, for which cDNAs are available. Results We analyzed 23 orthologs/paralogs of elav, and found evidence of gain/loss of gene copy number. For one set of genes, including elav itself, the coding sequences are free of introns and their products most resemble ELAV. The remaining genes show remarkable conservation of their exon organization, and their products most resemble FNE and RBP9, proteins encoded by the two elav paralogs of Drosophila. Remarkably, three of the conserved exon junctions are both close to structural elements, involved respectively in protein-RNA interactions and in the regulation of sub-cellular localization, and in the vicinity of diverse sequence variations. Conclusion The data indicate that the essential elav gene of Drosophila is newly emerged, restricted to dipterans and of retrotransposed origin. We propose that the conserved exon junctions constitute potential sites for sequence/function modifications, and that RRM binding proteins, whose function relies upon plastic RNA-protein interactions, may have played an important role in brain evolution. PMID:18715504
Bian, Yang; Masuda, Akio; Matsuura, Tohru; Ito, Mikako; Okushin, Kazuya; Engel, Andrew G.; Ohno, Kinji
2009-01-01
We recently reported that the intronic splice-site mutation IVS3-8G>A of CHRNA1 that encodes the muscle nicotinic acetylcholine receptor α subunit disrupts binding of a splicing repressor, hnRNP H. This, in turn, results in exclusive inclusion of the downstream exon P3A. The P3A(+) transcript encodes a non-functional α subunit that comprises 50% of the transcripts in normal human skeletal muscle, but its functional significance remains undetermined. In an effort to search for a potential therapy, we screened off-label effects of 960 bioactive chemical compounds and found that tannic acid ameliorates the aberrant splicing due to IVS3-8G>A but without altering the expression of hnRNP H. Therefore, we searched for another splicing trans-factor. We found that the polypyrimidine tract binding protein (PTB) binds close to the 3′ end of CHRNA1 intron 3, that PTB induces skipping of exon P3A and that tannic acid increases the expression of PTB in a dose-dependent manner. Deletion assays of the PTB promoter region revealed that the tannic acid-responsive element is between positions −232 and −74 from the translation initiation site. These observations open the door to the discovery of novel therapies based on PTB overexpression and to detecting possible untoward effects of the overexpression. PMID:19147685
Li, Xinjian; Chen, Weiguo; Zhang, Huanmin; Li, Aijun; Shu, Dingming; Li, Hongxing; Dai, Zhenkai; Yan, Yiming; Zhang, Xinheng; Lin, Wencheng; Ma, Jingyun; Xie, Qingmei
2018-04-15
The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution. IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced functionality in mediating subgroup B, D, and E ALV infection. Unlike the control of herpesvirus-induced diseases by vaccination, the control of avian leukosis in chickens has relied totally on virus eradication measures and host genetic resistance. This finding enriches the allelic pool of the tvb gene and expands the potential for genetic improvement of ALV resistance in varied chicken populations by selection. Copyright © 2018 American Society for Microbiology.
FoxP3 as a Missing Link Between Inflammation and Breast Cancer
2011-09-01
CONTRACTING ORGANIZATION : The...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S...sequenced exons 2 and 6 of human YAP, which encodes amino acid sequence encompassing S127 and S347 (S381) sites, respectively. DNA were prepared from
MACF1 gene structure: a hybrid of plectin and dystrophin.
Gong, T W; Besirli, C G; Lomax, M I
2001-11-01
Mammalian MACF1 (Macrophin1; previously named ACF7) is a giant cytoskeletal linker protein with three known isoforms that arise by alternative splicing. We isolated a 19.1-kb cDNA encoding a fourth isoform (MACF1-4) with a unique N-terminus. Instead of an N-terminal actin-binding domain found in the other three isoforms, MACF1-4 has eight plectin repeats. The MACF1 gene is located on human Chr 1p32, contains at least 102 exons, spans over 270 kb, and gives rise to four major isoforms with different N-termini. The genomic organization of the actin-binding domain is highly conserved in mammalian genes for both plectin and BPAG1. All eight plectin repeats are encoded by one large exon; this feature is similar to the genomic structure of plectin. The intron positions within spectrin repeats in MACF1 are very similar to those in the dystrophin gene. This demonstrates that MACF1 has characteristic features of genes for two classes of cytoskeletal proteins, i.e., plectin and dystrophin.
The genomic structure of the human UFO receptor.
Schulz, A S; Schleithoff, L; Faust, M; Bartram, C R; Janssen, J W
1993-02-01
Using a DNA transfection-tumorigenicity assay we have recently identified the UFO oncogene. It encodes a tyrosine kinase receptor characterized by the juxtaposition of two immunoglobulin-like and two fibronectin type III repeats in its extracellular domain. Here we describe the genomic organization of the human UFO locus. The UFO receptor is encoded by 20 exons that are distributed over a region of 44 kb. Different isoforms of UFO mRNA are generated by alternative splicing of exon 10 and differential usage of two imperfect polyadenylation sites resulting in the presence or absence of 1.5-kb 3' untranslated sequences. Primer extension and S1 nuclease analyses revealed multiple transcriptional initiation sites including a major site 169 bp upstream of the translation start site. The promoter region is GC rich, lacks TATA and CAAT boxes, but contains potential recognition sites for a variety of trans-acting factors, including Sp1, AP-2 and the cyclic AMP response element-binding protein. Proto-UFO and its oncogenic counterpart exhibit identical cDNA and promoter regions sequences. Possible modes of UFO activation are discussed.
Structure, synthesis, and molecular cloning of dermaseptins B, a family of skin peptide antibiotics.
Charpentier, S; Amiche, M; Mester, J; Vouille, V; Le Caer, J P; Nicolas, P; Delfour, A
1998-06-12
Analysis of antimicrobial activities that are present in the skin secretions of the South American frog Phyllomedusa bicolor revealed six polycationic (lysine-rich) and amphipathic alpha-helical peptides, 24-33 residues long, termed dermaseptins B1 to B6, respectively. Prepro-dermaseptins B all contain an almost identical signal peptide, which is followed by a conserved acidic propiece, a processing signal Lys-Arg, and a dermaseptin progenitor sequence. The 22-residue signal peptide plus the first 3 residues of the acidic propiece are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The 25-residue amino-terminal region of prepro-dermaseptins B shares 50% identity with the corresponding region of precursors for D-amino acid containing opioid peptides or for antimicrobial peptides originating from the skin of distantly related frog species. The remarkable similarity found between prepro-proteins that encode end products with strikingly different sequences, conformations, biological activities and modes of action suggests that the corresponding genes have evolved through dissemination of a conserved "secretory cassette" exon.
Huang, P L; Do, Y Y; Huang, F C; Thay, T S; Chang, T W
1997-04-01
A cDNA encoding the banana 1-aminocyclopropane-1-carboxylate (ACC) oxidase has previously been isolated from a cDNA library that was constructed by extracting poly(A)+ RNA from peels of ripening banana. This cDNA, designated as pMAO2, has 1,199 bp and contains an open reading frame of 318 amino acids. In order to identify ripening-related promoters of the banana ACC oxidase gene, pMAO2 was used as a probe to screen a banana genomic library constructed in the lambda EMBL3 vector. The banana ACC oxidase MAO2 gene has four exons and three introns, with all of the boundaries between these introns and exons sharing a consensus dinucleotide sequence of GT-AG. The expression of MAO2 gene in banana begins after the onset of ripening (stage 2) and continuous into later stages of the ripening process. The accumulation of MAO2 mRNA can be induced by 1 microliter/l exogenous ethylene, and it reached steady state level when 100 microliters/l exogenous ethylene was present.
Chen, Wuyan; Perritt, Ashley F; Morissette, Rachel; Dreiling, Jennifer L; Bohn, Markus-Frederik; Mallappa, Ashwini; Xu, Zhi; Quezado, Martha; Merke, Deborah P
2016-09-01
Some variants that cause autosomal-recessive congenital adrenal hyperplasia (CAH) also cause hypermobility type Ehlers-Danlos syndrome (EDS) due to the monoallelic presence of a chimera disrupting two flanking genes: CYP21A2, encoding 21-hydroxylase, necessary for cortisol and aldosterone biosynthesis, and TNXB, encoding tenascin-X, an extracellular matrix protein. Two types of CAH tenascin-X (CAH-X) chimeras have been described with a total deletion of CYP21A2 and characteristic TNXB variants. CAH-X CH-1 has a TNXB exon 35 120-bp deletion resulting in haploinsufficiency, and CAH-X CH-2 has a TNXB exon 40 c.12174C>G (p.Cys4058Trp) variant resulting in a dominant-negative effect. We present here three patients with biallelic CAH-X and identify a novel dominant-negative chimera termed CAH-X CH-3. Compared with monoallelic CAH-X, biallelic CAH-X results in a more severe phenotype with skin features characteristic of classical EDS. We present evidence for disrupted tenascin-X function and computational data linking the type of TNXB variant to disease severity. © 2016 WILEY PERIODICALS, INC.
Bacrot, Séverine; Doyard, Mathilde; Huber, Céline; Alibeu, Olivier; Feldhahn, Niklas; Lehalle, Daphné; Lacombe, Didier; Marlin, Sandrine; Nitschke, Patrick; Petit, Florence; Vazquez, Marie-Paule; Munnich, Arnold; Cormier-Daire, Valérie
2015-02-01
Cerebro-costo-mandibular syndrome (CCMS) is a developmental disorder characterized by the association of Pierre Robin sequence and posterior rib defects. Exome sequencing and Sanger sequencing in five unrelated CCMS patients revealed five heterozygous variants in the small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) gene. This gene includes three transcripts, namely transcripts 1 and 2, encoding components of the core spliceosomal machinery (SmB' and SmB) and transcript 3 undergoing nonsense-mediated mRNA decay. All variants were located in the premature termination codon (PTC)-introducing alternative exon of transcript 3. Quantitative RT-PCR analysis revealed a significant increase in transcript 3 levels in leukocytes of CCMS individuals compared to controls. We conclude that CCMS is due to heterozygous mutations in SNRPB, enhancing inclusion of a SNRPB PTC-introducing alternative exon, and show that this developmental disease is caused by defects in the splicing machinery. Our finding confirms the report of SNRPB mutations in CCMS patients by Lynch et al. (2014) and further extends the clinical and molecular observations. © 2014 WILEY PERIODICALS, INC.
Li, Ronggai; Dooley, Helen; Wang, Tiehui; Secombes, Christopher J; Bird, Steve
2012-04-01
B-cell activating factor (BAFF), also known as tumour necrosis factor (TNF) ligand superfamily member 13B, is an important immune regulator with critical roles in B-cell survival, proliferation, differentiation and immunoglobulin secretion. A BAFF gene has been cloned from spiny dogfish (Squalus acanthias) and its expression studied. The dogfish BAFF encodes for an anchored type-II transmembrane protein of 288 aa with a putative furin protease cleavage site and TNF family signature as seen in BAFFs from other species. The identity of dogfish BAFF has also been confirmed by conserved cysteine residues, and phylogenetic tree analysis. The dogfish BAFF gene has an extra exon not seen in teleost fish, birds and mammals that encodes for 29 aa and may impact on receptor binding. The dogfish BAFF is highly expressed in immune tissues, such as spleen, and is up-regulated by PWM in peripheral blood leucocytes, suggesting a potentially important role in the immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.
Transposition of an intron in yeast mitochondria requires a protein encoded by that intron.
Macreadie, I G; Scott, R M; Zinn, A R; Butow, R A
1985-06-01
The optional 1143 bp intron in the yeast mitochondrial 21S rRNA gene (omega +) is nearly quantitatively inserted in genetic crosses into 21S rRNA alleles that lack it (omega -). The intron contains an open reading frame that can encode a protein of 235 amino acids, but no function has been ascribed to this sequence. We previously found an in vivo double-strand break in omega - DNA at or close to the intron insertion site only in zygotes of omega + X omega - crosses that appears with the same kinetics as intron insertion. We now show that mutations in the intron open reading frame that would alter the translation product simultaneously inhibit nonreciprocal omega recombination and the in vivo double-strand break in omega - DNA. These results provide evidence that the open reading frame encodes a protein required for intron transposition and support the role of the double-strand break in the process.
An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain
Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng
2011-01-01
The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818
Zeng, Dong-Dong; Yang, Cheng-Cong; Qin, Ran; Alamin, Md; Yue, Er-Kui; Jin, Xiao-Li; Shi, Chun-Hai
2018-06-01
A rice receptor-like kinase gene OSBBS1/OsRLCK109 was identified; this gene played vital roles in leaf senescence and the salt stress response. Early leaf senescence can cause negative effects on rice yield, but the underlying molecular regulation is not fully understood. bilateral blade senescence 1 (bbs1), an early leaf senescence mutant with a premature senescence phenotype that occurs mainly performing at the leaf margins, was isolated from a rice mutant population generated by ethylmethane sulfonate (EMS) treatment. The mutant showed premature leaf senescence beginning at the tillering stage and exhibited severe symptoms at the late grain-filling stage. bbs1 showed accelerated dark-induced leaf senescence. The OsBBS1 gene was cloned by a map-based cloning strategy, and a guanine (G) insertion was found in the first exon of LOC_Os03g24930. This gene encodes a receptor-like cytoplasmic kinase and was named OsRLCK109 in a previous study. Transgenic LOC_Os03g24930 knockout plants generated by a CRISPR/Cas9 strategy exhibited similar early leaf senescence phenotypes as did the bbs1 mutant, which confirmed that LOC_Os03g24930 was the OsBBS1 gene. OsBBS1/OsRLCK109 was expressed in all detected tissues and was predominantly expressed in the main vein region of mature leaves. The expression of OsBBS1 could be greatly induced by salt stress, and the bbs1 mutant exhibited hypersensitivity to salt stress. In conclusion, this is the first identification of OsRLCKs participating in leaf senescence and playing critical roles in the salt stress response in rice (Oryza sativa L.).
Tsang-A-Sjoe, M W P; Bultink, I E M; Korswagen, L A; van der Horst, A; Rensink, I; de Boer, M; Hamann, D; Voskuyl, A E; Wouters, D
2017-12-01
Genetic variation of the genes encoding complement component C4 is strongly associated with systemic lupus erythematosus (SLE), a chronic multi-organ auto-immune disease. This study examined C4 and its isotypes on a genetic, protein, and functional level in 140 SLE patients and 104 healthy controls. Gene copy number (GCN) variation, silencing CT-insertion, and the retroviral HERV-K(C4) insertion) were analyzed with multiplex ligation-dependent probe amplification. Increased susceptibility to SLE was found for low GCN (≪2) of C4A. Serositis was the only clinical manifestation associated with low C4A GCN. One additional novel silencing mutation in the C4A gene was found by Sanger sequencing. This mutation causes a premature stop codon in exon 11. Protein concentrations of C4 isoforms C4A and C4B were determined with ELISA and were significantly lower in SLE patients compared to healthy controls. To study C4 isotypes on a functional level, a new C4 assay was developed, which distinguishes C4A from C4B by its binding capacity to amino or hydroxyl groups, respectively. This assay showed high correlation with ELISA and detected crossing over of Rodgers and Chido antigens in 3.2% (8/244) of individuals. The binding capacity of available C4 to its substrates was unaffected in SLE. Our study provides, for the first time, a complete overview of C4 in SLE from genetic variation to binding capacity using a novel test. As this test detects crossing over of Rodgers and Chido antigens, it will allow for more accurate measurement of C4 in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Syahruddin, Elisna; Wulandari, Laksmi; Sri Muktiati, Nunuk; Rima, Ana; Soeroso, Noni; Ermayanti, Sabrina; Levi, Michael; Hidajat, Heriawaty; Widjajahakim, Grace; Utomo, Ahmad Rusdan Handoyo
2018-01-01
Purpose We aimed to evaluate the distribution of individual epidermal growth factor receptor (EGFR) mutation subtypes found in routine cytological specimens. Patients and methods A retrospective audit was performed on EGFR testing results of 1,874 consecutive cytological samples of newly diagnosed or treatment-naïve Indonesian lung cancer patients (years 2015–2016). Testing was performed by ISO15189 accredited central laboratory. Results Overall test failure rate was 5.1%, with the highest failure (7.1%) observed in pleural effusion and lowest (1.6%) in needle aspiration samples. EGFR mutation frequency was 44.4%. Tyrosine kinase inhibitor (TKI)-sensitive common EGFR mutations (ins/dels exon 19, L858R) and uncommon mutations (G719X, T790M, L861Q) contributed 57.1% and 29%, respectively. Approximately 13.9% of mutation-positive patients carried a mixture of common and uncommon mutations. Women had higher EGFR mutation rate (52.9%) vs men (39.1%; p<0.05). In contrast, uncommon mutations conferring either TKI responsive (G719X, L861Q) or TKI resistance (T790M, exon 20 insertions) were consistently more frequent in men than in women (67.3% vs 32.7% or 69.4% vs 30.6%; p<0.05). Up to 10% EGFR mutation–positive patients had baseline single mutation T790M, exon 20 insertion, or in coexistence with TKI-sensitive mutations. Up to 9% patients had complex or multiple EGFR mutations, whereby 48.7% patients harbored TKI-resistant mutations. One patient presented third-generation TKI-resistant mutation L792F simultaneously with T790M. Conclusion Routine diagnostic cytological techniques yielded similar success rate to detect EGFR mutations. Uncommon EGFR mutations were frequent events in Indonesian lung cancer patients. PMID:29615847
Syahruddin, Elisna; Wulandari, Laksmi; Sri Muktiati, Nunuk; Rima, Ana; Soeroso, Noni; Ermayanti, Sabrina; Levi, Michael; Hidajat, Heriawaty; Widjajahakim, Grace; Utomo, Ahmad Rusdan Handoyo
2018-01-01
We aimed to evaluate the distribution of individual epidermal growth factor receptor ( EGFR ) mutation subtypes found in routine cytological specimens. A retrospective audit was performed on EGFR testing results of 1,874 consecutive cytological samples of newly diagnosed or treatment-naïve Indonesian lung cancer patients (years 2015-2016). Testing was performed by ISO15189 accredited central laboratory. Overall test failure rate was 5.1%, with the highest failure (7.1%) observed in pleural effusion and lowest (1.6%) in needle aspiration samples. EGFR mutation frequency was 44.4%. Tyrosine kinase inhibitor (TKI)-sensitive common EGFR mutations (ins/dels exon 19, L858R) and uncommon mutations (G719X, T790M, L861Q) contributed 57.1% and 29%, respectively. Approximately 13.9% of mutation-positive patients carried a mixture of common and uncommon mutations. Women had higher EGFR mutation rate (52.9%) vs men (39.1%; p <0.05). In contrast, uncommon mutations conferring either TKI responsive (G719X, L861Q) or TKI resistance (T790M, exon 20 insertions) were consistently more frequent in men than in women (67.3% vs 32.7% or 69.4% vs 30.6%; p <0.05). Up to 10% EGFR mutation-positive patients had baseline single mutation T790M, exon 20 insertion, or in coexistence with TKI-sensitive mutations. Up to 9% patients had complex or multiple EGFR mutations, whereby 48.7% patients harbored TKI-resistant mutations. One patient presented third-generation TKI-resistant mutation L792F simultaneously with T790M. Routine diagnostic cytological techniques yielded similar success rate to detect EGFR mutations. Uncommon EGFR mutations were frequent events in Indonesian lung cancer patients.
Böhm, Johann; Vasli, Nasim; Maurer, Marie; Cowling, Belinda; Shelton, G. Diane; Kress, Wolfram; Toussaint, Anne; Prokic, Ivana; Schara, Ulrike; Anderson, Thomas James; Weis, Joachim; Tiret, Laurent; Laporte, Jocelyn
2013-01-01
Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies. PMID:23754947
Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.
Robertson, Hugh M; Warr, Coral G; Carlson, John R
2003-11-25
The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods.
Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster
Robertson, Hugh M.; Warr, Coral G.; Carlson, John R.
2003-01-01
The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods. PMID:14608037
Zeng, Mu-Heng; Liu, Sheng-Hong; Yang, Miao-Xian; Zhang, Ya-Jun; Liang, Jia-Yong; Wan, Xiao-Rong; Liang, Hong
2013-01-01
Clathrin, a three-legged triskelion composed of three clathrin heavy chains (CHCs) and three light chains (CLCs), plays a critical role in clathrin-mediated endocytosis (CME) in eukaryotic cells. In this study, the genes ZmCHC1 and ZmCHC2 encoding clathrin heavy chain in maize were cloned and characterized for the first time in monocots. ZmCHC1 encodes a 1693-amino acid-protein including 29 exons and 28 introns, and ZmCHC2 encodes a 1746-amino acid-protein including 28 exons and 27 introns. The high similarities of gene structure, protein sequences and 3D models among ZmCHC1, and Arabidopsis AtCHC1 and AtCHC2 suggest their similar functions in CME. ZmCHC1 gene is predominantly expressed in maize roots instead of ubiquitous expression of ZmCHC2. Consistent with a typical predicted salicylic acid (SA)-responsive element and four predicted ABA-responsive elements (ABREs) in the promoter sequence of ZmCHC1, the expression of ZmCHC1 instead of ZmCHC2 in maize roots is significantly up-regulated by SA or ABA, suggesting that ZmCHC1 gene may be involved in the SA signaling pathway in maize defense responses. The expressions of ZmCHC1 and ZmCHC2 genes in maize are down-regulated by azide or cold treatment, further revealing the energy requirement of CME and suggesting that CME in plants is sensitive to low temperatures. PMID:23880865
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mebarki, F.; Forest, M.G.; Josso, N.
The androgen insensivity syndrome (AIS) is a recessive X-linked disorder resulting from a deficient function of the androgen receptor (AR). The human AR gene has 3 functional domains: N-terminal encoded by exon 1, DNA-binding domain encoded by exons 2 and 3, and androgen-binding domain encoded by exons 4 to 8. In order to characterize the molecular defects of the AR gene in AIS, the entire coding regions and the intronic bording sequences of the AR gene were amplified by PCR before automatic direct sequencing in 45 patients. Twenty seven different point mutations were found in 32 unrelated AIS patients: 18more » with a complete form (CAIS), 14 with a partial form (PAIS); 18 of these mutations are novel mutations, not published to date. Only 3 mutations were repeatedly found: R804H in 3 families; M780I in 3 families and R774C in 2 families. For 26 patients out of the 32 found to have a mutation, maternal DNA was collected and sequenced: 6 de novo mutations were detected (i.e. 23% of the cases). Finally, no mutation was detected in 13 patients (29%): 7 with CAIS and 6 familial severe PAIS. The latter all presented with perineal hypospadias, micropenis, 4 out of 6 being raised as girl. Diagnosis of AIS in these 13 families in whom no mutation was detected is supported by the following criteria: clinical data, familial history (2 or 3 index cases in the same family), familial segregation of the polymorphic CAG repeat of the AR gene. Mutations in intronic regions or the promoter of the AR gene could not explain all cases of AIS without mutations in the AR coding regions, because AR binding (performed in 9 out of 13) was normal in 6, suggesting the synthesis of an AR protein. This situation led us to speculate that another X-linked factor associated with the AR could be implicated in some cases of AIS.« less
Alternative splicing of DENND1A, a PCOS candidate gene, generates variant 2.
Tee, Meng Kian; Speek, Mart; Legeza, Balázs; Modi, Bhavi; Teves, Maria Eugenia; McAllister, Janette M; Strauss, Jerome F; Miller, Walter L
2016-10-15
Polycystic ovary syndrome (PCOS) is a common endocrinopathy characterized by hyperandrogenism and metabolic disorders. The excess androgens may be of both ovarian and adrenal origin. PCOS has a strong genetic component, and genome-wide association studies have identified several candidate genes, notably DENND1A, which encodes connecdenn 1, involved in trafficking of endosomes. DENND1A encodes two principal variants, V1 (1009 amino acids) and V2 (559 amino acids). The androgen-producing ovarian theca cells of PCOS women over-express V2. Knockdown of V2 in these cells reduces androgen production, and overexpression of V2 in normal theca cells confers upon them a PCOS phenotype of increased androgen synthesis. We report that human adrenal NCI-H295A cells express V1 and V2 mRNA and that the V2 isoform is produced by exonization of sequences in intron 20, which generates a unique exon 20A, encoding the C-terminus of V2. As in human theca cells from normal women, forced expression of V2 in NCI-H295A cells resulted in increased abundance of CYP17A1 and CYP11A1 mRNAs. We also found genetic variation in the intronic region 330 bp upstream from exon 20A, which could have the potential to drive the selective expression of V2. There was no clear association with these variants with PCOS when we analyzed genomc DNA from normal women and women with PCOS. Using minigene expression vectors in NCI-H295A cells, this variable region did not consistently favor splicing of the V2 transcript. These findings suggest increased V2 expression in PCOS theca cells is not the result of genomic sequence variation in intron 20. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Structure of the human MSH2 locus and analysis of two Muir-Torre kindreds for msh2 mutations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolodner, R.D.; Lipford, J.; Kane, M.F.
1994-12-01
Hereditary nonpolyposis colorectal carcinoma (HNPCC) is a major cancer susceptibility syndrome known to be caused by inheritance of mutations in genes such as hMSH2 and hMLH1, which encode components of a DNA mismatch repair system. The MSH2 genomic locus has been cloned and shown to cover {approximately}73 kb of genomic DNA and to contain 16 exons. The sequence of all of the intron-exon junctions has been determined and used to develop methods for analyzing each MSH2 exon for mutations. These methods have been used to analyze two large HNPCC kindreds exhibiting features of the Muir-Torre syndrome and demonstrate that cancermore » susceptibility is due to the inheritance of a frameshift mutation in the MSH2 gene in one family and a nonsense mutation in the MSH2 gene in the other family. 59 refs., 5 figs., 1 tab.« less
A Plant 5S Ribosomal RNA Mimic Regulates Alternative Splicing of Transcription Factor IIIA Pre-mRNAs
Hammond, Ming C.; Wachter, Andreas; Breaker, Ronald R.
2009-01-01
Transcription factor IIIA (TFIIIA) is required for eukaryotic synthesis of 5S ribosomal RNA by RNA polymerase III. Here we report the discovery of a structured RNA element with striking resemblance to 5S rRNA that is conserved within TFIIIA precursor mRNAs (pre-mRNAs) from diverse plant lineages. TFIIIA protein expression is controlled by alternative splicing of the exon containing the plant 5S rRNA mimic (P5SM). P5SM triggers exon skipping upon binding of ribosomal protein L5, a natural partner of 5S rRNA, which demonstrates the functional adaptation of its structural mimicry. Since the exon-skipped splice product encodes full-length TFIIIA protein, these results reveal a ribosomal protein-mRNA interaction that is involved in 5S rRNA synthesis and has implications for cross-coordination of ribosomal components. This study also provides insight into the origin and function of a newfound class of structured RNA that regulates alternative splicing. PMID:19377483
Rare splicing defects of FAS underly severe recessive autoimmune lymphoproliferative syndrome.
Agrebi, N; Ben-Mustapha, I; Matoussi, N; Dhouib, N; Ben-Ali, M; Mekki, N; Ben-Ahmed, M; Larguèche, B; Ben Becher, S; Béjaoui, M; Barbouche, M R
2017-10-01
Autoimmune lymphoproliferative syndrome (ALPS) is a prototypic disorder of impaired apoptosis characterized by autoimmune features and lymphoproliferation. Heterozygous germline or somatic FAS mutations associated with preserved protein expression have been described. Very rare cases of homozygous germline FAS mutations causing severe autosomal recessive form of ALPS with a complete defect of Fas expression have been reported. We report two unrelated patients from highly inbred North African population showing a severe ALPS phenotype and an undetectable Fas surface expression. Two novel homozygous mutations have been identified underlying rare splicing defects mechanisms. The first mutation breaks a branch point sequence and the second alters a regulatory exonic splicing site. These splicing defects induce the skipping of exon 6 encoding the transmembrane domain of CD95. Our findings highlight the requirement of tight regulation of FAS exon 6 splicing for balanced alternative splicing and illustrate the importance of such studies in highly consanguineous populations. Copyright © 2017 Elsevier Inc. All rights reserved.
Hammond, Ming C; Wachter, Andreas; Breaker, Ronald R
2009-05-01
Transcription factor IIIA (TFIIIA) is required for eukaryotic synthesis of 5S ribosomal RNA by RNA polymerase III. Here we report the discovery of a structured RNA element with clear resemblance to 5S rRNA that is conserved within TFIIIA precursor mRNAs from diverse plant lineages. TFIIIA protein expression is controlled by alternative splicing of the exon containing the plant 5S rRNA mimic (P5SM). P5SM triggers exon skipping upon binding of ribosomal protein L5, a natural partner of 5S rRNA, which demonstrates the functional adaptation of its structural mimicry. As the exon-skipped splice product encodes full-length TFIIIA protein, these results reveal a ribosomal protein-mRNA interaction that is involved in 5S rRNA synthesis and has implications for cross-coordination of ribosomal components. This study also provides insight into the origin and function of a newfound class of structured RNA that regulates alternative splicing.
Alpha-2 macroglobulin is genetically associated with Alzheimer disease.
Blacker, D; Wilcox, M A; Laird, N M; Rodes, L; Horvath, S M; Go, R C; Perry, R; Watson, B; Bassett, S S; McInnis, M G; Albert, M S; Hyman, B T; Tanzi, R E
1998-08-01
Alpha-2-macroglobulin (alpha-2M; encoded by the gene A2M) is a serum pan-protease inhibitor that has been implicated in Alzheimer disease (AD) based on its ability to mediate the clearance and degradation of A beta, the major component of beta-amyloid deposits. Analysis of a deletion in the A2M gene at the 5' splice site of 'exon II' of the bait region (exon 18) revealed that inheritance of the deletion (A2M-2) confers increased risk for AD (Mantel-Haenzel odds ratio=3.56, P=0.001). The sibship disequilibrium test (SDT) also revealed a significant association between A2M and AD (P=0.00009). These values were comparable to those obtained for the APOE-epsilon4 allele in the same sample, but in contrast to APOE-epsilon4, A2M-2 did not affect age of onset. The observed association of A2M with AD did not appear to account for the previously published linkage of AD to chromosome 12, which we were unable to confirm in this sample. A2M, LRP1 (encoding the alpha-2M receptor) and the genes for two other LRP ligands, APOE and APP (encoding the amyloid beta-protein precursor), have now all been genetically linked to AD, suggesting that these proteins may participate in a common neuropathogenic pathway leading to AD.
Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim
2013-09-01
It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.
Kobayashi, Yoshihisa; Togashi, Yosuke; Yatabe, Yasushi; Mizuuchi, Hiroshi; Jangchul, Park; Kondo, Chiaki; Shimoji, Masaki; Sato, Katsuaki; Suda, Kenichi; Tomizawa, Kenji; Takemoto, Toshiki; Hida, Toyoaki; Nishio, Kazuto; Mitsudomi, Tetsuya
2015-12-01
Lung cancers harboring common EGFR mutations respond to EGFR tyrosine kinase inhibitors (TKI), whereas exon 20 insertions (Ins20) are resistant to them. However, little is known about mutations in exon 18. Mutational status of lung cancers between 2001 and 2015 was reviewed. Three representative mutations in exon 18, G719A, E709K, and exon 18 deletion (Del18: delE709_T710insD) were retrovirally introduced into Ba/F3 and NIH/3T3 cells. The 90% inhibitory concentrations (IC90s) of first-generation (1G; gefitinib and erlotinib), second-generation (2G; afatinib, dacomitinib, and neratinib), and third-generation TKIs (3G; AZD9291 and CO1686) were determined. Among 1,402 EGFR mutations, Del19, L858R, and Ins20 were detected in 40%, 47%, and 4%, respectively. Exon 18 mutations, including G719X, E709X, and Del18, were present in 3.2%. Transfected Ba/F3 cells grew in the absence of IL3, and NIH/3T3 cells formed foci with marked pile-up, indicating their oncogenic abilities. IC90s of 1G and 3G TKIs in G719A, E709K, and Del18 were much higher than those in Del19 (by >11-50-fold), whereas IC90s of afatinib were only 3- to 7-fold greater than those for Del19. Notably, cells transfected with G719A and E709K exhibited higher sensitivity to neratinib (by 5-25-fold) than those expressing Del19. Patients with lung cancers harboring G719X exhibited higher response rate to afatinib or neratinib (∼ 80%) than to 1G TKIs (35%-56%) by compilation of data in the literature. Lung cancers harboring exon 18 mutations should not be overlooked in clinical practice. These cases can be best treated with afatinib or neratinib, although the currently available in vitro diagnostic kits cannot detect all exon 18 mutations. ©2015 American Association for Cancer Research.
