Sample records for exothermal heating technologies

  1. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  2. Development of exothermically cast single-crystal Mar-M 247 and derivative alloys

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Hoppin, G. S., III; Phipps, C. M.; Harris, K.; Schwer, R. E.

    1980-01-01

    A low-cost, exothermic directional-solidification (DS) process was developed to produce single-crystal (SC) Mar-M 247 high-pressure turbine blades. Stress-rupture data indicated that SC Mar-M 247 provides only marginal improvements in longitudinal strength relative to the columnar grained DS material. Removal of grain boundary strengthening elements (B, C, Zr, Hf) from the Mar-M 247 composition (which are also melting point depressants) permitted the alloy to be solutioned at significantly higher temperatures. An order of magnitude improvement in rupture life relative to SC Mar-M 247 was observed for several derivative alloys at 103.5 MPa (15 KSI) and 1093 C. Rupture lives of the modified SC alloys were significantly affected by both alloy purity and heat treatment. Critical aspects of vacuum induction refining, exothermic casting technology, alloy development and heat treatment, which contributed to this new class of turbine blades, are reviewed

  3. Ventilation equations for improved exothermic process control.

    PubMed

    McKernan, John L; Ellenbecker, Michael J

    2007-04-01

    Exothermic or heated processes create potentially unsafe work environments for an estimated 5-10 million American workers each year. Excessive heat and process contaminants have the potential to cause acute health effects such as heat stroke, and chronic effects such as manganism in welders. Although millions of workers are exposed to exothermic processes, insufficient attention has been given to continuously improving engineering technologies for these processes to provide effective and efficient control. Currently there is no specific occupational standard established by OSHA regarding exposure to heat from exothermic processes, therefore it is important to investigate techniques that can mitigate known and potential adverse occupational health effects. The current understanding of engineering controls for exothermic processes is primarily based on a book chapter written by W. C. L. Hemeon in 1955. Improvements in heat transfer and meteorological theory necessary to design improved process controls have occurred since this time. The research presented involved a review of the physical properties, heat transfer and meteorological theories governing buoyant air flow created by exothermic processes. These properties and theories were used to identify parameters and develop equations required for the determination of buoyant volumetric flow to assist in improving ventilation controls. Goals of this research were to develop and describe a new (i.e. proposed) flow equation, and compare it to currently accepted ones by Hemeon and the American Conference of Governmental Industrial Hygienists (ACGIH). Numerical assessments were conducted to compare solutions from the proposed equations for plume area, mean velocity and flow to those from the ACGIH and Hemeon. Parameters were varied for the dependent variables and solutions from the proposed, ACGIH, and Hemeon equations for plume area, mean velocity and flow were analyzed using a randomized complete block statistical design (ANOVA). Results indicate that the proposed plume mean velocity equation provides significantly greater means than either the ACGIH or Hemeon equations throughout the range of parameters investigated. The proposed equations for plume area and flow also provide significantly greater means than either the ACGIH or Hemeon equations at distances >1 m above exothermic processes. With an accurate solution for the total volumetric flow, ventilation engineers and practicing industrial hygienists are equipped with the necessary information to design and size hoods, as well as place them at an optimal distance from the source to provide adequate control of the rising plume. The equations developed will allow researchers and practitioners to determine the critical control parameters for exothermic processes, such as the exhaust flow necessary to improve efficacy and efficiency, while ensuring adequate worker protection.

  4. Determination of the initial exothermic reaction of shredded tyres with wire content.

    PubMed

    Sellasie, Kassahun G; Moo-Young, Horace K; Lloyd, Thomas

    2004-10-01

    This paper presents the cause of exothermic reactions in shredded tyre with exposed wire content in shredded tyre piles. Data indicate that the oxidation of exposed steel wires is the exothermic reaction in shredded tyre embankments. This would lead to spontaneous combustion. Reaction of the steel with the sulphur or the carbon black appears not to be the source of the exothermic. Laboratory tests have been conducted to determine the heat transfer properties of the materials that compose tyres (i.e., tyre rubber and wires) by using a hot-plate apparatus. In addition, one-dimensional heat conduction experiments were conducted to compare the flow of heat through the materials while varying the physical and environmental conditions. The physical conditions were the size of tyre shred, water content, and wire contents. An exothermic reaction occurred when exposed wire was present but not when it was absent. A one-dimensional heat transfer equation was developed, and parametric studies were conducted to verify the laboratory model. Exothermic reaction was found to increase linearly with temperature, size and shape of the shredded tyres, density, amount of wire in shredded tyres, and water content.

  5. System Modeling for Ammonia Synthesis Energy Recovery System

    NASA Astrophysics Data System (ADS)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Ammonia thermochemical Energy Storage Team

    2015-11-01

    An ammonia thermochemical energy storage system is an alternative solution to the state-of-the-art molten salt TES system for concentrating solar power. Some of the advantages of this emerging technology include its high energy density, no heat losses during the storage duration, and the possibility of long storage periods. Solar energy powers an endothermic reaction to disassociate ammonia into hydrogen and nitrogen, which can be stored for future use. The reverse reaction is carried out in the energy recovery process; a hydrogen-nitrogen mixture flowing through a catalyst bed undergoes the exothermic ammonia synthesis reaction. The goal is to use the ammonia synthesis reaction to heat supercritical steam to temperatures on the order of 650°C as required for a supercritical steam Rankine cycle. The steam will flow through channels in a combined reactor-heat exchanger. A numerical model has been developed to determine the optimal design to heat supercritical steam while maintaining a stable exothermic reaction. The model consists of a transient one dimensional concentric tube counter-flow reactor-heat exchanger. The numerical model determines the inlet mixture conditions needed to achieve various steam outlet conditions.

  6. A self-heating cartridge for molecular diagnostics.

    PubMed

    Liu, Changchun; Mauk, Michael G; Hart, Robert; Qiu, Xianbo; Bau, Haim H

    2011-08-21

    A disposable, water-activated, self-heating, easy-to-use, polymeric cartridge for isothermal nucleic acid amplification and visual fluorescent detection of the amplification products is described. The device is self-contained and does not require any special instruments to operate. The cartridge integrates chemical, water-triggered, exothermic heating with temperature regulation facilitated with a phase-change material (PCM) and isothermal nucleic acid amplification. The water flows into the exothermic reactor by wicking through a porous paper. The porous paper's characteristics control the rate of water supply, which in turn controls the rate of exothermic reaction. The PCM material enables the cartridge to maintain a desired temperature independent of ambient temperatures in the range between 20 °C and 40 °C. The utility of the cartridge is demonstrated by amplifying and detecting Escherichia coli DNA with loop mediated isothermal amplification (LAMP). The device can detect consistently as few as 10 target molecules in the sample. With proper modifications, the cartridge also can work with other isothermal nucleic acid amplification technologies for detecting nucleic acids associated with various pathogens borne in blood, saliva, urine, and other body fluids as well as in water and food. The device is suitable for use at home, in the field, and in poor-resource settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent. This journal is © The Royal Society of Chemistry 2011

  7. Self-contained exothermic applicator and process

    DOEpatents

    Koehmstedt, Paul L.

    1984-01-01

    An adhesive resin application system which requires no external heating apparatus, and which is operative in the absence of a reactive atmosphere, is disclosed. The system provides its own heat by employing an adhesive material containing reactants which react exothermally when electrically ignited. After ignition of the reactants, sufficient heat energy is liberated by the exothermic reaction either to plasticize a thermoplastic resin or to cure a thermosetting resin and therby bond together two closely spaced objects. This application is a continuation-in-part of application Ser. No. 489,006, filed Apr. 27, 1983, which is a continuation-in-part of application, Ser. No. 929,120, filed July 28, 1978, both now abandoned.

  8. Combustion synthesis of ceramic-metal composite materials in microgravity

    NASA Technical Reports Server (NTRS)

    Moore, John

    1995-01-01

    Combustion synthesis, self-propagating high temperature synthesis (SHS) or reactive synthesis provides an attractive alternative to conventional methods of producing advanced materials since this technology is based on the ability of highly exothermic reactions to be self sustaining and, therefore, energetically efficient. The exothermic SHS reaction is initiated at the ignition temperature, T(sub ig), and generates heat which is manifested in a maximum or combustion temperature, T(sub c), which can exceed 3000 K . Such high combustion temperatures are capable of melting and/or volatilizing reactant and product species and, therefore, present an opportunity for producing structure and property modification and control through liquid-solid, vapor-liquid-solid, and vapor-solid transformations.

  9. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry.

    PubMed

    Shen, Jiacheng; Igathinathane, C; Yu, Manlu; Pothula, Anand Kumar

    2015-06-01

    Integral reaction heats of switchgrass, big bluestem, and corn stalks were determined using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). Iso-conversion differential reaction heats using TGA/DSC pyrolysis and combustion of biomass were not available, despite reports available on heats required and released. A concept of iso-conversion differential reaction heats was used to determine the differential reaction heats of each thermal characteristics segment of these materials. Results showed that the integral reaction heats were endothermic from 30 to 700°C for pyrolysis of switchgrass and big bluestem, but they were exothermic for corn stalks prior to 587°C. However, the integral reaction heats for combustion of the materials followed an endothermic to exothermic transition. The differential reaction heats of switchgrass pyrolysis were predominantly endothermic in the fraction of mass loss (0.0536-0.975), and were exothermic for corn stalks (0.0885-0.850) and big bluestem (0.736-0.919). Study results provided better insight into biomass thermal mechanism. Published by Elsevier Ltd.

  10. The silicon-glass microreactor with embedded sensors—technology and results of preliminary qualitative tests, toward intelligent microreaction plant

    NASA Astrophysics Data System (ADS)

    Knapkiewicz, P.

    2013-03-01

    The technology and preliminary qualitative tests of silicon-glass microreactors with embedded pressure and temperature sensors are presented. The concept of microreactors for leading highly exothermic reactions, e.g. nitration of hydrocarbons, and design process-included computer-aided simulations are described in detail. The silicon-glass microreactor chip consisting of two micromixers (multistream micromixer), reaction channels, cooling/heating chambers has been proposed. The microreactor chip was equipped with a set of pressure and temperature sensors and packaged. Tests of mixing quality, pressure drops in channels, heat exchange efficiency and dynamic behavior of pressure and temperature sensors were documented. Finally, two applications were described.

  11. Heat recovery from sorbent-based CO.sub.2 capture

    DOEpatents

    Jamal, Aqil; Gupta, Raghubir P

    2015-03-10

    The present invention provides a method of increasing the efficiency of exothermic CO.sub.2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO.sub.2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO.sub.2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.

  12. Exothermic low temperature sintering of Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Jagjiwan; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw

    2015-11-15

    Sintering of the Cu nanoparticle at low temperatures resulted in exothermic behavior after its initiation. The calorimetry study of the heating of a 20 nm copper nanoparticles agglomerate revealed the evolution of 41.17 J/g of heat between 170 °C and 270 °C. High resolution transmission electron microscopy (HRTEM) images indicated that the heat generation was accompanied by sintering. The surface energy of the 20 nm copper nanoparticles was estimated to be 1.23 × 10{sup 3} erg/cm{sup 2} based on the heat released during sintering. The in situ high resolution transmission electron microscope (HRTEM) investigation showed that vigorous sintering occurred betweenmore » 217 and 234 °C, which took place through the dislocation sintering mechanism. - Highlights: • Calorimetry showed exothermic behavior during heating of Cu nanoparticles between 170 and 270 °C. • Heat released due to the sintering of Cu nanoparticles was demonstrated by HRTEM. • Surface energy of 20 nm copper nanoparticles was estimated to be 1.23 × 10{sup 3} erg/cm{sup 2} during sintering. • Growth in crystallite sizes during sintering is disclosed by X-ray diffraction. • In situ HRTEM heating study showed occurrence of sintering through dislocation mechanism.« less

  13. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Solomon, Susan

    1991-01-01

    The rate of heating which occurs in the middle atmosphere due to four exothermic reactions involving members of the odd-hydrogen family is calculated. The following reactions are considered: O + OH yields O2 + H; H + O2 + M yields HO2 + M; H + O3 yields OH + O2; and O + HO2 yields OH + O2. It is shown that the heating rates due to these reactions rival the oxygen-related heating rates conventionally considered in middle-atmosphere models. The conversion of chemical potential energy into molecular translational energy (heat) by these odd-hydrogen reactions is shown to be a significant energy source in the middle atmosphere that has not been previously considered.

  14. Method and apparatus for a catalytic firebox reactor

    DOEpatents

    Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  15. Morphology and phase evolution in microwave synthesized Al/FeO4 system.

    PubMed

    Chuan, Lee Chang; Yoshikawaa, Noboru; Taniguchia, Shoji

    2011-01-01

    Thermite reaction between Al/Fe3O4 raised by microwave (MW) heating under N2 atmosphere has been investigated, and compared with that by the electric furnace. In addition to the stoichiometric ratio for the production of metallic iron and alumina, mixture with slightly Lower in Al content is also studied. As thermite reaction is highly exothermic, melting of reaction product and destruction of microstructure may occur, which corresponds to the enthalpy and adiabatic temperature of the reaction. Hence, to avoid this problem, reaction coupled with a smaller driving force by controlling the MW ignition condition at low temperature exotherm has been investigated. The phase and microstructure evolution during the reaction were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Thermogram of the DTA analysis, irrespective of their mole ratio, recorded two exothermic peaks, one at - 1310 degrees C and another one at - 1370 degrees C. When heated by microwave at 955 degrees C, the main products were identified as Al, FeO and Fe, minor amount of Fe3O4 and some Fe and alumina were detected. When heating to 1155 degrees C, Al and Fe3O4 peaks disappeared, formation of Fe-Al alloy was observed. For sample heated at 1265 degrees C, a porous body was obtained. Micron sized metal particles with complex morphology, irregular in size and shapes were formed, uniformly distributed within the spinel hercynite and/or alumina matrix. In contrast, conventional heating produced no porous products. Formation of alumina is also observed around the metal particles. Controlling of the reaction progress was possible while heating the sample by MW around the low temperature exotherm region, whereas the combustion wave could not be self-propagated.

  16. Technology for a Thermo-chemical Ice Penetrator for Icy Moons

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Harpole, George; Zamel, James; Sen, Bashwar; Lee, Greg; Ross, Floyd; Retherford, Kurt D.

    2016-10-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be considered for infusion into a program.

  17. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions.

    PubMed

    Zhang, Minghui; Hong, Yan; Ding, Shujiang; Hu, Jianjun; Fan, Yunxiao; Voevodin, Andrey A; Su, Ming

    2010-12-01

    This paper describes a new way to control temperatures of heterogeneous exothermic reactions such as heterogeneous catalytic reaction and polymerization by using encapsulated nanoparticles of phase change materials as thermally functional additives. Silica-encapsulated indium nanoparticles and silica encapsulated paraffin nanoparticles are used to absorb heat released in catalytic reaction and to mitigate gel effect of polymerization, respectively. The local hot spots that are induced by non-homogenous catalyst packing, reactant concentration fluctuation, and abrupt change of polymerization rate lead to solid to liquid phase change of nanoparticle cores so as to avoid thermal runaway by converting energies from exothermic reactions to latent heat of fusion. By quenching local hot spots at initial stage, reaction rates do not rise significantly because the thermal energy produced in reaction is isothermally removed. Nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions to quench local hot spots, prevent thermal runaway of reaction, and change product distribution.

  18. Influence of heat losses on nonlinear fingering dynamics of exothermic autocatalytic fronts

    NASA Astrophysics Data System (ADS)

    D'Hernoncourt, J.; De Wit, A.

    2010-06-01

    Across traveling exothermic autocatalytic fronts, a density jump can be observed due to changes in composition and temperature. These density changes are prone to induce buoyancy-driven convection around the front when the propagation takes place in absence of gel within the gravity field. Most recent experiments devoted to studying such reaction-diffusion-convection dynamics are performed in Hele-Shaw cells, two glass plates separated by a thin gap width and filled by the chemical solutions. We investigate here the influence of heat losses through the walls of such cells on the nonlinear fingering dynamics of exothermic autocatalytic fronts propagating in vertical Hele-Shaw cells. We show that these heat losses increase tip splittings and modify the properties of the flow field. A comparison of the differences between the dynamics in reactors with respectively insulating and conducting walls is performed as a function of the Lewis number Le, the Newton cooling coefficient α quantifying the amplitude of heat losses and the width of the system. We find that tip splitting is enhanced for intermediate values of α while coarsening towards one single finger dominates for insulated systems or large values of α leading to situations equivalent to isothermal ones.

  19. Thermo-chemical Ice Penetrator for Icy Moons

    NASA Astrophysics Data System (ADS)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be considered for infusion into a program.

  20. Pyrotechnic device provides one-shot heat source

    NASA Technical Reports Server (NTRS)

    Haller, H. C.; Lalli, V. R.

    1968-01-01

    Pyrotechnic heater provides a one-shot heat source capable of creating a predetermined temperature around sealed packages. It is composed of a blend of an active chemical element and another compound which reacts exothermically when ignited and produces fixed quantities of heat.

  1. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  2. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  3. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  4. 49 CFR 173.124 - Class 4, Divisions 4.1, 4.2 and 4.3-Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... exothermic decomposition even without participation of oxygen (air). A material is excluded from this... coming in contact with air when tested according to UN Manual of Tests and Criteria. (2) Self-heating... substance with oxygen (in air) generates heat. If the rate of heat production exceeds the rate of heat loss...

  5. Thermal Decomposition Study on CuInSe2 Single Crystals

    NASA Astrophysics Data System (ADS)

    Chauhan, Sanjaysinh M.; Chaki, Sunil H.; Deshpande, M. P.; Malek, Tasmira J.; Tailor, J. P.

    2018-01-01

    The thermal analysis of the chemical vapor transport (CVT)-grown CuInSe2 single crystals was carried out by recording the thermogravimetric, differential thermogravimetric and differential thermal analysis curves. All the three thermo-curves were recorded simultaneously by thermal analyzer in the temperature range of ambient to 1080 K in inert nitrogen atmosphere. The thermo-curves were recorded for four heating rates of 5 K \\cdot min^{-1}, 10 K \\cdot min^{-1}, 15 K \\cdot min^{-1} and 20 K \\cdot min^{-1}. The TG curve analysis showed negligible mass loss in the temperature range of ambient to 600 K, stating the sample material to be thermally stable in this temperature range. Above 601 K to the temperature of 1080 K, the sample showed continuous mass loss. The DTG curves showed two peaks in the temperature range of 601 K to 1080 K. The corresponding DTA showed initial minor exothermic nature followed by endothermic nature up to nearly 750 K and above it showed exothermic nature. The initial exothermic nature is due to absorbed water converting to water vapor, whereas the endothermic nature states the absorption of heat by the sample up to nearly 950 K. Above nearly 950 K the exothermic nature is due to the decomposition of sample material. The absorption of heat in the endothermic region is substantiated by corresponding weight loss in TG. The thermal kinetic parameters of the CVT-grown CuInSe2 single crystals were determined employing the non-mechanistic Kissinger relation. The determined kinetic parameters support the observations of the thermo-curves.

  6. Instrument-free exothermic heating with phase change temperature control for paper microfluidic devices

    NASA Astrophysics Data System (ADS)

    Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H.

    2013-03-01

    Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free,1 low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C.

  7. Instrument-free exothermic heating with phase change temperature control for paper microfluidic devices.

    PubMed

    Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H

    2013-03-09

    Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free, low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C.

  8. Instrument-free exothermic heating with phase change temperature control for paper microfluidic devices

    PubMed Central

    Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H.

    2014-01-01

    Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free,1 low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C. PMID:25426269

  9. Micro-scale thermal imaging of CO2 absorption in the thermochemical energy storage of Li metal oxides at high temperature

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Takasu, Hiroki; Zamengo, Massimiliano; Kato, Yukitaka

    2017-05-01

    Li-Metal oxides (typical example: lithium ortho-silicate Li4SiO4) are regarded as a novel solid carbon dioxide CO2 absorbent accompanied by an exothermic reaction. At temperatures above 700°C the sorbent is regenerated with the release of the captured CO2 in an endothermic reaction. As the reaction equilibrium of this reversible chemical reaction is controllable only by the partial pressure of CO2, the system is regarded as a potential candidate for chemical heat storage at high temperatures. In this study, we applied our recent developed mobile type instrumentation of micro-scale infrared thermal imaging system to observe the heat of chemical reaction of Li4SiO4 and CO2 at temperature higher than 600°C or higher. In order to quantify the micro-scale heat transfer and heat exchange in the chemical reaction, the superimpose signal processing system is setup to determine the precise temperature. Under an ambient flow of carbon dioxide, a powder of Li4SiO4 with a diameter 50 micron started to shine caused by an exothermic chemical reaction heat above 600°C. The phenomena was accelerated with increasing temperature up to 700°C. At the same time, the reaction product lithium carbonate (Li2CO3) started to melt with endothermic phase change above 700°C, and these thermal behaviors were captured by the method of thermal imaging. The direct measurement of multiple thermal phenomena at high temperatures is significant to promote an efficient design of chemical heat storage materials. This is the first observation of the exothermic heat of the reaction of Li4SiO4 and CO2 at around 700°C by the thermal imaging method.

  10. Differential scanning calorimetry of coal

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1978-01-01

    Differential scanning calorimetry studies performed during the first year of this project demonstrated the occurrence of exothermic reactions associated with the production of volatile matter in or near the plastic region. The temperature and magnitude of the exothermic peak were observed to be strongly affected by the heating rate, sample mass and, to a lesser extent, by sample particle size. Thermal properties also were found to be influenced by oxidation of the coal sample due to weathering effects.

  11. Crystallization of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1984-01-01

    Purity constraints for reasonable solar-cell efficiency require that silicon-ribbon growth for photovoltaics occur in a regime in which constitutional supercooling or other compositional effects on the crystallization front are not important. A major consideration in the fundamentals of crystallization is the removal of the latent heat of fusion. The direction of removal, compared with the growth direction, has a major influence on the crystallization rate and the development of localized stresses. The detailed shape of the crystallization front appears to have two forms: that required for dendritic-web growth, and that occurring in all others. After the removal of the latent heat of fusion, the thermal-mechanical behavior of all ribbons appears similar within the constraints of the exothermal gradient. The technological constraints in achieving the required thermal and mechanical conditions vary widely among the growth processes.

  12. Miniature thermal matches: from nanoheaters to reactive fractals

    NASA Astrophysics Data System (ADS)

    Rebholz, Claus; Emre Gunduz, Ibrahim; Ando, Teiichi; Doumanidis, Charalabos C.

    2015-04-01

    Fine thermal actuation by miniature heat sources enables applications from electronics fabrication to tumor cauterization. This paper introduces the concept of nanoheaters, i.e., reactive bimetallic material dots (0D), ignited electrically to exothermically release precise heat amounts where and when needed. This concept is extended to nanoheater wires (1D) and foils (2D), as well as bulk nanoheaters (3D) manufactured via ball milling and ultrasonic consolidation of nickel and aluminum powders. The fractal structure of such powders and consolidates, with self-similar, multiscale Apollonian or lamellar packaging, is discovered to hold the key for their ignition sensitivity: nanoscale structures ignite first, to produce enough heat and raise the temperature of submicron formations, which then ignite microscale regions and so on; while inert areas quench and arrest the self-propagating exothermic reaction. Therefore, such engineered fractal reactive heaters lend themselves to affordable, high-throughput manufacture and controllable, safe, efficient, supplyless in situ thermal release. This can be transformative for innovations from self-healing composites and self-heating packages to underwater construction and mining.

  13. Ablation in the slit in combustion

    NASA Astrophysics Data System (ADS)

    Tairova, A. A.; Belyakov, G. V.; Chervinchuk, S. Yu.

    2017-12-01

    The understanding of the patterns of the front of exothermic reaction propagation in permeable media is necessary for a correct description of both natural and technological processes. The study of mechanisms of combustion and filtration flow in the slit consists in determining the conditions of propagation of melting waves and evaporation in a cocurrent gas flow as well the associated mass loss of the surface material. This paper presents the heat flow effect on the hydrocarbon reservoir model. The poly methyl methacrylate with the boiling point Tboil = 200°C and sublimation heat ΔHsubl = 40.29 kJ/mol was chosen as the model of the hydrocarbon layer, which on heating becomes liquid and gaseous (ethers and methyl methacrylate pairs). Heated gas flows along the slit preliminary created. The flow was maintained by a pump. The gas burner was installed at the entrance to the slit. The heat flow was constant. The impulse of gas flow and the mass loss of the material from the surface of the gap were continuously measured with scales. The pressure in the flow was controlled by the manometer.

  14. Portable exothermal energy source for disaster relief operations

    NASA Astrophysics Data System (ADS)

    Zimbeck, Walter R.

    1994-03-01

    This manuscript describes an example of transfer technology from a U.S. Government Laboratory to commercial products that meet national needs in the public safety and health care sectors. Funded by the U.S. Army, the first project is the development of a portable, non-powered food warming device for serving meals to soldiers in the field. The second project is being funded by the National Institutes of Health for development of a heat therapy device for relief from rheumatoid arthritis discomfort in the hands and other affected joints. Both of these heating devices are portable, reusable heat pack products that can be regenerated in a microwave oven or in boiling water. The knowledge developed during these two projects will be applied to many other related products. Applications in support of natural and manmade disaster relief include food warming heat packs for food service to victims and rescue workers in sustained black-out conditions, and heat pack warming blankets for emergency medical situations in which patients are in traumatic shock and the onset of hypothermia is imminent.

  15. Thermite at the Nano-Scale

    NASA Astrophysics Data System (ADS)

    Mily, Edward Joseph, Jr.

    Physical vapor deposition of thin film thermites allow for a clean avenue for probing fundamental properties of nanoenergetic materials that prove difficult for traditional powder processing. Precise control over diffusion dimensions, microstructure, and total amount of material are able to be realized with this fabrication technique and the testing of such materials provide valuable insight into how oxidation occurs. This thesis provides several examples of how existing PVD techniques can be coupled with thermite constituents to further the energetic community's understanding of how oxidation occurs in the solid state with the variation of geometric and chemical alterations. The goal of these investigations was to elucidate which material properties and mechanisms drive exothermic activity. The thermite thin films of Al/CuO, Zr/CuO, and Mg/Cuo with varied reducing metal constituents were tested under slow heating conditions. The trend of the metal variation demonstrated the importance of terminal oxide diffusion properties in either impeding or enhancing oxygen exchange. When the reducing metal forms a terminal oxide with limited oxygen diffusivity, exothermicity requires elevated activation energies to commence self-sustaining reaction. In addition to the effects of chemical variation, bilayer thicknesses were varied and found to decrease exothermic peak temperatures similar to the trends found in intermetallic thin film energetics and powder energetic materials. The thin film thermites were also subjected to extreme initiation methods via laser driven flyer plate impact ignition and high heating rate heat treatment (105 K/s). General insight into nano thermite behavior at environments characteristic of applications was sought, and similar trends discovered among slow vs rapid testing. Decreasing reaction dimensions yielded higher reactivity and diffusion barrier properties role in impacting exothermic behavior persist to into the microsecond regime. Ultimately through this work it has been shown that the process of thermite exothermicity proceeds through more than one pathway and more than the free energy of oxidation of reducing metals should be considered when describing how oxygen exchange occurs. It has been shown that these self-sustaining reactivity can be realized in the solid and.

  16. Premature detonation of an NH₄NO₃ emulsion in reactive ground.

    PubMed

    Priyananda, Pramith; Djerdjev, Alex M; Gore, Jeff; Neto, Chiara; Beattie, James K; Hawkett, Brian S

    2015-01-01

    When NH4NO3 emulsions are used in blast holes containing pyrite, they can exothermally react with pyrite, causing the emulsion to intensively heat and detonate prematurely. Such premature detonations can inflict fatal and very costly damages. The mechanism of heating of the emulsions is not well understood though such an understanding is essential for designing safe blasting. In this study the heating of an emulsion in model blast holes was simulated by solving the heat equation. The physical factors contributing to the heating phenomenon were studied using microscopic and calorimetric methods. Microscopic studies revealed the continuous formation of a large number of gas bubbles as the reaction progressed at the emulsion-pyrite interface, which made the reacting emulsion porous. Calculations show that the increase in porosity causes the thermal conductivity of a reacting region of an emulsion column in a blast hole to decrease exponentially. This large reduction in the thermal conductivity retards heat dissipation from the reacting region causing its temperature to rise. The rise in temperature accelerates the exothermic reaction producing more heat. Simulations predict a migration of the hottest spot of the emulsion column, which could dangerously heat the primers and boosters located in the blast hole. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Munteshari, Obaidallah; Lau, Jonathan; Krishnan, Atindra; Dunn, Bruce; Pilon, Laurent

    2018-01-01

    Heat generation in electric double layer capacitors (EDLCs) may lead to temperature rise and reduce their lifetime and performance. This study aims to measure the time-dependent heat generation rate in individual carbon electrode of EDLCs under various charging conditions. First, the design, fabrication, and validation of an isothermal calorimeter are presented. The calorimeter consisted of two thermoelectric heat flux sensors connected to a data acquisition system, two identical and cold plates fed with a circulating coolant, and an electrochemical test section connected to a potentiostat/galvanostat system. The EDLC cells consisted of two identical activated carbon electrodes and a separator immersed in an electrolyte. Measurements were performed on three cells with different electrolytes under galvanostatic cycling for different current density and polarity. The measured time-averaged irreversible heat generation rate was in excellent agreement with predictions for Joule heating. The reversible heat generation rate in the positive electrode was exothermic during charging and endothermic during discharging. By contrast, the negative electrode featured both exothermic and endothermic heat generation during both charging and discharging. The results of this study can be used to validate existing thermal models, to develop thermal management strategies, and to gain insight into physicochemical phenomena taking place during operation.

  18. Direct Measurements of Half-Cycle Reaction Heats during Atomic Layer Deposition by Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lownsbury, James M.; Gladden, James A.; Campbell, Charles T.

    We introduce a new high-temperature adsorption calorimeter that approaches the ideal limit of a heat detector whereby the signal at any time is proportional to the heat power being delivered to the sample and prove its sensitivity for measuring pulse-to-pulse heats of half-reactions during atomic layer deposition (ALD) at 400 K. The heat dynamics of amorphous Al2O3 growth via sequential self-limiting surface reaction of trimethylaluminum (TMA) and H2O is clearly resolved. Calibration enables quantitation of the exothermic TMA and H2O half-reactions with high precision, -343 kJ/mol TMA and -251 kJ/mol H2O, respectively. A time resolution better than 1 ms ismore » demonstrated, allowing for the deconvolution of at least two distinct surface reactions during TMA microdosing. It is further demonstrated that this method can provide the heat of reaction versus extent of reaction during each precursors half-reaction, thus providing even richer mechanistic information on the surface processes involved. The broad applicability of this novel calorimeter is demonstrated through excellent signal-to-noise ratios of less exothermic ALD half-reactions to produce TiO2 and MnO.« less

  19. Solid-Solid Phase Transition Kinetics of FOX-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A K; Weese, R K; Wang, R

    Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. This paper will present our results for the phase changes of FOX-7 using DSC and HFC (Heat Flow Calorimetry). DSC thermal curves recorded at linear heating rates of 0.10, 0.35 and 1.0 C min{sup -1} show two endothermic peaks and two exothermic peaks. The two endothermic peaks represent solid-solid phase transitions, which have been observed in the literature at 114 C ({beta}-{gamma}) and 159 C ({gamma}-{delta}) by both DSC and XPD (X-ray powder diffraction) measurements. The first transitionmore » shifts from 114.5 to 115.8 C as the heating rate increases from 0.10 to 1.0 C min{sup -1}, while the second transition shifts from 158.5 to 160.4 C. Cyclical heating experiments show the endotherms and exotherms for a first heating through the {gamma} phase to the {delta} phase, a cooling and reversion to the {alpha} or {beta} phase, and a second heating to the {gamma} and {delta} phases. The data are interpreted using kinetic models with thermodynamic constraints.« less

  20. Direct Measurements of Half-Cycle Reaction Heats during Atomic Layer Deposition by Calorimetry

    DOE PAGES

    Lownsbury, James M.; Gladden, James A.; Campbell, Charles T.; ...

    2017-10-05

    We introduce a new high-temperature adsorption calorimeter that approaches the ideal limit of a heat detector whereby the signal at any time is proportional to the heat power being delivered to the sample and prove its sensitivity for measuring pulse-to-pulse heats of half-reactions during atomic layer deposition (ALD) at 400 K. The heat dynamics of amorphous Al2O3 growth via sequential self-limiting surface reaction of trimethylaluminum (TMA) and H2O is clearly resolved. Calibration enables quantitation of the exothermic TMA and H2O half-reactions with high precision, -343 kJ/mol TMA and -251 kJ/mol H2O, respectively. A time resolution better than 1 ms ismore » demonstrated, allowing for the deconvolution of at least two distinct surface reactions during TMA microdosing. It is further demonstrated that this method can provide the heat of reaction versus extent of reaction during each precursors half-reaction, thus providing even richer mechanistic information on the surface processes involved. The broad applicability of this novel calorimeter is demonstrated through excellent signal-to-noise ratios of less exothermic ALD half-reactions to produce TiO2 and MnO.« less

  1. Solution Calorimetry Experiments for Physical Chemistry.

    ERIC Educational Resources Information Center

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.H.

    This paper reports on a ceramic joining technique that has been developed that utilizes an exothermic combustion reaction to simultaneously synthesize the joint interlayer material and to bond together the ceramic workpieces. The method has been used to join SiC ceramics using Ti-C-Ni powder mixtures that ignite below 1200{degrees} C to form a TiC-Ni joining material. Thin layers of the powder reactants were prepared by tape casting, and joining was accomplished by heating in a hot-press to ignite the combustion reaction. during this process, localized exothermic heating of the joint region resulted in chemical interaction at the interface between themore » TiC-Ni and the SiC ceramic that contributed to bonding. Room-temperature four-point bending strengths of joints produced by this method have exceeded 100 MPa.« less

  3. Self-heating of dried industrial tannery wastewater sludge induced by pyrophoric iron sulfides formation.

    PubMed

    Bertani, R; Biasin, A; Canu, P; Della Zassa, M; Refosco, D; Simionato, F; Zerlottin, M

    2016-03-15

    Similarly to many powders of solids, dried sludge originated from tannery wastewater may result in a self-heating process, under given circumstances. In most cases, it causes a moderate heating (reaching 70-90°C), but larger, off-design residence times in the drier, in a suboxic atmosphere, extremely reactive solids can be produced. Tannery waste contains several chemicals that mostly end up in the wastewater treatment sludge. Unexpected and uncontrolled self heating could lead to a combustion and even to environmental problems. Elaborating on previous studies, with the addition of several analytical determinations, before and after the self-heating, we attempted to formulate a mechanism for the onset of heating. We demonstrated that the system Fe/S/O has been involved in the process. We proved that the formation of small quantities of pyrophoric iron sulfides is the key. They are converted to sulfated by reaction with water and oxygen with exothermic processes. The pyrite/pyrrhotite production depends on the sludge drying process. The oxidation of sulfides to oxides and sulfates through exothermic steps, reasonably catalyzed by metals in the sludge, occurs preferentially in a moist environment. The mechanism has been proved by reproducing in the laboratory prolonged heating under anoxic/suboxic atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes.

    PubMed

    Wu, Tangqin; Chen, Haodong; Wang, Qingsong; Sun, Jinhua

    2018-02-15

    The thermal stability evaluation of materials in a soft-pack commercial cell is tested using C80 calorimeter, including anode, cathode, separator and full cell (mixing of the three materials including additional electrolyte). Thermal runaway characteristic of the commercial cell is tested on the accelerating rate calorimeter (ARC) with two heating modes, including internal heating mode and external heating mode. The results show that the thermal stability of internal material for tested cell follows the below order: anode

  5. Self-degradable Slag/Class F Fly Ash-Blend Cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Warren, J.; Butcher, T.

    2011-03-01

    Self-degradable slag/Class F fly ash blend pozzolana cements were formulated, assuming that they might serve well as alternative temporary fracture sealers in Enhanced Geothermal System (EGS) wells operating at temperatures of {ge} 200 C. Two candidate formulas were screened based upon material criteria including an initial setting time {ge} 60 min at 85 C, compressive strength {ge} 2000 psi for a 200 C autoclaved specimen, and the extent of self-degradation of cement heated at {ge} 200 C for it was contacted with water. The first screened dry mix formula consisted of 76.5 wt% slag-19.0 wt% Class F fly ash-3.8 wt%more » sodium silicate as alkali activator, and 0.7 wt% carboxymethyl cellulose (CMC) as the self-degradation promoting additive, and second formula comprised of 57.3 wt% slag, 38.2 wt% Class F fly ash, 3.8 wt% sodium silicate, and 0.7 wt% CMC. After mixing with water and autoclaving it at 200 C, the aluminum-substituted 1.1 nm tobermorite crystal phase was identified as hydrothermal reaction product responsible for the development of a compressive strength of 5983 psi. The 200 C-autoclaved cement made with the latter formula had the combined phases of tobermorite as its major reaction product and amorphous geopolymer as its minor one providing a compressive strength of 5271 psi. Sodium hydroxide derived from the hydrolysis of sodium silicate activator not only initiated the pozzolanic reaction of slag and fly ash, but also played an important role in generating in-situ exothermic heat that significantly contributed to promoting self-degradation of cementitious sealers. The source of this exothermic heat was the interactions between sodium hydroxide, and gaseous CO{sub 2} and CH{sub 3}COOH by-products generated from thermal decomposition of CMC at {ge} 200 C in an aqueous medium. Thus, the magnitude of this self-degradation depended on the exothermic temperature evolved in the sealer; a higher temperature led to a sever disintegration of sealer. The exothermic temperature was controlled by the extent of thermal decomposition of CMC, demonstrating that CMC decomposed at higher temperature emitted more gaseous reactants. Hence, such large emission enhanced the evolution of in-situ exothermic heat. In contrast, the excessive formation of geopolymer phase due to more incorporation of Class F fly ash into this cementitious system affected its ability to self-degrade, reflecting that there was no self-degradation. The geopolymer was formed by hydrothermal reactions between sodium hydroxide from sodium silicate and mullite in Class F fly ash. Thus, the major reason why geopolymer-based cementitiuos sealers did not degrade after heated sealers came in contact with water was their lack of free sodium hydroxide.« less

  6. Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment

    ERIC Educational Resources Information Center

    Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.

    2008-01-01

    A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…

  7. Abstracts, Third Space Processing Symposium, Skylab results

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Skylab experiments results are reported in abstracts of papers presented at the Third Space Processing Symposium. Specific areas of interest include: exothermic brazing, metals melting, crystals, reinforced composites, glasses, eutectics; physics of the low-g processes; electrophoresis, heat flow, and convection demonstrations flown on Apollo missions; and apparatus for containerless processing, heating, cooling, and containing materials.

  8. A Unified Theory of Solid Propellant Ignition. Part 3. Computer Solutions

    DTIC Science & Technology

    1975-12-01

    characteristics of the sol«.tU.n were examined: (1) the time (t ) to attain zero surface chemical heating (endothermic heat of pyroly - sis equal to exothermic... pyrolys .3 ictivation ener- gies can be and stiil permit ignition when both pyrolyses are endothermic has not been determined. The jnly systematic

  9. Coupling of exothermic and endothermic hydrogen storage materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Bowden, Mark E.; Karkamkar, Abhijeet J.

    2016-08-01

    Chemical hydrogen storage (CHS) materials are a high-storage-density alternative to the gaseous compressed hydrogen currently used to provide hydrogen for fuel cell vehicles. One of the challenges of CHS materials is addressing the thermodynamic and kinetic barriers required to break the chemical bonds and release the hydrogen. Coupling CHS reactions that are endothermic and exothermic during the dehydrogenation can improve the system on-board energy efficiency and thermal control, making such materials viable. Acceptable coupling between reactions requires both thermodynamic and kinetics considerations. Models were developed to predict the reaction enthalpy and rate required to achieve high conversions for both reactionsmore » based on experimental measurements. These modeling results show that the efficiency of coupling of an exothermic and endothermic reaction is more sensitive the magnitude of the ratio of the exothermic and endothermic enthalpies than the ratio of the rates of the two steps. The modeling shows further that a slower rate of the endothermic step is desirable to permit sufficient heating of the reactor by the exothermic step. We look at two examples of a sequential and parallel reaction scheme and provide some of the first insight into the required temperature range to maximize the H2 release from 1,2-BN cyclohexane and indoline.« less

  10. Detection of cocrystal formation based on binary phase diagrams using thermal analysis.

    PubMed

    Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide

    2013-01-01

    Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.

  11. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  12. New local joining technique for metal materials using exothermic heat of Al/Ni multilayer powder

    NASA Astrophysics Data System (ADS)

    Izumi, Taisei; Kametani, Nagamasa; Miyake, Shugo; Kanetsuki, Shunsuke; Namazu, Takahiro

    2018-06-01

    The use of Al/Ni multilayer powders as a new heat source has been expected for metal joining technique owing to their instantaneous reaction and enormous amount of exothermic heat. In this study, the effects of the amount of Al/Ni multilayer powders on the electrical and mechanical properties of the joining part of Al strip specimens were examined. These electrical and mechanical properties were estimated by electric resistivity measurement using the four-terminal method and shear test, respectively. Experimental results show that Al specimens are successful joined under a limited condition and exhibit low electrical resistance and sufficiently high strength to maintain the joined state. However, overheating increases the amount of Al/Ni multilayer powder in the joined part, which causes considerable damage such as voids and dissolved loss. It is found that optimization of the amount of Al/Ni multilayer powder enables us to realize reliable joining of Al foils in electronics fields in the future.

  13. Synthesis, Characterization, and Thermal Behavior of Ni3(PO4)2·8H2O·Na3PO4·3.5H2O·0.75Na2SO4

    NASA Astrophysics Data System (ADS)

    Swain, Trilochan; Brahma, Gouri Sankhar

    2018-02-01

    A mixture of anhydrous sodium sulfate, hydrated nickel phosphate, and sodium phosphate has been synthesized and various techniques used to characterize it. Differential scanning calorimetry was used to investigate the thermal properties in both O2 and N2 atmosphere at rate of 10 K min-1. The specific heat capacity was calculated from 298 K to 573 K and vice versa in two thermal cycles in both atmospheres, revealing values of 18,931.64 J kg-1 K-1 in O2 atmosphere and 15,568.39 J kg-1 K-1 in N2 atmosphere in the second thermal cycle, being exothermic in nature in both cases. This exothermic behavior of the mixture indicates its potential use as a heat-dissipating material. The crystallite size of this inorganic heat-dissipating mixture was found to be 22.9 nm.

  14. Improved hydrocracker temperature control: Mobil quench zone technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarli, M.S.; McGovern, S.J.; Lewis, D.W.

    1993-01-01

    Hydrocracking is a well established process in the oil refining industry. There are over 2.7 million barrels of installed capacity world-wide. The hydrocracking process comprises several families of highly exothermic reactions and the total adiabatic temperature rise can easily exceed 200 F. Reactor temperature control is therefore very important. Hydrocracking reactors are typically constructed with multiple catalyst beds in series. Cold recycle gas is usually injected between the catalyst beds to quench the reactions, thereby controlling overall temperature rise. The design of this quench zone is the key to good reactor temperature control, particularly when processing poorer quality, i.e., highermore » heat release, feeds. Mobil Research and Development Corporation (MRDC) has developed a robust and very effective quench zone technology (QZT) package, which is now being licensed to the industry for hydrocracking applications.« less

  15. Thermodynamic analysis of Bacillus subtilis endospore protonation using isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Harrold, Zoë R.; Gorman-Lewis, Drew

    2013-05-01

    Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.

  16. Integrated Fuel Cell/Coal Gasifier

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.

    1985-01-01

    Powerplant design with low-temperature coal gasifier coupled to highly-exothermic fuel cell for efficient production of dc power eliminates need for oxygen in gasifier and achieves high fuel efficiency with recycling of waste heat from fuel cell.

  17. Exothermic furnace module development. [space processing

    NASA Technical Reports Server (NTRS)

    Darnell, R. R.; Poorman, R. M.

    1982-01-01

    An exothermic furnace module was developed to rapidly heat and cool a 0.820-in. (2.1 cm) diameter by 2.75-in. (7.0 cm) long TZM molybdenum alloy crucible. The crucible contains copper, oxygen, and carbon for processing in a low-g environment. Peak temperatures of 1270 C were obtainable 3.5 min after start of ignition, and cooling below 950 C some 4.5 min later. These time-temperature relationships were conditioned for a foam-copper experiment, Space Processing Applications Rocket experiment 77-9, in a sounding rocket having a low-g period of 5 min.

  18. Atomistic simulations of shock-induced alloying reactions in Ni /Al nanolaminates

    NASA Astrophysics Data System (ADS)

    Zhao, Shijin; Germann, Timothy C.; Strachan, Alejandro

    2006-10-01

    We employ molecular dynamics simulations with a first principles-based many body potential to characterize the exothermic alloying reactions of nanostructured Ni /Al multilayers induced by shock loading. We introduce a novel technique that captures both the initial shock transit as well as the subsequent longer-time-scale Ni3Al alloy formation. Initially, the softer Al layers are shock heated to a higher temperature than the harder Ni layers as a result of a series of shock reflections from the impedance-mismatched interfaces. Once initiated, the highly exothermic alloying reactions can propagate in a self-sustained manner by mass and thermal diffusion. We also characterize the role of voids on the initiation of alloying. The interaction of the shock wave with the voids leads not only to significant local heating (hot spots) but also directly aids the intermixing between Al and Ni; both of these phenomena contribute to a significant acceleration of the alloying reactions.

  19. Students’ conceptions and problem-solving ability on topic chemical thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diawati, Chansyanah, E-mail: chansyanahd@yahoo.com

    The enthalpy concept and its change were introduced to describe the forms of internal energy transfer in chemical reactions. Likewise, the concepts of exothermic and endothermic reactions introduced as a consequence of heat transfer form. In the heat measurement process at constant pressure, work is often ignored. The exothermic or endothermic reactions, usually only based on the increase or decrease of the reaction temperature, without associated with the internal energy. Depictions of enthalpy and its change assumed closely related to students’ problem-solving ability. Therefore, the study to describe pre-service chemistry teacher student’s conceptions and problem-solving ability on topic chemical thermodynamicsmore » has been done. This research was a case study of chemical education course in Provinsi Lampung. The subjects of this study were 42 students who attend the chemical thermodynamics course. Questions about exothermic and endothermic reactions, enthalpy and its change, as well as internal energy and its change were given in the form of an essay exam questions. Answers related to conception qualitatively categorized, while problem solving answers were scored and assessed. The results showed that, in general, students were having problems in enthalpy and describe the changes in the form of heat and work. The highest value of problem solving ability obtained 26.67 from the maximum value of 100. The lowest value was 0, and the average value was 14.73. These results show that the problem-solving ability of pre-service chemistry teacher students was low. The results provide insight to researchers, and educators to develop learning or lab work on this concept.« less

  20. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  1. 21 CFR 178.3910 - Surface lubricants used in the manufacture of metallic articles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 10 minutes. (The reaction between the sulfoxide and the acid is exothermic. Release pressure after...,” above) until siphon action occurs and then refill the tube body. Supply heat to the boiling flask and...

  2. A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

    PubMed Central

    Kobashi, Makoto; Kanetake, Naoyuki

    2009-01-01

    The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

  3. Joining of parts via magnetic heating of metal aluminum powders

    DOEpatents

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  4. Thermodynamics of phenanthrene partition into solid organic matter from water.

    PubMed

    Chen, Bao-liang; Zhu, Li-zhong; Tao, Shu

    2005-01-01

    The thermodynamic behavior of organic contaminants in soils is essential to develop remediation technologies and assess risk from alternative technologies. Thermodynamics of phenanthrene partition into four solids(three soils and a bentonite) from water were investigated. The thermodynamics parameters (deltaH, deltaG degrees, deltaS degrees) were calculated according to experimental data. The total sorption heats of phenanthrene to solids from water ranged from -7.93 to -17.1 kJ/mol, which were less exothermic than the condensation heat of phenanthrene-solid (i.e., -18.6 kJ/mol). The partition heats of phenanthrene dissolved into solid organic matter ranged from 23.1 to 32.2 kJ/mol, which were less endothermic than the aqueous dissolved heat of phenanthrene (i.e., 40.2 kJ/mol), and were more endothermic than the fusion heat of phenanthrene-solid (i.e., 18.6 kJ/mol). The standard free energy changes, deltaG degrees, are all negative which suggested that phenanthrene sorption into solid was a spontaneous process. The positive values of standard entropy changes, deltaS degrees, show a gain in entropy for the transfer of phenanthrene at the stated standard state. Due to solubility-enhancement of phenanthrene, the partition coefficients normalized by organic carbon contents decrease with increasing system temperature (i.e., ln Koc = -0.284 ln S + 9.82 (n = 4, r2 = 0.992)). The solubility of phenanthrene in solid organic matter increased with increasing temperatures. Transports of phenanthrene in different latitude locations and seasons would be predicted according to its sorption thermodynamics behavior.

  5. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.

    PubMed

    Gutmann, Bernhard; Cantillo, David; Kappe, C Oliver

    2015-06-01

    In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nitrogen dioxide produced by self-sustained pyrolysis of nitrous oxide

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.

    1965-01-01

    Apparatus is developed for achieving continuous self-sustaining pyrolysis reaction in the production of nitrogen dioxide from nitrous oxide. The process becomes self-sustaining because of the exothermic reaction and the regenerative heating of the gases in the pyrolysis chamber.

  7. Coupling of exothermic and endothermic reactions in oxidative conversion of natural gas into ethylene/olefins over diluted SrO/La{sub 2}O{sub 3}/SA5205 catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Mulla, S.A.R.

    1997-09-01

    In the oxidative conversion of natural gas to ethylene/lower olefins over SrO (17.3 wt.%)/La{sub 2}O{sub 3} (17.9 wt.%)/SA5205 catalyst diluted with inert solid particles (inerts/catalyst(w/w) = 2.0) in the presence of limited O{sub 2}, the exothermic oxidative conversion reactions of natural gas are coupled with the endothermic C{sub 2+} hydrocarbon thermal cracking reactions for avoiding hot spot formation and eliminating heat removal problems. Because of this, the process is operated in the most energy-efficient and safe manner. The influence of various process variables (viz. temperature, NG/O{sub 2} and steam/NG ratios in feed, and space velocity) on the conversion of carbonmore » and also of the individual hydrocarbons in natural gas, the selectivity for C{sub 2}-C{sub 4} olefins, and also on the net heat of reactions in the process has been thoroughly investigated. By carrying out the process at 800--850 C in the presence of steam (H{sub 2}O/NG {le} 0.2) and using limited O{sub 2} in the feed (NG/O{sub 2} = 12--18), high selectivity for ethylene (about 60%) or C{sub 2}-C{sub 4} olefins (above 80%) at the carbon conversion (>15%) of practical interest could be achieved at high space velocity ({ge}34,000 cm{sup 3}/g (catalyst) h), requiring no external energy and also without forming coke or tar-like products. The net heat of reactions can be controlled and the process can be made mildly exothermic or even close to thermoneutral by manipulating the O{sub 2} concentration in the feed.« less

  8. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOEpatents

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  9. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery

    PubMed Central

    Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng

    2017-01-01

    This study addresses the effects of the SOC (State of Charge) and the charging–discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging. PMID:28772588

  10. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery.

