The RIB facility EXOTIC and its experimental program at INFN-LNL
NASA Astrophysics Data System (ADS)
Parascandolo, Concetta
2018-05-01
In this contribution, I will present a review about the EXOTIC facility and the research field accessible by using its Radioactive Ion Beams. The EXOTIC facility, installed at the INFN-Laboratori Nazionali di Legnaro, is devoted to the in-flight production of light Radioactive Ion Beams in the energy range between 3-5 MeV/nucleon. The scientific activity performed at EXOTIC concerns different aspects of nuclear physics and nuclear astrophysics, such as, the investigation of reaction mechanisms and nuclear structure, resonant scattering experiments and measurements of nuclear reaction cross sections of astrophysical interest.
On the existence of Rydberg nuclear molecules
NASA Astrophysics Data System (ADS)
Bertulani, C. A.; Frederico, T.; Hussein, M. S.
2017-11-01
Present nuclear detection techniques prevents us from determining if the analogue of a Rydberg molecule exists for the nuclear case. But nothing in nature disallows their existence. As in the atomic case, Rydberg nuclear molecules would be a laboratory for new aspects and applications of nuclear physics. We propose that Rydberg nuclear molecules, which represent the exotic, halo nuclei version, such as 11Be +11Be, of the well known quasimolecules observed in stable nuclei such as 12C +12C, might be common structures that could manifest their existence along the dripline. A study of possible candidates and the expected structure of such exotic clustering of two halo nuclei: the Rydberg nuclear molecules, is made on the basis of three different methods. It is shown that such cluster structures might be stable and unexpectedly common.
NASA Astrophysics Data System (ADS)
Bacca, Sonia
2016-04-01
A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.
NASA Astrophysics Data System (ADS)
Casten, R. F.; Cakirli, R. B.
2009-03-01
Understanding the development of configuration mixing, coherence, collectivity, and deformation in nuclei is one of the crucial challenges in nuclear structure physics, and one which has become all the more important with the advent of next generation facilities for the study of exotic nuclei. We will discuss recent work on phase/shape transitional behavior in nuclei, and the role of changes in sub-shell structure in mediating such transitional regions. We will also discuss a newly found, much deeper, link between nuclear structure and nuclear binding energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu
This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to crossmore » section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.« less
Exotic nuclear studies around and below A = 100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nara Singh, B. S.; Wadsworth, R.; Brock, T. S.
2011-11-30
A RISING experiment with an aim to study exotic Cd nuclei was carried out at GSI-FRS facility. Some preliminary results from this experiment are presented here. In particular, the {beta} decay of {sup 96}Cd to {sup 96}Ag revealed the existence of a high spin isomer predicted a few decades ago. In this context, the structures of both these nuclei are discussed. Shell model calculations using the Gross-Frenkel interaction are used to interpret the results.
Accuracy of Reaction Cross Section for Exotic Nuclei in Glauber Model Based on MCMC Diagnostics
NASA Astrophysics Data System (ADS)
Rueter, Keiti; Novikov, Ivan
2017-01-01
Parameters of a nuclear density distribution for an exotic nuclei with halo or skin structures can be determined from the experimentally measured reaction cross-section. In the presented work, to extract parameters such as nuclear size information for a halo and core, we compare experimental data on reaction cross-sections with values obtained using expressions of the Glauber Model. These calculations are performed using a Markov Chain Monte Carlo algorithm. We discuss the accuracy of the Monte Carlo approach and its dependence on k*, the power law turnover point in the discreet power spectrum of the random number sequence and on the lag-1 autocorrelation time of the random number sequence.
Transport Properties in Nuclear Pasta
NASA Astrophysics Data System (ADS)
Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre
2016-09-01
At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V., E-mail: dobrov@pnpi.spb.ru
2015-05-15
In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured.more » The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the {sup 6}He, {sup 8}He, {sup 11}Li, and {sup 14}Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the {sup 8}Li, {sup 9}Li, and {sup 12}Be nuclei.« less
Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart: Web Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escher, J. E.; Blackmon, J.; Elster, C.