The carnegie protein trap library: a versatile tool for Drosophila developmental studies.
Buszczak, Michael; Paterno, Shelley; Lighthouse, Daniel; Bachman, Julia; Planck, Jamie; Owen, Stephenie; Skora, Andrew D; Nystul, Todd G; Ohlstein, Benjamin; Allen, Anna; Wilhelm, James E; Murphy, Terence D; Levis, Robert W; Matunis, Erika; Srivali, Nahathai; Hoskins, Roger A; Spradling, Allan C
2007-03-01
Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600-900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions.
Nagata, K; Ogino, M; Shimada, M; Miyata, M; Gonzalez, F J; Yamazoe, Y
1999-02-15
A P450 gene (P450/6betaB) of the CYP3A subfamily was isolated from a rat genomic library. Nucleotide sequencing of the exons revealed a high similarity with P450PCN1 cDNA (Gonzalez et al. (1985), J. Biol. Chem. 260, 7345-7441), but differed in 41 nucleotides, resulting in 11 changes and 2 deletions of amino acid residues. The P450/6betaB spanned about 30 kbp and consisted of 13 exons, and was in exon number and size identical with CYP3A2 gene except in the 6th exon, which was shorter than that of CYP3A2. 6beta-B mRNA, which may be transcribed from P450/6betaB, was detected on Northern blotting and by reverse transcription-polymerase chain reaction (RT-PCR). Profiles of the developmental change and induction by a treatment with several chemicals were very similar to those of P450PCN1 mRNA reported previously. P450PCN1 mRNA and gene, however, were not detected by PCR in rats. To determine whether P450/6betaB encodes an active protein, a cDNA was isolated and expressed. Expression of 6beta-B cDNA in COS-1 cells was carried out and revealed that the recombinant protein comigrated with purified P4506beta-4 previously identified as CYP3A1. The recombinant 6beta-B protein showed similar turnover rate and regioselectivity for testosterone with purified P4506beta-4 by the simultaneous addition of NADPH-cytochrome P450 reductase and cytochrome b5. These data suggest that P450/6betaB encodes an active P450 form corresponding to CYP3A1 and P450PCN1 reported previously does not exist in rats. Copyright 1999 Academic Press.
Chen, Xiuhua; Qi, Xiling; Tan, Yanhong; Xu, Zhifang; Xu, Aining; Zhang, Linlin; Wang, Hongwei
2011-06-15
JAK2V617F mutation has been reported in 90% of patients with polycythemia vera (PV) and about 50% of patients with essential thromobocythemia (ET) and primary myelofibrosis (PMF). Recently, acquired mutations in the transmembrane-juxtamembrane region of MPL (MPLW515 mutations) have been reported in approximately 5% of JAK2V617F-negative PMF and about 1% of all cases of ET. MPL is the receptor for thrombopoietin that regulates the production of platelets by bone marrow. It is likely that some mutations more closely related to ET in MPL exon10 may have been missed by current assays. We inferred that there might be other mutations in MPL exon10 for MPN patients in addition to MPLW515 mutations. To investigate its mutation types and prevalence in Chinese patients with myeloproliferative neoplasms (MPN), we performed mutation detection on MPL exon10 in 103 JAK2V617F-negative MPN patients by single strand conformation polymorphism (SSCP) and allele-specific PCR (AS-PCR) combined with sequencing. As a result, one previously unrecognized MPL mutation (12-bp in-frame insertion) was identified in one patient with ET in addition to an MPLW515K mutation identified in one PMF patient. This confirms our hypothesis that BCR/ABL negative and JAK2V617F-negative MPN patients have other mutations besides W515 mutation in MPL exon10 and mutations other than single nucleotide exchange also exist. In addition, MPL mutation was associated with Chinese MPN patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Abduo, Jaafar; Chen, Chen; Le Breton, Eugene; Radu, Alexandra; Szeto, Josephine; Judge, Roy; Darby, Ivan
To compare the Encode impression protocol (Biomet 3i) with the conventional impression protocol in terms of treatment duration, clinical accuracy, and outcome up to the first postplacement review of single-implant crowns. A total of 45 implants were included in this study. The implants were randomly allocated to the Encode group (23 implants) or the conventional group (22 implants). At the time of surgery, all implants received two-piece Encode healing abutments. The implants were restored 3 months after insertion. In the conventional protocol, open-tray implant-level impressions were taken and the implants were restored with prefabricated abutments and porcelain-fused-to-metal (PFM) crowns. For the implants in the Encode group, closed-tray impressions of the healing abutments were taken. The generated casts were sent to the Biomet 3i scanning/milling center for custom abutment manufacturing on which PFM crowns were fabricated. Treatment duration (laboratory and clinical), clinical accuracy of occlusal and proximal contacts, and outcome (esthetics, patient satisfaction, and crown contour) were evaluated with the aid of a series of questionnaires. The Encode protocol required significantly less laboratory time (18 minutes) than the conventional protocol for adjustment of the abutments. The impression pour time, time for the laboratory to return the crown, time for crown insertion at the final appointment, and total clinical time for crown insertion did not differ significantly between the two protocols. Likewise, clinical accuracy, esthetics, and patient satisfaction were similar for the two protocols. The two protocols were clinically comparable. The Encode protocol is advantageous in reducing the laboratory time before crown fabrication.
Shpakovskiĭ, G V; Lebedenko, E N
1998-01-01
Plasmid pYUK3 bearing the fet5+ gene of Schizosaccharomyces pombe was isolated from a genomic library of the fission yeast, and a detailed physical map of the whole genomic insert (ca. 9.6 Kbp) was constructed. The primary structure of the fet5+ gene and its flanking regions is established. The gene contains a single 45-bp intron in its distal part. A typical TATA-box (TATAAG) was found in the 5'-noncoding region ca. 50 bp upstream of the putative start of transcription, and the 3'-noncoding region contains AT-rich palindromes, which are probably involved in termination of the fet5+ transcription. A previously unidentified gene of Sz. pombe encoding a protein with some similarity to one of the transcriptional activators from the TBP (TATA-binding protein) group of SPT factors of transcription was found in the vicinity of the fet5+ gene. Taking into account that cDNA of the fet5(+)-gene was isolated as a suppressor of the genetic-defect of nuclear RNA polymerases I-III (Bioorg. Khim., 1997, vol. 23, No 3, pp. 234-237), this vicinity may be the first evidence of possible clustering, in the genome of the fission yeast, of genes participating in transcription regulation.
Isolation and expression of scabrous, a gene regulating neurogenesis in Drosophila.
Mlodzik, M; Baker, N E; Rubin, G M
1990-11-01
Mutations in the Drosophila scabrous (sca) gene affect eye and bristle development, leading to irregular spacing of ommatidia and bristle duplications in the adult fly. We have cloned the sca gene by P-element tagging. The sca transcription unit is 12 kb and consists of four exons that are joined in a 3.2-kb mRNA. In an enhancer trap screen we have isolated several P[lacZ] insertions close to the sca transcription start site. We have examined the expression pattern of sca by in situ hybridization to sca transcripts, by beta-galactosidase localization in the P[lacZ] lines, and by immunocytochemistry with an anti-sca antiserum. During embryogenesis, sca is expressed in a dynamic pattern associated with neural development. During imaginal development, sca is mainly expressed in the R8 photoreceptor precursor cells in the eye imaginal disc and in sensory organ precursor cells in other discs. In the wing disc, sca expression is coextensive with the anlagen for bristles and is controlled by genes of the achaete-scute complex. Based on its loss-of-function phenotype, expression pattern, and the predicted structure of its product, a secreted peptide with homology to the fibrinogen gene family, we propose that sca encodes a signal involved in lateral inhibition within individual domains of the developing nervous system.
USDA-ARS?s Scientific Manuscript database
A zebra-band phenotype was identified in a maize population of transposon-tagged mutants (UniformMu, searchable by sequence at MaizeGDB.org). Genotype-phenotype analysis of an F2 family showed that the zebra stripes co-segregated with a single Mu insertion in the second exon of a Protoporphyrinogen ...
Novel Tay-Sachs disease mutations from China.
Akalin, N; Shi, H P; Vavougios, G; Hechtman, P; Lo, W; Scriver, C R; Mahuran, D; Kaplan, F
1992-01-01
We describe three HEXA mutations associated with infantile Tay-Sachs disease (TSD) in three unrelated nonconsanguineous Chinese families. Novel mutations were found in two of these families. The third is a previously reported mutation (G-->A transition at nt 1444) (Nakano et al., 1988). Direct sequencing of PCR products identified a novel insertion of an A after nt 547 in family 1. This change generates an early termination codon 6 bp downstream from the insertion site. Allele-specific oligonucleotide hybridization confirmed homozygosity in the proband. Single strand conformational polymorphism analysis and direct sequencing of amplified exon 13 revealed a T-->C transition at nt 1453 with the corresponding amino acid substitution W485R in the second family. This mutation creates an Fnu4HI restriction site. The proband is homozygous for this allele. When the site-specific mutagenized alpha cDNA carrying the T-->C transition at nt 1453 was expressed in COS 1 cells hexosaminidase S activity was not detectable above background. A G-->A transition at nt 1444 (exon 13) corresponding to the E482K substitution was found in the third family. This mutation occurs at a CpG dinucleotide. It has been reported in an Italian TSD proband and causes defective intracellular transport of the alpha-subunit from the rough endoplasmic reticulum to the Golgi apparatus.
Jonas, V; Lin, C R; Kawashima, E; Semon, D; Swanson, L W; Mermod, J J; Evans, R M; Rosenfeld, M G
1985-01-01
Two mRNAs generated as a consequence of alternative RNA processing events in expression of the human calcitonin gene encode the protein precursors of either calcitonin or calcitonin gene-related peptide (CGRP). Both calcitonin and CGRP RNAs and their encoded peptide products are expressed in the human pituitary and in medullary thyroid tumors. On the basis of sequence comparison, it is suggested that both the calcitonin and CGRP exons arose from a common primordial sequence, suggesting that duplication and rearrangement events are responsible for the generation of this complex transcription unit. Images PMID:3872459
Qin, Ran; Zeng, Dongdong; Liang, Rong; Yang, Chengcong; Akhter, Delara; Alamin, Md; Jin, Xiaoli; Shi, Chunhai
2017-09-05
A new mutant named sdl (stripe and drooping leaf) was characterized from indica cultivar Zhenong 34 by ethylmethane sulfonate (EMS) mutagenesis. The mutant sdl exhibited development defects including stripe and drooping leaf, dwarfism and deformed floral organs. The gene SDL was found allelic to RNRS1 by map-based cloning, which was homologous to Arabidopsis TSO2 encoding the small subunit of ribonucleotide reductase. The gDNA sequencing results of sdl in mutant showed that there was a repetitive sequence insertion of 138-bp at the 475 th bp in the exon. The redundant sequence was conserved in SDL homologous proteins, which contained the active site (tyrosine), as well as two amino acids glutamate and histidine involved in the binding of iron. There were fewer chloroplasts and grana lamellas in sdl leaf compared with those of wild-type. Additionally, the stripe leaves of sdl seedlings were highly sensitive to temperature, since the chlorophyll content was increased with the temperature rising. The drooping leaf of sdl might be resulted from the disappearance of vascular bundles and mesophyll cells in both leaf midrib and lateral veins. Fittingly to the phenotypes of mutant sdl, the expression levels of genes associated with photosynthesis and chlorophyll synthesis were found to be down- or up-regulated at different temperatures in mutant sdl. Also, the transcriptional levels of genes related to plant height and floral organ formation showed obvious differences between wild-type and sdl. The "SDL/RNRS1" was, hence, required for the chlorophyll biosynthesis and also played pleiotropic roles in the regulation of plant development. Copyright © 2017. Published by Elsevier B.V.
Zhao, S; Edwards, J; Carroll, J; Wiedholz, L; Millstein, R A; Jaing, C; Murphy, D L; Lanthorn, T H; Holmes, A
2006-06-19
The 5-hydroxytryptamine transporter (5-HTT) regulates 5-hydroxytryptamine (5-HT) neurotransmission by removing 5-HT from the synaptic cleft. Emerging evidence from clinical and genetic studies implicates the 5-HTT in various neuropsychiatric conditions, including anxiety and depression. Here we report that a 5-HTT null mutant mouse line was generated by gene trapping that disrupted the sequence encoding the C-terminus of 5-HTT. This mutation resulted in significant reduction of 5-HTT mRNA and loss of 5-HTT protein. Brain levels of 5-HT and its major metabolite, 5-hydroxyindoleacetic acid, were markedly decreased in C-terminus 5-HTT -/- mice, while 5-HT uptake or 5-HT content in platelets was absent. Behavioral phenotyping showed that C-terminus 5-HTT -/- mice were normal on a screen for gross behavioral, neurological, and sensory functions. In the tail suspension test for depression-related behavior, C-terminus 5-HTT -/- mice showed increased immobility relative to their +/+ controls. By comparison, a previously generated line of 5-HTT -/- mice lacking exon 2, encoding the N-terminus of the 5-HTT, showed abnormally high immobility in response to repeated, but not acute, exposure to the tail suspension test. In a novel, brightly-lit open field, both C-terminus 5-HTT -/- mice and N-terminus 5-HTT -/- mice displayed decreased center time and reduced locomotor activity compared with their +/+ controls. Both mutant lines buried significantly fewer marbles than their +/+ controls in the marble burying test. These findings further demonstrate the neurobiological functions of the 5-HTT and add to a growing literature linking genetic variation in 5-HTT function with emotional abnormalities.
Zeng, Xian-Chun; Nie, Yao; Luo, Xuesong; Wu, Shifen; Shi, Wanxia; Zhang, Lei; Liu, Yichen; Cao, Hanjun; Yang, Ye; Zhou, Jianping
2013-03-01
The full-length cDNA sequences of two novel cysteine-rich peptides (referred to as HsVx1 and MmKTx1) were obtained from scorpions. The two peptides represent a novel class of cysteine-rich peptides with a unique cysteine pattern. The genomic sequence of HsVx1 is composed of three exons interrupted by two introns that are localized in the mature peptide encoding region and inserted in phase 1 and phase 2, respectively. Such a genomic organization markedly differs from those of other peptides from scorpions described previously. Genome-wide search for the orthologs of HsVx1 identified 59 novel cysteine-rich peptides from arthropods. These peptides share a consistent cysteine pattern with HsVx1. Genomic comparison revealed extensive intron length differences and intronic number and position polymorphisms among the genes of these peptides. Further analysis identified 30 cases of intron sliding, 1 case of intron gain and 22 cases of intron loss occurred with the genes of the HsVx1 and HsVx1-like peptides. It is interesting to see that three HsVx1-like peptides XP_001658928, XP_001658929 and XP_001658930 were derived from a single gene (XP gene): the former two were generated from alternative splicing; the third one was encoded by a DNA region in the reverse complementary strand of the third intron of the XP gene. These findings strongly suggest that the genes of these cysteine-rich peptides were evolved by intron sliding, intron gain/loss, gene recombination and alternative splicing events in response to selective forces without changing their cysteine pattern. The evolution of these genes is dominated by intron sliding and intron loss. Copyright © 2012 Elsevier Inc. All rights reserved.
2012-01-01
Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution. PMID:23148531
The androgen receptor gene mutations database.
Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L
1996-01-01
The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).
Flexible CRISPR library construction using parallel oligonucleotide retrieval
Read, Abigail; Gao, Shaojian; Batchelor, Eric
2017-01-01
Abstract CRISPR/Cas9-based gene knockout libraries have emerged as a powerful tool for functional screens. We present here a set of pre-designed human and mouse sgRNA sequences that are optimized for both high on-target potency and low off-target effect. To maximize the chance of target gene inactivation, sgRNAs were curated to target both 5΄ constitutive exons and exons that encode conserved protein domains. We describe here a robust and cost-effective method to construct multiple small sized CRISPR library from a single oligo pool generated by array synthesis using parallel oligonucleotide retrieval. Together, these resources provide a convenient means for individual labs to generate customized CRISPR libraries of variable size and coverage depth for functional genomics application. PMID:28334828
Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping.
Vulin, Adeline; Barthélémy, Inès; Goyenvalle, Aurélie; Thibaud, Jean-Laurent; Beley, Cyriaque; Griffith, Graziella; Benchaouir, Rachid; le Hir, Maëva; Unterfinger, Yves; Lorain, Stéphanie; Dreyfus, Patrick; Voit, Thomas; Carlier, Pierre; Blot, Stéphane; Garcia, Luis
2012-11-01
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder resulting from lesions of the gene encoding dystrophin. These usually consist of large genomic deletions, the extents of which are not correlated with the severity of the phenotype. Out-of-frame deletions give rise to dystrophin deficiency and severe DMD phenotypes, while internal deletions that produce in-frame mRNAs encoding truncated proteins can lead to a milder myopathy known as Becker muscular dystrophy (BMD). Widespread restoration of dystrophin expression via adeno-associated virus (AAV)-mediated exon skipping has been successfully demonstrated in the mdx mouse model and in cardiac muscle after percutaneous transendocardial delivery in the golden retriever muscular dystrophy dog (GRMD) model. Here, a set of optimized U7snRNAs carrying antisense sequences designed to rescue dystrophin were delivered into GRMD skeletal muscles by AAV1 gene transfer using intramuscular injection or forelimb perfusion. We show sustained correction of the dystrophic phenotype in extended muscle areas and partial recovery of muscle strength. Muscle architecture was improved and fibers displayed the hallmarks of mature and functional units. A 5-year follow-up ruled out immune rejection drawbacks but showed a progressive decline in the number of corrected muscle fibers, likely due to the persistence of a mild dystrophic process such as occurs in BMD phenotypes. Although AAV-mediated exon skipping was shown safe and efficient to rescue a truncated dystrophin, it appears that recurrent treatments would be required to maintain therapeutic benefit ahead of the progression of the disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kido, Tatsuo; Lau, Yun-Fai Chris, E-mail: Chris.Lau@UCSF.edu
2014-03-28
Highlights: • Y-encoded proto-oncoprotein TSPY amplifies its expression level via a positive feedback loop. • TSPY binds to the chromatin/DNA at exon 1 of TSPY gene. • TSPY enhances the gene expression in a TSPY exon 1 sequence dependent manner. • The conserved SET/NAP-domain is essential for TSPY transactivation. • Insights on probable mechanisms on TSPY exacerbation on cancer development in men. - Abstract: The testis-specific protein Y-encoded (TSPY) is a repetitive gene located on the gonadoblastoma region of the Y chromosome, and has been considered to be the putative gene for this oncogenic locus on the male-only chromosome. Itmore » is expressed in spermatogonial cells and spermatocytes in normal human testis, but abundantly in gonadoblastoma, testicular germ cell tumors and a variety of somatic cancers, including melanoma, hepatocellular carcinoma and prostate cancer. Various studies suggest that TSPY accelerates cell proliferation and growth, and promotes tumorigenesis. In this report, we show that TSPY could bind directly to the chromatin/DNA at exon 1 of its own gene, and greatly enhance the transcriptional activities of the endogenous gene in the LNCaP prostate cancer cells. Domain mapping analyses of TSPY have localized the critical and sufficient domain to the SET/NAP-domain. These results suggest that TSPY could efficiently amplify its expression and oncogenic functions through a positive feedback loop, and contribute to the overall tumorigenic processes when it is expressed in various human cancers.« less
Duplication and selection in the evolution of primate β-defensin genes
Semple, Colin AM; Rolfe, Mark; Dorin, Julia R
2003-01-01
Background Innate immunity is the first line of defense against microorganisms in vertebrates and acts by providing an initial barrier to microorganisms and triggering adaptive immune responses. Peptides such as β-defensins are an important component of this defense, providing a broad spectrum of antimicrobial activity against bacteria, fungi, mycobacteria and several enveloped viruses. β-defensins are small cationic peptides that vary in their expression patterns and spectrum of pathogen specificity. Disruptions in β-defensin function have been implicated in human diseases, including cystic fibrosis, and a fuller understanding of the variety, function and evolution of human β-defensins might form the basis for novel therapies. Here we use a combination of laboratory and computational techniques to characterize the main human β-defensin locus on chromosome 8p22-p23. Results In addition to known genes in the region we report the genomic structures and expression patterns of four novel human β-defensin genes and a related pseudogene. These genes show an unusual pattern of evolution, with rapid divergence between second exon sequences that encode the mature β-defensin peptides matched by relative stasis in first exons that encode signal peptides. Conclusions We conclude that the 8p22-p23 locus has evolved by successive rounds of duplication followed by substantial divergence involving positive selection, to produce a diverse cluster of paralogous genes established before the human-baboon divergence more than 23 million years ago. Positive selection, disproportionately favoring alterations in the charge of amino-acid residues, is implicated as driving second exon divergence in these genes. PMID:12734011
Chen, Xinbo; Goodwin, S. Mark; Liu, Xionglun; Chen, Xinlu; Bressan, Ray A.; Jenks, Matthew A.
2005-01-01
Insertional mutagenesis of Arabidopsis (Arabidopsis thaliana) was used to identify a novel recessive mutant, designated resurrection1 (rst1), which possesses a dramatic alteration in its cuticular waxes and produces shrunken nonviable seeds due to arrested embryo development. The RST1 gene sequence associated with these phenotypes was verified by three independent, allelic, insertion mutants, designated rst1-1, rst1-2, and rst1-3, with inserts in the first exon, 12th intron, and fourth exon, respectively. These three rst1 allelic mutants have nearly identical alterations in their wax profiles and embryo development. Compared to wild type, the wax on rst1 inflorescence stems is reduced nearly 60% in total amount, has a proportional reduction in aldehydes and aldehyde metabolites, and has a proportional increase in acids, primary alcohols, and esters. Compared to wild type, the C29 alkanes on rst1 are nearly 6-fold lower, and the C30 primary alcohols are 4-fold higher. These results indicate that rst1 causes shunting of most wax precursors away from alkane synthesis and into the primary-alcohol-producing branch of the pathway. In contrast to stems, the wax on rst1 mutant leaves increased roughly 43% in amount relative to the wild type, with the major increase occurring in the C31 and C33 alkanes. Unique among known wax mutants, approximately 70% of rst1 seeds are shrunken and nonviable, with these being randomly distributed within both inflorescence and silique. Viable seeds of rst1 are slightly larger than those of wild type, and although the viable rst1 seeds contain more total triacylglycerol-derived fatty acids, the proportions of these fatty acids are not significantly different from wild type. Shrunken seeds contain 34% of the fatty acids of wild-type seeds, with proportionally more palmitic, stearic, and oleic acids, and less of the longer and more desaturated homologs. Histological analysis of aborted rst1 seeds revealed that embryo development terminates at the approximate heart-shaped stage, whereas viable rst1 and wild-type embryos develop similarly. The RST1 gene encodes a predicted 1,841-amino acid novel protein with a molecular mass of 203.6 kD and a theoretical pI of 6.21. The RST1 transcript was found in all tissues examined including leaves, flowers, roots, stems, and siliques, but accumulation levels were not correlated with the degree to which different organs appeared affected by the mutation. The new RST1 gene reveals a novel genetic connection between lipid synthesis and embryo development; however, RST1's exact role is still quite unknown. The degree to which RST1 is associated with lipid signaling in development is an important focus of ongoing studies. PMID:16183838
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xu; Zhou, Jing; Reeders, S.T.
1996-05-01
Basement membrane (type IV) collagen, a subfamily of the collagen protein family, is encoded by six distinct genes in mammals. Three of those, COL4A3, COL4A4, and COL4A5, are linked with Alport syndrome (hereditary nephritis). Patients with leimoyomatosis associated with Alport syndrome have been shown to have deletions in the 5{prime} end of the COL4A6 gene, in addition to having deletions in COL4A6. The human COL4A6 gene is reported to be 425 kb as determined by mapping of overlapping YAC clones by probes for its 5{prime} and 3{prime} ends. In the present study we describe the complete exon/intron size pattern ofmore » the human COL4A6 gene. The 12 {lambda} phage clones characterized in the study spanned a total of 110 kb, including 85 kb of the actual gene and 25 kb of flanking sequences. The overlapping clones contained all 46 exons of the gene and all introns, except for intron 2. Since the total size of the exons and all introns except for intron 2 is about 85 kb, intron 2 must be about 340 kb. All exons of the gene were assigned to EcoRI restriction fragments to facilitate analysis of the gene in patients with leiomyomatosis associated with Alport syndrome. The exon size pattern of COL4A6 is highly homologous with that of the human and mouse COL4A2 genes, with 27 of the 46 exons of COL4A6 being identical in size between the genes. 42 refs., 2 figs., 3 tabs.« less
Expression of exon-8-skipped kindlin-1 does not compensate for defects of Kindler syndrome.
Natsuga, Ken; Nishie, Wataru; Shinkuma, Satoru; Nakamura, Hideki; Matsushima, Yoichiro; Tatsuta, Aya; Komine, Mayumi; Shimizu, Hiroshi
2011-01-01
Kindler syndrome (KS) is a rare, inherited skin disease characterized by blister formation and generalized poikiloderma. Mutations in KIND1, which encodes kindlin-1, are responsible for KS. c.1089del/1089+1del is a recurrent splice-site deletion mutation in KS patients. To elucidate the effects of c.1089del/1089+1del at the mRNA and protein level. Two KS patients with c.1089del/1089+1del were included in this study. Immunofluorescence analysis of KS skin samples using antibodies against the dermo-epidermal junction proteins was performed. Exon-trapping experiments were performed to isolate the mRNA sequences transcribed from genomic DNA harbouring c.1089del/1089+1del. β1 integrin activation in HeLa cells transfected with truncated KIND1 cDNA was analyzed. Immunofluorescence study showed positive expression of kindlin-1 in KS skin with c.1089del/1089+1del mutation. We identified the exon-8-skipped in-frame transcript as the main product among multiple splicing variants derived from that mutation. HeLa cells transfected with KIND1 cDNA without exon 8 showed impaired β1 integrin activation. Exon-8-coding amino acids are located in the FERM F2 domain, which is conserved among species, and the unstructured region between F2 and the pleckstrin homology domain. This study suggests that exon-8-skipped truncated kindlin-1 is functionally defective and does not compensate for the defects of KS, even though kindlin-1 expression in skin is positive. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Hantke, Janina; Chandler, David; King, Rosalind; Wanders, Ronald J A; Angelicheva, Dora; Tournev, Ivailo; McNamara, Elyshia; Kwa, Marcel; Guergueltcheva, Velina; Kaneva, Radka; Baas, Frank; Kalaydjieva, Luba
2009-12-01
Hereditary Motor and Sensory Neuropathy -- Russe (HMSNR) is a severe autosomal recessive disorder, identified in the Gypsy population. Our previous studies mapped the gene to 10q22-q23 and refined the gene region to approximately 70 kb. Here we report the comprehensive sequencing analysis and fine mapping of this region, reducing it to approximately 26 kb of fully characterised sequence spanning the upstream exons of Hexokinase 1 (HK1). We identified two sequence variants in complete linkage disequilibrium, a G>C in a novel alternative untranslated exon (AltT2) and a G>A in the adjacent intron, segregating with the disease in affected families and present in the heterozygote state in only 5/790 population controls. Sequence conservation of the AltT2 exon in 16 species with invariable preservation of the G allele at the mutated site, strongly favour the exonic change as the pathogenic mutation. Analysis of the Hk1 upstream region in mouse mRNA from testis and neural tissues showed an abundance of AltT2-containing transcripts generated by extensive, developmentally regulated alternative splicing. Expression is very low compared with ubiquitous Hk1 and all transcripts skip exon1, which encodes the protein domain responsible for binding to the outer mitochondrial membrane, and regulation of energy production and apoptosis. Hexokinase activity measurement and immunohistochemistry of the peripheral nerve showed no difference between patients and controls. The mutational mechanism and functional effects remain unknown and could involve disrupted translational regulation leading to increased anti-apoptotic activity (suggested by the profuse regenerative activity in affected nerves), or impairment of an unknown HK1 function in the peripheral nervous system (PNS).
Hantke, Janina; Chandler, David; King, Rosalind; Wanders, Ronald JA; Angelicheva, Dora; Tournev, Ivailo; McNamara, Elyshia; Kwa, Marcel; Guergueltcheva, Velina; Kaneva, Radka; Baas, Frank; Kalaydjieva, Luba
2009-01-01
Hereditary Motor and Sensory Neuropathy – Russe (HMSNR) is a severe autosomal recessive disorder, identified in the Gypsy population. Our previous studies mapped the gene to 10q22-q23 and refined the gene region to ∼70 kb. Here we report the comprehensive sequencing analysis and fine mapping of this region, reducing it to ∼26 kb of fully characterised sequence spanning the upstream exons of Hexokinase 1 (HK1). We identified two sequence variants in complete linkage disequilibrium, a G>C in a novel alternative untranslated exon (AltT2) and a G>A in the adjacent intron, segregating with the disease in affected families and present in the heterozygote state in only 5/790 population controls. Sequence conservation of the AltT2 exon in 16 species with invariable preservation of the G allele at the mutated site, strongly favour the exonic change as the pathogenic mutation. Analysis of the Hk1 upstream region in mouse mRNA from testis and neural tissues showed an abundance of AltT2-containing transcripts generated by extensive, developmentally regulated alternative splicing. Expression is very low compared with ubiquitous Hk1 and all transcripts skip exon1, which encodes the protein domain responsible for binding to the outer mitochondrial membrane, and regulation of energy production and apoptosis. Hexokinase activity measurement and immunohistochemistry of the peripheral nerve showed no difference between patients and controls. The mutational mechanism and functional effects remain unknown and could involve disrupted translational regulation leading to increased anti-apoptotic activity (suggested by the profuse regenerative activity in affected nerves), or impairment of an unknown HK1 function in the peripheral nervous system (PNS). PMID:19536174
Chowdhury, Asif H.; Hasson, Dan; Dyer, Michael A.