    PubMed

    Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng

    2017-02-25

    This study addresses the effects of the SOC (State of Charge) and the charging-discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging.

  11. An Analysis of Bore Surface Temperatures in Electrothermal-Chemical Guns

    DTIC Science & Technology

    1991-10-01

    bore surface. As the fluid is heated by the combustion gases, it is assumed to vaporize at its critical temperature and to be swept into the gas flow...subsequently vaporizes as it reaches its critical temperature. However, two questions are pertinent: 1) Can the thermal properties of the working fluid... critical temperature, 647.3 K, mixtures containing hydrogen peroxide or methanol decompose exothermically, that is, with the liberation of heat

  12. Hyperquenched hyaloclastites from Axial Seamount

    NASA Astrophysics Data System (ADS)

    Zezin, D.; Helo, C.; Richard, D.; Clague, D. A.; Dingwell, D. B.; Stix, J.

    2009-12-01

    We determined apparent cooling rates for basaltic hyaloclastites from Axial caldera, Juan de Fuca Ridge. Samples originate from different stratigraphic layers within the unconsolidated volcaniclastic sequences, on flanks of the volcanic edifice. Water depth is ~1400 m below sea level. The hyaloclastite glass fragments comprise two principal morphologies: (1) angular fragments, and (2) thin glassy melt films interpreted as bubble walls, called deep-sea limu o Pele. A natural cooling rate was estimated for each sample of ~50 carefully selected glass shards. The heat capacity was first measured with a differential scanning calorimeter in two heating scans with heating rates of 20 K/min, and a matching cooling rate between those scans. The fictive temperatures Tf were then determined from both heating cycles, and the natural cooling rate derived by the non-Arrhenian relationship between Tf and cooling rate. All samples display hyperquenched states, manifested in a strong exothermic energy release during the initial heating cycle before reaching the glass transition. Cooling rates range from 10 6.73 K/s to 10 3.94 K/s for the limu, and 10 4.92 K/s to 10 2.34 K/s for the angular fragments. Almost all samples of limu shards show elevated cooling rates compared to their angular counterparts of comparable grain mass. In addition, the exothermic part of the enthalpy curves reveal two superimposed relaxation domains, the main broad exothermal peak, ranging from ~350 K to the onset of the glass transition, and a small subordinate peak/shoulder occurring between 550 K and 700 K. The magnitude of the latter varies from clearly identifiable to nearly absent, and tends to be more pronounced in curves obtained from angular fragments. The main exothermal peak is related to the frozen-in structure of the glass and consequently to its thermal history when passing through the glass transition. The subordinate peak may represent strain rate-induced and tensile stress accumulation-induced excess enthalpy. It could reveal certain aspects of the mechanical history of the fragments, and may imply flow at the onset of the viscoelastic regime in order to allow for stress-accumulation. The quench rates of the investigated hyaloclastites slightly exceed the limits of hyperquenched glass documented form Loihi Seamount, and are significantly higher than those of glassy pillow or sheet lava rims. Such short cooling timescales may only be achieved by fragmentation-coupled quenching, which allows for efficient heat conduction. This range of cooling rates spanning several orders of magnitude points towards a dynamic eruption environment with the possibility of multiple processes influencing cooling rates. The two types of glass shards may have experienced slightly different mechanical histories prior to quenching. Based on an interpretation of stress accumulation, strain rates are close to those necessary for the onset of non-Newtonian behaviour. To match the requirements of a dynamic environment with efficient fragmentation, rapid cooling, and high strain rates, we propose that the hyaloclastites are products of an explosive eruption environment.

  13. Effect of cyclophosphamide on the solid form of mannitol during lyophilization.

    PubMed

    Patel, Krupaliben; Munjal, Bhushan; Bansal, Arvind K

    2017-04-01

    Mannitol is a commonly used bulking agent in lyophilized formulations. It can crystallize into multiple solid forms during lyophilization thereby exhibiting phase heterogeneity and variability in product performance. In this manuscript, we studied the effect of cyclophosphamide (CPA), an anticancer drug, on the solid form of mannitol during lyophilization from aqueous solutions. Freeze-concentration studies were performed in the DSC while lyophilization was performed in a lab scale freeze dryer. DSC experiments revealed two-stage crystallization of mannitol (1.5% w/v) during freeze-concentration, evident as two distinct exothermic events (at -18.2°C and -30°C) in the cooling curve. This was complemented by two eutectic melting endotherms in the subsequent heating curve. Addition of CPA (4.0% w/v) completely inhibited the exotherm at -18.2°C, but enhanced the enthalpy of exotherm at -30°C by five folds. Likewise, only one eutectic melting endotherm was observed in the subsequent heating curve. Lyophilization of the solution containing only mannitol, yielded a mixture of β- (major) and δ- (minor) polymorphs of mannitol. However, in the presence of CPA, only δ-polymorph was observed in the lyophilized sample. This selective favoring of the metastable δ-polymorph over the stable β-polymorph, was explained by altered freezing kinetics of the solution in presence of CPA. The study provides mechanistic insights into solute crystallization behaviour during lyophilization of multi-component systems. Copyright © 2017. Published by Elsevier B.V.

  14. Construction Materials for Coastal Structures.

    DTIC Science & Technology

    1983-02-01

    resistance. It is also easier to prepare the modified sulfur using the mixed modifier. The reaction of DCPD with sulfur is exothermic, and care must be...prevent dusting, the fine material can be mixed with the modified sulfur before it is added to the heated aggregate in the mixer. (4) Properties and

  15. 40 CFR 63.1256 - Standards: Wastewater.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combination of the approaches in paragraphs (a)(1)(i) and (ii) of this section for different affected... tank are heated, treated by means of an exothermic reaction, or sparged, during which time the owner or...) at all times that the wastewater tank contains affected wastewater or residual removed from affected...

  16. 40 CFR 63.1256 - Standards: Wastewater.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use a combination of the approaches in paragraphs (a)(1)(i) and (ii) of this section for different... tank are heated, treated by means of an exothermic reaction, or sparged, during which time the owner or...) at all times that the wastewater tank contains affected wastewater or residual removed from affected...

  17. 40 CFR 63.1256 - Standards: Wastewater.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use a combination of the approaches in paragraphs (a)(1)(i) and (ii) of this section for different... tank are heated, treated by means of an exothermic reaction, or sparged, during which time the owner or...) at all times that the wastewater tank contains affected wastewater or residual removed from affected...

  18. Low-cost directionally-solidified turbine blades, volume 1

    NASA Technical Reports Server (NTRS)

    Sink, L. W.; Hoppin, G. S., III; Fujii, M.

    1979-01-01

    A low cost process of manufacturing high stress rupture strength directionally-solidified high pressure turbine blades was successfully developed for the TFE731-3 Turbofan Engine. The basic processing parameters were established using MAR-M 247 and employing the exothermic directional-solidification process in trial castings of turbine blades. Nickel-based alloys were evaluated as directionally-solidified cast blades. A new turbine blade, disk, and associated components were then designed using previously determined material properties. Engine tests were run and the results were analyzed and compared to the originally established goals. The results showed that the stress rupture strength of exothermically heated, directionally-solidified MAR-M 247 turbine blades exceeded program objectives and that the performance and cost reduction goals were achieved.

  19. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    NASA Technical Reports Server (NTRS)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  20. Cyclic process for producing methane from carbon monoxide with heat removal

    DOEpatents

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  1. Cyclic process for producing methane in a tubular reactor with effective heat removal

    DOEpatents

    Frost, Albert C.; Yang, Chang-Lee

    1986-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  2. Thermo-stoichiometric behavior of aluminum-nickel nanoheater particles fabricated by galvanic replacement reaction

    NASA Astrophysics Data System (ADS)

    Buckley, Jacqueline L.

    2010-03-01

    Al-Ni reactive nano-structures are gaining interest for various applications in aerospace, nano-manufacturing, and biomedical fields. However, nano-material behavior can vary from macro-scale. There has been no systematic study of Al-Ni exothermic reaction and intermetallic formation for nano-scale reactants. Therefore, this study aims to investigate deviations from the established Al-Ni phase diagram, with the premise that the intermetallic formation temperatures are expected to be lower for nano-reactants due to higher surface energy. Additionally, it is important to gain better understanding and control of the galvanic replacement reaction (GRR) fabrication method, which, in terms of producing Al-Ni bi-metallic nanoparticles, is a completely novel scheme. With an adapted phase diagram, intermetallic product and heat output of nanoparticles from any given stage of GRR process can be predicted. Al-Ni nanoparticles having ignitable Al-Ni ratios were fabricated via GRR method. Effects of composition and temperature on intermetallic formation were studied by in-situ XRD analysis. Effects of environment and heating rate on the Al-Ni exothermic reaction were also investigated.

  3. Synthesis of Nano-Polycrystalline Synroc-B Powders as a High Level Radioactive Wastes Ceramic Forms by a Solution Combustion Synthesis.

    PubMed

    Han, Young-Min; Lee, Sang-Jin; Kim, Yeon-Ku; Jung, Choong-Hwan

    2016-02-01

    Synroc (Synthetic Rock) consists of four main titanate phases: peroveskite (CaTiO3), zirconolite (CaZrTi2O7), hollandite (BaAl2Ti6O16) and rutile (TiO2). Nano-polycrystalline synroc powders were made by a synthesis combustion process. The combustion process, an externally initiated reaction is self-sustained owing to the exothermic reaction. A significant volume of gas is evolved during the combustion reaction and leads to loosely agglomerated powders. This exothermic reaction provides necessary heat to further carry the reaction in forward direction to produce nanocrystalline powders as the final product. Glycine is used as a fuel, being oxidized by nitrate ions. It is inexpensive, has high energy efficiency, fast heating rates, short reaction times and high compositional homogeneity. In this study, combustion synthesis of nano-sized synroc-B powder is introduced. The fabrication of synroc-B powder result of observation XRD were prepared for polycrystalline (perovskite, zirconolite, hollandite, rutile) structures. The characterization of the synthesized powders is conducted by using XRD, SEM/EDS and TEM.

  4. hcp-Co nanowires grown on metallic foams as catalysts for the Fischer-Tropsch synthesis.

    PubMed

    Soulantica, Katerina; Harmel, Justine; Peres, Laurent; Estrader, Marta; Berliet, Adrien; Maury, Sylvie; Fécant, Antoine; Chaudret, Bruno; Serp, Philippe

    2018-06-12

    The possibility to control the structural characteristics of the active phase of supported catalysts offers the opportunity to improve catalyst performance, especially in structure sensitive catalytic reactions. In parallel, heat management is of critical importance for the catalytic performance in highly endo- or exothermic reactions. The Fisher-Tropsch synthesis (FTS) is a structure sensitive exothermic reaction, which enables catalytic transformation of syngas to high quality liquid fuels. We have elaborated monolithic cobalt based heterogeneous catalysts through a wet chemistry approach that allows control over nanocrystal shape and crystallographic phase, while at the same time enables heat management. Copper and nickel foams have been employed as supports for the epitaxial growth of hcp-Co nanowires, directly from a solution containing a coordination compound of cobalt and stabilizing ligands. The Co/Cufoam catalyst has been tested for the Fischer-Tropsch synthesis in fixed bed reactor, showing stability, and significantly superior activity and selectivity towards C5+ compared to a Co/SiO2-Al2O3 reference catalyst under the same conditions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An experimental study of ammonia borane based hydrogen storage systems

    NASA Astrophysics Data System (ADS)

    Deshpande, Kedaresh A.

    2011-12-01

    Hydrogen is a promising fuel for the future, capable of meeting the demands of energy storage and low pollutant emission. Chemical hydrides are potential candidates for chemical hydrogen storage, especially for automobile applications. Ammonia borane (AB) is a chemical hydride being investigated widely for its potential to realize the hydrogen economy. In this work, the yield of hydrogen obtained during neat AB thermolysis was quantified using two reactor systems. First, an oil bath heated glass reactor system was used with AB batches of 0.13 gram (+/- 0.001 gram). The rates of hydrogen generation were measured. Based on these experimental data, an electrically heated steel reactor system was designed and constructed to handle up to 2 grams of AB per batch. A majority of components were made of stainless-steel. The system consisted of an AB reservoir and feeder, a heated reactor, a gas processing unit and a system control and monitoring unit. An electronic data acquisition system was used to record experimental data. The performance of the steel reactor system was evaluated experimentally through batch reactions of 30 minutes each, for reaction temperatures in the range from 373 K to 430 K. The experimental data showed exothermic decomposition of AB accompanied by rapid generation of hydrogen during the initial period of the reaction. 90% of the hydrogen was generated during the initial 120 seconds after addition of AB to the reactor. At 430 K, the reaction produced 12 wt.% of hydrogen. The heat diffusion in the reactor system and the process of exothermic decomposition of AB were coupled in a two-dimensional model. Neat AB thermolysis was modeled as a global first order reactions based on Arrhenius theory. The values of equation constants were derived from curve fit of experimental data. The pre-exponential constant and the activation energy were estimated to be 4 s-1 (+/- 0.4 s-1) and 13000 J mol -1 s-1 (+/- 1050 J mol-1 s -1) respectively. The model was solved in COMSOL Multiphysics. The model was capable of simulating the transient response of the system and captured the observed trends such as the decrease in reactor temperature upon addition of AB and exothermic decomposition.

  6. A Demonstration of Le Chatelier’s Principle on the Nanoscale

    PubMed Central

    2017-01-01

    Photothermal desorption of molecules from plasmonic nanoparticles is an example of a light-triggered molecular release due to heating of the system. However, this phenomenon ought to work only if the molecule–nanoparticle interaction is exothermic in nature. In this study, we compare protein adsorption behavior onto gold nanoparticles for both endothermic and exothermic complexation reactions, and demonstrate that Le Chatelier’s principle can be applied to predict protein adsorption or desorption on nanomaterial surfaces. Polyelectrolyte-wrapped gold nanorods were used as adsorption platforms for two different proteins, which we were able to adsorb/desorb from the nanorod surface depending on the thermodynamics of their interactions. Furthermore, we show that the behaviors hold up under more complex biological environments such as fetal bovine serum. PMID:29104926

  7. Influence of exothermic chemical reactions on laser-induced shock waves.

    PubMed

    Gottfried, Jennifer L

    2014-10-21

    Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.

  8. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    NASA Astrophysics Data System (ADS)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  9. 40 CFR 63.2485 - What requirements must I meet for wastewater streams and liquid streams in open systems within an...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Pollutants: Miscellaneous Organic Chemical Manufacturing Emission Limits, Work Practice Standards, and... be if the contents of the wastewater tank were not heated, treated by an exothermic reaction, or... uses the term “chemical manufacturing process unit,” the term “MCPU” applies for the purposes of this...

  10. 49 CFR 173.124 - Class 4, Divisions 4.1, 4.2 and 4.3-Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... exothermic decomposition even without participation of oxygen (air). A material is excluded from this...: (1) Its heat of decomposition is less than 300 J/g; or (2) Its self-accelerating decomposition... decomposition temperature is 50 °C (122 °F) or higher for a 50 kg (110 pounds) package). A self-reactive...

  11. Ambient cure polyimide foams prepared from aromatic polyisocyanates, aromatic polycarboxylic compounds, furfuryl alcohol, and a strong inorganic acid

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Riccitiello, Salvatore R. (Inventor); Hamermesh, Charles L. (Inventor)

    1980-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, e.g., pyromellitic dianhydride, with an aromatic polyisocyanate, e.g., polymethylene polyphenylisocyanate (PAPI) in the presence of an inorganic acid and a lower molecular weight alcohol, e.g., dilute sulfuric acid or phosphoric acid and furfuryl alcohol. The exothermic reaction between the acid and the alcohol provides the heat necessary for the other reactants to polymerize without the application of any external heat. Such mixtures, therefore, are ideally suited for in situ foam formation, especially where the application of heat is not practical or possible.

  12. Solid State Carbon Monoxide Sensor

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Wood, George M. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); DAmbrosia, Christine M. (Inventor)

    1999-01-01

    A means for detecting carbon monoxide which utilizes an un-heated catalytic material to oxidize carbon monoxide at ambient temperatures. Because this reaction is exothermic, a thermistor in contact with the catalytic material is used as a sensing element to detect the heat evolved as carbon monoxide is oxidized to carbon dioxide at the catalyst surface, without any heaters or external heating elements for the ambient air or catalytic element material. Upon comparison to a reference thermistor, relative increases in the temperature of the sensing thermistor correspond positively with an increased concentration of carbon monoxide in the ambient medium and are thus used as an indicator of the presence of carbon monoxide.

  13. Influence of uranium hydride oxidation on uranium metal behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N.; Hambley, D.; Clarke, S.A.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less

  14. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Scott; Bridgewater, Jon S; Ward, John W

    2010-01-01

    Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.

  15. Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions

    PubMed Central

    Loutzenhiser, Peter G.; Meier, Anton; Steinfeld, Aldo

    2010-01-01

    This article provides a comprehensive overview of the work to date on the two‑step solar H2O and/or CO2 splitting thermochemical cycles with Zn/ZnO redox reactions to produce H2 and/or CO, i.e., synthesis gas—the precursor to renewable liquid hydrocarbon fuels. The two-step cycle encompasses: (1) The endothermic dissociation of ZnO to Zn and O2 using concentrated solar energy as the source for high-temperature process heat; and (2) the non-solar exothermic oxidation of Zn with H2O/CO2 to generate H2/CO, respectively; the resulting ZnO is then recycled to the first step. An outline of the underlying science and the technological advances in solar reactor engineering is provided along with life cycle and economic analyses. PMID:28883361

  16. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.

    2014-01-28

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B{sub 2}O{sub 3}-10SiO{sub 2} were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T{sub g}) and of the maximum crystallization temperature (T{sub p}) on the heating rate was used to determine the activation energy associated with the glass transition (E{sub g}), the activation energy for crystallization (E{sub c}), and the Avrami exponent (n). X-ray diffractionmore » (XRD) revealed that barium borate (β-BaB{sub 2}O{sub 4}) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba{sub 5}Si{sub 8}O{sub 21}). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E{sub c}(χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures.« less

  17. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  18. Method for conducting exothermic reactions

    DOEpatents

    Smith, L. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-01-05

    A liquid phase process for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  19. Method for conducting exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  20. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  1. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    PubMed

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Chlorine dioxide-induced and Congo red-inhibited Marangoni effect on the chlorite-trithionate reaction front

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ren, Xingfeng; Pan, Changwei; Zheng, Ting; Yuan, Ling; Zheng, Juhua; Gao, Qingyu

    2017-10-01

    Hydrodynamic flows can exert multiple effects on an exothermal autocatalytic reaction, such as buoyancy and the Marangoni convection, which can change the structure and velocity of chemical waves. Here we report that in the chlorite-trithionate reaction, the production and consumption of chlorine dioxide can induce and inhibit Marangoni flow, respectively, leading to different chemo-hydrodynamic patterns. The horizontal propagation of a reaction-diffusion-convection front was investigated with the upper surface open to the air. The Marangoni convection, induced by gaseous chlorine dioxide on the surface, produced from chlorite disproportionation after the proton autocatalysis, has the same effect as the heat convection. When the Marangoni effect is removed by the reaction of chlorine dioxide with the Congo red (CR) indicator, an oscillatory propagation of the front tip is observed under suitable conditions. Replacing CR with bromophenol blue (BPB) distinctly enhanced the floating, resulting in multiple vortexes, owing to the coexistence between BPB and chlorine dioxide. Using the incompressible Navier-Stokes equations coupled with reaction-diffusion and heat conduction equations, we numerically obtain various experimental scenarios of front instability for the exothermic autocatalytic reaction coupled with buoyancy-driven convection and Marangoni convection.

  3. Ultrasonic emissions during ice nucleation and propagation in plant xylem.

    PubMed

    Charrier, Guillaume; Pramsohler, Manuel; Charra-Vaskou, Katline; Saudreau, Marc; Améglio, Thierry; Neuner, Gilbert; Mayr, Stefan

    2015-08-01

    Ultrasonic acoustic emission analysis enables nondestructive monitoring of damage in dehydrating or freezing plant xylem. We studied acoustic emissions (AE) in freezing stems during ice nucleation and propagation, by combining acoustic and infrared thermography techniques and controlling the ice nucleation point. Ultrasonic activity in freezing samples of Picea abies showed two distinct phases: the first on ice nucleation and propagation (up to 50 AE s(-1) ; reversely proportional to the distance to ice nucleation point), and the second (up to 2.5 AE s(-1) ) after dissipation of the exothermal heat. Identical patterns were observed in other conifer and angiosperm species. The complex AE patterns are explained by the low water potential of ice at the ice-liquid interface, which induced numerous and strong signals. Ice propagation velocities were estimated via AE (during the first phase) and infrared thermography. Acoustic activity ceased before the second phase probably because the exothermal heating and the volume expansion of ice caused decreasing tensions. Results indicate cavitation events at the ice front leading to AE. Ultrasonic emission analysis enabled new insights into the complex process of xylem freezing and might be used to monitor ice propagation in natura. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Modeling Issues and Results for Hydrogen Isotopes in NIF Materials

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.

    1998-11-01

    The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.

  5. The pH-sensitive structure of the C-terminal domain of voltage-gated proton channel and the thermodynamic characteristics of Zn{sup 2+} binding to this domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Qing; Li, Chuanyong; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2015-01-02

    Highlights: • The α-helical content of the C-terminus is decreased with a pH increase. • The thermostability of the C-terminus is decreased with a pH increase. • Zn{sup 2+} binds to His{sup 244} and His{sup 266} residues within the C-terminal domain. • The binding of Zn{sup 2+} to His{sup 244} residue is an endothermic heat reaction. • The binding of Zn{sup 2+} to His{sup 266} residue is an exothermic heat reaction. - Abstract: The voltage-gated proton channel Hv1 is strongly sensitive to Zn{sup 2+}. The H{sup +} conduction is decreased at a high concentration of Zn{sup 2+} and Hv1 channelmore » closing is slowed by the internal application of Zn{sup 2+}. Although the recent studies demonstrated that Zn{sup 2+} interacts with the intracellular C-terminal domain, the binding sites and details of the interaction remain unknown. Here, we studied the pH-dependent structural stability of the intracellular C-terminal domain of human Hv1 and showed that Zn{sup 2+} binds to His{sup 244} and His{sup 266} residues. The thermodynamics signature of Zn{sup 2+} binding to the two sites was investigated by isothermal titration calorimetry. The binding of Zn{sup 2+} to His{sup 244} (mutant H266A) and His{sup 266} (mutant H244A) were an endothermic heat reaction and an exothermic heat reaction, respectively.« less

  6. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Robynne; Snowberg, David R; Berry, Derek S

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-lifemore » blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.« less

  7. Temperature distribution of thick thermoset composites

    NASA Astrophysics Data System (ADS)

    Guo, Zhan-Sheng; Du, Shanyi; Zhang, Boming

    2004-05-01

    The development of temperature distribution of thick polymeric matrix laminates during an autoclave vacuum bag process was measured and compared with numerically calculated results. The finite element formulation of the transient heat transfer problem was carried out for polymeric matrix composite materials from the heat transfer differential equations including internal heat generation produced by exothermic chemical reactions. Software based on the general finite element software package was developed for numerical simulation of the entire composite process. From the experimental and numerical results, it was found that the measured temperature profiles were in good agreement with the numerical ones, and conventional cure cycles recommended by prepreg manufacturers for thin laminates should be modified to prevent temperature overshoot.

  8. Simulation of abuse tolerance of lithium-ion battery packs

    NASA Astrophysics Data System (ADS)

    Spotnitz, Robert M.; Weaver, James; Yeduvaka, Gowri; Doughty, D. H.; Roth, E. P.

    A simple approach for using accelerating rate calorimetry data to simulate the thermal abuse resistance of battery packs is described. The thermal abuse tolerance of battery packs is estimated based on the exothermic behavior of a single cell and an energy balance than accounts for radiative, conductive, and convective heat transfer modes of the pack. For the specific example of a notebook computer pack containing eight 18650-size cells, the effects of cell position, heat of reaction, and heat-transfer coefficient are explored. Thermal runaway of the pack is more likely to be induced by thermal runaway of a single cell when that cell is in good contact with other cells and is close to the pack wall.

  9. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, B.H.; Wright, R.N.

    1993-12-14

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  10. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating whichmore » minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.« less

  12. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites.

    PubMed

    Baroudi, Kusai; Silikas, Nick; Watts, David C

    2009-01-01

    The aim of this study was to investigate the pulpal temperature rise induced during the polymerization of flowable and non-flowable composites using light-emitting diode (LED) and halogen (quartz-tungsten-halogen) light-curing units (LCUs). Five flowable and three non-flowable composites were examined. Pulpal temperature changes were recorded over 10 min in a sample primary tooth by a thermocouple. A conventional quartz-tungsten-halogen source and two LEDs, one of which was programmable, were used for light curing the resin composites. Three repetitions per material were made for each LCU. There was a wide range of temperature rises among the materials (P < 0.05). Temperature rises ranged between 1.3 degrees C for Filtek Supreme irradiated by low-power LED and 4.5 degrees C for Grandio Flow irradiated by high-power LED. The highest temperature rises were observed with both the LED high-power and soft-start LCUs. The time to reach the exothermic peak varied significantly between the materials (P < 0.05). Pulpal temperature rise is related to both the radiant energy output from LCUs and the polymerization exotherm of resin composites. A greater potential risk for heat-induced pulp damage might be associated with high-power LED sources. Flowable composites exhibited higher temperature rises than non-flowable materials, because of higher resin contents.

  13. Heat produced by the dark-adapted bullfrog retina in response to light pulses.

    PubMed

    Tasaki, I; Nakaye, T

    1986-08-01

    By using a pyroelectric detector constructed with a polyvinylidene fluoride film, a rapid rise in the temperature of the dark-adapted bullfrog retina induced by light was demonstrated. In the bullfrog retina, as in the squid retina examined previously, the heat generated in response to a brief light pulse was found to be far greater than the amount produced by conversion of the entire radiant energy of the stimulus into heat. The thermal responses consist of the heat generated by the photoreceptor and the postsynaptic elements in the retina, preceded by a small signal reflecting conversion of a portion of the radiant energy of the stimulus into heat. The dependence of the thermal responses on the light intensity, on the wavelength and on a variety of physical and chemical agents was examined. The exothermic process underlying the production of heat by the photoreceptor was found to precede the electrophysiological response of the retina.

  14. Thermal control system. [removing waste heat from industrial process spacecraft

    NASA Technical Reports Server (NTRS)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  15. Reactive conductors for increased efficiency of exploding foil initiators and other detonators

    DOEpatents

    Morris, Christopher J.; Wilkins, Paul; May, Chadd; Zakar, Eugene

    2015-05-05

    Provided among other things are reactive energetic material systems used for conductors in detonators for increased efficiencies. According to an embodiment, a detonator may include: a conductor including at least two constituents including (i) an electrically conductive constituent, and (ii) an electrically non-conductive constituent, that when subjected to sufficient electrical energy, result in an exothermic reaction; and a flyer plate having a non-conductive surface in contact with said conductor. When the sufficient electrical energy is supplied to said conductor, rapid heating and vaporization of at least a portion of the conductor occurs so as to explosively drive at least a portion of the flyer plate away from said conductor. In an embodiment, a multilayer conductor may be formed of alternating layers of at least one electrically conductive layer, and at least one electrically non-conductive layer, that when subjected to sufficient electrical energy, result in an exothermic reaction.

  16. Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somrani, Saida; Banu, Mihai; Jemal, Mohamed

    2005-05-15

    The conversion of amorphous tricalcium phosphate with different hydration ratio into apatite in water at 25 deg. C has been studied by microcalorimetry and several physical-chemical methods. The hydrolytic transformation was dominated by two strong exothermic events. A fast, relatively weak, wetting process and a very slow but strong heat release assigned to a slow internal rehydration and the crystallization of the amorphous phase into an apatite. The exothermic phenomenon related to the rehydration exceeded the crystalline transformation enthalpy. Rehydration occurred before the conversion of the amorphous phase into apatite and determined the advancement of the hydrolytic reaction. The apatiticmore » phases formed evolved slightly with time after their formation. The crystallinity increased whereas the amount of HPO{sub 4}{sup 2-} ion decreased. These data allow a better understanding of the behavior of biomaterials involving amorphous phases such as hydroxyapatite plasma-sprayed coatings.« less

  17. Dynamics of Polymorphic Transformations in Palm Oil, Palm Stearin and Palm Kernel Oil Characterized by Coupled Powder XRD-DSC.

    PubMed

    Zaliha, Omar; Elina, Hishamuddin; Sivaruby, Kanagaratnam; Norizzah, Abd Rashid; Marangoni, Alejandro G

    2018-06-01

    The in situ polymorphic forms and thermal transitions of refined, bleached and deodorized palm oil (RBDPO), palm stearin (RBDPS) and palm kernel oil (RBDPKO) were investigated using coupled X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results indicated that the DSC onset crystallisation temperature of RBDPO was at 22.6°C, with a single reflection at 4.2Å started to appear from 23.4 to 17.1°C, and were followed by two prominent exothermic peaks at 20.1°C and 8.5°C respectively. Further cooling to -40°C leads to the further formation of a β'polymorph. Upon heating, a of β'→βtransformation was observed between 32.1 to 40.8°C, before the sample was completely melted at 43.0°C. The crystallization onset temperature of RBDPS was 44.1°C, with the appearance of the α polymorph at the same temperature as the appearance of the first sharp DSC exothermic peak. This quickly changed from α→β´ in the range 25 to 21.7°C, along with the formation of a small β peak at -40°C. Upon heating, a small XRD peak for the β polymorph was observed between 32.2 to 36.0°C, becoming a mixture of (β´+ β) between 44.0 to 52.5°C. Only the β polymorph survived further heating to 59.8°C. For RBDPKO, the crystallization onset temperature was 11.6°C, with the formation of a single sharp exothermic peak at 6.5°C corresponding to the β' polymorphic form until the temperature reached -40°C. No transformation of the polymorphic form was observed during the melting process of RBDPKO, before being completely melted at 33.2°C. This work has demonstrated the detailed dynamics of polymorphic transformations of PKO and PS, two commercially important hardstocks used widely by industry and will contribute to a greater understanding of their crystallization and melting dynamics.

  18. A chemical perspective of day and night tropical (10°N-15°N) mesospheric inversion layers

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Rao, S. Vijaya Bhaskara

    2017-03-01

    The various occurrence characteristics of day and night tropical (10°N-15°N, 60°E-90°E) mesospheric inversion layers (MILs) are studied by using TIMED Sounding of the Atmosphere using Broadband Emission Radiometry satellite data products of kinetic temperature; volume mixing ratios of O, H, and O3; volume emission rates of O2 (1Δ) and OH (1.6 µm channel), and chemical heating rates due to seven dominant exothermic reactions among H, O, O2, O3, OH, HO2, and CO2 cooling rates for the year 2011. Although both dynamics and chemistry play important roles, the present study mainly focuses on the chemical processes involved in the formation of day and night MILs. It is found that the upper level height of daytime (nighttime) MIL descends (ascends) from 88 km ( 80 km) in winter to 72 km ( 90 km) in summer. The day and night inversion amplitudes are correlated with total chemical heating rates and CO2 cooling rates, and they show semi annual variation with larger (smaller) values during equinoxes (solstices). The daytime (nighttime) inversion layers are predominantly due to the exothermic reaction, R5: O + O + M → O2 + M and R6: O + O2 + M → O3 + M (R3: H + O3 → OH + O2). In addition, the CO2 causes large cooling at the top and small heating at the bottom levels of both day and night MILs. In the absence of dynamical effects, the chemical heating and CO2 cooling jointly contribute for the occurrence of day and night MILs.

  19. Heat Flow vs. Cash Flow: A Banking Analogy

    NASA Astrophysics Data System (ADS)

    Wynn, Charles M., Sr.

    1997-04-01

    An analogy is drawn between the withdrawal of money from an automated teller machine (ATM) and an exothermic chemical reaction. In the analogy the amount in an individual's account is regarded as the system and the money withdrawn is regarded as part of the surroundings. Diagrams are used to present the analogy. An analogy can be drawn also between a deposit into an account and an endothermic chemical reaction.

  20. Calorimetric determination of thermal parameters for the Li/BrCl in SOCl2 (BCX) chemistry

    NASA Technical Reports Server (NTRS)

    Darcy, Eric C.; Kalu, Eric E.; White, Ralph E.

    1990-01-01

    The heat capacity of a Li-BCX DD-cell was found to be dependent on its state of charge by drop calorimetry measurements. The method of drop calorimetry involves measuring the energy (joules) gained or lost from a sample that is transferred from a bath at temperature A to one at temperature B. The thermoneutral potential is defined as the cell potential where the cell electrochemical reactions are neither exothermic nor endothermic. A Hart scientific calorimeter system, Model No. S77XX, designed for heat conduction calorimetry and drop calorimetry was used. Calorimetric analysis yielded a thermoneutral potential of 4.14 volts and a cell heat capacity dependent on the state of charge.

  1. Electrical and Thermal Characteristics of Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Rao. Gopalskrishna M.; Vaidyanathan, Hari

    1999-01-01

    The 18,650 type lithium ion cells are characterized by a cell resistance of 130 mOmega, capacity of 1.27 Ah at 25 C, and a mid-discharge voltage of 3.6 V. The capacity loss in the 72-hour stand test was 3.39%. The heat dissipation properties were determined by a radiative calorimeter. During charge, initial endothermic cooling and subsequent exothermic cooling beyond 55% state- of-charge were observed. At C/2 rate of discharge (which is considered medium rate), the heat dissipated was 17 mW/cu cm. The heat dissipation profile during discharge is also unique in the presence of a minimum that is different from that observed for Ni-Cd, Ni-MH, and Ni-H2 cells.

  2. Efficient Fabrication of Nanoporous Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic Reactions

    PubMed Central

    Luo, Wei; Wang, Xingfeng; Meyers, Colin; Wannenmacher, Nick; Sirisaksoontorn, Weekit; Lerner, Michael M.; Ji, Xiulei

    2013-01-01

    Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to convert diatom (SiO2) and SiO2/GeO2 into nanoporous Si and Si/Ge composite, respectively. Fusion of NaCl during the reaction consumes a large amount of heat that otherwise collapses the nano-porosity of products and agglomerates silicon domains into large crystals. Our methodology is potentially competitive for a practical production of nanoporous Si-based materials. PMID:23860418

  3. Electrical and Thermal Characteristics of Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna

    1999-01-01

    The 18650 type lithium ion cells are characterized by a cell resistance of 130 m Omega, capacity of 1.27 Ah at 25C, and a mid-discharge voltage of 3.6 V. The capacity loss in the 72-hour stand test was 3.39 percent. The heat dissipation properties were determined by a radiative calorimeter. During charge, initial endothermic cooling and subsequent exothermic cooling beyond 55 percent state-of-charge were observed. At C/2 rate of discharge (which is considered medium rate), the heat dissipated was 17 mW/cc. The heat dissipation profile during discharge is also unique in the presence of a minimum that is different from that observed for Ni-Cd, Ni-MH, and Ni-H2 cells.

  4. Efficient fabrication of nanoporous si and Si/Ge enabled by a heat scavenger in magnesiothermic reactions.

    PubMed

    Luo, Wei; Wang, Xingfeng; Meyers, Colin; Wannenmacher, Nick; Sirisaksoontorn, Weekit; Lerner, Michael M; Ji, Xiulei

    2013-01-01

    Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to convert diatom (SiO2) and SiO2/GeO2 into nanoporous Si and Si/Ge composite, respectively. Fusion of NaCl during the reaction consumes a large amount of heat that otherwise collapses the nano-porosity of products and agglomerates silicon domains into large crystals. Our methodology is potentially competitive for a practical production of nanoporous Si-based materials.

  5. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: Silica and alumina

    USGS Publications Warehouse

    Su, Y.-H.; Zhu, Y.-G.; Sheng, G.; Chiou, C.T.

    2006-01-01

    To characterize the linear adsorption phenomena in aqueous nonionic organic solute-mineral systems, the adsorption isotherms of some low-molecular- weightnonpolar nonionic solutes (1,2,3-trichlorobenzene, lindane, phenanthrene, and pyrene) and polar nonionic solutes (1,3-dinitrobenzene and 2,4-dinitrotoluene) from single-and binary-solute solutions on hydrophilic silica and alumina were established. Toward this objective, the influences of temperature, ionic strength, and pH on adsorption were also determined. It is found that linear adsorption exhibits low exothermic heats and practically no adsorptive competition. The solute-solid configuration and the adsorptive force consistent with these effects were hypothesized. For nonpolar solutes, the adsorption occurs presumably by London (dispersion) forces onto a water film above the mineral surface. For polar solutes, the adsorption is also assisted by polar-group interactions. The reduced adsorptive forces of solutes with hydrophilic minerals due to physical separation by the water film and the low fractions of the water-film surface covered by solutes offer a theoretical basis for linear solute adsorption, low exothermic heats, and no adsorptive competition. The postulated adsorptive forces are supported by observations that ionic strength or pH poses no effect on the adsorption of nonpolar solutes while it exhibits a significant effect on the uptake of polar solutes. ?? 2006 American Chemical Society.

  6. Heat of Hydration of Low Activity Cementitious Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasol, D.

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulantsmore » of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.« less

  7. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications.

    PubMed

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2009-11-15

    In the past, process incidents attributed to organic peroxides (OPs) that involved near misses, over-pressures, runaway reactions, and thermal explosions occurred because of poor training, human error, incorrect kinetic assumptions, insufficient change management, and inadequate chemical knowledge in the manufacturing process. Calorimetric applications were employed broadly to test organic peroxides on a small-scale because of their thermal hazards, such as exothermic behavior and self-accelerating decomposition in the laboratory. In essence, methyl ethyl ketone peroxide (MEKPO) is highly reactive and exothermically unstable. In recent years, it has undergone many thermal explosions and runaway reaction incidents in the manufacturing process. Differential scanning calorimetry (DSC), vent sizing package 2 (VSP2), and thermal activity monitor (TAM) were employed to analyze thermokinetic parameters and safety index. The intent of the analyses was to facilitate the use of various auto-alarm equipments to detect over-pressure, over-temperature, and hazardous materials leaks for a wide spectrum of operations. Results indicated that MEKPO decomposition is detected at low temperatures (30-40 degrees C), and the rate of decomposition was shown to exponentially increase with temperature and pressure. Determining time to maximum rate (TMR), self-accelerating decomposition temperature (SADT), maximum temperature (T(max)), exothermic onset temperature (T(0)), and heat of decomposition (DeltaH(d)) was essential for identifying early-stage runaway reactions effectively for industries.

  8. Finite element analysis of heat generation from different light-polymerization sources during cementation of all-ceramic crowns.

    PubMed

    Tunc, Elif Pak

    2007-06-01

    Exothermic composite resin chemical reactions and visible light generators can produce heat during a restorative polymerization process. These thermal changes in restored teeth may cause pain and irreversible pulpitis. The purpose of this study was to analyze the temperature distribution and heat flow patterns of a crowned mandibular second premolar tooth model using 3 different light-polymerization technologies and a finite element technique. A 2-dimensional finite element model was used to simulate a clinical condition. Heat flow and thermal stress distribution in a tooth during cementation of an all-ceramic crown using 4 commercially available light-polymerization units (LPUs), each with different wavelengths (Elipar TriLight, Elipar Freelight, Apollo 95 E, and ADT 1000 PAC), were investigated. The temperature values were measured at 3, 10, 12, and 40 seconds for each light-polymerizing unit (LPU) at 6 different finite element nodes. Two-dimensional temporal and spatial distribution of the thermal stress within the tooth, including the thermal coefficients and boundary conditions of the dental materials, were obtained and evaluated. The temperature at the nodal points did not exceed 42 degrees C, which is a threshold value for tissue vitality within the recommended operating periods at the dentin and pulp surface for all LPUs, except for Elipar TriLight. In the case of Elipar TriLlight, the temperatures at the dentin and pulp surfaces were 47 degrees C and 42 degrees C, respectively. When the light-polymerization units were used according to the manufacturers' operating procedures and without prolonged operating periods, with the exception of Elipar TriLight, the investigated LPUs did not produce significant heat. However, when the operating periods were prolonged, unacceptable temperature increases were observed, especially with the high-intensity LPUs.

  9. Experimental Study of Serpentinization Reactions

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Brearley, A. J.; Ganguly, J.; Liermann, H.-P.; Keil, K.

    2004-01-01

    Current carbonaceous chondrite parent-body thermal models [1-3] produce scenarios that are inconsistent with constraints on aqueous alteration conditions based on meteorite mineralogical evidence, such as phase stability relationships within the meteorite matrix minerals [4] and isotope equilibration arguments [5, 6]. This discrepancy arises principally because of the thermal runaway effect produced by silicate hydration reactions (here loosely called serpentinization, as the principal products are serpentine minerals), which are so exothermic as to produce more than enough heat to melt more ice and provide a self-sustaining chain reaction. One possible way to dissipate the heat of reaction is to use a very small parent body [e.g., 2] or possibly a rubble pile model. Another possibility is to release this heat more slowly, which depends on the alteration reaction path and kinetics.

  10. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    DOE PAGES

    Lan, S.; Ren, Y.; Wei, X. Y.; ...

    2017-03-17

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in-situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clustersmore » over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase which forms the room-temperature glass phase upon quenching. Finally, the outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat-treatment.« less

  11. Dehydration and crystallization kinetics of zirconia-yttria gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, S.; Muraleedharan, R.V.; Roy, S.K.

    1995-02-01

    Zirconia and zirconia-yttria gels containing 4 and 8 mol% yttria were obtained by coprecipitation and drying at 373 K. The dehydration and crystallization behavior of the dried gels was studied by DSC, TG, and XRD. The gels undergo elimination of water over a wide temperature range of 373--673 K. The peak temperature of the endotherm corresponding to dehydration and the kinetic constants for the process were not influenced by the yttria content of the gel. The enthalpy of dehydration observed was in good agreement with the heat of vaporization data. The dehydration was followed by a sharp exothermic crystallization process.more » The peak temperature of the exotherm and the activation energy of the process increased with an increase in yttria content, while the enthalpy of crystallization showed a decrease. The ``glow effect`` reduced with increasing yttria content. Pure zirconia crystallizes in the tetragonal form while the zirconia containing 4 and 8 mol% yttria appears to crystallize in the cubic form.« less

  12. Exploring the synthesis and characterization of nanoenergetic materials from sol-gel chemistry

    NASA Astrophysics Data System (ADS)

    Walker, Jeremy D.

    Nanoenergetic composite materials have been synthesized by a sol-gel chemical process where the addition of a weak base molecule induces the gelation of a hydrated metal salt solution. A proposed 'proton scavenging' mechanism, where a weak base molecule extracts a proton from the coordination sphere of the hydrated iron (III) complex in the gelation process to form iron (III) oxide/hydroxide, FeIIIxOyHz, has been confirmed for the weak base propylene oxide (PO), a 1,2 epoxide, as well as for the weak bases tetrahydrofuran (THF), a 1,4 epoxide, and pyridine, a heterocyclic nitrogen-containing compound. Gelation mechanisms for the formation of FeIIIxOyHz from THF and pyridine have been presented and confirmed through pH, XPS, and IR studies. THF follows a similar mechanism as PO, where the epoxide extracts a proton from the coordination sphere of the hydrated iron complex forming a protonated epoxide, which then undergoes irreversible ring-opening after reaction with a nucleophile in solution. Pyridine also extracts a proton from the hydrated metal complex, however, the stable six-membered molecule has low associated ring strain and does not endure ring-opening. Energetic properties for the Fe2O3/Al and RuO 2/Al sol-gel synthesized systems are also presented. Sol-gel chemistry synthesizes x-ray amorphous oxide matrices which contain substantial quantities of residual water and organic species. The iron (III) matrix, formed from the addition of a weak base epoxide molecule to a hydrated iron (III) nitrate solution, consists of stoichiometric Fe2O3, FeO(OH), and Fe(OH)3 and can only definitely be described as of Fe IIIxOyHz. XPS characterization of the metal oxide matrix synthesized from the addition of the weak base propylene oxide to a hydrated ruthenium (III) chloride solution corresponds to that of hydrous ruthenium (IV) oxide. Fe2O3/Al energetic systems were synthesized from the epoxides PO, trimethylene oxide (TMO) and 3,3 dimethyl oxetane (DMO). Energetic systems formed from each epoxide were each synthesized with different components, including: varying concentrations of nano-scale Al, micron Al, and carbon nanotubes. Surface area analysis of the synthesized matrices shows a direct correlation between the surface area of the iron (III) oxide matrix and the quantified exothermic heat of reaction of the energetic material due to the magnitude of the interfacial surface area contact between the iron (III) oxide matrix and the aluminum particles. The Fe2O3(PO)/Al systems possess the highest heat of reaction values due to the oxide surface area available for contact with the aluminum particles. Also, within systems, 1:1 Fe:nano Al samples possess the highest heat of reaction. Samples with nano-scale Al particles start reaction at 430°C, before the melting point of Al, whereas samples containing micron-Al do not react until ˜800°C, after the melting point of Al. The RuO2/Al energetic systems behave differently dependent on the atmosphere the sample is heated. Heating the RuO2/Al samples in an inert atmosphere results in the complete reduction of the ruthenium oxide matrix to Ru(0) before reaction with the aluminum particles. This results in the exothermic formation of RuxAly intermetallics, with the stoichiometry dependent on the initial Ru:Al concentration. However, heating the samples in an oxygen-rich atmosphere results in an exothermic reaction between RuO2 and Al. Post-reaction analysis of these samples reveals the sole existence of ruthenium (IV) oxide as the exothermic reaction vaporizes the aluminum particles.

  13. Interactions of Hydrazine and of Hydrazine Derivatives with Soil Constituents and with Soils

    DTIC Science & Technology

    1984-08-23

    vigorously. After flocs which formed on addition of alkali had redissolved a homogeneous dark red solution (pH 2.0) was obtained. This solution was allowed to...collected fractions of the eluate. Scintillation techniques (Smedley, 1978), atomic absorption and radioisotopic labelling techniques (Hartmann, 1981), and...but significantly less exothermic in the cases of the alkali -earth than the alkali metals. The heat of hydration of the divalent cations is greater than

  14. Mixing and non-equilibrium chemical reaction in a compressible mixing layer. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Steinberger, Craig J.

    1991-01-01

    The effects of compressibility, chemical reaction exothermicity, and non-equilibrium chemical modeling in a reacting plane mixing layer were investigated by means of two dimensional direct numerical simulations. The chemical reaction was irreversible and second order of the type A + B yields Products + Heat. The general governing fluid equations of a compressible reacting flow field were solved by means of high order finite difference methods. Physical effects were then determined by examining the response of the mixing layer to variation of the relevant non-dimensionalized parameters. The simulations show that increased compressibility generally results in a suppressed mixing, and consequently a reduced chemical reaction conversion rate. Reaction heat release was found to enhance mixing at the initial stages of the layer growth, but had a stabilizing effect at later times. The increased stability manifested itself in the suppression or delay of the formation of large coherent structures within the flow. Calculations were performed for a constant rate chemical kinetics model and an Arrhenius type kinetic prototype. The choice of the model was shown to have an effect on the development of the flow. The Arrhenius model caused a greater temperature increase due to reaction than the constant kinetic model. This had the same effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.

  15. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    NASA Astrophysics Data System (ADS)

    Pouransari, Z.; Biferale, L.; Johansson, A. V.

    2015-02-01

    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar, and reactive species fields are studied using their probability density functions (PDFs) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor, the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damköhler numbers are examined and the comparison revealed that the Damköhler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow.

  16. Summary of Results from the Mars Phoenix Lander's Thermal Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Hoffman, J.; Lauer, H. V.; Golden, D. C.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect evolved volatiles and organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS) that can detect masses in the 2 to 140 dalton range [1]. Five Martian soils were individually heated to 1000 C in the DSC ovens where evolved gases from mineral decompostion products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil.

  17. Combustion synthesis of ceramic and metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Moore, John J.; Feng, Heng J.; Hunter, Kevin J.; Wirth, David G.

    1993-01-01

    Combustion synthesis or self-propagating high temperature synthesis (SHS) is effected by heating a reactant mixture, to above the ignition temperature (Tig) whereupon an exothermic reaction is initiated which produces a maximum or combustion temperature, Tc. These SHS reactions are being used to produce ceramics, intermetallics, and composite materials. One of the major limitations of this process is that relatively high levels of porosity, e.g., 50 percent, remain in the product. Conducting these SHS reactions under adiabatic conditions, the maximum temperature is the adiabatic temperature, Tad, and delta H (Tad) = 0, Tad = Tc. If the reactants or products go through a phase change, the latent heat of transformation needs to be taken into account.

  18. Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries.

    PubMed

    Favors, Zachary; Wang, Wei; Bay, Hamed Hosseini; Mutlu, Zafer; Ahmed, Kazi; Liu, Chueh; Ozkan, Mihrimah; Ozkan, Cengiz S

    2014-07-08

    Herein, porous nano-silicon has been synthesized via a highly scalable heat scavenger-assisted magnesiothermic reduction of beach sand. This environmentally benign, highly abundant, and low cost SiO₂ source allows for production of nano-silicon at the industry level with excellent electrochemical performance as an anode material for Li-ion batteries. The addition of NaCl, as an effective heat scavenger for the highly exothermic magnesium reduction process, promotes the formation of an interconnected 3D network of nano-silicon with a thickness of 8-10 nm. Carbon coated nano-silicon electrodes achieve remarkable electrochemical performance with a capacity of 1024 mAhg(-1) at 2 Ag(-1) after 1000 cycles.

  19. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama T.; Pyatina, T.