Recent years have seen exciting new developments and progress in nuclear structure theory, reaction theory, and experimental techniques, that allow us to move towards a description of exotic systems and environments, setting the stage for new discoveries. The purpose of the 5-week program was to bring together physicists from the low-energy nuclear structure and reaction communities to identify avenues for achieving reliable and predictive descriptions of reactions involving nuclei across the isotopic chart. The 4-day embedded workshop focused on connecting theory developments to experimental advances and data needs for astrophysics and other applications. Nuclear theory must address phenomena from laboratorymore » experiments to stellar environments, from stable nuclei to weakly-bound and exotic isotopes. Expanding the reach of theory to these regimes requires a comprehensive understanding of the reaction mechanisms involved as well as detailed knowledge of nuclear structure. A recurring theme throughout the program was the desire to produce reliable predictions rooted in either ab initio or microscopic approaches. At the same time it was recognized that some applications involving heavy nuclei away from stability, e.g. those involving fi ssion fragments, may need to rely on simple parameterizations of incomplete data for the foreseeable future. The goal here, however, is to subsequently improve and refine the descriptions, moving to phenomenological, then microscopic approaches. There was overarching consensus that future work should also focus on reliable estimates of errors in theoretical descriptions.« less
Rare isotopes and the sound of dilute nuclear matter
NASA Astrophysics Data System (ADS)
Papakonstantinou, P.
2018-04-01
Dilute baryonic matter, at densities below the normal saturation density of symmetric matter, is found on the crust of neutron stars and in collapsing supernova matter, its properties determining the evolution of those stellar objects. It is also readily found on the surface of ordinary and exotic atomic nuclei and lives fleetingly in the form of space-extended resonances of excited nucleons. Liminal states of nuclear matter, between saturation and full evaporation or clusterization, are manifest in the structure of symmetric nuclei through clustering and of very asymmetric rare species in haloes and the neutron skin; they stand literally at the threshold of a nucleus's response to hadronic probes, including processes which hinder or enable fusion. In this contribution I focus on excited states, and in particular exotic or not-so-exotic dipole excitation modes of N = Z nuclei and neutron-rich species, including new theoretical results on threshold strength. Modes of special interest are vibrations of and within diffuse surface layers and alpha-cluster oscillations. The modeling of such processes is relevant, directly or indirectly, for the description of reactions at astrophysical energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goriely, S.; Bauswein, A.; Janka, H.-T.
About half of the nuclei heavier than iron observed in nature are produced by the so-called rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved, for which essentially no experimental data exist. The present paper emphasizes some important future challenges faced by nuclear physics in this problem, particularlymore » in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Both the astrophysics and the nuclear physics difficulties are critically reviewed with special attention paid to the r-process taking place during the decompression of neutron star matter following the merging of two neutron stars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napoli, D. R., E-mail: napoli@lnl.infn.it; Andrighetto, A.; Antonini, P.
SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and theirmore » maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.
Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.
NASA Astrophysics Data System (ADS)
Chipps, K. A.
2018-01-01
Explosive stellar environments are sometimes driven by nuclear reactions on short-lived, radioactive nuclei. These reactions often drive the stellar explosion, alter the observable light curves produced, and dictate the final abundances of the isotopes created. Unfortunately, many reaction rates at stellar temperatures cannot be directly measured in the laboratory, due to the physical limitations of ultra-low cross sections and high background rates. An additional complication arises because many of the important reactions involve radioactive nuclei which have lifetimes too short to be made into a target. As such, direct reactions require very intense and pure beams of exotic nuclei. Indirect approaches with both stable and radioactive beams can, however, provide crucial information on the nuclei involved in these astrophysical reactions. A major development toward both direct and indirect studies of nuclear reactions rates is the commissioning of the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) supersonic gas jet target. The JENSA system provides a pure, homogeneous, highly localized, dense, and robust gaseous target for radioactive ion beam studies. Charged-particle reactions measurements made with gas jet targets can be cleaner and display better resolution than with traditional targets. With the availability of pure and localized gas jet targets in combination with developments in exotic radioactive ion beams and next-generation detector systems, the range of reaction studies that are experimentally possible is vastly expanded. Various representative cases will be discussed.
Study of the Nuclear Structure of 39P Using Beta-Delayed Gamma Spectroscopy
NASA Astrophysics Data System (ADS)
Abromeit, Brittany; NSCL Experiment E14063 Team Team
2016-03-01
Investigation of nuclei with neutron and proton imbalance is at the forefront of nuclear physics research today. This is driven by the fact that the structure in these regimes may vary with that seen near the valley of stability. With eight neutrons more than the stable isotope of phosphorous, 39P is a neutron-rich exotic nucleus that has very limited information on it: previous studies of 39P produce only three known energy levels and gamma rays. The fragmentation of a 48Ca primary beam on a 564mg/cm2 thick Be target at the National Superconducting Cyclotron Laboratory (NSCL) was used to produce exotic 39Si. Using the NSCL Beta Counting System (BCS), consisting of a thick planner germanium double-sided strip detector (GeDSSD) and 16 High-purity germanium detectors in an array, SeGA, the beta-gamma coincidences from the decay of 39Si to 39P were analyzed. The resulting level scheme of 39P, including over 12 new gamma rays and energy states, confirmation of the previously measured half-life, and first-time logft values will be presented. This work was supported by the NSF under Grant No. 1401574.