2016-01-01
ABSTRACT ATRX is a SWI/SNF chromatin remodeler proposed to govern genomic stability through the regulation of repetitive sequences, such as rDNA, retrotransposons, and pericentromeric and telomeric repeats. However, few direct ATRX target genes have been identified and high-throughput genomic approaches are currently lacking for ATRX. Here we present a comprehensive ChIP-sequencing study of ATRX in multiple human cell lines, in which we identify the 3′ exons of zinc finger genes (ZNFs) as a new class of ATRX targets. These 3′ exonic regions encode the zinc finger motifs, which can range from 1–40 copies per ZNF gene and share large stretches of sequence similarity. These regions often contain an atypical chromatin signature: they are transcriptionally active, contain high levels of H3K36me3, and are paradoxically enriched in H3K9me3. We find that these ZNF 3′ exons are co-occupied by SETDB1, TRIM28, and ZNF274, which form a complex with ATRX. CRISPR/Cas9-mediated loss-of-function studies demonstrate (i) a reduction of H3K9me3 at the ZNF 3′ exons in the absence of ATRX and ZNF274 and, (ii) H3K9me3 levels at atypical chromatin regions are particularly sensitive to ATRX loss compared to other H3K9me3-occupied regions. As a consequence of ATRX or ZNF274 depletion, cells with reduced levels of H3K9me3 show increased levels of DNA damage, suggesting that ATRX binds to the 3′ exons of ZNFs to maintain their genomic stability through preservation of H3K9me3. PMID:27029610
Pauciullo, Alfredo; Erhardt, Georg
2015-01-01
In the present paper, we report for the first time the characterization of llama (Lama glama) caseins at transcriptomic and genetic level. A total of 288 casein clones transcripts were analysed from two lactating llamas. The most represented mRNA populations were those correctly assembled (85.07%) and they encoded for mature proteins of 215, 217, 187 and 162 amino acids respectively for the CSN1S1, CSN2, CSN1S2 and CSN3 genes. The exonic subdivision evidenced a structure made of 21, 9, 17 and 6 exons for the αs1-, β-, αs2- and κ-casein genes respectively. Exon skipping and duplication events were evidenced. Two variants A and B were identified in the αs1-casein gene as result of the alternative out-splicing of the exon 18. An additional exon coding for a novel esapeptide was found to be cryptic in the κ-casein gene, whereas one extra exon was found in the αs2-casein gene by the comparison with the Camelus dromedaries sequence. A total of 28 putative phosphorylated motifs highlighted a complex heterogeneity and a potential variable degree of post-translational modifications. Ninety-six polymorphic sites were found through the comparison of the lama casein cDNAs with the homologous camel sequences, whereas the first description and characterization of the 5’- and 3’-regulatory regions allowed to identify the main putative consensus sequences involved in the casein genes expression, thus opening the way to new investigations -so far- never achieved in this species. PMID:25923814
Pauciullo, Alfredo; Erhardt, Georg
2015-01-01
In the present paper, we report for the first time the characterization of llama (Lama glama) caseins at transcriptomic and genetic level. A total of 288 casein clones transcripts were analysed from two lactating llamas. The most represented mRNA populations were those correctly assembled (85.07%) and they encoded for mature proteins of 215, 217, 187 and 162 amino acids respectively for the CSN1S1, CSN2, CSN1S2 and CSN3 genes. The exonic subdivision evidenced a structure made of 21, 9, 17 and 6 exons for the αs1-, β-, αs2- and κ-casein genes respectively. Exon skipping and duplication events were evidenced. Two variants A and B were identified in the αs1-casein gene as result of the alternative out-splicing of the exon 18. An additional exon coding for a novel esapeptide was found to be cryptic in the κ-casein gene, whereas one extra exon was found in the αs2-casein gene by the comparison with the Camelus dromedaries sequence. A total of 28 putative phosphorylated motifs highlighted a complex heterogeneity and a potential variable degree of post-translational modifications. Ninety-six polymorphic sites were found through the comparison of the lama casein cDNAs with the homologous camel sequences, whereas the first description and characterization of the 5'- and 3'-regulatory regions allowed to identify the main putative consensus sequences involved in the casein genes expression, thus opening the way to new investigations -so far- never achieved in this species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko
1994-01-01
The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophinmore » lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.« less
Functional correction of dystrophin actin binding domain mutations by genome editing
Kyrychenko, Viktoriia; Kyrychenko, Sergii; Tiburcy, Malte; Shelton, John M.; Long, Chengzu; Schneider, Jay W.; Zimmermann, Wolfram-Hubertus; Bassel-Duby, Rhonda
2017-01-01
Dystrophin maintains the integrity of striated muscles by linking the actin cytoskeleton with the cell membrane. Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD) that result in progressive, debilitating muscle weakness, cardiomyopathy, and a shortened lifespan. Mutations of dystrophin that disrupt the amino-terminal actin-binding domain 1 (ABD-1), encoded by exons 2–8, represent the second-most common cause of DMD. In the present study, we compared three different strategies for CRISPR/Cas9 genome editing to correct mutations in the ABD-1 region of the DMD gene by deleting exons 3–9, 6–9, or 7–11 in human induced pluripotent stem cells (iPSCs) and by assessing the function of iPSC-derived cardiomyocytes. All three exon deletion strategies enabled the expression of truncated dystrophin protein and restoration of cardiomyocyte contractility and calcium transients to varying degrees. We show that deletion of exons 3–9 by genomic editing provides an especially effective means of correcting disease-causing ABD-1 mutations. These findings represent an important step toward eventual correction of common DMD mutations and provide a means of rapidly assessing the expression and function of internally truncated forms of dystrophin-lacking portions of ABD-1. PMID:28931764
Takcı, Şahin; Anuk-İnce, Deniz; Louha, Malek; Couderc, Remy; Çakar, Nursen; Köseoğlu, Reşit Doğan; Ateş, Ömer
2017-01-01
Takcı Ş, Anuk-İnce D, Louha M, Couderc R, Çakar N, Köseoğlu RD, Ateş Ö. A rare large mutation involving two exons of the SP-B gene in an infant with severe respiratory distress. Turk J Pediatr 2017; 59: 483-486. Hereditary surfactant protein-B (SP-B) deficiency is a rare autosomal recessive disease of newborn infants causing severe respiratory failure and death within the first year of life. The most common cause of SP-B deficiency is a frameshift mutation in exon 4 (121ins2) in the gene encoding SP-B. We report a term infant with unremitting respiratory distress who was unresponsive to all treatment modalities. The parents were consanguineous and a term sibling of the infant had died due to respiratory failure without a certain diagnosis. In the first step of the diagnostic work-up, common genetic mutations for SP-B, surfactant protein C and ATP-binding cassette s3 were absent, however sequencing of SP-B gene revealed a large homozygous genomic deletion covering exon 8 and 9. In this case report, we aimed to emphasize further genetic evaluation in all cases suggestive of surfactant dysfunction, even if common mutations are absent.
Kazachenko, Konstantin Y; Miropolskaya, Nataliya A; Gening, Leonid V; Tarantul, Vyacheslav Z; Makarova, Alena V
2017-02-01
Y-family DNA polymerase iota (Pol ι) possesses both DNA polymerase and dRP lyase activities and was suggested to be involved in DNA translesion synthesis and base excision repair in mammals. The 129 strain of mice and its derivatives have a natural nonsense codon mutation in the second exon of the Pol ι gene resulting in truncation of the Pol ι protein. These mice were widely used as a Pol ι-null model for in vivo studies of the Pol ι function. However whether 129-derived strains of mice are fully deficient in the Pol ι functions was a subject of discussion since Pol ι mRNA undergoes alternative splicing at exon 2. Here we report purification of mouse Pol ι lacking the region encoded by exon 2, which includes several conserved residues involved in catalysis. We show that the deletion abrogates both the DNA polymerase and dRP lyase activities of Pol ι in the presence of either Mg 2+ or Mn 2+ ions. Thus, 129-derived strains of mice express catalytically inactive alternatively spliced Pol ι variant, whose cellular functions, if any exist, remain to be established. Copyright © 2017 Elsevier B.V. All rights reserved.
Hinrich, Anthony J; Jodelka, Francine M; Chang, Jennifer L; Brutman, Daniella; Bruno, Angela M; Briggs, Clark A; James, Bryan D; Stutzmann, Grace E; Bennett, David A; Miller, Steven A; Rigo, Frank; Marr, Robert A; Hastings, Michelle L
2016-04-01
Apolipoprotein E receptor 2 (ApoER2) is an apolipoprotein E receptor involved in long-term potentiation, learning, and memory. Given its role in cognition and its association with the Alzheimer's disease (AD) risk gene, apoE, ApoER2 has been proposed to be involved in AD, though a role for the receptor in the disease is not clear. ApoER2 signaling requires amino acids encoded by alternatively spliced exon 19. Here, we report that the balance of ApoER2 exon 19 splicing is deregulated in postmortem brain tissue from AD patients and in a transgenic mouse model of AD To test the role of deregulated ApoER2 splicing in AD, we designed an antisense oligonucleotide (ASO) that increases exon 19 splicing. Treatment of AD mice with a single dose of ASO corrected ApoER2 splicing for up to 6 months and improved synaptic function and learning and memory. These results reveal an association between ApoER2 isoform expression and AD, and provide preclinical evidence for the utility of ASOs as a therapeutic approach to mitigate Alzheimer's disease symptoms by improving ApoER2 exon 19 splicing. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Tabaczewski, P; Shirwan, H; Lewis, K; Stroynowski, I
1994-01-01
Class Ib Qa-2 molecules are expressed in tissue culture cells as approximately 40-kDa membrane-bound, glycophosphatidylinositol-linked antigens and as approximately 39-kDa soluble polypeptides. Recently, alternative splicing events which delete exon 5 from a portion of Qa-2 transcripts were demonstrated to give rise to truncated secreted Qa-2 molecules in transfected cell lines. To determine whether this mechanism operates in vivo and to find out whether Qa-2 can be detected in soluble form in circulation, murine blood samples were analyzed. Critical to these experiments was preparation of an anti-peptide antiserum against an epitope encoded by a junction of exon 4 and exon 6. We find that supernatants of splenocytes cultured in vitro as well as serum or plasma contain two forms of soluble Qa-2 molecules. One form corresponds to a secreted molecule translated from transcripts from which exon 5 has been deleted; the other is derived from membrane-bound antigens or their precursors. The levels of both soluble forms of Qa-2 are inducible upon stimulation of the immune system, suggesting an immunoregulatory role for these molecules or for the mechanism leading to the reduction of cell-associated Qa-2 antigens in vivo. Images PMID:8127900
Onozawa, Masahiro; Zhang, Zhenhua; Kim, Yoo Jung; Goldberg, Liat; Varga, Tamas; Bergsagel, P Leif; Kuehl, W Michael; Aplan, Peter D
2014-05-27
We used the I-SceI endonuclease to produce DNA double-strand breaks (DSBs) and observed that a fraction of these DSBs were repaired by insertion of sequences, which we termed "templated sequence insertions" (TSIs), derived from distant regions of the genome. These TSIs were derived from genic, retrotransposon, or telomere sequences and were not deleted from the donor site in the genome, leading to the hypothesis that they were derived from reverse-transcribed RNA. Cotransfection of RNA and an I-SceI expression vector demonstrated insertion of RNA-derived sequences at the DNA-DSB site, and TSIs were suppressed by reverse-transcriptase inhibitors. Both observations support the hypothesis that TSIs were derived from RNA templates. In addition, similar insertions were detected at sites of DNA DSBs induced by transcription activator-like effector nuclease proteins. Whole-genome sequencing of myeloma cell lines revealed additional TSIs, demonstrating that repair of DNA DSBs via insertion was not restricted to experimentally produced DNA DSBs. Analysis of publicly available databases revealed that many of these TSIs are polymorphic in the human genome. Taken together, these results indicate that insertional events should be considered as alternatives to gross chromosomal rearrangements in the interpretation of whole-genome sequence data and that this mutagenic form of DNA repair may play a role in genetic disease, exon shuffling, and mammalian evolution.
Facial asymmetry and clinical manifestations in patients with novel insertion of the TCOF1 gene.
Su, P-H; Liu, Y-F; Yu, J-S; Chen, J-Y; Chen, S-J; Lai, Y-J
2012-11-01
This study explored the role of TCOF1 insertion mutations in Taiwanese patients with craniofacial anomalies. Twelve patients with single or multiple, asymmetrical congenital craniofacial anomalies were enrolled. Genomic DNA was prepared from leukocytes; the coding regions of TCOF1 were analyzed by polymerase chain reaction and direct sequencing. Clinical manifestations were correlated to the TCOF1 mutation. Six of 12 patients diagnosed with hemifacial microsomia exhibited a novel insertion mutation 4127 ins G (frameshift) in exon 24 in the TCOF1 gene. All six patients were diagnosed with anomalies on the left side. In addition, four of these six patients had hearing impairment; three had other major anomalies; and two had developmental delay. The insertion caused a frameshift, an early truncation, the loss of two putative nuclear localization signals (residues 1404-1420 and 1424-1440), and the loss of coiled coil domain (1406-1426) in treacle protein. These findings support the existence of two regulators of growth of the mandibular condyles. © 2011 John Wiley & Sons A/S.
McGrath, J A; Ashton, G H; Mellerio, J E; Salas-Alanis, J C; Swensson, O; McMillan, J R; Eady, R A
1999-09-01
Non-sense mutations on both alleles of either the type VII collagen gene (COL7A1) or the genes encoding laminin 5 (LAMA3, LAMB3, or LAMC2) usually result in clinically severe forms of recessive dystrophic or junctional epidermolysis bullosa, respectively. In this study we assessed two unrelated families whose mutations in genomic DNA predicted severe recessive dystrophic epidermolysis bullosa or junctional epidermolysis bullosa phenotypes but in whom the manifestations were milder than expected. The recessive dystrophic epidermolysis bullosa patients had a homozygous single base-pair frameshift mutation in exon 19 of COL7A1 (2470insG). Clinically, there was generalized blistering but only mild scarring. Skin biopsy revealed positive type VII collagen immunoreactivity and recognizable anchoring fibrils. The junctional epidermolysis bullosa patients were compound heterozygotes for a frameshift/non-sense combination of mutations in exons 3 and 17 of LAMB3 (29insC/Q834X). These patients did not have the lethal form of junctional epidermolysis bullosa but, as adults, displayed the milder generalized atrophic benign epidermolysis bullosa variant. There was undetectable laminin 5 staining at the dermal-epidermal junction using an antibody to the beta3 chain, but faintly positive alpha3 and gamma2 chain labeling, and there was variable hypoplasia of hemidesmosomes. To explain the milder recessive dystrophic epidermolysis bullosa and junctional epidermolysis bullosa phenotypes in these families, reverse transcription-polymerase chain reaction, using RNA extracted from frozen skin, was able to provide evidence for some rescue of mutant mRNA transcripts with restoration of the open- reading frame. In the recessive dystrophic epidermolysis bullosa patients, transcripts containing in-frame skipping of exon 19 of COL7A1 in the cDNA were detected, and in the junctional epidermolysis bullosa patients transcripts with in-frame skipping of exon 17 of LAMB3 were identified. The truncated proteins encoded by these transcripts are expected to lack certain critical domains involved in cell-matrix attachment, but may still be able to contribute to adhesion thereby moderating the severity of the skin blistering. This study shows the limitations in predicting phenotype in epidermolysis bullosa solely based on mutation analysis of genomic DNA and emphasizes the importance of immunohistochemistry, electron microscopy, and mRNA assessment as parallel investigations.
Genetic and Hormonal Risk Factors for Prostate Cancer in African American Men
2005-05-01
Task 2. To perform DNA analyses to examine the following genotypes: Months 1-12 Months 12-24 LHB * CYP19 HSD3B2 CYP3A4 CYP17 IGF1 HSD17B2 We had...of publication of this article were defrayed in part by the payment of page mutation in exon 6 (P275A), and a 3-bp insertion/deletion in intron 7
Phenotypic characterization of an Arabidopsis T-DNA insertion line SALK_063500.
Sng, Natasha J; Paul, Anna-Lisa; Ferl, Robert J
2018-06-01
In this article we report the identification of a homozygous lethal T-DNA (transfer DNA) line within the coding region of the At1G05290 gene in the genome of Arabidopsis thaliana (Arabidopsis) line, SALK_063500. The T-DNA insertion is found within exon one of the AT1G05290 gene, however a homozygous T-DNA allele is unattainable. In the heterozygous T-DNA allele the expression levels of AT1G05290 were compared to wild type Arabidopsis (Col-0, Columbia). Further analyses revealed an aberrant silique phenotype found in the heterozygous SALK_063500 plants that is attributed to the reduced rate of pollen tube germination. These data are original and have not been published elsewhere.
RNA structure in splicing: An evolutionary perspective.
Lin, Chien-Ling; Taggart, Allison J; Fairbrother, William G
2016-09-01
Pre-mRNA splicing is a key post-transcriptional regulation process in which introns are excised and exons are ligated together. A novel class of structured intron was recently discovered in fish. Simple expansions of complementary AC and GT dimers at opposite boundaries of an intron were found to form a bridging structure, thereby enforcing correct splice site pairing across the intron. In some fish introns, the RNA structures are strong enough to bypass the need of regulatory protein factors for splicing. Here, we discuss the prevalence and potential functions of highly structured introns. In humans, structured introns usually arise through the co-occurrence of C and G-rich repeats at intron boundaries. We explore the potentially instructive example of the HLA receptor genes. In HLA pre-mRNA, structured introns flank the exons that encode the highly polymorphic β sheet cleft, making the processing of the transcript robust to variants that disrupt splicing factor binding. While selective forces that have shaped HLA receptor are fairly atypical, numerous other highly polymorphic genes that encode receptors contain structured introns. Finally, we discuss how the elevated mutation rate associated with the simple repeats that often compose structured intron can make structured introns themselves rapidly evolving elements.
Gandhi, Manish J; Pendergrass, Thomas W; Cummings, Carrie C; Ihara, Kenji; Blau, C Anthony; Drachman, Jonathan G
2005-10-01
An 11-year-old girl, presenting with fatigue and bruising, was found to be profoundly pancytopenic. Bone marrow exam and clinical evaluation were consistent with aplastic anemia. Family members were studied as potential stem cell donors, revealing that both younger siblings displayed significant thrombocytopenia, whereas both parents had normal blood counts. We evaluated this pedigree to understand the unusually late presentation of congenital amegakaryocytic thrombocytopenia (CAMT). The coding region and the intron/exon junctions of MPL were sequenced from each family member. Vectors representing each of the mutations were constructed and tested for the ability to support growth of Baf3/Mpl(mutant) cells. All three siblings had elevated thrombopoietin levels. Analysis of genomic DNA demonstrated that each parent had mutations/polymorphisms in a single MPL allele and that each child was a compound heterozygote, having inherited both abnormal alleles. The maternal allele encoded a mutation of the donor splice-junction at the exon-3/intron-3 boundary. A mini-gene construct encoding normal vs mutant versions of the intron-3 donor-site demonstrated that physiologic splicing was significantly reduced in the mutant construct. Mutations that incompletely eliminate Mpl expression/function may result in delayed diagnosis of CAMT and confusion with aplastic anemia.
Novel TMEM67 Mutations and Genotype-phenotype Correlates in Meckelin-related Ciliopathies
Iannicelli, Miriam; Brancati, Francesco; Mougou-Zerelli, Soumaya; Mazzotta, Annalisa; Thomas, Sophie; Elkhartoufi, Nadia; Travaglini, Lorena; Gomes, Céline; Ardissino, Gian Luigi; Bertini, Enrico; Boltshauser, Eugen; Castorina, Pierangela; D'Arrigo, Stefano; Fischetto, Rita; Leroy, Brigitte; Loget, Philippe; Bonnière, Maryse; Starck, Lena; Tantau, Julia; Gentilin, Barbara; Majore, Silvia; Swistun, Dominika; Flori, Elizabeth; Lalatta, Faustina; Pantaleoni, Chiara; Johannes.Penzien; Grammatico, Paola; Dallapiccola, Bruno; Gleeson, Joseph G.; Attie-Bitach, Tania; Valente, Enza Maria
2010-01-01
Human ciliopathies are hereditary conditions caused by defects of proteins expressed at the primary cilium. Among ciliopathies, Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS) and nephronophthisis (NPH) present clinical and genetic overlap, being allelic at several loci. One of the most interesting gene is TMEM67, encoding the transmembrane protein meckelin. We performed mutation analysis of TMEM67 in 341 probands, including 265 JSRD representative of all clinical subgroups and 76 MKS fetuses. We identified 33 distinct mutations, of which 20 were novel, in 8/10 (80%) JS with liver involvement (COACH phenotype) and 12/76 (16%) MKS fetuses. No mutations were found in other JSRD subtypes, confirming the strong association between TMEM67 mutations and liver involvement. Literature review of all published TMEM67 mutated cases was performed to delineate genotype-phenotype correlates. In particular, comparison of the types of mutations and their distribution along the gene in lethal versus non lethal phenotypes showed in MKS patients a significant enrichment of missense mutations falling in TMEM67 exons 8 to 15, especially when in combination with a truncating mutation. These exons encode for a region of unknown function in the extracellular domain of meckelin. PMID:20232449
Mutational Spectrum of MYO15A and the Molecular Mechanisms of DFNB3 Human Deafness
Rehman, Atteeq U.; Bird, Jonathan E.; Faridi, Rabia; Shahzad, Mohsin; Shah, Sujay; Lee, Kwanghyuk; Khan, Shaheen N.; Imtiaz, Ayesha; Ahmed, Zubair M.; Riazuddin, Saima; Santos-Cortez, Regie Lyn P.; Ahmad, Wasim; Leal, Suzanne M.; Riazuddin, Sheikh; Friedman, Thomas B.
2016-01-01
Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A. PMID:27375115
Exaptation of Bornavirus-Like Nucleoprotein Elements in Afrotherians
Kobayashi, Yuki; Horie, Masayuki; Nakano, Ayumi; Murata, Koichi; Itou, Takuya; Suzuki, Yoshiyuki
2016-01-01
Endogenous bornavirus-like nucleoprotein elements (EBLNs), the nucleotide sequence elements derived from the nucleoprotein gene of ancient bornavirus-like viruses, have been identified in many animal genomes. Here we show evidence that EBLNs encode functional proteins in their host. Some afrotherian EBLNs were observed to have been maintained for more than 83.3 million years under negative selection. Splice variants were expressed from the genomic loci of EBLNs in elephant, and some were translated into proteins. The EBLN proteins appeared to be localized to the rough endoplasmic reticulum in African elephant cells, in contrast to the nuclear localization of bornavirus N. These observations suggest that afrotherian EBLNs have acquired a novel function in their host. Interestingly, genomic sequences of the first exon and its flanking regions in these EBLN loci were homologous to those of transmembrane protein 106B (TMEM106B). The upstream region of the first exon in the EBLN loci exhibited a promoter activity, suggesting that the ability of these EBLNs to be transcribed in the host cell was gained through capturing a partial duplicate of TMEM106B. In conclusion, our results strongly support for exaptation of EBLNs to encode host proteins in afrotherians. PMID:27518265
Bishop, Kathleen A; Harrington, Anne; Kouranova, Evguenia; Weinstein, Edward J; Rosen, Clifford J; Cui, Xiaoxia; Liaw, Lucy
2016-07-07
Targeted gene mutation in the mouse is a primary strategy to understand gene function and relation to phenotype. The Knockout Mouse Project (KOMP) had an initial goal to develop a public resource of mouse embryonic stem (ES) cell clones that carry null mutations in all genes. Indeed, many useful novel mouse models have been generated from publically accessible targeted mouse ES cell lines. However, there are limitations, including incorrect targeting or cassette structure, and difficulties with germline transmission of the allele from chimeric mice. In our experience, using a small sample of targeted ES cell clones, we were successful ∼50% of the time in generating germline transmission of a correctly targeted allele. With the advent of CRISPR/Cas9 as a mouse genome modification tool, we assessed the efficiency of creating a conditional targeted allele in one gene, dedicator of cytokinesis 7 (Dock7), for which we were unsuccessful in generating a null allele using a KOMP targeted ES cell clone. The strategy was to insert loxP sites to flank either exons 3 and 4, or exons 3 through 7. By coinjecting Cas9 mRNA, validated sgRNAs, and oligonucleotide donors into fertilized eggs from C57BL/6J mice, we obtained a variety of alleles, including mice homozygous for the null alleles mediated by nonhomologous end joining, alleles with one of the two desired loxP sites, and correctly targeted alleles with both loxP sites. We also found frequent mutations in the inserted loxP sequence, which is partly attributable to the heterogeneity in the original oligonucleotide preparation. Copyright © 2016 Bishop et al.
Splicing-Related Features of Introns Serve to Propel Evolution
Luo, Yuping; Li, Chun; Gong, Xi; Wang, Yanlu; Zhang, Kunshan; Cui, Yaru; Sun, Yi Eve; Li, Siguang
2013-01-01
The role of spliceosomal intronic structures played in evolution has only begun to be elucidated. Comparative genomic analyses of fungal snoRNA sequences, which are often contained within introns and/or exons, revealed that about one-third of snoRNA-associated introns in three major snoRNA gene clusters manifested polymorphisms, likely resulting from intron loss and gain events during fungi evolution. Genomic deletions can clearly be observed as one mechanism underlying intron and exon loss, as well as generation of complex introns where several introns lie in juxtaposition without intercalating exons. Strikingly, by tracking conserved snoRNAs in introns, we found that some introns had moved from one position to another by excision from donor sites and insertion into target sties elsewhere in the genome without needing transposon structures. This study revealed the origin of many newly gained introns. Moreover, our analyses suggested that intron-containing sequences were more prone to sustainable structural changes than DNA sequences without introns due to intron's ability to jump within the genome via unknown mechanisms. We propose that splicing-related structural features of introns serve as an additional motor to propel evolution. PMID:23516505
He, Xian-hui; Xu, Li-hui; Liu, Yi
2005-04-01
To investigate the expression and regulation of PD-1 ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC). The cDNA encoding human PD-L1 precursor was cloned from the total RNA extracted from the resting and phorbol dibutyrate plus ionomycin- or phytohemagglutinin-activated PBMC, by reverse transcription polymerase chain reaction (RT-PCR), and independent clones were sequenced and analyzed. The expression and subcellular localization were examined in transiently transfected cells. The PD-L1 gene expression in different PBMC was also analyzed by RT-PCR. A novel human PD-L1 splice variant was identified from the activated PBMC. It was generated by splicing out exon? encoding an immunoglobulin variable domain (Igv)-like domain but retaining all other exons without a frame-shift. Consequently, the putative translated protein contained all other domains including the transmembrane region except for the Igv-like domain. Furthermore, the conventional isoform was expressed on the plasma surface whereas the novel isoform showed a pattern of intracellular membrane distribution in transiently transfected K562 cells. In addition, the expression pattern of the PD-L1 splice variant was variable in different individuals and in different cellular status. PD-L1 expression may be regulated at the posttranscriptional level through alternative splicing, and modulation of the PD-L1 isoform expression may influence the outcome of specific immune responses in the peripheral tissues.
Machiavelli, Gloria A; Caputo, Mariela; Rivolta, Carina M; Olcese, María C; Gruñeiro-Papendieck, Laura; Chiesa, Ana; González-Sarmiento, Rogelio; Targovnik, Héctor M
2010-01-01
Thyroglobulin (TG) deficiency is an autosomal-recessive disorder that results in thyroid dyshormonogenesis. A number of distinct mutations have been identified as causing human hypothyroid goitre. The purpose of this study was to identify and characterize new mutations in the TG gene in an attempt to increase the understanding of the genetic mechanism responsible for this disorder. A total of six patients from four nonconsanguineous families with marked impairment of TG synthesis were studied. Single-strand conformation polymorphism (SSCP) analysis, sequencing of DNA, genotyping, expression of chimeric minigenes and bioinformatic analysis were performed. Four different inactivating TG mutations were identified: one novel mutation (c.7006C>T [p.R2317X]) and three previously reported (c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.6725G>A [p.R2223H]). Consequently, one patient carried a compound heterozygous for p.R2223H/p.R2317X mutations; two brothers showed a homozygous p.A2215D substitution and the remaining three patients, from two families with typical phenotype, had a single p.R277X mutated allele. We also showed functional evidences that premature stop codons inserted at different positions in exon 7, which disrupt exonic splicing enhancer (ESE) sequences, do not interfere with exon definition and processing. In this study, we have identified a novel nonsense mutation p.R2317X in the acetylcholinesterase homology domain of TG. We have also observed that nonsense mutations do not interfere with the pre-mRNA splicing of exon 7. The results are in accordance with previous observations confirming the genetic heterogeneity of TG defects.
Coexistence of gastrointestinal stromal tumors and gastric adenocarcinomas.
Yan, Yan; Li, Ziyu; Liu, Yiqiang; Zhang, Lianhai; Li, Jiyou; Ji, Jiafu
2013-04-01
The purpose of this study is to detect the clinicopathology of gastrointestinal stromal tumors (GISTs) occurring synchronously with gastric adenocarcinomas and to unveil the potential underlying relationship between the synchronous GIST and gastric adenocarcinoma. This study included 15 patients with incidental GISTs found during operations for gastric adenocarcinoma and 30 patients who underwent gastrectomy for gastric cancer without discovering GIST between January 2005 and December 2010 at the Beijing Cancer Institute. We collected the clinicopathological data and analyzed the KIT/PDGFRA mutational status of GISTs, corresponding gastric adenocarcinoma specimens, and the normal tissue around the cancer lesions. Additionally, as a control group, the mutational status of the patients with gastric adenocarcinoma and no other tumors was assayed. Overall, 18 GISTs were found in 15 gastric adenocarcinoma patients. Multiple GIST lesions were found in three cases (20 %). The patients' age ranged from 46 to 85 years, with an average of 67.6 years. The average size of the GISTs was 0.85 cm. All mesenchymal lesions showed low proliferative activity, were of low or very low risk, and were identified as CD117-positive by immunostaining. In GIST lesions, mutations in KIT were detected in 7 out of 13 cases, and of these mutations, 6 were found in exon 11 (46.2 %), and 1 was found in exon 9 (7.7 %). A total of five deletions and one point mutation were in exon 11, and one insertion was in exon 9. Mutations were not detected in exon 17 or 13 of KIT. There was no remarkable mutation analyzed in the gastric adenocarcinoma lesions or normal tissues from either the test or control groups. Clinicopathological profiles and molecular analysis of KIT/PDGFRA showed no obvious relationship between gastric cancer and GISTs in tumor genesis, such as similar oncogene mutations.
Freytsis, Marina; Wang, Xueding; Peter, Inga; Guillemette, Chantal; Hazarika, Suwagmani; Duan, Su X.; Greenblatt, David J.; Lee, William M.