    2012-05-01

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus,more » CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.« less

  20. Thermal characteristics of Lithium-ion batteries

    NASA Technical Reports Server (NTRS)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter (ARC), which uses a heat-wait-search mode until an exothermic reaction is detected. After an exotherm is found the calorimeter maintains an adiabatic environment around a bomb which holds the test sample. The ARC will help identify important reactions and what temperature these exothermic reactions take place at. In order fully understand the battery, we are first going to take apart the battery and test the individual components of the battery using the ARC. I will first conduct a test on the electrolyte solution by itself. We will then test the electrolyte solution with the anode. We would like to see how the electrolyte solution reacts with the anode and its binder material. The next would be the same test using the cathode instead of the anode. By comparing the results of the electrolyte, electrolyte with anode, and the electrolyte with the cathode we can determine the reactions that are taking place due to each component. Using the heat capacity of the each individual sample and the temperature by which the sample increases, kinetic and thermo-dynamical information can then be found. A Gas chromatograph could be used to help with the task of identifying the by-products at the end of each test. One way of increasing the cycle life is to increase the stability of the materials inside the

  1. Supercritical water gasification of biomass: Thermodynamic constraints.

    PubMed

    Castello, Daniele; Fiori, Luca

    2011-08-01

    In the present work, the supercritical water gasification (SCWG) of biomass is analyzed with a view to outlining the possible thermodynamic constraints that must be taken into account to develop this new process. In particular, issues concerning the formation of solid carbon and the process heat duty are discussed. The analysis is conducted by means of a two-phase non-stoichiometric thermodynamic model, based on Gibbs free energy minimization. Results show that char formation at equilibrium only occurs at high biomass concentrations, with a strong dependence on biomass composition. As regards the process heat duty, SCWG is mostly endothermic when biomass concentration is low, although a very small amount of oxidizing agent is able to make the process exothermic, with only a small loss in the heating value of the syngas produced. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A spectroscopic experimental and computer-assisted empirical model for the production and energetics of excited oxygen molecules formed by atom recombination on shuttle tile surfaces

    NASA Technical Reports Server (NTRS)

    Owan, D. A.

    1981-01-01

    A visible emission spectroscopic method was developed. The amounts of excited singlet and triplet oxygen molecules produced by recombination on the Space Shuttle Orbiter thermal protective tiles at elevated temperatures are determined. Rate constants and energetics of the extremely exothermic reaction are evaluated in terms of a chemical and mathematical model. Implications for potential contribution to Shuttle surface reentry heating fluxes are outlined.

  3. Abuse behavior of high-power, lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Spotnitz, R.; Franklin, J.

    Published accounts of abuse testing of lithium-ion cells and components are summarized, including modeling work. From this summary, a set of exothermic reactions is selected with corresponding estimates of heats of reaction. Using this set of reactions, along with estimated kinetic parameters and designs for high-rate batteries, models for the abuse behavior (oven, short-circuit, overcharge, nail, crush) are developed. Finally, the models are used to determine that fluorinated binder plays a relatively unimportant role in thermal runaway.

  4. Methanol from CO2 by organo-cocatalysis: CO2 capture and hydrogenation in one process step.

    PubMed

    Reller, Christian; Pöge, Matthias; Lißner, Andreas; Mertens, Florian O R L

    2014-12-16

    Carbon dioxide chemically bound to alcohol-amines was hydrogenated to methanol under retrieval of these industrially used CO2 capturing reagents. The energetics of the process can be seen as a partial cancellation of the exothermic heat of reaction of the hydrogenation with the endothermic one of the CO2 release from the capturing reagent. The process provides a means to significantly improve the energy efficiency of CO2 to methanol conversions.

  5. Non-Instrumented Nucleic Acid Amplification (NINA) for Rapid Detection of Ralstonia solanacearum Race 3 Biovar 2

    PubMed Central

    Kubota, Ryo; LaBarre, Paul; Singleton, Jered; Beddoe, Andy; Weigl, Bernhard H.; Alvarez, Anne M.; Jenkins, Daniel M.

    2014-01-01

    We report on the use of a non-instrumented device for the implementation of a loop-mediated amplification (LAMP) based assay for the select-agent bacterial-wilt pathogen Ralstonia solanacearum race 3 biovar 2. Heat energy is generated within the device by the exothermic hydration of calcium oxide, and the reaction temperature is regulated by storing latent energy at the melting temperature of a renewable lipid-based engineered phase-change material. Endpoint detection of the LAMP reaction is achieved without opening the reaction tube by observing the fluorescence of an innovative FRET-based hybridization probe with a simple custom fluorometer. Non-instrumented devices could maintain reactions near the design temperature of 63°C for at least an hour. Using this approach DNA extracted from the pathogen could be detected at fewer than ten copies within a 25 μL reaction mix, illustrating the potential of these technologies for simple, powerful agricultural diagnostics in the field. Furthermore, the assay was just as reliable when implemented in a tropical environment at 31°C as it was when implemented in an air-conditioned lab maintained at 22°C, illustrating the potential value of the technology for field conditions in the tropics and subtropics. PMID:25485176

  6. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    PubMed Central

    Osten, Julia; Milkereit, Benjamin; Schick, Christoph; Kessler, Olaf

    2015-01-01

    In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181) in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed) was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC) was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  7. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles.

    PubMed

    Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao

    2017-02-13

    Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiF x . The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition.

  8. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles

    PubMed Central

    Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao

    2017-01-01

    Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiFx. The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition. PMID:28772534

  9. Catalyzed Ignition of Bipropellants in Microtubes

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Boyarko, George A.; Sung, Chih-Jen

    2003-01-01

    This paper addresses the need to understand the physics and chemistry involved in propellant combustion processes in micro-scale combustors for propulsion systems on micro-spacecraft. These spacecraft are planned to have a mass less than 50 kilograms with attitude control estimated to be in the 10 milli-Newton thrust class. These combustors are anticipated to be manufactured using Micro Electrical Mechanical Systems (MEMS) technology and are expected to have diameters approaching the quenching diameter of the propellants. Combustors of this size are expected to benefit significantly from surface catalysis processes. Miniature flame tube apparatus is chosen for this study because microtubes can be easily fabricated from known catalyst materials and their simplicity in geometry can be used in fundamental simulations to more carefully characterize the measured heat transfer and pressure losses for validation purposes. Experimentally, we investigate the role of catalytically active surfaces within 0.4 and 0.8 mm internal diameter micro-tubes, with special emphases on ignition and extinction processes in fuel rich gaseous hydrogen and gaseous oxygen. Flame thickness and reaction zone thickness calculations predict that the diameters of our test apparatus are below the quenching diameter of the propellants in sub-atmospheric tests. Temperature and pressure rises in resistively heated platinum and palladium micro-tubes are used as an indication of exothermic reactions. Specific data on mass flow versus preheat temperature required to achieve ignition are presented.

  10. The Mechanism of Freezing Injury in Xylem of Winter Apple Twigs 1

    PubMed Central

    Quamme, H.; Weiser, C. J.; Stushnoff, C.

    1973-01-01

    In acclimated winter twigs of Haralson apple (Pyrus Malus L.), a lag in temperature during cooling at a constant rate was observed at about −41 C by differential thermal analysis. The temperature at which this low temperature exotherm occurred was essentially unaffected by the cooling rate. During thawing there was no lag in temperature (endotherm) near the temperature at which the low temperature exotherm occurred, but upon subsequent refreezing the exotherm reappeared at a somewhat higher temperature when twigs were rewarmed to at least −5 C before refreezing. These observations indicate that a small fraction of water may remain unfrozen to as low as −42 C after freezing of the bulk water in stems. The low temperature exotherm was not present in twigs freeze-dried to a water content below 8.5% (per unit fresh weight), but it reappeared when twigs were rehydrated to 20% water. When freeze-dried twigs were ground to a fine powder prior to rehydration, no exotherm was observed. Previous work has shown that the low temperature exotherm arises from xylem and pith tissues, and that injury to living cells in these tissues invariably occurs only when twigs are cooled below, but not above the temperature of the low temperature exotherm. This study revealed that the low temperature exotherm resulted from the freezing of a water fraction, that the freezing of this water was independent of the freezing of the bulk water, that the exotherm was associated with some gross structural feature but not the viability of the tissue, and that injury to living cells in the xylem and pith was closely and perhaps causally related to the initial freezing of this water. PMID:16658314

  11. Ambient cure polyimide foams. [thermal resistant foams

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R.; Hamermesh, C. L. (Inventor)

    1978-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, (pyromellitic dianhydride) with an aromatic polyisocyanate, (polymethylene polyphenylisocyanate), in the presence of an inorganic acid and furfuryl alcohol. Usable acids include dilute sulfuric acid, dilute nitric acid, hydrochloric acid, polyphosphoric acid, and phosphoric acid, with the latter being preferred. The dianhydride and the isocyanate in about equimolar proportions constitute about 50% of the reaction mixture, the rest being made up with the acid and the alcohol in a ratio of about 1:10. An exothermic reaction between the acid and the alcohol provides the heat necessary for the other components to polymerize without recourse to external heat sources. The mixture can be sprayed on any surface to form polymeric foam in locations where the application of heat is not practical or possible, for instance, between walls or on mine tunnel surfaces.

  12. Self-contained small utility system

    DOEpatents

    Labinov, Solomon D.; Sand, James R.

    1995-01-01

    A method and apparatus is disclosed to provide a fuel efficient source of readily converted energy to an isolated or remote energy consumption facility. External heat from any of a large variety of sources is converted to an electrical, mechanical, heat or cooling form of energy. A polyatomic working fluid energized by external heat sources is dissociated to a higher gaseous energy state for expansion through a turbine prime mover. The working fluid discharge from the turbine prime mover is routed to a recouperative heat exchanger for exothermic recombination reaction heat transfer to working fluid discharged from the compressor segment of the thermodynaic cycle discharge. The heated compressor discharge fluid is thereafter further heated by the external heat source to the initial higher energy state. Under the pressure at the turbine outlet, the working fluid goes out from a recouperative heat exchanger to a superheated vapor heat exchanger where it is cooled by ambient medium down to an initial temperature of condensation. Thereafter, the working fluid is condensed to a complete liquid state in a condenser cooled by an external medium. This liquid is expanded isenthalpically down to the lowest pressure of the cycle. Under this pressure, the working fluid is evaporated to the superheated vapor state of the inlet of a compressor.

  13. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  14. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive) of U and Pu as well as on actual U-contaminated waste water. In particular, the leaching level of mercury in the Toxicity Characteristic Leaching Procedure (TCLP) test was reduced from 5000 to 0.00085 ppm, and the leaching level of cerium in the long term leaching test (ANS 16.1 test) was below the detection limit. These results show that the chemically bonded phosphate ceramics process may be a simple, inexpensive, and efficient method for stabilizing low-level mixed waste streams.

  15. Self regulating formulations for safe hydrogen gettering

    DOEpatents

    Shepodd, Timothy Jon

    2002-01-01

    A method and composition are disclosed for preventing uncontrolled exothermic reaction in the presence of a catalyst. A catalyst deployed as a finely divided powder which is attached to the surface of a low melting point wax or wax-like material which is utilized as a carrier for the catalyst. During operation should the catalyst overheat due to uncontrolled conditions brought about by a run-away reaction the heat of reaction melts the low melting point wax which would itself wet the surface of the catalyst and prevent further catalysis.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, James; Fairweather, Michael; Hanson, Bruce C.

    The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.

  17. An Experiment to Illustrate the Hazards of Exothermic Reaction Scale-Up

    ERIC Educational Resources Information Center

    Clark, William; Lei, Melinda; Kirichenko, Erika; Dickerson, Kellie; Prytko, Robert

    2017-01-01

    Exothermic reactions can present safety hazards and there is a recognized need for reaction safety education at the undergraduate level. We present an experiment that illustrates the pitfall of direct scale-up of an exothermic reaction that can lead to thermal runaway. The iodide-catalyzed hydrogen peroxide decomposition reaction yields…

  18. Solid-solid phase change thermal storage application to space-suit battery pack

    NASA Astrophysics Data System (ADS)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  19. Method of producing thermally sprayed metallic coating

    DOEpatents

    Byrnes, Larry Edward [Rochester Hills, MI; Kramer, Martin Stephen [Clarkston, MI; Neiser, Richard A [Albuquerque, NM

    2003-08-26

    The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

  20. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN can be obtained by analysing the exothermic peak temperature (Tex) which is related to the number of nuclei per unit volume that is formed on the glass. If we represent (1000/Tex) versus TN, we obtain the range of nucleation and the temperature of maximum nucleation rate of glass. Three different nucleation events were observed for both glasses. The first event, assigned to the nucleation of magnetite starts between 550 (AG) and 600 oC (QG); the second event is linked to the start of nucleation of pyroxene at 655 oC (AG and QG); the third event is the nucleation of nepheline between 700 (QG) and 730 oC (AG). These thermal events are more evident in QG, hence it has been chosen to make the glass-ceramic. Its production would divided in 4 steps at a heating rate of 15 oC/min: is starts by heating the original glass up to 550 oC; further heating up to 655 oC; then up to 700 oC and a final heating up to 1050 oC. A 4h isothermal step was performed after each heating.

  1. Thermal Characterization Study of Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.; Miller, Thomas B.; Bennett, William R.

    2007-01-01

    The primary challenge in designing a full scale lithium-ion (Li-ion) battery system is safety under both normal operating as well as abusive conditions. The normal conditions involve expected charge/discharge cycles and it is known that heat evolves in batteries during those cycles. This is a major concern in the design for high power applications and careful thermal management is necessary to alleviate this concern. An emerging thermal measurement technology, such as the electrochemical calorimetric of batteries, will aid in the development of advanced, safe battery system. To support this technology, several "commercial-off-the-shelf" (COTS) Li-ion cells with different chemistries and designs are being evaluated for different cycling regimes at a given operating temperature. The Accelerated Rate Calorimeter (ARC)-Arbin cycler setup is used to measure the temperature, voltage, and current of the cells at different charge/discharge rates. Initial results demonstrated good cell cyclability. During the cycle testing, the cell exhibited an endothermic cooling in the initial part of the charge cycle. The discharge portion of the cycle is exothermic during the entire discharge period. The presence of an endothermic reaction indicates a significant entropy effect during the beginning of charge cycle. Further studies will be performed to understand the thermal characteristics of the Li-ion cells at the different operating conditions. The effects on the thermal response on cell aging and states-of-charge will also be identified.

  2. Effect of Nano-SiO₂ on the Hydration and Microstructure of Portland Cement.

    PubMed

    Wang, Liguo; Zheng, Dapeng; Zhang, Shupeng; Cui, Hongzhi; Li, Dongxu

    2016-12-15

    This paper systematically studied the modification of cement-based materials by nano-SiO₂ particles with an average diameter of about 20 nm. In order to obtain the effect of nano-SiO₂ particles on the mechanical properties, hydration, and pore structure of cement-based materials, adding 1%, 3%, and 5% content of nano-SiO₂ in cement paste, respectively. The results showed that the reaction of nano-SiO₂ particles with Ca(OH)₂ (crystal powder) started within 1 h, and formed C-S-H gel. The reaction speed was faster after aging for three days. The mechanical properties of cement-based materials were improved with the addition of 3% nano-SiO₂, and the early strength enhancement of test pieces was obvious. Three-day compressive strength increased 33.2%, and 28-day compressive strength increased 18.5%. The exothermic peak of hydration heat of cement increased significantly after the addition of nano-SiO₂. Appearance time of the exothermic peak was advanced and the total heat release increased. Thermogravimetric-differential scanning calorimetry (TG-DSC) analysis showed that nano-SiO₂ promoted the formation of C-S-H gel. The results of mercury intrusion porosimetry (MIP) showed that the total porosity of cement paste with 3% nano-SiO₂ was reduced by 5.51% and 5.4% at three days and 28 days, respectively, compared with the pure cement paste. At the same time, the pore structure of cement paste was optimized, and much-detrimental pores and detrimental pores decreased, while less harmful pores and innocuous pores increased.

  3. Chemical reactivity of nitrates and nitrites towards TBP and potassium nickel ferrocyanide between 30 and 300 deg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambertin, D.; Chartier, D.; Joussot-Dubien, C.

    2007-07-01

    Since the late sixties, bitumen has been widely used by the nuclear industry as a matrix for the immobilization of low- and intermediate level radioactive waste originating mainly from the nuclear activities: precipitation or evaporator concentrates, ion exchange resins, incinerator ashes, and filter materials. Depending on bitumen and operating conditions, bituminization of radioactive waste can be operated between 130 and 180 deg. C, so chemical reaction can be induced with nitrate or nitrite towards elements contained in waste (TPB, potassium nickel ferrocyanide and cobalt compound) and bitumen. These reactions are mainly exothermic this is the reason why the enthalpy reactionmore » and their temperature of initiation have to be determined independently of their concentration in waste. In this work, we have studied by Calvet Calorimetry at 0.1 deg. C/min heating rates, the behaviour of chemical elements especially oxido-reduction couples that can react at a temperature range 100- 300 deg. C (Nitrate/PPFeNi, Nitrite/PPFeNi, Nitrate/TBP, Nitrite/TBP, Nitrate/bitumen and Nitrite/bitumen). The initial temperature reaction of nitrates or nitrites towards potassium nickel ferrocyanide (PPFeNi) has been studied and is equal respectively to 225 deg. C and 175 deg. C. Because of the large scale temperature reaction of nitrate and PPFeNi, enthalpy reaction can not be calculated, although enthalpy reaction of nitrite and PPFeNi is equal to 270 kJ/mol of nitrite. Sodium Nitrate and TBP behaviour has been investigated, and an exothermic reaction at 135 deg. C until 250 deg. C is evidenced. The exothermic energy reaction is a function of TBP concentration and the enthalpy reaction has been determined. (authors)« less

  4. Strategy for Passivating Char Efficiently at the Pilot Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, Timothy C

    Fast pyrolysis is a promising pathway for the commercialization of liquid transportation fuels from biomass. Fast pyrolysis is performed at moderate heat (450-600 degrees Celcius) in an oxygen-deficient environment. One of the products of fast pyrolysis is biochar, which is often used as a heat source or as a soil amendment. Biochar is a partially reacted solid that is created in the production of bio-oil during fast pyrolysis. Biochar produced at these conditions contains significant quantities of carbon that adsorb oxygen when exposed to air. Biochar adsorption of oxygen is an exothermic process that may generate sufficient heat for combustionmore » in ambient air. Biochar is also a self-insulating material which compounds the effects of heat generated internally. These factors lead to safety concerns and material handling difficulties. The Thermochemical Process Development Unit at the National Renewable Energy Laboratory operates a pilot plant that may be configured for fast pyrolysis, gasification, and will be introducing catalytic fast pyrolysis capabilities in 2018. The TCPDU designed and installed a system to introduce oxygen to collected biochar systematically for a controlled passivation. Biochar is collected and cooled in an oxygen deficient environment during fast pyrolysis. Oxygen is then introduced to the biochar on a mass flow basis. A sparger imbedded within the biochar sample near the bottom of the bed flows air diluted with nitrogen into the char bed, and excess gasses are removed from the top of the collection drum, above the char bed. Pressure within the collection drum is measured indicating adequate flow through filters. Sample weight is recorded before and after passivation. During passivation, temperature is measured at 18 points within the char bed. Oxygen content and temperature are measured leaving the char bed. Maximum temperature parameters were established to ensure operator safety during biochar passivation. Extensive passivation data was collected on pine and blended feedstocks and has been analyzed to characterize the exotherm of char samples. Observations and data collected while passivating char will be discussed.« less

  5. Electroplating of aluminium microparticles with nickel to synthesise reactive core-shell structures for thermal joining applications

    NASA Astrophysics Data System (ADS)

    Schreiber, S.; Zaeh, M. F.

    2018-06-01

    Reactive particles represent a promising alternative for effectively joining components with freeform surfaces and different material properties. While the primary application of reactive systems is combustion synthesis for the production of high-performance alloys, the highly exothermic reaction can also be used to firmly bond thermosensitive joining partners. Core-shell structures are of special interest, since they function as separate microreactors. In this paper, a method to synthesise reactive nickel-aluminium core-shell structures via a two-step plating process is described. Based on an electroless process, the natural oxide layer of the aluminium particles is removed and substituted with a thin layer of nickel. Subsequently, the pre-treated particles are electroplated with nickel. The high reactivity of aluminium and the oxide layer play a significant role in adjusting the process parameters of the Watts bath. Additionally, the developed experimental set-up is introduced and the importance of process control is shown. In order to achieve reproducible results, the electroplating process was automated. Ignition tests with electromagnetic waves demonstrated that the particles undergo an exothermic reaction. Therefore, they can be used as a heat source in thermal joining applications.

  6. Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell

    NASA Astrophysics Data System (ADS)

    Balasundaram, Manikandan; Ramar, Vishwanathan; Yap, Christopher; Lu, Li; Tay, Andrew A. O.; Palani, Balaya

    2016-10-01

    We report here thermal behaviour and various components of heat loss of 18650-type LiFePO4/graphite cell at different testing conditions. In this regard, the total heat generated during charging and discharging processes at various current rates (C) has been quantified in an Accelerating Rate Calorimeter experiment. Irreversible heat generation, which depends on applied current and internal cell resistance, is measured under corresponding charge/discharge conditions using intermittent pulse techniques. On the other hand, reversible heat generation which depends on entropy changes of the electrode materials during the cell reaction is measured from the determination of entropic coefficient at various states of charge/discharge. The contributions of irreversible and reversible heat generation to the total heat generation at both high and low current rates are evaluated. At every state of charge/discharge, the nature of the cell reaction is found to be either exothermic or endothermic which is especially evident at low C rates. In addition, electrochemical impedance spectroscopy measurements are performed on above 18650 cells at various states of charge to determine the components of internal resistance. The findings from the impedance and thermal loss analysis are helpful for understanding the favourable states of charge/discharge for battery operation, and designing better thermal management systems.

  7. Alternative route for the preparation of CoSb{sub 3} and Mg{sub 2}Si derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godlewska, E., E-mail: godlewsk@agh.edu.pl; Mars, K.; Zawadzka, K.

    2012-09-15

    An alternative manufacturing route has been developed for cobalt triantimonide and magnesium disilicide derivatives. Elemental powders were mixed in stoichiometric proportions, cold pressed into cylindrical preforms and heated in oxygen-free environment to initiate the exothermic reaction. According to DTA/TG measurements and observations under high-temperature microscope, the onset of reaction occurred at a temperature not exceeding the melting point of the more volatile component, i.e. antimony in the case of CoSb{sub 3} and magnesium in the case of Mg{sub 2}Si. The reaction products were additionally heat treated to secure homogenization. Dense sinters were obtained by hot uniaxial pressing of the obtainedmore » powders in moderate temperature-and-pressure conditions. Several advantages were identified in the proposed technology: absence of liquid phases, relatively short time of the synthesis, possibility of in-situ or ex-situ doping and grain size control. - Graphical abstract: (1) Manufacturing flow sheet for CoSb{sub 3} (milling included) and Mg{sub 2}Si (no milling). (2) Micrographs of CoSb{sub 3} product. (3) Micrographs of Mg{sub 2}Si product. Highlights: Black-Right-Pointing-Pointer The combustion synthesis followed by HP was used for the manufacturing of CoSb{sub 3} or Mg{sub 2}Si. Black-Right-Pointing-Pointer The time of reaction is shorter compared with many other synthesis methods. Black-Right-Pointing-Pointer The process is scalable and practically wasteless.« less

  8. Accelerating rate calorimetry: A new technique for safety studies in lithium systems

    NASA Technical Reports Server (NTRS)

    Ebner, W. B.

    1982-01-01

    The role of exothermic reactions in battery test modes is discussed. The exothermic reactions are characterized with respect to their time-temperature and time-pressure behavior. Reactions occuring for any major exotherm were examined. The accelerating rate calorimetry methods was developed to study lithium cells susceptibility to thermal runaway reactions following certain abuse modes such as forced discharge into reversal and charging.

  9. Temperature rise in pulpal chamber during fabrication of provisional resinous crowns.

    PubMed

    Castelnuovo, J; Tjan, A H

    1997-11-01

    The heat generated during the exothermic polymerization reaction of autopolymerizing resinous materials and the heat generated by ultraviolet lamps during irradiation of photopolymerizing resinous materials could cause pulpal damage when a direct technique is used to fabricate provisional restorations. This could occur if temperature elevations overcome the physiological heat dissipating mechanisms of the dental-periodontal system. This in vitro study compared the rise in temperatures in the pulpal chamber during fabrication of provisional complete veneer crowns by direct method with different autopolymerizing and photopolymerizing resins. The effect of curing resinous crowns in different matrices, such as a polyvinyl siloxane impression and a vaccuum-formed polypropylene sheet, was also evaluated. The results demonstrated that the amount of heat generated during resin polymerization and transmitted to the pulpal chamber could be damaging to pulpal tissues including odontoblasts. When curing of provisional resinous crowns was performed in the polyvinyl siloxane impression, significantly lower temperatures were recorded compared with curing in the vacuum-formed polypropylene sheet. To prevent pulpal damage, effective cooling procedures are strongly recommended when directly fabricating resinous provisional crowns.

  10. Combustion synthesis of low exothermic component rich composites

    DOEpatents

    Halverson, Danny C.; Lum, Beverly Y.; Munir, Zuhair A.

    1991-01-01

    A self-sustaining combustion synthesis process for producing hard, tough, lightweight, low exothermic potential product (LEPP)/high exothermic potential product (HEPP) composites is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the LEPP and HEPP reactants. For lightweight products the composition must be relatively rich in the LEPP component. LEPP rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.

  11. Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry.

    PubMed

    Ikenoue, Tatsuya; Lee, Young-Ho; Kardos, József; Yagi, Hisashi; Ikegami, Takahisa; Naiki, Hironobu; Goto, Yuji

    2014-05-06

    Amyloid fibrils form in supersaturated solutions via a nucleation and growth mechanism. Although the structural features of amyloid fibrils have become increasingly clearer, knowledge on the thermodynamics of fibrillation is limited. Furthermore, protein aggregation is not a target of calorimetry, one of the most powerful approaches used to study proteins. Here, with β2-microglobulin, a protein responsible for dialysis-related amyloidosis, we show direct heat measurements of the formation of amyloid fibrils using isothermal titration calorimetry (ITC). The spontaneous fibrillation after a lag phase was accompanied by exothermic heat. The thermodynamic parameters of fibrillation obtained under various protein concentrations and temperatures were consistent with the main-chain dominated structural model of fibrils, in which overall packing was less than that of the native structures. We also characterized the thermodynamics of amorphous aggregation, enabling the comparison of protein folding, amyloid fibrillation, and amorphous aggregation. These results indicate that ITC will become a promising approach for clarifying comprehensively the thermodynamics of protein folding and misfolding.

  12. On the thermal runaway of combustible fluids in lagging material

    NASA Astrophysics Data System (ADS)

    McIntosh, A. C.; Griffiths, J. F.

    1995-01-01

    This paper presents the mathematical foundations for a simple theory for investigating the phenomenon of ignition of flammable fluids in lagging material that are used for insulation of hot pipework, for transport of heat transfer fluids, or other similar situations. Experiments with porous material impregnated with a flammable fluid have simulated the self-heating known to occur when combustible liquids leak from a hot pipe into lagging surrounding the pipe or are split from another source on to the lagging. A theory to explain these findings is presented which shows that there is a watershed temperature beyond which substantial self-heating will take place. Although the theory does not take account of diffusion, it simulates the main physics of the phenomenon-that is, combustible fluid, which normally in the open air would evaporate and not be a hazard, can, within a porous medium, remain dispersed within the porous structure long enough for the exothermic oxidation to develop into ignition.

  13. On the understanding and control of the spontaneous heating of dried tannery wastewater sludge.

    PubMed

    Biasin, A; Della Zassa, M; Zerlottin, M; Refosco, D; Bertani, R; Canu, P

    2014-04-01

    We studied the spontaneous heating of dried sludge produced by treating wastewater mainly originating from tanneries. Heating up to burning has been observed in the presence of air and moisture, starting at ambient temperature. To understand and prevent the process we combined chemical and morphological analyses (ESEM) with thermal activity monitoring in insulated vessels. Selective additions of chemicals, either to amplify or depress the reactivity, have been used to investigate and identify both the chemical mechanism causing the sludge self-heating, and a prevention or a mitigation strategy. FeS additions accelerate the onset of reactivity, while S sustains it over time. On the contrary, Ca(OH)2, Na2CO3, NaHCO3, FeCl2, EDTA, NaClO can limit, up to completely preventing, the exothermic activity. All the experimental evidences show that the reactions supporting the dried sludge self-heating involve the Fe/S/O system. The total suppression of the reactivity requires amounts of additives that are industrially incompatible with waste reduction and economics. The best prevention requires reduction or removal of S and Fe from the dried solid matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.; Moon, T.J.; Howell, J.R.

    This paper presents an analysis of the heat transfer occurring during an in-situ curing process for which infrared energy is provided on the surface of polymer composite during winding. The material system is Hercules prepreg AS4/3501-6. Thermoset composites have an exothermic chemical reaction during the curing process. An Eulerian thermochemical model is developed for the heat transfer analysis of helical winding. The model incorporates heat generation due to the chemical reaction. Several assumptions are made leading to a two-dimensional, thermochemical model. For simplicity, 360{degree} heating around the mandrel is considered. In order to generate the appropriate process windows, the developedmore » heat transfer model is combined with a simple winding time model. The process windows allow for a proper selection of process variables such as infrared energy input and winding velocity to give a desired end-product state. Steady-state temperatures are found for each combination of the process variables. A regression analysis is carried out to relate the process variables to the resulting steady-state temperatures. Using regression equations, process windows for a wide range of cylinder diameters are found. A general procedure to find process windows for Hercules AS4/3501-6 prepreg tape is coded in a FORTRAN program.« less

  15. Direct detection of exothermic dark matter with light mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Department of Physics, National Tsing Hua University,Hsinchu, Taiwan; Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan

    2016-08-05

    We study the dark matter (DM) direct detection for the models with the effects of the isospin-violating couplings, exothermic scatterings, and/or the lightness of the mediator, proposed to relax the tension between the CDMS-Si signals and null experiments. In the light of the new updates of the LUX and CDMSlite data, we find that many of the previous proposals are now ruled out, including the Ge-phobic exothermic DM model and the Xe-phobic DM one with a light mediator. We also examine the exothermic DM models with a light mediator but without the isospin violation, and we are unable to identifymore » any available parameter space that could simultaneously satisfy all the experiments. The only models that can partially relax the inconsistencies are the Xe-phobic exothermic DM models with or without a light mediator. But even in this case, a large portion of the CDMS-Si regions of interest has been constrained by the LUX and SuperCDMS data.« less

  16. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-01

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. Dedicated to Prof. Brigitte Weiss.

  17. Decomposition of nitric oxide in a hot nitrogen stream to synthesize air for hypersonic wind tunnel combustion testing

    NASA Technical Reports Server (NTRS)

    Zumdieck, J. F.; Zlatarich, S. A.

    1974-01-01

    A clean source of high enthalpy air was obtained from the exothermic decomposition of nitric oxide in the presence of strongly heated nitrogen. A nitric oxide jet was introduced into a confined coaxial nitrogen stream. Measurements were made of the extent of mixing and reaction. Experimental results are compared with one- and two-dimensional chemical kinetics computations. Both analyses predict much lower reactivity than was observed experimentally. Inlet nitrogen temperatures above 2400 K were sufficient to produce experimentally a completely reacted gas stream of synthetic air.

  18. Exothermic Surface Reactions in Alumina-Aluminum Shell-Core Nanoparticles with Iodine Oxide Decomposition Fragments

    DTIC Science & Technology

    2014-02-22

    substantially high heat of combustion 6.22 kJ/g in comparison to other thermite reactions such as Al/CuO (4.09 kJ/g), Al/MoO3 (4.72 kJ/g), and Al/Fe2O3 (3.97 kJ...oxide shell growth on nano aluminum thermite propagation rates. Combust Flame 159:3448 3453 Granier JJ, Pantoya ML (2004) Laser ignition of...nanocomposite thermites . Combust Flame 138:373 383 2310 Page 8 of 9 J Nanopart Res (2014) 16:2310 1 3 Hlavacek V, Pranda P, Prandova K (2005) Reactivity, stored

  19. The densification, crystallization and mechanical properties of allylhydridopolycarbosilane-derived silicon carbide

    NASA Astrophysics Data System (ADS)

    Moraes, Kevin V.

    Allylhydridopolycarbosilane is a precursor of growing importance in the fabrication of silicon carbide ceramics. However, prior to this study few details were available about the processing-structure-property relationships for this material. In Part 1 of this study the processes of densification and microstructural transformation of the partially pyrolysed amorphous AHPCS-SiC was investigated in the temperature region of 800°C to 1600°C. In Part 2 of this study, mechanical properties, specifically fracture toughness (K1c) and Vickers hardness, were measured on bulk specimens in the temperature range of 1000°C to 1600°C. A combination of X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM), 29Si Nuclear Magnetic Resonance (NMR) and micro Raman spectroscopy, along with simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) were used to follow the structural transformation of the partially pyrolysed AHPCS-SiC on several length scales between the temperature of 800 to 1600°C. It was determined that the rate of densification of amorphous AHPCS-SiC, partially pyrolysed to 600°C, depends on the surface to volume ratio. Calculations were preformed that suggested that nucleation of the SiC crystals should occur preferentially on the surface of the powder particles rather than in the bulk. However, TEM on samples heat-treated to 1600°C did not show a preponderance of crystals on the surface of the particles compared to their bulk. Crystallization of beta-SiC occurs at ca. 1250°C, as determined by DSC and supported by NMR and electron diffraction. The average size of the beta-SiC crystallites, as determined by XRD, was ca. 5 nm at 1600°C. Prior to the crystallization of beta-SiC, Raman spectroscopy indicates the presence of carbon clusters in the otherwise amorphous matrix. These carbon clusters have predominantly sp3 bonding at 1100°C that gradually converts to predominantly sp 2 bonded carbon at higher temperatures, with average basal plane sizes of 20--25 A between 1100 in addition to 1600°C. The amorphous structure formed at temperatures below the crystallization temperature is unstable. It is seen from DSC that amorphous AHPCS-SiC undergoes two distinct exothermic events: a broad, irreversible, exotherm that corresponds to structural relaxation and chemical condensation and a second, much sharper, exotherm that corresponds to crystallization. Fracture toughness values measured on cold-pressed and infiltrated AHPCS-SiC samples were in the range of 1.4 to 1.67 MPam1/2. It appears that toughness increases with increasing heat treatment temperature. The Vickers hardness at 10 N was ca. 8.7 to 12.6 MPa. The Vickers hardness does not appear to vary significantly with the heat-treatment temperature.

  20. Fabrication of high temperature materials by exothermic synthesis and subsequent dynamic consolidation

    DOEpatents

    Rabin, Barry H.; Korth, Gary E.; Wright, Richard N.; Williamson, Richard L.

    1992-01-01

    An apparatus for synthesizing a composite material such as titanium carbide and alumina from exothermic reaction of a sample followed by explosive induced consolidation of the reacted sample. The apparatus includes a lower base for holding a powdered composite sample, an igniter and igniter powder for igniting the sample to initiate an exothermic reaction and a piston for dynamically compressing the sample utilizing an explosive reaction.

  1. Understanding batteries on the micro- and nanometer scale

    ScienceCinema

    None

    2018-01-16

    In order to understand performance limitations and failure mechanisms of batteries, one has to investigate processes on the micro- and nanometer scale. A typical failure mechanism in lithium metal batteries is dendritic growth. During discharge, lithium is stripped of the anode surface and migrates to the cathode. During charge, lithium is deposited back on the anode. Repeated cycling can result in stripping and re-deposition that roughens the surface. The roughening of the surface changes the electric field and draws more metal to spikes that are beginning to grow. These can grow with tremendous mechanical force, puncture the separator, and directly connect the anode with the cathode which can create an internal short circuit. This can lead to an uncontrolled discharge reaction, which heats the cell and causes additional exothermic reactions leading to what is called thermal runaway. ORNL has developed a new technology called liquid electron microscopy. In a specially designed sample holder micro-chamber with electron-transparent windows, researchers can hold a liquid and take images of structures and particles at nanometer size. It's the first microscope holder of its kind used to investigate the inside of a battery while cycled.

  2. Superimpose signal processing method for micro-scale thermal imaging of solar salts at high temperature

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Zamengo, Massimiliano; Kato, Yukitaka

    2016-05-01

    The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies. In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy storage.

  3. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after OM application, which was consistent with other studies (Wang et al., 2001). The content of the WSS increased after the OM application indicating that the increase of labile organic carbon. The C/H mole ratio of the HS could reflect the degree of condensation (Dou et al., 1995). Effects on HA chemical and optical properties. The chemical and optical properties of HA were listed. The C/H ratios decreased after OM application, from 0.830 (CKbr) to 0.754 (O2). While △lgK increased, from 0.623 (CKbr) to 0.658 (O2). The HA structure tended to become simpler. The C/H ratio of the HA decreased after OM application. This indicates that OM application decreased the degree of condensation. The △lgK values can be used as the index of HA molecule complexity in the soil. If △lgK increased, the molecular structure becomes simpler. After OM application, △lgK increased indicating that the molecular structure became simpler. Effects on HA thermal properties. It could be seen that HA had exothermic peaks in moderate and high temperature regions. After OM application, heat (H2) of exothermic peak increased in moderate temperature region, while heat (H3) of exothermic peak decreased in high temperature region. The the heat ratio of exothermic peaks in high temperature region to moderate (H3/H2) decreased. From CKbr to O2, H3/H2 decreased from 4.31 to0.86. The HA had moderate and high temperature exothermic peaks. The heat of exothermic peaks in the moderate temperature region might show that aliphatic compounds decomposed and peripheral functional groups decarboxylated. The heat of the exothermic peaks in the high temperature region might show that the HA was oxidized completely and inter-aromatic structures in the molecule decomposed. The heat ratio of the high to moderate temperature exothermic regions (H3/H2) decreased significantly after PM application, indicating that the proportion of aromatic structure decreased and the HA molecular structure simplified. Effects on CP-MAS-13C-NMR spectrum of HA. The CP-MAS- 13C-NMR spectra of the HA were quite similar to each other. These spectra exhibited signals for alkyl (0~50 ppm), O-alkyl (50~110 ppm), aromatic (110~160 ppm) and carbonyl (160~200 ppm) regions. The signals in carbonyl C region concentrated between 172 ppm and 173 ppm, and with a small signal occurred in the region of 190~200 ppm, indicating that there was carbonyl C of carboxylic acid, ester and amide, but a little amount carbonyl C of ketonic compounds. In the region of aromatic C, the most obvious peaks were the absorption at 131~133 ppm and 114~117 ppm. The former was mainly the aromatic C substituted by -COOH or -COOMe and the unsubstituted aromatic meta to carbons bearing an oxygen or nitrogen atom; the latter was mainly the unsubstituted aromatic C ortho and para to carbons bearing an oxygen and nitrogen atom. There was a small peak at 152-154ppm, which was the signal of phenolic OH. The signal at 55~56 ppm was methoxyl C. The signals at 71~73 ppm were due to the -CH(OH)- in carbohydrate. The peak at 102~103 ppm was generally assigned to double oxygen-C in polysaccharide (possibly acetal). The maximum absorption at 30 ppm was the contribution of the polymethylene chain -(CH2)n- in saturated hydrocarbons (Wilson, 1981). After OM application, the contents of alkyl C and O-alkyl C increased and the contents of aromatic C and carbonxyl C except to 1986 decreased. Compared with 1986, the contents of O-alkyl C increased and the contents of alkyl C decreased for the same treatment CKbr and O2. Aromaticity decreased significantly in OM treatments, indicating that the OM decreased the content of aromatic C and was simplified the molecular structure. The relative content of O-alkyl C increased indicating that OM application increased the content of methoxyl C and -CH(OH)- in carbohydrate. Alkyl C was probably derived from compounds of plants with high resistance to degradation, such as cutin and suberin (Baldock et al., 1992; Preston, 1996), or from newly synthesized products from soil micro-organisms , which are likely to represent the most persistent fraction of stable OM (Baldock et al., 1990; Lichtfouse et al., 1998; Piccolo, 2002). The alkyl C increased after the OM applications, indicated by the increase of hydrophobic components content and aliphatic character. Compared with 1986, the contents of O-alkyl C increased and the contents of alkyl C decreased for the same treatment CKbr and O2, indcating that a simplification trend took place in the aliphatic fraction of HA molecular with cultivation time in the tested soil. Conclusions.We have found that:1) The contents of HAs increased after OM application;2) OM application increased the contents of alkyl C and O-alkyl C, and decreased the C/H ratio, aromaticity, and the H3/H2 ratio of the HA, which indicated that the HA structure tended to become simpler and more aliphatic. 3) The results obtained by CP-MAS- 13C-NMR spectroscopy were mainly corresponding with those obtained by chemical analysis, thermal analysis, optical properties and IR spectroscopy, which indicated that 13C-NMR spectroscopy had a potential in characterizing the structural changes of HA after long-term OM application into soils.

  4. Laser Space Propulsion Overview (Preprint)

    DTIC Science & Technology

    2006-08-22

    thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a total of 350-W optical power...achieved Isp = 3660s with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber...diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust efficiency deriving from exothermic

  5. Feasibility of Biomass Biodrying for Gasification Process

    NASA Astrophysics Data System (ADS)

    Hamidian, Arash

    An important challenge of biomass gasification is the limitation of feedstock quality especially the moisture content, which plays a significant role on the performance of gasification process. Gasification requires low moisture levels (20% and less) and several reports have emphasized on the moisture as a typical problem while gasifying biomass. Moisture affects overall reaction rates in the gasifiers as a result of temperature drop and ultimately increases tar content, decreases gas yield, changes the composition of produced gas and affects the efficiency. Therefore, it is mandatory to pre-treat the biomass before gasification and reduce the moisture content to the suitable and economic level. The well-known solutions are either natural drying (not practical for commercial plants) or conventional drying technologies (have high operating costs). Biodrying is an alternative process, which uses both convective air and heat of biological reactions as a source of energy, to reduce the moisture. In the biodrying reactor heat is generated from exothermic decomposition of organic fraction of biomass and that is why the process is called "self-heating process". Employing such technology for drying biomass at pre-treatment units of gasification process returns several economic and environmental advantages to mills. In Europe, municipal waste treatment (MSW) plants use the biodrying at commercial scale to degrade a part of the biodegradable fraction of waste to generate heat and reduce the moisture content for high quality SRF (Solid Recovered Fuel) production. In Italy, wine industry is seeking to develop biodrying for energy recovery of grape wastes after fermentation and distillation, which returns economic benefits to the industry. In Canada, the development of biodrying technology for pulp and paper industry was started at Ecole polytechnique de Montreal as an option for sludge management solution. Therefore, batch biodrying reactor was successfully developed in 2004 and the pilot-scale continuous system was designed in 2010 to demonstrate the feasibility of mixed sludge biodrying for efficient combustion in biomass boilers. Mixed sludge was biodried in the reactor to 45% moisture level, which was the suitable level for boiler application. Techno-economic analysis also revealed the potential economic benefits for pulp and paper mills. However, considerable uncertainties existed in terms of feasibility of the biodrying technology for other types of biomass that are usually used in the gasification process, mainly because of low nutrient level of typical lignocellulosic biomass used as feedstock. Furthermore, the technology had not been shown to be economically viable in conjunction with gasification process at pulp and paper mills. In this work the feasibility of low-nutrient biomass biodrying was tested by experiments and techno-economic model was developed to identify the performance of biodrying process for commercial-scale application. In the economic analysis, a comprehensive approach for biodrying cost assessment was introduced that is based on the well-known approach widely used in the process industry and few sources of benefits were identified.

  6. High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, M.; Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon; Liu, X. J.

    2016-06-28

    Metallic glasses are metastable and their thermal stability is critical for practical applications, particularly at elevated temperatures. The conventional bulk metallic glasses (BMGs), though exhibiting high glass-forming ability (GFA), crystallize quickly when being heated to a temperature higher than their glass transition temperature. This problem may potentially be alleviated due to the recent developments of high-entropy (or multi-principle-element) bulk metallic glasses (HE-BMGs). In this work, we demonstrate that typical HE-BMGs, i.e., ZrTiHfCuNiBe and ZrTiCuNiBe, have higher kinetic stability, as compared with the benchmark glass Vitreoy1 (Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5}) with a similar chemical composition. The measured activation energymore » for glass transition and crystallization of the HE-BMGs is nearly twice that of Vitreloy 1. Moreover, the sluggish crystallization region ΔT{sub pl-pf}, defined as the temperature span between the last exothermic crystallization peak temperature T{sub pl} and the first crystallization exothermic peak temperature T{sub pf}, of all the HE-BMGs is much wider than that of Vitreloy 1. In addition, high-resolution transmission electron microscopy characterization of the crystallized products at different temperatures and the continuous heating transformation diagram which is proposed to estimate the lifetime at any temperature below the melting point further confirm high thermal stability of the HE-BMGs. Surprisingly, all the HE-BMGs show a small fragility value, which contradicts with their low GFA, suggesting that the underlying diffusion mechanism in the liquid and the solid of HE-BMGs is different.« less

  7. Effect of Nano-SiO2 on the Hydration and Microstructure of Portland Cement

    PubMed Central

    Wang, Liguo; Zheng, Dapeng; Zhang, Shupeng; Cui, Hongzhi; Li, Dongxu

    2016-01-01

    This paper systematically studied the modification of cement-based materials by nano-SiO2 particles with an average diameter of about 20 nm. In order to obtain the effect of nano-SiO2 particles on the mechanical properties, hydration, and pore structure of cement-based materials, adding 1%, 3%, and 5% content of nano-SiO2 in cement paste, respectively. The results showed that the reaction of nano-SiO2 particles with Ca(OH)2 (crystal powder) started within 1 h, and formed C–S–H gel. The reaction speed was faster after aging for three days. The mechanical properties of cement-based materials were improved with the addition of 3% nano-SiO2, and the early strength enhancement of test pieces was obvious. Three-day compressive strength increased 33.2%, and 28-day compressive strength increased 18.5%. The exothermic peak of hydration heat of cement increased significantly after the addition of nano-SiO2. Appearance time of the exothermic peak was advanced and the total heat release increased. Thermogravimetric-differential scanning calorimetry (TG-DSC) analysis showed that nano-SiO2 promoted the formation of C–S–H gel. The results of mercury intrusion porosimetry (MIP) showed that the total porosity of cement paste with 3% nano-SiO2 was reduced by 5.51% and 5.4% at three days and 28 days, respectively, compared with the pure cement paste. At the same time, the pore structure of cement paste was optimized, and much-detrimental pores and detrimental pores decreased, while less harmful pores and innocuous pores increased. PMID:28335369

  8. Study of Polyurethane Foaming Dynamics Using a Heat Flow Meter

    NASA Astrophysics Data System (ADS)

    Koniorczyk, P.; Trzyna, M.; Zmywaczyk, J.; Zygmunt, B.; Preiskorn, M.

    2017-05-01

    This work presents the results of the study concerning the effects of fillers addition on the heat flux density \\dot{q}( t ) of foaming of polyurethane-polystyrene porous composite (PSUR) and describes the dynamics of this process during the first 600 s. This foaming process resulted in obtaining porous materials that were based on HFC 365/225 blown rigid polyurethane foam (PUR) matrix, which contained thermoplastic expandable polystyrene (EPS) beads as the filler. In PSUR composites, the EPS beads were expanded after being heated to a temperature above the glass transition temperature of EPS and vaporing gas incorporated inside, by using the heat of exothermic reaction of polyol with isocyanate. From the start (t=0) to the end of the PSUR composite foaming process (t=tk), \\dot{q}( t ) was measured with the use of the heat flow meter. For the purpose of the study two PUR systems were selected: one with high and one with low heat density of foaming process q. EPS beads were selected from the same manufacturer with large and small diameter. The mass fraction of EPS in PSUR foam varied during the measurements. Additionally, a study of volume fractions of expanded EPS phase in PSUR foams as a function of mass fractions of EPS was conducted. In order to verify effects of the EPS addition on the heat flux density during PSUR foaming process, the thermal conductivity measurements were taken.

  9. Thermal to Electric Energy Conversion for Cyclic Heat Loads

    NASA Astrophysics Data System (ADS)

    Whitehead, Benjamin E.

    Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is exothermic, and dehydriding is endothermic, we can use the reaction to control temperature and store or release energy as desired. Connecting the liberated hydrogen gas to a hydrogen/air or hydrogen/oxygen fuel cell can then generate useful electrical power. A fuel cell operates by flowing hydrogen and oxygen over a membrane that only allows protons through. This process creates a voltage through the separation of the negatively charged electrons and positively charged water. Typical fuel cells operate at 30-40% efficiency with research aiming to increase that number to 65% with solid oxide fuel cells. [3]. In this thesis, I develop several models to size metal hydride systems, identify the critical design parameters of a metal hydride system, and predict hydrogen production for a given heat source. The first model consists of a lumped parameter treatment that analyzes how the effects of varying metal hydrides and heat source values change the dehydriding process. The second model uses COMSOLRTM Multiphysics to create a higher fidelity simulation of the heat transfer within a metal hydride bed by calculating the spatial heat transfer as well as the porous nature of the system. The Comsol model shows that thermal conductivity is the highest sensitivity parameter of those studied, and therefore should be the primary focus for system design. The model also shows that the efficiency of the system is relatively independent of the duty cycle of the heat source.

  10. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst.

    PubMed

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-04-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O 2 at room temperature to an acidic RuO 2 /γ-Al 2 O 3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO 2 and acidic sites on the γ-Al 2 O 3 and with physisorption of multiple ammonia molecules.

  11. High rate discharge studies of Li/SO2 cells

    NASA Astrophysics Data System (ADS)

    Dallek, S.; Bis, R. F.; Bowers, F. M.

    Experimental D-size spirally-wound 3V 10 A-hr cells were used in the reported study. The cells were instrumented with four iron-constantan thermocouples. It was found that during a discharge of a thermally insulated cell, the greatest amount of heat builds up in the center of the cell. The heat build-up appears to be purely resistive in nature. Concerning the safe use of these cells, it has been demonstrated that at very high rates of discharge, e.g., 10 A, cells may vent violently and cause a fire. At this high rate of discharge, the internal cell temperature exceeded the melting point of the lithium anode which is in the form of an unsupported strip. Thus, contact of the highly reactive molten lithium with other reactive species in the cell is possible under these conditions and could result in a very exothermic chemical reaction.

  12. A molecular dynamics study of the role of pressure on the response of reactive materials to thermal initiation

    NASA Astrophysics Data System (ADS)

    Weingarten, N. Scott; Mattson, William D.; Yau, Anthony D.; Weihs, Timothy P.; Rice, Betsy M.