2013-01-01
Acetaminophen is cleared primarily by hepatic glucuronidation. Polymorphisms in genes encoding the acetaminophen UDP-glucuronosyltransferase (UGT) enzymes could explain interindividual variability in acetaminophen glucuronidation and variable risk for liver injury after acetaminophen overdose. In this study, human liver bank samples were phenotyped for acetaminophen glucuronidation activity and genotyped for the major acetaminophen-glucuronidating enzymes (UGTs 1A1, 1A6, 1A9, and 2B15). Of these, only three linked single nucleotide polymorphisms (SNPs) located in the shared UGT1A-3′UTR region (rs10929303, rs1042640, rs8330) were associated with acetaminophen glucuronidation activity, with rs8330 consistently showing higher acetaminophen glucuronidation at all the tested concentrations of acetaminophen. Mechanistic studies using luciferase-UGT1A-3′UTR reporters indicated that these SNPs do not alter mRNA stability or translation efficiency. However, there was evidence for allelic imbalance and a gene-dose proportional increase in the amount of exon 5a versus exon 5b containing UGT1A mRNA spliced transcripts in livers with the rs8330 variant allele. Cotransfection studies demonstrated an inhibitory effect of exon 5b containing cDNAs on acetaminophen glucuronidation by UGT1A1 and UGT1A6 cDNAs containing exon 5a. In silico analysis predicted that rs8330 creates an exon splice enhancer site that could favor exon 5a (over exon 5b) utilization during splicing. Finally, the prevalence of rs8330 was significantly lower (P = 0.027, χ2 test) in patients who had acute liver failure from unintentional acetaminophen overdose compared with patients with acute liver failure from other causes or a race- or ethnicity-matched population. Together, these findings suggest that rs8330 is an important determinant of acetaminophen glucuronidation and could affect an individual’s risk for acetaminophen-induced liver injury. PMID:23408116
Intron-loss evolution of hatching enzyme genes in Teleostei
2010-01-01
Background Hatching enzyme, belonging to the astacin metallo-protease family, digests egg envelope at embryo hatching. Orthologous genes of the enzyme are found in all vertebrate genomes. Recently, we found that exon-intron structures of the genes were conserved among tetrapods, while the genes of teleosts frequently lost their introns. Occurrence of such intron losses in teleostean hatching enzyme genes is an uncommon evolutionary event, as most eukaryotic genes are generally known to be interrupted by introns and the intron insertion sites are conserved from species to species. Here, we report on extensive studies of the exon-intron structures of teleostean hatching enzyme genes for insight into how and why introns were lost during evolution. Results We investigated the evolutionary pathway of intron-losses in hatching enzyme genes of 27 species of Teleostei. Hatching enzyme genes of basal teleosts are of only one type, which conserves the 9-exon-8-intron structure of an assumed ancestor. On the other hand, otocephalans and euteleosts possess two types of hatching enzyme genes, suggesting a gene duplication event in the common ancestor of otocephalans and euteleosts. The duplicated genes were classified into two clades, clades I and II, based on phylogenetic analysis. In otocephalans and euteleosts, clade I genes developed a phylogeny-specific structure, such as an 8-exon-7-intron, 5-exon-4-intron, 4-exon-3-intron or intron-less structure. In contrast to the clade I genes, the structures of clade II genes were relatively stable in their configuration, and were similar to that of the ancestral genes. Expression analyses revealed that hatching enzyme genes were high-expression genes, when compared to that of housekeeping genes. When expression levels were compared between clade I and II genes, clade I genes tends to be expressed more highly than clade II genes. Conclusions Hatching enzyme genes evolved to lose their introns, and the intron-loss events occurred at the specific points of teleostean phylogeny. We propose that the high-expression hatching enzyme genes frequently lost their introns during the evolution of teleosts, while the low-expression genes maintained the exon-intron structure of the ancestral gene. PMID:20796321
Whyte, Michael P; Totty, William G; Novack, Deborah V; Zhang, Xiafang; Wenkert, Deborah; Mumm, Steven
2011-05-01
We report a 32-year-old man and his 59-year-old mother with a unique and extensive variant of Camurati-Engelmann disease (CED) featuring histopathological changes of osteomalacia and alterations within TGFβ1 and TNFSF11 encoding TGFβ1 and RANKL, respectively. He suffered leg pain and weakness since childhood and reportedly grew until his late 20s, reaching 7 feet in height. He had deafness, perforated nasal septum, torus palatinus, disproportionately long limbs with knock-knees, low muscle mass, and pseudoclubbing. Radiographs revealed generalized skeletal abnormalities, including wide bones and cortical and trabecular bone thickening in keeping with CED, except that long bone ends were also affected. Lumbar spine and hip BMD Z-scores were + 7.7 and + 4.4, respectively. Biochemical markers of bone turnover were elevated. Hypocalciuria accompanied low serum 25-hydroxyvitamin D (25[OH]D) levels. Pituitary hypogonadism and low serum insulin-like growth factor (IGF)-1 were present. Karyotype was normal. Despite vitamin D repletion, iliac crest histology revealed severe osteomalacia. Exon 1 of TNFRSF11A (RANK), exons 2, 3, and 4 of LRP5, and all coding exons and adjacent mRNA splice junctions of TNFRSF11B (OPG), SQSTM1 (sequestosome 1), and TNSALP (tissue nonspecific alkaline phosphatase) were intact. His asymptomatic and less dysmorphic 5'11″ mother, also with low serum 25(OH)D, had milder clinical, radiological, biochemical, and histopathological findings. Both individuals were heterozygous for a novel 12-bp duplication (c.27_38dup, p.L10_L13dup) in exon 1 of TGFβ1, predicting four additional leucine residues in the latency-associated-peptide segment of TGFβ1, consistent with CED. The son was also homozygous for a single base transversion in TNFSF11, predicting a nonconservative amino acid change (c.107C > G, p.Pro36Arg) in the intracellular domain of RANKL that was heterozygous in his nonconsanguineous parents. This TNFSF11 variant was not found in the SNP Database, nor in published TNFSF11 association studies, but it occurred in four of the 134 TNFSF11 alleles (3.0%) we tested randomly among individuals without CED. Perhaps the unique phenotype of this CED family is conditioned by altered RANKL activity. Copyright © 2011 American Society for Bone and Mineral Research.
Kumorowicz-Czoch, Malgorzata; Madetko-Talowska, Anna; Tylek-Lemanska, Dorota; Pietrzyk, Jacek J; Starzyk, Jerzy
2015-01-01
Thyroid dysgenesis (TD) is the most common cause of congenital hypothyroidism (CH). Important genetic factors possibly contributing to TD etiologies include mutations of thyroid transcription factors and TSHR-encoding genes. Our objective was to determine multiplex ligation-dependent probe amplification (MLPA) utility in detecting the copy number changes in patients with CH and TD. The study included 45 children from southeastern Poland selected via already established neonatal screening for CH. Genomic DNA was extracted from peripheral blood samples and used in MLPA analysis. Genetic variations were analyzed within selected fragments of the PAX8, FOXE1, NKX2-1, thyroid stimulating hormone receptor (TSHR), and TPO genes. Three heterozygous deletion types in probe hybridization regions were identified for the following genes: PAX8 (exon 7), TSHR (exon 2), and FOXE1 (exon 1). Monoallelic deletions were identified in 5/45 TD subjects. MLPA is a useful tool for copy number changes detection and might both improve and expand genetic analysis for CH and TD.
Landsverk, Megan L.; Ruzzo, Elizabeth K.; Mefford, Heather C.; Buysse, Karen; Buchan, Jillian G.; Eichler, Evan E.; Petty, Elizabeth M.; Peterson, Esther A.; Knutzen, Dana M.; Barnett, Karen; Farlow, Martin R.; Caress, Judy; Parry, Gareth J.; Quan, Dianna; Gardner, Kathy L.; Hong, Ming; Simmons, Zachary; Bird, Thomas D.; Chance, Phillip F.; Hannibal, Mark C.
2009-01-01
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA. PMID:19139049
Landsverk, Megan L; Ruzzo, Elizabeth K; Mefford, Heather C; Buysse, Karen; Buchan, Jillian G; Eichler, Evan E; Petty, Elizabeth M; Peterson, Esther A; Knutzen, Dana M; Barnett, Karen; Farlow, Martin R; Caress, Judy; Parry, Gareth J; Quan, Dianna; Gardner, Kathy L; Hong, Ming; Simmons, Zachary; Bird, Thomas D; Chance, Phillip F; Hannibal, Mark C
2009-04-01
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA.
Exon Shuffling and Origin of Scorpion Venom Biodiversity
Wang, Xueli; Gao, Bin; Zhu, Shunyi
2016-01-01
Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences. PMID:28035955
Exon Shuffling and Origin of Scorpion Venom Biodiversity.
Wang, Xueli; Gao, Bin; Zhu, Shunyi
2016-12-26
Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences.
Alternative splicing of natriuretic peptide A and B receptor transcripts in the rat brain.
Francoeur, F; Gossard, F; Hamet, P; Tremblay, J
1995-12-01
1. In the present study we searched for variants of alternative splicing of guanylyl cyclase A and B mRNA in rats in vivo. 2. Guanylyl cyclase A2 and guanylyl cyclase B2 isoforms of guanylyl cyclase produced by alternative splicing leading to the deletion of exon 9 of both transcripts were quantified in several rat organs. 3. Only one alternative splicing was found in the regulatory domain, encoded by exons 8-15. 4. Quantification of the guanylyl cyclase B2 isoform in different rat organs and in cultured aortic smooth muscle cells showed that this alternative splicing was tissue-specific and occurred predominantly in the central nervous system where the alternatively spliced variant represented more than 50% of the guanylyl cyclase B mRNA. 5. The same alternative splicing existed for guanylyl cyclase A mRNA but at very low levels in the organs studied. 6. Alternative splicing of guanylyl cyclase B exon 9 in the brain may play an important role in signal transduction, since the expressed protein possesses a constitutionally active guanylyl cyclase acting independently of C-type natriuretic peptide regulation.
Determinants of FIV and HIV Vif sensitivity of feline APOBEC3 restriction factors.
Zhang, Zeli; Gu, Qinyong; Jaguva Vasudevan, Ananda Ayyappan; Hain, Anika; Kloke, Björn-Philipp; Hasheminasab, Sascha; Mulnaes, Daniel; Sato, Kei; Cichutek, Klaus; Häussinger, Dieter; Bravo, Ignacio G; Smits, Sander H J; Gohlke, Holger; Münk, Carsten
2016-07-01
Feline immunodeficiency virus (FIV) is a global pathogen of Felidae species and a model system for Human immunodeficiency virus (HIV)-induced AIDS. In felids such as the domestic cat (Felis catus), APOBEC3 (A3) genes encode for single-domain A3Z2s, A3Z3 and double-domain A3Z2Z3 anti-viral cytidine deaminases. The feline A3Z2Z3 is expressed following read-through transcription and alternative splicing, introducing a previously untranslated exon in frame, encoding a domain insertion called linker. Only A3Z3 and A3Z2Z3 inhibit Vif-deficient FIV. Feline A3s also are restriction factors for HIV and Simian immunodeficiency viruses (SIV). Surprisingly, HIV-2/SIV Vifs can counteract feline A3Z2Z3. To identify residues in feline A3s that Vifs need for interaction and degradation, chimeric human-feline A3s were tested. Here we describe the molecular direct interaction of feline A3s with Vif proteins from cat FIV and present the first structural A3 model locating these interaction regions. In the Z3 domain we have identified residues involved in binding of FIV Vif, and their mutation blocked Vif-induced A3Z3 degradation. We further identified additional essential residues for FIV Vif interaction in the A3Z2 domain, allowing the generation of FIV Vif resistant A3Z2Z3. Mutated feline A3s also showed resistance to the Vif of a lion-specific FIV, indicating an evolutionary conserved Vif-A3 binding. Comparative modelling of feline A3Z2Z3 suggests that the residues interacting with FIV Vif have, unlike Vif-interacting residues in human A3s, a unique location at the domain interface of Z2 and Z3 and that the linker forms a homeobox-like domain protruding of the Z2Z3 core. HIV-2/SIV Vifs efficiently degrade feline A3Z2Z3 by possible targeting the linker stretch connecting both Z-domains. Here we identified in feline A3s residues important for binding of FIV Vif and a unique protein domain insertion (linker). To understand Vif evolution, a structural model of the feline A3 was developed. Our results show that HIV Vif binds human A3s differently than FIV Vif feline A3s. The linker insertion is suggested to form a homeo-box domain, which is unique to A3s of cats and related species, and not found in human and mouse A3s. Together, these findings indicate a specific and different A3 evolution in cats and human.
Permanent Neonatal Diabetes Caused by Creation of an Ectopic Splice Site within the INS Gene
Gastaldo, Elena; Harries, Lorna W.; Rubio-Cabezas, Oscar; Castaño, Luis
2012-01-01
Background The aim of this study was to characterize the genetic etiology in a patient who presented with permanent neonatal diabetes at 2 months of age. Methodology/Principal Findings Regulatory elements and coding exons 2 and 3 of the INS gene were amplified and sequenced from genomic and complementary DNA samples. A novel heterozygous INS mutation within the terminal intron of the gene was identified in the proband and her affected father. This mutation introduces an ectopic splice site leading to the insertion of 29 nucleotides from the intronic sequence into the mature mRNA, which results in a longer and abnormal transcript. Conclusions/Significance This study highlights the importance of routinely sequencing the exon-intron boundaries and the need to carry out additional studies to confirm the pathogenicity of any identified intronic genetic variants. PMID:22235272
Genes and proteins of urea transporters.
Sands, Jeff M; Blount, Mitsi A
2014-01-01
A urea transporter protein in the kidney was first proposed in 1987. The first urea transporter cDNA was cloned in 1993. The SLC14a urea transporter family contains two major subgroups: SLC14a1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14a2, the UT-A group originally isolated from kidney inner medulla. Slc14a1, the human UT-B gene, arises from a single locus located on chromosome 18q12.1-q21.1, which is located close to Slc14a2. Slc14a1 includes 11 exons, with the coding region extending from exon 4 to exon 11, and is approximately 30 kb in length. The Slc14a2 gene is a very large gene with 24 exons, is approximately 300 kb in length, and encodes 6 different isoforms. Slc14a2 contains two promoter elements: promoter I is located in the typical position, upstream of exon 1, and drives the transcription of UT-A1, UT-A1b, UT-A3, UT-A3b, and UT-A4; while promoter II is located within intron 12 and drives the transcription of UT-A2 and UT-A2b. UT-A1 and UT-A3 are located in the inner medullary collecting duct, UT-A2 in the thin descending limb and liver, UT-A5 in testis, UT-A6 in colon, UT-B1 primarily in descending vasa recta and erythrocytes, and UT-B2 in rumen.
Chang, Cheng; Shen, Wen-Kai; Wang, Tzu-Ting; Lin, Ying-Hsi; Hsu, Err-Lieh; Dai, Shu-Mei
2009-04-01
To identify pertinent mutations associated with knockdown resistance to permethrin, the entire coding sequence of the voltage-gated sodium channel gene Aa-para was sequenced and analyzed from a Per-R strain with 190-fold resistance to permethrin and two susceptible strains of Aedes aegypti. The longest transcript, a 6441bp open reading frame, encodes 2147 amino acid residues with an estimated molecular mass of 241kDa. A total of 33 exons were found in the Aa-para gene over 293kb of genomic DNA. Three previously unreported optional exons were identified. The first two exons, m and n, were located within the intracellular domain I/II, and the third, f', was found within the II/III linkers. The two mutually exclusive exons, d and l, were the only alternative exons in all the cDNA clones sequenced in this study. The most distinct finding was a novel amino acid substitution mutation, D1794Y, located within the extracellular linker between IVS5 and IVS6, which is concurrent with the known V1023G mutation in Aa-para of the Per-R strain. The high frequency and coexistence of the two mutations in the Per-R strain suggest that they might exert a synergistic effect to provide the knockdown resistance to permethrin. Furthermore, both cDNA and genomic DNA data from the same individual mosquitoes have demonstrated that RNA editing was not involved in amino acid substitutions of the Per-R strain.
Jiang, Fan; Huang, Lv-Yin; Chen, Gui-Lan; Zhou, Jian-Ying; Xie, Xing-Mei; Li, Dong-Zhi
2017-01-01
We describe a new β-thalassemic mutation in a Chinese subject. This allele develops by insertion of one nucleotide (+T) between codons 138 and 139 in the third exon of the β-globin gene. The mutation causes a frameshift that leads to a termination codon at codon 139. In the heterozygote, this allele has the phenotype of classical β-thalassemia (β-thal) minor.
Van, K; Onoda, S; Kim, M Y; Kim, K D; Lee, S-H
2008-03-01
The Waxy (Wx) gene product controls the formation of a straight chain polymer of amylose in the starch pathway. Dominance/recessiveness of the Wx allele is associated with amylose content, leading to non-waxy/waxy phenotypes. For a total of 113 foxtail millet accessions, agronomic traits and the molecular differences of the Wx gene were surveyed to evaluate genetic diversities. Molecular types were associated with phenotypes determined by four specific primer sets (non-waxy, Type I; low amylose, Type VI; waxy, Type IV or V). Additionally, the insertion of transposable element in waxy was confirmed by ex1/TSI2R, TSI2F/ex2, ex2int2/TSI7R and TSI7F/ex4r. Seventeen single nucleotide polymorphims (SNPs) were observed from non-coding regions, while three SNPs from coding regions were non-synonymous. Interestingly, the phenotype of No. 88 was still non-waxy, although seven nucleotides (AATTGGT) insertion at 2,993 bp led to 78 amino acids shorter. The rapid decline of r (2) in the sequenced region (exon 1-intron 1-exon 2) suggested a low level of linkage disequilibrium and limited haplotype structure. K (s) values and estimation of evolutionary events indicate early divergence of S. italica among cereal crops. This study suggested the Wx gene was one of the targets in the selection process during domestication.
Rozhdestvensky, Timofey S; Robeck, Thomas; Galiveti, Chenna R; Raabe, Carsten A; Seeger, Birte; Wolters, Anna; Gubar, Leonid V; Brosius, Jürgen; Skryabin, Boris V
2016-02-05
Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5'HPRT-LoxP-Neo(R) cassette (5'LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScr(p-/m5'LoxP)), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScr(p-/m5'LoxP) mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScr(p-/m5'LoxP) mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases.
Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors.
Miura, Hiromi; Quadros, Rolen M; Gurumurthy, Channabasavaiah B; Ohtsuka, Masato
2018-01-01
CRISPR/Cas9-based genome editing can easily generate knockout mouse models by disrupting the gene sequence, but its efficiency for creating models that require either insertion of exogenous DNA (knock-in) or replacement of genomic segments is very poor. The majority of mouse models used in research involve knock-in (reporters or recombinases) or gene replacement (e.g., conditional knockout alleles containing exons flanked by LoxP sites). A few methods for creating such models have been reported that use double-stranded DNA as donors, but their efficiency is typically 1-10% and therefore not suitable for routine use. We recently demonstrated that long single-stranded DNAs (ssDNAs) serve as very efficient donors, both for insertion and for gene replacement. We call this method efficient additions with ssDNA inserts-CRISPR (Easi-CRISPR) because it is a highly efficient technology (efficiency is typically 30-60% and reaches as high as 100% in some cases). The protocol takes ∼2 months to generate the founder mice.
The Carnegie Protein Trap Library: A Versatile Tool for Drosophila Developmental Studies
Buszczak, Michael; Paterno, Shelley; Lighthouse, Daniel; Bachman, Julia; Planck, Jamie; Owen, Stephenie; Skora, Andrew D.; Nystul, Todd G.; Ohlstein, Benjamin; Allen, Anna; Wilhelm, James E.; Murphy, Terence D.; Levis, Robert W.; Matunis, Erika; Srivali, Nahathai; Hoskins, Roger A.; Spradling, Allan C.
2007-01-01
Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600–900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions. PMID:17194782
Cianciulli, Antonia; Calvello, Rosa; Panaro, Maria A
2015-04-01
In the homologous genes studied, the exons and introns alternated in the same order in mouse and human. We studied, in both species: corresponding short segments of introns, whole corresponding introns and complete homologous genes. We considered the total number of nucleotides and the number and orientation of the SINE inserts. Comparisons of mouse and human data series showed that at the level of individual relatively short segments of intronic sequences the stochastic variability prevails in the local structuring, but at higher levels of organization a deterministic component emerges, conserved in mouse and human during the divergent evolution, despite the ample re-editing of the intronic sequences and the fact that processes such as SINE spread had taken place in an independent way in the two species. Intron conservation is negatively correlated with the SINE occupancy, suggesting that virus inserts interfere with the conservation of the sequences inherited from the common ancestor. Copyright © 2015 Elsevier Ltd. All rights reserved.
Burrage, Lindsay C; Charng, Wu-Lin; Eldomery, Mohammad K; Willer, Jason R; Davis, Erica E; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S; Akdemir, Zeynep C; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P; Schoots, Jeroen; de Munnik, Sonja A; Roepman, Ronald; Pearring, Jillian N; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E L M; Brunner, Han G; Beaudet, Arthur L; Rosenfeld, Jill A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Xia, Fan; Lalani, Seema R; Lupski, James R; Bongers, Ernie M H F; Yang, Yaping
2015-12-03
Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Li, Guang-Qi; Zang, Xiao-Nan; Zhang, Xue-Cheng; Lu, Ning; Ding, Yan; Gong, Le; Chen, Wen-Chao
2014-03-15
To study the response of Gracilaria lemaneiformis to heat stress, two key enzymes - ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzyme (E2) - of the Ubiquitin/26S proteasome pathway (UPP) were studied in three strains of G. lemaneiformis-wild type, heat-tolerant cultivar 981 and heat-tolerant cultivar 07-2. The full length DNA sequence of E1 contained only one exon. The open reading frame (ORF) sequence was 981 nucleotides encoding 326 amino acids, which contained conserved ATP binding sites (LYDRQIRLWGLE, ELAKNVLLAGV, LKEMN, VVCAI) and the ubiquitin-activating domains (VVCAI…LMTEAC, VFLDLGDEYSYQ, AIVGGMWGRE). The gene sequence of E2 contained four exons and three introns. The sum of the four exons gave an open reading frame sequence of 444 nucleotides encoding 147 amino acids, which contained a conserved ubiquitin-activating domain (GSICLDIL), ubiquitin-conjugating domains (RIYHPNIN, KVLLSICSLL, DDPLV) and ubiquitin-ligase (E3) recognition sites (KRI, YPF, WSP). Real-time-PCR analysis of transcription levels of E1 and E2 under heat shock conditions (28°C and 32°C) showed that in wild type, transcriptions of E1 and E2 were up-regulated at 28°C, while at 32°C, transcriptions of the two enzymes were below the normal level. In cultivar 981 and cultivar 07-2 of G. lemaneiformis, the transcription levels of the two enzymes were up-regulated at 32°C, and transcription level of cultivar 07-2 was even higher than that of cultivar 981. These results suggest that the UPP plays an important role in high temperature resistance of G. lemaneiformis and the bioactivity of UPP is directly related to the heat-resistant ability of G. lemaneiformis. Copyright © 2013 Elsevier B.V. All rights reserved.
Burrage, Lindsay C.; Charng, Wu-Lin; Eldomery, Mohammad K.; Willer, Jason R.; Davis, Erica E.; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S.; Akdemir, Zeynep C.; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P.; Schoots, Jeroen; de Munnik, Sonja A.; Roepman, Ronald; Pearring, Jillian N.; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E.L.M.; Brunner, Han G.; Beaudet, Arthur L.; Rosenfeld, Jill A.; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Xia, Fan; Lalani, Seema R.; Lupski, James R.; Bongers, Ernie M.H.F.; Yang, Yaping
2015-01-01
Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. PMID:26637980
Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair
Redpath, G. M. I.; Woolger, N.; Piper, A. K.; Lemckert, F. A.; Lek, A.; Greer, P. A.; North, K. N.; Cooper, S. T.
2014-01-01
Dysferlin and calpain are important mediators of the emergency response to repair plasma membrane injury. Our previous research revealed that membrane injury induces cleavage of dysferlin to release a synaptotagmin-like C-terminal module we termed mini-dysferlinC72. Here we show that injury-activated cleavage of dysferlin is mediated by the ubiquitous calpains via a cleavage motif encoded by alternately spliced exon 40a. An exon 40a–specific antibody recognizing cleaved mini-dysferlinC72 intensely labels the circumference of injury sites, supporting a key role for dysferlinExon40a isoforms in membrane repair and consistent with our evidence suggesting that the calpain-cleaved C-terminal module is the form specifically recruited to injury sites. Calpain cleavage of dysferlin is a ubiquitous response to membrane injury in multiple cell lineages and occurs independently of the membrane repair protein MG53. Our study links calpain and dysferlin in the calcium-activated vesicle fusion of membrane repair, placing calpains as upstream mediators of a membrane repair cascade that elicits cleaved dysferlin as an effector. Of importance, we reveal that myoferlin and otoferlin are also cleaved enzymatically to release similar C-terminal modules, bearing two C2 domains and a transmembrane domain. Evolutionary preservation of this feature highlights its functional importance and suggests that this highly conserved C-terminal region of ferlins represents a functionally specialized vesicle fusion module. PMID:25143396
Derrien, C; Sonnet, E; Gicquel, I; Le Gall, J Y; Poirier, J Y; David, V; Maugendre, D
2001-05-01
Constitutive activation of the cAMP pathway stimulates thyrocyte proliferation. Gain-of-function mutations in Gsalpha protein have already been identified in thyroid nodules which have lost the ability to trap iodine. In contrast, most of the studies failed to detect somatic activating mutations in the thyrotropin receptor (TSH-R) in non-hyperfunctioning thyroid tumors. The aim of this study was to screen for mutations TSH-R exon 10, encoding the whole intracytoplasmic area involved in signal transduction, and Gsalpha exons 8 and 9, containing the two hot-spot codons 201 and 227, in a subset of non-hyperfunctioning nodules from multinodular goiter. Identified by matching ultrasonography and scintiscan, 22 eufunctioning (normal 99Tc uptake) and 15 nonfunctioning (decreased 99Tc uptake) nodules from 27 non-toxic multinodular goiters were isolated. After DNA extraction, TSH-R exon 10 was analyzed by direct sequencing of the PCR products and Gsalpha exons 8 and 9 by Denaturing Gradient Gel Electrophoresis. No mutation of TSH-R or Gsalpha was detected in the 37 nodules analyzed. This absence of mutation, despite the use of two sensitive screening methods associated with the analysis of the TSH-R whole intracytoplasmic area and Gsalpha two hot-spot codons, suggests that TSH-R and Gsalpha play a minor role in the pathogenesis of non-toxic nodules from multinodular goiters.
Lenarduzzi, S; Morgutti, M; Crovella, S; Coiana, A; Rosatelli, M C
2014-11-14
Cystic fibrosis (CF) is a common recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. More than 1800 different mutations have been described to date. Here, we report 3 novel mutations in CFTR in 3 Italian CF patients. To detect and identify 36 frequent mutations in Caucasians, we used the INNO-LiPA CFTR19 and INNO-LiPA CFTR17+Tn Update kits (Innogenetics; Ghent, Belgium). Our first analysis did not reveal both of the responsible mutations; thus, direct sequencing of the CFTR gene coding region was performed. The 3 patients were compound heterozygous. In one allele, the F508del (c.1521_1523delCTT, p.PHE508del) mutation in exon 11 was observed in each case. For the second allele, in patient No.1, direct sequencing revealed an 11-base pair deletion (GAGGCGATACT) in exon 14 (c.2236_2246del; pGlu746Alafs*29). In patient No. 2, direct sequencing revealed a nonsense mutation at nucleotide 3892 (c.3892G>T) in exon 24. In patient No. 3, direct sequencing revealed a deletion of cytosine in exon 27 (c.4296delC; p.Asn1432Lysfs*16). These 3 novel mutations indicate the production of a truncated protein, which consequently results in a non-functional polypeptide.
Tejedor, J. Ramón; Tilgner, Hagen; Iannone, Camilla; Guigó, Roderic; Valcárcel, Juan
2015-01-01
The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease. PMID:25904137
Genetic variations of VDR/NR1I1 encoding vitamin D receptor in a Japanese population.
Ukaji, Maho; Saito, Yoshiro; Fukushima-Uesaka, Hiromi; Maekawa, Keiko; Katori, Noriko; Kaniwa, Nahoko; Yoshida, Teruhiko; Nokihara, Hiroshi; Sekine, Ikuo; Kunitoh, Hideo; Ohe, Yuichiro; Yamamoto, Noboru; Tamura, Tomohide; Saijo, Nagahiro; Sawada, Jun-ichi
2007-12-01
The vitamin D receptor (VDR) is a transcriptional factor responsive to 1alpha,25-dihydroxyvitamin D(3) and lithocholic acid, and induces expression of drug metabolizing enzymes CYP3A4, CYP2B6 and CYP2C9. In this study, the promoter regions, 14 exons (including 6 exon 1's) and their flanking introns of VDR were comprehensively screened for genetic variations in 107 Japanese subjects. Sixty-one genetic variations including 25 novel ones were found: 9 in the 5'-flanking region, 2 in the 5'-untranslated region (UTR), 7 in the coding exons (5 synonymous and 2 nonsynonymous variations), 12 in the 3'-UTR, 19 in the introns between the exon 1's, and 12 in introns 2 to 8. Of these, one novel nonsynonymous variation, 154A>G (Met52Val), was detected with an allele frequency of 0.005. The single nucleotide polymorphisms (SNPs) that increase VDR expression or activity, -29649G>A, 2T>C and 1592((*)308)C>A tagging linked variations in the 3'-UTR, were detected at 0.430, 0.636, and 0.318 allele frequencies, respectively. Another SNP, -26930A>G, with reduced VDR transcription was found at a 0.028 frequency. These findings would be useful for association studies on VDR variations in Japanese.
The PROGINS polymorphism of the human progesterone receptor diminishes the response to progesterone.
Romano, Andrea; Delvoux, Bert; Fischer, Dagmar-Christiane; Groothuis, Patrick
2007-02-01
The human progesterone receptor (PR) is a ligand-dependent transcription factor and two isoforms, (PRA and PRB), can be distinguished. PROGINS, a PR polymorphic variant, affects PRA and PRB and acts as a risk-modulating factor in several gynaecological disorders. Little is known about the functional consequences of this variant. Here, we characterise the properties of PROGINS with respect to transcription, mRNA maturation, protein activity and proliferation. PROGINS is characterised by a 320 bp PV/HS-1 Alu insertion in intron G and two point mutations, V660L in exon 4 and H770H (silent substitution) in exon 5. The Alu element contains a half oestrogen-response element/Sp1-binding site (Alu-ERE/Sp1), which acts as an in-cis intronic enhancer leading to increased transcription of the PROGINS allele in response to 17beta-oestradiol. Moreover, Alu insertions in the human genome are frequently methylated. Our data indicate that the PROGINS-Alu does not affect gene transcription due to DNA methylation. However, the Alu element reduced the stability of the PROGINS transcript compared with the CP allele and does not generate splice variants. The amino acid substitution (V600L) in exon 4 leads to differences in PR phosphorylation and degradation in the two PR variants upon ligand binding, most likely as a result of differences in the three-dimensional structures of the two PR variants. As a consequence, the PR-L660 (PROGINS) variant (1) displays decreased transactivation activity in a luciferase reporter system and (2) is less efficient in opposing cell proliferation in hamster ovarian cells expressing human PRA, when compared with the PR-V660 (most common variant). Taken together, our results indicate that the PROGINS variant of PR is less responsive to progestin compared with the most common PR because of (i) reduced amounts of gene transcript and (ii) decreased protein activity.
Hayashi, J; Nishikawa, K; Hirano, R; Noguchi, T; Yoshimura, F
2000-01-01
Porphyromonas gingivalis, a periodontopathogen, is an oral anaerobic gram-negative bacterium with numerous fimbriae on the cell surface. Fimbriae have been considered to be an important virulence factor in this organism. We analyzed the genomic DNA of transposon-induced, fimbria-deficient mutants derived from ATCC 33277 and found that seven independent mutants had transposon insertions within the same restriction fragment. Cloning and sequencing of the disrupted region from one of the mutants revealed two adjacent open reading frames (ORFs) which seemed to encode a two-component signal transduction system. We also found that six of the mutants had insertions in a gene, fimS, a homologue of the genes encoding sensor kinase, and that the insertion in the remaining one disrupted the gene immediately downstream, fimR, a homologue of the response regulator genes in other bacteria. These findings suggest that this two-component regulatory system is involved in fimbriation of P. gingivalis.
Mauldin, E A; Wang, P; Evans, E; Cantner, C A; Ferracone, J D; Credille, K M; Casal, M L
2015-07-01
A minority of patients with nonsyndromic autosomal recessive congenital ichthyosis (ARCI) display mutations in NIPAL4 (ICHTHYIN). This protein plays a role in epidermal lipid metabolism, although the mechanism is unknown. The study describes a moderate form of ARCI in an extended pedigree of American Bulldogs that is linked to the gene encoding ichthyin. The gross phenotype was manifest as a disheveled pelage shortly after birth, generalized scaling, and adherent brown scale with erythema of the abdominal skin. Pedigree analysis indicated an autosomal recessive mode of inheritance. Ultrastructurally, the epidermis showed discontinuous lipid bilayers, unprocessed lipid within corneocytes, and abnormal lamellar bodies. Linkage analysis, performed by choosing simple sequence repeat markers and single-nucleotide polymorphisms near genes known to cause ACRI, revealed an association with NIPAL4. NIPAL4 was identified and sequenced using standard methods. No mutation was identified within the gene, but affected dogs had a SINE element 5' upstream of exon 1 in a highly conserved region. Of 545 DNA samples from American Bulldogs, 32 dogs (17 females, 15 males) were homozygous for the polymerase chain reaction fragment. All affected dogs were homozygous, with parents heterozygous for the insertion. Immunolabeling revealed an absence of ichthyin in the epidermis. This is the first description of ARCI associated with decreased expression of NIPAL4 in nonhuman species. © The Author(s) 2014.
Canavan disease: an Arab scenario.
Zayed, Hatem
2015-04-10
The autosomal recessive Canavan disease (CD) is a neurological disorder that begins in infancy. CD is caused by mutations in the gene encoding the ASPA enzyme. It has been reported with high frequency in patients with Jewish ancestry, and with low frequency in non-Jewish patients. This review will shed light on some updates regarding CD prevalence and causative mutations across the Arab World. CD was reported in several Arab countries such as Saudi Arabia, Egypt, Jordan, Yemen, Kuwait, and Tunisia. The population with the highest risk is in Saudi Arabia due the prevalent consanguineous marriage culture. In several studies, four novel mutations were found among Arabian CD patients, including two missense mutations (p.C152R, p.C152W), a 3346bp deletion leading to the removal of exon 3 of the ASPA gene, and an insertion mutation (698insC). Other previously reported mutations, which led to damage in the ASPA enzyme activities found among CD Arab patients are c.530 T>C (p.I177T), c.79G>A (p.G27R), IVS4+1G>T, and a 92kb deletion, which is 7.16kb upstream from the ASPA start site. This review will help in developing customized molecular diagnostic approaches and promoting CD carrier screening in the Arab world in areas where consanguineous marriage is common particularly within Saudi Arabia. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Sunggil; Park, Jee Young; Yang, Tae-Jin
2015-06-01
Intact retrotransposon and DNA transposons inserted in a single gene were characterized in onions (Allium cepa) and their transcription and copy numbers were estimated in this study. While analyzing diverse onion germplasm, large insertions in the DFR-A gene encoding dihydroflavonol 4-reductase (DFR) involved in the anthocyanin biosynthesis pathway were found in two accessions. A 5,070-bp long terminal repeat (LTR) retrotransposon inserted in the active DFR-A (R4) allele was identified from one of the large insertions and designated AcCOPIA1. An intact ORF encoded typical domains of copia-like LTR retrotransposons. However, AcCOPIA1 contained atypical 'TG' and 'TA' dinucleotides at the ends of the LTRs. A 4,615-bp DNA transposon was identified in the other large insertion. This DNA transposon, designated AcCACTA1, contained an ORF coding for a transposase showing homology with the CACTA superfamily transposable elements (TEs). Another 5,073-bp DNA transposon was identified from the DFR-A (TRN) allele. This DNA transposon, designated AchAT1, belonged to the hAT superfamily with short 4-bp terminal inverted repeats (TIRs). Finally, a 6,258-bp non-autonomous DNA transposon, designated AcPINK, was identified in the ANS-p allele encoding anthocyanidin synthase, the next downstream enzyme to DFR in the anthocyanin biosynthesis pathway. AcPINK also possessed very short 3-bp TIRs. Active transcription of AcCOPIA1, AcCACTA1, and AchAT1 was observed through RNA-Seq analysis and RT-PCR. The copy numbers of AcPINK estimated by mapping the genomic DNA reads produced by NextSeq 500 were predominantly high compared with the other TEs. A series of evidence indicated that these TEs might have transposed in these onion genes very recently, providing a stepping stone for elucidation of enormously large-sized onion genome structure.
Marszalek, Bozena; Wisniewski, Slawomir A; Wojcicki, Piotr; Kobus, Kazimierz; Trzeciak, Wieslaw H
2003-12-01
Treacher Collins syndrome (TCS) is caused by mutations in the TCOF1 gene. This gene encodes a serine/alanine-rich protein called treacle. The structure of the entire TCOF1 gene was investigated in a patient with TCS. We detected a novel deletion (376delAAGGTGAGTGGGACTGCC) spanning 3 bp of exon 4 and 15 bp of the adjacent intronic sequence. This mutation causes premature termination of translation, resulting in a truncated protein devoid of nucleolar localization signal, and potential phosphorylation sites. Real-time PCR analysis showed different melting temperatures of the amplified fragment containing normal allele and that harboring the 18 bp deletion, thus providing a rapid screening assay for this and other deletions of the TCOF1 gene. Copyright 2003 Wiley-Liss, Inc.
Role of Tumor Collagenase Stimulating Factor in Breast Cancer Invasion and Metastasis.
1997-12-01
propose that in physiologic processes, the presence of an intact basement membrane separating the normal/benign epithelium from underlying stromal...second Ig domain is a junctional exon encoding the transmembrane domain and part of the cytoplasmic domain as well. Most members of the Ig...produce EMMPRIN. A role for EMMPRIN at epithelial dermal junctions in tissue repair during wound healing seems highly plausible. Taken together
Lundqvist, M L; Middleton, D L; Hazard, S; Warr, G W
2001-12-14
The region of the duck IgH locus extending from upstream of the proximal diversity (D) segment to downstream of the constant gene cluster has been cloned and mapped. A sequence contig of 48,796 base pairs established that the organization of the genes is D-J(H)-mu-alpha-upsilon. No evidence for a functional homologue (or remnant) of a delta gene was found. The alpha gene is in inverted transcriptional orientation; class switch to IgA expression thus requires inversion of the approximately 27-kilobase pair region that includes both mu and alpha genes. The secreted forms of duck alpha and mu are each encoded by 4 constant region exons, and the hydrophobic C-terminal regions of the membrane receptor forms of alpha and mu are encoded by one and two transmembrane exons, respectively. Putative switch (S) regions were identified for duck mu and upsilon by comparison with chicken Smu and Supsilon sequences and for duck alpha by comparison with mouse Salpha. The duck IgH locus is rich in complex variable number tandem repeats, which occupy approximately 60% of the sequenced region, and occur at a much higher frequency in the IgH locus than in other sequenced regions of the duck genome.
Chromosomal localization and cDNA cloning of the human DBP and TEF genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatib, Z.A.; Inaba, T.; Valentine, M.
1994-09-15
The authors have isolated cDNA and genomic clones and determined the human chromosome positions of two genes encoding transcription factors expressed in the liver and the pituitary gland: albumin D-site-binding protein (DBP) and thyrotroph embryonic factor (TEF). Both proteins have been identified as members of the PAR (proline and acidic amino acid-rich) subfamily of bZIP transcription factors in the rat, but human homologues have not been characterized. Using a fluorescence in situ hybridization technique, the DBP locus was assigned to chromosome 19q13, and TEF to chromosome 22q13. Each assignment was confirmed by means of human chromosome segregation in somatic cellmore » hybrids. Coding sequences of DBP and TEF, extending beyond the bZIP domain to the PAR region, were highly conserved in both human-human and interspecies comparisons. Conservation of the exon-intron boundaries of each bZIP domain-encoding exon suggested derivation from a common ancestral gene. DBP and TEF mRNAs were expressed in all tissues and cell lines examined, including brain, lung, liver, spleen, and kidney. Knowledge of the human chromosome locations of these PAR proteins will facilitate studies to assess their involvement in carcinogenesis and other fundamental biological processes. 37 refs., 5 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki
1996-06-01
Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequencesmore » in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.« less
Bahnsen, U; Oosting, P; Swaab, D F; Nahke, P; Richter, D; Schmale, H
1992-01-01
Familial neurohypophyseal diabetes insipidus in humans is a rare disease transmitted as an autosomal dominant trait. Affected individuals have very low or undetectable levels of circulating vasopressin and suffer from polydipsia and polyuria. An obvious candidate gene for the disease is the vasopressin-neurophysin (AVP-NP) precursor gene on human chromosome 20. The 2 kb gene with three exons encodes a composite precursor protein consisting of the neuropeptide vasopressin and two associated proteins, neurophysin and a glycopeptide. Cloning and nucleotide sequence analysis of both alleles of the AVP-NP gene present in a Dutch ADNDI family reveals a point mutation in one allele of the affected family members. Comparison of the nucleotide sequences shows a G----T transversion within the neurophysin-encoding exon B. This missense mutation converts a highly conserved glycine (Gly17 of neurophysin) to a valine residue. RFLP analysis of six related family members indicates cosegregation of the mutant allele with the DI phenotype. The mutation is not present in 96 chromosomes of an unrelated control group. These data suggest that a single amino acid exchange within a highly conserved domain of the human vasopressin-associated neurophysin is the primary cause of one form of ADNDI. Images PMID:1740104
Mutational Spectrum of MYO15A and the Molecular Mechanisms of DFNB3 Human Deafness.
Rehman, Atteeq U; Bird, Jonathan E; Faridi, Rabia; Shahzad, Mohsin; Shah, Sujay; Lee, Kwanghyuk; Khan, Shaheen N; Imtiaz, Ayesha; Ahmed, Zubair M; Riazuddin, Saima; Santos-Cortez, Regie Lyn P; Ahmad, Wasim; Leal, Suzanne M; Riazuddin, Sheikh; Friedman, Thomas B
2016-10-01
Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal-recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A. © 2016 WILEY PERIODICALS, INC.
Schwaiger, F W; Weyers, E; Epplen, C; Brün, J; Ruff, G; Crawford, A; Epplen, J T
1993-09-01
Twenty-one different caprine and 13 ovine MHC-DRB exon 2 sequences were determined including part of the adjacent introns containing simple repetitive (gt)n(ga)m elements. The positions for highly polymorphic DRB amino acids vary slightly among ungulates and other mammals. From man and mouse to ungulates the basic (gt)n(ga)m structure is fixed in evolution for 7 x 10(7) years whereas ample variations exist in the tandem (gt)n and (ga)m dinucleotides and especially their "degenerated" derivatives. Phylogenetic trees for the alpha-helices and beta-pleated sheets of the ungulate DRB sequences suggest different evolutionary histories. In hoofed animals as well as in humans DRB beta-sheet encoding sequences and adjacent intronic repeats can be assembled into virtually identical groups suggesting coevolution of noncoding as well as coding DNA. In contrast alpha-helices and C-terminal parts of the first DRB domain evolve distinctly. In the absence of a defined mechanism causing specific, site-directed mutations, double-recombination or gene-conversion-like events would readily explain this fact. The role of the intronic simple (gt)n(ga)m repeat is discussed with respect to these genetic exchange mechanisms during evolution.
Genetics of Type III Bartter Syndrome in Spain, Proposed Diagnostic Algorithm
García Castaño, Alejandro; Pérez de Nanclares, Gustavo; Madariaga, Leire; Aguirre, Mireia; Madrid, Alvaro; Nadal, Inmaculada; Navarro, Mercedes; Lucas, Elena; Fijo, Julia; Espino, Mar; Espitaletta, Zilac; Castaño, Luis; Ariceta, Gema
2013-01-01
The p.Ala204Thr mutation (exon 7) of the CLCNKB gene is a "founder" mutation that causes most of type III Bartter syndrome cases in Spain. We performed genetic analysis of the CLCNKB gene, which encodes for the chloride channel protein ClC-Kb, in a cohort of 26 affected patients from 23 families. The diagnostic algorithm was: first, detection of the p.Ala204Thr mutation; second, detecting large deletions or duplications by Multiplex Ligation-dependent Probe Amplification and Quantitative Multiplex PCR of Short Fluorescent Fragments; and third, sequencing of the coding and flanking regions of the whole CLCNKB gene. In our genetic diagnosis, 20 families presented with the p.Ala204Thr mutation. Of those, 15 patients (15 families) were homozygous (57.7% of overall patients). Another 8 patients (5 families) were compound heterozygous for the founder mutation together with a second one. Thus, 3 patients (2 siblings) presented with the c. -19-?_2053+? del deletion (comprising the entire gene); one patient carried the p.Val170Met mutation (exon 6); and 4 patients (3 siblings) presented with the novel p.Glu442Gly mutation (exon 14). On the other hand, another two patients carried two novel mutations in compound heterozygosis: one presented the p.Ile398_Thr401del mutation (exon 12) associated with the c. -19-?_2053+? del deletion, and the other one carried the c.1756+1G>A splice-site mutation (exon 16) as well as the already described p.Ala210Val change (exon 7). One case turned out to be negative in our genetic screening. In addition, 51 relatives were found to be heterozygous carriers of the described CLCNKB mutations. In conclusion, different mutations cause type III Bartter syndrome in Spain. The high prevalence of the p.Ala204Thr in Spanish families thus justifies an initial screen for this mutation. However, should it not be detected further investigation of the CLCNKB gene is warranted in clinically diagnosed families. PMID:24058621
Genetics of type III Bartter syndrome in Spain, proposed diagnostic algorithm.
García Castaño, Alejandro; Pérez de Nanclares, Gustavo; Madariaga, Leire; Aguirre, Mireia; Madrid, Alvaro; Nadal, Inmaculada; Navarro, Mercedes; Lucas, Elena; Fijo, Julia; Espino, Mar; Espitaletta, Zilac; Castaño, Luis; Ariceta, Gema
2013-01-01
The p.Ala204Thr mutation (exon 7) of the CLCNKB gene is a "founder" mutation that causes most of type III Bartter syndrome cases in Spain. We performed genetic analysis of the CLCNKB gene, which encodes for the chloride channel protein ClC-Kb, in a cohort of 26 affected patients from 23 families. The diagnostic algorithm was: first, detection of the p.Ala204Thr mutation; second, detecting large deletions or duplications by Multiplex Ligation-dependent Probe Amplification and Quantitative Multiplex PCR of Short Fluorescent Fragments; and third, sequencing of the coding and flanking regions of the whole CLCNKB gene. In our genetic diagnosis, 20 families presented with the p.Ala204Thr mutation. Of those, 15 patients (15 families) were homozygous (57.7% of overall patients). Another 8 patients (5 families) were compound heterozygous for the founder mutation together with a second one. Thus, 3 patients (2 siblings) presented with the c. -19-?_2053+? del deletion (comprising the entire gene); one patient carried the p.Val170Met mutation (exon 6); and 4 patients (3 siblings) presented with the novel p.Glu442Gly mutation (exon 14). On the other hand, another two patients carried two novel mutations in compound heterozygosis: one presented the p.Ile398_Thr401del mutation (exon 12) associated with the c. -19-?_2053+? del deletion, and the other one carried the c.1756+1G>A splice-site mutation (exon 16) as well as the already described p.Ala210Val change (exon 7). One case turned out to be negative in our genetic screening. In addition, 51 relatives were found to be heterozygous carriers of the described CLCNKB mutations. In conclusion, different mutations cause type III Bartter syndrome in Spain. The high prevalence of the p.Ala204Thr in Spanish families thus justifies an initial screen for this mutation. However, should it not be detected further investigation of the CLCNKB gene is warranted in clinically diagnosed families.
Tollefson, Ann E.; Ying, Baoling; Doronin, Konstantin; Sidor, Peter D.; Wold, William S. M.
2007-01-01
A short open reading frame named the “U exon,” located on the adenovirus (Ad) l-strand (for leftward transcription) between the early E3 region and the fiber gene, is conserved in mastadenoviruses. We have observed that Ad5 mutants with large deletions in E3 that infringe on the U exon display a mild growth defect, as well as an aberrant Ad E2 DNA-binding protein (DBP) intranuclear localization pattern and an apparent failure to organize replication centers during late infection. Mutants in which the U exon DNA is reconstructed have a reversed phenotype. Chow et al. (L. T. Chow et al., J. Mol. Biol. 134:265-303, 1979) described mRNAs initiating in the region of the U exon and spliced to downstream sequences in the late DBP mRNA leader and the DBP-coding region. We have cloned this mRNA (as cDNA) from Ad5 late mRNA; the predicted protein is 217 amino acids, initiating in the U exon and continuing in frame in the DBP leader and in the DBP-coding region but in a different reading frame from DBP. Polyclonal and monoclonal antibodies generated against the predicted U exon protein (UXP) showed that UXP is ∼24K in size by immunoblot and is a late protein. At 18 to 24 h postinfection, UXP is strongly associated with nucleoli and is found throughout the nucleus; later, UXP is associated with the periphery of replication centers, suggesting a function relevant to Ad DNA replication or RNA transcription. UXP is expressed by all four species C Ads. When expressed in transient transfections, UXP complements the aberrant DBP localization pattern of UXP-negative Ad5 mutants. Our data indicate that UXP is a previously unrecognized protein derived from a novel late l-strand transcription unit. PMID:17881437
Kralovicova, Jana; Knut, Marcin; Cross, Nicholas C. P.; Vorechovsky, Igor
2015-01-01
The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3′ splice site (3′ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3′ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3′UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPERα. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing. PMID:25779042
Transposon Insertions of magellan-4 That Impair Social Gliding Motility in Myxococcus xanthus
Youderian, Philip; Hartzell, Patricia L.
2006-01-01
Myxococcus xanthus has two different mechanisms of motility, adventurous (A) motility, which permits individual cells to glide over solid surfaces, and social (S) motility, which permits groups of cells to glide. To identify the genes involved in S-gliding motility, we mutagenized a ΔaglU (A−) strain with the defective transposon, magellan-4, and screened for S− mutants that form nonmotile colonies. Sequence analysis of the sites of the magellan-4 insertions in these mutants and the alignment of these sites with the M. xanthus genome sequence show that two-thirds of these insertions lie within 27 of the 37 nonessential genes known to be required for social motility, including those necessary for the biogenesis of type IV pili, exopolysaccharide, and lipopolysaccharide. The remaining insertions also identify 31 new, nonessential genes predicted to encode both structural and regulatory determinants of S motility. These include three tetratricopeptide repeat proteins, several regulators of transcription that may control the expression of genes involved in pilus extension and retraction, and additional enzymes involved in polysaccharide metabolism. Three insertions that abolish S motility lie within genes predicted to encode glycolytic enzymes, suggesting that the signal for pilus retraction may be a simple product of exopolysaccharide catabolism. PMID:16299386
Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan
NASA Astrophysics Data System (ADS)
Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka
2004-08-01
In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.
Hampshire, Daniel J.; Abuzenadah, Adel M.; Cartwright, Ashley; Al-Shammari, Nawal S.; Coyle, Rachael E.; Eckert, Michaela; Al-Buhairan, Ahlam M.; Messenger, Sarah L.; Budde, Ulrich; Gürsel, Türkiz; Ingerslev, Jørgen; Peake, Ian R.; Goodeve, Anne C.
2014-01-01
Summary Several cohort studies have investigated the molecular basis of von Willebrand disease (VWD); however these have mostly focused on European and North American populations. This study aimed to investigate mutation spectrum in 26 index cases (IC) from Turkey diagnosed with all three VWD types, the majority (73%) with parents who were knowingly related. IC were screened for mutations using multiplex ligation-dependent probe amplification and analysis of all von Willebrand factor gene (VWF) exons and exon/intron boundaries. Selected missense mutations were expressed in vitro. Candidate VWF mutations were identified in 25 of 26 IC and included propeptide missense mutations in four IC (two resulting in type 1 and two in recessive 2A), all influencing VWF expression in vitro. Four missense mutations, a nonsense mutation and a small in-frame insertion resulting in type 2A were also identified. Of 15 type 3 VWD IC, 13 were homozygous and two compound heterozygous for 14 candidate mutations predicted to result in lack of expression and two propeptide missense changes. Identification of intronic breakpoints of an exon 17–18 deletion suggested that the mutation resulted from non-homologous end joining. This study provides further insight into the pathogenesis of VWD in a population with a high degree of consanguineous partnerships. PMID:23702511
Kapahnke, Marcel; Banning, Antje; Tikkanen, Ritva
2016-12-14
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated sequence 9 (CRISPR/Cas9) system is widely used for genome editing purposes as it facilitates an efficient knockout of a specific gene in, e.g. cultured cells. Targeted double-strand breaks are introduced to the target sequence of the guide RNAs, which activates the cellular DNA repair mechanism for non-homologous-end-joining, resulting in unprecise repair and introduction of small deletions or insertions. Due to this, sequence alterations in the coding region of the target gene frequently cause frame-shift mutations, facilitating degradation of the mRNA. We here show that such CRISPR/Cas9-mediated alterations in the target exon may also result in altered splicing of the respective pre-mRNA, most likely due to mutations of splice-regulatory sequences. Using the human FLOT-1 gene as an example, we demonstrate that such altered splicing products also give rise to aberrant protein products. These may potentially function as dominant-negative proteins and thus interfere with the interpretation of the data generated with these cell lines. Since most researchers only control the consequences of CRISPR knockout at genomic and protein level, our data should encourage to also check the alterations at the mRNA level.
Quantifying the mechanisms of domain gain in animal proteins.
Buljan, Marija; Frankish, Adam; Bateman, Alex
2010-01-01
Protein domains are protein regions that are shared among different proteins and are frequently functionally and structurally independent from the rest of the protein. Novel domain combinations have a major role in evolutionary innovation. However, the relative contributions of the different molecular mechanisms that underlie domain gains in animals are still unknown. By using animal gene phylogenies we were able to identify a set of high confidence domain gain events and by looking at their coding DNA investigate the causative mechanisms. Here we show that the major mechanism for gains of new domains in metazoan proteins is likely to be gene fusion through joining of exons from adjacent genes, possibly mediated by non-allelic homologous recombination. Retroposition and insertion of exons into ancestral introns through intronic recombination are, in contrast to previous expectations, only minor contributors to domain gains and have accounted for less than 1% and 10% of high confidence domain gain events, respectively. Additionally, exonization of previously non-coding regions appears to be an important mechanism for addition of disordered segments to proteins. We observe that gene duplication has preceded domain gain in at least 80% of the gain events. The interplay of gene duplication and domain gain demonstrates an important mechanism for fast neofunctionalization of genes.
Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps
Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen
2003-01-01
Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...
Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors
Webster, Joshua D; Kiupel, Matti; Yuzbasiyan-Gurkan, Vilma
2006-01-01
Background Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors. Methods In order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations. Results No mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined. Conclusion In conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs. PMID:16579858
Mutations in GNA11 in Uveal Melanoma
Van Raamsdonk, Catherine D.; Griewank, Klaus G.; Crosby, Michelle B.; Garrido, Maria C.; Vemula, Swapna; Wiesner, Thomas; Obenauf, Anna C.; Wackernagel, Werner; Green, Gary; Bouvier, Nancy; Sozen, M. Mert; Baimukanova, Gail; Roy, Ritu; Heguy, Adriana; Dolgalev, Igor; Khanin, Raya; Busam, Klaus; Speicher, Michael R.; O’Brien, Joan; Bastian, Boris C.
2011-01-01
BACKGROUND Uveal melanoma is the most common intraocular cancer. There are no effective therapies for metastatic disease. Mutations in GNAQ, the gene encoding an alpha subunit of heterotrimeric G proteins, are found in 40% of uveal melanomas. METHODS We sequenced exon 5 of GNAQ and GNA11, a paralogue of GNAQ, in 713 melanocytic neoplasms of different types (186 uveal melanomas, 139 blue nevi, 106 other nevi, and 282 other melanomas). We sequenced exon 4 of GNAQ and GNA11 in 453 of these samples and in all coding exons of GNAQ and GNA11 in 97 uveal melanomas and 45 blue nevi. RESULTS We found somatic mutations in exon 5 (affecting Q209) and in exon 4 (affecting R183) in both GNA11 and GNAQ, in a mutually exclusive pattern. Mutations affecting Q209 in GNA11 were present in 7% of blue nevi, 32% of primary uveal melanomas, and 57% of uveal melanoma metastases. In contrast, we observed Q209 mutations in GNAQ in 55% of blue nevi, 45% of uveal melanomas, and 22% of uveal melanoma metastases. Mutations affecting R183 in either GNAQ or GNA11 were less prevalent (2% of blue nevi and 6% of uveal melanomas) than the Q209 mutations. Mutations in GNA11 induced spontaneously metastasizing tumors in a mouse model and activated the mitogen-activated protein kinase pathway. CONCLUSIONS Of the uveal melanomas we analyzed, 83% had somatic mutations in GNAQ or GNA11. Constitutive activation of the pathway involving these two genes appears to be a major contributor to the development of uveal melanoma. (Funded by the National Institutes of Health and others.) PMID:21083380
Nuzzo, F; Bulato, C; Nielsen, B I; Lee, K; Wielders, S J; Simioni, P; Key, N S; Castoldi, E
2015-03-01
Coagulation factor V (FV) deficiency is a rare autosomal recessive bleeding disorder. We investigated a patient with severe FV deficiency (FV:C < 3%) and moderate bleeding symptoms. Thrombin generation experiments showed residual FV expression in the patient's plasma, which was quantified as 0.7 ± 0.3% by a sensitive prothrombinase-based assay. F5 gene sequencing identified a novel missense mutation in exon 4 (c.578G>C, p.Cys193Ser), predicting the abolition of a conserved disulphide bridge, and an apparently synonymous variant in exon 8 (c.1281C>G). The observation that half of the patient's F5 mRNA lacked the last 18 nucleotides of exon 8 prompted us to re-evaluate the c.1281C>G variant for its possible effects on splicing. Bioinformatics sequence analysis predicted that this transversion would activate a cryptic donor splice site and abolish an exonic splicing enhancer. Characterization in a F5 minigene model confirmed that the c.1281C>G variant was responsible for the patient's splicing defect, which could be partially corrected by a mutation-specific morpholino antisense oligonucleotide. The aberrantly spliced F5 mRNA, whose stability was similar to that of the normal mRNA, encoded a putative FV mutant lacking amino acids 427-432. Expression in COS-1 cells indicated that the mutant protein is poorly secreted and not functional. In conclusion, the c.1281C>G mutation, which was predicted to be translationally silent and hence neutral, causes FV deficiency by impairing pre-mRNA splicing. This finding underscores the importance of cDNA analysis for the correct assessment of exonic mutations. © 2014 John Wiley & Sons Ltd.
Hochbach, Anne; Schneider, Julia; Röser, Martin
2015-06-01
To investigate phylogenetic relationships within the grass subfamily Pooideae we studied about 50 taxa covering all recognized tribes, using one plastid DNA (cpDNA) marker (matK gene-3'trnK exon) and for the first time four nuclear single copy gene loci. DNA sequence information from two parts of the nuclear genes topoisomerase 6 (Topo6) spanning the exons 8-13 and 17-19, the exons 9-13 encoding plastid acetyl-CoA-carboxylase (Acc1) and the partial exon 1 of phytochrome B (PhyB) were generated. Individual and nuclear combined data were evaluated using maximum parsimony, maximum likelihood and Bayesian methods. All of the phylogenetic results show Brachyelytrum and the tribe Nardeae as earliest diverging lineages within the subfamily. The 'core' Pooideae (Hordeeae and the Aveneae/Poeae tribe complex) are also strongly supported, as well as the monophyly of the tribes Brachypodieae, Meliceae and Stipeae (except PhyB). The beak grass tribe Diarrheneae and the tribe Duthieeae are not monophyletic in some of the analyses. However, the combined nuclear DNA (nDNA) tree yields the highest resolution and the best delimitation of the tribes, and provides the following evolutionary hypothesis for the tribes: Brachyelytrum, Nardeae, Duthieeae, Meliceae, Stipeae, Diarrheneae, Brachypodieae and the 'core' Pooideae. Within the individual datasets, the phylogenetic trees obtained from Topo6 exon 8-13 shows the most interesting results. The divergent positions of some clone sequences of Ampelodesmos mauritanicus and Trikeraia pappiformis, for instance, may indicate a hybrid origin of these stipoid taxa. Copyright © 2015 Elsevier Inc. All rights reserved.
Uezato, Akihito; Yamamoto, Naoki; Jitoku, Daisuke; Haramo, Emiko; Hiraaki, Eri; Iwayama, Yoshimi; Toyota, Tomoko; Umino, Masakazu; Umino, Asami; Iwata, Yasuhide; Suzuki, Katsuaki; Kikuchi, Mitsuru; Hashimoto, Tasuku; Kanahara, Nobuhisa; Kurumaji, Akeo; Yoshikawa, Takeo; Nishikawa, Toru
2017-12-01
The synapse-associated protein 97/discs, large homolog 1 of Drosophila (DLG1) gene encodes synaptic scaffold PDZ proteins interacting with ionotropic glutamate receptors including the N-methyl-D-aspartate type glutamate receptor (NMDAR) that is presumed to be hypoactive in brains of patients with schizophrenia. The DLG1 gene resides in the chromosomal position 3q29, the microdeletion of which confers a 40-fold increase in the risk for schizophrenia. In the present study, we performed genetic association analyses for DLG1 gene using a Japanese cohort with 1808 schizophrenia patients and 2170 controls. We detected an association which remained significant after multiple comparison testing between schizophrenia and the single nucleotide polymorphism (SNP) rs3915512 that is located within the newly identified primate-specific exon (exon 3b) of the DLG1 gene and constitutes the exonic splicing enhancer sequence. When stratified by onset age, although it did not survive multiple comparisons, the association was observed in non-early onset schizophrenia, whose onset-age selectivity is consistent with our recent postmortem study demonstrating a decrease in the expression of the DLG1 variant in early-onset schizophrenia. Although the present study did not demonstrate the previously reported association of the SNP rs9843659 by itself, a meta-analysis revealed a significant association between DLG1 gene and schizophrenia. These findings provide a valuable clue for molecular mechanisms on how genetic variations in the primate-specific exon of the gene in the schizophrenia-associated 3q29 locus affect its regulation in the glutamate system and lead to the disease onset around a specific stage of brain development. © 2017 Wiley Periodicals, Inc.
Methods and compositions for controlling gene expression by RNA processing
Doudna, Jennifer A.; Qi, Lei S.; Haurwitz, Rachel E.; Arkin, Adam P.
2017-08-29
The present disclosure provides nucleic acids encoding an RNA recognition sequence positioned proximal to an insertion site for the insertion of a sequence of interest; and host cells genetically modified with the nucleic acids. The present disclosure also provides methods of modifying the activity of a target RNA, and kits and compositions for carrying out the methods.
Structural analysis of HLA-B40 epitopes.
Kawaguchi, G; Kato, N; Kashiwase, K; Karaki, S; Kohsaka, T; Akaza, T; Kano, K; Takiguchi, M
1993-03-01
Two genes encoding HLA-B60 or HLA-B61 were cloned from Japanese and the exons of their genes were sequenced. One silent mutation was observed at the exon 1 between HLA-B60 (B*40012) and B*40011. Seven nucleotide substitutions were seen at the exon 3 between HLA-B61 (B*4006) and B*4002. Three substitutions at codon 95, CTC in B*4002 to TGG in B*4006, changed Leu in B*4002 to Trp in B*4006, while two substitutions at codon 97, AGC in B*4002 and ACG in B*4006, changed Ser in B*4002 to Thr in B*4006. Since B*4002 shares the epitope of alloantibodies specific for HLA-B61, two HLA-B61 subtypes are discriminated by two amino acid substitutions at residues 95 and 97. B*40012 and B*4006 differ by four amino acid substitutions on the beta sheet and five amino acid substitutions on the alpha 2 helix. Since the residues at the beta sheet seem hardly to affect the binding of alloantibody, it is suspected that the residues on the alpha 2 helix provide epitopes for alloantibodies that discriminate allospecificity between HLA-B60 and HLA-B61.
Shabalina, Svetlana A.; Ogurtsov, Aleksey Y.; Spiridonov, Nikolay A.; Koonin, Eugene V.
2014-01-01
Alternative splicing (AS), alternative transcription initiation (ATI) and alternative transcription termination (ATT) create the extraordinary complexity of transcriptomes and make key contributions to the structural and functional diversity of mammalian proteomes. Analysis of mammalian genomic and transcriptomic data shows that contrary to the traditional view, the joint contribution of ATI and ATT to the transcriptome and proteome diversity is quantitatively greater than the contribution of AS. Although the mean numbers of protein-coding constitutive and alternative nucleotides in gene loci are nearly identical, their distribution along the transcripts is highly non-uniform. On average, coding exons in the variable 5′ and 3′ transcript ends that are created by ATI and ATT contain approximately four times more alternative nucleotides than core protein-coding regions that diversify exclusively via AS. Short upstream exons that encompass alternative 5′-untranslated regions and N-termini of proteins evolve under strong nucleotide-level selection whereas in 3′-terminal exons that encode protein C-termini, protein-level selection is significantly stronger. The groups of genes that are subject to ATI and ATT show major differences in biological roles, expression and selection patterns. PMID:24792168
Cruts, M; Backhovens, H; Van Gassen, G; Theuns, J; Wang, S Y; Wehnert, A; van Duijn, C M; Karlsson, T; Hofman, A; Adolfsson, R
1995-10-13
Linkage analysis studies have indicated that the chromosome band 14q24.3 harbours a major gene for familial early-onset Alzheimer's disease (AD). Recently we localized the chromosome 14 AD gene (AD3) in the 6.4 cM interval between the markers D14S289 and D14S61. We mapped the gene encoding dihydrolipoyl succinyltransferase (DLST), the E2k component of human alpha-ketoglutarate dehydrogenase complex (KGDHC), in the AD3 candidate region using yeast artificial chromosomes (YACs). The DLST gene is a candidate for the AD3 gene since deficiencies in KGDHC activity have been observed in brain tissue and fibroblasts of AD patients. The 15 exons and the promoter region of the DLST gene were analysed for mutations in chromosome 14 linked AD cases and in two series of unrelated early-onset AD cases (onset age < 55 years). Sequence variations in intronic sequences (introns 3, 5 and 10) or silent mutations in exonic sequences (exons 8 and 14) were identified. However, no AD related mutations were observed, suggesting that the DLST gene is not the chromosome 14 AD3 gene.
Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel
2007-01-01
Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression. We suggest that the extreme genomic conservation surrounding these regulatory splicing events within splicing factor genes demonstrates the evolutionary importance of maintaining tightly tuned homeostasis of RNA-binding protein levels in the vertebrate cell. PMID:17369403
Vettore, Silvia; De Rocco, Daniela; Gerber, Bernhard; Scandellari, Raffaella; Bianco, Anna Monica; Balduini, Carlo L; Pecci, Alessandro; Fabris, Fabrizio; Savoia, Anna
2010-01-01
MYH9-related disease (MYH9-RD) is a rare autosomal dominant disorder caused by mutations in MYH9, the gene encoding the heavy chain of non-muscle myosin IIA. Patients present with congenital macrothrombocytopenia and inclusion bodies in neutrophils and might develop sensorineural deafness, presenile cataract, and/or progressive nephropathy leading to end-stage renal failure. In two families with macrothrombocytopenia we identified a novel c.3485G > C mutation in the last nucleotide of exon 25. Bioinformatic tools for splice site prediction and minigene functional test predicted splicing anomalies of exon 25. However, analysis of RNA purified from patient's peripheral blood did not allowed us to detect any anomalies, suggesting that RNA processing is correct at least in this tissue. Therefore, we concluded that c.3485G > C leads to a novel missense mutation (p.Arg1162Thr) of myosin-9, which resulted to be slightly degraded in patient platelets. A precise definition of the effect of mutations is fundamental to improve our knowledge into the pathogenetic mechanisms responsible for the disease. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwasnicka-Crawford, Dorota A.; Carson, Andrew R.; Scherer, Stephen W.
The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNAmore » is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions.« less
Dialynas, D P; Murre, C; Quertermous, T; Boss, J M; Leiden, J M; Seidman, J G; Strominger, J L
1986-01-01
Complementary DNA (cDNA) encoding a human T-cell gamma chain has been cloned and sequenced. At the junction of the variable and joining regions, there is an apparent deletion of two nucleotides in the human cDNA sequence relative to the murine gamma-chain cDNA sequence, resulting simultaneously in the generation of an in-frame stop codon and in a translational frameshift. For this reason, the sequence presented here encodes an aberrantly rearranged human T-cell gamma chain. There are several surprising differences between the deduced human and murine gamma-chain amino acid sequences. These include poor homology in the variable region, poor homology in a discrete segment of the constant region precisely bounded by the expected junctions of exon CII, and the presence in the human sequence of five potential sites for N-linked glycosylation. Images PMID:3458221
Genes encoding giant danio and golden shiner ependymin.
Adams, D S; Kiyokawa, M; Getman, M E; Shashoua, V E
1996-03-01
Ependymin (EPN) is a brain glycoprotein that functions as a neurotrophic factor in optic nerve regeneration and long-term memory consolidation in goldfish. To date, true epn genes have been characterized in one order of teleost fish, Cypriniformes. In the study presented here, polymerase chain reactions were used to analyze the complete epn genes, gd (1480 bp), and sh (2071 bp), from Cypriniformes giant danio and shiner, respectively. Southern hybridizations demonstrated the existence of one copy of each gene per corresponding haploid genome. Each gene was found to contain six exons and five introns. Gene gd encodes a predicted 218-amino acid (aa) protein GD 93 percent conserved to goldfish EPN, while sh encodes a predicted 214-aa protein SH 91 percent homologous to goldfish. Evidence is presented classifying proteins previously termed "EPNs" into two major categories: true EPNs and non-EPN cerebrospinal fluid glycoproteins. Proteins GD and SH contain all the hallmark, features of true EPNs.
A Molecular-Genetic Study of the Arabidopsis Toc75 Gene Family1
Baldwin, Amy; Wardle, Anthony; Patel, Ramesh; Dudley, Penny; Park, Soon Ki; Twell, David; Inoue, Kentaro; Jarvis, Paul
2005-01-01
Toc75 (translocon at the outer envelope membrane of chloroplasts, 75 kD) is the protein translocation channel at the outer envelope membrane of plastids and was first identified in pea (Pisum sativum) using biochemical approaches. The Arabidopsis (Arabidopsis thaliana) genome contains three Toc75-related sequences, termed atTOC75-I, atTOC75-III, and atTOC75-IV, which we studied using a range of molecular, genetic, and biochemical techniques. Expression of atTOC75-III is strongly regulated and at its highest level in young, rapidly expanding tissues. By contrast, atTOC75-IV is expressed uniformly throughout development and at a much lower level than atTOC75-III. The third sequence, atTOC75-I, is a pseudogene that is not expressed due to a gypsy/Ty3 transposon insertion in exon 1, and numerous nonsense, frame-shift, and splice-junction mutations. The expressed genes, atTOC75-III and atTOC75-IV, both encode integral envelope membrane proteins. Unlike atToc75-III, the smaller atToc75-IV protein is not processed upon targeting to the envelope, and its insertion does not require ATP at high concentrations. The atTOC75-III gene is essential for viability, since homozygous atToc75-III knockout mutants (termed toc75-III) could not be identified, and aborted seeds were observed at a frequency of approximately 25% in the siliques of self-pollinated toc75-III heterozygotes. Homozygous toc75-III embryos were found to abort at the two-cell stage. Homozygous atToc75-IV knockout plants (termed toc75-IV) displayed no obvious visible phenotypes. However, structural abnormalities were observed in the etioplasts of toc75-IV seedlings and atTOC75-IV overexpressing lines, and toc75-IV plants were less efficient at deetiolation than wild type. These results suggest some role for atToc75-IV during growth in the dark. PMID:15908591
Rozhdestvensky, Timofey S.; Robeck, Thomas; Galiveti, Chenna R.; Raabe, Carsten A.; Seeger, Birte; Wolters, Anna; Gubar, Leonid V.; Brosius, Jürgen; Skryabin, Boris V.
2016-01-01
Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5′HPRT-LoxP-NeoR cassette (5′LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScrp−/m5′LoxP), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScrp−/m5′LoxP mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScrp−/m5′LoxP mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases. PMID:26848093
Paterno, Gary D; Ding, Zhihu; Lew, Yuan-Y; Nash, Gord W; Mercer, F Corinne; Gillespie, Laura L
2002-07-24
mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.
Berghofer, Y.; Klein, A.
1995-01-01
Methanococcus voltae, which contains four different gene groups that encode [NiFe]-hydrogenases, was transformed with integration vectors to achieve polar inactivation of two of the four hydrogenase operons that encode the selenium-free enzymes Vhc and Frc. Transformants which were selected by their acquired puromycin resistance showed site-specific insertions in either the vhc or frc operon by single crossover events. Southern hybridization revealed tandem integrations of whole vectors in the vhc operon, whereas only one vector copy was found in the frc operon. Northern (RNA) hybridizations showed a pac transcript of defined size, indicating strong termination in front of the hydrogenase genes downstream. In spite of the apparent abolition of expression of selenium-free hydrogenases through these polar insertions, they were not lethal to cells upon growth in selenium-deprived minimal medium, which we had previously shown to strongly induce transcription of the respective operons in M. voltae. Instead, like wild-type control cultures, transformants responded to selenium deprivation only with a reduction in growth rate. We conclude that loss of the potential to express a selenium-free hydrogenase can nevertheless be balanced by very small amounts of selenium hydrogenases under laboratory conditions in which the hydrogen supply is not likely to be a limiting growth factor. PMID:16535019
Lalani, Seema R.; Liu, Pengfei; Rosenfeld, Jill A.; Watkin, Levi B.; Chiang, Theodore; Leduc, Magalie S.; Zhu, Wenmiao; Ding, Yan; Pan, Shujuan; Vetrini, Francesco; Miyake, Christina Y.; Shinawi, Marwan; Gambin, Tomasz; Eldomery, Mohammad K.; Akdemir, Zeynep Hande Coban; Emrick, Lisa; Wilnai, Yael; Schelley, Susan; Koenig, Mary Kay; Memon, Nada; Farach, Laura S.; Coe, Bradley P.; Azamian, Mahshid; Hernandez, Patricia; Zapata, Gladys; Jhangiani, Shalini N.; Muzny, Donna M.; Lotze, Timothy; Clark, Gary; Wilfong, Angus; Northrup, Hope; Adesina, Adekunle; Bacino, Carlos A.; Scaglia, Fernando; Bonnen, Penelope E.; Crosson, Jane; Duis, Jessica; Maegawa, Gustavo H.B.; Coman, David; Inwood, Anita; McGill, Jim; Boerwinkle, Eric; Graham, Brett; Beaudet, Art; Eng, Christine M.; Hanchard, Neil A.; Xia, Fan; Orange, Jordan S.; Gibbs, Richard A.; Lupski, James R.; Yang, Yaping
2016-01-01
The underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.460G>A (p.Gly154Arg) mutation was found in four unrelated individuals of Hispanic/Latino origin, and a homozygous ∼34 kb deletion affecting exons 3–9 was observed in two families of European ancestry. One individual of mixed Hispanic/European descent was found to be compound heterozygous for c.460G>A (p.Gly154Arg) and the deletion of exons 3–9. Additionally, a homozygous exons 4–6 deletion was identified in a consanguineous Middle Eastern Arab family. No homozygotes have been reported for these changes in control databases. Fibroblasts derived from a subject with the recurrent c.460G>A (p.Gly154Arg) mutation showed evidence of increased endoplasmic reticulum stress and a reduction in Golgi volume density in comparison to control. Our results show that the c.460G>A (p.Gly154Arg) mutation and the exons 3–9 heterozygous deletion in TANGO2 are recurrent pathogenic alleles present in the Latino/Hispanic and European populations, respectively, causing considerable morbidity in the homozygotes in these populations. PMID:26805781
Sukalo, Maja; Schäflein, Eva; Schanze, Ina; Everman, David B; Rezaei, Nima; Argente, Jesús; Lorda-Sanchez, Isabel; Deshpande, Charu; Takahashi, Tsutomu; Kleger, Alexander; Zenker, Martin
2017-11-01
Johanson-Blizzard syndrome (JBS, MIM #243800) is a very rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency, nasal wing hypoplasia, hypodontia, and other abnormalities. JBS is caused by mutations of the UBR1 gene (MIM *605981), encoding a ubiquitin ligase of the N-end rule pathway. Molecular findings in a total of 65 unrelated patients with a clinical diagnosis of JBS who were previously screened for UBR1 mutations by Sanger sequencing were reviewed and cases lacking a disease-causing UBR1 mutation on either one or both alleles were included in this study. In order to discover mutations that are not detectable by Sanger sequencing, we designed a probe set for multiplex ligation-dependent probe amplification (MLPA) analysis of the UBR1 gene and analyzed the copy number status of all 47 UBR1 exons. Our previous studies using Sanger sequencing could detect mutations in 93.1% of 130 disease-associated UBR1 alleles. Six patients with a highly suggestive clinical diagnosis of JBS and unsolved genotype were included in this study. MLPA analysis detected six alleles harboring exon deletions/duplications, thereby raising the mutation detection rate in the entire cohort to 97.7% (127/130 alleles). We conclude that single or multi-exon deletions or duplications account for a substantial proportion of JBS-associated UBR1 mutations. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.
Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation.
Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G; Xie, Jiuyong
2012-09-01
The molecular basis of cell signal-regulated alternative splicing at the 3' splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3' splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3' splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3' splice site usage.
Targeted Exon Sequencing in Usher Syndrome Type I
Bujakowska, Kinga M.; Consugar, Mark; Place, Emily; Harper, Shyana; Lena, Jaclyn; Taub, Daniel G.; White, Joseph; Navarro-Gomez, Daniel; Weigel DiFranco, Carol; Farkas, Michael H.; Gai, Xiaowu; Berson, Eliot L.; Pierce, Eric A.
2014-01-01
Purpose. Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. Methods. The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. Results. With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease–causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. Conclusions. We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study. PMID:25468891
Mutations Preventing Regulated Exon Skipping in MET Cause Osteofibrous Dysplasia
Gray, Mary J.; Kannu, Peter; Sharma, Swarkar; Neyt, Christine; Zhang, Dongping; Paria, Nandina; Daniel, Philip B.; Whetstone, Heather; Sprenger, Hans-Georg; Hammerschmidt, Philipp; Weng, Angela; Dupuis, Lucie; Jobling, Rebekah; Mendoza-Londono, Roberto; Dray, Michael; Su, Peiqiang; Wilson, Megan J.; Kapur, Raj P.; McCarthy, Edward F.; Alman, Benjamin A.; Howard, Andrew; Somers, Gino R.; Marshall, Christian R.; Manners, Simon; Flanagan, Adrienne M.; Rathjen, Karl E.; Karol, Lori A.; Crawford, Haemish; Markie, David M.; Rios, Jonathan J.; Wise, Carol A.; Robertson, Stephen P.
2015-01-01
The periosteum contributes to bone repair and maintenance of cortical bone mass. In contrast to the understanding of bone development within the epiphyseal growth plate, factors that regulate periosteal osteogenesis have not been studied as intensively. Osteofibrous dysplasia (OFD) is a congenital disorder of osteogenesis and is typically sporadic and characterized by radiolucent lesions affecting the cortical bone immediately under the periosteum of the tibia and fibula. We identified germline mutations in MET, encoding a receptor tyrosine kinase, that segregate with an autosomal-dominant form of OFD in three families and a mutation in a fourth affected subject from a simplex family and with bilateral disease. Mutations identified in all families with dominant inheritance and in the one simplex subject with bilateral disease abolished the splice inclusion of exon 14 in MET transcripts, which resulted in a MET receptor (METΔ14) lacking a cytoplasmic juxtamembrane domain. Splice exclusion of this domain occurs during normal embryonic development, and forced induction of this exon-exclusion event retarded osteoblastic differentiation in vitro and inhibited bone-matrix mineralization. In an additional subject with unilateral OFD, we identified a somatic MET mutation, also affecting exon 14, that substituted a tyrosine residue critical for MET receptor turnover and, as in the case of the METΔ14 mutations, had a stabilizing effect on the mature protein. Taken together, these data show that aberrant MET regulation via the juxtamembrane domain subverts core MET receptor functions that regulate osteogenesis within cortical diaphyseal bone. PMID:26637977
Reversing Anoikis Resistance in Triple-Negative Breast Cancer
2015-10-01
impaired function and therefore is not as efficient at inducing apoptosis. Supervillin is a protein involved in focal adhesions, and the shorter...splice variant archvillin is normally only expressed in muscle cells. GOLGA4 encodes a golgi protein involved in vesicle transport. It shuttles GPI...when miR-200c is induced and another more 3’ exon is retained, so we are still investigating the function of these regions. Figure 4. Alternative
Structure of the c-Ki-ras gene in a rat fibrosarcoma induced by 1,8-dinitropyrene.
Tahira, T; Hayashi, K; Ochiai, M; Tsuchida, N; Nagao, M; Sugimura, T
1986-01-01
Restriction enzyme maps were made of the region around exons 1 and 2 of activated c-Ki-ras of a fibrosarcoma (1,8-DNP2) induced in a rat by 1,8-dinitropyrene. Nucleotide sequence analysis revealed that activated c-Ki-ras shows a G----T transversion in codon 12 and consequently encodes cysteine instead of glycine in normal rat c-Ki-ras. PMID:3023884
Luis F. Larrondo; Paulo Canessa; Rafael Vicuna; Philip Stewart; Amber Vanden Wymelenberg; Dan Cullen
2007-01-01
We describe the structure, organization, and transcriptional impact of repetitive elements within the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Searches of the P. chrysosporium genome revealed five copies of pce1, a 1,750-nt non-autonomous, class II element. Alleles encoding a putative glucosyltransferase and a cytochrome P450 harbor pce insertions...
Stable zymomonas mobilis xylose and arabinose fermenting strains
Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Taipei, TW
2008-04-08
The present invention briefly includes a transposon for stable insertion of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, and at least one promoter for expression of the structural genes in the bacterium, a pair of inverted insertion sequences, the operons contained inside the insertion sequences, and a transposase gene located outside of the insertion sequences. A plasmid shuttle vector for transformation of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, at least one promoter for expression of the structural genes in the bacterium, and at least two DNA fragments having homology with a gene in the bacterial genome to be transformed, is also provided.The transposon and shuttle vectors are useful in constructing significantly different Zymomonas mobilis strains, according to the present invention, which are useful in the conversion of the cellulose derived pentose sugars into fuels and chemicals, using traditional fermentation technology, because they are stable for expression in a non-selection medium.
Characterization of six mutations in Exon 37 of neurofibromatosis type 1 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, M.; Osborn, M.; Maynard, J.
Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders, with an incidence of 1 in 3,000. We screened a total of 320 unrelated NF1 patients for mutations in exon 37 of the NF1 gene. Six independent mutations were identified, of which three are novel, and these include a recurrent nonsense mutation identified in 2 unrelated patients at codon 2281 (G2281X), a 1-bp insertion (6791 ins A) resulting in a change of TAG (tyrosine) to a TAA (stop codon), and a 3-bp deletion (6839 del TAC) which generated a frameshift. Another recurrent nonsense mutation, Y2264X, which was detectedmore » in 2 unrelated patients in this study, was also previously reported in 2 NF1 individuals. All the mutations were identified within a contiguous 49-bp sequence. Further studies are warranted to support the notion that this region of the gene contains highly mutable sequences. 17 refs., 2 figs., 1 tab.« less
Absence of the HLA-G*0113N allele in Amerindian populations from the Brazilian Amazon region.
Mendes-Junior, Celso T; Castelli, Erick C; Moreau, Philippe; Simões, Aguinaldo L; Donadi, Eduardo A
2010-04-01
The HLA-G gene is predominantly expressed at the maternal-fetal interface and has been associated with maternal-fetal tolerance. The HLA-G*0113N is a null allele defined by the insertion of a premature stop codon at exon 2, observed in a single Ghanaian individual. Likewise the G*0105N allele, the occurrence of the HLA-G*0113N in a population from an area with high pathogen load suggests that the reduced HLA-G expression in G*0113N heterozygous placentas could improve the intrauterine defense against infections. The presence of the G*0113N allele here was investigated in 150 Amerindians from five isolated tribes that inhabit the Central Amazon and in 295 admixed individuals from the State of São Paulo, Southeastern Brazil, previously genotyped for HLA-G. No copy of the G*0113N null allele was found in both population samples by exon 2 sequence-based analysis, reinforcing its restricted occurrence in Africa.
Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains.
Shi, Junwei; Wang, Eric; Milazzo, Joseph P; Wang, Zihua; Kinney, Justin B; Vakoc, Christopher R
2015-06-01
CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.
NASA Technical Reports Server (NTRS)
Nakayama, S.; Kretsinger, R. H.
1993-01-01
In the first report in this series we presented dendrograms based on 152 individual proteins of the EF-hand family. In the second we used sequences from 228 proteins, containing 835 domains, and showed that eight of the 29 subfamilies are congruent and that the EF-hand domains of the remaining 21 subfamilies have diverse evolutionary histories. In this study we have computed dendrograms within and among the EF-hand subfamilies using the encoding DNA sequences. In most instances the dendrograms based on protein and on DNA sequences are very similar. Significant differences between protein and DNA trees for calmodulin remain unexplained. In our fourth report we evaluate the sequences and the distribution of introns within the EF-hand family and conclude that exon shuffling did not play a significant role in its evolution.
Kodama, Hitomi; Iihara, Masatoshi; Nissato, Sumiko; Isobe, Kazumasa; Kawakami, Yasushi; Okamoto, Takahiro; Takekoshi, Kazuhiro
2010-01-01
Recently, mutations in nuclear genes encoding two mitochondrial complex II subunit proteins, Succinate dehydrogenase D (SDHD) and SDHB, have been found to be associated with the development of familial pheochromocytomas and paragangliomas (hereditary pheochromocytoma/paraganglioma syndrome: HPPS). Growing evidence suggests that the mutation of SDHB is highly associated with abdominal paraganglioma and the following distant metastasis (malignant paraganglioma). In the present study, we used multiplex ligation dependent probe amplification (MLPA) analysis to identify a large heterozygous SDHB gene deletion encompassing sequences corresponding to the promoter region, in addition to exon 1 and exon 2 malignant paraganglioma patient in whom previously characterized SDHB mutations were undetectable. This is the first Japanese case report of malignant paraganglioma, with a large SDHB deletions. Our present findings strongly support the notion that large deletions in the SDHB gene should be considered in patients lacking characterized SDHB mutations.
Endogenous retroviral insertion in Cryge in the mouse No3 cataract mutant
Nag, Nabanita; Peterson, Katherine; Wyatt, Keith; Hess, Sonja; Ray, Sugata; Favor, Jack; Bogani, Debora; Lyon, Mary; Wistow, Graeme
2007-01-01
No3 (nuclear opacity 3) is a novel congenital nuclear cataract in mice. Microsatellite mapping placed the No3 locus on chromosome 1 between D1Mit480 (32cM) and D1Mit7 (41cM), a region containing seven crystallin genes; Cryba2 and the Cryga-Crygf cluster. Although polymorphic variants were observed, no candidate mutations were found for six of the genes. However, DNA walking identified a murine endogenous retrovirus (IAPLTR1: ERVK) insertion in exon 3 of Cryge, disrupting the coding sequence for γE-crystallin. Recombinant protein for the mutant γE was completely insoluble. The No3 cataract is mild compared with the effects of similar mutations of γE. Quantitative RT-PCR showed that γE/F mRNA levels are reduced in No3, suggesting that the relatively mild phenotype results from suppression of γE levels due to ERVK insertion. However, the severity of cataract is also strain dependent suggesting that genetic background modifiers also play a role in the development of opacity. PMID:17223009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frerman, F.E.; Beard, S.; Goodman, S.I.
Mutations in ETF or ETC:QO cause glutaric acidemia type II (GA2). ETF:QO is an iron-sulfur flavoprotein in the inner mitochondrial membrane which transfers electrons from ETF in the mitochondrial matrix to ubiquinone (Q). The human ETF:QO gene is on chromosome 4q32{r_arrow}qter, and encodes a 617 amino acid precursor which is processed to the 64 kDa mature form in the mitochondrion. One ETF:QO mutation in GA2 is a G{r_arrow}T transversion in a donor splice site, deleting the 222 bp upstream exon from the transcript. The deleted 74 amino acids are near the carboxyl terminus just beyond a predicted membrane helix, andmore » include C561, one of four cysteine residues predicted to ligate the 4Fe4S cluster. The mutant protein is not stable in patient fibroblasts. We have expressed cDNAs encoding wild type (wt) ETF:QO, ETF:QO with the 74 amino acid deletion, and ETFF:QO with only a C561A mutation, in S cerevisiae. In all instances, precursor and mature ETF:QOs were stably inserted into the mitochondrial membrane. ETF:QO (C561A) is extracted from the membrane under the same conditions as wt ETF:QO, but ETF:QO with the deletion is much more difficult to extract. Wt ETF:QO accepts electrons from ETF and reduces Q but, while both mutant proteins accept electrons from ETF, neither of them reduces Q. This work demonstrates that C561 in human ETF:QO is essential for Q reduction (probably because it ligands the 4Fe4S cluster), that mutant proteins that are unstable in man may be stable in other systems, that cleavage of signal peptide from precursor proteins can occur within the inner mitochondrial membrane, and the general usefulness of expressing human mitochondrial proteins in yeast.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campeau, E.; Leon-Del-Rio, A.; Gravel, R.A.
Propionic acidemia is a rare autosomal recessive disorder characterized by a deficiency of the mitochondrial biotin-dependent enzyme, propionyl-CoA carboxylase (PCC). PCC has the structure {alpha}{sub 4}{beta}{sub 4}, with the {alpha} subunit containing the biotin prosthetic group. This study is concerned with defining the spectrum of mutations occurring in the PCCA gene encoding the {alpha} subunit. Mutations were initially assigned to this gene through complementation experiments done after somatic fusion of patient fibroblasts. The analyses were performed on PCR-amplified reverse transcripts of fibroblast RNA. The mutations were identified by single strand conformational polymorphism analysis and direct sequencing of PCR products. Threemore » candidate disease-causing mutations and one DNA polymorphism were identified in the {alpha} subunit sequence in different patients: (1) a 3 bp deletion {triangle}CTG{sub 2058-2060}, which eliminates Cys687 near the biotin binding site (Lys669); (2) T{sub 611}{r_arrow}A which converts Met204 to Lys in a highly conserved region matching that of an ATP binding site; (3) An {approximately}50 bp deletion near the 3{prime} end of the cDNA which likely corresponds to the loss of an exon due to a splicing defect; and (4) a 3 bp insertion, +CAG{sub 2203}, located downstream of the stop codon, which is likely a DNA polymorphism. In order to determine the effect of the Cys687 deletion on the biotinylation of PCC, we expressed the mutation in a 67 amino acid C-terminal fragment of the PCC {alpha} subunit in E. coli in which biotinylation is directed by the bacterial biotin ligase. While the mutant peptide was expressed at about half-normal levels, the biotinylation of the peptide that was present was reduced to only {approximately}20% normal. We suggest, therefore, that the absence of PCC activity due to {triangle}Cys687 results at least in part from defective biotinylation of an unstable protein.« less
Hardy, C M; Clark-Walker, G D
1991-07-01
The cytochrome oxidase subunit 1 gene (COX1) in K. lactis K8 mtDNA spans 8,826 bp and contains five exons (termed E1-E5) totalling 1,602 bp that show 88% nucleotide base matching and 91% amino acid homology to the equivalent gene in S. cerevisiae. The four introns (termed K1 cox1.1-1.4) contain open reading frames encoding proteins of 786, 333, 319 and 395 amino acids respectively that potentially encode maturase enzymes. The first intron belongs to group II whereas the remaining three are group I type B. Introns K1 cox1.1, 1.3, and 1.4 are found at identical locations to introns Sc cox1.2, 1.5 a, and 1.5 b respectively from S. cerevisiae. Horizontal transfer of an intron between recent progenitors of K. lactis and S. cerevisiae is suggested by the observation that K1 cox1.1 and Sc cox1.2 show 96% base matching. Sequence comparisons between K1 cox1.3/Sc cox1.5 a and K1 cox1.4/Sc cox1.5 b suggest that these introns are likely to have been present in the ancestral COX1 gene of these yeasts. Intron K1 cox1.2 is not found in S. cerevisiae and appears at an unique location in K. lactis. A feature of the DNA sequences of the group I introns K1 cox1.2, 1.3, and 1.4 is the presence of 11 GC-rich clusters inserted into both coding and noncoding regions. Immediately downstream of the COX1 gene is the ATPase subunit 8 gene (A8) that shows 82.6% base matching to its counterpart in S. cerevisiae mtDNA.
Ching, Ada; Dhugga, Kanwarpal S; Appenzeller, Laura; Meeley, Robert; Bourett, Timothy M; Howard, Richard J; Rafalski, Antoni
2006-10-01
A spontaneous maize mutant, brittle stalk-2 (bk2-ref), exhibits dramatically reduced tissue mechanical strength. Reduction in mechanical strength in the stalk tissue was highly correlated with a reduction in the amount of cellulose and an uneven deposition of secondary cell wall material in the subepidermal and perivascular sclerenchyma fibers. Cell wall accounted for two-thirds of the observed reduction in dry matter content per unit length of the mutant stalk in comparison to the wildtype stalk. Although the cell wall composition was significantly altered in the mutant in comparison to the wildtype stalks, no compensation by lignin and cell wall matrix for reduced cellulose amount was observed. We demonstrate that Bk2 encodes a Cobra-like protein that is homologous to the rice Bc1 protein. In the bk2-ref gene, a 1 kb transposon-like element is inserted in the beginning of the second exon, disrupting the open reading frame. The Bk2 gene was expressed in the stalk, husk, root, and leaf tissues, but not in the embryo, endosperm, pollen, silk, or other tissues with comparatively few or no secondary cell wall containing cells. The highest expression was in the isolated vascular bundles. In agreement with its role in secondary wall formation, the expression pattern of the Bk2 gene was very similar to that of the ZmCesA10, ZmCesA11, and ZmCesA12 genes, which are known to be involved in secondary wall formation. We have isolated an independent Mutator-tagged allele of bk2, referred to as bk2-Mu7, the phenotype of which is similar to that of the spontaneous mutant. Our results demonstrate that mutations in the Bk2 gene affect stalk strength in maize by interfering with the deposition of cellulose in the secondary cell wall in fiber cells.
Altet, Laura; Francino, Olga; Solano-Gallego, Laia; Renier, Corinne; Sánchez, Armand
2002-01-01
The NRAMP1 gene (Slc11a1) encodes an ion transporter protein involved in the control of intraphagosomal replication of parasites and in macrophage activation. It has been described in mice as the determinant of natural resistance or susceptibility to infection with antigenically unrelated pathogens, including Leishmania. Our aims were to sequence and map the canine Slc11a1 gene and to identify mutations that may be associated with resistance or susceptibility to Leishmania infection. The canine Slc11a1 gene has been mapped to dog chromosome CFA37 and covers 9 kb, including a 700-bp promoter region, 15 exons, and a polymorphic microsatellite in intron 1. It encodes a 547-amino-acid protein that has over 87% identity with the Slc11a1 proteins of different mammalian species. A case-control study with 33 resistant and 84 susceptible dogs showed an association between allele 145 of the microsatellite and susceptible dogs. Sequence variant analysis was performed by direct sequencing of the cDNA and the promoter region of four unrelated beagles experimentally infected with Leishmania infantum to search for possible functional mutations. Two of the dogs were classified as susceptible and the other two were classified as resistant based on their immune responses. Two important mutations were found in susceptible dogs: a G-rich region in the promoter that was common to both animals and a complete deletion of exon 11, which encodes the consensus transport motif of the protein, in the unique susceptible dog that needed an additional and prolonged treatment to avoid continuous relapses. A study with a larger dog population would be required to prove the association of these sequence variants with disease susceptibility. PMID:12010961
Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien; Pira, Dorcas; Angrand, Pierre-Olivier
2012-05-01
Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain. Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress transcription, suggesting that Polycomb repression might occur in the absence of PRC1 formation.