    2010-05-01

    To elucidate the mechanisms of energy release in a reacting nickel/aluminum bilayer, we simulate the exothermic alloying reactions using both microcanonical and isoenthalpic-isobaric molecular dynamics simulations and an embedded-atom method type potential. The mechanism of the mixing consists of a sequence of steps in which mixing and reaction first occurs at the interface; the resulting heat generated from the mixing then melts the Al layer; subsequent mixing leads to further heat generation after which the Ni layer melts. The mixing continues until the alloying reactions are completed. The results indicate that pressure has a significant influence on the rates of atomic mixing and alloying reactions. Local pressures and temperatures within the individual layers at the time of melting are calculated, and these results are compared with the pressure-dependent melting curves determined for pure Al and pure Ni using this interaction potential.

  13. Feasibility of using microencapsulated phase change materials as filler for improving low temperature performance of rubber sealing materials.

    PubMed

    Tiwari, Avinash; Shubin, Sergey N; Alcock, Ben; Freidin, Alexander B; Thorkildsen, Brede; Echtermeyer, Andreas T

    2017-11-01

    The feasibility of a novel composite rubber sealing material to improve sealing under transient cooling (in a so-called blowdown scenario) is investigated here. A composite of hydrogenated nitrile butadiene rubber (HNBR) filled with Micro Encapsulated Phase Change Materials (MEPCM) is described. The fillers contain phase change materials that release heat during the phase transformation from liquid to solid while cooling. This exotherm locally heats the rubber and may improve the function of the seal during a blowdown event. A representative HNBR-MEPCM composite was made and the critical thermal and mechanical properties were obtained by simulating the temperature distribution during a blowdown event. Simulations predict that the MEPCM composites can delay the temperature decrease in a region of the seal during the transient blowdown. A sensitivity analysis of material properties is also presented which highlights possible avenues of improvement of the MEPCMs for sealing applications.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Chan Yi, E-mail: vicchanyiwei@hotmail.com; Ongkudon, Clarence M., E-mail: clarence@ums.edu.my; Kansil, Tamar, E-mail: tamarkansil87@gmail.com

    Modern day synthesis protocols of methacrylate monolithic polymer adsorbent are based on existing polymerization blueprint without a thorough understanding of the dynamics of pore structure and formation. This has resulted in unproductiveness of polymer adsorbent consequently affecting purity and recovery of final product, productivity, retention time and cost effectiveness of the whole process. The problems magnified in monolith scaling-up where internal heat buildup resulting from external heating and high exothermic polymerization reaction was reflected in cracking of the adsorbent. We believe that through careful and precise control of the polymerization kinetics and parameters, it is possible to prepare macroporous methacrylatemore » monolithic adsorbents with controlled pore structures despite being carried out in an unstirred mould. This research involved the study of the effect of scaling-up on pore morphology of monolith, in other words, porous polymethacrylate adsorbents that were prepared via bulk free radical polymerization process by imaging the porous morphology of polymethacrylate with scanning electron microscope.« less

  15. Thermogenesis-triggered seed dispersal in dwarf mistletoe

    PubMed Central

    deBruyn, Rolena A.J.; Paetkau, Mark; Ross, Kelly A.; Godfrey, David V.; Friedman, Cynthia Ross

    2015-01-01

    Lodgepole pine dwarf mistletoe (DM), Arceuthobium americanum, is a parasitic flowering plant and forest pathogen in North America. Seed dispersal in DM occurs by explosive discharge. Notably, slight warming of ripe DM fruit in the laboratory can trigger explosions. Previously, we showed that alternative oxidase, a protein involved in endogenous heat production (thermogenesis) in plants, is present in DM fruit. These observations have led us to investigate if thermogenesis induces discharge. Here, infrared thermographs reveal that ripe DM fruits display an anomalous increase in surface temperature by an average of 2.1±0.8 °C over an average time of 103±29 s (n=9, 95% confidence interval) before dehiscence. Furthermore, both non-isothermal and isothermal modulated differential scanning calorimetry consistently show an exothermic event (~1 J g−1) in the non-reversible heat flow just prior to discharge. These results support thermogenesis-triggered seed discharge, never before observed in any plant. PMID:25662062

  16. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst

    PubMed Central

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-01-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O2 at room temperature to an acidic RuO2/γ-Al2O3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO2 and acidic sites on the γ-Al2O3 and with physisorption of multiple ammonia molecules. PMID:28508046

  17. Thermoplasmonic Ignition of Metal Nanoparticles.

    PubMed

    Mutlu, Mehmet; Kang, Ju-Hyung; Raza, Søren; Schoen, David; Zheng, Xiaolin; Kik, Pieter G; Brongersma, Mark L

    2018-03-14

    Explosives, propellants, and pyrotechnics are energetic materials that can store and quickly release tremendous amounts of chemical energy. Aluminum (Al) is a particularly important fuel in many applications because of its high energy density, which can be released in a highly exothermic oxidation process. The diffusive oxidation mechanism (DOM) and melt-dispersion mechanism (MDM) explain the ways powders of Al nanoparticles (NPs) can burn, but little is known about the possible use of plasmonic resonances in NPs to manipulate photoignition. This is complicated by the inhomogeneous nature of powders and very fast heating and burning rates. Here, we generate Al NPs with well-defined sizes, shapes, and spacings by electron beam lithography and demonstrate that their plasmonic resonances can be exploited to heat and ignite them with a laser. By combining simulations with thermal-emission, electron-, and optical-microscopy studies, we reveal how an improved control over NP ignition can be attained.

  18. Thermodynamic Stability of Transition Metal Substituted LiMn 2-xMxO 4 (M=Cr, Fe, Co, and Ni) Spinels

    NASA Astrophysics Data System (ADS)

    Lai, Chenying

    The formation enthalpies from binary oxides of LiMn2O 4, LiMn2-xCrxO4 (x = 0.25, 0.5, 0.75 and 1), LiMn2-xFexO4 (x = 0.25 and 0.5), LiMn2-xCoxO4 (x = 0.25, 0.5, and 0.75) and LiMn1.75Ni 0.25O4 at 25 °C have been measured by high-temperature oxide-melt-solution calorimetry and were found to be strongly exothermic. Increasing Cr, Co and Ni content leads to more thermodynamically stable spinels, but increasing Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO 4 (M = Cr, Fe and Co) become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2O4 - LiMnMO 4 solid solutions. These data confirm that transition metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries.

  19. Development of low-cost directionally-solidified turbine blades

    NASA Technical Reports Server (NTRS)

    Hoppin, G. S., III; Fujii, M.; Sink, L. W.

    1980-01-01

    A low-cost directionally solidified (DS) casting of turbine blades of high stress rupture is discussed. The process uses an exothermically heated mold; a newly designed solid blade was cast for the high-pressure turbine of the TFE731-3 turbofan engine. Ni-based alloys Mar-M 247 and Mar-M 200 + Hf were used. The solid DS blade replaced a conventionally cast IN100 component; a 40% cost saving is expected, with a 2.4% reduction in the takeoff specific fuel consumption. The DS Mar-M 247 blade has been selected for production in the TFE731-3B-100, and advanced version of the TFE731-3.

  20. A two-dimensional, finite-difference model of the oxidation of a uranium carbide fuel pellet

    NASA Astrophysics Data System (ADS)

    Shepherd, James; Fairweather, Michael; Hanson, Bruce C.; Heggs, Peter J.

    2015-12-01

    The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.

  1. A Numerical Evaluation on the Viability of Heap Thermophilic Bioleaching of Chalcopyrite

    NASA Astrophysics Data System (ADS)

    Vilcaez, J.; Suto, K.; Inoue, C.

    2007-03-01

    The present numerical evaluation explores into the interactions among the many variables governing the mass and heat transport processes that take place in a heap thermophilic bioleaching system. The necessity of using mesophiles together with thermophiles is proved by tracing the activity of both microorganisms individually at each point throughout the heap. The role of key variables such as the fraction of FeS2 per CuFeS2 leached was quantified and its importance highlighted. In this evaluation, the heat transfer process plays the main role because of the heat accumulation required to maintain the heap temperature within the range of 60 °C to 80 °C where thermophilic microorganisms are capable of completing the unfinished dissolution of copper started by mesophilic microorganisms at 30 °C. The evaluation was done taking into consideration: biological activity as function of the temperature in the heap, heat loss due to conduction and advection from the top and bottom of the heap, and mass transfer between the gas and liquid phases as a function of temperature. The exothermic nature of the leaching reactions of CuFeS2 and FeS2 makes the system auto-thermal.

  2. On the importance of simultaneous infrared/fiber-optic temperature monitoring in the microwave-assisted synthesis of ionic liquids.

    PubMed

    Obermayer, David; Kappe, C Oliver

    2010-01-07

    The temperature profiles obtained from both an external infrared and internal fiber-optic sensor were compared for heating and synthesizing the ionic liquid 1-butyl-3-methylimidazolium bromide (bmimBr) under microwave conditions. Utilizing a single-mode microwave reactor that allows simultaneous infrared/fiber-optic temperature measurements, significant differences between the two methods of temperature monitoring were revealed. Due to the strong microwave absorptivity of ionic liquids and the delay experienced in monitoring temperature on the outer surface of a heavy-walled glass vial, external infrared temperature sensors can not be used to accurately control the temperature in the heating of ionic liquids under microwave conditions. The use of internal fiber-optic probes allows the monitoring and control of the heating behavior in a much better way. In order to prevent the strong exotherm in the synthesis of bmimBr under microwave conditions the use of a reaction vessel made out of silicon carbide is the method of choice. Because of the high thermal conductivity and effusivity of silicon carbide, the heat generated during the ionic liquid formation is efficiently exchanged with the comparatively cool air in the microwave cavity via the silicon carbide ceramic.

  3. Towards a Microbial Thermoelectric Cell

    PubMed Central

    Rodríguez-Barreiro, Raúl; Abendroth, Christian; Vilanova, Cristina; Moya, Andrés; Porcar, Manuel

    2013-01-01

    Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric cell (MTC), in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into electricity through a thermoelectric device optimized for low ΔT values. A temperature of 41°C and net electric voltage of around 250–600 mV was achieved with 1.7 L baker’s yeast culture. This is the first time microbial metabolic energy has been converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal aerobic digestion (ATAD) or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small electric devices. PMID:23468862

  4. Production of ZrC Matrix for Use in Gas Fast Reactor Composite Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn

    2007-07-01

    Zirconium carbide is being considered as a candidate for inert matrix material in composite nuclear fuel for Gas fast reactors due to its favorable characteristics. ZrC can be produced by the direct reaction of pure zirconium and graphite powders. Such a reaction is exothermic in nature. The reaction is self sustaining once initial ignition has been achieved. The heat released during the reaction is high enough to complete the reaction and achieve partial sintering without any external pressure applied. External heat source is required to achieve ignition of the reactants and maintain the temperature close to the adiabatic temperature tomore » achieve higher levels of sintering. External pressure is also a driving force for sintering. In the experiments described, cylindrical compacts of ZrC were produced by direct combustion reaction. External induction heating combined with varying amounts of external applied pressure was employed to achieve varying degrees of density/porosity. The effect of reactant particle size on the product characteristics was also studied. The samples were characterized for density/porosity, composition and microstructure. (authors)« less

  5. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTOxDNAZ.

    PubMed

    Ma, Haixia; Yan, Biao; Li, Zhaona; Guan, Yulei; Song, Jirong; Xu, Kangzhen; Hu, Rongzu

    2009-09-30

    NTOxDNAZ was prepared by mixing 3,3-dinitroazetidine (DNAZ) and 3-nitro-1,2,4-triazol-5-one (NTO) in ethanol solution. The thermal behavior of the title compound was studied under a non-isothermal condition by DSC and TG/DTG methods. The kinetic parameters were obtained from analysis of the DSC and TG/DTG curves by Kissinger method, Ozawa method, the differential method and the integral method. The main exothermic decomposition reaction mechanism of NTOxDNAZ is classified as chemical reaction, and the kinetic parameters of the reaction are E(a)=149.68 kJ mol(-1) and A=10(15.81)s(-1). The specific heat capacity of the title compound was determined with continuous C(p) mode of microcalorimeter. The standard mole specific heat capacity of NTOxDNAZ was 352.56 J mol(-1)K(-1) in 298.15K. Using the relationship between C(p) and T and the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion) was obtained.

  6. Electrochemical and thermodynamic studies of the electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Bang, Hyun Joo

    A series of graphite samples were tested for their electrochemical performance as anode material for lithium ion cells. Specially treated natural graphite samples showed good reversible capacities and relatively small irreversible capacity losses. The good performance of these samples can be explained by the low surface area associated with the rounded edges and absence of exfoliation due to the presence of the rhombohedral phase and defects in the grain boundaries. Graphitized cokes showed larger irreversible capacity losses while mesophase carbons showed lower reversible capacity. The treated natural graphite samples, especially LBG25 were found to be high performance, low cost anode materials for the lithium ion cells. The electrochemical and thermal behaviors of the spinels---LiMn 2O4, LiCo1/6Mn11/6O4, LiFe 1/6Mn11/6O4, and LiNi1/6Mn11/6 O4 were studied using electrochemical and thermochemical techniques. The electrochemical techniques included cyclic voltammetry, charge/discharge cycling of 2016 coin cells and diffusion coefficient measurements using Galvanostatic Intermittent Titration Technique. Better capacity retention(GITT) was observed for the substituted spinels (0.11% loss/cycle for LiCo1/6Mn 11/6O4; 0.3% loss/cycle for LiFe1/6Mn11/6 O4; and 0.2% loss/cycle for LiNi1/6Mn11/6 O4) than for the lithium manganese dioxide spinel (1.6% loss/cycle for first 10 cycles, 0.9% loss/cycle for 33 cycles) during 33 cycles. The Differential Scanning Calorimetry (DSC) results showed that the cobalt substituted spinel has better thermal stability than the lithium manganese oxide and other substituted spinels. The thermal profile of LiMn2O4 and LiAl0.17 Mn1.83O3.97S0.03 was measured in an isothermal micro-calorimeter. The heat contributions are discussed in terms of reversible and irreversible heat generation, in combination with the entropy change directly obtained by the dE/dT measurements and the over-potential measurements. The endothermic and exothermic heat profiles observed during the charge and discharge processes are related to the Li insertion/extraction reaction in the spinel host structure for both materials. The reversible heat generation due to the lithium insertion/extraction reaction in the host electrode is estimated on the basis of the cell entropy change. The heat generation calculated from DeltaS and the open circuit potential results is consistent with the heat profile (exothermic/endothermic) generated during the charge/discharge process and with the magnitude of the heat generation from the experimental results obtained from the IMC at a slow charge/discharge rate. The irreversible heat generation dependence on the current rate is discussed at different discharge rates.

  7. Composition and method for storing and releasing hydrogen

    DOEpatents

    Thorn, David L.; Tumas, William; Ott, Kevin C.; Burrell, Anthony K.

    2010-06-15

    A chemical system for storing and releasing hydrogen utilizes an endothermic reaction that releases hydrogen coupled to an exothermic reaction to drive the process thermodynamically, or an exothermic reaction that releases hydrogen coupled to an endothermic reaction.

  8. 75 FR 50941 - Airworthiness Directives; B/E Aerospace Protective Breathing Equipment Part Number 119003-11...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... used in PBE units, which could result in an exothermic reaction and ignition. We are proposing this AD..., which could result in an exothermic reaction and ignition. The Federal Aviation Administration is...

  9. Heat of solution: A new source of thermal energy in the subsurface of cometary nuclei and the gas-exsolution mechanism driving outbursts of Comet 29P/Schwassmann‒Wachmann and other comets

    NASA Astrophysics Data System (ADS)

    Miles, Richard

    2016-07-01

    This paper is a continuation of Miles et al. (2015) [Icarus] and Miles (2015b) [Icarus], which detail new observations of Comet 29P/Schwassmann‒Wachmann, characterise its rotational period (∼57 d), and identify the presence of discrete sources of outburst on its nucleus: the latter ruling out amorphous-to-crystalline H2O ice transitions as the cause of its outbursts. Summary data are presented for 29P and a further 16 non-fragmenting comets which exhibit outbursts of >2 magnitudes. A comprehensive physicochemical mechanism is postulated to account for major outbursts based on melting of cometary ices and the exothermic dissolution of gases, especially CO and CO2 at pressures of 10‒200 kPa. The thermodynamics of enthalpy heating are described and heats of solution are calculated from gas-liquid solubility data yielding -6 kJ mol-1 for CO in CH4, and -15 kJ mol-1 for CO2 in CH3OH close to their freezing point. Heats of solution are ∼6 times greater (per mole) than the enthalpy of fusion of the pure CH4 and CH3OH ices, enabling gas pressures of >∼80 kPa to continually melt these ices. Supervolatile O2 and N2 gases may also participate by dissolving exothermically in liquid CH4 and other hydrocarbons potentially reaching high mixing ratios. H2S and NH3 gases dissolve exothermically in CH3OH liberating up to 20 kJ mol-1 and 13 kJ mol-1, respectively, and all three hydrophilic species facilitate sintering of H2O ice in the near-surface of comets. Localised melting and consolidation is favoured in slowly-rotating cometary nuclei of intermediate dust/gas ratios, at pressures of ∼1 kPa, and temperatures as low as 50‒65 K where O2 and N2 are abundant. Nyctogenic processes on the night-time side of the nucleus restock desiccated surface layers, reseal the crust, enabling fractionation of solutes in sub-crustal liquid phases via fractional sublimation/distillation of non-polar, hydrophobic CH4 and other hydrocarbons; and by fractional crystallisation of polar, hydrophilic phases rich in aqueous CH3OH and other organic oxygenates, e.g. CH2O, able to form low melting point eutectic mixtures. A generalised outburst mechanism is described involving the containment of gases as solutes in cryomagma beneath consolidated surface crustal regions. Disruption of the crust and associated pressure loss render the cryomagma supersaturated, and the concomitant explosive exsolution of gases provokes a cometary outburst. The CO gas-exsolution mechanism operates at ∼65 to 95 K and accounts for activity of 29P and other distant comets up to rh = ∼15 AU. A similar mechanism can operate at ∼150 to 200 K driven by CO2 in aqueous CH3OH and may account for rare outbursts of Jupiter-family comets such as 17P/Holmes. At least 10-15% of all periodic comets may be subject to gas-exsolution outbursts, the majority of which are weak and go undetected. Possible surface morphologies of the nucleus of Comet 29P are discussed. The mechanism may also explain the phenomenon of strong cometary outbursts triggering secondary events, as observed for 17P, 29P and 41P.

  10. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem.

    PubMed

    Zhou, Huan; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2013-10-01

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. © 2013.

  11. Combined flame and electrodeposition synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays.

    PubMed

    Dong, Zhizhong; Al-Sharab, Jafar F; Kear, Bernard H; Tse, Stephen D

    2013-09-11

    A nanostructured thermite composite comprising an array of tungsten-oxide (WO2.9) nanowires (diameters of 20-50 nm and lengths of >10 μm) coated with single-crystal aluminum (thickness of ~16 nm) has been fabricated. The method involves combined flame synthesis of tungsten-oxide nanowires and ionic-liquid electrodeposition of aluminum. The geometry not only presents an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer but also eliminates or minimizes the presence of an interfacial Al2O3 passivation layer. Upon ignition, the energetic nanocomposite exhibits strong exothermicity, thereby being useful for fundamental study of aluminothermic reactions as well as enhancing combustion characteristics.

  12. A Role-Play to Illustrate the Energy Changes Occurring in an Exothermic Reaction.

    ERIC Educational Resources Information Center

    Tyas, Toby; Cabot, John

    1999-01-01

    Describes a role-play activity designed to help students understand the energy changes involved in an exothermic reaction by modeling the concepts of bond-breaking takes in energy, activation energy, temperature rise, and bond breaking gives out energy. (WRM)

  13. Influence of the volumes of bis-acryl and poly(methyl methacrylate) resins on their exothermic behavior during polymerization.

    PubMed

    Ha, Jung-Yun; Kim, Sung-Hun; Kim, Kyo-Han; Kwon, Tae-Yub

    2011-01-01

    This study aimed to evaluate the influence of the volumes of a bis-acryl resin (Luxatemp) and a poly(methyl methacrylate) resin (Jet) on their exothermic behaviors during polymerization based on vinyl group conversion. The number of vinyl groups reacted and exotherm were determined based on weight percent of methacrylate groups using FTIR spectroscopy. Temperature changes during polymerization at 23°C were recorded for 20 minutes using a multiple cavity mold overlying a thermocouple. The number of vinyl groups reacted and exotherm of Luxatemp were consistently lower than those of Jet at each resin volume. Mean peak temperature rises of Luxatemp and Jet were in the range of 2.0-6.6°C and 4.2-11.6°C respectively, with Luxatemp and Jet taking 2 and 10 minutes respectively to reach their peak temperatures. As their resin volumes increased, their peak temperatures and total peak areas were also observed to increase significantly (p<0.01).

  14. Surprisingly facile CO2 insertion into cobalt alkoxide bonds: A theoretical investigation.

    PubMed

    Offermans, Willem K; Bizzarri, Claudia; Leitner, Walter; Müller, Thomas E

    2015-01-01

    Exploiting carbon dioxide as co-monomer with epoxides in the production of polycarbonates is economically highly attractive. More effective catalysts for this reaction are intensively being sought. To promote better understanding of the catalytic pathways, this study uses density functional theory calculations to elucidate the reaction step of CO2 insertion into cobalt(III)-alkoxide bonds, which is also the central step of metal catalysed carboxylation reactions. It was found that CO2 insertion into the cobalt(III)-alkoxide bond of [(2-hydroxyethoxy)Co(III)(salen)(L)] complexes (salen = N,N"-bis(salicyliden-1,6-diaminophenyl)) is exothermic, whereby the exothermicity depends on the trans-ligand L. The more electron-donating this ligand is, the more exothermic the insertion step is. Interestingly, we found that the activation barrier decreases with increasing exothermicity of the CO2 insertion. Hereby, a linear Brønsted-Evans-Polanyi relationship was found between the activation energy and the reaction energy.

  15. Synthesis, characterization, thermal and explosive properties of potassium salts of trinitrophloroglucinol.

    PubMed

    Wang, Liqiong; Chen, Hongyan; Zhang, Tonglai; Zhang, Jianguo; Yang, Li

    2007-08-17

    Three different substituted potassium salts of trinitrophloroglucinol (H(3)TNPG) were prepared and characterized. The salts are all hydrates, and thermogravimetric analysis (TG) and elemental analysis confirmed that these salts contain crystal H2O and that the amount crystal H2O in potassium salts of H3TNPG is 1.0 hydrate for mono-substituted potassium salts of H3TNPG [K(H2TNPG)] and di-substituted potassium salt of H3TNPG [K2(HTNPG)], and 2.0 hydrate for tri-substituted potassium salt of H3TNPG [K3(TNPG)]. Their thermal decomposition mechanisms and kinetic parameters from 50 to 500 degrees C were studied under a linear heating rate by differential scanning calorimetry (DSC). Their thermal decomposition mechanisms undergo dehydration stage and intensive exothermic decomposition stage. FT-IR and TG studies verify that their final residua of decomposition are potassium cyanide or potassium carbonate. According to the onset temperature of the first exothermic decomposition process of dehydrated salts, the order of the thermal stability from low to high is from K(H2TNPG) and K2(HTNPG) to K3(TNPG), which is conform to the results of apparent activation energy calculated by Kissinger's and Ozawa-Doyle's method. Sensitivity test results showed that potassium salts of H3TNPG demonstrated higher sensitivity properties and had greater explosive probabilities.

  16. Are All-Solid-State Lithium-Ion Batteries Really Safe?-Verification by Differential Scanning Calorimetry with an All-Inclusive Microcell.

    PubMed

    Inoue, Takao; Mukai, Kazuhiko

    2017-01-18

    Although all-solid-state lithium-ion batteries (ALIBs) have been believed as the ultimate safe battery, their true character has been an enigma so far. In this paper, we developed an all-inclusive-microcell (AIM) for differential scanning calorimetry (DSC) analysis to clarify the degree of safety (DOS) of ALIBs. Here AIM possesses all the battery components to work as a battery by itself, and DOS is determined by the total heat generation ratio (ΔH) of ALIB compared with the conventional LIB. When DOS = 100%, the safety of ALIB is exactly the same as that of LIB; when DOS = 0%, ALIB reaches the ultimate safety. We investigated two types of LIB-AIM and three types of ALIB-AIM. Surprisingly, all the ALIBs exhibit one or two exothermic peaks above 250 °C with 20-30% of DOS. The exothermic peak is attributed to the reaction between the released oxygen from the positive electrode and the Li metal in the negative electrode. Hence, ALIBs are found to be flammable as in the case of LIBs. We also attempted to improve the safety of ALIBs and succeeded in decreasing the DOS down to ∼16% by incorporating Ketjenblack into the positive electrode as an oxygen scavenger. Based on ΔH as a function of voltage window, a safety map for LIBs and ALIBs is proposed.

  17. Development of Surface Nanocomposite Based on Al-Ni-O Ternary System on Al6061 Alloy by Friction-Stir Processing and Evaluation of Its Properties

    NASA Astrophysics Data System (ADS)

    Adel Mehraban, F.; Karimzadeh, F.; Abbasi, M. H.

    2015-05-01

    In this study, an Al/Al2O3-Al3Ni hybrid nanocomposite was developed on the surface of Al6061-T6 plate with preplaced NiO powder on its surface using friction-stir processing (FSP). The x-ray diffraction results showed that NiO particles were reduced by Al during FSP and Al3Ni and Al2O3 were formed as in situ reaction products. A thermodynamic analysis indicated that the reaction is thermodynamically possible and exothermic. Thus, the reaction that is initiated by the severe plastic deformation and friction associated with FSP could continue by the heat that is generated by the exothermic reaction. During each FSP pass, the FSP products are detached quickly from the interface and the growth of the particles is limited and nanometer-sized reinforcements were produced. The presence of facet and hexagonal nanoparticles in transmission electron microscopy micrographs of the stir zone confirmed the formation of Al3Ni and Al2O3 nanoreinforcements, respectively. Mechanical test results showed that the microhardness and ultimate tensile strength in the stir zone of nanocomposite decreased due to the dissolution of precipitates in Al6061-T6 during FSP. The tribological properties of Al6061 at 350°C were significantly improved by developing surface Al/Al2O3-Al3Ni nanocomposite.

  18. Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site

    NASA Astrophysics Data System (ADS)

    Warren, Ean; Bekins, Barbara A.

    2018-04-01

    Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site.

  19. Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site.

    PubMed

    Warren, Ean; Bekins, Barbara A

    2018-04-01

    Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site. Published by Elsevier B.V.

  20. In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening.

    PubMed

    Dong, Pin; Lin, Ling; Li, Yongcheng; Huang, Zhengwei; Lang, Tianqun; Wu, Chuanbin; Lu, Ming

    2015-12-30

    The purpose of this work was to explore in-situ synchrotron wide-angle X-ray diffraction (WAXD) as a rapid and accurate tool to screen and monitor the formation of cocrystal/salts during heating. The active pharmaceutical ingredients (caffeine, carbamazepine and lamotrigine) were respectively mixed with the coformer (saccharin), and then heated by the hot stage. Real-time process monitoring was performed using synchrotron WAXD to assess cocrystal formation and subsequently compared to differential scanning calorimetry (DSC) measurements. The effect of heating rates and cocrystal growth behavior were investigated. Synchrotron WAXD was fast and sensitive to detect cocrystal formation with the appearance of characteristic diffraction rings, even at the heating rate of 30°C/min, while DSC curves showed overlapped peaks. Unlike the indirect characterization of DSC on endo/exothermic peaks, synchrotron WAXD can directly and qualitatively determine cocrystal by diffraction peaks. The diffraction intensity-temperature curves and the corresponding first-derivative curves clearly exhibited the growth behavior of cocrystal upon heating, providing useful information to optimize the process temperature of hot melt extrusion to continuously manufacture cocrystal. The study suggests that in-situ synchrotron WAXD could provide a one-step process to screen cocrystal at high efficiency and reveal the details of cocrystal/salts growth behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyda, Marek; Wunderlich, Bernhard

    2005-11-01

    A study of the glass transition of an amorphous and a semicrystalline poly(lactic acid) (PLA) is performed with adiabatic calorimetry, differential scanning calorimetry (DSC), and temperature-modulated DSC (TMDSC). The reversing, total, and nonreversing apparent heat capacities of samples with different contents of L- and D-lactic acid and with various thermal histories were evaluated. Different modes of TMDSC analyses of amorphous and semicrystalline PLA were compared to the total heat capacity from standard DSC. The enthalpy relaxation and the cold crystallization in the glass transition region are largely irreversible. The melting is largely irreversible, but a 100% reversing fraction is observedmore » at low temperatures from 375 to 420 K, which becomes small inside the major melting peak at about 440 K. From the TMDSC of amorphous PLA, the combined information on endothermic and exothermic enthalpy relaxation and glass transition were deconvoluted into the reversing and nonreversing components. The glass transition temperature from the reversing heat capacity and the enthalpy relaxation peaks from the nonreversing component shift to higher temperature for increasingly annealed PLA. The relaxation times for aging decrease on cooling until the glass transition is reached and then increase. This behavior is linked to cooperativity. All quantitative thermal analyses are based on the heat capacity of the solid and liquid, evaluated earlier with the advanced thermal analysis system (ATHAS).« less

  2. Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta

    Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit severalmore » distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.« less

  3. Turbulent flame-wall interaction: a DNS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jackie; Hawkes, Evatt R; Sankaran, Ramanan

    2010-01-01

    A turbulent flame-wall interaction (FWI) configuration is studied using three-dimensional direct numerical simulation (DNS) and detailed chemical kinetics. The simulations are used to investigate the effects of the wall turbulent boundary layer (i) on the structure of a hydrogen-air premixed flame, (ii) on its near-wall propagation characteristics and (iii) on the spatial and temporal patterns of the convective wall heat flux. Results show that the local flame thickness and propagation speed vary between the core flow and the boundary layer, resulting in a regime change from flamelet near the channel centreline to a thickened flame at the wall. This findingmore » has strong implications for the modelling of turbulent combustion using Reynolds-averaged Navier-Stokes or large-eddy simulation techniques. Moreover, the DNS results suggest that the near-wall coherent turbulent structures play an important role on the convective wall heat transfer by pushing the hot reactive zone towards the cold solid surface. At the wall, exothermic radical recombination reactions become important, and are responsible for approximately 70% of the overall heat release rate at the wall. Spectral analysis of the convective wall heat flux provides an unambiguous picture of its spatial and temporal patterns, previously unobserved, that is directly related to the spatial and temporal characteristic scalings of the coherent near-wall turbulent structures.« less

  4. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves.

    PubMed

    Intani, Kiatkamjon; Latif, Sajid; Kabir, A K M Rafayatul; Müller, Joachim

    2016-10-01

    In this study, biochar was produced from maize residues (cobs, husks, leaves) in a lab-scale pyrolysis reactor without using a purging gas. The physicochemical properties of biomass and biochar were analysed. Box-Behnken design was used to optimise operational conditions for biochar yields. Multivariate correlations of biochar yields were established using reduced quadratic models with R(2)=0.9949, 0.9801 and 0.9876 for cobs, husks and leaves, respectively. Biochar yields were negatively correlated with the temperature, which was significantly influenced by the exothermic reactions during the pyrolysis of maize residues. The heating rate was found to have the least effect on biochar yields. Under optimal conditions, the maximum biochar yields from cobs, husks and leaves were 33.42, 30.69 and 37.91%, respectively. The highest biochar yield from maize leaves was obtained at a temperature of 300°C, a heating rate of 15°C/min and a holding time of 30min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.

    PubMed

    Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal

    2010-05-01

    A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Mechanistic elucidation of thermal runaway in potassium-ion batteries

    NASA Astrophysics Data System (ADS)

    Adams, Ryan A.; Varma, Arvind; Pol, Vilas G.

    2018-01-01

    For the first time, thermal runaway of charged graphite anodes for K-ion batteries is investigated, using differential scanning calorimetry (DSC) to probe the exothermic degradation reactions. Investigated parameters such as state of charge, cycle number, surface area, and binder demonstrate strong influences on the DSC profiles. Thermal runaway initiates at 100 °C owing to KxC8 - electrolyte reactions, but the K-ion graphite anode evolves significantly less heat as compared to the analogous Li-ion system (395 J g-1 vs. 1048 J g-1). The large volumetric expansion of graphite during potassiation cracks the SEI layer, enabling contact and reaction of KC8 - electrolyte, which diminishes with cycle number due to continuous SEI growth. High surface area graphite decreases the total heat generation, owing to thermal stability of the K-ion SEI layer. These findings illustrate the dynamic nature of K-ion thermal runaway and its many contrasts with the Li-ion graphite system, permitting possible engineering solutions for safer batteries.

  7. The effect of gyrolite additive on the hydration properties of Portland cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisinas, A., E-mail: anatolijus.eisinas@ktu.lt; Baltakys, K.; Siauciunas, R.

    2012-01-15

    The influence of gyrolite additive on the hydration properties of ordinary Portland cement was examined. It was found that the additive of synthetic gyrolite accelerates the early stage of hydration of OPC. This compound binds alkaline ions and serves as a nucleation site for the formation of hydration products (stage I). Later on, the crystal lattice of gyrolite becomes unstable and turns into C-S-H, with higher basicity (C/S {approx} 0.8). This recrystallization process is associated with the consumption of energy (the heat of reaction) and with a decrease in the rate of heat evolution of the second exothermic reaction (stagemore » II). The experimental data and theoretical hypothesis were also confirmed by thermodynamic and the apparent kinetic parameters of the reaction rate of C{sub 3}S hydration calculations. The changes occur in the early stage of hydration of OPC samples and do not have a significant effect on the properties of cement stone.« less

  8. Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry

    NASA Astrophysics Data System (ADS)

    Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao

    2017-12-01

    We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we developed 24 test items addressing the attributes of exothermic and endothermic reactions, chemical bonds and heat quantity change, reaction heat and enthalpy, thermochemical equations, and Hess's law. The test was administered to a sample base of 694 senior high school students taught in 3 schools across 2 cities. Results based on the Rule Space Model analysis indicated that (1) the test items developed by the Rule Space Model were of high psychometric quality for good analysis of difficulties, discriminations, reliabilities, and validities; (2) the Rule Space Model analysis classified the students into seven different attribute mastery patterns; and (3) the initial hypothesized learning progression was modified by the attribute mastery patterns and the learning paths to be more precise and detailed.

  9. Self-sustained operation of a kW e-class kerosene-reforming processor for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yoon, Sangho; Bae, Joongmyeon; Kim, Sunyoung; Yoo, Young-Sung

    In this paper, fuel-processing technologies are developed for application in residential power generation (RPG) in solid oxide fuel cells (SOFCs). Kerosene is selected as the fuel because of its high hydrogen density and because of the established infrastructure that already exists in South Korea. A kerosene fuel processor with two different reaction stages, autothermal reforming (ATR) and adsorptive desulfurization reactions, is developed for SOFC operations. ATR is suited to the reforming of liquid hydrocarbon fuels because oxygen-aided reactions can break the aromatics in the fuel and steam can suppress carbon deposition during the reforming reaction. ATR can also be implemented as a self-sustaining reactor due to the exothermicity of the reaction. The kW e self-sustained kerosene fuel processor, including the desulfurizer, operates for about 250 h in this study. This fuel processor does not require a heat exchanger between the ATR reactor and the desulfurizer or electric equipment for heat supply and fuel or water vaporization because a suitable temperature of the ATR reformate is reached for H 2S adsorption on the ZnO catalyst beds in desulfurizer. Although the CH 4 concentration in the reformate gas of the fuel processor is higher due to the lower temperature of ATR tail gas, SOFCs can directly use CH 4 as a fuel with the addition of sufficient steam feeds (H 2O/CH 4 ≥ 1.5), in contrast to low-temperature fuel cells. The reforming efficiency of the fuel processor is about 60%, and the desulfurizer removed H 2S to a sufficient level to allow for the operation of SOFCs.

  10. Thermophysicochemical Reaction of ZrCo-Hydrogen-Helium System

    NASA Astrophysics Data System (ADS)

    Jung, Kwangjin; Kang, Hee-Seok; Yun, Sei-Hun; Chung, Hongsuk

    2017-11-01

    Nuclear fusion energy, which is clean and infinite, has been studied for more than half a century. Efforts are in progress worldwide for the demonstration and validation of nuclear fusion energy. Korea has been developing hydrogen isotope storage and delivery system (SDS) technologies including a basic scientific study on a hydrogen storage medium. An SDS bed, which is a key component of the SDS, is used for storing hydrogen isotopes in a metal hydride form and supplying them to a tokamak. Thermophysicochemical properties of the ZrCo-H2-He system are investigated for the practical utilization of a hydriding alloy system. The hydriding reaction, in which ZrCoHx is composed as ZrCo absorbing hydrogen, is exothermic. The dehydriding reaction, in which ZrCoHx decomposes into ZrCo and hydrogen, is endothermic. The heat generated through the hydriding reaction interrupts the hydriding progress. The heat loss by a dehydriding reaction impedes the dehydriding progress. The tritium decay product, helium-3, covers the ZrCo and keeps the hydrogen from contact with ZrCo in the SDS bed. In this study, we designed and fabricated a ZrCo bed and its performance test rig. The helium blanketing effect on a ZrCo hydrogen reaction with 0 % to 20 % helium content in a gaseous phase and a helium blanket removal method were studied experimentally. In addition, the volumetric flow rates and temperature at the beginning of a ZrCo hydrogen reaction in a hydrogen or helium atmosphere, and the cooling of the SDS bed by radiation only and by both radiation and natural convection related to the reuse cycle, were obtained.

  11. Carbohydrates and thermal analysis reflects changes in soil organic matter stability after forest expansion on abandoned grassland

    NASA Astrophysics Data System (ADS)

    Guidi, Claudia; Vesterdal, Lars; Cannella, David; Leifeld, Jens; Gianelle, Damiano; Rodeghiero, Mirco

    2014-05-01

    Grassland abandonment, followed by progressive forest expansion, is the dominant land-use change in the Southern Alps, Europe. Land-use change can affect not only the amount of organic matter (OM) in soil but also its composition and stability. Our objective was to investigate changes in organic matter properties after forest expansion on abandoned grasslands, combining analysis of carbohydrates, indicative of labile OM compounds with prevalent plant or microbial origin, with thermal analysis. Thermal analysis was used as a rapid assessment method for the characterization of SOM stability. A land-use gradient was investigated in four land-use types in the subalpine area of Trentino region, Italy: i) managed grassland, mown and fertilized for the past 100 years; ii) grassland abandoned since 10 years, with sparse shrubs and Picea abies saplings; iii) early-stage forest, dominated by P. abies and established on a grassland abandoned around 1970; iv) old forest, dominated by Fagus sylvatica and P. abies. Mineral soil was sampled at three subplots in each land use type with eight soil cores, which were subsequently pooled by depth (0-5 cm, 5-10 cm, 10-20 cm). Sugars were extracted from bulk soil samples through acid hydrolysis with H2SO4 (0.5 M). The analytical composition of sugar monomers was performed with HPAEC technology (Dionex ICS5000), equipped with PAD-detection. Thermal stability was assessed with a differential scanning calorimeter DSC100, heating soil samples up to 600°C at a heating rate of 10°C min-1 in synthetic air. Peak height (W g OC-1) of 1st DSC exotherm, dominated by burning of labile OM compounds, was used as thermal stability index. In the abandoned grassland, carbohydrates compounds accounted for a greater proportion of soil OC than in other land use types. Microbially derived sugars, as rhamnose and galactose, were more abundant in managed and abandoned grasslands compared with early-stage and old forest. The amount of thermally labile sugars, estimated as the peak height of the 1st exotherm, was higher in the abandoned grassland compared with managed grassland and old forest in 0-5 cm depth. Moreover, thermally labile compounds were higher in early-stage than in old forest in 0-5 cm depth. A highly significant correlation was found between thermally labile compounds and carbohydrate content in soil (P = 0.008, r = 0.725). The obtained results suggest that both thermally-labile compounds and carbohydrates are more abundant soon after grassland abandonment, which can lead to lower OM stability. The combination of chemical and thermal analysis of OM can thus provide useful insights on organic matter composition and stability.

  12. Synthesis, crystal structure and catalytic effect on thermal decomposition of RDX and AP: An energetic coordination polymer [Pb{sub 2}(C{sub 5}H{sub 3}N{sub 5}O{sub 5}){sub 2}(NMP)·NMP]{sub n}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin-jian; Yancheng Teachers College, Yancheng 224002; Liu, Zu-Liang, E-mail: liuzl@mail.njust.edu.cn

    2013-04-15

    An energetic lead(II) coordination polymer based on the ligand ANPyO has been synthesized and its crystal structure has been got. The polymer was characterized by FT-IR spectroscopy, elemental analysis, DSC and TG-DTG technologies. Thermal analysis shows that there are one endothermic process and two exothermic decomposition stages in the temperature range of 50–600 °C with final residues 57.09%. The non-isothermal kinetic has also been studied on the main exothermic decomposition using the Kissinger's and Ozawa–Doyle's methods, the apparent activation energy is calculated as 195.2 KJ/mol. Furthermore, DSC measurements show that the polymer has significant catalytic effect on the thermal decompositionmore » of ammonium perchlorate. - Graphical abstract: An energetic lead(II) coordination polymer of ANPyO has been synthesized, structurally characterized and properties tested. Highlights: ► We have synthesized and characterized an energetic lead(II) coordination polymer. ► We have measured its molecular structure and thermal decomposition. ► It has significant catalytic effect on thermal decomposition of AP.« less

  13. Experiments Developed to Study Microgravity Smoldering Combustion

    NASA Technical Reports Server (NTRS)

    Vergilii, Franklin

    2001-01-01

    The overall objective of the Microgravity Smoldering Combustion (MSC) research program is to understand and predict smoldering combustion under normal and microgravity (near-zero-gravity) conditions to help prevent and control smolder-originated fires, in both environments. Smoldering is defined as a nonflaming, self-sustaining, propagating, exothermic surface reaction. If a material is sufficiently permeable, smoldering is not confined to its outer surface, but can propagate as a reaction wave through the interior of the material. The MSC program will accomplish its goals by conducting smolder experiments on the ground and in a space-based laboratory, and developing theoretical models of the process. Space-based experiments are necessary because smoldering is a very slow process and, consequently, its study in a microgravity environment requires extended periods of time that can only be achieved in space. Smoldering can occur in a variety of processes ranging from the smolder of porous insulating materials to underground coal combustion. Many materials can sustain smoldering, including wood, cloth, foams, tobacco, other dry organic materials, and charcoal. The ignition, propagation, transition to flaming, and extinction of the smolder reaction are controlled by complex, thermochemical mechanisms that are not well understood. As with many forms of combustion, gravity affects the availability of the oxidizer and the transport of heat, and therefore, the rate of combustion. The smoldering combustion of porous materials has been studied both experimentally and theoretically, usually in the context of fire safety. Smoldering encompasses a number of fundamental processes, including heat and mass transfer in a porous media; endothermic pyrolysis of combustible material; ignition, propagation, and extinction of heterogeneous exothermic reactions at the solid-gas pore interface; and the onset of gas phase reactions (flaming) from existing surface reactions. Smoldering presents a serious fire risk because the combustion can propagate slowly in a material's interior and go undetected for long periods of time. It typically yields a substantially higher conversion of fuel to toxic compounds than does flaming (though more slowly), and may undergo a sudden transition to flaming.

  14. Mathematical Model of Heat Transfer in the Catalyst Granule with Point Reaction Centers

    NASA Astrophysics Data System (ADS)

    Derevich, I. V.; Fokina, A. Yu.

    2018-01-01

    This paper considers a catalyst granule with a porous ceramic chemically inert base and active point centers, at which an exothermic reaction of synthesis takes place. The rate of a chemical reaction depends on temperature by the Arrhenius law. The heat is removed from the catalyst granule surface to the synthesis products by heat transfer. Based on the idea of self-consistent field, a closed system of equations is constructed for calculating the temperatures of the active centers. As an example, a catalyst granule of the Fischer-Tropsch synthesis with active metallic cobalt particles is considered. The stationary temperatures of the active centers are calculated by the timedependent technique by solving a system of ordinary differential equations. The temperature distribution inside the granule has been found for the local centers located on one diameter of the granule and distributed randomly in the granule's volume. The existence of the critical temperature inside the reactor has been established, the excess of which leads to substantial superheating of local centers. The temperature distribution with local reaction centers differs qualitatively from the granule temperature calculated in the homogeneous approximation. The results of calculations are given.

  15. Recovery of tritium from tritiated molecules

    DOEpatents

    Swansiger, William A.

    1987-01-01

    A method of recovering tritium from tritiated compounds comprises the steps of heating tritiated water and other co-injected tritiated compounds in a preheater to temperatures of about 600.degree. C. The mixture is injected into a reactor charged with a mixture of uranium and uranium dioxide. The injected mixture undergoes highly exothermic reactions with the uranium causing reaction temperatures to occur in excess of the melting point of uranium, and complete decomposition of the tritiated compounds to remove tritium therefrom. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. Apparatus used to carry out the method of the invention is also disclosed.

  16. Low-cost high purity production

    NASA Technical Reports Server (NTRS)

    Kapur, V. K.

    1978-01-01

    Economical process produces high-purity silicon crystals suitable for use in solar cells. Reaction is strongly exothermic and can be initiated at relatively low temperature, making it potentially suitable for development into low-cost commercial process. Important advantages include exothermic character and comparatively low process temperatures. These could lead to significant savings in equipment and energy costs.

  17. Epoxy foams using multiple resins and curing agents

    DOEpatents

    Russick, Edward M.; Rand, Peter B.

    2000-01-01

    An epoxy foam comprising a plurality of resins, a plurality of curing agents, at least one blowing agent, at least one surfactant and optionally at least one filler and the process for making. Preferred is an epoxy foam comprising two resins of different reactivities, two curing agents, a blowing agent, a surfactant, and a filler. According to the present invention, an epoxy foam is prepared with tailorable reactivity, exotherm, and pore size by a process of admixing a plurality of resins with a plurality of curing agents, a surfactant and blowing agent, whereby a foamable mixture is formed and heating said foamable mixture at a temperature greater than the boiling temperature of the blowing agent whereby said mixture is foamed and cured.

  18. Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.

    2017-08-01

    Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.

  19. Effect of additives on mineral trioxide aggregate setting reaction product formation.

    PubMed

    Zapf, Angela M; Chedella, Sharath C V; Berzins, David W

    2015-01-01

    Mineral trioxide aggregate (MTA) sets via hydration of calcium silicates to yield calcium silicate hydrates and calcium hydroxide (Ca[OH]2). However, a drawback of MTA is its long setting time. Therefore, many additives have been suggested to reduce the setting time. The effect those additives have on setting reaction product formation has been ignored. The objective was to examine the effect additives have on MTA's setting time and setting reaction using differential scanning calorimetry (DSC). MTA powder was prepared with distilled water (control), phosphate buffered saline, 5% calcium chloride (CaCl2), 3% sodium hypochlorite (NaOCl), or lidocaine in a 3:1 mixture and placed in crucibles for DSC evaluation. The setting exothermic reactions were evaluated at 37°C for 8 hours to determine the setting time. Separate samples were stored and evaluated using dynamic DSC scans (37°C→640°C at10°C/min) at 1 day, 1 week, 1 month, and 3 months (n = 9/group/time). Dynamic DSC quantifies the reaction product formed from the amount of heat required to decompose it. Thermographic peaks were integrated to determine enthalpy, which was analyzed with analysis of variance/Tukey test (α = 0.05). Isothermal DSC identified 2 main exothermal peaks occurring at 44 ± 12 and 343 ± 57 minutes for the control. Only the CaCl2 additive was an accelerant, which was observed by a greater exothermic peak at 101 ± 11 minutes, indicating a decreased setting time. The dynamic DSC scans produced an endothermic peak around 450°C-550°C attributed to Ca(OH)2 decomposition. The use of a few additives (NaOCl and lidocaine) resulted in significantly less Ca(OH)2 product formation. DSC was used to discriminate calcium hydroxide formation in MTA mixed with various additives and showed NaOCl and lidocaine are detrimental to MTA reaction product formation, whereas CaCl2 accelerated the reaction. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Thermodynamically Leveraged Tandem Catalysis for Ester RC(O)O–R' Bond Hydrogenolysis. Scope and Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.

    2015-05-18

    Rapid and selective formal hydrogenolysis of aliphatic ester RC(O)O–R' linkages is achieved by a tandem homogeneous metal triflate + supported palladium catalytic system. The triflate catalyzes the mildly exothermic, turnover-limiting O–R' cleavage process, whereas the exothermic hydrogenation of the intermediate alkene further drives the overall reaction to completion.

  1. Thermodynamically leveraged Tandem catalysis for ester RC(O)O-R' bond hydrogenolysis. scope and mechanism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.

    2015-06-01

    Rapid and selective formal hydrogenolysis of aliphatic ester RC(O)O-R' linkages is achieved by a tandem homogeneous metal triflate + supported palladium catalytic system. The triflate catalyzes the mildly exothermic, turnover-limiting O-R' cleavage process, whereas the exothermic hydrogenation of the intermediate alkene further drives the overall reaction to completion.

  2. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping.

    PubMed

    Song, Jinzhao; Pandian, Vikram; Mauk, Michael G; Bau, Haim H; Cherry, Sara; Tisi, Laurence C; Liu, Changchun

    2018-04-03

    Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).

  3. Radical production inside an acoustically driven microbubble.

    PubMed

    Stricker, Laura; Lohse, Detlef

    2014-01-01

    The chemical production of radicals inside acoustically driven bubbles is determined by the local temperature inside the bubbles and by their composition at collapse. By means of a previously validated ordinary differential equations (ODE) model [L. Stricker, A. Prosperetti, D. Lohse, Validation of an approximate model for the thermal behavior in acoustically driven bubbles, J. Acoust. Soc. Am. 130 (5) (2011) 3243-3251], based on boundary layer assumption for mass and heat transport, we study the influence of different parameters on the radical production. We perform different simulations by changing the driving frequency and pressure, the temperature of the surrounding liquid and the composition of the gas inside the bubbles. In agreement with the experimental conditions of new generation sonochemical reactors, where the bubbles undergo transient cavitation oscillations [D. F. Rivas, L. Stricker, A. Zijlstra, H. Gardeniers, D. Lohse, A. Prosperetti, Ultrasound artificially nucleated bubbles and their sonochemical radical production, Ultrason. Sonochem. 20 (1) (2013) 510-524], we mainly concentrate on the initial chemical transient and we suggest optimal working ranges for technological applications. The importance of the chemical composition at collapse is reflected in the model, including the role of entrapped water vapor. We in particular study the exothermal reactions taking place in H2 and O2 mixtures. At the exact stoichiometric mixture 2:1 the highest internal bubble temperatures are achieved. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders

    NASA Astrophysics Data System (ADS)

    Stamatis, D.; Ermoline, A.; Dreizin, E. L.