Makeyev, Aleksandr V.; Erdenechimeg, Lkhamsuren; Mungunsukh, Ognoon; Roth, Jutta J.; Enkhmandakh, Badam; Ruddle, Frank H.; Bayarsaihan, Dashzeveg
2004-01-01
Williams–Beuren syndrome (also known as Williams syndrome) is caused by a deletion of a 1.55- to 1.84-megabase region from chromosome band 7q11.23. GTF2IRD1 and GTF2I, located within this critical region, encode proteins of the TFII-I family with multiple helix–loop–helix domains known as I repeats. In the present work, we characterize a third member, GTF2IRD2, which has sequence and structural similarity to the GTF2I and GTF2IRD1 paralogs. The ORF encodes a protein with several features characteristic of regulatory factors, including two I repeats, two leucine zippers, and a single Cys-2/His-2 zinc finger. The genomic organization of human, baboon, rat, and mouse genes is well conserved. Our exon-by-exon comparison has revealed that GTF2IRD2 is more closely related to GTF2I than to GTF2IRD1 and apparently is derived from the GTF2I sequence. The comparison of GTF2I and GTF2IRD2 genes revealed two distinct regions of homology, indicating that the helix–loop–helix domain structure of the GTF2IRD2 gene has been generated by two independent genomic duplications. We speculate that GTF2I is derived from GTF2IRD1 as a result of local duplication and the further evolution of its structure was associated with its functional specialization. Comparison of genomic sequences surrounding GTF2IRD2 genes in mice and humans allows refinement of the centromeric breakpoint position of the primate-specific inversion within the Williams–Beuren syndrome critical region. PMID:15243160
Makeyev, Aleksandr V; Erdenechimeg, Lkhamsuren; Mungunsukh, Ognoon; Roth, Jutta J; Enkhmandakh, Badam; Ruddle, Frank H; Bayarsaihan, Dashzeveg
2004-07-27
Williams-Beuren syndrome (also known as Williams syndrome) is caused by a deletion of a 1.55- to 1.84-megabase region from chromosome band 7q11.23. GTF2IRD1 and GTF2I, located within this critical region, encode proteins of the TFII-I family with multiple helix-loop-helix domains known as I repeats. In the present work, we characterize a third member, GTF2IRD2, which has sequence and structural similarity to the GTF2I and GTF2IRD1 paralogs. The ORF encodes a protein with several features characteristic of regulatory factors, including two I repeats, two leucine zippers, and a single Cys-2/His-2 zinc finger. The genomic organization of human, baboon, rat, and mouse genes is well conserved. Our exon-by-exon comparison has revealed that GTF2IRD2 is more closely related to GTF2I than to GTF2IRD1 and apparently is derived from the GTF2I sequence. The comparison of GTF2I and GTF2IRD2 genes revealed two distinct regions of homology, indicating that the helix-loop-helix domain structure of the GTF2IRD2 gene has been generated by two independent genomic duplications. We speculate that GTF2I is derived from GTF2IRD1 as a result of local duplication and the further evolution of its structure was associated with its functional specialization. Comparison of genomic sequences surrounding GTF2IRD2 genes in mice and humans allows refinement of the centromeric breakpoint position of the primate-specific inversion within the Williams-Beuren syndrome critical region.
Esteller, M.; GarcÃa, A.; MartÃnez-Palones, J. M.; Xercavins, J.; Reventós, J.
1997-01-01
A case-control study was designed to identify associations between polymorphisms at p53, cytochrome P-450 (CYP1A1) and glutathione-S-transferases and endometrial cancer susceptibility. Among all polymorphisms analysed, an insertional variant in p53 (P53PIN3) and two polymorphisms in the 3'-end and exon 7 of CYP1A1 showed significant association with enhanced endometrial cancer risk. Images Figure 1 Figure 2 PMID:9155064
McGee, Terri L.; Seyedahmadi, Babak Jian; Sweeney, Meredith O.; Dryja, Thaddeus P.; Berson, Eliot L.
2010-01-01
Background Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. Methods The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. Results In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of 4 different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as “likely deleterious” and 9 as “possibly deleterious”. Conclusion At least one mutation was identified in 57–63% of USH2 cases and 19–23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the United States. PMID:20507924
McGee, Terri L; Seyedahmadi, Babak Jian; Sweeney, Meredith O; Dryja, Thaddeus P; Berson, Eliot L
2010-07-01
Usher syndrome type II (USH2) is an autosomal recessive disorder characterised by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie, non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of four different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as 'likely deleterious' and 9 as 'possibly deleterious'. At least one mutation was identified in 57-63% of USH2 cases and 19-23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the USA.
El Sissy, Maha H; El Hafez, A Abd; El Sissy, A H
2014-01-01
Thrombotic thrombocytopenic purpura (TTP) is an acute life-threatening disorder, characterized by thrombocytopenia, microangiopathic hemolytic anemia, widespread microvascular thrombi and consequent clinical sequelae due to ischemic organ damage. TTP is most commonly associated with deficiency or inhibition of von Willebrand factor-cleaving protease (ADAMTS13) activity. ADAMTS13 mutations and polymorphisms have been reported in childhood congenital TTP, but their significance in adult-onset TTP is still under investigation. Two mutations stand out: the single base insertion 4143insA in exon 29 and the missense mutation R1060W in exon 24 have both been observed in several unrelated families, mainly in adult-onset TTP, and over a wide geographic area. Our objective in this study is to identify the prevalence of R1060W missense mutation in exon 24 ADAMTS13 in a sample of adult Egyptian TTP patients. Thirty-one adult-onset TTP patients were included in this study, with a male/female ratio of 1:4. Twenty-six cases (84%) presented with acute idiopathic TTP, 2 cases were drug abusers and 3 cases were pregnant. None of the study cases provided a history of suspicious TTP symptoms during childhood (2 cases gave a history of episodes of thrombocytopenia during childhood). All cases showed statistically significant decreased ADAMTS13 activity compared to normal controls (p < 0.001). The study revealed a high statistical difference regarding the ADAMTS13 inhibitor level in primary versus secondary cases (p = 0.003). None of our Egyptian cases or of the healthy normal controls are positive for exon 24 missense mutation. Larger studies and regional and national TTP registries are recommended. © 2013 S. Karger AG, Basel.
Mutations in the Norrie disease gene.
Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B
1995-01-01
We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)
Chimeric Amino Acid Rearrangements as Immune Targets in Prostate Cancer
2016-05-01
plot showing gene fusions between exon boundaries Figure 3. Lum (PC141070) A B Figure 4. Recurrent fusion genes present in the TCGA intermediate and...class I restricted epitopes in 6 out of 50 patient tumors. One recurrent gene fusion encoded by the TMPRSS2:ERG type VI fusion was detected in 3...found to have high-affinity (IEDB score អ nM) MHC class I predicted epitopes. Recurrent fusions In a comparative analysis across the patient
Shin, Sangsu; Song, Yan; Ahn, Jinsoo; Kim, Eunsoo; Chen, Paula; Yang, Shujin; Suh, Yeunsu; Lee, Kichoon
2015-11-15
Myostatin (MSTN) is a key negative regulator of muscle growth and development, and an increase of muscle mass is achieved by inhibiting MSTN signaling. In the current study, five alternative splicing isoforms of MSTN mRNAs in avian species were identified in various tissues. Among these five, three truncated forms of myostatin, MSTN-B, -C, and -E created premature stop codons and produced partial MSTN prodomains encoded from exon 1. MSTN-B is the second dominant isoform following full-length MSTN-A, and their expression was dynamically regulated during muscle development of chicken, turkey, and quail in vivo and in vitro. To clarify the function of MSTN-B, two stable cell lines of quail myoblasts (QM7) were generated to overexpress MSTN-A or MSTN-B. Interestingly, MSTN-B promoted both cell proliferation and differentiation similar to the function of the MSTN prodomain to counteract the negative role of MSTN on myogenesis. The coimmunoprecipitation assay revealed that MSTN-B binds to MSTN-A and reduces the generation of mature MSTN. Furthermore, the current study demonstrated that the partial prodomain encoded from exon 1 is critical for binding of MSTN-B to MSTN-A. Altogether, these data imply that alternative splicing isoforms of MSTN could negatively regulate pro-myostatin processing in muscle cells and prevent MSTN-mediated inhibition of myogenesis in avian species. Copyright © 2015 the American Physiological Society.
Chalcone synthase genes from milk thistle (Silybum marianum): isolation and expression analysis.
Sanjari, Sepideh; Shobbar, Zahra Sadat; Ebrahimi, Mohsen; Hasanloo, Tahereh; Sadat-Noori, Seyed-Ahmad; Tirnaz, Soodeh
2015-12-01
Silymarin is a flavonoid compound derived from milk thistle (Silybum marianum) seeds which has several pharmacological applications. Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids; thereby, the identification of CHS encoding genes in milk thistle plant can be of great importance. In the current research, fragments of CHS genes were amplified using degenerate primers based on the conserved parts of Asteraceae CHS genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced amino acid sequences led to the identification of two different members of CHS gene family,SmCHS1 and SmCHS2. Third member, full-length cDNA (SmCHS3) was isolated by rapid amplification of cDNA ends (RACE), whose open reading frame contained 1239 bp including exon 1 (190 bp) and exon 2 (1049 bp), encoding 63 and 349 amino acids, respectively. In silico analysis of SmCHS3 sequence contains all the conserved CHS sites and shares high homology with CHS proteins from other plants.Real-time PCR analysis indicated that SmCHS1 and SmCHS3 had the highest transcript level in petals in the early flowering stage and in the stem of five upper leaves, followed by five upper leaves in the mid-flowering stage which are most probably involved in anthocyanin and silymarin biosynthesis.
MOXD2, a Gene Possibly Associated with Olfaction, Is Frequently Inactivated in Birds
Goh, Chul Jun; Choi, Dongjin; Park, Dong-Bin; Kim, Hyein; Hahn, Yoonsoo
2016-01-01
Vertebrate MOXD2 encodes a monooxygenase DBH-like 2 protein that could be involved in neurotransmitter metabolism, potentially during olfactory transduction. Loss of MOXD2 in apes and whales has been proposed to be associated with evolution of olfaction in these clades. We analyzed 57 bird genomes to identify MOXD2 sequences and found frequent loss of MOXD2 in 38 birds. Among the 57 birds, 19 species appeared to have an intact MOXD2 that encoded a full-length protein; 32 birds had a gene with open reading frame-disrupting point mutations and/or exon deletions; and the remaining 6 species did not show any MOXD2 sequence, suggesting a whole-gene deletion. Notably, among 10 passerine birds examined, 9 species shared a common genomic deletion that spanned several exons, implying the gene loss occurred in a common ancestor of these birds. However, 2 closely related penguin species, each of which had an inactive MOXD2, did not share any mutation, suggesting an independent loss after their divergence. Distribution of the 38 birds without an intact MOXD2 in the bird phylogenetic tree clearly indicates that MOXD2 loss is widespread and independent in bird lineages. We propose that widespread MOXD2 loss in some bird lineages may be implicated in the evolution of olfactory perception in these birds. PMID:27074048
Liang, W; Zhang, H L; Liu, Y; Lu, B C; Liu, X; Li, Q; Cao, Y
2014-03-17
Growth and carcass traits are economically important quality characteristics of beef cattle and are complex quantitative traits that are controlled by multiple genes. In this study, 2 candidate genes, H-FABP (encoding the heart fatty acid-binding protein) and PSMC1 (encoding the proteasome 26S subunit of ATPase 1) were investigated in Qinchuan beef cattle of China. PCR-SSCP and DNA sequencing methods were used to detect mutations in the H-FABP and PSMC1 genes in Qinchuan cattle, and a T>C mutation in exon 1 of H-FABP and a T>C mutation in exon 9 of PSMC1 were identified. The association of these 2 single nucleotide polymorphisms with growth and carcass traits of Qinchuan cattle was analyzed. The T>C mutation in H-FABP was significantly associated with body length and dressing percentage (P < 0.05) and the T>C mutation in PSMC1 with body length and hip width (P < 0.05), indicating that both of the 2 mutations in H-FABP and PSMC1 had effects on growth and carcass traits in the Qinchuan beef cattle breed. Thus, the results of our study suggest that the H-FABP and PSMC1 gene polymorphisms could be used as genetic markers in marker-assisted selection for improving Qinchuan beef cattle.
MOXD2, a Gene Possibly Associated with Olfaction, Is Frequently Inactivated in Birds.
Goh, Chul Jun; Choi, Dongjin; Park, Dong-Bin; Kim, Hyein; Hahn, Yoonsoo
2016-01-01
Vertebrate MOXD2 encodes a monooxygenase DBH-like 2 protein that could be involved in neurotransmitter metabolism, potentially during olfactory transduction. Loss of MOXD2 in apes and whales has been proposed to be associated with evolution of olfaction in these clades. We analyzed 57 bird genomes to identify MOXD2 sequences and found frequent loss of MOXD2 in 38 birds. Among the 57 birds, 19 species appeared to have an intact MOXD2 that encoded a full-length protein; 32 birds had a gene with open reading frame-disrupting point mutations and/or exon deletions; and the remaining 6 species did not show any MOXD2 sequence, suggesting a whole-gene deletion. Notably, among 10 passerine birds examined, 9 species shared a common genomic deletion that spanned several exons, implying the gene loss occurred in a common ancestor of these birds. However, 2 closely related penguin species, each of which had an inactive MOXD2, did not share any mutation, suggesting an independent loss after their divergence. Distribution of the 38 birds without an intact MOXD2 in the bird phylogenetic tree clearly indicates that MOXD2 loss is widespread and independent in bird lineages. We propose that widespread MOXD2 loss in some bird lineages may be implicated in the evolution of olfactory perception in these birds.
Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP).
Rowe, P S; Oudet, C L; Francis, F; Sinding, C; Pannetier, S; Econs, M J; Strom, T M; Meitinger, T; Garabedian, M; David, A; Macher, M A; Questiaux, E; Popowska, E; Pronicka, E; Read, A P; Mokrzycki, A; Glorieux, F H; Drezner, M K; Hanauer, A; Lehrach, H; Goulding, J N; O'Riordan, J L
1997-04-01
Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.
A deep intronic mutation in the SLC12A3 gene leads to Gitelman syndrome.
Nozu, Kandai; Iijima, Kazumoto; Nozu, Yoshimi; Ikegami, Ei; Imai, Takehide; Fu, Xue Jun; Kaito, Hiroshi; Nakanishi, Koichi; Yoshikawa, Norishige; Matsuo, Masafumi
2009-11-01
Many mutations have been detected in the SLC12A3 gene of Gitelman syndrome (GS, OMIM 263800) patients. In previous studies, only one mutant allele was detected in approximately 20 to 41% of patients with GS; however, the exact reason for the nonidentification has not been established. In this study, we used RT-PCR using mRNA to investigate for the first time transcript abnormalities caused by deep intronic mutation. Direct sequencing analysis of leukocyte DNA identified one base insertion in exon 6 (c.818_819insG), but no mutation was detected in another allele. We analyzed RNA extracted from leukocytes and urine sediments and detected unknown sequence containing 238bp between exons 13 and 14. The genomic DNA analysis of intron 13 revealed a single-base substitution (c.1670-191C>T) that creates a new donor splice site within the intron resulting in the inclusion of a novel cryptic exon in mRNA. This is the first report of creation of a splice site by a deep intronic single-nucleotide change in GS and the first report to detect the onset mechanism in a patient with GS and missing mutation in one allele. This molecular onset mechanism may partly explain the poor success rate of mutation detection in both alleles of patients with GS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, J.L.; Fisher, C.R.; Chuang, D.T.
1994-08-01
The authors report the occurrence of three novel mutations in the E1[alpha] (BCKDHA) locus of the branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1[alpha] gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1[alpha] subunit. Both the 8-bp deletion and the single C insertionmore » generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1[alpha] mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1[alpha] subunit impairs its proper assembly with the normal E1[beta]. Unassembled as well as misassembled E1[alpha] and E1[beta] subunits are degraded in the cell. 32 refs., 8 figs.« less
Carling, Phillippa J.; Buist, Thomas; Zhang, Chaolin; Grellscheid, Sushma N.; Armstrong, Kelly; Stockley, Jacqueline; Simillion, Cedric; Gaughan, Luke; Kalna, Gabriela; Zhang, Michael Q.; Robson, Craig N.; Leung, Hing Y.; Elliott, David J.
2011-01-01
Androgens drive the onset and progression of prostate cancer (PCa) by modulating androgen receptor (AR) transcriptional activity. Although several microarray-based studies have identified androgen-regulated genes, here we identify in-parallel global androgen-dependent changes in both gene and alternative mRNA isoform expression by exon-level analyses of the LNCaP transcriptome. While genome-wide gene expression changes correlated well with previously-published studies, we additionally uncovered a subset of 226 novel androgen-regulated genes. Gene expression pathway analysis of this subset revealed gene clusters associated with, and including the tyrosine kinase LYN, as well as components of the mTOR (mammalian target of rapamycin) pathway, which is commonly dysregulated in cancer. We also identified 1279 putative androgen-regulated alternative events, of which 325 (∼25%) mapped to known alternative splicing events or alternative first/last exons. We selected 30 androgen-dependent alternative events for RT-PCR validation, including mRNAs derived from genes encoding tumour suppressors and cell cycle regulators. Of seven positively-validating events (∼23%), five events involved transcripts derived from alternative promoters of known AR gene targets. In particular, we found a novel androgen-dependent mRNA isoform derived from an alternative internal promoter within the TSC2 tumour suppressor gene, which is predicted to encode a protein lacking an interaction domain required for mTOR inhibition. We confirmed that expression of this alternative TSC2 mRNA isoform was directly regulated by androgens, and chromatin immunoprecipitation indicated recruitment of AR to the alternative promoter region at early timepoints following androgen stimulation, which correlated with expression of alternative transcripts. Together, our data suggest that alternative mRNA isoform expression might mediate the cellular response to androgens, and may have roles in clinical PCa. PMID:22194994
Expression of Kir7.1 and a Novel Kir7.1 Splice Variant in Native Human Retinal Pigment Epithelium
Yang, Dongli; Swaminathan, Anuradha; Zhang, Xiaoming; Hughes, Bret A.
2009-01-01
Previous studies on bovine retinal pigment epithelium (RPE) established that Kir7.1 channels compose this epithelium’s large apical membrane K+ conductance. The purpose of this study was to determine whether Kir7.1 and potential Kir7.1 splice variants are expressed in native adult human RPE and, if so, to determine their function and how they are generated. RT-PCR analysis indicated that human RPE expresses full-length Kir7.1 and a novel Kir7.1 splice variant, designated Kir7.1S. Analysis of the human Kir7.1 gene (KCNJ13) organization revealed that it contains 3 exons, 2 introns, and a novel alternative 5′ splice site in exon 2. In human RPE, the alternative usage of two competing 5′ splice sites in exon 2 gives rise to transcripts encoding full-length Kir7.1 and Kir7.1S, which is predicted to encode a truncated protein. Real-time PCR indicated that Kir7.1 transcript is nearly as abundant as GAPDH mRNA in human RPE whereas Kir7.1S transcript expression is 4-fold lower. Western blot analysis showed that the splice variant is translated in Xenopus oocytes injected with Kir7.1S cRNA and revealed the expression of full-length Kir7.1 but not Kir7.1S in adult human RPE. Co-expression of Kir7.1 with Kir7.1S in Xenopus oocytes had no effect on either the kinetics or amplitude of Kir7.1 currents. This study confirms the expression of Kir7.1 in human RPE, identifies a Kir7.1 splice variant resulting in predicted changes in protein sequence, and indicates that there no functional interaction between this splice variant and full-length Kir7.1. PMID:18035352
Miao, Yong-Wang; Ha, Fu; Gao, Hua-Shan; Yuan, Feng; Li, Da-Lin; Yuan, Yue-Yun
2012-08-01
To elucidate the genetic characteristics of the bovine Inhibin α subunit (INHA) gene, the polymorphisms in exon 1 of INHA and its bilateral sequences were assayed using PCR with direct sequencing in buffalo, gayal and yak. A comparative analysis was conducted by pooled the results in this study with the published data of INHA on some mammals including some bovine species together. A synonymous substitution c.73C>A was identified in exon 1 of INHA for buffalo, which results in identical encoding product in river and swamp buffalo. In gayal, two non-synonymous but same property substitutions in exon 1 of INHA, viz. c.62 C>T and c.187 G>A, were detected, which lead to p. P21L, p. V63M changes in INHA, respectively. In yak, nucleotide substitution c.62C> T, c.129A>G were found in exon 1 of INHA, the former still causes p. P21L substitution and the latter is synonymous. For the sequence of the 5'-flanking region of INHA examined, no SNPs were found within the species, but a substitution, c. -6T>G, was found. The nucleotide in this site in gayal, yak and cattle was c. -6G, whereas in buffalo it was c. -6T. Meanwhile, a 6-bp deletion, namely c. 262+31_262+36delTCTGAC, was found in the intron of buffalo INHA gene. For this deletion, wild types (+/+) account for main part in river buffalo while mutant types (-/-) are predominant in swamp buffalo. This deletion was not found in gayal, yak and cattle, though these all have another deletion in the intron of INHA, c. 262+78_262+79delTG. The results of sequence alignment showed that the substitutions c. 43A and c. 67G in exon 1 of INHA are specific to buffalo, whereas the substitutions c. 173A and c. 255G are exclusive to gayal, yak and cattle, and c. 24C, c. 47G, c. 174T and c. 206T are specific to goat. Furthermore, there are few differences among gayal, yak and cattle, but there relatively great differences between buffalo, goat and other bovine species regarding the sequences of INHA exon 1.
Galindo-González, Leonardo; Mhiri, Corinne; Grandbastien, Marie-Angèle; Deyholos, Michael K
2016-12-07
Initial characterization of the flax genome showed that Ty1-copia retrotransposons are abundant, with several members being recently inserted, and in close association with genes. Recent insertions indicate a potential for ongoing transpositional activity that can create genomic diversity among accessions, cultivars or varieties. The polymorphisms generated constitute a good source of molecular markers that may be associated with phenotype if the insertions alter gene activity. Flax, where accessions are bred mainly for seed nutritional properties or for fibers, constitutes a good model for studying the relationship of transpositional activity with diversification and breeding. In this study, we estimated copy number and used a type of transposon display known as Sequence-Specific Amplification Polymorphisms (SSAPs), to characterize six families of Ty1-copia elements across 14 flax accessions. Polymorphic insertion sites were sequenced to find insertions that could potentially alter gene expression, and a preliminary test was performed with selected genes bearing transposable element (TE) insertions. Quantification of six families of Ty1-copia elements indicated different abundances among TE families and between flax accessions, which suggested diverse transpositional histories. SSAPs showed a high level of polymorphism in most of the evaluated retrotransposon families, with a trend towards higher levels of polymorphism in low-copy number families. Ty1-copia insertion polymorphisms among cultivars allowed a general distinction between oil and fiber types, and between spring and winter types, demonstrating their utility in diversity studies. Characterization of polymorphic insertions revealed an overwhelming association with genes, with insertions disrupting exons, introns or within 1 kb of coding regions. A preliminary test on the potential transcriptional disruption by TEs of four selected genes evaluated in three different tissues, showed one case of significant impact of the insertion on gene expression. We demonstrated that specific Ty1-copia families have been active since breeding commenced in flax. The retrotransposon-derived polymorphism can be used to separate flax types, and the close association of many insertions with genes defines a good source of potential mutations that could be associated with phenotypic changes, resulting in diversification processes.
Molecular Characterization of PDGFR-α/PDGF-A and c-KIT/SCF in Gliosarcomas
Reis, Rui M.; Martins, Albino; Ribeiro, Susana A.; Basto, Diana; Longatto-Filho, Adhemar; Schmitt, Fernando C.; Lopes, José M.
2005-01-01
Gliosarcomas are rare and poorly characterized malignant brain tumors that exhibit a biphasic tissue pattern with areas of gliomatous and sarcomatous differentiation. These tumors are histological variants of glioblastoma, displaying a similar genetic profile and dismal prognosis. Up-regulation of PDGFR subfamily of tyrosine kinase members, PDGFR-α and c-Kit, and their intracellular effectors RAS/RAF/MAPK has a crucial role in the cancer development. In addition, signal transduction mediated by activating mutations of c-Kit and PDGFR can be effectively blocked by specific tyrosine kinase inhibitors, such as Imatinib mesylate. The aim of this study was to characterize the molecular alterations of PDGFR signaling in gliosarcomas. Six cases were analyzed by immunohistochemistry for the expression of PDGFR-α, c-Kit and their ligands PDGF-A and SCF, respectively. The cases were further evaluated for the presence of activating mutations of PDGFR-α (exons 12 and 18) and c-kit (exons 9, 11, 13, and 17), as well as B-RAF (exons 11 and 15). Expression of PDGF-A was found in all cases and co-expression of PDGFR-α was observed in three cases. Four cases showed expression of SCF, and c-Kit was observed only in one case that also expressed SCF. Generally, immunoreaction predominates in the glial component. The mutational analysis of PDGFR-α showed the presence of an IVS17-50insT intronic insertion in two cases, one of them also with a 2472C > T silent mutation; this silent mutation was also found in another case. Glioma cell line analysis of IVS17-50insT insertion showed no influence on PDGFR-α gene splicing. No mutations were detected in c-kit and B-RAF oncogenes. Our Results indicate that activating mutations of PDGFR-α, c-kit and B-RAF are absent in gliosarcomas. Nevertheless, the presence of a PDGFR-a/PDGFA and c-Kit/SCF autocrine/paracrine stimulation loop in a proportion of cases, supports the potential role of specific tyrosine kinase inhibitors in the treatment of gliosarcomas. PMID:16373964
Johnson, Stephen M.; Eltahla, Auda A.; Aloi, Maria; Aloia, Amanda L.; McDevitt, Christopher A.; Bull, Rowena A.
2017-01-01
ABSTRACT Dengue virus (DENV) is a major global pathogen that causes significant morbidity and mortality in tropical and subtropical areas worldwide. An improved understanding of the regions within the DENV genome and its encoded proteins that are required for the virus replication cycle will expedite the development of urgently required therapeutics and vaccines. We subjected an infectious DENV genome to unbiased insertional mutagenesis and used next-generation sequencing to identify sites that tolerate 15-nucleotide insertions during the virus replication cycle in hepatic cell culture. This revealed that the regions within capsid, NS1, and the 3′ untranslated region were the most tolerant of insertions. In contrast, prM- and NS2A-encoding regions were largely intolerant of insertions. Notably, the multifunctional NS1 protein readily tolerated insertions in regions within the Wing, connector, and β-ladder domains with minimal effects on viral RNA replication and infectious virus production. Using this information, we generated infectious reporter viruses, including a variant encoding the APEX2 electron microscopy tag in NS1 that uniquely enabled high-resolution imaging of its localization to the surface and interior of viral replication vesicles. In addition, we generated a tagged virus bearing an mScarlet fluorescent protein insertion in NS1 that, despite an impact on fitness, enabled live cell imaging of NS1 localization and traffic in infected cells. Overall, this genome-wide profile of DENV genome flexibility may be further dissected and exploited in reporter virus generation and antiviral strategies. IMPORTANCE Regions of genetic flexibility in viral genomes can be exploited in the generation of reporter virus tools and should arguably be avoided in antiviral drug and vaccine design. Here, we subjected the DENV genome to high-throughput insertional mutagenesis to identify regions of genetic flexibility and enable tagged reporter virus generation. In particular, the viral NS1 protein displayed remarkable tolerance of small insertions. This genetic flexibility enabled generation of several novel NS1-tagged reporter viruses, including an APEX2-tagged virus that we used in high-resolution imaging of NS1 localization in infected cells by electron microscopy. For the first time, this analysis revealed the localization of NS1 within viral replication factories known as “vesicle packets” (VPs), in addition to its acknowledged localization to the luminal surface of these VPs. Together, this genetic profile of DENV may be further refined and exploited in the identification of antiviral targets and the generation of reporter virus tools. PMID:28956770
Liu, Dongming; Tang, Jun; Liu, Zezhou; Dong, Xin; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian; Liu, Yumei; Li, Zhansheng; Ye, Zhibiao; Fang, Zhiyuan; Yang, Limei
2017-11-28
The aerial parts of most land plants are covered with cuticular wax which is important for plants to avoid harmful factors. There is still no cloning study about wax synthesis gene of the alcohol-forming pathway in Brassica species. Scanning electron microscopy (SEM) showed that, compared with wild type (WT), wax crystal are severely reduced in both the adaxial and abaxial sides of cabbage (Brassica oleracea L. var. capitata L.) leaves from the LD10GL mutant. Genetic analysis results revealed that the glossy trait of LD10GL is controlled by a single recessive gene, and fine mapping results revealed that the target gene Cgl2 (Cabbage glossy 2) is located within a physical region of 170 kb on chromosome 1. Based on sequence analysis of the genes in the mapped region, the gene designated Bol013612 was speculated to be the candidate gene. Gene Bol013612 is homologous to Arabidopsis CER4, which encodes fatty acyl-coenzyme A reductase. Sequencing identified a single nucleotide substitution at an intron/exon boundary that results in an insertion of six nucleotides in the cDNA of Bol013612 in LD10GL. The phenotypic defect of LD10GL was confirmed by a functional complementation test with Arabidopsis mutant cer4. Our results indicated that wax crystals of cabbage mutant LD10GL are severely reduced and mutation of gene Bol013612 causes a glossy phenotype in the LD10GL mutant.
Huang, Xian-De; Wei, Guo-jian; Zhang, Hua; He, Mao-Xian
2015-01-01
Nuclear factor of activated T cells (NFAT) plays an important role in nonimmune cells and also in T cells and many other cells of the immune system, by regulating the expression of a variety of genes involved in the immune response, organ development, developmental apoptosis and angiogenesis. In the present study, the NFAT homology gene, PfNFAT, from the pearl oyster Pinctada fucata was cloned and its genomic structure and promoter were analyzed. PfNFAT encodes a putative protein of 1226 amino acids, and contains a highly conserved Rel homology region (RHR) with DNA-binding specificity, and a regulatory domain (NFAT homology region, NHR) containing a potent transactivation domain (TAD). The PfNFAT gene consists of 12 exons and 11 introns, and its promoter contains potential binding sites for transcription factors such as NF-κB (Nuclear factor κB), STATx (signal transducer and activator of transcription), AP-1 (activator protein-1) and Sox-5/9 (SRY type HMG box-5/9), MyoD (Myogenic Differentiation Antigen) and IRF (Interferon regulatory factor). Comparison and phylogenetic analysis revealed that PfNFAT shows high identity with other invertebrate NFAT, and clusters with the NFAT5 subgroup. Furthermore, gene expression analysis revealed that PfNFAT is involved in the immune response to lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus inserting operation. The study of PfNFAT may increase understanding of molluscan innate immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.
The evolution of Dscam genes across the arthropods.
Armitage, Sophie A O; Freiburg, Rebecca Y; Kurtz, Joachim; Bravo, Ignacio G
2012-04-13
One way of creating phenotypic diversity is through alternative splicing of precursor mRNAs. A gene that has evolved a hypervariable form is Down syndrome cell adhesion molecule (Dscam-hv), which in Drosophila melanogaster can produce thousands of isoforms via mutually exclusive alternative splicing. The extracellular region of this protein is encoded by three variable exon clusters, each containing multiple exon variants. The protein is vital for neuronal wiring where the extreme variability at the somatic level is required for axonal guidance, and it plays a role in immunity where the variability has been hypothesised to relate to recognition of different antigens. Dscam-hv has been found across the Pancrustacea. Additionally, three paralogous non-hypervariable Dscam-like genes have also been described for D. melanogaster. Here we took a bioinformatics approach, building profile Hidden Markov Models to search across species for putative orthologs to the Dscam genes and for hypervariable alternatively spliced exons, and inferring the phylogenetic relationships among them. Our aims were to examine whether Dscam orthologs exist outside the Bilateria, whether the origin of Dscam-hv could lie outside the Pancrustacea, when the Dscam-like orthologs arose, how many alternatively spliced exons of each exon cluster were present in the most common recent ancestor, and how these clusters evolved. Our results suggest that the origin of Dscam genes may lie after the split between the Cnidaria and the Bilateria and supports the hypothesis that Dscam-hv originated in the common ancestor of the Pancrustacea. Our phylogeny of Dscam gene family members shows six well-supported clades: five containing Dscam-like genes and one containing all the Dscam-hv genes, a seventh clade contains arachnid putative Dscam genes. Furthermore, the exon clusters appear to have experienced different evolutionary histories. Dscam genes have undergone independent duplication events in the insects and in an arachnid genome, which adds to the more well-known tandem duplications that have taken place within Dscam-hv genes. Therefore, two forms of gene expansion seem to be active within this gene family. The evolutionary history of this dynamic gene family will be further unfolded as genomes of species from more disparate groups become available.
The evolution of Dscam genes across the arthropods
2012-01-01
Background One way of creating phenotypic diversity is through alternative splicing of precursor mRNAs. A gene that has evolved a hypervariable form is Down syndrome cell adhesion molecule (Dscam-hv), which in Drosophila melanogaster can produce thousands of isoforms via mutually exclusive alternative splicing. The extracellular region of this protein is encoded by three variable exon clusters, each containing multiple exon variants. The protein is vital for neuronal wiring where the extreme variability at the somatic level is required for axonal guidance, and it plays a role in immunity where the variability has been hypothesised to relate to recognition of different antigens. Dscam-hv has been found across the Pancrustacea. Additionally, three paralogous non-hypervariable Dscam-like genes have also been described for D. melanogaster. Here we took a bioinformatics approach, building profile Hidden Markov Models to search across species for putative orthologs to the Dscam genes and for hypervariable alternatively spliced exons, and inferring the phylogenetic relationships among them. Our aims were to examine whether Dscam orthologs exist outside the Bilateria, whether the origin of Dscam-hv could lie outside the Pancrustacea, when the Dscam-like orthologs arose, how many alternatively spliced exons of each exon cluster were present in the most common recent ancestor, and how these clusters evolved. Results Our results suggest that the origin of Dscam genes may lie after the split between the Cnidaria and the Bilateria and supports the hypothesis that Dscam-hv originated in the common ancestor of the Pancrustacea. Our phylogeny of Dscam gene family members shows six well-supported clades: five containing Dscam-like genes and one containing all the Dscam-hv genes, a seventh clade contains arachnid putative Dscam genes. Furthermore, the exon clusters appear to have experienced different evolutionary histories. Conclusions Dscam genes have undergone independent duplication events in the insects and in an arachnid genome, which adds to the more well-known tandem duplications that have taken place within Dscam-hv genes. Therefore, two forms of gene expansion seem to be active within this gene family. The evolutionary history of this dynamic gene family will be further unfolded as genomes of species from more disparate groups become available. PMID:22500922
Boakes, E.; Kearns, A. M.; Ganner, M.; Perry, C.; Hill, R. L.; Ellington, M. J.
2011-01-01
Genetically diverse community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) can harbor a bacteriophage encoding Panton-Valentine leukocidin (PVL) lysogenized into its chromosome (prophage). Six PVL phages (ΦPVL, Φ108PVL, ΦSLT, ΦSa2MW, ΦSa2USA, and ΦSa2958) are known, and single-nucleotide polymorphisms (SNPs) in the PVL genes have been reported. We sought to determine the distribution of lysogenized PVL phages among MRSA strains with PVL (PVL-MRSA strains), the PVL gene sequences, and the chromosomal phage insertion sites in 114 isolates comprising nine clones of PVL-MRSA that were selected for maximal underlying genetic diversity. The six PVL phages were identified by PCR; ΦSa2USA was present in the highest number of different lineages (multilocus sequence type clonal complex 1 [CC1], CC5, CC8, and sequence type 93 [ST93]) (n = 37 isolates). Analysis of 92 isolates confirmed that PVL phages inserted into the same chromosomal insertion locus in CC22, -30, and -80 but in a different locus in isolates of CC1, -5, -8, -59, and -88 and ST93 (and CC22 in two isolates). Within the two different loci, specific attachment motifs were found in all cases, although some limited inter- and intralineage sequence variation occurred. Overall, lineage-specific relationships between the PVL phage, the genes that encode the toxin, and the position at which the phage inserts into the host chromosome were identified. These analyses provide important insights into the microepidemiology of PVL-MRSA, will prove a valuable adjunct in outbreak investigation, and may help predict the emergence of new strains. PMID:21106787
Evolution of Nova-Dependent Splicing Regulation in the Brain
Živin, Marko; Darnell, Robert B
2007-01-01
A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters) show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs. PMID:17937501
Molecular cloning, structure, and chromosomal localization of the mouse LIM/homeobox gene Lhx5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertuzzi, S.; Sheng, Hui Z.; Westphal, H.
1996-09-01
Lhx5, the mouse ortholog of the Xenopus Xlim-5, is a LIM/homeobox gene expressed in the central nervous system during both embryonic development and adulthood. During development its domain of expression is mainly localized at the most anterior portion of the neural tube, and it precedes the morphological differentiation of the forebrain; for this reason we believe that Lhx5 could play an important role in forebrain patterning. Here we present the structural organization and the chromosomal localization of the Lhx5 gene. The gene is composed of five exons spanning more than 10 kb of genomic sequence. The first and second LIMmore » domains are encoded by the first and second exon, while the codons of the homeobox are split between the third and the fourth exons. The structure of Lhx5 is similar to that of other LIM/homeodomain proteins, Lxh1/lim1 and Lhx3/lim3, but differs from that of other LIM genes, such as mec3 and LMO1/Rbtn1, in which the codons for the LIM domains are interrupted by introns. We have mapped Lhx5 to the central region of mouse chromosome 5. 38 refs., 4 figs.« less
Turco, Gina; Schnable, James C.; Pedersen, Brent; Freeling, Michael
2013-01-01
Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by >12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize. PMID:23874343
Lanikova, Lucie; Lorenzo, Felipe; Yang, Chunzhang; Vankayalapati, Hari; Drachtman, Richard; Divoky, Vladimir; Prchal, Josef T
2013-05-09
Germline von Hippel-Lindau (VHL) gene mutations underlie dominantly inherited familial VHL tumor syndrome comprising a predisposition for renal cell carcinoma, pheochromocytoma/paraganglioma, cerebral hemangioblastoma, and endolymphatic sac tumors. However, recessively inherited congenital polycythemia, exemplified by Chuvash polycythemia, has been associated with 2 separate 3' VHL gene mutations in exon 3. It was proposed that different positions of loss-of-function VHL mutations are associated with VHL syndrome cancer predisposition and only C-terminal domain-encoding VHL mutations would cause polycythemia. However, now we describe a new homozygous VHL exon 2 mutation of the VHL gene:(c.413C>T):P138L, which is associated in the affected homozygote with congenital polycythemia but not in her, or her-heterozygous relatives, with cancer or other VHL syndrome tumors. We show that VHL(P138L) has perturbed interaction with hypoxia-inducible transcription factor (HIF)1α. Further, VHL(P138L) protein has decreased stability in vitro. Similarly to what was reported in Chuvash polycythemia and some other instances of HIFs upregulation, VHL(P138L) erythroid progenitors are hypersensitive to erythropoietin. Interestingly, the level of RUNX1/AML1 and NF-E2 transcripts that are specifically upregulated in acquired polycythemia vera were also upregulated in VHL(P138L) granulocytes.
Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts
Wang, Jianghua; Cai, Yi; Yu, Wendong; Ren, Chengxi; Spencer, David M.; Ittmann, Michael
2008-01-01
TMPRSS2/ERG gene fusions are found in the majority of prostate cancers; however, there is significant heterogeneity in the 5′ region of the alternatively spliced fusion gene transcripts. We have found that there is also significant heterogeneity within the coding exons as well. There is variable inclusion of a 72-bp exon and other novel alternatively spliced isoforms. To assess the biological significance of these alternatively spliced transcripts, we expressed various transcripts in primary prostatic epithelial cells and in an immortalized prostatic epithelial cell line, PNT1a. The fusion gene transcripts promoted proliferation, invasion and motility with variable activities that depended on the structure of the 5′ region encoding the TMPRSS2/ERG fusion and the presence of the 72-bp exon. Cotransfection of different isoforms further enhanced biological activity, mimicking the situation in vivo, in which multiple isoforms are expressed. Finally, knockdown of the fusion gene in VCaP cells resulted in inhibition of proliferation in vitro and tumor progression in an in vivo orthotopic mice model. Our results indicate that TMPRSS2/ERG fusion isoforms have variable biological activities promoting tumor initiation and progression and are consistent with our previous clinical observations indicating that certain TMPRSS2/ERG fusion isoforms are significantly correlated with more aggressive disease. PMID:18922926
Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas
Won, Minho; Ro, Hyunju; Dawid, Igor B.
2015-01-01
The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use. PMID:26392552
Diversification of the insulin-like growth factor 1 gene in mammals.
Rotwein, Peter
2017-01-01
Insulin-like growth factor 1 (IGF1), a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.
Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation
Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G.; Xie, Jiuyong
2012-01-01
The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage. PMID:22684629
Targeted exon sequencing in Usher syndrome type I.
Bujakowska, Kinga M; Consugar, Mark; Place, Emily; Harper, Shyana; Lena, Jaclyn; Taub, Daniel G; White, Joseph; Navarro-Gomez, Daniel; Weigel DiFranco, Carol; Farkas, Michael H; Gai, Xiaowu; Berson, Eliot L; Pierce, Eric A
2014-12-02
Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease-causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Won, Minho; Ro, Hyunju; Dawid, Igor B
2015-10-06
The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use.
Construction and characterization of a recombinant invertebrate iridovirus.
Ozgen, Arzu; Muratoglu, Hacer; Demirbag, Zihni; Vlak, Just M; van Oers, Monique M; Nalcacioglu, Remziye
2014-08-30
Chilo iridescent virus (CIV), officially named Insect iridescent virus 6 (IIV6), is the type species of the genus Iridovirus (family Iridoviridae). In this paper we constructed a recombinant CIV, encoding the green fluorescent protein (GFP). This recombinant can be used to investigate viral replication dynamics. We showed that homologous recombination is a valid method to make CIV gene knockouts and to insert foreign genes. The CIV 157L gene, putatively encoding a non-functional inhibitor of apoptosis (IAP), was chosen as target for foreign gene insertion. The gfp open reading frame preceded by the viral mcp promoter was inserted into the 157L locus by homologous recombination in Anthonomus grandis BRL-AG-3A cells. Recombinant virus (rCIV-Δ157L-gfp) was purified by successive rounds of plaque purification. All plaques produced by the purified recombinant virus emitted green fluorescence due to the presence of GFP. One-step growth curves for recombinant and wild-type CIV were similar and the recombinant was fully infectious in vivo. Hence, CIV157L can be inactivated without altering the replication kinetics of the virus. Consequently, the CIV 157L locus can be used as a site for insertion of foreign DNA, e.g. to modify viral properties for insect biocontrol. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhao, Huanqiang; Hu, Fupin; Jin, Shu; Xu, Xiaogang; Zou, Yuhan; Ding, Baixing; He, Chunyan; Gong, Fang; Liu, Qingzhong
2016-01-01
Panton-Valentine leukocidin (PVL, encoded by lukSF-PV genes), a bi-component and pore-forming toxin, is carried by different staphylococcal bacteriophages. The prevalence of PVL in Staphylococcus aureus has been reported around the globe. However, the data on PVL-encoding phage types, lukSF-PV gene variation and chromosomal phage insertion sites for PVL-positive S. aureus are limited, especially in China. In order to obtain a more complete understanding of the molecular epidemiology of PVL-positive S. aureus, an integrated and modified PCR-based scheme was applied to detect the PVL-encoding phage types. Phage insertion locus and the lukSF-PV variant were determined by PCR and sequencing. Meanwhile, the genetic background was characterized by staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) gene polymorphisms typing, pulsed-field gel electrophoresis (PFGE) typing, accessory gene regulator (agr) locus typing and multilocus sequence typing (MLST). Seventy eight (78/1175, 6.6%) isolates possessed the lukSF-PV genes and 59.0% (46/78) of PVL-positive strains belonged to CC59 lineage. Eight known different PVL-encoding phage types were detected, and Φ7247PVL/ΦST5967PVL (n = 13) and ΦPVL (n = 12) were the most prevalent among them. While 25 (25/78, 32.1%) isolates, belonging to ST30, and ST59 clones, were unable to be typed by the modified PCR-based scheme. Single nucleotide polymorphisms (SNPs) were identified at five locations in the lukSF-PV genes, two of which were non-synonymous. Maximum-likelihood tree analysis of attachment sites sequences detected six SNP profiles for attR and eight for attL, respectively. In conclusion, the PVL-positive S. aureus mainly harbored Φ7247PVL/ΦST5967PVL and ΦPVL in the regions studied. lukSF-PV gene sequences, PVL-encoding phages, and phage insertion locus generally varied with lineages. Moreover, PVL-positive clones that have emerged worldwide likely carry distinct phages.
Method of generating ploynucleotides encoding enhanced folding variants
Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.
2017-05-02
The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.
Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate.
Monticello, D J; Bakker, D; Schell, M; Finnerty, W R
1985-01-01
Plasmid-borne Tn5 insertion mutants of a Pseudomonas species which accumulated 2,5-dihydroxybenzoate (gentisate) following growth on 2-hydroxybenzoate (salicylate) were obtained from a pool of mutants that were unable to grow on naphthalene. One such mutant was characterized further. The ability of this mutant to oxidize gentisate was 100-fold less than the ability of a Nah+ Sal+ strain harboring the unmutagenized plasmid, although both strains oxidized and grew on salicylate. These bacteria were presumably able to metabolize salicylate via catechol, since they possessed an inducible, plasmid-encoded catechol 2,3-dioxygenase. Our results suggest that there is an alternate, plasmid-encoded route of salicylate degradation via gentisate and that some plasmid-associated relationship between this pathway and naphthalene oxidation exists. PMID:2988437
Chen, L P; E, G X; Zhao, Y J; Na, R S; Zhao, Z Q; Zhang, J H; Ma, Y H; Sun, Y W; Zhong, T; Zhang, H P; Huang, Y F
2015-06-18
DRA encodes the alpha chain of the DR heterodimer, is closely linked to DRB and is considered almost monomorphic in major histocompatibility complex region. In this study, we identified the exon 2 of DRA to evaluate the immunogenetic diversity of Chinese south indigenous goat. Two single nucleotide polymorphisms in an untranslated region and one synonymous substitution in coding region were identified. These data suggest that high immunodiversity in native Chinese population.
Acral peeling skin syndrome associated with a novel CSTA gene mutation.
Muttardi, K; Nitoiu, D; Kelsell, D P; O'Toole, E A; Batta, K
2016-06-01
Acral peeling skin syndrome (APSS) is a rare autosomal recessive condition, characterized by asymptomatic peeling of the skin of the hands and feet, often linked to mutations in the gene TGM5. However, more recently recessive loss of function mutations in CSTA, encoding cystatin A, have been linked with APSS and exfoliative ichthyosis. We describe the clinical features in two sisters with APSS, associated with a novel large homozygous deletion encompassing exon 1 of CSTA. © 2015 British Association of Dermatologists.
Hirawake, H; Taniwaki, M; Tamura, A; Amino, H; Tomitsuka, E; Kita, K
1999-08-04
We have mapped large (cybL) and small (cybS) subunits of cytochrome b in the succinate-ubiquinone oxidoreductase (complex II) of human mitochondria to chromosome 1q21 and 11q23, respectively (H. Hirawake et al., Cytogenet. Cell Genet. 79 (1997) 132-138). In the present study, the human SDHD gene encoding cybS was cloned and characterized. The gene comprises four exons and three introns extending over 19 kb. Sequence analysis of the 5' promoter region showed several motifs for the binding of transcription factors including nuclear respiratory factors NRF-1 and NRF-2 at positions -137 and -104, respectively. In addition to this gene, six pseudogenes of cybS were isolated and mapped on the chromosome.
PANAGOPOULOS, IOANNIS; GORUNOVA, LUDMILA; BJERKEHAGEN, BODIL; LOBMAIER, INGVILD; HEIM, SVERRE
2015-01-01
Lipomas are the most common soft tissue tumors in adults. They often carry chromosome aberrations involving 12q13~15 leading to rearrangements of the HMGA2 gene in 12q14.3, with breakpoints occurring within or outside of the gene. Here, we present eleven lipomas and one osteochondrolipoma with a novel recurrent chromosome aberration, t(12;18) (q14~15;q12~21). Molecular studies on eight of the tumors showed that full-length HMGA2 transcript was expressed in three and a chimeric HMGA2 transcript in five of them. In three lipomas and in the osteochondrolipoma, exons 1–3 of HMGA2 were fused to a sequence of SETBP1 on 18q12.3 or an intragenic sequence from 18q12.3 circa 10 kbp distal to SETBP1. In another lipoma, exons 1–4 of HMGA2 were fused to an intronic sequence of GRIP1 which maps to chromosome band 12q14.3, distal to HMGA2. The ensuing HMGA2 fusion transcripts code for putative proteins which contain amino acid residues of HMGA2 corresponding to exons 1–3 (or exons 1–4 in one case) followed by amino acid residues corresponding to the fused sequences. Thus, the pattern is similar to the rearrangements of HMGA2 found in other lipomas, i.e., disruption of the HMGA2 locus leaves intact exons 1–3 which encode the AT-hooks domains and separates them from the 3′-terminal part of the gene. The fact that the examined osteochondrolipoma had a t(12;18) and a HMGA2-SETBP1 fusion identical to the findings in the much more common ordinary lipomas, underscores the close developmental relationship between the two tumor types. PMID:26202160
Genomic organization of plant aminopropyl transferases.
Rodríguez-Kessler, Margarita; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Gabriela Theresia; Moriguchi, Takaya; Jiménez-Bremont, Juan Francisco
2010-07-01
Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the acquisition of unique exons of as-yet unknown origin. 2010 Elsevier Masson SAS. All rights reserved.
Genetic basis of human complement C8[beta] deficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, T.; Rittner, C.; Schneider, P.M.
1993-06-01
The eighth component of human complement (c8) is a serum protein consisting of three chains ([alpha], [beta], and [gamma]) and encoded by three different genes, C8A, C8B, and C8G. C8A and C8B are closely linked on chromosome 1p, whereas C8G is located on chromosome 9q. In the serum the [beta] subunit is non-covalently bound to the disulfide-linked [alpha]-[gamma] subunit. Patients with C8[beta] deficiency suffer from recurrent neisserial infections such as meningitis. Exon-specific polymerase chain reaction (PCR) amplification with primer pairs from the flanking intron sequences was used to amplify all 12 C8B exons separately. No difference regarding the exon sizesmore » was observed in a C8[beta]-deficient patient compared with a normal person. Therefore, direct sequence analysis of all exon-specific PCR products from normal and C8[beta]-deficient individuals was carried out. As a cause for C8[beta] deficiency, we found a single C-T exchange in exon 9 leading to a stop codon. An allele-specific PCR system was designed to detect the normal and the deficiency allele simultaneously. Using this approach as well as PCR typing of the Taql polymorphism located in intron 11, five families with 7 C8[beta]-deficient members were investigated. The mutation was not found to be restricted to one of the two Taql RFLP alleles. The mutant allele was observed in all families investigated and can therefore be regarded as a major cause of C8[beta] deficiency in the Caucasian population. In addition, two C8[beta]-deficient patients were found to be heterozygous for the C-T exchange. The molecular basis of the alleles without this point mutation also causing deficiency has not yet been defined. 23 refs., 4 figs., 3 tabs.« less
Frazier, Courtney L.; San Filippo, Joseph; Lambowitz, Alan M.; Mills, David A.
2003-01-01
Despite their commercial importance, there are relatively few facile methods for genomic manipulation of the lactic acid bacteria. Here, the lactococcal group II intron, Ll.ltrB, was targeted to insert efficiently into genes encoding malate decarboxylase (mleS) and tetracycline resistance (tetM) within the Lactococcus lactis genome. Integrants were readily identified and maintained in the absence of a selectable marker. Since splicing of the Ll.ltrB intron depends on the intron-encoded protein, targeted invasion with an intron lacking the intron open reading frame disrupted TetM and MleS function, and MleS activity could be partially restored by expressing the intron-encoded protein in trans. Restoration of splicing from intron variants lacking the intron-encoded protein illustrates how targeted group II introns could be used for conditional expression of any gene. Furthermore, the modified Ll.ltrB intron was used to separately deliver a phage resistance gene (abiD) and a tetracycline resistance marker (tetM) into mleS, without the need for selection to drive the integration or to maintain the integrant. Our findings demonstrate the utility of targeted group II introns as a potential food-grade mechanism for delivery of industrially important traits into the genomes of lactococci. PMID:12571038
Reconstitutional Mutagenesis of the Maize P Gene by Short-Range Ac Transpositions
Moreno, M. A.; Chen, J.; Greenblatt, I.; Dellaporta, S. L.
1992-01-01
The tendency for Ac to transpose over short intervals has been utilized to develop insertional mutagenesis and fine structure genetic mapping strategies in maize. We recovered excisions of Ac from the P gene and insertions into nearby chromosomal sites. These closely linked Ac elements reinserted into the P gene, reconstituting over 250 unstable variegated alleles. Reconstituted alleles condition a variety of variegation patterns that reflect the position and orientation of Ac within the P gene. Molecular mapping and DNA sequence analyses have shown that reinsertion sites are dispersed throughout a 12.3-kb chromosomal region in the promoter, exons and introns of the P gene, but in some regions insertions sites were clustered in a nonrandom fashion. Transposition profiles and target site sequence data obtained from these studies have revealed several features of Ac transposition including its preference for certain target sites. These results clearly demonstrate the tendency of Ac to transpose to nearby sites in both proximal and distal directions from the donor site. With minor modifications, reconstitutional mutagenesis should be applicable to many Ac-induced mutations in maize and in other plant species and can possibly be extended to other eukaryotic transposon systems as well. PMID:1325389
Two novel mutations in the Norrie disease gene associated with the classical ocular phenotype.
Caballero, M; Veske, A; Rodriguez, J J; Lugo, N; Schroeder, B; Hesse, L; Gal, A
1996-12-01
Norrie disease (ND) is a rare X-linked recessive disorder characterized by congenital blindness due to a degenerative and proliferative dysplasia of the neuroretina and, occasionally, by deafness and mental handicap. Here, we report two novel mutations detected in patients with the classical eye features of ND. Both the one-base pair insertion in exon II (544/545 insA) and the two-base pair deletion in the start codon (418delTG) of the ND gene predict a functional 'null allele', i.e. the complete absence of the corresponding gene product.
Parvari, R; Shen, J; Hershkovitz, E; Chen, Y T; Moses, S W
1998-04-01
Glycogen storage disease type III (GSD III) is an autosomal recessive disease caused by the deficiency of glycogen debranching enzyme (AGL). We report the finding of two new mutations in a GSD IIIa Ashkenazi Jewish patient. Both mutations are insertion of an adenine into a stretch of 8 adenines towards the 3' end of the coding region, one at position 3904 (3904insA) in exon 30, the second at position 4214 (4214insA) in exon 32. The mutations cause frameshifts and premature terminations of the glycogen debranching enzyme, the first causing a frameshift at amino acid 1304, the second causing a frameshift at amino acid 1408 of the total of 1532. These mutations demonstrate the importance of the 125 amino acids at the carboxy-terminus of the debrancher enzyme for its activity and support the suggestion that the putative glycogen binding domain is located in the carboxy-terminus of the AGL. The mutations cause distinctive single-strand conformation polymorphism (SSCP) patterns enabling easy detection.
Panagopoulos, Ioannis; Kerndrup, Gitte; Carlsen, Niels; Strömbeck, Bodil; Isaksson, Margareth; Johansson, Bertil
2007-01-01
Three NUP98 chimaeras have previously been reported in T cell acute lymphoblastic leukaemia (T-ALL): NUP98/ADD3, NUP98/CCDC28A, and NUP98/RAP1GDS1. We report a T-ALL with t(11;18)(p15;q12) resulting in a novel NUP98 fusion. Fluorescent in situ hybridisation showed NUP98 and SET binding protein 1(SETBP1) fusion signals; other analyses showed that exon 12 of NUP98 was fused in-frame with exon 5 of SETBP1. Nested polymerase chain reaction did not amplify the reciprocal SETBP1/NUP98, suggesting that NUP98/SETBP1 transcript is pathogenetically important. SETBP1 has previously not been implicated in leukaemias; however, it encodes a protein that specifically interacts with SET, fused to NUP214 in a case of acute undifferentiated leukaemia.
Cloning and genomic characterization of sytdep, a new synaptotagmin XIV-related gene.
Herrero-Turrión, M Javier; Fukuda, Mitsunori; Mollinedo, Faustino
2006-02-10
We have identified a new human gene coined sytdep (synaptotagmin XIV-derived protein) in human neutrophils. Sytdep encodes a 188-amino acid sequence with a 21.435kDa deduced molecular mass, showing 75% identity to human synaptotagmin (syt) XIV. Human neutrophils express sytdep, but not syt XIV. Sytdep was upregulated during HL-60 neutrophil differentiation. Sytdep gene is located in human chromosome 4 and contains a unique exon, whereas syt XIV gene, located in chromosome 1, comprises 10 exons with 9 introns. Mouse genome did not contain sytdep. The N-terminal region of sytdep shows no homology with any known protein and, unlike synaptotagmin XIV isoforms, sytdep shows a unique C-terminal C2B domain. Polyclonal antibodies against the C2B domain of syt XIV recognized sytdep as a 27-kDa protein in human neutrophils. Genomic analyses suggest that human sytdep could derive from a retrotranslocation of a syt XIV transcript into chromosome 4.
A Novel Mutation in a Kazakh Family with X-Linked Alport Syndrome
Rakhimova, Saule E.; Nigmatullina, Nazym B.; Momynaliev, Kuvat T.; Ramanculov, Yerlan M.
2015-01-01
Alport syndrome is a genetic condition that results in hematuria, progressive renal impairment, hearing loss, and occasionally lenticonus and retinopathy. Approximately 80% of Alport syndrome cases are caused by X-linked mutations in the COL4A5 gene encoding type IV collagen. The objective of this study was to define the SNP profiles for COL4A5 in patients with hereditary nephritis and hematuria. For this, we examined four subjects from one Kazakh family clinically affected with X-linked Alport syndrome due to COL4A5 gene mutations. All 51 exons of the COL4A5 gene were screened by linkage analysis and direct DNA sequencing, resulting in the identification of a novel mutation (G641E) in exon 25. The mutation was found only in two affected family individuals but was not present in healthy family members or 200 unrelated healthy controls. This result demonstrates that this novel mutation is pathogenic and has meaningful implications for the diagnosis of patients with Alport syndrome. PMID:26168235
A Novel Mutation in a Kazakh Family with X-Linked Alport Syndrome.
Baikara, Barshagul T; Zholdybayeva, Elena V; Rakhimova, Saule E; Nigmatullina, Nazym B; Momynaliev, Kuvat T; Ramanculov, Yerlan M
2015-01-01
Alport syndrome is a genetic condition that results in hematuria, progressive renal impairment, hearing loss, and occasionally lenticonus and retinopathy. Approximately 80% of Alport syndrome cases are caused by X-linked mutations in the COL4A5 gene encoding type IV collagen. The objective of this study was to define the SNP profiles for COL4A5 in patients with hereditary nephritis and hematuria. For this, we examined four subjects from one Kazakh family clinically affected with X-linked Alport syndrome due to COL4A5 gene mutations. All 51 exons of the COL4A5 gene were screened by linkage analysis and direct DNA sequencing, resulting in the identification of a novel mutation (G641E) in exon 25. The mutation was found only in two affected family individuals but was not present in healthy family members or 200 unrelated healthy controls. This result demonstrates that this novel mutation is pathogenic and has meaningful implications for the diagnosis of patients with Alport syndrome.
Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre
2004-07-01
Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.
Gonzalez, Francisco; Loidi, Lourdes; Abalo-Lojo, Jose M
2017-01-01
Ankyloblepharon-ectodermal dysplasia-cleft lip/palate (AEC) syndrome is a disorder resulting from anomalous embryonic development of ectodermal tissues. There is evidence that AEC syndrome is caused by mutations in the TP63 gene, which encodes the p63 protein. This is an important regulatory protein involved in epidermal proliferation and differentiation. Genome sequencing was performed in DNA from peripheral blood leukocytes of a newborn with AEC syndrome and her parents. Variants were searched in all coding exons and intron-exon boundaries of the TP63 gene. A heterozygous missense variant (NM_003722.4:c.1063G>C (p.Asp355His) was found in the newborn patient. No variants were found in either of the parents. We identified a previously unreported variant in TP63 gene which seems to be involved in the somatic malformations found in the AEC syndrome. The absence of this variant in both parents suggests that the variant appeared de novo.
M'Dimegh, Saoussen; Aquaviva-Bourdain, Cécile; Omezzine, Asma; M'Barek, Ibtihel; Souche, Geneviéve; Zellama, Dorsaf; Abidi, Kamel; Achour, Abdelattif; Gargah, Tahar; Abroug, Saoussen; Bouslama, Ali
2016-09-01
Primary hyperoxaluria type I (PH1) is an autosomal recessive metabolic disorder caused by inherited mutations in the AGXT gene encoding liver peroxisomal alanine : glyoxylate aminotransferase (AGT) which is deficient or mistargeted to mitochondria. PH1 shows considerable phenotypic and genotypic heterogeneity. The incidence and severity of PH1 varies in different geographic regions. DNA samples of the affected members from two unrelated Tunisian families were tested by amplifying and sequencing each of the AGXT exons and intron-exon junctions. We identified a novel frameshift mutation in the AGXT gene, the c.406_410dupACTGC resulting in a truncated protein (p.Gln137Hisfs*19). It is found in homozygous state in two nonconsanguineous unrelated families from Tunisia. These molecular findings provide genotype/phenotype correlations in the intrafamilial phenotypic and permit accurate carrier detection, and prenatal diagnosis. The novel p.Gln137Hisfs*19 mutation detected in our study extend the spectrum of known AGXT gene mutations in Tunisia.
Characterization of three types of human alpha s1-casein mRNA transcripts.
Johnsen, L B; Rasmussen, L K; Petersen, T E; Berglund, L
1995-01-01
Here we report the molecular cloning and sequencing of three types of human alpha s1-casein transcripts and present evidence indicating that exon skipping is responsible for deleted mRNA transcripts. The largest transcript comprised 981 bp encoding a signal peptide of 15 amino acids followed by the mature alpha s1-casein sequence of 170 amino acids. Human alpha s1-casein has been reported to exist naturally as a multimer in complex with kappa-casein in mature human milk, thereby being unique among alpha s1-caseins [Rasmussen, Due and Petersen (1995) Comp. Biochem. Physiol., in the press]. The present demonstration of three cysteines in the mature protein provides a molecular explanation of the interactions in this complex. Tissue-specific expression of human alpha s1-casein was indicated by Northern-blot analysis. In addition, two cryptic exons were localized in the bovine alpha s1-casein gene. Images Figure 3 PMID:7619062
Lee, Sook-Kyung; Hu, Jan C.-C.; Lee, Kyung-Eun; Simmer, James P.; Kim, Jung-Wook
2009-01-01
The dentin sialophosphoprotein (DSPP) gene on chromosome 4q21.3 encodes the major noncollagenous protein in tooth dentin. DSPP mutations are the principal cause of dentin dysplasia type II, dentinogenesis imperfecta type II, and dentinogenesis imperfecta type III. We have identified a DSPP splice junction mutation (IVS2-6T>G) in a family with dentin dysplasia type II. The primary dentition is discolored brown with severe attrition. The mildly discolored permanent dentition has thistle-shaped pulp chambers, pulp stones, and eventual pulp obliteration. The mutation is in the sixth nucleotide from the end of intron 2, perfectly segregates with the disease phenotype, and is absent in 200 normal control chromosomes. An in vitro splicing assay shows that pre-mRNA splicing of the mutant allele generates wild-type mRNA and mRNA lacking exon 3 in approximately equal amounts. Skipping exon 3 might interfere with signal peptide cleavage, causing endoplasmic reticulum stress, and also reduce DSPP secretion, leading to haploinsufficiency. PMID:19026876
Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy
Robinson-Hamm, Jacqueline N.; Gersbach, Charles A.
2016-01-01
Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development. PMID:27542949