    2012-12-01

    A multi-step reaction model is developed to describe heterogeneous processes occurring upon heating of an Al-CuO nanocomposite material prepared by arrested reactive milling. The reaction model couples a previously derived Cabrera-Mott oxidation mechanism describing initial, low temperature processes and an aluminium oxidation model including formation of different alumina polymorphs at increased film thicknesses and higher temperatures. The reaction model is tuned using traces measured by differential scanning calorimetry. Ignition is studied for thin powder layers and individual particles using respectively the heated filament (heating rates of 103-104 K s-1) and laser ignition (heating rate ∼106 K s-1) experiments. The developed heterogeneous reaction model predicts a sharp temperature increase, which can be associated with ignition when the laser power approaches the experimental ignition threshold. In experiments, particles ignited by the laser beam are observed to explode, indicating a substantial gas release accompanying ignition. For the heated filament experiments, the model predicts exothermic reactions at the temperatures, at which ignition is observed experimentally; however, strong thermal contact between the metal filament and powder prevents the model from predicting the thermal runaway. It is suggested that oxygen gas release from decomposing CuO, as observed from particles exploding upon ignition in the laser beam, disrupts the thermal contact of the powder and filament; this phenomenon must be included in the filament ignition model to enable prediction of the temperature runaway.

  5. Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi2 Te3.

    PubMed

    Singh, Swati; Mun, Hyeona; Lee, Sanghoon; Kim, Sung Wng; Baik, Seunghyun

    2017-09-01

    The self-propagating exothermic chemical reaction with transient thermovoltage, known as the thermopower wave, has received considerable attention recently. A greater peak voltage and specific power are still demanded, and materials with greater Seebeck coefficients have been previously investigated. However, this study employs an alternative mechanism of transient chemical potential gradient providing an unprecedentedly high peak voltage (maximum: 8 V; average: 2.3 V) and volume-specific power (maximum: 0.11 W mm -3 ; average: 0.04 W mm -3 ) using n-type single-crystalline Bi 2 Te 3 substrates. A mixture of nitrocellulose and sodium azide is used as a fuel, and ultraviolet photoelectron spectroscopy reveals a significant downshift in Fermi energy (≈5.09 eV) of the substrate by p-doping of the fuel. The induced electrical potential by thermopower waves has two distinct sources: the Seebeck effect and the transient chemical potential gradient. Surprisingly, the Seebeck effect contribution is less than 2.5% (≈201 mV) of the maximum peak voltage. The right combination of substrate, fuel doping, and anisotropic substrate geometry results in an order of magnitude greater transient chemical potential gradient (≈5.09 eV) upon rapid removal of fuel by exothermic chemical reaction propagation. The role of fuel doping and chemical potential gradient can be viewed as a key mechanism for enhanced heat to electric conversion performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Jin-woo; Park, Soo-Jeong; Kim, Yun-hae; Riichi-Murakami

    2018-06-01

    The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT) has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper.

  7. Using Different Conceptual Change Methods Embedded within 5E Model: A Sample Teaching of Endothermic-Exothermic Reactions

    ERIC Educational Resources Information Center

    Turk, Fatma; Calik, Muammer

    2008-01-01

    Since Widodo, Duit and Muller (2002) addressed that there is a gap between teacher's theoretical knowledge and their practical classroom constructivist behavior, we presented a sample teaching activity about Endothermic-Exothermic Reactions for teacher usage. Therein, the aim of this study is to design a 5E model to include students' alternative…

  8. Linking molecular level chemistry to macroscopic combustion behavior for nano-energetic materials with halogen containing oxides.

    PubMed

    Farley, Cory W; Pantoya, Michelle L; Losada, Martin; Chaudhuri, Santanu

    2013-08-21

    Coupling molecular scale reaction kinetics with macroscopic combustion behavior is critical to understanding the influences of intermediate chemistry on energy propagation, yet bridging this multi-scale gap is challenging. This study integrates ab initio quantum chemical calculations and condensed phase density functional theory to elucidate factors contributing to experimentally measured high flame speeds (i.e., >900 m∕s) associated with halogen based energetic composites, such as aluminum (Al) and iodine pentoxide (I2O5). Experiments show a direct correlation between apparent activation energy and flame speed suggesting that flame speed is directly influenced by chemical kinetics. Toward this end, the first principle simulations resolve key exothermic surface and intermediate chemistries contributing toward the kinetics that promote high flame speeds. Linking molecular level exothermicity to macroscopic experimental investigations provides insight into the unique role of the alumina oxide shell passivating aluminum particles. In the case of Al reacting with I2O5, the alumina shell promotes exothermic surface chemistries that reduce activation energy and increase flame speed. This finding is in contrast to Al reaction with metal oxides that show the alumina shell does not participate exothermically in the reaction.

  9. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements.

    PubMed

    Babaie, Elham; Lin, Boren; Goel, Vijay K; Bhaduri, Sarit B

    2016-10-07

    This paper reports for the first time the development of a biodegradable, non-exothermic, self-setting orthopedic cement composition based on amorphous magnesium phosphate (AMP). The occurrence of undesirable exothermic reactions was avoided through using AMP as the solid precursor. The phenomenon of self-setting with optimum rheology is achieved by incorporating a water soluble biocompatible/biodegradable polymer, polyvinyl alcohol (PVA). Additionally, PVA enables a controlled growth of the final phase via a biomimetic process. The AMP powder was synthesized using a precipitation method. The powder, when in contact with the aqueous PVA solution, forms a putty resulting in a nanocrystalline magnesium phosphate phase of cattiite. The as-prepared cement compositions were evaluated for setting times, exothermicity, compressive strength, biodegradation, and microstructural features before and after soaking in SBF, and in vitro cytocompatibility. Since cattiite is relatively unexplored in the literature, a first time evaluation reveals that it is cytocompatible, just like the other phases in the MgO-P 2 O 5 (Mg-P) system. The cement composition prepared with 15% PVA in an aqueous medium achieved clinically relevant setting times, mechanical properties, and biodegradation. Simulated body fluid (SBF) soaking resulted in coating of bobierrite onto the cement particle surfaces.

  10. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh; Muto, Andrew

    Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precisionmore » Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO 2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO 2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat exchanger with a shell and tube reactor. A bench scale reactor system was then designed and constructed to test sorbent performance under more commercially relevant conditions. This system utilizes a tube-in tube reactor design containing approximately 250 grams sorbent and is able to operate under a wide range of temperature, pressure and flow conditions as needed to explore system performance under a variety of operating conditions. A variety of sorbent loading methods may be tested using the reactor design. Initial bench test results over 25 cycles showed very high sorbent stability (>99%) and sufficient capacity (>0.28 g CO 2/g sorbent) for an economical commercial-scale system. Initial technoeconomic evaluation of the proposed storage system show that the sorbent cost should not have a significant impact on overall system cost, and that the largest cost impacts come from the heat exchanger reactor and balance of plant equipment, including compressors and gas storage, due to the high temperatures for sCO 2 cycles. Current estimated system costs are $47/kWhth based on current material and equipment cost estimates.« less

  11. Freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems.

    PubMed

    Kajiwara, K; Motegi, A; Murase, N

    2001-01-01

    The freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems was investigated by differential scanning calorimetry (DSC). In the aqueous NaCl-glucose solution system, single or double glass transitions followed by the corresponding devitrification exotherms were observed during rewarming. In the aqueous KCl-glucose solution system, on the other hand, a single glass transition followed by an exotherm was observed during rewarming. The presence of double glass transitions observed for a certain composition of the aqueous NaCl-glucose solution was taken as an evidence for the liquid-liquid immiscibility at low temperatures. Two kinds of crystallisation accompanied by exotherms during rewarming were identified by X-ray diffraction as ice and ice/NaCl x 2H(2)O, or ice/KCl eutectic component.

  12. A detailed evaluation of heating processes in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin; Solomon, Susan

    1994-01-01

    A fundamental problem in the study of the terrestrial middle atmosphere is to calculate accurately the local heating due to the absorption of solar radiation. Knowledge of the heat budget is essential to understanding the atmospheric thermal structure, atmospheric motions, atmospheric chemistry, and their coupling. The evaluation of heating rates is complicated (especially above the stratopause) by the fact that the heating is not a simple one-step process. That is, the absorbed solar energy does not all immediately appear as heat. Rather, substantial portions of the incident energy may appear as internal energy of excited photolysis products (e.g., O(1D) or O2(1 delta)) or as chemical potential energy of product species such as atomic oxygen. The ultimate disposition of the internal and chemical energy possessed by the photolysis products determines the efficiency and thus the rate at which the middle atmosphere is heated. In studies of the heat budget, it is also vitally important to consider transport of long lived chemical species such as atomic oxygen above approximately 80 km. In such cases, the chemical potential energy may be transported great distances (horizontally or vertically) before undergoing a reaction to release the heat. Atomic oxygen influences the heating not only by reactions with itself and with O2 but also by reactions with odd-hydrogen species, especially those involving OH (Mlynczak and Solomon, 1991a). Consequently, absorbed solar energy may finally by converted to heat a long time after and at a location far from the original deposition. The purpose of this paper is to examine the solar and chemical heating processes and to present parameterizations for the heating efficiencies readily applicable for use in numerical models and heat budget studies. In the next two sections the processes relevant to the heating efficiencies for ozone and molecular oxygen will be reviewed. In section 4 the processes for the exothermic reactions will be reviewed and parameterizations for the heating efficiencies for both the solar and chemical processes will be presented in Section 5.

  13. Why Combustions Are Always Exothermic, Yielding about 418 kJ per Mole of O[subscript 2

    ERIC Educational Resources Information Center

    Schmidt-Rohr, Klaus

    2015-01-01

    The strongly exothermic nature of reactions between molecular oxygen and all organic molecules as well as many other substances is explained in simple, general terms. The double bond in O[subscript 2] is much weaker than other double bonds or pairs of single bonds, and therefore the formation of the stronger bonds in CO[subscript 2] and…

  14. Geometric parameters determination of the installation for oil-contaminated soils decontamination in Russia, the Siberian region and the Arctic zones climatic conditions with reagent encapsulating

    NASA Astrophysics Data System (ADS)

    Shtripling, L. O.; Kholkin, E. G.

    2018-01-01

    The article presents the procedure for determining the basic geometrical setting parameters for the oil-contaminated soils decontamination with reagent encapsulation method. An installation is considered for the operational elimination of the emergency consequences accompanied with oil spills, and the installation is adapted to winter conditions. In the installations exothermic process thermal energy of chemical neutralization of oil-contaminated soils released during the decontamination is used to thaw frozen subsequent portions of oil-contaminated soil. Installation for oil-contaminated soil decontamination as compared with other units has an important advantage, and it is, if necessary (e.g., in winter) in using the heat energy released at each decontamination process stage of oil-contaminated soil, in normal conditions the heat is dispersed into the environment. In addition, the short-term forced carbon dioxide delivery at the decontamination process final stage to a high concentration directly into the installation allows replacing the long process of microcapsule shells formation and hardening that occur in natural conditions in the open air.

  15. Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay

    USGS Publications Warehouse

    Smith, J.A.; Jaffe, P.R.

    1991-01-01

    The interlamellar space of Wyoming bentonite (clay) was modified by exchanging either decyltrimethyl-ammonium (DTMA) or decyltrimethyldiammonium (DTMDA) cations for inorganic ions, and tetrachloromethane sorption to the resulting two organoclays from water was studied at 10, 20, and 35??C. Only one end of the 10-carbon alkyl chain of the DTMA cation is attached to the silica surface of the clay mineral, and tetrachloromethane sorption of DTMA-clay is characterized by isotherm linearity, noncompetitive sorption, weak solute uptake, and a relatively low heat of sorption. Both ends of the 10-carbon chain of the DTMDA cation are attached to the silica surface of the clay mineral, and tetrachloromethane sorption to DTMDA-clay is characterized by nonlinear isotherms, competitive sorption, strong solute uptake, and a relatively high, exothermic heat of sorption that varies as a function of the mass of tetrachloromethane sorbed. Therefore, the attachment of both ends of the alkyl chain to the interlamellar mineral surface appears to change the sorption mechanism from a partition-dominated process to an adsorption-dominated process. ?? 1991 American Chemical Society.

  16. Development of a semi-adiabatic isoperibol solution calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.

    2014-12-15

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperaturemore » calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.« less

  17. Some physical properties of naturally irradiated fluorite

    USGS Publications Warehouse

    Berman, Robert

    1955-01-01

    Five samples of purple fluorite found in association with radioactive, materials, and a synthetic colorless control sample were studied and compared.  Before and after heating, observations were made on specific gravity, index of refraction, unit-cell size, breadth of X-ray diffraction lines, and fluorescence.  The purple samples became colorless on heating above 175° C.  During the process, observations were made on color, thermoluminescence, and differential thermal analysis curves.  There were strong correlations between the various physical properties, and it was found possible to arrange the samples in order of increasing difference in their physical properties from the control sample. This order apparently represents increasing structural damage by radiation; if so, it correlates with decreasing specific gravity, increasing index of refraction, broadening of X-ray lines, and increasingly strong exothermic reactions on annealing. The differences between the samples in index of refraction and X-ray pattern are largely eliminated on annealing.  Annealing begins at 1750 C; thermoluminescence at lower temperatures is due to electrons escaping from the metastable potential traps, not the destruction of those traps which takes place on annealing.

  18. Pyrolysis kinetics behavior of solid tire wastes available in Bangladesh.

    PubMed

    Islam, M Rofiqul; Haniu, H; Fardoushi, J

    2009-02-01

    Pyrolysis kinetics of available bicycle/rickshaw, motorcycle and truck tire wastes in Bangladesh have been investigated thermogravimetrically in a nitrogen atmosphere at heating rates of 10 and 60 degrees C/min over a temperature range of 30-800 degrees C. The three tire wastes exhibited similar behaviors in that, when heating rate was increased, the initial reaction temperature decreased but the reaction range and reaction rate increased. The percentage of total weight loss was higher for truck tire waste and lower for bicycle/rickshaw tire waste. The pyrolysis of truck tire waste was found to be easier than that of bicycle/rickshaw and motorcycle tire wastes while it was comparatively more difficult for motorcycle tire waste. The overall rate equation for the three tire wastes has been modeled satisfactorily by one simplified equation from which the kinetic parameters of unreacted materials based on the Arrhenius form can be determined. The predicted rate equation compares fairly well with the measured TG and DTG data. DTA curves for all of the samples show that the degradation reactions are three main exotherms and one endotherm.

  19. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    NASA Astrophysics Data System (ADS)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  20. Advanced CO2 Removal and Reduction System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.

    2011-01-01

    An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.

  1. Mars 2007 Phoenix Scout Mission Organic Free Blank: Method to Distinguish Mars Organics from Terrestrial Organics

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Woida, R.; Sutter, B.; Lauer, H. V.; Shinohara, C.; Golden, D. C.; Boynton, W. V.; Arvidson, R. E.; Stewart, R. L.; hide

    2008-01-01

    The Mars 2007 Phoenix Scout Mission successfully launched on August 4, 2007, for a 10-month journey to Mars. The Phoenix spacecraft is scheduled to land on May 25, 2008. The primary mission objective is to study the history of water and evaluate the potential for past and present habitability in Martian arctic ice-rich soil [1]. Phoenix will land near 68 N latitude on polygonal terrain presumably created by ice layers that are expected to be a few centimeters under loose soil materials [2,3]. The Phoenix Mission will assess the potential for habitability by searching for organic molecules in ice or icy soils at the landing site. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. Phoenix will search for organic molecules by heating soil/ice samples in the Thermal and Evolved-Gas Analyzer (TEGA, [4]). TEGA consists of 8 differential scanning calorimeter (DSC) ovens integrated with a magnetic-sector mass spectrometer with a mass range of 2-140 daltons [4]. Endothermic and exothermic reactions are recorded by the TEGA DSC as samples are heated from ambient to approx.1000 C. Evolved gases, including organic molecules and fragments if present, are simultaneously measured by the mass spectrometer during heating.

  2. Some issues for blast from a structural reactive material solid

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2018-07-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  3. Thermal analysis of the exothermic reaction between galvanic porous silicon and sodium perchlorate.

    PubMed

    Becker, Collin R; Currano, Luke J; Churaman, Wayne A; Stoldt, Conrad R

    2010-11-01

    Porous silicon (PS) films up to ∼150 μm thick with specific surface area similar to 700 m(2)/g and pore diameters similar to 3 nm are fabricated using a galvanic corrosion etching mechanism that does not require a power supply. After fabrication, the pores are impregnated with the strong oxidizer sodium perchlorate (NaClO(4)) to create a composite that constitutes a highly energetic system capable of explosion. Using bomb calorimetry, the heat of reaction is determined to be 9.9 ± 1.8 and 27.3 ± 3.2 kJ/g of PS when ignited under N(2) and O(2), respectively. Differential scanning calorimetry (DSC) reveals that the energy output is dependent on the hydrogen termination of the PS.

  4. Study of the recrystallization in coated pellets - effect of coating on API crystallinity.

    PubMed

    Nikowitz, Krisztina; Pintye-Hódi, Klára; Regdon, Géza

    2013-02-14

    Coated diltiazem hydrochloride-containing pellets were prepared using the solution layering technique. Unusual thermal behavior was detected with differential scanning calorimetry (DSC) and its source was determined using thermogravimetry (TG), X-ray powder diffraction (XRPD) and hot-stage microscopy. The coated pellets contained diltiazem hydrochloride both in crystalline and amorphous form. Crystallization occurs on heat treatment causing an exothermic peak on the DSC curves that only appears in pellets containing both diltiazem hydrochloride and the coating. Results indicate that the amorphous fraction is situated in the coating layer. The migration of drugs into the coating layer can cause changes in its degree of crystallinity. Polymeric coating materials should therefore be investigated as possible crystallization inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Some issues for blast from a structural reactive material solid

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2018-03-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  6. Etherification process

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1990-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  7. Oligomerization process

    DOEpatents

    Smith, Jr., Lawrence A.; hearn, Dennis; Jones, Jr., Edward M.

    1991-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  8. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    PubMed

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  9. Reactions of Free Radicals with Nitro-Compounds and Nitrates

    DTIC Science & Technology

    1981-03-31

    PAGE(I/hmm a•Ia ntatemd the fragment derived from the nitrates but not from the nitro-compounds could undergo exothermic rearrangement. Product analyses...compounds could undergo exothermic rearrangement. Product analyses and computer modelling were undertaken, these provided a clear explanation of why the...Nitrate 14 Reaction of Oxygen Atoms with Nitromethane 16 Reaction of Oxygen Atoms with Nitroethane 17 Products from Nitrocompounds 18 Effect of Carbon

  10. Synthetic process for preparation of high surface area electroactive compounds for battery applications

    DOEpatents

    Evenson, Carl; Mackay, Richard

    2013-07-23

    A process is disclosed for the preparation of electroactive cathode compounds useful in lithium-ion batteries, comprising exothermic mixing of low-cost precursors and calcination under appropriate conditions. The exothermic step may be a spontaneous flameless combustion reaction. The disclosed process can be used to prepare any lithium metal phosphate or lithium mixed metal phosphate as a high surface area single phase compound.

  11. High temperature calorimetric studies of heat of solution of NiO, CuO, La2O3, TiO2, HfO2 in sodium silicate liquids

    NASA Astrophysics Data System (ADS)

    Linard, Yannick; Wilding, Martin C.; Navrotsky, Alexandra

    2008-01-01

    The enthalpies of solution of La2O3, TiO2, HfO2, NiO and CuO were measured in sodium silicate melts at high temperature. When the heat of fusion was available, we derived the corresponding liquid-liquid enthalpies of mixing. These data, combined with previously published work, provide insight into the speciation reactions in sodium silicate melts. The heat of solution of La2O3 in these silicate solvents is strongly exothermic and varies little with La2O3 concentration. The variation of heat of solution with composition of the liquid reflects the ability of La(III) to perturb the transient silicate framework and compete with other cations for oxygen. The enthalpy of solution of TiO2 is temperature-dependent and indicates that the formation of Na-O-Si species is favored over Na-O-Ti at low temperature. The speciation reactions can be interpreted in terms of recent spectroscopic studies of titanium-bearing melts which identify a dual role of Ti4+ as both a network-former end network-modifier. The heats of solution of oxides of transition elements (Ni and Cu) are endothermic, concentration-dependent and reach a maximum with concentration. These indicate a charge balanced substitution which diminishes the network modifying role of Na+ by addition of Ni2+ or Cu2+. The transition metal is believed to be in tetrahedral coordination, charge balanced by the sodium cation in the melts.

  12. Wildfires caused by self-heating ignition of carbon-rich soil

    NASA Astrophysics Data System (ADS)

    Restuccia, Francesco; Huang, Xinyan; Rein, Guillermo

    2017-04-01

    Carbon-rich soils, like peat, cover more than 3% of the earth's land surface, and store roughly three times more carbon than the earth's plants. Carbon-rich soils are reactive porous materials, prone to smouldering combustion if the inert and moisture content are low enough. An example of carbon-rich soil combustion happens in peatlands, which are prone to wildfires both in boreal and tropical regions and where combustion is a commonly seen phenomena. The experimental work presented here focuses on understanding one of the ways carbon-rich soil can ignite. The ignition phenomenon is known as self-heating, which is due to soil undergoing spontaneous exothermic reactions in the presence of oxygen. In this work we investigate the effect of soil inorganic content by creating under controlled conditions soil samples with inorganic contents ranging from 3% to 86% of dry weight. Combining oven experiments with the Frank-Kamenetskii theory of ignition, the lumped kinetic and thermal parameters are determined. We then use these parameters to upscale the laboratory experiments to soil layers of different depths for a range of ambient temperatures ranging from 0 °C to 40 °C. Experimental results show that self-heating ignition in the different soil layers is possible. The kinetic analysis predicts the critical soil layer thicknesses required for self-ignition. For example, at 40 °C a soil layer of 3% inorganic content can be ignited through self-heating if it is thicker than 8.8 m. This is also the first experimental quantification of soil self-heating showing that indeed it is possible that wildfires are initiated by self-heating of the soil.

  13. Study of heat generation and cutting force according to minimization of grain size (500 nm to 180 nm) of WC ball endmill using FEM

    NASA Astrophysics Data System (ADS)

    Byeon, J. H.; Ahmed, F.; Ko, T. J.; lee, D. K.; Kim, J. S.

    2018-03-01

    As the industry develops, miniaturization and refinement of products are important issues. Precise machining is required for cutting, which is a typical method of machining a product. The factor determining the workability of the cutting process is the material of the tool. Tool materials include carbon tool steel, alloy tool steel, high-speed steel, cemented carbide, and ceramics. In the case of a carbide material, the smaller the particle size, the better the mechanical properties with higher hardness, strength and toughness. The specific heat, density, and thermal diffusivity are also changed through finer particle size of the material. In this study, finite element analysis was performed to investigate the change of heat generation and cutting power depending on the physical properties (specific heat, density, thermal diffusivity) of tool material. The thermal conductivity coefficient was obtained by measuring the thermal diffusivity, specific heat, and density of the material (180 nm) in which the particle size was finer and the particle material (0.05 μm) in the conventional size. The coefficient of thermal conductivity was calculated as 61.33 for 180nm class material and 46.13 for 0.05μm class material. As a result of finite element analysis using this value, the average temperature of exothermic heat of micronized particle material (180nm) was 532.75 °C and the temperature of existing material (0.05μm) was 572.75 °C. Cutting power was also compared but not significant. Therefore, if the thermal conductivity is increased through particle refinement, the surface power can be improved and the tool life can be prolonged by lowering the temperature generated in the tool during machining without giving a great influence to the cutting power.

  14. Catalyzed Combustion In Micro-Propulsion Devices: Project Status

    NASA Technical Reports Server (NTRS)

    Sung, C. J.; Schneider, S. J.

    2003-01-01

    In recent years, there has been a tendency toward shrinking the size of spacecraft. New classes of spacecraft called micro-spacecraft have been defined by their mass, power, and size ranges. Spacecraft in the range of 20 to 100 kg represent the class most likely to be utilized by most small sat users in the near future. There are also efforts to develop 10 to 20 kg class spacecraft for use in satellite constellations. More ambitious efforts will be to develop spacecraft less than 10 kg, in which MEMS fabrication technology is required. These new micro-spacecraft will require new micro-propulsion technology. Although micro-propulsion includes electric propulsion approaches, the focus of this proposed program is micro-chemical propulsion which requires the development of microcombustors. As combustors are scaled down, the surface to volume ratio increases. The heat release rate in the combustor scales with volume, while heat loss rate scales with surface area. Consequently, heat loss eventually dominates over heat release when the combustor size becomes smaller, thereby leading to flame quenching. The limitations imposed on chamber length and diameter has an immediate impact on the degree of miniaturization of a micro-combustor. Before micro-combustors can be realized, such a difficulty must be overcome. One viable combustion alternative is to take advantage of surface catalysis. Micro-chemical propulsion for small spacecraft can be used for primary thrust, orbit insertion, trajectory-control, and attitude control. Grouping micro-propulsion devices in arrays will allow their use for larger thrust applications. By using an array composed of hundreds or thousands of micro-thruster units, a particular configuration can be arranged to be best suited for a specific application. Moreover, different thruster sizes would provide for a range of thrust levels (from N s to mN s) within the same array. Several thrusters could be fired simultaneously for thrust levels higher than the basic units, or in a rapid sequence in order to provide gradual but steady low-g acceleration. These arrays of micro-propulsion systems would offer unprecedented flexibility and redundancy for satellite propulsion and reaction control for launch vehicles. A high-pressure bi-propellant micro-rocket engine is already being developed using MEMS technology. High pressure turbopumps and valves are to be incorporated onto the rocket chip . High pressure combustion of methane and O2 in a micro-combustor has been demonstrated without catalysis, but ignition was established with a spark. This combustor has rectangular dimensions of 1.5 mm by 8 mm (hydraulic diameter 3.9 mm) and a length of 4.5 mm and was operated at 1250 kPa with plans to operate it at 12.7 MPa. These high operating pressures enable the combustion process in these devices, but these pressures are not practical for pressure fed satellite propulsion systems. Note that the use of these propellants requires an ignition system and that the use of a spark would impose a size limitation to this micro-propulsion device because the spark unit cannot be shrunk proportionately with the thruster. Results presented in this paper consist of an experimental evaluation of the minimum catalyst temperature for initiating/supporting combustion in sub-millimeter diameter tubes. The tubes are resistively heated and reactive premixed gases are passed through the tubes. Tube temperature and inlet pressure are monitored for an indication of exothermic reactions and composition changes in the gases.

  15. TG/DTG/DTA evaluation of flame retarded cotton fabrics and comparison to cone calorimeter data.

    PubMed

    Šimkovic, Ivan

    2012-10-01

    Unbleached cotton fabrics (UCF) with 12.5% polypropylene scrim treated with two phosphate-urea based fire-retardant (FR) formulations were evaluated for FR properties using thermogravimetry/differential thermogravimetry/differential thermal analysis (TG/DTG/DTA) method. In addition to testing the two FR-treated unbleached cotton fabrics (CF-FR1 and CF-FR2), bleached cotton fabric (BCF) treated with the two FR formulations (BCF-FR1 and BCF-FR2) was evaluated. Both formulations were washable with add-on of FR chemicals at 18.7% (FR1) or 17.4% (FR2) for UCF and 22.5% (FR1) or 24.9% (FR2) for BCF. The decreasing order of sums at maximal rates of samples degradation in air environment according to DTG method was: BCF (21.40%/min)>UCF (12.91%/min)>BCF-FR2 (12.83%/min)>BCF-FR1 (11.68%/min)>CF-FR2 (10.20%/min)>CF-FR1 (9.73%/min). It indicates that both formulations cause the decrease of thermooxidation of the products at slower rates than the starting material. Several endo- and exothermic peaks observed by DTA in inert and oxidative environment gives additional information about the degradation process. The order of decreasing thermal responses of the studied samples based on sums of DTA peak values of endothermic and exothermic peaks in air environment is: UCF (0.597 °C/mg)>BCF (0.120 °C/mg)>CF-FR1 (0.089 °C/mg)>BCF-FR1 (0.077 °C/mg)>CF-FR2 (0.062 °C/mg)>BCF-FR2 (0.053 °C/mg). This is in agreement with the cone calorimeter results according to which the flammability properties are improving with the decreasing heat release rates or ignition time prolongation in order: UCF>CF-FR1>CF-FR2. The advantage of TG/DTG/DTA method is slower linear heating rate, which allows the more detailed evaluation of the light and flammable cotton fabric. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Hydrolysis of ZrCl4 and HfCl4: The Initial Steps in the High-Temperature Oxidation of Metal Chlorides to Produce ZrO2 and HfO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zongtang; Dixon, David A.

    2013-03-08

    The gas-phase hydrolysis of MCl4 (M = Zr, Hf) to produce the initial particles on the way to zirconia and hafnia nanoparticles has been studied with electronic structure theory. The potential energy surfaces, the themochemistry of the reaction species, and the reaction paths for the initial steps of MCl4 reacting with H2O have been calculated. The hydrolysis of MCl4 at higher temperatures begins with the formation of oxychlorohydroxides followed by the elimination of HCl instead of the direct production of MOCl2 and HCl or MO2 and HCl due to the substantial endothermicities associated with the formation of gas-phase MO2. Themore » structural properties and heats of formation of the reactants and products are consistent with the available experimental results. A number of metal oxychlorides (oxychlorohydroxides) intermediate clusters have been studied to assess their role in the production of MO2 nanoparticles. The calculated clustering reaction energies of those intermediates are highly exothermic, so they could be readily formed in the hydrolysis process. These intermediate clusters can be formed exothermically from metal oxychlorohydroxides by the elimination of one HCl or H2O molecule. Our calculations show that the mechanisms leading to the formation of MO2 nanoparticles are complicated and are accompanied by the potential production of a wide range of intermediates, as found for the production of TiO2 particles from the high-temperature oxidation of TiCl4.« less

  17. Scaling of the Propulsive Capability of Aluminized Gelled Nitromethane

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Higgins, Andrew; Frost, David; Zhang, Fan

    2017-06-01

    It is well accepted that small mass fractions (<20%) of micron-scale aluminum particles added to a high explosive can react quickly and with sufficient exothermicity to improve metal-acceleration ability (AA) relative to an equal volume of only the base explosive. In order for the aluminum to increase AA, exothermicity must more than offset losses in gas-production and from heating and accelerating the solid particle in the flow. Furthermore, particles must react promptly to deliver this energy prior to loss in driving pressure with product expansion or acoustic decoupling from the driven material. For these reasons many aluminized formulations exhibit slight or no increase in AA ability. Furthermore, AA ability is typically studied using the cylinder test, which specifies a fixed, heavy copper wall. In the present study the authors have used symmetric sandwiches of flyer plates of varying thicknesses to examine how charge scaling and plate acceleration timescales influence the enhancement in AA for different mass fractions and sizes of aluminum particles. Nitromethane gelled with 4% Poly(methyl methacrylate) by mass was used as the base explosive. 3M K1 microballoons were added at a mass fraction of 0.5% to sensitize the mixture. Mass fraction of aluminum was varied between 10% and 40% and particle size was varied from 2 μm to 100 μm. For small mass fractions of alumimum, an enhancement in AA was observed for all particle sizes and flyer configurations and indicated an onset of reaction very close to the sonic plane of the detonation wave.

  18. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.

    2010-03-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  19. Waste burning and heat recovery characteristics of a mass burn incineration system.

    PubMed

    Chen, Wei-Hsin

    2003-02-01

    An experimental investigation on waste combustion characteristics of a mass burn incinerator is conducted in this study. Three different charging modes, including operator manipulation, periodic feeding, and temperature control, are taken into consideration. The results indicate that the burning characteristics in the combustion chambers are closely related to the operating modes. For the operator manipulation where the wastes are sent into the incinerator in two short periods, the entire temperature distribution of the primary combustion chamber can be partitioned into two parts, thereby yielding waste group combustion. Temperature oscillations in both the primary and secondary combustion chambers are characterized for the periodic feeding. However, because of the shorter charging period and smaller amount of waste, the burning interaction between the two chambers is initially weak and becomes notable in the final stage. When temperature control is performed, the burning oscillation of the primary combustion chamber is further amplified so the combustion interaction is drastic. These exhibitions are mainly caused by the competition between endothermic and exothermic reactions. The instantaneous heat exchange efficiency of the cyclone heat recovery system (CHRS) installed in the incineration system is also evaluated to obtain details of energy recovery behaviors. As a result, the efficiency tends to decrease linearly with increasing temperature of hot flue gas. This arises from the fact that heat loss from the gas to the environment is increased when the temperature of the former is higher, even though the temperature gradient across the cyclone is enlarged.

  20. Integrated Modeling and Experimental Studies at the Meso Scale for Advanced Reactive Materials

    DTIC Science & Technology

    2016-07-01

    T E C H N IC A L R E P O R T DTRA-TR-16-76 Integrated Modeling and Experimental Studies at the Meso- Scale for Advanced Reactive Materials ...study the energy release processes that thermitic and/or exothermic intermetallic reactive materials experience when they are subjected to...thermitic and/or exothermic intermetallic materials experience when they are subjected to sustained shock loading. Data from highly spatially and

  1. Study of recrystallization and devitrification of lunar glass

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.

    1974-01-01

    The technique of differential thermal analysis (DTA) was applied to the study of the Apollo 17 orange soil (74220,63) and the Apollo 16 glass coated anorthite (64455,21). These glasses show accentuated exotherms of strain relief in the annealing range which is indicative of rapid cooling. These are amenable to interpretation by comparison to the known history of synthetic glasses. Synthetic glasses were prepared whose similarity in behavior between the lunar glasses and their synthetic analogs is striking. Approximate rates of cooling of the lunar glasses were determined from comparative DTA of lunar and synthetic glasses and from the determination of the relation of strain relief in the annealing range to quench rate. At higher temperatures the glasses show exotherms of crystallization. The crystallization products associated with the exothermic reactions have been identified by X-ray diffraction and the surface morphologies developed by strain relief and crystallization have been characterized with scanning electron microscopy.

  2. Chlorination of zirconium (0001) surface: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.; Weck, Philippe F; Poineau, F.

    The mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl 2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by 3 eV/Cl for dissociative adsorption of a single Cl 2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanism formore » Zr(0001) surface dissolution. Finally, consistent with experimental findings, formation of ZrCl 4 molecular products is also found to be dominant during Zr(0001) chlorination.« less

  3. Chlorination of zirconium (0001) surface: A first-principles study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eunja; Weck, Philippe F; Borjas, Rosendo

    Here, the mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl 2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by ~3 eV/Cl for dissociative adsorption of a single Cl 2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanismmore » for Zr(0001) surface dissolution. Consistent with experimental findings, formation of ZrCl 4 molecular products is also found to be dominant during Zr(0001) chlorination.« less

  4. Direct detection of light ''Ge-phobic'' exothermic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelmini, Graciela B.; Georgescu, Andreea; Huh, Ji-Haeng, E-mail: gelmini@physics.ucla.edu, E-mail: a.georgescu@physics.ucla.edu, E-mail: jhhuh@physics.ucla.edu

    2014-07-01

    We present comparisons of direct dark matter (DM) detection data for light WIMPs with exothermic scattering with nuclei (exoDM), both assuming the Standard Halo Model (SHM) and in a halo model–independent manner. Exothermic interactions favor light targets, thus reducing the importance of upper limits derived from xenon targets, the most restrictive of which is at present the LUX limit. In our SHM analysis the CDMS-II-Si and CoGeNT regions become allowed by these bounds, however the recent SuperCDMS limit rejects both regions for exoDM with isospin-conserving couplings. An isospin-violating coupling of the exoDM, in particular one with a neutron to protonmore » coupling ratio of -0.8 (which we call ''Ge-phobic''), maximally reduces the DM coupling to germanium and allows the CDMS-II-Si region to become compatible with all bounds. This is also clearly shown in our halo-independent analysis.« less

  5. Model free simulations of a high speed reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Steinberger, Craig J.

    1992-01-01

    The effects of compressibility, chemical reaction exothermicity and non-equilibrium chemical modeling in a combusting plane mixing layer were investigated by means of two-dimensional model free numerical simulations. It was shown that increased compressibility generally had a stabilizing effect, resulting in reduced mixing and chemical reaction conversion rate. The appearance of 'eddy shocklets' in the flow was observed at high convective Mach numbers. Reaction exothermicity was found to enhance mixing at the initial stages of the layer's growth, but had a stabilizing effect at later times. Calculations were performed for a constant rate chemical rate kinetics model and an Arrhenius type kinetics prototype. The Arrhenius model was found to cause a greater temperature increase due to reaction than the constant kinetics model. This had the same stabilizing effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.

  6. The Effect of Cathode Composition on the Thermal Characteristics of Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    1999-01-01

    The specific thermal capacity and heat dissipation rate for lithium ion cells containing LiNiO2 and mixed oxide (75%LiCoO2+ 25%LiNiO2) as cathode materials are compared. The experimental measurements were made using a radiative calorimeter consisting of a copper chamber maintained at -168 C by circulating liquid nitrogen and enclosed in a vacuum bell jar. The specific thermal capacity was determined based on warm-up and cool-down transients. The heat dissipation rate was calculated from the values measured for heat radiated and stored, and the resulting values were corrected for conductive heat dissipation through the leads. The specific heat was 1.117 J/ C-g for the LiNiO2 cell and 0.946 J/ C-g for the 75%LiCoO2,25%LiNiO2 cell. Endothermic cooling at the beginning of charge was very apparent for the cell containing 75%LiCoO2,25%LiNiO2 as the cathode. Exothermic heating began at a higher state of charge for the cell with the 75%LiCoO2,25%LiNiO2 cathode compared to the LiNiO2 cathode cell. During discharge, the rate of heat dissipation increased with increase in the discharge current for both types of cells. The maximum heat dissipated at C/5 discharge was 0.065 W and 0.04 W for the LiNiO2 and 75%LiCoO2,25%LiNiO2 cells, respectively, The thermoneutral potential showed variability toward the end of discharge. The plateau region of the curves was used to calculate average thermoneutral potentials of 3.698 V and 3.837 V for the LiNiO2 cell and the 75%LiCoO2,25%LiNiO2 cell, respectively.

  7. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China.

    PubMed

    Kong, Biao; Li, Zenghua; Yang, Yongliang; Liu, Zhen; Yan, Daocheng

    2017-10-01

    In recent years, the ecology, security, and sustainable development of modern mines have become the theme of coal mine development worldwide. However, spontaneous combustion of coal under conditions of oxygen supply and automatic exothermic heating during coal mining lead to coalfield fires. Coal spontaneous combustion (CSC) causes huge economic losses and casualties, with the toxic and harmful gases produced during coal combustion not only polluting the working environment, but also causing great damage to the ecological environment. China is the world's largest coal producer and consumer; however, coal production in Chinese mines is seriously threatened by the CSC risk. Because deep underground mining methods are commonly adopted in Chinese coal mines, coupling disasters are frequent in these mines with the coalfield fires becoming increasingly serious. Therefore, in this study, we analyzed the development mechanism of CSC. The CSC risk assessment was performed from the aspects of prediction, detection, and determination of the "dangerous area" in a coal mine (i.e., the area most susceptible to fire hazards). A new geophysical method for CSC determination is proposed and analyzed. Furthermore, the main methods for CSC fire prevention and control and their advantages and disadvantages are analyzed. To eventually construct CSC prevention and control integration system, future developmental direction of CSC was given from five aspects. Our results can present a reference for the development of CSC fire prevention and control technology and promote the protection of ecological environment in China.

  8. Information technology equipment cooling method

    DOEpatents

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  9. Synthesis of tritium breeder ceramics from metallic lithium

    NASA Astrophysics Data System (ADS)

    Knitter, R.; Kolb, M. H. H.; Odemer, C.

    2012-01-01

    For the fabrication of Li-6 enriched ceramic breeder materials for ITER, the availability of Li-6 enriched compounds is limited, and metallic Li-6 is the most widely available compound. As metallic lithium cannot be used directly in ceramic fabrication processes, we investigated different syntheses to obtain lithium orthosilicate or lithium metatitanate directly from molten lithium. In exothermic reactions of molten lithium with silicon, silica, or titania, several intermediate or precursor phases were observed under argon that could easily be transformed to the desired ceramic phases by a subsequent heat treatment under air. The reaction steps and the resulting phases were studied by differential scanning calorimetry and X-ray diffractometry. The synthesis from lithium and silicon seems to be especially suited for the production of larger quantities and has the advantage that silicon is available with a very high grade of purity.

  10. Separation of ethanol/water azeotrope using compound starch-based adsorbents.

    PubMed

    Wang, Yanhong; Gong, Chunmei; Sun, Jinsheng; Gao, Hong; Zheng, Shuai; Xu, Shimin

    2010-08-01

    Comparing breakthrough cures of five starch-based materials experimentally prepared for ethanol dehydration, a compound adsorptive agent ZSG-1 was formulated with high adsorption capacity, low energy and material cost. The selective water adsorption was conducted in a fixed-bed absorber packed with ZSG-1 to find the optimum conditions yielding 99.7 wt% anhydrous ethanol with high efficiency. The adsorption kinetics is well described by Bohart-Adams equation. The adsorption heat, Delta H(abs), was calculated to be -3.16 x 10(4)J mol(-1) from retention data by inverse gas chromatography. Results suggested that water entrapment in ZSG-1 is a exothermic and physisorption process. Also, ZSG-1 is recyclable for on-site multiple-use and then adapt for upstream fermentation process after saturation, avoiding pollution through disposal. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 1: Synthesis

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate powders high in alumina content were synthesized by the sol-gel process utilizing various methods of preparation. Properties and microstructural effects related to these syntheses were examined. After heating to 600 C for 2 h in flowing air, the powders were amorphous with the metal oxides comprising 87 percent of the weight and uncombusted organics the remainder. DTA of dried powders revealed a T(sub g) at approximately 835 C and an exotherm near 900 C due to crystallization. Powders derived from aluminum secbutoxide consisted of particles with a mean diameter 5 microns less than those from aluminum isopropoxide. Powders synthesized with aluminum isopropoxide produced agglomerates comprised of rod shaped particulates while powders made with the secbutoxide precursor produced irregular glassy shards. Compacts formed from these powders required different loadings for equivalent densities according to the method of synthesis.

  12. Isomorphic Properties of Atoms, Molecules, Water, DNA, Crystals, Earth, SolarSystem and Galaxies

    NASA Astrophysics Data System (ADS)

    Gareev, F. A.; Gareeva, G. F.; Zhidkova, I. E.

    2009-03-01

    We discuss the cooperative resonance synchronization enhancement mechanisms of Low Energy Nuclear Reactions (LENR). Some of the low energy external fields can be used as triggers for starting and enhancing exothermic LENR. Any external field shortening distances between protons in nuclei and electrons in atoms should enhance beta-decay (capture) or double-beta decay (capture). We have proposed a new mechanism of LENR: cooperative resonance synchronization processes in the whole system nuclei+atoms+condensed matter+gaseuos+plasma medium, which we suggest can occur at a smaller threshold than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy, and transmutations at LENR are the result of redistribution inner energy of the whole system.

  13. Method of preparing electrolyte for use in fuel cells

    DOEpatents

    Kinoshita, Kimio; Ackerman, John P.

    1978-01-01

    An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.

  14. Effect of the composition of a solution on the enthalpies of solvation of piperidine in methanol-acetonitrile and dimethylsulfoxide-acetonitrile mixed solvents

    NASA Astrophysics Data System (ADS)

    Kuz'mina, I. A.; Volkova, M. A.; Sitnikova, K. A.; Sharnin, V. A.

    2014-01-01

    Heat effects of dissolution of piperidine (ppd) are measured by calorimetry at 298.15 K over the range of composition of acetonitrile-methanol (AN-MeOH) mixed solvents. Based on the Δsol H ○(ppd)AN-MeOH values obtained using the literature data on Δsol H ○ (ppd) in acetonitrile-dimethylsulfoxide (AN-DMSO) mixed solvents and the vaporization enthalpy of ppd, the enthalpies of solvation of amine in AN-MeOH and AN-DMSO binary mixtures are calculated. A rise in the exothermicity of solvation of piperidine is observed upon the transition from AN to DMSO and MeOH, due mainly to the enhanced solvation of the amino group of ppd as a result of changes in the acid-base properties of the mixed solvent.

  15. Role of Amines in Thermal-Runaway-Mitigating Lithium-Ion Battery.

    PubMed

    Shi, Yang; Noelle, Daniel J; Wang, Meng; Le, Anh V; Yoon, Hyojung; Zhang, Minghao; Meng, Ying Shirley; Qiao, Yu

    2016-11-16

    Benzylamine (BA), dibenzylamine (DBA), and trihexylamine (THA) are investigated as thermal-runaway retardants (TRR) for lithium-ion batteries (LIBs). In a LIB, TRR is packaged separately and released when internal shorting happens, so as to suppress exothermic reactions and slow down temperature increase. THA is identified as the most efficient TRR. Upon nail penetration, 4 wt % THA can reduce the peak temperature by nearly 50%. The working mechanisms of the three amines are different: THA is highly wettable to the separator and immiscible with the electrolyte, and therefore, it blocks lithium-ion (Li + ) transport. BA and DBA decrease the ionic conductivity of electrolyte and increase the charge transfer resistance. All three amines react with charged electrodes; the reactions of DBA and THA do not have much influence on the overall heat generation, while the reaction of BA cannot be ignored.

  16. Etherification process

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1990-08-21

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled. 2 figs.

  17. Oligomerization process

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1991-03-26

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled. 2 figures.

  18. Scientific Transactions No. 11 of the Institute of Mechanics, Moscow State University. [supersonic and hypersonic gas flow and the movement of gas with exothermic reactions

    NASA Technical Reports Server (NTRS)

    Gonor, A. L. (Editor)

    1982-01-01

    The results of flow around wings, the determination of the optimal form, and the interaction of the wake with the accompanying flow at supersonic and hypersonic speeds of the free-stream flow are given. Methods of numerical and analytical calculation of one dimensional unsteady and two dimensional steady motions of fuel-gas mixtures with exothermic reactions are also considered.

  19. System Acquires Data On Reactivities Of Foams

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1994-01-01

    Data-acquisition and -plotting system, called DAPS(TM), developed enabling accurate and objective determination of physical properties related to reactivities of polyurethane and polyisocyanurate foams. Automated, computer-controlled test apparatus that acquires data on rates of rise, rise profiles, exothermic temperatures, and internal pressures of foams prepared from both manual and machine-mixed batches. Data used to determine minute differences between reaction kinetics and exothermic profiles of foam formulations, properties of end products which are statistically undifferentiated.

  20. Information technology equipment cooling system

    DOEpatents

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  1. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Wang, Jia; Liu, Jing

    2015-07-01

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  2. Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Narayan, Sri R.

    2009-01-01

    Two hydrogen generators based on reactions involving magnesium and steam have been proposed as means for generating the fuel (hydrogen gas) for such fuel-cell power systems as those to be used in the drive systems of advanced motor vehicles. The hydrogen generators would make it unnecessary to rely on any of the hydrogen storage systems developed thus far that are, variously, too expensive, too heavy, too bulky, and/or too unsafe to be practical. The two proposed hydrogen generators are denoted basic and advanced, respectively. In the basic hydrogen generator (see figure), steam at a temperature greater than or equals 330 C would be fed into a reactor charged with magnesium, wherein hydrogen would be released in the exothermic reaction Mg + H2O yields MgO + H2. The steam would be made in a flash boiler. To initiate the reaction, the boiler could be heated electrically by energy borrowed from a storage battery that would be recharged during normal operation of the associated fuel-cell subsystem. Once the reaction was underway, heat from the reaction would be fed to the boiler. If the boiler were made an integral part of the hydrogen-generator reactor vessel, then the problem of transfer of heat from the reactor to the boiler would be greatly simplified. A pump would be used to feed water from a storage tank to the boiler.

  3. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  4. Energy distribution among reaction products. VI - F + H2, D2.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Study of the F + H2 reaction, which is of special theoretical interest since it is one of the simplest examples of an exothermic chemical reaction. The FH2 system involves only 11 electrons, and the computation of a potential-energy hypersurface to chemical accuracy may now be within the reach of ab initio calculations. The 'arrested relaxation' variant of the infrared chemiluminescence method is used to obtain the initial vibrational, rotational and translational energy distributions in the products of exothermic reactions.

  5. A new model to predict diffusive self-heating during composting incorporating the reaction engineering approach (REA) framework.

    PubMed

    Putranto, Aditya; Chen, Xiao Dong

    2017-05-01

    During composting, self-heating may occur due to the exothermicities of the chemical and biological reactions. An accurate model for predicting maximum temperature is useful in predicting whether the phenomena would occur and to what extent it would have undergone. Elevated temperatures would lead to undesirable situations such as the release of large amount of toxic gases or sometimes would even lead to spontaneous combustion. In this paper, we report a new model for predicting the profiles of temperature, concentration of oxygen, moisture content and concentration of water vapor during composting. The model, which consists of a set of equations of conservation of heat and mass transfer as well as biological heating term, employs the reaction engineering approach (REA) framework to describe the local evaporation/condensation rate quantitatively. A good agreement between the predicted and experimental data of temperature during composting of sewage sludge is observed. The modeling indicates that the maximum temperature is achieved after some 46weeks of composting. Following this period, the temperature decreases in line with a significant decrease in moisture content and a tremendous increase in concentration of water vapor, indicating the massive cooling effect due to water evaporation. The spatial profiles indicate that the maximum temperature is approximately located at the middle-bottom of the compost piles. Towards the upper surface of the piles, the moisture content and concentration of water vapor decreases due to the moisture transfer to the surrounding. The newly proposed model can be used as reliable simulation tool to explore several geometry configurations and operating conditions for avoiding elevated temperature build-up and self-heating during industrial composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Role of aerosil dispersion on the activated kinetics of the LC1-xSilx system.

    PubMed

    Sharma, Dipti; MacDonald, John C; Iannacchione, Germano S

    2006-12-28

    This study explores the role of aerosil dispersion on activated phase transitions of bulk octylcyanobiphenyl (8CB) liquid crystals by performing heating rate-dependent experiments. Differential scanning calorimetry (DSC) was used at various heating ramp rates in order to probe the activated phase dynamics of the system. The system, LC1-xSilx, was prepared by mixing aerosil nanoparticles (7 nm in diameter) in the bulk 8CB by the solvent dispersion method (SDM). LC represents bulk 8CB, and Sil represents aerosil nanoparticles with concentration x in percent. The concentration of the aerosil nanoparticles (x) varied from 0 to 0.2 g/cm3 in the bulk 8CB. Well-defined, endothermic peaks were found on a heating scan at melting and at the smectic-A to nematic (SmA-N) and nematic to isotropic (N-I) transitions. These peaks show a temperature shift and a change in their shapes and sizes in the presence of aerosil nanoparticles. In addition, an exothermic peak also appeared before the melting peak during the heating scan in the presence of aerosil nanoparticles. All transitions shifted significantly with different heating ramp rates, following an Arrhenius behavior, showing activated kinetics. The presence of aerosil nanoparticles caused a significant increase in the enthalpy and a decrease in the activation energy compared to the results found in bulk 8CB. This behavior can be explained by aerosil dispersion in the LC1-xSilx, inducing a disorder in the bulk 8CB. Infrared (IR) spectroscopy shows a shift to higher frequency for the broad peak at 1082 cm-1, corresponding to an Si-O bond as the density of the aerosil increases, and can be explained in terms of surface and molecular interactions between aerosil nanoparticles and 8CB liquid crystal molecules.

  7. Utilizing environmental friendly iron as a substitution element in spinel structured cathode materials for safer high energy lithium-ion batteries

    DOE PAGES

    Hu, Enyuan; Bak, Seong -Min; Liu, Yijin; ...

    2015-12-03

    Suppressing oxygen release from lithium ion battery cathodes during heating is a critical issue for the improvement of the battery safety characteristics because oxygen can exothermically react with the flammable electrolyte and cause thermal runaway. Previous studies have shown that oxygen release can be reduced by the migration of transition metal cations from octahedral sites to tetrahedral sites during heating. Such site-preferred migration is determined by the electronic structure of cations. In addition, taking advantage of the unique electronic structure of the environmental friendly Fe, this is selected as substitution element in a high energy density material LiNi 0.5Mn 1.5Omore » 4 to improve the thermal stability. The optimized LiNi 0.33Mn 1.33Fe 0.33O 4 material shows significantly improved thermal stability compared with the unsubstituted one, demonstrated by no observed oxygen release at temperatures as high as 500°C. Due to the electrochemical contribution of Fe, the high energy density feature of LiNi 0.5Mn 1.5O 4 is well preserved.« less

  8. In situ carbonation of peridotite for CO2 storage

    PubMed Central

    Kelemen, Peter B.; Matter, Jürg

    2008-01-01

    The rate of natural carbonation of tectonically exposed mantle peridotite during weathering and low-temperature alteration can be enhanced to develop a significant sink for atmospheric CO2. Natural carbonation of peridotite in the Samail ophiolite, an uplifted slice of oceanic crust and upper mantle in the Sultanate of Oman, is surprisingly rapid. Carbonate veins in mantle peridotite in Oman have an average 14C age of ≈26,000 years, and are not 30–95 million years old as previously believed. These data and reconnaissance mapping show that ≈104 to 105 tons per year of atmospheric CO2 are converted to solid carbonate minerals via peridotite weathering in Oman. Peridotite carbonation can be accelerated via drilling, hydraulic fracture, input of purified CO2 at elevated pressure, and, in particular, increased temperature at depth. After an initial heating step, CO2 pumped at 25 or 30 °C can be heated by exothermic carbonation reactions that sustain high temperature and rapid reaction rates at depth with little expenditure of energy. In situ carbonation of peridotite could consume >1 billion tons of CO2 per year in Oman alone, affording a low-cost, safe, and permanent method to capture and store atmospheric CO2.

  9. Single-Use, Electricity-Free Amplification Device for Detection of HIV-1

    PubMed Central

    Curtis, Kelly A.; Rudolph, Donna L.; Morrison, Daphne; Guelig, Dylan; Diesburg, Steven; McAdams, David; Burton, Robert A.; LaBarre, Paul; Owen, Michele

    2016-01-01

    Early and accurate diagnosis of HIV is key for the reduction of transmission and initiation of patient care. The availability of a rapid nucleic acid test (NAT) for use at the point-of-care (POC) will fill a gap in HIV diagnostics, improving the diagnosis of acute infection and HIV in infants born to infected mothers. In this study, we evaluated the performance of non-instrumented nucleic acid amplification, single-use disposable (NINA-SUD) devices for the detection of HIV-1 in whole blood using reverse-transcription, loop-mediated isothermal amplification (RT-LAMP) with lyophilized reagents. The NINA-SUD heating device harnesses the heat from an exothermic chemical reaction initiated by the addition of saline to magnesium iron powder. Reproducibility was demonstrated between NINA-SUD units and comparable, if not superior, performance for detecting clinical specimens was observed as compared to the thermal cycler. The stability of the lyophilized HIV-1 RT-LAMP reagents was also demonstrated following storage at −20, 4, 25, and 30°C for up to one month. The single-use, disposable NAT minimizes hands-on time and has the potential to facilitate HIV-1 testing in resource-limited settings or at the POC. PMID:27616198

  10. Heat transfer properties and thermal cure of glass-ionomer dental cements.

    PubMed

    Gavic, Lidia; Gorseta, Kristina; Glavina, Domagoj; Czarnecka, Beata; Nicholson, John W

    2015-10-01

    Under clinical conditions, conventional glass-ionomer dental cements can be cured by application of heat from dental cure lamps, which causes acceleration in the setting. In order for this to be successful, such heat must be able to spread sufficiently through the cement to enhance cure, but not transmit heat so effectively that the underlying dental pulp of the tooth is damaged. The current study was aimed at measuring heat transfer properties of modern restorative glass-ionomers to determine the extent to which they meet these twin requirements. Three commercial glass ionomer cements (Ionofil Molar, Ketac Molar and Equia™ Fill) were used in association with three different light emitting diode cure lamps designed for clinical use. In addition, for each cement, one set of specimens was allowed to cure without application of a lamp. Temperature changes were measured at three different depths (2, 3 and 4 mm) after cure times of 20, 40 and 60 s. The difference among the tested groups was evaluated by ANOVA (P < 0.05) and post hoc Newman-Keuls test. All brands of glass-ionomer showed a small inherent setting exotherm in the absence of heat irradiation, but much greater temperature increases when exposed to the cure lamp. However, temperature rises did not exceed 12.9 °C. Application of the cure lamp led to the establishment of a temperature gradient throughout each specimen. Differences were typically significant (P < 0.05) and did not reflect the nominal power of the lamps, because those lamps have variable cooling systems, and are designed to optimize light output, not heating effect. Because the thermal conductivity of glass-ionomers is low, temperature rises at 4 mm depths were much lower than at 2 mm. At no time did the temperature rise sufficiently to cause concern about potential damage to the pulp.

  11. Pinning down inelastic dark matter in the Sun and in direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juhg@kth.se

    2016-04-01

    We study the solar capture rate of inelastic dark matter with endothermic and/or exothermic interactions. By assuming that an inelastic dark matter signal will be observed in next generation direct detection experiments we can set a lower bound on the capture rate that is independent of the local dark matter density, the velocity distribution, the galactic escape velocity as well as the scattering cross section. In combination with upper limits from neutrino observatories we can place upper bounds on the annihilation channels leading to neutrinos. We find that, while endothermic scattering limits are weak in the isospin-conserving case, strong boundsmore » may be set for exothermic interactions, in particular in the spin-dependent case. Furthermore, we study the implications of observing two direct detection signals, in which case one can halo-independently obtain the dark matter mass and the mass splitting, and disentangle the endothermic/exothermic nature of the scattering. Finally we discuss isospin violation.« less

  12. Direct detection of light “Ge-phobic” exothermic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelmini, Graciela B.; Georgescu, Andreea; Huh, Ji-Haeng

    2014-07-15

    We present comparisons of direct dark matter (DM) detection data for light WIMPs with exothermic scattering with nuclei (exoDM), both assuming the Standard Halo Model (SHM) and in a halo model — independent manner. Exothermic interactions favor light targets, thus reducing the importance of upper limits derived from xenon targets, the most restrictive of which is at present the LUX limit. In our SHM analysis the CDMS-II-Si and CoGeNT regions become allowed by these bounds, however the recent SuperCDMS limit rejects both regions for exoDM with isospin-conserving couplings. An isospin-violating coupling of the exoDM, in particular one with a neutronmore » to proton coupling ratio of −0.8 (which we call “Ge-phobic”), maximally reduces the DM coupling to germanium and allows the CDMS-II-Si region to become compatible with all bounds. This is also clearly shown in our halo-independent analysis.« less

  13. Small-scale thermal studies of volatile homemade explosives

    DOE PAGES

    Sandstrom, Mary M.; Brown, Geoffrey W.; Warner, Kirsten F.; ...

    2016-01-26

    Several homemade or improvised explosive mixtures that either contained volatile components or produced volatile products were examined using standard small-scale safety and thermal (SSST) testing that employed differential scanning calorimetry (DSC) techniques (constant heating rate and standard sample holders). KClO 3 and KClO 4 mixtures with dodecane exhibited different enthalpy behavior when using a vented sample holder in contrast to a sealed sample holder. The standard configuration produced profiles that exhibited only endothermic transitions. The sealed system produced profiles that exhibited additional exothermic transitions absent in the standard configuration produced profiles. When H 2O 2/fuel mixtures were examined, the volatilizationmore » of the peroxide (endothermic) dominated the profiles. When a sealed sample holder was used, the energetic releases of the mixture could be clearly observed. For AN and AN mixtures, the high temperature decomposition appears as an intense endothermic event. Using a nominally sealed sample holder also did not adequately contain the system. Only when a high-pressure rated sample holder was used the high temperature decomposition of the AN could be detected as an exothermic release. The testing was conducted during a proficiency (or round-robin type) test that included three U.S. Department of Energy and two U.S. Department of Defense laboratories. In the course of this proficiency test, certain HMEs exhibited thermal behavior that was not adequately accounted for by standard techniques. Further examination of this atypical behavior highlighted issues that may have not been recognized previously because some of these materials are not routinely tested. More importantly, if not recognized, the SSST testing results could lead to inaccurate safety assessments. Furthermore, this study provides examples, where standard techniques can be applied, and results can be obtained, but these results may be misleading in establishing thermal properties.« less

  14. Differences in the adsorption behaviour of poly(ethylene oxide) copolymers onto model polystyrene nanoparticles assessed by isothermal titration microcalorimetry correspond to the biological differences.

    PubMed

    Stolnik, S; Heald, C R; Garnett, M G; Illum, L; Davis, S S

    2005-01-01

    The adsorption behaviour of a tetrafunctional copolymer of poly (ethylene oxide)-poly (propylene oxide) ethylene diamine (commercially available as Poloxamine 908) and a diblock copolymer of poly (lactic acid)-poly (ethylene oxide) (PLA/PEG 2:5) onto a model colloidal drug carrier (156 nm sized polystyrene latex) is described. The adsorption isotherm, hydrodynamic thickness of the adsorbed layers and enthalpy of the adsorption were assessed. The close similarity in the conformation of the poly (ethylene oxide) (PEO) chains (molecular weight 5,000 Da) in the adsorbed layers of these two copolymers was demonstrated by combining the adsorption data with the adsorbed layer thickness data. In contrast, the results from isothermal titration microcalorimetry indicated a distinct difference in the interaction of the copolymers with the polystyrene colloid surface. Poloxamine 908 adsorption to polystyrene nanoparticles is dominated by an endothermic heat effect, whereas, PLA/PEG 2:5 adsorption is entirely an exothermic process. This difference in adsorption behaviour could provide an explanation for differences in the biodistribution of Poloxamine 908 and PLA/PEG 2:5 coated polystyrene nanoparticles observed in previous studies. A comparison with the interaction enthalpy for several other PEO-containing copolymers onto the same polystyrene colloid was made. The results demonstrate the importance of the nature of the anchoring moiety on the interaction of the adsorbing copolymer with the colloid surface. An endothermic contribution is found when an adsorbing molecule contains a poly (propylene oxide) (PPO) moiety (e.g. Poloxamine 908), whilst the adsorption is exothermic (i.e. enthalpy driven) for PEO copolymers with polylactide (PLA/PEG 2:5) or alkyl moieties.

  15. Modeling free energy availability from Hadean hydrothermal systems to the first metabolism.

    PubMed

    Simoncini, E; Russell, M J; Kleidon, A

    2011-12-01

    Off-axis Hydrothermal Systems (HSs) are seen as the possible setting for the emergence of life. As the availability of free energy is a general requirement to drive any form of metabolism, we ask here under which conditions free energy generation by geologic processes is greatest and relate these to the conditions found at off-axis HSs. To do so, we present a conceptual model in which we explicitly capture the energetics of fluid motion and its interaction with exothermic reactions to maintain a state of chemical disequilibrium. Central to the interaction is the temperature at which the exothermic reactions take place. This temperature not only sets the equilibrium constant of the chemical reactions and thereby the distance of the actual state to chemical equilibrium, but these reactions also shape the temperature gradient that drives convection and thereby the advection of reactants to the reaction sites and the removal of the products that relate to geochemical free energy generation. What this conceptual model shows is that the positive feedback between convection and the chemical kinetics that is found at HSs favors a greater rate of free energy generation than in the absence of convection. Because of the lower temperatures and because the temperature of reactions is determined more strongly by these dynamics rather than an external heat flux, the conditions found at off-axis HSs should result in the greatest rates of geochemical free energy generation. Hence, we hypothesize from these thermodynamic considerations that off-axis HSs seem most conducive for the emergence of protometabolic pathways as these provide the greatest, abiotic generation rates of chemical free energy.

  16. Thermal and electrochemical properties of nonflammable electrolyte solutions containing fluorinated alkylphosphates for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Todorov, Yanko Marinov; Aoki, Masahiro; Mimura, Hideyuki; Fujii, Kenta; Yoshimoto, Nobuko; Morita, Masayuki

    2016-11-01

    Nonflammable organic electrolyte solutions containing fluorinated alkylphosphates (FAP) have been examined as safer electrolytes for lithium-ion batteries (LIB). Although the ionic conductivity of LiPF6 in neat tris(2,2,2-trifluoroethyl)phosphate (TFEP) solvent is very low, it increases upon the addition of alkyl carbonates such as ethylene carbonate (EC) and fluoroethylene carbonate (4-fluoro-2-oxo-1,3-dioxolane, FEC). A specific conductivity of 1 mS cm-1 or higher was obtained at room temperature for the system containing proper amounts of the carbonates and 0.5 M (mol dm-3) LiPF6. A conventional mixed alkylcarbonate-based solution containing LiPF6 showed a sign of considerable exothermic reactions on the differential scanning calorimetry (DSC) response below 300 °C. However, the LiPF6/TFEP solution showed no significant exothermic response up to 400 °C, even in the presence of charged LiCoO2 (LCO) positive electrode. The addition of an alkylcarbonate to the LiPF6/TFEP solution produced an exothermic response as a result of the thermal decomposition of the carbonate over the charged LCO. However, the temperature at which the exothermic reaction starts was significantly higher in the system containing FEC than that containing EC. The thermal analysis results suggested that the LiPF6/FEC + TFEP combination could work as a safer electrolyte system in LIB under severe conditions.

  17. Heat up and failure of BWR upper internals during a severe accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.

    In boiling water reactors, the shroud dome, separators, and dryers above the core are made of approximately 100,000 kg of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. In this scenario, the upper internals can also be heated by thermal radiation from the hot degrading core. Historically, models of the upper internals have been relatively simple in severe accident codes. The upper internals are typically modeled in MELCOR as two lumped volumes with simplifiedmore » heat transfer characteristics and no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. The MELCOR modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. Consistent with a previous study, the results indicate that the upper internals can reach high temperatures during a severe accident sufficient to lose their structural integrity and relocate. Finally, the additional 100 metric tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less

  18. Heat up and failure of BWR upper internals during a severe accident

    DOE PAGES

    Robb, Kevin R.

    2017-02-21

    In boiling water reactors, the shroud dome, separators, and dryers above the core are made of approximately 100,000 kg of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. In this scenario, the upper internals can also be heated by thermal radiation from the hot degrading core. Historically, models of the upper internals have been relatively simple in severe accident codes. The upper internals are typically modeled in MELCOR as two lumped volumes with simplifiedmore » heat transfer characteristics and no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. The MELCOR modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. Consistent with a previous study, the results indicate that the upper internals can reach high temperatures during a severe accident sufficient to lose their structural integrity and relocate. Finally, the additional 100 metric tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less

  19. By analogy with late paleozoic orogeny in the Venezuelan Andes, Maracaibo Basin is en route to a granitic event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shagam, R.; Giegengack, R.F.; Lutz, T.M.

    1985-01-01

    Postulated stages of orogeny in a continental crustal setting are:- 1. Stresses of plate convergence lead to block uplift and complementary basin subsidence. The basin fills with 12-14 km of illite-rich flysch (1km/3Ma). This about doubles the thickness of K-rich sial. 2. In situ heating of the flysch by radioactive decay provides a thermal gradient of c.35/sup 0/C/km and it is metamorphosed (pre-deformation) to greenschists facies. 3. After maximum crustal subsidence continued compression results in updoming of crust and overlying flysch. Cannibalism of flysch, cooling and mild subsidence follow; autometamorphism declines. 4. Thin deltaic-marine deposits complete basin fill over themore » meta-flysch. The unconformity (a span of only 5-10 Ma) is of minor import. 5. Resetting of the thermal profile of the depressed crust lags far behind that in the flysch. Parallels to the above in the Maracalbo basin fill are: -thickness (approx.11km), nature (flysch abounds), rate of deposition (c.1km/3-4Ma), thermal gradient (c.33/sup 0/C/km) and overall tesselar shape. Presence of impermeable strata in the Maracaibo Basin suggests that large-scale fluid convection is inhibited; conductive models of heat transfer can be used. Computer modeling suggests that radiogenic heat, augmented by exothermic oxidation of organic matter, and with a normal mantle heat flow will explain the autometamorphism of the flysch. Alternative orogenic models invoking pull-apart basins do not explain the great thickness of sediments and absence of volcanic activity.« less

  20. Isothermal Analysis of the Crystallization Kinetics in Lithium Disilicate Glass using Trans Temp Furnace

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Ray, C. S.; Day, D. E.

    2006-01-01

    Crystallization kinetics for lithium disilicate, Li2O2SiO2, (LS2) glass has been studied extensively by nonisothermal methods, but only a few studies on the isothermal crystallization kinetics of LS2 are available. In the present research, isothermal crystallization experiments or the LS2 glass were conducted in a Trans Temp furnace between 600 and 635 C, and selected properties such as the activation energy for crystallization (E), crystal growth index or Avrami parameter (n), the concentration of quenched-in nuclei in the starting glass (Ni) and the crystal nucleation rate (I) were measured. The crystal nucleation rate (I) was measured at only one selected temperature of 452 C, at this time. This commercial furnace has a 13 cm long isothermal heating zone (+/- 1 C) that allows precise heat treatment of relatively large samples. By placing a thermocouple within approx. 2 mm of the sample, it was possible to detect the heat of crystallization in the form of an isothermal crystallization exotherm during isothermal heat treatment of the sample. The values of E (318 plus or minus 10 kJ/mol), n (3.6 plus or minus 0.l), and N(sub i) (1.6 x 10(exp l2) m(sup -3)) calculated by analyzing these isotherms using the standard Johnson-Mehl-Avrami (JMA) equation were reproducible and in agreement with the literature values. The value of I, 1.9 x 10(exp 10) m(sup -3) s(sup -1) at 452 C, is an order of magnitude higher than the reported value for LS2.

  1. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less

  2. Process for producing ethanol from syngas

    DOEpatents

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  3. Twice as smart behavior of tert-butylthiacalix[4]arene derivative in glassy and crystalline form.

    PubMed

    Gataullina, K V; Ziganshin, M A; Stoikov, I I; Gubaidullin, A T; Gorbatchuk, V V

    2015-06-28

    A studied tert-butylthiacalix[4]arene derivative with four N-(2-acetoxyethyl)carbamoylmethoxy substituents on its lower rim in partial-cone configuration (calixarene 1) can remember its previous treatment in three essentially different ways by the formation either of a molecular glass or two metastable polymorphs after heating or the removal of an included guest molecule. Guest-induced memory is very selective with a polymorph created only after the release of a few included guests among a large series of those studied and is detected via an exothermic transition. Along with ordinary properties, like glass transition, curing and cold crystallization, the molecular glass from 1 is selective due to its ability to crystallize in solvent vapors and vapor mixtures over a well-defined concentration range. Being cooperative, this property may be used for the visual detection of ethanol content in water solution when it reaches a threshold value.

  4. Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness

    PubMed Central

    Esposito Corcione, Carola; Freuli, Fabrizio; Frigione, Mariaenrica

    2014-01-01

    The curing reaction of a commercial cold-curing structural epoxy resin, specifically formulated for civil engineering applications, was analyzed by thermal analysis as a function of the curing time and the sample thickness. Original and remarkable results regarding the effects of curing time on the glass transition temperature and on the residual heat of reaction of the cold-cured epoxy were obtained. The influence of the sample thickness on the curing reaction of the cold-cured resin was also deeply investigated. A highly exothermal reaction, based on a self-activated frontal polymerization reaction, was supposed and verified trough a suitable temperature signal acquisition system, specifically realized for this measurement. This is one of the first studies carried out on the curing behavior of these peculiar cold-cured epoxy resins as a function of curing time and thickness. PMID:28788215

  5. Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness.

    PubMed

    Corcione, Carola Esposito; Freuli, Fabrizio; Frigione, Mariaenrica

    2014-09-22

    The curing reaction of a commercial cold-curing structural epoxy resin, specifically formulated for civil engineering applications, was analyzed by thermal analysis as a function of the curing time and the sample thickness. Original and remarkable results regarding the effects of curing time on the glass transition temperature and on the residual heat of reaction of the cold-cured epoxy were obtained. The influence of the sample thickness on the curing reaction of the cold-cured resin was also deeply investigated. A highly exothermal reaction, based on a self-activated frontal polymerization reaction, was supposed and verified trough a suitable temperature signal acquisition system, specifically realized for this measurement. This is one of the first studies carried out on the curing behavior of these peculiar cold-cured epoxy resins as a function of curing time and thickness.

  6. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts.

    PubMed

    D'Hernoncourt, J; Zebib, A; De Wit, A

    2007-03-01

    Exothermic autocatalytic fronts traveling in the gravity field can be deformed by buoyancy-driven convection due to solutal and thermal contributions to changes in the density of the product versus the reactant solutions. We classify the possible instability mechanisms, such as Rayleigh-Benard, Rayleigh-Taylor, and double-diffusive mechanisms known to operate in such conditions in a parameter space spanned by the corresponding solutal and thermal Rayleigh numbers. We also discuss a counterintuitive instability leading to buoyancy-driven deformation of statically stable fronts across which a solute-light and hot solution lies on top of a solute-heavy and colder one. The mechanism of this chemically driven instability lies in the coupling of a localized reaction zone and of differential diffusion of heat and mass. Dispersion curves of the various cases are analyzed. A discussion of the possible candidates of autocatalytic reactions and experimental conditions necessary to observe the various instability scenarios is presented.

  7. Calculation of the Rate of Combustion of a Metallized Composite Solid Propellant with Allowance for the Size Distribution of Agglomerates

    NASA Astrophysics Data System (ADS)

    Poryazov, V. A.; Krainov, A. Yu.

    2016-05-01

    A physicomathematical model of combustion of a metallized composite solid propellant based on ammonium perchlorate has been presented. The model takes account of the thermal effect of decomposition of a condensed phase (c phase), convection, diffusion, the exothermal chemical reaction in a gas phase, the heating and combustion of aluminum particles in the gas flow, and the velocity lag of the particles behind the gas. The influence of the granulometric composition of aluminum particles escaping from the combustion surface on the linear rate of combustion has been investigated. It has been shown that information not only on the kinetics of chemical reactions in the gas phase, but also on the granulometric composition of aluminum particles escaping from the surface of the c phase into the gas, is of importance for determination of the linear rate of combustion.

  8. Dependence of the enthalpies of formation of glycylglycinate complexes of nickel(II) on the composition of a mixed water-dimethylsulfoxide solvent

    NASA Astrophysics Data System (ADS)

    Naumov, V. V.; Kovaleva, Yu. A.; Isaeva, V. A.; Usacheva, T. R.; Sharnin, V. A.

    2014-06-01

    The heat effects of the complexation reactions of nickel(II) with a glycylglycinate ion in a water-dimethylsulfoxide solvent in a range of compositions of 0.00-0.60 molar parts of dimethylsulfoxide (DMSO) (an ionic strength of 0.1 was maintained using sodium perchlorate) were determined by means of calorimetry at 298.15 K. It is established that the exothermicity of complexation reactions rises by the first two steps and falls upon the addition of a third glycylglycinate anion with an increase in the concentration of DMSO. It is shown that the formation of mono- and bis-glycylglycinate complexes of nickel(II) in a water-DMSO solvent is determined mostly by the enthalpic contribution. It is concluded that the formation of tris-ligand complexes is more associated with the entropic contribution.

  9. Shock Reactivity of Non-Porous Mixtures of Manganese and Sulfur

    NASA Astrophysics Data System (ADS)

    Jetté, F. X.; Goroshin, S.; Higgins, A. J.

    2007-12-01

    Equimolar mixtures of manganese powder and sulfur were melt-cast into solid pellets in order to study the mechanism of shock-enhanced reactivity in non-porous heterogeneous mixtures. This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. Indeed, the critical shock pressure that caused ignition of the mixture in the ampoule was found to be in the range 2.2-3.0 GPa (pressures were estimated using LS-DYNA simulations of samples with 100% TMD).

  10. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    NASA Astrophysics Data System (ADS)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  11. Enhanced photothermal effect in reduced graphene oxide in solid-state

    NASA Astrophysics Data System (ADS)

    Sahadev, Nishaina; Anappara, Aji A.

    2017-11-01

    We report on a giant photothermal effect in few-layer Reduced Graphene Oxide (RGO) in powder form. Graphite oxide synthesized following modified Hummer's method was thermally exfoliated and reduced to obtain RGO consisting of ˜8-10 layers. Upon irradiation with an incoherent, broad-band light source (wavelengths ranging from 250 to 450 nm), an enormous photothermal effect was observed. The heat generated by RGO determined from the isothermal differential photocalorimetric technique is as high as ˜319 W/g resulting from the dominant non-radiative de-excitation of photoexcited electrons due to the absence of a radiative pathway. A practical applicability was demonstrated using a commercial thermoelectric generator wherein upon illumination from a solar-simulator, an open voltage in the mV range was developed, giving a direct proof of the exothermic effect in powder RGO upon light illumination. Herewith, we have demonstrated a proof-of-concept of photothermal effects in solid-state RGO.

  12. Chemical energy in cold-cloud aggregates - The origin of meteoritic chondrules

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1980-01-01

    If interstellar particles and molecules accumulate into larger particles during the collapse of a cold cloud, the resulting aggregates contain a large store of internal chemical energy. It is here proposed that subsequent warming of these accumulates leads to a thermal runaway when exothermic chemical reactions begin within the aggregate. These, after cooling, are the crystalline chondrules found so abundantly within chondritic meteorites. Chemical energy can also heat meteoritic parent bodies of any size, and both thermal metamorphism and certain molten meteorites are proposed to have occurred in this way. If this new theory is correct, (1) the model of chemical condensation in a hot gaseous solar system is eliminated, and (2) a new way of studying the chemical evolution of the interstellar medium has been found. A simple dust experiment on a comet flyby is proposed to test some features of this controversy.

  13. Differential scanning calorimetric study of the binding between native DNA and its primary water of hydration.

    NASA Astrophysics Data System (ADS)

    Marlowe, R. L.; Lukan, A. M.; Lee, S. A.; Anthony, L.; Rupprecht, A.

    1996-03-01

    Differential scanning calorimetry was used to measure the binding strength between calf-thymus DNA and its primary water of hydration. The specific heat of wet-spun films was found to have a broad endothermic transition near 80 ^oC and a sharp exothermic transition near 250 ^oC. The broad transition is believed to be mainly due to the breaking of the bonds of the strongly bound water of hydration. This transition was found to be reversible, as expected. Kissinger analysis indicates that the activation barrier for breaking the bonds of these water molecules is about 0.6 eV. The sharp transition appeared to be an indication of a thermal decomposition of the DNA. Samples taken above this transition lost mass, showed evidence of having melted, and had turned black in color. This transition is irreversible.

  14. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements

    DOEpatents

    Tom, Glenn M.; McManus, James V.; Luxon, Bruce A.

    1991-08-06

    Scavenger compositions are disclosed, which have utility for effecting the sorptive removal of hazardous gases containing Group II-VII elements of the Periodic Table, such as are widely encountered in the manufacture of semiconducting materials and semiconductor devices. Gas sorption processes including the contacting of Group II-VII gaseous compounds with such scavenger compositions are likewise disclosed, together with critical space velocity contacting conditions pertaining thereto. Further described are gas contacting apparatus, including mesh structures which may be deployed in gas contacting vessels containing such scavenger compositions, to prevent solids from being introduced to or discharged from the contacting vessel in the gas stream undergoing treatment. A reticulate heat transfer structure also is disclosed, for dampening localized exothermic reaction fronts when gas mixtures comprising Group II-VII constituents are contacted with the scavenger compositions in bulk sorption contacting vessels according to the invention.

  15. Structure and magnetic properties of nanostructured MnNi alloys fabricated by mechanical alloying and annealing treatments

    NASA Astrophysics Data System (ADS)

    Jalal, T.; Hossein Nedjad, S.; Khalili Molan, S.

    2013-05-01

    A nearly equiatomic MnNi alloy was fabricated from the elemental powders by means of mechanical alloying in a planetary ball milling apparatus. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and measurements of magnetization were conducted to identify the structural states and properties of the prepared alloys. After ball milling for 20 h, a disordered face-centered cubic (f.c.c.) solid solution was formed which increased in lattice parameter by further milling up to 50 h. An exothermic reaction took place at around 300-400°C during continuous heating of the disordered f.c.c. solid solution. This reaction is attributed to a structural ordering leading to the formation of a face-centered tetragonal (f.c.t.) phase with L10 type ordering. Examination of the magnetic properties indicated that the structural ordering increases remnant magnetization and decreases coerecivity.

  16. Research on the Electro-explosive Behaviors and the Ignition Performances of Energetic Igniters

    NASA Astrophysics Data System (ADS)

    Li, Yong; Jia, Xin; Wang, Liu; Zhou, Bin; Shen, Ruiqi

    2018-01-01

    This article describes the electro-explosive behaviors and the ignition performances of energetic igniters based on the combination of polysilicon film with Al/CuO nanoenergetic multilayer films (nEMFs).The ultra-high-speed framing camera images show that melting first occurs at the V-type angles and then expands to the entire bridge. The Al/CuO nEMF is heated and fired from below, forced to form lots of flyers with different sizes, ejected with the expansion of polysilicon plasma, and reacts exothermically to release a large quantity of energy. Furthermore, temperature diagnosis results demonstrate higher temperature products of energetic igniters. Ignition experiment at a standoff of 1.5 mm results show that the average firing voltage and the variance of energetic igniters are 28.50 V and 0.96, whereas those of polysilicon igniters are 32.05 V and 1.94.

  17. Renewable Heating and Cooling

    EPA Pesticide Factsheets

    Find information on the benefits of renewable heating and cooling technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  18. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula; Sharma, Vimal, E-mail: manjula.physics@gmail.com

    2016-05-23

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, Raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  19. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE PAGES

    Wu, Di; Guo, Xiaofeng; Sun, Hui; ...

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δh ads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually untilmore » reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  20. Renewable Heating And Cooling

    EPA Pesticide Factsheets

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  1. Pluto's Polygonal Terrain Places Lower Limit on Planetary Heat Flow

    NASA Astrophysics Data System (ADS)

    Trowbridge, A.; Steckloff, J. K.; Melosh, H., IV; Freed, A. M.

    2015-12-01

    During its recent flyby of Pluto, New Horizons imaged an icy plains region (Sputnik Planum) whose surface is divided into polygonal blocks, ca. 20-30 km across, bordered by what appear to be shallow troughs. The lack of craters within these plains suggests they are relatively young, implying that the underlying material is recently active. The scale of these features argues against an origin by cooling and contraction. Here we investigate the alternative scenario that they are the surface manifestation of shallow convection in a thick layer of nitrogen ice. Typical Rayleigh-Bernard convective cells are approximately three times wider than the depth of the convecting layer, implying a layer depth of ca. 7-10 km. Our convection hypothesis requires that the Rayleigh number exceed a minimum of about 1000 in the nitrogen ice layer. We coupled a parameterized convection model with a temperature dependent rheology of nitrogen ice (Yamashita, 2008), finding a Rayleigh number 1500 to 7500 times critical for a plausible range of heat flows for Pluto's interior. The computed range of heat flow (3.5-5.2 mW/m2) is consistent with the radiogenic heat generated by a carbonaceous chondrite (CC) core implied by Pluto's bulk density. The minimum heat flow at the critical Rayleigh number is 0.13 mW/m2. Our model implies a core temperature of 44 K in the interior of the convecting layer. This is very close to the exothermic β-α phase transition in nitrogen ice at 35.6 K (for pure N2 ice; dissolved CO can increase this, depending on its concentration), suggesting that the warm cores of the rising convective cells may be β phase, whereas the cooler sinking limbs may be α phase. This transition may thus be observable due to the large difference in their spectral signature. Further applying our model to Pluto's putative water ice mantle, the heat flow from CC is consistent with convection in Pluto's mantle and the activity observed on its surface.

  2. Preparation and Ablating Behavior of FGM used in a Heat Flux Rocket Engine

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Han, Jiecai; Zhang, Xinghong

    2002-01-01

    Functionally Graded Material (FGM) is a new kind of nonhomogeneous materials, which composition varies gradually and continuously from metals to ceramics, thus excellence of both ceramic and metal is brought fully into play. The impetus for the development of FGM was to make thermal barrier materials for space shuttles and structure such as combustion chamber, gas vane, air vane, nose cone, fuel valve sheets and piston crown. There are several main techniques for making FGMs including chemical vapor deposition (CVD), powder metallurgy, plasma spraying and self-propagating high temperate synthesis (SHS). SHS Technology is the process by which condensed phases are produced by self - sustaining exothermic chemical reaction. Demonstrated advantages of SHS as a method for the preparation of materials include higher purity of the products, low energy requirements, and the relative simplicity of the process. SHS is particularly well suited to fabricating FGM. Due to the rapidity of the combustion reaction, the initial arrangement of the constituent in the green body is unchanged during combustion. In this paper, TiB2-Cu FGM and homogeneous cermets have been prepared by combing forced compaction with SHS. The experimental results show that process parameters significantly influence the combustion synthesis procedure of Ti-B-Cu system. Optimal process parameters have been gained for preparing TiB2-Cu FGM and cermets. TiB2-Cu FGM by SHS has a continuous distribution in microstructure along its thickness. The macroscopic interface of ceramic/metal joint is elemented. Mechanical properties of TiB2-Cu cermets were investigated at room and high temperature. The thermal stress of TiC-Ni FGM prepared by SHS are simulated at working condition, as well as comparing with a layered TiB2-Cu Non- FGM. Obviously, the TiB2-Cu FGM has the function of distortion and thermal stress relation. TiB2-Cu FGM was tested in the limited wind tunnel simulating the real condition of the heat flux rocket engine. As a result, TiB2-Cu FGM showed excellent resistant ablating properties. There is only a little loss of the mass after heated for 40 seconds in the wind tunnel. Meanwhile no cracks and breakup appeared in the FGM under the sharp thermal shock condition. Key words: functionally graded materials, combustion synthesis, ablation, thermal shock, thermal stress

  3. Catalyzed Combustion of Bipropellants for Micro-Spacecraft Propulsion

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Sung, Chih-Jen; Boyarko, George A.

    2003-01-01

    This paper addresses the need to understand the physics and chemistry involved in propellant combustion processes in micro-scale combustors for propulsion systems on micro-spacecraft. These spacecraft are planned to have a mass less than 50 kilograms with attitude control estimated to be in the 10 milli-Newton thrust class. These combustors are anticipated to be manufactured using Micro Electrical Mechanical Systems (MEMS) technology and are expected to have diameters approaching the quenching diameter of the propellants. Combustors of this size are expected to benefit significantly from surface catalysis processes. Miniature flame tube apparatus is chosen for this study because microtubes can be easily fabricated from known catalyst materials and their simplicity in geometry can be used in fundamental simulations for validation purposes. Experimentally, we investigated the role of catalytically active surfaces within 0.4 and 0.8 mm internal diameter microtubes, with special emphases on ignition processes in fuel rich gaseous hydrogen and gaseous oxygen. Flame thickness and reaction zone thickness calculations predict that the diameters of our test apparatus are below the quenching diameter of the propellants in sub-atmospheric tests. Temperature and pressure rise in resistively heated platinum and palladium microtubes was used as an indication of exothermic reactions. Specific data on mass flow versus preheat temperature required to achieve ignition are presented. With a plug flow model, the experimental conditions were simulated with detailed gas-phase chemistry, thermodynamic properties, and surface kinetics. Computational results generally support the experimental findings, but suggest an experimental mapping of the exit temperature and composition is needed.

  4. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency i(RF) band to heat soil in-situ, thereby potentially enhancing the performances of standard soil vapor extraction (SVE) technologies. ontaminants are removed from in situ soils and transf...

  5. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...

  6. Fuel Reforming Technologies (BRIEFING SLIDES)

    DTIC Science & Technology

    2009-09-01

    Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment  To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy

  7. The reactivity of 1,3-butadiene with butadiene-derived popcorn polymer.

    PubMed

    Levin, M E; Hill, A D; Zimmerman, L W; Paxson, T E

    2004-11-11

    Adiabatic calorimetry performed on butadiene-derived popcorn polymer samples from industrial facilities has revealed exothermic behavior accompanied by non-condensible gas production, indicative of possible decomposition, at elevated temperatures. In the presence of low concentrations of 1,3-butadiene, reactivity is observed at temperatures of 60-70 degrees C; that is, 20-30 degrees C below those usually seen for butadiene alone. Once the butadiene is consumed, the reaction behavior reverts to that of the popcorn polymer alone. At higher butadiene concentrations, the low temperature reaction persists, eventually merging with typical butadiene behavior. The butadiene reactivity with popcorn polymer is attributed to polymerization reaction at free radical sites in the popcorn polymer. Different popcorn polymer samples exhibit distinct extents of reactivity, presumably depending on the nature and concentration of the free radical sites and the structure of the material. Uninhibited butadiene exposed to 100 psia air, which may act to generate peroxide species, shows a small, additional exotherm around 50-80 degrees C. Contact of butadiene with lauroyl peroxide, providing free radicals upon decomposition, generates an exotherm at temperatures as low as 60 degrees C.

  8. Exothermic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni

    2010-09-15

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass {approx}few GeV and splittings {approx}5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state.more » In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.« less

  9. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Wang, Jia

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated tomore » quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.« less

  10. Heat up and potential failure of BWR upper internals during a severe accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R

    2015-01-01

    In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, andmore » relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less

  11. Direct Metal Deposition of Functional Graded Structures in Ti- Al System

    NASA Astrophysics Data System (ADS)

    Shishkovsky, I.; Missemer, F.; Smurov, I.

    A direct laser metal deposition (DLMD) technology with co-axial powder injection is used to fabricate a complex functional graded structure (FGS) fabrication. The aim of the study is to demonstrate the possibility to produce intermetallic phases in the Ti-Al powder systems in the course of a single-step DMD process. Besides, relationships between the main laser cladding parameters and the intermetallic phase structures of the built-up objects have been studied. In our research we applied the optical microscopy, X-ray analysis, microhardness measurement and SEM with EDX analysis of the laser-fabricated intermetallics. The discussion of the mechanisms of Ti x Al y (x,y = 1.3) intermetallic transformations in exothermal reactions is also offered in the report.

  12. Boundary conditions for developing a safety concept for an exothermal reaction.

    PubMed

    Hauptmanns, Ulrich

    2007-09-05

    Kinetic calculations for an example exothermal chemical process, the production of TCB, are carried out. They address both parameter uncertainties and random failures of the cooling system. In this way, they enable one to establish comprehensive boundary conditions for a safety system in terms of unavailability, the quantities of the undesired by-product (TCDD) produced and the times available before a required intervention, if a pre-determined quantity of TCDD is tolerated. It is shown that accounting for stochastic effects and uncertainties derived from insufficient knowledge provides a broader and more realistic knowledge base for devising a viable safety concept.

  13. Fiber optic sensing technology for detecting gas hydrate formation and decomposition.

    PubMed

    Rawn, C J; Leeman, J R; Ulrich, S M; Alford, J E; Phelps, T J; Madden, M E

    2011-02-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH(4)-H(2)O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  14. Fiber optic sensing technology for detecting gas hydrate formation and decomposition

    NASA Astrophysics Data System (ADS)

    Rawn, C. J.; Leeman, J. R.; Ulrich, S. M.; Alford, J. E.; Phelps, T. J.; Madden, M. E.

    2011-02-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  15. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the ultraslow spreading ridges is also presumable.

  16. X-ray sensing materials stability: influence of ambient storage temperature on essential thermal properties of undoped vitreous selenium

    NASA Astrophysics Data System (ADS)

    Tonchev, D.; Mani, H.; Belev, G.; Kostova, I.; Kasap, S.

    2014-12-01

    Amorphous selenium (a-Se) is currently used in x-ray image detectors as an x-ray photoconductor. Normally a-Se films used in device applications are fabricated by the evaporation of vitreous bulk material loaded into boats in a typical vacuum deposition system. The resistance against crystallization is an important factor in both film and bulk forms of a-Se. Previous work has indicted that the resistance to crystallization is surprisingly more pronounced around 35 °C [1]. In this work we have therefore examined the essential thermal properties of vitreous selenium (99.999%) samples that have been stored at different temperatures. The thermal characterization experiments involved a series of DSC (Differential Scanning Calorimetry) measurements in which have monitored the glass transition and melting endotherms, and the crystallization exotherm in heating-cooling-heating scans. In DSC experiments, a sample would be heated to a temperature above the melting temperature, equilibrated, then cooled at a fixed rate down to 20 °C, then equilibrated and finally scanned again under a heating schedule. The samples were isothermally stored at temperatures corresponding to 18, 35 and 55 °C. The thermal analysis results show that there are distinct differences in the thermal properties. We have examined the stability in terms of the difference in the crystallization onset temperature (Tc) and the onset of glass transition temperature (Tg). We also examined the Hruby coefficient (Kgl) of these samples, that is Kgl = (Tc - Tg)/(Tm - Tc) where Tc is the crystallization onset temperature and Tm is the melting onset temperature. We have found Kgl to depend on the storage temperature. Surprisingly, we observed that the Hruby coefficient is actually larger at 35 °C compared to the values at 18 and 55 °C.

  17. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of the combined system comprising a SCW nuclear power generation plant and a chemical heat pump, which provides high-temperature heat to a thermochemical water splitting cycle for hydrogen production. It is concluded that the proposed chemical heat pump permits the utilization efficiency of nuclear energy to be improved by at least 2% without jeopardizing nuclear reactor safety. Based on this analysis, further research appears to be merited on the proposed advanced design of a nuclear power generation plant combined with a chemical heat pump, and implementation in appropriate applications seems worthwhile.

  18. Measurement and Simulation of Thermal Conductivity of Hafnium-Aluminum Thermal Neutron Absorber Material

    DOE PAGES

    Guillen, Donna Post; Harris, William H.

    2016-05-11

    A metal matrix composite (MMC) material comprised of hafnium aluminide (Al3Hf) intermetallic particles in an aluminum matrix has been identified as a promising material for fast-flux irradiation testing applications. This material can filter thermal neutrons while simultaneously providing high rates of conductive cooling for experiment capsules. Our purpose is to investigate effects of Hf-Al material composition and neutron irradiation on thermophysical properties, which were measured before and after irradiation. When performing differential scanning calorimetry (DSC) on the irradiated specimens, a large exotherm corresponding to material annealment was observed. Thus, a test procedure was developed to perform DSC and laser flashmore » analysis (LFA) to obtain the specific heat and thermal diffusivity of pre- and post-annealment specimens. This paper presents the thermal properties for three states of the MMC material: (1) unirradiated, (2) as-irradiated, and (3) irradiated and annealed. Microstructure-property relationships were obtained for the thermal conductivity. These relationships are useful for designing components from this material to operate in irradiation environments. Furthermore, the ability of this material to effectively conduct heat as a function of temperature, volume fraction Al 3Hf, radiation damage and annealing is assessed using the MOOSE suite of computational tools.« less

  19. State-specific catalytic recombination boundary condition for DSMC methods in aerospace applications

    NASA Astrophysics Data System (ADS)

    Bariselli, F.; Torres, E.; Magin, T. E.

    2016-11-01

    Accurate characterization of the hypersonic flow around a vehicle during its atmospheric entry is important for a precise quantification of heat flux margins. In some cases, exothermic reactions promoted by the catalytic properties of the surface material can significantly contribute to the overall heat flux. In this work, the effect of catalytic recombination of atomic nitrogen is examined within the framework of a state-specific DSMC implementation. State-to-state reaction cross sections are derived from a detailed quantum-chemical database for the N2(v, J) + N system. A coarse-grain model is used to reduce the number of internal states and state-specific reactions to a manageable level. The catalytic boundary condition is based on an phenomenological approach and the state-specific surface recombination probabilities can be imposed by the user. This can represent an important aspect in modelling catalysis, since experiments and molecular dynamics suggest that only part of the chemical energy is absorbed by the wall, with the formed molecules leaving the surface in an excited state. The implementation is verified in a simplified geometrical configuration by comparing the numerical results with an analytical solution, developed for a 1D diffusion problem in a binary mixture. Then, the effect of catalysis in a hypersonic flow along the stagnation line of a blunt body is studied.

  20. Energy conditions of high quality laser-oxygen cutting of mild steel

    NASA Astrophysics Data System (ADS)

    Shulyatyev, V. B.; Orishich, A. M.; Malikov, A. G.

    2011-02-01

    In our previous work we found experimentally the scaling laws for the oxygen-assisted laser cutting of low-carbon steel of 5 - 25 mm. No dross and minimal roughness of the cut surface were chosen as criteria of quality. Formulas were obtained to determine the optimum values of the laser power and cutting speed for the given sheet thickness. In the present paper, the energy balance of the oxygen-assisted laser cutting is studied experimentally at these optimum parameters. The absorbed laser energy and heat conduction losses and cut width were measured experimentally, and then the energy of exothermic reaction of oxidation was found from the balance equation. To define the integral coefficient of absorption, the laser power was measured on the cutting channel exit during the cutting. The heat conduction losses were measured by the calorimetric method. It has been established that the absorbed laser energy, oxidation energy, thermal losses and melting enthalpy related to a sheet thickness unit, do not depend on the sheet thickness at the cutting with the minimal roughness. The results enable to determine the fraction of the oxidized iron in the melt and thermal efficiency at the cutting with the minimal roughness. The share of the oxidation reaction energy is 50 - 60% in the total contributed energy.

  1. Modeling of the steam hydrolysis in a two-step process for hydrogen production by solar concentrated energy

    NASA Astrophysics Data System (ADS)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro

    2017-06-01

    In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  2. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh K.; McCabe, Kevin

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifiermore » (TRIG TM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H 2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.« less

  3. A study of thermal transitions in a new semicrystalline thermoplastic polyimide

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard; St.clair, Terry L.; Gerber, Margaret K.; Gautreaux, Carol R.

    1988-01-01

    A polyimide derive from 4,4'-isophthaloyl diphthalic anhydride (IDPA) and 1,3-bis (4-aminophenoxy 4'-benzoyl) benzene (1,3-BABB) having semicrystalline behavior was prepared and characterized by differential scanning calorimetry (DSC) and wide angle X-ray scattering (WAXS). Thus a poly(amic acid) film cured in air for one hour each at 100 and 200 C displayed an endotherm at 286 C, followed by a crystallization exotherm at 317 C, and a second melting transition at 350 C. The 286 C melting point appeared to result from earlier solvent-induced crystallization. Films cast from DMAc, air dried, and soaked in methylene chloride could not be induced into semicrystallinity. The fully cured polyimide has a Tg of 216 C. Films heated to temperatures as high as 100 C for one hour in air were transparent and light yellow in color. Those films heated to or above 125 C were translucent. Polarized light microscopy revealed the presence of spherulites 608 micrometers in diameter in a sample cured to 275 C in air. Two film samples, one cured to 275 and the other to 325 C, were evaluated for tensile and ultimate strength, modulus, and percent elongation at 25 and 200 C. These values remained essentially constant at each test temperature.

  4. Divalent cations and molecular crowding buffers stabilize G-triplex at physiologically relevant temperatures

    PubMed Central

    Jiang, Hong-Xin; Cui, Yunxi; Zhao, Ting; Fu, Hai-Wei; Koirala, Deepak; Punnoose, Jibin Abraham; Kong, De-Ming; Mao, Hanbin

    2015-01-01

    G-triplexes are non-canonical DNA structures formed by G-rich sequences with three G-tracts. Putative G-triplex-forming sequences are expected to be more prevalent than putative G-quadruplex-forming sequences. However, the research on G-triplexes is rare. In this work, the effects of molecular crowding and several physiologically important metal ions on the formation and stability of G-triplexes were examined using a combination of circular dichroism, thermodynamics, optical tweezers and calorimetry techniques. We determined that molecular crowding conditions and cations, such as Na+, K+, Mg2+ and Ca2+, promote the formation of G-triplexes and stabilize these structures. Of these four metal cations, Ca2+ has the strongest stabilizing effect, followed by K+, Mg2+, and Na+ in a decreasing order. The binding of K+ to G-triplexes is accompanied by exothermic heats, and the binding of Ca2+ with G-triplexes is characterized by endothermic heats. G-triplexes formed from two G-triad layers are not stable at physiological temperatures; however, G-triplexes formed from three G-triads exhibit melting temperatures higher than 37°C, especially under the molecular crowding conditions and in the presence of K+ or Ca2+. These observations imply that stable G-triplexes may be formed under physiological conditions. PMID:25787838

  5. [A thermodynamic study on bovine spermatozoa by microcalorimetry after Percoll density-gradient centrifugation - experimental probe of its utility in andrology].

    PubMed

    Fischer, C; Scherfer-Brähler, V; Müller-Schlösser, F; Schröder-Printzen, I; Weidner, W

    2007-05-01

    Microcalorimetric measurements can be used for recording exothermic or endothermic summation effects of a great variety of biological processes. The aim of the present study was to examine the usefullness of the microcalorimetry method to characterise the biological activity of spermatozoa. The heat flow of bovine fresh sperm as well as cryosperm samples were measured after Percoll density-gradient centrifugation in a 4-channel microcalorimeter. Various calibration times, volumes of samples and sperm concentrations were tested and analysed. Sperm concentration was recorded by a computer-assisted, computer-aided software system method (CASA). Using a calibration time of 15 minutes, the heat signal of the fresh and cryosperm samples showed a characteristic peak after 39.5 min and 38.1 min (mean), respectively, with a significant correlation to sample volume and sperm concentration (p < 0.05). For obtaining the best results, a sample volume of 1 ml and a sperm concentration of more than 50 x 10 (6)/mL was used. With microcalorimetric measurements the biological activity of spermatozoa could be recorded for reproducible results, thus opening the way to an automatised ejaculate analysis in the future. More investigations are necessary to correlate microcalorimetric parameters with semen function.

  6. Solid waste from Swine wastewater as a fuel source for heat production.

    PubMed

    Park, Myung-Ho; Kumar, Sanjay; Ra, ChangSix

    2012-11-01

    This study was to evaluate the feasibility of recycling the solids separated from swine wastewater treatment process as a fuel source for heat production and to provide a data set on the gas emissions and combustion properties. Also, in this study, the heavy metals in ash content were analyzed for its possible use as a fertilizer. Proximate analysis of the solid recovered from the swine wastewater after flocculation with organic polymer showed high calorific (5,330.50 kcal/kg) and low moisture (15.38%) content, indicating that the solid separated from swine wastewater can be used as an alternative fuel source. CO and NOx emissions were found to increase with increasing temperature. Combustion efficiency of the solids was found to be stable (95 to 98%) with varied temperatures. Thermogravimetry (TG) and differential thermal analysis (DTA) showed five thermal effects (four exothermic and one endothermic), and these effects were distinguished in three stages, water evaporation, heterogeneous combustion of hydrocarbons and decomposition reaction. Based on the calorific value and combustion stability results, solid separated from swine manure can be used as an alternative source of fuel, however further research is still warranted regarding regulation of CO and NOx emissions. Furthermore, the heavy metal content in ash was below the legal limits required for its usage as fertilizer.

  7. Hydrothermal treatment of hazardous energetic materials waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brill, T.B.; Schoppelrei, J.W.; Maiella, P.G.

    1995-12-31

    Destruction of energetic materials by hydrothermal methods presents a potential for strongly exothermic oxidation-reduction reactions, which, if localized at a site in the reactor, create {open_quotes}hot spots{close_quotes}. To investigate highly exothermic hydrothermal reactions, real-time spectroscopic measurements in the stream by infrared and Raman spectroscopy offer opportunities. Flow reactor-spectroscopy cells were developed for such studies, focusing on approximately oxygen-balanced nitrate salts for which highly exothermic reactions can occur. In addition, the kinetics of formation of later stage products were studied because these products are likely to be released to the environment and to be regulated. An experiment was designed to simulatemore » the occurence of a phase separation in a reactor followed by rapid exothermic reaction. By varying the pressure, water content, and hydrogen content in the reaction volume of the cell, the freeze out temperatures required to set the carbon monoxide/carbon dioxide ratio were determined to be 1300 to 1470 K. Such high temperatures suggest that localized hot spots can exist which greatly exceed the overall set temperature of the reactor. This scenario can occur if a phase separation occurs to isolate ethylenediammonium dinitrate in quantities as small as tenths of milligrams. Studies of the oxidation-reduction reactions of nitrate ion with the counter ion show that the oxidizing power of the nitrate ion is realized provided a readily oxidizable cation such as hydroxylammonium is present. When the cation has a low reactivity, such as quanidinium, a much higher reaction temperature is required before the nitrate ion reacts. At this temperature, the cation may have already begun to decompose by a hydrothermal route.« less

  8. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The annual supplement on heat pipe technology for 1971 is presented. The document contains 101 references with abstracts and 47 patents. The subjects discussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design, development, and fabrication of heat pipes, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  9. IITRI RADIO FREQUENCY HEATING TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    IITRI's patented in situ RFH technology enhances the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and potentially higher soil permeability. RFH heats soil us...

  10. Modeling of High Capacity Passive Cooling System

    DTIC Science & Technology

    2009-03-01

    Pulsating Heat Pipes : Closed Loop Pulsating Heat Pipes , which is also known as Meandering Capillary Tube Heat Pipe or Closed Loop Oscillating Heat ... Pipe , has emerged in the recent years as a new electronics cooling technology. The Pulsating Heat Pipe is an innovating technology that has gained...horizontal orientation, the operating temperatures are lower. Pulsating heat pipes are capable of higher heat

  11. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...

  12. U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George W. Griffith

    2011-10-01

    A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows formore » ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.« less

  13. Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders.

    PubMed

    Secor, Ethan B; Gao, Theodore Z; Dos Santos, Manuel H; Wallace, Shay G; Putz, Karl W; Hersam, Mark C

    2017-09-06

    High-throughput and low-temperature processing of high-performance nanomaterial inks is an important technical challenge for large-area, flexible printed electronics. In this report, we demonstrate nitrocellulose as an exothermic binder for photonic annealing of conductive graphene inks, leveraging the rapid decomposition kinetics and built-in energy of nitrocellulose to enable versatile process integration. This strategy results in superlative electrical properties that are comparable to extended thermal annealing at 350 °C, using a pulsed light process that is compatible with thermally sensitive substrates. The resulting porous microstructure and broad liquid-phase patterning compatibility are exploited for printed graphene microsupercapacitors on paper-based substrates.

  14. Analysis of potential hazards associated with 241Am loaded resins from nitrate media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Louis D.; Rubin, Jim; Fife, Keith William

    2016-02-19

    LANL has been contacted to provide possible assistance in safe disposition of a number of 241Am-bearing materials associated with local industrial operations. Among the materials are ion exchange resins which have been in contact with 241Am and nitric acid, and which might have potential for exothermic reaction. The purpose of this paper is to analyze and define the resin forms and quantities to the extent possible from available data to allow better bounding of the potential reactivity hazard of the resin materials. An additional purpose is to recommend handling procedures to minimize the probability of an uncontrolled exothermic reaction.

  15. New findings on the influence of carbon surface curvature on energetics of benzene adsorption from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wiśniewski, Marek; Werengowska-Ciećwierz, Karolina; Terzyk, Artur P.

    2015-01-01

    Immersional measurements of benzene adsorption form dilute aqueous solutions are reported for the first time together with the measurements of the enthalpy of benzene adsorption. Benzene adsorption from aqueous solution is an exothermic process. Our results show that with the decrease in carbon nanotube diameter the process becomes more exothermic, and the enthalpy of benzene adsorption correlates with the BET surface area and the electrostatic field strength of the tubes. Possible explanations of the results are proposed, and the most probable is that the change in carbon hybridisation with curvature leads to creation of stronger energetically adsorption sites than observed for graphite.

  16. Characterization of Hydrogen Interactions with δ-Pu using Electronic Structure Theory

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher D.; Hernandez, Sarah C.

    2012-02-01

    The generalized gradient approximation to density functional theory was used to study surface, bulk, defect, and reaction states of hydrogen in δ-Pu. The quasi-disordered anti-ferromagnetic arrangement gave a volume of 24.1 å^3 and a bulk modulus of 48.1 GPa for δ-Pu, in reasonable agreement with the experimental values of 24.9 å^3 and 30-35 GPa. This arrangement was thus subsequently used for all calculations. We have determined that hydrogen interactions with δ-Pu are exothermic in character at all levels ranging from dissociative chemisorption to interstitial absorption, the formation of hydrogen-vacancy complexes, and generation of a hydride phase. The exothermic character of these interactions appears to be the reason for the rapid hydriding reaction, which has been determined experimentally to be essentially a barrierless process. The anionic character is observed to be retained. Our studies also indicate that vacancies do not appear to be strong traps for hydrogen, since the interstitial absorption sites are exothermic in nature. We will propose a scheme by which hydrogen interacts with Pu. Results will be compared with previous studies in the literature where available.

  17. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  18. Warming preterm infants in the delivery room: polyethylene bags, exothermic mattresses or both?

    PubMed

    McCarthy, Lisa K; O'Donnell, Colm P F

    2011-12-01

    To compare the admission temperature of infants treated with polyethylene bags alone to infants treated with exothermic mattresses in addition to bags in the delivery room. We prospectively studied infants born at <31 weeks' gestation who were placed in bags at birth. Some infants were also placed on mattresses. Admission axillary temperatures were measured in all infants on admission to the neonatal intensive care. We compared the temperatures of infants treated with bags alone to those treated with mattresses and bags. We studied 43 infants: 15 were treated with bags while 28 were treated with a bag and mattress. Mean admission temperature was similar between the groups. Hypothermia and hyperthermia occurred more frequently in infants treated with a bag and mattress, and more infants treated with a bag had admission temperatures 36.5-37.5°C. The use of exothermic mattresses in addition to polyethylene bags, particularly in younger, smaller newborns, may result in more hypothermia and hyperthermia on admission. A randomised controlled trial is necessary to determine which strategy results in more infants having admission temperatures in the normal range. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  19. Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement

    PubMed Central

    Samara, E.; Decosterd, L. A.; Richards, R. G.; Gautier, E.; Wahl, P.

    2017-01-01

    Objectives Thermal stability is a key property in determining the suitability of an antibiotic agent for local application in the treatment of orthopaedic infections. Despite the fact that long-term therapy is a stated goal of novel local delivery carriers, data describing thermal stability over a long period are scarce, and studies that avoid interference from specific carrier materials are absent from the orthopaedic literature. Methods In this study, a total of 38 frequently used antibiotic agents were maintained at 37°C in saline solution, and degradation and antibacterial activity assessed over six weeks. The impact of an initial supplementary heat exposure mimicking exothermically curing bone cement was also tested as this material is commonly used as a local delivery vehicle. Antibiotic degradation was assessed by liquid chromatography coupled to mass spectrometry, or by immunoassays, as appropriate. Antibacterial activity over time was determined by the Kirby-Bauer disk diffusion assay. Results The heat exposure mimicking curing bone cement had minimal effect on stability for most antibiotics, except for gentamicin which experienced approximately 25% degradation as measured by immunoassay. Beta-lactam antibiotics were found to degrade quite rapidly at 37°C regardless of whether there was an initial heat exposure. Excellent long-term stability was observed for aminoglycosides, glycopeptides, tetracyclines and quinolones under both conditions. Conclusions This study provides a valuable dataset for orthopaedic surgeons considering local application of antibiotics, and for material scientists looking to develop next-generation controlled or extended-release antibiotic carriers. Cite this article: E. Samara, T. F. Moriarty, L. A. Decosterd, R. G. Richards, E. Gautier, P. Wahl. Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement. Bone Joint J 2017;6:296–306. DOI: 10.1302/2046-3758.65.BJR-2017-0276.R1. PMID:28515059

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, MARIAH ENERGY CORPORATION HEAT PLUS POWER SYSTEM

    EPA Science Inventory

    The Greenhouse Gas Technology Center (GHG Center) has recently evaluated the performance of the Heat PlusPower(TM) System (Mariah CDP System), which integrates microturbine technology with a heat recovery system. Electric power is generated with a Capstone MicroTurbine(TM) Model ...

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ECR TECHNOLOGIES, INC., EARTHLINKED GROUND-SOURCE HEAT PUMP WATER HEATING SYSTEM

    EPA Science Inventory

    EPA has created the Environmental Technology Verification program to provide high quality, peer reviewed data on technology performance. This data is expected to accelerate the acceptance and use of improved environmental protection technologies. The Greenhouse Gas Technology C...

  2. Model Development and Experimental Validation of the Fusible Heat Sink Design for Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.; Le,Hung

    2012-01-01

    The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the model development and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.

  3. Model Development and Experimental Validation of the Fusible Heat Sink Design for Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Leimkuehler, Thomas; Sheth, Rubik; Le, Hung

    2013-01-01

    The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the modeling and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.

  4. Use of Helium Production to Screen Glow Discharges for Low Energy Nuclear Reactions (LENR)

    NASA Astrophysics Data System (ADS)

    Passell, Thomas O.

    2011-03-01

    My working hypothesis of the conditions required to observe low energy nuclear reactions (LENR) follows: 1) High fluxes of deuterium atoms through interfaces of grains of metals that readily accommodate movement of hydrogen atoms interstitially is the driving variable that produces the widely observed episodes of excess heat above the total of all input energy. 2) This deuterium atom flux has been most often achieved at high electrochemical current densities on highly deuterium-loaded palladium cathodes but is clearly possible in other experimental arrangements in which the metal is interfacing gaseous deuterium, as in an electrical glow discharge. 3) Since the excess heat episodes must be producing the product(s) of some nuclear fusion reaction(s) screening of options may be easier with measurement of those ``ashes'' than the observance of the excess heat. 4) All but a few of the exothermic fusion reactions known among the first 5 elements produce He-4. Hence helium-4 appearance in an experiment may be the most efficient indicator of some fusion reaction without commitment on which reaction is occurring. This set of hypotheses led me to produce a series of sealed tubes of wire electrodes of metals known to absorb hydrogen and operate them for 100 days at the 1 watt power level using deuterium gas pressures of ~ 100 torr powered by 40 Khz AC power supplies. Observation of helium will be by measurement of helium optical emission lines through the glass envelope surrounding the discharge. The results of the first 18 months of this effort will be described.

  5. Reactive multilayers fabricated by vapor deposition. A critical review

    DOE PAGES

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, withmore » most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.« less

  6. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  7. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  8. Ion mobility studies of PdC{sub n}{sup +} clusters: Where are the fullerenes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelimov, K.B.; Jarrold, M.F.

    1995-12-14

    Gas-phase ion mobility measurements have been used to study the structures and isomerization of PdC{sub n}{sup +} (n = 10-60) clusters. Non-fullerene isomers of PdC{sub n}{sup +} clusters are similar to those of C{sub n}{sup +} and MC{sub n}{sup +} (M = La and Nb) clusters, and include metal-containing mono- and bicyclic rings and graphite sheets. Neither endohedral nor nonendohedral PdC{sub n} {sup +} fullerene isomers are detected. When collisionally heated, PdC{sub n}{sup +} clusters efficiently convert into fullerenes, but the exothermicity of this process results in the loss of the Pd atom and the formation of a pure carbonmore » cluster cation. PdC{sub n}{sup +} bicyclic rings with an odd number of carbon atoms efficiently isomerize into monocyclic rings, while no evidence is found for this isomerization process for bicyclic rings with an even number of carbon atoms. 18 refs., 4 figs.« less

  9. Heat Effect of the Protonation of Glycine and the Enthalpies of Resolvation of Participating Chemical Species in Water-Dimethylsulfoxide Solvent Mixtures

    NASA Astrophysics Data System (ADS)

    Isaeva, V. A.; Sharnin, V. A.

    2018-02-01

    Enthalpies of the protonation of glycine in water‒dimethylsulfoxide (DMSO) mixed solvents are determined calorimetrically in the range of DMSO mole fractions of 0.0 to 0.9, at T = 298.15 K and an ionic strength μ = 0.3 (NaClO4). It is established that the protonation of glycine becomes more exothermic with an increasing mole fraction of DMSO, and the enthalpies of resolvation of glycine and glycinium ions in water‒DMSO solvent mixtures are calculated. It is shown that the small changes in the enthalpy of protonation observed at low mole fractions of DMSO are caused by the contributions from the solvation of proton and protonated glycine cancelling each other out. The enthalpy term of the Gibbs energy of the reaction leading to the formation of glycinium ion is estimated along with the enthalpy of resolvation of the reacting species in the water‒DMSO mixed solvent.

  10. Experimental study on thermal hazard of tributyl phosphate-nitric acid mixtures using micro calorimeter technique.

    PubMed

    Sun, Qi; Jiang, Lin; Gong, Liang; Sun, Jin-Hua

    2016-08-15

    During PUREX spent nuclear fuel reprocessing, mixture of tributyl phosphate (TBP) and hydrocarbon solvent are employed as organic solvent to extract uranium in consideration of radiation contaminated safety and resource recycling, meanwhile nitric acid is utilized to dissolve the spent fuel into small pieces. However, once TBP contacts with nitric acid or nitrates above 130°C, a heavy "red oil" layer would occur accompanied by thermal runaway reactions, even caused several nuclear safety accident. Considering nitric acid volatility and weak exothermic detection, C80micro calorimeter technique was used in this study to investigate thermal decomposition of TBP mixed with nitric acid. Results show that the concentration of nitric acid greatly influences thermal hazard of the system by direct reactions. Even with a low heating rate, if the concentration of nitric acid increases due to evaporation of water or improper operations, thermal runaway in the closed system could start at a low temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Experimental Investigation of Shock Initiation in Mixtures of Manganese and Sulfur

    NASA Astrophysics Data System (ADS)

    Jetté, F. X.; Goroshin, S.; Higgins, A. J.

    2009-12-01

    Equimolar mixtures of manganese powder and sulfur at different starting densities were tested in two different types of steel recovery capsules in order to study the shock initiation phenomenon in Self-Propagating High-Temperature Synthesis (SHS) mixtures. Two different sizes of Mn particles were used for these experiments, <10 μm and -325 mesh (<44 μm). This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery capsules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the capsule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. It was also found that shock interactions with the side walls of the recovery capsule can play a significant role in the initiation.

  12. Exploring the Carbon Simmering Phase: Reaction Rates, Mixing, and the Convective Urca Process

    NASA Astrophysics Data System (ADS)

    Schwab, Josiah; Martínez-Rodríguez, Héctor; Piro, Anthony L.; Badenes, Carles

    2017-12-01

    The neutron excess at the time of explosion provides a powerful discriminant among models of Type Ia supernovae. Recent calculations of the carbon simmering phase in single degenerate progenitors have disagreed about the final neutron excess. We find that the treatment of mixing in convection zones likely contributes to the difference. We demonstrate that in Modules for Experiments in Stellar Astrophysics models, heating from exothermic weak reactions plays a significant role in raising the temperature of the white dwarf. This emphasizes the important role that the convective Urca process plays during simmering. We briefly summarize the shortcomings of current models during this phase. Ultimately, we do not pinpoint the difference between the results reported in the literature, but show that the results are consistent with different net energetics of the convective Urca process. This problem serves as an important motivation for the development of models of the convective Urca process suitable for incorporation into stellar evolution codes.

  13. Thermal characteristic of limonite ore upon calcination and reduction

    NASA Astrophysics Data System (ADS)

    Febriana, Eni; Manaf, Azwar; Prasetyo, A. B.; Mayangsari, W.

    2018-05-01

    Thermal characteristics of the limonite laterite ore types have been studied using TG / DTA. There are four endothermic peaks at 250, 646, 900, and 1023 °C with a total mass loss of 10.07wt%. These four peaks correspond to the XRD results on samples calcined at 600-1000 °C. Analysis of TG / DTA to the mixture of limonite and graphite showed two endothermic reaction peaks at 641 and 900 °C and an exothermic peak at 1180 °C. Reduction of the limonite-graphite mixture was done by heating at 800-1100 °C for 1 hour, and the reduced samples were analyzed using XRD. The results indicate that the reduction process proceed completely at higher temperatures, indicated by the increasing intensity of kamacite and Fe metal phase, and the decrease of peak intensity of carbon due to reaction with metal oxides. At 1100 °C, intensity of Fe-metal decreased due to sintering of Fe which may occur because the temperature was too high.

  14. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  15. Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels

    NASA Astrophysics Data System (ADS)

    Zhu, Huayang; Jackson, Gregory

    2000-11-01

    Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.

  16. Optimization of the Working Cycle for an Underwater Propulsion System Based on Aluminium-Water Combustion

    NASA Astrophysics Data System (ADS)

    Chen, Xianhe; Xia, Zhixun; Huang, Liya; Hu, Jianxin

    2017-05-01

    The working cycle of a novel underwater propulsion system based on aluminium combustion with water is researched in order to evaluate the best performance. The system exploits the exothermic reaction between aluminium and water which will produce high temperature, pressure steam and hydrogen mixture that can be used to drive turbine to generate power. Several new system configurations corresponding to different working cycles are investigated, and their performance parameters in terms of net power, energy density and global efficiency are discussed. The results of the system simulation show that using the recirculation steam rather than hydrogen as the carrier gas, the system net power, energy density and efficiency of the system are greatly increased compared, however the system performance is close either using adiabatic compression or isothermal compression. And if an evaporator component is added into system in order to take full use of the solid product heat, the system performance will be improved.

  17. Frontal Polymerization of Dicyclopentadiene: A Numerical Study.

    PubMed

    Goli, Elyas; Robertson, Ian D; Geubelle, Philippe H; Moore, Jeffrey S

    2018-04-26

    As frontal polymerization is being considered as a faster and more energy efficient manufacturing technique for polymer-matrix fiber-reinforced composites, we perform a finite-element-based numerical study of the initiation and propagation of a polymerization front in dicyclopentadiene (DCPD). The transient thermochemical simulations are complemented by an analytical study of the steady-state propagation of the polymerization front, allowing to draw a direct link between the cure kinetics model and the key characteristics of the front, i.e., front velocity and characteristic length scales. The second part of this study focuses on the prediction of the temperature spike associated with the merger of two polymerization fronts. The thermal peak, which might be detrimental to the properties of the polymerized material, is due to the inability of the heat associated with the highly exothermic reaction to be dissipated when the two fronts merge. The analysis investigates how the amplitude of the thermal spike is affected by the degree of cure at the time of the front merger.

  18. Surface-Accelerated Decomposition of δ-HMX.

    PubMed

    Sharia, Onise; Tsyshevsky, Roman; Kuklja, Maija M

    2013-03-07

    Despite extensive efforts to study the explosive decomposition of HMX, a cyclic nitramine widely used as a solid fuel, explosive, and propellant, an understanding of the physicochemical processes, governing the sensitivity of condensed HMX to detonation initiation is not yet achieved. Experimental and theoretical explorations of the initiation of chemistry are equally challenging because of many complex parallel processes, including the β-δ phase transition and the decomposition from both phases. Among four known polymorphs, HMX is produced in the most stable β-phase, which transforms into the most reactive δ-phase under heat or pressure. In this study, the homolytic NO2 loss and HONO elimination precursor reactions of the gas-phase, ideal crystal, and the (100) surface of δ-HMX are explored by first principles modeling. Our calculations revealed that the high sensitivity of δ-HMX is attributed to interactions of surfaces and molecular dipole moments. While both decomposition reactions coexist, the exothermic HONO-isomer formation catalyzes the N-NO2 homolysis, leading to fast violent explosions.

  19. Failures Analysis of E-Glass Fibre reinforced pipes in Oil and Gas Industry: A Review

    NASA Astrophysics Data System (ADS)

    Bobba, Sujith; Leman, Z.; Zainuddin, E. S.; Sapuan, S. M.

    2017-07-01

    A comprehensive review is conducted on the failures in the field of manufacturing and installation of E-glass fiber reinforced pipes (GFRP). Some of the failures which are mainly encountered after the installation of E-Glass fiber reinforced pipes are the for nation of air bubbles in between the polyester resin layer and the surface film, dispersion of moisture in between the tubing outer and inner layers after installation, heat released in between the layers of E-glass fiber reinforced pipes due to exothermic reaction which in turn results in the formation of cracks on the surface of the pipe. The recent findings and challenges performed in conducting research regarding the deterioration caused in glass fiber reinforced pipes are highlighted and each type of failure that was identified was illustrated with an appropriate high resolution photograph. Performing creep resistance and fatigue analysis are new aspects which are still requited to be analyzed which ave not been stated in the literature which are nominated.

  20. Electricity-free amplification and detection for molecular point-of-care diagnosis of HIV-1.

    PubMed

    Singleton, Jered; Osborn, Jennifer L; Lillis, Lorraine; Hawkins, Kenneth; Guelig, Dylan; Price, Will; Johns, Rachel; Ebels, Kelly; Boyle, David; Weigl, Bernhard; LaBarre, Paul

    2014-01-01

    In resource-limited settings, the lack of decentralized molecular diagnostic testing and sparse access to centralized medical facilities can present a critical barrier to timely diagnosis, treatment, and subsequent control and elimination of infectious diseases. Isothermal nucleic acid amplification methods, including reverse transcription loop-mediated isothermal amplification (RT-LAMP), are well-suited for decentralized point-of-care molecular testing in minimal infrastructure laboratories since they significantly reduce the complexity of equipment and power requirements. Despite reduced complexity, however, there is still a need for a constant heat source to enable isothermal nucleic acid amplification. This requirement poses significant challenges for laboratories in developing countries where electricity is often unreliable or unavailable. To address this need, we previously developed a low-cost, electricity-free heater using an exothermic reaction thermally coupled with a phase change material. This heater achieved acceptable performance, but exhibited considerable variability. Furthermore, as an enabling technology, the heater was an incomplete diagnostic solution. Here we describe a more precise, affordable, and robust heater design with thermal standard deviation <0.5°C at operating temperature, a cost of approximately US$.06 per test for heater reaction materials, and an ambient temperature operating range from 16°C to 30°C. We also pair the heater with nucleic acid lateral flow (NALF)-detection for a visual readout. To further illustrate the utility of the electricity-free heater and NALF-detection platform, we demonstrate sensitive and repeatable detection of HIV-1 with a ß-actin positive internal amplification control from processed sample to result in less than 80 minutes. Together, these elements are building blocks for an electricity-free platform capable of isothermal amplification and detection of a variety of pathogens.

  1. Electricity-Free Amplification and Detection for Molecular Point-of-Care Diagnosis of HIV-1

    PubMed Central

    Singleton, Jered; Osborn, Jennifer L.; Lillis, Lorraine; Hawkins, Kenneth; Guelig, Dylan; Price, Will; Johns, Rachel; Ebels, Kelly; Boyle, David; Weigl, Bernhard; LaBarre, Paul

    2014-01-01

    In resource-limited settings, the lack of decentralized molecular diagnostic testing and sparse access to centralized medical facilities can present a critical barrier to timely diagnosis, treatment, and subsequent control and elimination of infectious diseases. Isothermal nucleic acid amplification methods, including reverse transcription loop-mediated isothermal amplification (RT-LAMP), are well-suited for decentralized point-of-care molecular testing in minimal infrastructure laboratories since they significantly reduce the complexity of equipment and power requirements. Despite reduced complexity, however, there is still a need for a constant heat source to enable isothermal nucleic acid amplification. This requirement poses significant challenges for laboratories in developing countries where electricity is often unreliable or unavailable. To address this need, we previously developed a low-cost, electricity-free heater using an exothermic reaction thermally coupled with a phase change material. This heater achieved acceptable performance, but exhibited considerable variability. Furthermore, as an enabling technology, the heater was an incomplete diagnostic solution. Here we describe a more precise, affordable, and robust heater design with thermal standard deviation <0.5°C at operating temperature, a cost of approximately US$.06 per test for heater reaction materials, and an ambient temperature operating range from 16°C to 30°C. We also pair the heater with nucleic acid lateral flow (NALF)-detection for a visual readout. To further illustrate the utility of the electricity-free heater and NALF-detection platform, we demonstrate sensitive and repeatable detection of HIV-1 with a ß-actin positive internal amplification control from processed sample to result in less than 80 minutes. Together, these elements are building blocks for an electricity-free platform capable of isothermal amplification and detection of a variety of pathogens. PMID:25426953

  2. Development of Molten Corium Using An Exothermic Chemical Reaction for the Molten- Fuel Moderator-Interaction Studies at Chalk River Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitheanandan, T.; Sanderson, D.B.; Kyle, G.

    2004-07-01

    Atomic Energy of Canada Limited (AECL) has partnered with Argonne National Laboratory to develop a corium thermite prototypical of Candu material and test the concept of ejecting {approx}25 kg of the molten material from a pressure tube with a driving pressure of 10 MPa. This development program has been completed and the technology transferred to AECL. Preparation for the molten-fuel moderator-interaction tests at AECL's Chalk River Laboratories is well underway. A mixture of 0.582 U/0.077 U{sub 3}O{sub 8}/0.151 Zr/0.19 CrO{sub 3} (wt%) as reactant chemicals has been demonstrated to produce a corium consisting of 0.73 UO{sub 2}/0.11 Zr/0.06 ZrO{sub 2}/0.10more » Cr (wt%) at {approx}2400 deg. C. This is comparable to the target Candu specific corium of 0.9 UO{sub 2}/0.1 Zr (wt%), with limited oxidation. The peak melt temperature was confirmed from small-scale thermitic reaction tests. Several small-scale tests were completed to qualify the thermite to ensure operational safety and a quantifiable experimental outcome. The proposed molten-fuel moderator-interaction experiments at Chalk River Laboratories will consist of heating the thermite mixture inside a 1.14-m long insulated pressure tube. Once the molten material has reached the desired temperature of {approx}2400 deg. C, the pressure inside the tube will be raised to about 10 MPa, and the pressure tube will fail at a pre-machined flaw, ejecting the molten material into the surrounding tank of water. The test apparatus, instrumentation, data acquisition and control systems have been assembled, and a series of successful commissioning tests have been completed. (authors)« less

  3. Borehole model for simulation transport geothermal heat with heat pipe system and with forced circulation of heat carrier

    NASA Astrophysics Data System (ADS)

    Jakubský, Michal; Lenhard, Richard; Vantúch, Martin; Malcho, Milan

    2012-04-01

    In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057), whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3).

  4. Innovative food processing technology using ohmic heating and aseptic packaging for meat.

    PubMed

    Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko

    2014-02-01

    Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.

  5. Ultra-high heat flux cooling characteristics of cryogenic micro-solid nitrogen particles and its application to semiconductor wafer cleaning technology

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Guanghan, Zhao; Koike, Tomoki; Ochiai, Naoya

    2014-01-01

    The ultra-high heat flux cooling characteristics and impingement behavior of cryogenic micro-solid nitrogen (SN2) particles in relation to a heated wafer substrate were investigated for application to next generation semiconductor wafer cleaning technology. The fundamental characteristics of cooling heat transfer and photoresist removal-cleaning performance using micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. This study contributes not only advanced cryogenic cooling technology for high thermal emission devices, but also to the field of nano device engineering including the semiconductor wafer cleaning technology.

  6. Old Faithful Model for Radiolytic Gas-Driven Cryovolcanism at Enceladus

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Cooper, Paul D.; Sittler, Edward; Sturner, Steven J.; Rymer, Abigail M.

    2009-01-01

    A new model is presented on how chemically driven cryovolcanism might contribute to episodic outgassing at the icy moon Enceladus and potentially elsewhere including Europa and Kuiper Belt Objects. Exposed water ices can become oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. In contact with primordially abundant reductants such as NH3, CH4, and other hydrocarbons, the product oxidants can react exothermically to produce volatile gases driving cryovolcanism via gas-piston forces on any subsurface liquid reservoirs. Radiolytic oxidants such as H2O2 and O2 can continuously accumulate deep in icy regoliths and be conveyed by rheological flows to subsurface chemical reaction zones over million-year time scales indicated by cratering ages for active regions of Enceladus and Europa. Surface blanketing with cryovolcanic plume ejecta would further accelerate regolith burial of radiolytic oxidants. Episodic heating from transient gravitational tides, radioisotope decay, impacts, or other geologic events might occasionally accelerate chemical reaction rates and ignite the exothermic release of cumulative radiolytic oxidant energy. The time history for the suggested "Old Faithful" model of radiolytic gas-driven cryovolcanism at Enceladus and elsewhere therefore consists of long periods of chemical energy accumulation punctuated by much briefer episodes of cryovolcanic activity. The most probable sequence for detection of activity in the current epoch is a long evolutionary phase of slow but continuous oxidant accumulation over billions of years followed by continuous but variable high activity over the past 10(exp 7)-10(exp 8) years. Detectable cryovolcanic activity could then later decline due to near-total oxidation of the rheologically accessible ice crust and depletion the accessible reductant abundances, as may have already occurred for Europa in the more intense radiation environment of Jupiter's magnetosphere. Astrobiological potential of Enceladus could correspondingly be higher than at Europa due to a less extreme state of oxidation and greater residual abundance of organics.

  7. PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDONALD,R.J.

    1999-04-01

    The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their helpmore » and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.« less

  8. Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas to ethylene and propylene in a most energy-efficient and safe manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Mulla, S.A.R.; Rajput, A.M.

    1997-06-01

    Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas at 700--850 C in the presence of steam and limited oxygen yields ethylene and propylene with appreciable conversion and high selectivity but with almost no coke or tarlike product formation. In this process, the exothermic oxidative hydrocarbon conversion reactions are coupled directly with the endothermic cracking of C{sub 2+}-hydrocarbons by their simultaneous occurrence. Hence, the process operates in a most energy-efficient and safe (or nonhazardous) manner and also can be made almost thermoneutral or mildly endothermic/exothermic, thus requiring little or no external energy for the hydrocarbon conversion reactions.

  9. Thermal characterization of organic matter along a (hypothetical) coalification gradient

    NASA Astrophysics Data System (ADS)

    Cavallo, Ornella; Provenzano, Maria Rosaria; Zaccone, Claudio

    2017-04-01

    Geochemical transformations of organic carbon (C) in aquatic and terrestrial ecosystems are important starting points for genesis of peats, brown coals and other coal precursors. The humification process plays a key role in biogeochemical transformations of organic C and, as a result, in the first stages of coal precursors formation. Thermal analysis was used by Schnitzer and other scientists since 1950-1960s, in order to investigate the stability of several organic materials of industrial value including peat and coal. What soil scientists found was the general occurrence of two exothermic peaks (exotherm 1 and 2) due to decomposition and combustion reactions of organic compounds having different thermal stability and, consequently, different degree of humification. Thermogravimetric analysis (TG) was carried out on different samples reproducing a "hypothetical" coalification gradient as follows: peat (IHSS Pahokee peat standard), fulvic acid (FA), a peat humic acid (HA), leonardite (IHSS Gascoyne standard) and charcoal. An aliquot of about 20 mg of each sample was heated in a ceramic crucible from 50 to 850˚ C at 30˚ C min-1, at a gas flow rate of 30 mL min-1 using a PerkinElmer TGA4000 thermobalance. Samples were analysed both under nitrogen and under synthetic air. All analyses were carried out in triplicate and the average coefficient of variation was <1.5%. Weight losses (in %) were determined within 200-400˚ C (WL1) and 400-600˚ C (WL2) temperature ranges, and the ratio between WL2/WL1 calculated for all samples. This ratio has been often used as a highly sensitive parameter to describe chemical changes induced by the bio-transformation of organic materials. Finally, the temperature at which half of the exothermic mass loss has occurred (TG-T50) was also calculated. Preliminary results obtained from TG analysis under air showed that WL2/WL1 ratio was lower for the FA sample and higher for leonardite and charcoal, following the order FA

  10. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    PubMed

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H 2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.

  11. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    NASA Astrophysics Data System (ADS)

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.

  12. Osteoconductive Amine-Functionalized Graphene-Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization.

    PubMed

    Sharma, Rakesh; Kapusetti, Govinda; Bhong, Sayali Yashwant; Roy, Partha; Singh, Santosh Kumar; Singh, Shikha; Balavigneswaran, Chelladurai Karthikeyan; Mahato, Kaushal Kumar; Ray, Biswajit; Maiti, Pralay; Misra, Nira

    2017-09-20

    Bone cement has found extensive usage in joint arthroplasty over the last 50 years; still, the development of bone cement with essential properties such as high fatigue resistance, lower exothermic temperature, and bioactivity has been an unsolved problem. In our present work, we have addressed all of the mentioned shortcomings of bone cement by reinforcing it with graphene (GR), graphene oxide (GO), and surface-modified amino graphene (AG) fillers. These nanocomposites have shown hypsochromic shifts, suggesting strong interactions between the filler material and the polymer matrix. AG-based nanohybrids have shown greater osteointegration and lower cytotoxicity compared to other nanohybrids as well as pristine bone cement. They have also reduced oxidative stress on cells, resulting in calcification within 20 days of the implantation of nanohybrids into the rabbits. They have significantly reduced the exothermic curing temperature to body temperature and increased the setting time to facilitate practitioners, suggesting that reaction temperature and settling time can be dynamically controlled by varying the concentration of the filler. Thermal stability and enhanced mechanical properties have been achieved in nanohybrids vis-à-vis pure bone cement. Thus, this newly developed nanocomposite can create natural bonding with bone tissues for improved bioactivity, longer sustainability, and better strength in the prosthesis.

  13. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world's highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding during fabrication and are enhanced during irradiation. One aspect of fuel development and qualification is to demonstrate an appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding and Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 °C). The mechanisms responsible for fission gas release events are discussed.

  14. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world’s highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form during fabrication and are enhanced during irradiation between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding. One aspect of fuel development and qualification is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding andmore » Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 oC). The mechanisms responsible for fission gas release events are discussed.« less

  15. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion.

    PubMed

    McCollum, Jena; Pantoya, Michelle L; Iacono, Scott T

    2015-08-26

    Aluminum (Al) particles are passivated by an aluminum oxide (Al2O3) shell. Energetic blends of nanometer-sized Al particles with liquid perfluorocarbon-based oxidizers such as perfluoropolyethers (PFPE) excite surface exothermic reaction between fluorine and the Al2O3 shell. The surface reaction promotes Al particle reactivity. Many Al-fueled composites use solid oxidizers that induce no Al2O3 surface exothermicity, such as molybdenum trioxide (MoO3) or copper oxide (CuO). This study investigates a perfluorinated polymer additive, PFPE, incorporated to activate Al reactivity in Al-CuO and Al-MoO3. Flame speeds, differential scanning calorimetry (DSC), and quadrupole mass spectrometry (QMS) were performed for varying percentages of PFPE blended with Al/MoO3 or Al/CuO to examine reaction kinetics and combustion performance. X-ray photoelectron spectroscopy (XPS) was performed to identify product species. Results show that the performance of the thermite-PFPE blends is highly dependent on the bond dissociation energy of the metal oxide. Fluorine-Al-based surface reaction with MoO3 produces an increase in reactivity, whereas the blends with CuO show a decline when the PFPE concentration is increased. These results provide new evidence that optimizing Al combustion can be achieved through activating exothermic Al surface reactions.

  16. Evaluation of Virginia's first heated bridge.

    DOT National Transportation Integrated Search

    2000-12-01

    This study is a contribution to the Heated Bridge Technology Program established in 1991 under the Intermodal Surface Transportation Efficiency Act. The goal of the program was to find durable and environmentally friendly heated bridge technologies f...

  17. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.« less

  18. In-situ determination of amine/epoxy and carboxylic/epoxy exothermic heat of reaction on surface of modified carbon nanotubes and structural verification of covalent bond formation

    NASA Astrophysics Data System (ADS)

    Neves, Juliana C.; de Castro, Vinícius G.; Assis, Ana L. S.; Veiga, Amanda G.; Rocco, Maria Luiza M.; Silva, Glaura G.

    2018-04-01

    An effective nanofiller-matrix interaction is considered crucial to produce enhanced nanocomposites. Nevertheless, there is lack of experiments focused in the direct measurement of possible filler-matrix covalent linkage, which was the main goal of this work for a carbon nanotube (CNT)/epoxy system. CNT were functionalized with oxygenated (ox) functions and further with triethylenetetramine (TETA). An in-situ determination methodology of epoxy-CNTs heat of reaction was developed by Differential Scanning Calorimetry (DSC). Values of -(8.7 ± 0.4) and -(6.0 ± 0.6) J/g were observed for epoxy with CNT-ox and CNT-TETA, respectively. These results confirm the occurrence of covalent bonds for both functionalized CNTs, a very important information due to the literature generally disregard this possibility for oxygenated functions. The higher value obtained for CNT-ox can be attributed to a not complete amidation and to steric impediments in the CNT-TETA structure. The modified CNTs produced by DSC experiments were then characterized by X-Ray Photoelectron Spectroscopy, Transmission Electron Microscopy and Thermogravimetry, which confirmed the covalent linkage. This characterization methodology can be used to verify the occurrence of covalent bonds in various nanocomposites with a quantitative evaluation, providing data for better understanding of the role of CNT functional groups and for tailoring its interface with polymers.

  19. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.

    2012-04-19

    Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 releasemore » properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.« less

  20. Description of the behavior of dichloroalkanes-containing solutions with three [bXmpy][BF4] isomers, using the experimental information of thermodynamic properties, 1H NMR spectral and the COSMO-RS-methodology.

    PubMed

    Fernández, Luis; Ortega, Juan; Palomar, José; Toledo, Francisco; Marrero, Elena

    2015-02-26

    This work studies the binaries of 1-butyl-X-methylpyridinium tetrafluoroborate [bXmpy][BF4] (X = 2, 3, and 4) with four 1,ω-dichloroalkanes, ω = 1-4, using the results obtained for the mixing properties h(E) and v(E) at two temperatures. The three isomers of the ionic liquid (IL) are weakly miscible with the 1,ω-dichloroalkanes when ω ≥ 5 and moderately soluble for ω = 4. The v(E)s of all the binaries present contractive effects, v(E) < 0, which are more pronounced with increasing temperature; the variation in v(E) with ω is positive, although this changes after ω = 4 due to problems of immiscibility. The energetic effects of the mixing process are exothermic in the solutions with the shorter dichloroalkanes, ω = 1 and 2, and this effect increases slightly with temperature. However, mildly exothermic effects are found in the binaries with larger halides, where (dh(E)/dT) > 0. The experimental data are correlated with a suitable equation. The study is completed with (1)H NMR measurements of both the pure compounds and some of the solutions, which showed minor diamagnetic shifts with increasing IL compositions, related to the anisotropy of the pyridine ring. The variation in h(E) with ω for a same IL, due to an increase in the contact surfaces, is related to the reduction in polarity which, in turn, depends on the smaller chemical shifts of the pure dihalide compounds. The COSMO-RS method determines the energetic effects of the mixing process and predicts an exothermic contribution for the electrostatic Misfit-interaction which is quantitatively very similar for the three IL isomers. The differences proposed by the model are mainly reflected in the van der Waals interactions, which are exothermic and clearly influenced by the position of the methylene group in the IL. The contribution made by hydrogen bonds is negligible.

  1. Heat Pipe Technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.

  2. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  3. Design of Remote Heat-Meter System Based on Trusted Technology

    NASA Astrophysics Data System (ADS)

    Yu, Changgeng; Lai, Liping

    2018-03-01

    This article presents a proposal of a heat meter and remote meter reading system for the disadvantages of the hackers very easily using eavesdropping, tampering, replay attack of traditional remote meter reading system. The system selects trusted technology such as, the identity authentication, integrity verifying, and data protection. By the experiments, it is proved that the remote meter reading system of the heat meter can be used to verify the feasibility of the technology, and verify the practicability and operability of data protection technology.

  4. Development and application of soil coupled heat pump

    NASA Astrophysics Data System (ADS)

    Liu, Lu

    2017-05-01

    Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.

  5. Heat Pipes Reduce Engine-Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  6. Thermo-mechanical simulation of liquid-supported stretch blow molding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmer, J.; Stommel, M.

    2015-05-22

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way,more » a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.« less

  7. Is chemical heating a major cause of the mesosphere inversion layer?

    NASA Technical Reports Server (NTRS)

    Meriwether, John W.; Mlynczak, Martin G.

    1995-01-01

    A region of thermal enhancement of the mesosphere has been detected on numerous occasions by in situ measurements, remote sensing from space, and lidar techniques. The source of these 'temperature inversion layers' has been attributed in the literature to the dissipation relating to dynamical forcing by gravity wave or tidal activity. However, evidence that gravity wave breaking can produce the inversion layer with amplitude as large as that observed in lidar measurements has been limited to results of numerical modeling. An alternative source for the production of the thermal inversion layer in the mesosphere is the direct deposition of heat by exothermic chemical reactions. Two-dimensional modeling combining a comprehensive model of the mesosphere photochemistry with the dynamical transport of long-lived species shows that the region from 80 to 95 km may be heated as much as 3 to 10 K/d during the night and half this rate during the day. Given the uncertainties in our understanding of the dynamics and chemistry for the mesopause region, separating the two sources by passive observations of the mesosphere thermal structure looks to be difficult. Therefore we have considered an active means for producing a mesopause thermal layer, namely the release of ozone into the upper mesosphere from a rocket payload. The induced effects would include artificial enhancements of the OH and Na airglow intensities as well as the mesopause thermal structure. The advantages of the rocket release of ozone is that detection of these effects by ground-based imaging, radar, and lidar systems and comparison of these effects with model predictions would help quantify the partition of the artificial inversion layer production into sources of dynamical and chemical forcing.

  8. On the violence of thermal explosion in solid explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chidester, S.K.; Tarver, C.M.; Green, L.G.

    Heavily confined cylinders of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and triaminotrinitrobenzene (TATB) were heated at rates varying from 2 C/min to 3.3 C/h. Fourteen of the cylinders were hollow, and inner metallic liners with small heaters attached were used to produce uniform temperatures just prior to explosion. A complex thermocouple pattern was used to measure the temperature history throughout the charge and to determine the approximate location where the runaway exothermic reaction first occurred. The violence of the resulting explosion was measured using velocity pin arrays placed inside and outside of the metal confinement cylinders, flash x-rays, overpressure gauges, and fragment collection techniques.more » Five cylinders were intentionally detonated for violence comparisons. The measured temperature histories, times to explosion, and the locations of first reaction agreed closely with those calculated by a two-dimensional heat transfer code using multistep chemical decomposition models. The acceleration of the confining metal cylinders by the explosion process was accurately simulated using a two-dimensional pressure dependent deflagration reactive flow hydrodynamic mode. The most violent HMX thermal explosions gradually accelerated their outer cases to velocities approaching those of intentional detonations approximately 120 {micro}m after the onset of explosion. The measured inner cylinder collapse velocities from thermal explosions were considerably lower than those produced by detonations. In contrast to the HMX thermal reactions, no violent thermal explosions were produced by the TATB-based explosive LX-17. A heavily confined, slowly heated LX-17 test produced sufficient pressure to cause a 0.1 cm bend in a 2 cm thick steel plate.« less

  9. The Back Scattering Micro-Raman Spectroscopy of Different Crystalline Phases of TiO2 Nanoparticles Produced by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Malekfar, R.; Mihanyar, S.; Mozaffari, M.

    2007-09-01

    TiO2 is known to be one of the best photocatalysts among the semiconductors. In order to improve its photocatalytic features, it is necessary to be able to control factors such as the mean particle size, nanocrystalline system, grain shapes and diffraction. Nanocrystalline TiO2 sample powders were produced using H2O2 and Ti(OBu)4 as precursor materials and their above features were then characterized by using XRD, Raman spectroscopy and SEM. The grain size was calculated using the Debye Scherrer formula for anatase phase, 15 nm, which is in agreement with the value obtained by SEM imaging. Ti(OBu)4 was added dropwise to a very ice-cold solution of H2O2 under intensive stirring. This immediately yielded a red solution which was shortly followed by a strong exothermic reaction due to the unstable nature of the reaction at this stage. This process also involved rigorous giving off of H2O2, O2, and butyl alcohol. A yellow transparent peroxo-polytitanic (PPT) acid gel was thus prepared. This gel was then heated at 150 °C for 5 hours and was transformed into amorphous TiO2. The produced yellow powder was heated at 250 °C, 350 °C and 450 °C for one hour with a ramping up speed of 5 °C/min heating rate. It was later calcined at 550 °C, 750 °C and 950 °C for 30 minutes. By investigating the Raman spectra typically shown in figure 1 and also XRD patterns, it was confirmed that the anatase phase nanocrystalline powder, which is well known for its application as photocatalysts, was produced at the first three lower treatment temperatures mentioned above.

  10. Cookoff Modeling of a WIPP waste drum (68660)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, Michael L.

    2014-11-24

    A waste drum located 2150 feet underground may have been the root cause of a radiation leak on February 14, 2014. Information provided to the WIPP Technical Assessment Team (TAT) was used to describe the approximate content of the drum, which included an organic cat litter (Swheat Scoop®, or Swheat) composed of 100% wheat products. The drum also contained various nitrate salts, oxalic acid, and a nitric acid solution that was neutralized with triethanolamine (TEA). CTH-TIGER was used with the approximate drum contents to specify the products for an exothermic reaction for the drum. If an inorganic adsorbent such asmore » zeolite had been used in lieu of the kitty litter, the overall reaction would have been endothermic. Dilution with a zeolite adsorbent might be a useful method to remediate drums containing organic kitty litter. SIERRA THERMAL was used to calculate the pressurization and ignition of the drum. A baseline simulation of drum 68660 was performed by assuming a background heat source of 0.5-10 W of unknown origin. The 0.5 W source could be representative of heat generated by radioactive decay. The drum ignited after about 70 days. Gas generation at ignition was predicted to be 300-500 psig with a sealed drum (no vent). At ignition, the wall temperature increases modestly by about 1°C, demonstrating that heating would not be apparent prior to ignition. The ignition location was predicted to be about 0.43 meters above the bottom center portion of the drum. At ignition only 3-5 kg (out of 71.6 kg total) has been converted into gas, indicating that most of the material remained available for post-ignition reaction.« less

  11. Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Yang, Suo; Nagaraja, Sharath; Sun, Wenting; Yang, Vigor

    2017-11-01

    A self-consistent framework for modeling and simulations of plasma-assisted ignition and combustion is established. In this framework, a ‘frozen electric field’ modeling approach is applied to take advantage of the quasi-periodic behaviors of the electrical characteristics to avoid the re-calculation of electric field for each pulse. The correlated dynamic adaptive chemistry (CO-DAC) method is employed to accelerate the calculation of large and stiff chemical mechanisms. The time-step is dynamically updated during the simulation through a three-stage multi-time scale modeling strategy, which utilizes the large separation of time scales in nanosecond pulsed plasma discharges. A general theory of plasma-assisted ignition and combustion is then proposed. Nanosecond pulsed plasma discharges for ignition and combustion can be divided into four stages. Stage I is the discharge pulse, with time scales of O (1-10 ns). In this stage, input energy is coupled into electron impact excitation and dissociation reactions to generate charged/excited species and radicals. Stage II is the afterglow during the gap between two adjacent pulses, with time scales of O (1 0 0 ns). In this stage, quenching of excited species dissociates O2 and fuel molecules, and provides fast gas heating. Stage III is the remaining gap between pulses, with time scales of O (1-100 µs). The radicals generated during Stages I and II significantly enhance exothermic reactions in this stage. The cumulative effects of multiple pulses is seen in Stage IV, with time scales of O (1-1000 ms), which include preheated gas temperatures and a large pool of radicals and fuel fragments to trigger ignition. For flames, plasma could significantly enhance the radical generation and gas heating in the pre-heat zone, thereby enhancing the flame establishment.

  12. Are Ducted Mini-Splits Worth It?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Jonathan M; Maguire, Jeffrey B; Metzger, Cheryn E.

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within themore » Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).« less

  13. PREFACE: 7th International Conference on Cooling & Heating Technologies (ICCHT 2014)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    The Kyoto protocol has initiated a pledge from almost all developing and developed countries to be committed to reducing CO2 emissions. Development of new renewable energy technologies are also of interest in this conference. Greenhouse gases have contributed to global warming and other man-made disasters. Cooling and Heating communities also have responsibilities towards the commitment of reducing the greenhouse gas emissions. In addition, depleting natural resources also act as a threat to the Cooling and Heating industries, causing them to develop highly efficient equipment and innovative technologies. The 1st International Conference on Cooling & Heating Technologies was held in Hanoi Vietnam (Jan. 2005). Whereas the 2nd, 3rd, 4th and 5th ICCHT conferences were held in Dalian, China (Jul. 2006), Tokyo, Japan (Jul. 2007), Jinhae, Korea (Oct. 2008) and Bandung, Indonesia (Dec. 2010) respectively. The 6th International Conference on Cooling & Heating Technologies (ICCTH2012) was held in Xi'an in China on November 9-12, 2012. It is our pleasure to welcome you to the 7th International Conference on Cooling & Heating Technologies (ICCTH2014) on 4th - 6th November 2014 at the Grand Dorsett Subang Hotel, Subang Jaya, Selangor Darul Ehsan, Malaysia The Theme of the Conference is ''Sustainability and Innovation in Heating & Cooling Technologies''. The sub-themes are:- • CO2 Reduction and Low Carbon Technologies • HVAC System and Natural Ventilation • Energy & Alternative Energy • Computational Fluid Dynamics • Low Temperature & Refrigeration Engineering In conjunction with the Conference, an Exhibition will be organized as an integral part of the Conference. Project experiences, product solutions, new applications and state-of-the art information will be highlighted.

  14. Heat pipe technology for advanced rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.

    1971-01-01

    The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.

  15. A regenerative elastocaloric heat pump

    NASA Astrophysics Data System (ADS)

    Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini

    2016-10-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

  16. The effects of heat treatment on technological properties in Red-bud maple (Acer trautvetteri Medw.) wood.

    PubMed

    Korkut, Süleyman; Kök, M Samil; Korkut, Derya Sevim; Gürleyen, Tuğba

    2008-04-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on technological properties of Red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures (120 degrees C, 150 degrees C and 180 degrees C) and for varying durations (2h, 6h and 10h). The technological properties of heat-treated wood samples and control samples were tested. Compression strength parallel to grain, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength, and tension strength perpendicular to grain were determined. The results showed that technological strength values decreased with increasing treatment temperature and treatment times. Red-bud maple wood could be utilized by using proper heat treatment techniques with minimal losses in strength values in areas where working, and stability such as in window frames, are important factors.

  17. Microgravity fluid management requirements of advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, Robert P.

    1987-01-01

    The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.

  18. Modelisation et simulation de pyrolyse de pneus usages dans des reacteurs de laboratoire et industriel

    NASA Astrophysics Data System (ADS)

    Lanteigne, Jean-Remi

    The present thesis covers an applied study on tire pyrolysis. The main objective is to develop tools to allow predicting the production and the quality of oil from tire pyrolysis. The first research objective consisted in modelling the kinetics of tires pyrolysis in a reactor, namely an industrial rotary drum operating in batch mode. A literature review performed later demonstrated that almost all kinetics models developed to represent tire pyrolysis could not represent the actual industrial process with enough accuracy. Among the families of kinetics models for pyrolysis, three have been identified: models with one single global reaction, models with multiple combined parallel reactions, and models with multiple parallel and series reactions. It was observed that these models show limitations. In the models with one single global reaction and with multiple parallels reactions, the production of each individual pyrolytic product cannot be predicted, but only for combined volatiles. Morevoer, the mass term in the kinetics refers to the final char weight (Winfinity) that varies with pyrolysis conditions, which yields less robust models. Also, despite the fact that models with multiple parallels and series reactions can predict the rate of production for each pyrolysis product, the selectivities are determined for operating temperatures instead of real mass temperatures, giving models for which parameters tuning is not adequate when used at the industrial scale. A new kinetics model has been developed, allowing predicting the rate of production of noncondensable gas, oil, and char from tire pyrolysis. The novelty of this model is the consideration of intrinsic selectivities for each product as a function of temperature. This hypothesis has been assumed valid considering that in the industrial pyrolysis process, pyrolysis kinetics is limiting. The developed model considers individual kinetics for each of the three pyrolytic products proportional to the global decomposition kinetics of pyrolysables. The simulation with data obtained in industrial operation showed the robustness of the model to predict with accuracy in transient regime, tires pyrolysis, with the help of model parameters obtained at laboratory scale, namely in regards of the trigger of production, the residence time of tires (dynamic production) and the amount of oil produced (cumulative yield). It is a novel way to model pyrolysis that could be extrapolated to new waste materials. The second objective of this doctoral research was to determine the evolution of specific tires specific heat during pyrolysis and the enthalpy of pyrolysis. The origin of this objective comes from a primary contradiction. With few exceptions, it is acknowledged that organic materials pyrolysis is globally an endothermic phenomenon. At the opposite, all experiments led with laboratory apparatuses such as DSC (Differential Scanning Calorimetry) showed exothermic peaks during dynamic experiments (constant heating rate). It has been confirmed by results obtained at the industrial scale, where no sign of exothermicity has been observed. The Hess Law has also confirmed these results, that globally, pyrolysis is indeed a completely endothermic process. An accurate energy balance is required to predict mass temperature during pyrolysis, this parameter being unbindable from kinetics. An advanced investigation of char first allowed demonstrating that specific heat of solids during pyrolysis decreases with increasing temperature until the weight loss peak is reached, around 400°C, and then starts increasing again. This observation, combined with the fact that the sample loses weight during pyrolysis is considered as the major cause of the apparition of an exothermic peak in laboratory scale experiments. That is, the control system of these apparatuses generates a bias and an unavoidable overheat of the samples producing this exothermic behavior. It would thus be an artifact. On the base of new data on the evolution of global specific heat during pyrolysis, a model of the energy balance has been developed at the industrial scale to determine the enthalpy of pyrolysis. The simulation has shown that a major part of the heat transferred to the pyrolized mass would make its temperature increase. Next, an enthalpy of pyrolysis dependent of weight loss was obtained. Finally, two other terms of enthalpy have been found, namely an enthalpy for the breakage of sulfur bridges and an enthalpy for the stabilization of char when conversion approaches completion. This research will have allowed establishing a novel general methodology to determine the enthalpy of pyrolysis. More particularly, new clarifications hasve been obtained in regards to the evolution of specific heat of solids during pyrolysis and new enthalpies of pyrolysis, all endothermic, could be obtained, in agreement with the theoretical expectations. The third research objective concerned the behavior of sulfur during tires pyrolysis. With as a premise that sulfur is an intrinsic contaminant of many types of waste, it is critical to clarify its fate during pyrolysis, in the present case for waste tires. It has been observed in the literature that some quantitative analyses had been presented, but generally, the mechanisms for the distribution of sulfur within the pyrolytic products remain unclear. Thus, it was then not possible to predict the transfer of sulfur to each of the tire pyrolysis products. The results taken form literature have been complemented with a series of TGA experiments followed by complete elemental analyses of the residual solids. Mass balances have been performed in order to characterize the distribution of elements within the three products (noncondensable gas, oil, and char). A novel parameter has been created during this research: the sulfur loss selectivity. This intrinsic selectivity is a prediction of the distribution of sulfur within the pyrolysis products as a function of temperature. Three phenomena has been identified that could affect the sulfur loss selectivity. First, the natural devolatilization of sulfur due to pyrolysis. Next, the sulfur devolatilization due to the desulfurization of the solid matrix by hydrogen and finally, the clustering of sulfur in the solid state due to metal sulfidation (zinc and iron). The results have shown that this selectivity reach a limit value of 1 when pyrolysis is limited by the kinetics and in the absence of metal. When the mass transfer is limiting at low temperature (<500°C) the selectivity will be greater than 1. At a temperature over 350°C with the presence of metals, the selectivity will be lower than 1. It is a useful tool for industrial pyrolysis processes, being a novel indicator for the distribution of contaminants during the pyrolysis of waste. A better comprehension of these mechanisms allows elaborating a better strategy when designing these industrial processes. For example, in light of this research, it could be preferable to pre-treat the tires at lower temperature to eliminate a significant part of sulfur before pyrolyzing them at high temperature. The resulting pyrolytic products would then necessitate a lighter purification post-treatment, being more efficient and more economical.

  19. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  20. Numerical investigation of effects on blanks for press hardening process during longitudinal flux heating

    NASA Astrophysics Data System (ADS)

    Dietrich, André; Nacke, Bernard

    2018-05-01

    With the induction heating technology, it is possible to heat up blanks for the press hardening process in 20 s or less. Furthermore, the dimension of an induction system is small and easy to control in comparison to conventional heating systems. To bring the induction heating technology to warm forming industry it is necessary to analyze the process under the view of induction. This paper investigates the edge- and end-effects of a batch heated blank. The results facilitate the later design of induction heating systems for the batch process.

  1. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer.

    PubMed

    Tsukasaki, Hirofumi; Mori, Yota; Otoyama, Misae; Yubuchi, So; Asano, Takamasa; Tanaka, Yoshinori; Ohno, Takahisa; Mori, Shigeo; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2018-04-18

    Sulfide-based all-solid-state lithium batteries are a next-generation power source composed of the inorganic solid electrolytes which are incombustible and have high ionic conductivity. Positive electrode composites comprising LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC) and 75Li 2 S·25P 2 S 5 (LPS) glass electrolytes exhibit excellent charge-discharge cycle performance and are promising candidates for realizing all-solid-state batteries. The thermal stabilities of NMC-LPS composites have been investigated by transmission electron microscopy (TEM), which indicated that an exothermal reaction could be attributed to the crystallization of the LPS glass. To further understand the origin of the exothermic reaction, in this study, the precipitated crystalline phase of LPS glass in the NMC-LPS composite was examined. In situ TEM observations revealed that the β-Li 3 PS 4 precipitated at approximately 200 °C, and then Li 4 P 2 S 6 and Li 2 S precipitated at approximately 400 °C. Because the Li 4 P 2 S 6 and Li 2 S crystalline phases do not precipitate in the single LPS glass, the interfacial contact between LPS and NMC has a significant influence on both the LPS crystallization behavior and the exothermal reaction in the NMC-LPS composites.

  2. Exothermic double-disk dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, Matthew; Randall, Lisa, E-mail: mccull@mit.edu, E-mail: randall@physics.harvard.edu

    2013-10-01

    If a subdominant component of dark matter (DM) interacts via long-range dark force carriers it may cool and collapse to form complex structures within the Milky Way galaxy, such as a rotating dark disk. This scenario was proposed recently and termed ''Double-Disk Dark Matter'' (DDDM). In this paper we consider the possibility that DDDM remains in a cosmologically long-lived excited state and can scatter exothermically on nuclei (ExoDDDM). We investigate the current status of ExoDDDM direct detection and find that ExoDDDM can readily explain the recently announced ∼ 3σ excess observed at CDMS-Si, with almost all of the 90% best-fitmore » parameter space in complete consistency with limits from other experiments, including XENON10 and XENON100. In the absence of isospin-dependent couplings, this consistency requires light DM with mass typically in the 5-15 GeV range. The hypothesis of ExoDDDM can be tested in direct detection experiments through its peaked recoil spectra, reduced annual modulation amplitude, and, in some cases, its novel time-dependence. We also discuss future direct detection prospects and additional indirect constraints from colliders and solar capture of ExoDDDM. As theoretical proof-of-principle, we combine the features of exothermic DM models and DDDM models to construct a complete model of ExoDDDM, exhibiting all the required properties.« less

  3. Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa

    PubMed Central

    Fayose, Folasayo; Huan, Zhongjie

    2016-01-01

    Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified. PMID:26904668

  4. Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment

    PubMed Central

    Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard

    2015-01-01

    The data presented in this article were the basis for the study reported in the research articles entitled ‘Climate responsive behaviour heat pipe technology for enhanced passive airside cooling’ by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article “CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices” by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design. PMID:26958604

  5. Comparative and Combinative Study of Urban Heat island in Wuhan City with Remote Sensing and CFD Simulation

    PubMed Central

    Li, Kun; Yu, Zhuang

    2008-01-01

    Urban heat islands are one of the most critical urban environment heat problems. Landsat ETM+ satellite data were used to investigate the land surface temperature and underlying surface indices such as NDVI and NDBI. A comparative study of the urban heat environment at different scales, times and locations was done to verify the heat island characteristics. Since remote sensing technology has limitations for dynamic flow analysis in the study of urban spaces, a CFD simulation was used to validate the improvement of the heat environment in a city by means of wind. CFD technology has its own shortcomings in parameter setting and verification, while RS technology is helpful to remedy this. The city of Wuhan and its climatological condition of being hot in summer and cold in winter were chosen to verify the comparative and combinative application of RS with CFD in studying the urban heat island. PMID:27873893

  6. Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment.

    PubMed

    Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard

    2015-12-01

    The data presented in this article were the basis for the study reported in the research articles entitled 'Climate responsive behaviour heat pipe technology for enhanced passive airside cooling' by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices" by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design.

  7. Fundamentals of Solar Heating. Correspondence Course.

    ERIC Educational Resources Information Center

    Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.

    This course is designed for the use of employees of the air conditioning industry, and offers supervised correspondence instruction about solar technology. The following aspects of applied solar technology are covered: solar heating and cooling, solar radiation, solar collectors, heat storage control devices and specialty items, sizing solar…

  8. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  9. The Development of Novel, High-Flux, Heat Transfer Cells for Thermal Control in Microgravity

    NASA Technical Reports Server (NTRS)

    Smith, Marc K.; Glezer, Ari

    1996-01-01

    In order to meet the future needs of thermal management and control in space applications such as the Space Lab, new heat-transfer technology capable of much larger heat fluxes must be developed. To this end, we describe complementary numerical and experimental investigations into the fundamental fluid mechanics and heat-transfer processes involved in a radically new, self contained, heat transfer cell for microgravity applications. In contrast to conventional heat pipes, the heat transfer in this cell is based on a forced droplet evaporation process using a fine spray. The spray is produced by a novel fluidic technology recently developed at Georgia Tech. This technology is based on a vibration induced droplet atomization process. In this technique, a liquid droplet is placed on a flexible membrane and is vibrated normal to itself. When the proper drop size is attained, the droplet resonates with the surface motion of the membrane and almost immediately bursts into a shower of very fine secondary droplets. The small droplets travel to the opposite end of the cell where they impact a heated surface and are evaporated. The vapor returns to the cold end of the cell and condenses to form the large droplets that are fragmented to form the spray. Preliminary estimates show that a heat transfer cell based on this technology would have a heat-flux capacity that is an order of magnitude higher than those of current heat pipes designs used in microgravity applications.

  10. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  11. On the validity of the Arrhenius equation for electron attachment rate coefficients.

    PubMed

    Fabrikant, Ilya I; Hotop, Hartmut

    2008-03-28

    The validity of the Arrhenius equation for dissociative electron attachment rate coefficients is investigated. A general analysis allows us to obtain estimates of the upper temperature bound for the range of validity of the Arrhenius equation in the endothermic case and both lower and upper bounds in the exothermic case with a reaction barrier. The results of the general discussion are illustrated by numerical examples whereby the rate coefficient, as a function of temperature for dissociative electron attachment, is calculated using the resonance R-matrix theory. In the endothermic case, the activation energy in the Arrhenius equation is close to the threshold energy, whereas in the case of exothermic reactions with an intermediate barrier, the activation energy is found to be substantially lower than the barrier height.

  12. Non-linear interaction of a detonation/vorticity wave

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Jackson, T. L.; Hussaini, M. Y.

    1991-01-01

    The interaction of an oblique, overdriven detonation wave with a vorticity disturbance is investigated by a direct two-dimensional numerical simulation using a multi-domain, finite-difference solution of the compressible Euler equations. The results are compared to those of linear theory, which predict that the effect of exothermicity on the interaction is relatively small except possibly near a critical angle where linear theory no longer holds. It is found that the steady-state computational results agree with the results of linear theory. However, for cases with incident angle near the critical angle, moderate disturbance amplitudes, and/or sudden transient encounter with a disturbance, the effects of exothermicity are more pronounced than predicted by linear theory. Finally, it is found that linear theory correctly determines the critical angle.

  13. Ballistic Motion of Enzymes that Catalyze Highly Exothermic Reactions

    NASA Astrophysics Data System (ADS)

    Tsekouras, Konstantinos; Pressé, Steve

    Recently we proposed that the experimentally observed enhanced diffusion of enzymes catalyzing highly exothermic reactions is a consequence of their mechanism for dissipating reaction energy. More specifically, we proposed that reaction energy spreads out from the reaction site in the form of an acoustic wave which causes the enzyme to asymmetrically deform into the solvent. The solvent reaction propels the enzyme. However, it has been noted that in water, high viscosity should reduce enzyme momentum to zero within a few ps, so any diffusion increase should not be observable. Here we provide a model explaining how small volumetric expansions of biomolecules inside water may cause fluid compression that in turn creates regions of low fluid density around the biomolecule. We then investigate the dynamics of the biomolecule in the presence of these perturbations.

  14. SITE TECHNOLOGY CAPSULE: KAI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    KAI developed a patented, in situ RFH technology to enhance the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and soil permeability that may increase with dry...

  15. THE AFFORDABLE BIOSHELTERS PROJECT: TESTING INNOVATIVE TECHNOLOGIES, WORKING TO MAKE HIGH PERFORMANCE SOLAR GREENHOUSES COST COMPETITIVE

    EPA Science Inventory

    The economic feasibility and limitations of technologies investigated will be evaluated, including for liquid foam insulation, subsoil heat storages, and compost exhaust heating. These systems will save most of the energy and money spent to heat greenhouses in exchange for a h...

  16. Application of induction heating in food processing and cooking: A Review

    USDA-ARS?s Scientific Manuscript database

    Induction heating is an electromagnetic heating technology that has several advantages such as high safety, scalability, and high energy efficiency. It has been applied for a long time in metal processing, medical applications, and cooking. However, the application of this technology in the food pro...

  17. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  18. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.

    PubMed

    Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker

    2008-04-01

    Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens.

  19. Research on the Technology of Producing Building Stone by Using Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Yan, Bingji; Zhang, Jianliang; Guo, Hongwei; Shi, Zhiwen; Liu, Feng

    During production of a large quantity of steel, slag is produced at the same time. This paper chooses blast furnace slag (BFS) as the main material for the research. The purpose of the research is to explore its optimal physicochemical properties and the use of BFS in building stone field. The paper elaborates the experimentation process of producing glass-ceramics and presents the results. The results show that SiO2 content in BFS and amount of Cr2O3 and Fe2O3 added as nucleating agents have certain effect on the properties of glass-ceramics. The results also show that the exothermic peak temperature of base glass is the lowest when adding 20% SiO2 to the BFS, and 2% Cr2O3 and 3% Fe2O3 as nucleating agents, which makes easy crystallization and optimal properties of the glass-ceramics.

  20. Fine structuration of low-temperature co-fired ceramic (LTCC) microreactors.

    PubMed

    Jiang, Bo; Haber, Julien; Renken, Albert; Muralt, Paul; Kiwi-Minsker, Lioubov; Maeder, Thomas

    2015-01-21

    The development of microreactors that operate under harsh conditions is always of great interest for many applications. Here we present a microfabrication process based on low-temperature co-fired ceramic (LTCC) technology for producing microreactors which are able to perform chemical processes at elevated temperature (>400 °C) and against concentrated harsh chemicals such as sodium hydroxide, sulfuric acid and hydrochloric acid. Various micro-scale cavities and/or fluidic channels were successfully fabricated in these microreactors using a set of combined and optimized LTCC manufacturing processes. Among them, it has been found that laser micromachining and multi-step low-pressure lamination are particularly critical to the fabrication and quality of these microreactors. Demonstration of LTCC microreactors with various embedded fluidic structures is illustrated with a number of examples, including micro-mixers for studies of exothermic reactions, multiple-injection microreactors for ionone production, and high-temperature microreactors for portable hydrogen generation.

  1. Exploding Nitromethane in Silico, in Real Time.

    PubMed

    Fileti, Eudes Eterno; Chaban, Vitaly V; Prezhdo, Oleg V

    2014-10-02

    Nitromethane (NM) is widely applied in chemical technology as a solvent for extraction, cleaning, and chemical synthesis. NM was considered safe for a long time, until a railroad tanker car exploded in 1958. We investigate the detonation kinetics and explosion reaction mechanisms in a variety of systems consisting of NM, molecular oxygen, and water vapor. Reactive molecular dynamics allows us to simulate reactions in time-domain, as they occur in real life. High polarity of the NM molecule is shown to play a key role, driving the first exothermic step of the reaction. Rapid temperature and pressure growth stimulate the subsequent reaction steps. Oxygen is important for faster oxidation, whereas its optimal concentration is in agreement with the proposed reaction mechanism. Addition of water (50 mol %) inhibits detonation; however, water does not prevent detonation entirely. The reported results provide important insights for improving applications of NM and preserving the safety of industrial processes.

  2. Thermal management system technology development for space station applications

    NASA Technical Reports Server (NTRS)

    Rankin, J. G.; Marshall, P. F.

    1983-01-01

    A short discussion of the history to date of the NASA thermal management system technology development program is presented, and the current status of several ongoing studies and hardware demonstration tasks is reported. One element of technology that is required for long-life, high-power orbital platforms/stations that is being developed is heat rejection and a space-constructable radiator system. Aspects of this project include high-efficiency fin concepts, a heat pipe quick-disconnect device, high-capacity heat pipes, and an alternate interface heat exchanger design. In the area of heat acquisition and transport, developments in a pumped two-phase transport loop, a capillary pumped transport loop using the concept of thermal utility are reported. An example of a thermal management system concept is provided.

  3. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions.

    PubMed

    Gupta, Vinod Kumar; Nayak, Arunima; Agarwal, Shilpi; Tyagi, Inderjeet

    2014-03-01

    Rubber tire activated carbon modification (RTACMC) and rubber tire activated carbon (RTAC) were prepared from waste rubber tire by microwave assisted chemical treatment and physical heating respectively. A greater improvement in porosity and total pore volume was achieved in RTACMC as compared to that of RTAC. But both have a predominantly mesoporous structure. Under identical operating conditions, an irradiation time of 10 min, chemical impregnation ratio of 1.50 and a microwave power of 600 W resulted in maximizing the efficiency of RTACMC for p-cresol (250 mg/g) at a contact time of 90 min while RTAC showed a 71.43 mg/g adsorption capacity at 150 min. Phenol, due to its higher solubility was adsorbed to a lesser extent by both adsorbents. Physical nature of interactions, pore diffusion mechanism and exothermicity of the adsorption process was operative in both adsorbents. The outcomes support the feasibility of preparing high quality activated carbon from waste rubber tire by microwave assisted chemical activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Shock Reactivity of Non-Porous Mixtures of Manganese and Sulfur

    NASA Astrophysics Data System (ADS)

    Jette, Francois-Xavier; Goroshin, Samuel; Higgins, Andrew

    2007-06-01

    Stoichiometric mixtures of manganese powder and sulfur were melt-cast into solid pellets in order to study the mechanism of shock-enhanced reactivity in non-porous heterogeneous mixtures. This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in the absence of porosity. Indeed, the critical shock pressure that caused ignition of the mixture in the ampoule was found to be in the range 2.2 - 3.8 GPa (pressures were estimated using LS-DYNA simulations). In the cases where the shock was too weak to cause ignition in the ampoule, the sample was extracted and its ignition temperature was determined using a differential thermal analyzer.

  5. Design options for a bunsen reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project.more » Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.« less

  6. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis

    NASA Astrophysics Data System (ADS)

    Friesen, Alex; Horsthemke, Fabian; Mönnighoff, Xaver; Brunklaus, Gunther; Krafft, Roman; Börner, Markus; Risthaus, Tim; Winter, Martin; Schappacher, Falko M.

    2016-12-01

    The impact of cycling at low temperatures on the thermal and mechanical abuse behavior of commercial 18650-type lithium ion cells was compared to fresh cells. Post-mortem analyses revealed a deposition of high surface area lithium (HSAL) metal on the graphite surface accompanied by severe electrolyte decomposition. Heat wait search (HWS) tests in an accelerating rate calorimeter (ARC) were performed to investigate the thermal abuse behavior of aged and fresh cells under quasi-adiabatic conditions, showing a strong shift of the onset temperature for exothermic reactions. HSAL deposition promotes the reduction of the carbonate based electrolyte due to the high reactivity of lithium metal with high surface area, leading to a thermally induced decomposition of the electrolyte to produce volatile gaseous products. Nail penetration tests showed a change in the thermal runaway (TR) behavior affected by the decomposition reaction. This study indicates a greater thermal hazard for LIB cells at higher SOC and experiencing aging at low temperature.

  7. Study on Synthesis of Thoreau-modified 3, 5-Dimethyl-Thioltoluenediamine Used as Epoxy Resin Curing Agent and Its Performance

    NASA Astrophysics Data System (ADS)

    Peng, Yongli; Xiao, Wenzheng

    2017-06-01

    A novel curing agent Thoreau modified 3, 5-Dimethyl-thioltoluenediamine was synthesized and its molecular structure was characterized by FTIR and DSC. The curing kinetics of a high toughness and low volume shrinkage ratio epoxy system (modified DMTDA/DGEBA) was studied by differential scanning calorimetry (DSC) under noni so thermal conditions. The data were fitted to an order model and autocatalytic model respectively. The results indicate that in order model deviates significantly from experimental data. Malik’s method was used to prove that the curing kinetics of the system concerned follow single-step autocatalytic model, and a “single-point model-free” approach was employed to calculate meaningful kinetic parameters. The DSC curves derived from autocatalytic model gave satisfactory agreement with that of experiment in the range 5K/min∼25K/min. As the heating rate increased, the predicted DSC curves deviated from experimental curves, and the total exothermic enthalpy declined owing to the transition of competition relationship between kinetics control and diffusion control.

  8. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    PubMed

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Gas Suppression via Copper Interlayers in Magnetron Sputtered Al-Cu2O Multilayers.

    PubMed

    Kinsey, Alex H; Slusarski, Kyle; Sosa, Steven; Weihs, Timothy P

    2017-07-05

    The use of thin-foil, self-propagating thermite reactions to bond components successfully depends on the ability to suppress gas generation and avoid pore formation during the exothermic production of brazes. To study the mechanisms of vapor production in diluted thermites, thin film multilayer Al-Cu-Cu 2 O-Cu foils are produced via magnetron sputtering, where the Cu layer thickness is systematically increased from 0 to 100 nm in 25 nm increments. The excess Cu layers act as diffusion barriers, limiting the transport of oxygen from the oxide to the Al fuel, as determined by slow heating differential scanning calorimetry experiments. Furthermore, by adding excess Cu to the system, the temperature of the self-propagating thermite reactions drops below the boiling point of Cu, eliminating the metal vapor production. It is determined that Cu vapor production can be eliminated by increasing the Cu interlayer thickness above 50 nm. However, the porous nature of the final products suggests that only metal vapor production is suppressed via dilution. Gas generation via oxygen release is still capable of producing a porous reaction product.

  10. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge.

    PubMed

    Schrenk, Matthew O; Kelley, Deborah S; Bolton, Sheryl A; Baross, John A

    2004-10-01

    The recently discovered Lost City Hydrothermal Field (LCHF) represents a new type of submarine hydrothermal system driven primarily by exothermic serpentinization reactions in ultramafic oceanic crust. Highly reducing, alkaline hydrothermal environments at the LCHF produce considerable quantities of hydrogen, methane and organic molecules through chemo- and biosynthetic reactions. Here, we report the first analyses of microbial communities inhabiting carbonate chimneys awash in warm, high pH fluids at the LCHF and the predominance of a single group of methane-metabolizing Archaea. The predominant phylotype, related to the Methanosarcinales, formed tens of micrometre-thick biofilms in regions adjacent to hydrothermal flow. Exterior portions of active structures harboured a diverse microbial community composed primarily of filamentous Eubacteria that resembled sulphide-oxidizing species. Inactive samples, away from regions of hydrothermal flow, contained phylotypes related to pelagic microorganisms. The abundance of organisms linked to the volatile chemistry at the LCHF hints that similar metabolic processes may operate in the subseafloor. These results expand the range of known geological settings that support biological activity to include submarine hydrothermal systems that are not dependent upon magmatic heat sources.

  11. Combined Natural Gas and Solar Technologies for Heating and Cooling in the City of NIS in Serbia

    NASA Astrophysics Data System (ADS)

    Stefanović, Velimir P.; Bojić, Milorad Lj.

    2010-06-01

    The use of conventional systems for heat and electricity production in Niš and Serbia means a constant waste of energy, and money. This problem is present in both industrial and public sector. Using conventional systems, means not only low-energy efficient systems, and technologies, but also using very "dirty" technologies, which cause heavy environment pollution. The lack of electricity in our country, and region is also present. The gas pipeline in Niš was finished not long ago, and second gas pipeline is about to be made in the next couple of years. This opens a door for implementing new technologies and the use of new methods for production of heat and electricity, while preserving our environment. This paper reports discussion of this technology with management of public institutions, which use both heat and electricity.

  12. Automated system of devising and choosing economically effective technological processes of heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, V.P.; Tkacheva, O.N.

    1986-03-01

    Heat treatment entails considerable expenditure of power and often requires expensive equipment. One of the fundamental problems arising in the elaboration of heat treatment technology is the selection of the economically optimal process, which also has to ensure the quality of finished parts required by the customer. To correctly determine the expenditures on the basic kinds of resources it is necessary to improve the methods of calculating prime costs and to carry out such a calculation at the earliest stages of the technological preparation of production. A new method of optimizing synthesis of the structure of devising technological processes ofmore » heat treatment using the achievements of cybernetics and the possibilities of computerization is examined in this article. The method makes it possible to analyze in detail the economy of all possible variants of a technological process when one parameter is changed, without recalculating all items of prime cost.« less

  13. Heat Pipe Technology

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  14. The technological raw material heating furnaces operation efficiency improving issue

    NASA Astrophysics Data System (ADS)

    Paramonov, A. M.

    2017-08-01

    The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.

  15. Experiment and modeling: Ignition of aluminum particles with a carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Mohan, Salil

    Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1--50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103--104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 --0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was developed to describe the experiments. Experiments with different jet velocities in air environment were performed to validate the model. The interaction of the laser beam with particles is particle size dependent and a narrow range of particle sizes (around 3.4 microm) is heated most effectively. Therefore, the heat transfer model needs to be analyzed only for the particles with this specific size, which greatly simplifies the interpretation of experiments. Describing heating of a micron sized metal particle involves the transition regime heat transfer. A modified Fuchs model was used to describe the heat transfer in this study. In addition to dry air environment, the experimental technique was also used with other oxidizing environments, including O2, H2O, CO2 and mixtures thereof. It was observed that particle size capable of maintaining a vapor phase flame is a function of the environment. Arrhenius model kinetics parameters for Al ignition in O2, CO2 and H2O environments were determined.

  16. An Illuminating Reaction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.

    1996-01-01

    Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)

  17. Exothermic Bond Breaking: A Persistent Misconception

    ERIC Educational Resources Information Center

    Galley, William C.

    2004-01-01

    The misconceptions regarding the nature of ATP hydrolysis and bond breaking are discussed. The students' knowledge in this area is quantitatively measured by a survey of over 600 biochemistry and physiology students.

  18. Technologies for the Comprehensive Exploitation of the Geothermal Resources of the North Caucasus Region

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.

    2018-03-01

    Technology for the integrated development of low-temperature geothermal resources using the thermal and water potentials for various purposes is proposed. The heat of the thermal waters is utilized in a low-temperature district heating system and for heating the water in a hot water supply system. The water cooled in heat exchangers enters a chemical treatment system where it is conditioned into potable water quality and then forwarded to the household and potable water supply system. Efficient technologies for removal of arsenic and organic contaminants from the water have been developed. For the uninterrupted supply of the consumers with power, the technologies that use two and more types of renewable energy sources (RESs) have the best prospects. Technology for processing organic waste using the geothermal energy has been proposed. According to this technology, the geothermal water is divided into two flows, one of which is delivered to a biomass conversion system and the other is directed to a geothermal steam-gas power plant (GSGP). The wastewater arrives at the pump station from which it is pumped back into the bed. Upon drying, the biogas from the conversion system is delivered into the combustion chamber of a gas-turbine plant (GTP). The heat of the turbine exhaust gases is used in the GSGP to evaporate and reheat the low-boiling working medium. The working medium is heated in the GSGP to the evaporation temperature using the heat of the thermal water. High-temperature geothermal brines are the most promising for the comprehensive processing. According to the proposed technology, the heat energy of the brines is utilized to generate the electric power at a binary geothermal power station; the electric power is then used to extract the dissolved chemical components from the rest of the brine. The comprehensive utilization of high-temperature brines of the East-Precaucasian Artesian Basin will allow to completely satisfy the demand of Russia for lithium carbonate and sodium chloride.

  19. Oxygen adsorption onto pure and doped Al surfaces--the role of surface dopants.

    PubMed

    Lousada, Cláudio M; Korzhavyi, Pavel A

    2015-01-21

    Using density functional theory (DFT) with the PBE0 density functional we investigated the role of surface dopants in the molecular and dissociative adsorption of O2 onto Al clusters of types Al50, Al50Alad, Al50X and Al49X, where X represents a dopant atom of the following elements Si, Mg, Cu, Sc, Zr, and Ti. Each dopant atom was placed on the Al(111) surface as an adatom or as a substitutional atom, in the last case replacing a surface Al atom. We found that for the same dopant geometry, the closer is the ionization energy of the dopant element to that of elemental Al, the more exothermic is the dissociative adsorption of O2 and the stronger are the bonds between the resulting O atoms and the surface. Additionally we show that the Mulliken concept of electronegativity can be applied in the prediction of the dissociative adsorption energy of O2 on the doped surfaces. The Mulliken modified second-stage electronegativity of the dopant atom is proportional to the exothermicity of the dissociative adsorption of O2. For the same dopant element in an adatom position the dissociation of O2 is more exothermic when compared to the case where the dopant occupies a substitutional position. These observations are discussed in view of the overlap population densities of states (OPDOS) computed as the overlap between the electronic states of the adsorbate O atoms and the clusters. It is shown that a more covalent character in the bonding between the Al surface and the dopant atom causes a more exothermic dissociation of O2 and stronger bonding with the O atoms when compared to a more ionic character in the bonding between the dopant and the Al surface. The extent of the adsorption site reconstruction is dopant atom dependent and is an important parameter for determining the mode of adsorption, adsorption energy and electronic structure of the product of O2 adsorption. The PBE0 functional could predict the existence of the O2 molecular adsorption product for many of the cases investigated here.

  20. Polymerization stress evolution of a bulk-fill flowable composite under different compliances.

    PubMed

    Guo, Yongwen; Landis, Forrest A; Wang, Zhengzhi; Bai, Ding; Jiang, Li; Chiang, Martin Y M

    2016-04-01

    To use a compliance-variable instrument to simultaneously measure and compare the polymerization stress (PS) evolution, degree of conversion (DC), and exotherm of a bulk-fill flowable composite to a packable composite. A bulk-fill flowable composite (Filtek Bulk-fill, FBF) and a conventional packable composite (Filtek Z250, Z250) purchased from 3M ESPE were investigated. The composites were studied using a cantilever-beam based instrument equipped with an in situ near infrared (NIR) spectrometer and a microprobe thermocouple. The measurements were carried out under various instrumental compliances (ranging from 0.3327μm/N to 12.3215μm/N) that are comparable to the compliances of clinically prepared tooth cavities. Correlations between the PS and temperature change as well as the DC were interpreted. The maximum PS of both composites at 10min after irradiation decreased with the increase in the compliance of the cantilever beam. The FBF composite generated a lower final stress than the Z250 sample under instrumental compliances less than ca. 4μm/N; however, both materials generated statistically similar PS values at higher compliances. The reaction exotherm and the DC of both materials were found to be independent of compliance. The DC of the FBF sample was slightly higher than that of the packable Z250 composite while the peak exotherm of FBF was almost double that of the Z250 composite. For FBF, a characteristic drop in the PS was observed during the early stage of polymerization for all compliances studied which was not observed in the Z250 sample. This drop was shown to relate to the greater exotherm of the less-filled FBF sample relative to the Z250 composite. While the composites with lower filler content (low viscosity) are generally considered to have lower PS than the conventional packable composites, a bulk-fill flowable composite was shown to produce lower PS under a lower compliance of constraint as would be experienced if the composite was used as the base material in clinical procedures. Published by Elsevier Ltd.

  1. Investigation of lunar base thermal control system options

    NASA Technical Reports Server (NTRS)

    Ewart, Michael K.

    1993-01-01

    Long duration human exploration missions to the Moon will require active thermal control systems which have not previously been used in space. The two technologies which are most promising for long term lunar base thermal control are heat pumps and radiator shades. Recent trade-off studies at the Johnson Space Center have focused development efforts on the most promising heat pump and radiator shade technologies. Since these technologies are in the early stages of development and many parameters used in the study are not well defined, a parametric study was done to test the sensitivity to each assumption. The primary comparison factor in these studies was the total mass system, with power requirements included in the form of a mass penalty for power. Heat pump technologies considered were thermally driven heat pumps such as metal hydride, complex compound, absorption and zeolite. Also considered were electrically driven Stirling and vapor compression heat pumps. Radiator shade concepts considered included step shaped, V-shaped and parabolic (or catenary) shades and ground covers. A further trade study compared the masses of heat pump and radiator shade systems.

  2. High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides

    NASA Astrophysics Data System (ADS)

    André, Laurie; Abanades, Stéphane; Cassayre, Laurent

    2017-09-01

    Metal oxides are potential materials for thermochemical heat storage via reversible endothermal/exothermal redox reactions, and among them, cobalt oxide and manganese oxide are attracting attention. The synthesis of mixed oxides is considered as a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering issues, and the materials potential for thermochemical heat storage application needs to be assessed. This work proposes a study combining thermodynamic calculations and experimental measurements by simultaneous thermogravimetric analysis and calorimetry, in order to identify the impact of iron oxide addition to Co and Mn-based oxides. Fe addition decreased the redox activity and energy storage capacity of Co3O4/CoO, whereas the reaction rate, reversibility and cycling stability of Mn2O3/Mn3O4 was significantly enhanced with added Fe amounts above 15 mol%, and the energy storage capacity was slightly improved. The formation of a reactive cubic spinel explained the improved re-oxidation yield of Mn-based oxides that could be cycled between bixbyite and cubic spinel phases, whereas a low reactive tetragonal spinel phase showing poor re-oxidation was formed below 15 mol% Fe. Thermodynamic equilibrium calculations predict accurately the behavior of both systems. The possibility to identify other suitable mixed oxides becomes conceivable, by enabling the selection of transition metal additives for tuning the redox properties of mixed metal oxides destined for thermochemical energy storage applications.

  3. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    USGS Publications Warehouse

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  4. Energy characteristics of the CO2 laser cutting of thick steel sheets

    NASA Astrophysics Data System (ADS)

    Orishich, A. M.

    2012-01-01

    In the present paper the scaling laws for the oxygen-assisted laser cutting of low-carbon steel of 5-25 mm is studied experimentally. No dross and minimal roughness of the cut surface were chosen as criteria of quality. The paper also studies the possibility to describe the cutting process by the similarity method and as ratios between dimensionless variables. Normalized power W/ktT, normalized velocity Vcb/a (Peclet number) and kerf width have special optimum numb. Formulas were obtained to determine the optimum values of the laser power and cutting speed for the given sheet thickness. The energy balance of the oxygen-assisted laser cutting is studied experimentally at these optimum parameters. The absorbed laser energy, heat conduction losses and cut width were measured experimentally, and then the energy of exothermic reaction of oxidation was found from the balance equation. To define the integral coefficient of absorption, the laser power was measured on the cutting channel exit during the cutting. The heat conduction losses were measured by the calorimetric method. It has been established that the absorbed laser energy, oxidation energy, thermal losses and melting enthalpy related to a sheet thickness unit, do not depend on the sheet thickness at the cutting with the minimal roughness. The results enable to determine the fraction of the oxidized iron in the melt and thermal efficiency at the cutting with the minimal roughness. The share of the oxidation reaction energy is 50-60% in the total contributed energy.

  5. Effect of chemical heat release in a temporally evolving mixing layer

    NASA Technical Reports Server (NTRS)

    Higuera, F. J.; Moser, R. D.

    1994-01-01

    Two-dimensional numerical simulations of a temporally evolving mixing layer with an exothermic infinitely fast diffusion flame between two unmixed reactants have been carried out in the limit of zero Mach number to study the effect of the heat release on the early stages of the evolution of the flow. Attention has been directed to relatively large values of the oxidizer-to-fuel mass stoichiometric ratio typical of hydrocarbon flames, and initial vorticity distributions thicker than the temperature and species distributions have been chosen to mimic the situation at the outlet of a jet. The results show that, during the stages of the evolution covered by the present simulations, enhancement of combustion occurs by local stretching of the flame without much augmentation of its area. The rate of product generation depends strongly on the initial conditions, which suggests the possibility of controlling the combustion by acting on the flow. Rollup and vortex amalgamation still occur in these reacting flows but are very much affected by the production of new vorticity by baroclinic torques. These torques lead to counter rotating vortex pairs around the flame and, more importantly, in thin layers of light fluid that leave the vicinity of the flame when the Kelvin-Helmholtz instability begins to develop. Propelled by the vortex pairs, these layers wind around, split on reaching high pressure regions, and originate new vortex pairs in a process that ends up building large-scale vortices with a vorticity distribution more complex than for a constant density fluid.

  6. On the autonomous motion of active drops or bubbles.

    PubMed

    Ryazantsev, Yuri S; Velarde, Manuel G; Guzman, Eduardo; Rubio, Ramón G; Ortega, Francisco; Montoya, Juan-Jose

    2018-05-19

    Thermo-capillary stresses on the surface of a drop can be the result of a non-isothermal surface chemical conversion of a reactant dissolved in the host fluid. The strength of heat production (with e.g. absorption) on the surface is ruled by the diffusion of the reactant and depends on the state of motion of the drop. Such thermo-capillary stresses can provoke the motion of the drop or its motionless state in the presence of an external body force. If in the balance of forces, including indeed viscous drag, the net resultant force vanishes there is the possibility of autonomous motion with constant velocity of the drop. Focusing on drops with radii in the millimeter range provided here is a quantitative study of the possibility of such autonomous motion when the drop, considered as active unit, is seat of endo- or exo-thermic reactive processes that dominate its motion. The framework is restricted to Stokes flows in the hydrodynamics, negligible heat Peclet number while the solute Peclet number is considered very high. A boundary layer approximation is used in the description of reactant diffusion. Those processes eventually end up in the action being expressed by surface tension gradients and the Marangoni effect. Explicit expressions of the force acting on the drop and the velocity fields inside and outside the drop are provided. Some significant particular cases are discussed to illustrate the usefulness of the theory. Copyright © 2018. Published by Elsevier Inc.

  7. Molecular structure, thermal behavior and adiabatic time-to-explosion of 3,3-dinitroazetidinium picrate

    NASA Astrophysics Data System (ADS)

    Ma, Haixia; Yan, Biao; Li, Junfeng; Ren, Yinghui; Chen, Yongshi; Zhao, Fengqi; Song, Jirong; Hu, Rongzu

    2010-09-01

    3,3-Dinitroazetidinium picrate (DNAZṡPA) was synthesized by adding 3,3-dinitroazetidine (DNAZ) to picric acid (PA) in methanol, the single crystals suitable for X-ray measurement were obtained by recrystallization at room temperature. The compound crystallises orthorhombic with space group P2 12 12 1 and crystal parameters of a = 0.7655(1) nm, b = 0.8962(2) nm, c = 2.0507(4) nm, V = 1.4069(5) nm 3, D c = 1.776 g cm -3, Z = 4, F(0 0 0) = 768 and μ = 0.166 mm -1. The thermal behavior of DNAZṡPA was studied under a non-isothermal condition by DSC and TG-DTG methods. The kinetic parameters of the first exothermic thermal decomposition process were obtained from analysis of the DSC and TG curves by Kissinger method, Ozawa method and the integral method. The specific heat capacity of DNAZṡPA was determined with a continuous C p mode of micro-calorimeter and the standard mole specific heat capacity was 436.56 J mol -1 K -1 at 298.15 K. Using the relationship of C p with T and the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion) was evaluated to be 40.7 s. The free radical signals of DNAZṡPA and 1,3,3-trinitroazetidine (TNAZ) were detected by electron spin resonance (ESR) technique to estimate its sensitivity.

  8. Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Allcorn, Eric; Kim, Sang-Ok; Manthiram, Arumugam

    2015-12-01

    Various active/inactive nanocomposites of Cu2Sb-Al2O3@C, Cu2Sb-TiC, and Cu2Sb-TiC@C have been synthesized by high energy mechanical milling and investigated by differential scanning calorimetry (DSC) to determine the lithiated phase stability and heat generation arising from these electrodes. The milling process reduces the Li3Sb phase stability, relative to the un-milled samples, to below ∼200 °C. However, the incorporation of the reinforcing, inactive phases Al2O3, TiC, and carbon black offer a slight improvement. DSC curves also show that the low-temperature heat generation in the SEI-layer reaction range is not noticeably altered by either the milling process or the addition of the inactive phases. A strong exothermic peak is observed at ∼200 °C for the 0% state of charge electrodes of Cu2Sb-Al2O3@C and Cu2Sb-TiC@C that was caused by the incorporation of carbon black into the composite. This peak was not present in the electrodes of milled Cu2Sb or Cu2Sb-TiC, suggesting that efforts to extend the cycle life of alloy anodes should avoid carbon black due to its destabilizing effects on delithiated electrodes. Fourier Transform infrared spectroscopy analysis indicates that the reaction arising from the incorporation of carbon black is tied to a low-temperature breakdown of the lithium salt LiPF6.

  9. Temperature field calculation with allowance for heat of chemical reactions under electroexplosion nickel plating of aluminum

    NASA Astrophysics Data System (ADS)

    Romanov, Denis A.; Semina, Olga A.; Stepikov, Maksim A.; Gromov, Victor E.

    2017-01-01

    The analysis of stress-strained state at the boundary «faced surface layer - substrate» is performed by methods of elasticity theory of inhomogeneous media, on exposure to the load distributed in a circle. The fundamental aspects of Kelvin - Helmholtz and Richtmayer - Meshkov instabilities are considered. The following methods are used for the research. The analytical method of solution is used for finding the temperature distribution of substrate and coating material as well as distribution of speed of material motion in deposition of the coating. Finite element method is required in accounting for the parameters of convective mixing. For the analysis of the proposed thickness and dispersion of the coating the concepts of hydrodynamic Kelvin - Helmholtz and Richtmayer - Meshkov instabilities are used. Using the mass, energy and momentum conservation laws, with allowance for the possible exothermal reactions, the system of equations of the mathematical model of electroexplosion synthesis on the basis of thermoreacting components of Ni-Al system is formulated. The degree of effect of model's parameters on dispersion and thickness of the coating is determined. The comparison of the modeling and experimental data is carried out. It is established that the due regard to the thermal effect of chemical reaction increases considerably the time of existence of the reacting elements in the liquid state and it facilitates the participation of the entire nickel in the reaction. The increased time of heat effect enables the other processes to occur more completely.

  10. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies

    PubMed Central

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-01-01

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355

  11. The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  12. Spaceborne power systems preference analyses. Volume 2: Decision analysis

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.

    1985-01-01

    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis. The purpose of the ranking was to identify promising concepts for further technology development and the issues associated with such development. Four groups were interviewed to obtain preference. The four groups were: safety, systems definition and design, technology assessment, and mission analysis. The highest ranked systems were the heat-pipe thermoelectric systems, heat-pipe Stirling, in-core thermionic, and liquid-metal thermoelectric systems. The next group contained the liquid-metal Stirling, heat-pipe Alkali Metal Thermoelectric Converter (AMTEC), heat-pipe Brayton, liquid-metal out-of-core thermionic, and heat-pipe Rankine systems. The least preferred systems were the liquid-metal AMTEC, heat-pipe thermophotovoltaic, liquid-metal Brayton and Rankine, and gas-cooled Brayton. The three nonheat-pipe technologies selected matched the top three nonheat-pipe systems ranked by this study.

  13. Plasma Heating: An Advanced Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

  14. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  15. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Astrophysics Data System (ADS)

    Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  16. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SWINE WASTE ELECTRIC POWER AND HEAT PRODUCTION--CAPSTONE 30KW MICROTURBINE SYSTEM

    EPA Science Inventory

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system was evaluated based on the Capstone 30kW Microturbine developed by Cain Ind...

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SWINE WASTE ELECTRIC POWER AND HEAT PRODUCTION--MARTIN MACHINERY INTERNAL COMBUSTION ENGINE

    EPA Science Inventory

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system designed by Martin Machinery was evaluated. This paper provides test result...

  19. INNOVATIVE TECHNOLOGY EVALUATION REPORT: RADIO FREQUENCY HEATING, KAI TECHNOLOGIES, INC.

    EPA Science Inventory

    A demonstration of KAI Technologies in-situ radio frequency heating system for soil treatment was conducted from January 1994 to July 1994 at Kelly Air Force Base in San Antonio, Texas. This demonstration was conducted as a joint effort between the USEPA and the USAF. The technol...

  20. Dry coating, a novel coating technology for solid pharmaceutical dosage forms.

    PubMed

    Luo, Yanfeng; Zhu, Jesse; Ma, Yingliang; Zhang, Hui

    2008-06-24

    Dry coating is a coating technology for solid pharmaceutical dosage forms derived from powder coating of metals. In this technology, powdered coating materials are directly coated onto solid dosage forms without using any solvent, and then heated and cured to form a coat. As a result, this technology can overcome such disadvantages caused by solvents in conventional liquid coating as serious air pollution, high time- and energy-consumption and expensive operation cost encountered by liquid coating. Several dry coating technologies, including plasticizer-dry-coating, electrostatic-dry-coating, heat-dry-coating and plasticizer-electrostatic-heat-dry-coating have been developed and extensively reported. This mini-review summarized the fundamental principles and coating processes of various dry coating technologies, and thoroughly analyzed their advantages and disadvantages as well as commercialization potentials.

Top