Coulomb Excitation of Exotic Nuclei
NASA Astrophysics Data System (ADS)
Macchiavelli, Augusto O.
2017-09-01
The structure of nuclei far from the stability line is a central theme of research in nuclear physics. Key to this program has been the worldwide development of radioactive beam facilities and novel detector systems, which provide the tools needed to produce and study these exotic nuclei. Coulomb Excitation provides a unique probe to characterize the interplay of collective and single-particle degrees of freedom of the atomic nucleus. In particular, the combination of state-of-the-art charged particle detectors and gamma-ray spectroscopy plays a vital and ubiquitous role in these studies. As an introduction to this Mini-Symposium, I will present a short overview of this powerful technique and selected examples of recent experiments. Future opportunities with a 4 π gamma-ray tracking array like GRETA will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).
Review of metastable states in heavy nuclei
Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.
2016-05-31
Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.
NASA Astrophysics Data System (ADS)
Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo
2018-05-01
The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).
Nuclear pasta in protoneutron stars: simulations of neutrino emission from nucelar de-excitation
NASA Astrophysics Data System (ADS)
Witt, Matthew Charles; Newton, William
2017-01-01
Nuclear pasta is an exotic phase of matter with densities near ρ ≈ ρ0 = 1014 g cm-3 that consists of complex structures with geometries resembling spaghetti, lasagna, gnocchi, and other types of pasta. It is predicted to appear in the inner crust of neutron stars, protoneutron stars, and the collapsing cores of massive stars. It is hypothesized that nuclear pasta has a significant effect on transport and neutrino scattering properties of neutron and protoneutron stars. If this is true, then it is possible to find observational signatures of nuclear pasta. We present a calculation of neutrino emmissivity of pasta phases due to de-excitation of neutrons. We discuss observational implications on the neutrino signal of protoneutron stars.
Systematic structure of the neutron drip-line {sup 22}C nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana
2014-10-24
In the present work we systematically discuss the nuclear structure of the the heaviest particle-bound carbon isotope, {sup 22}C. The ground state wave function of the carbon isotope is calculated using the {sup 20}C core plus two-valence neutron based on a phenomenological mean-field MF potential. We apply the deduced wave function to provide the nuclear matter density which is necessary in the calculations of the total reaction cross section. Calculations show that there is a reasonable good description of the experimental binding energy BE and root-mean square RMS radius. The exotic structure and configuration of the ground state carbon isotopemore » is explained and a consistent explanation on the two-neutron halo (Borromean) nucleus is given.« less
Colloquium: Laser probing of neutron-rich nuclei in light atoms
NASA Astrophysics Data System (ADS)
Lu, Z.-T.; Mueller, P.; Drake, G. W. F.; Nörtershäuser, W.; Pieper, Steven C.; Yan, Z.-C.
2013-10-01
The neutron-rich He6 and He8 isotopes exhibit an exotic nuclear structure that consists of a tightly bound He4-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms and have measured the atomic isotope shifts along the He4-He6-He8 chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.
β-DECAY Studies at Triumf and Future Opportunities with Griffin
NASA Astrophysics Data System (ADS)
Garnsworthy, A. B.; Ball, G. C.; Bender, P. C.; Churchman, R.; Close, A.; Glister, J.; Hackman, G.; Ketelhut, S.; Krücken, R.; Sjue, S. K. L.; Tardiff, E.; Garrett, P. E.; Demand, G. A.; Dunlop, R.; Finlay, P.; Hadinia, B.; Leach, K.; Michetti-Wilson, J.; Rand, E. T.; Svensson, C. E.; Andreoiu, C.; Ashley, R.; Chester, A.; Cross, D.; Starosta, K.; Wang, Z.; Zganjar, E. F.
2013-03-01
The 8π spectrometer at TRIUMF-ISAC-I and a powerful suite of ancillary detectors support a wide program of research in the fields of nuclear structure, nuclear astrophysics and fundamental symmetries with low-energy radioactive beams.Work is underway to upgrade the Ge detectors and DAQ aspects of the facility to a new state-of-the-art γ-ray spectrometer, GRIFFIN, which will become operational in 2014. GRIFFIN will constitute an increase in the γ-γ efficiency of close to a factor of 300 over the current setup and extend the capabilities for investigations of exotic nuclei produced at ISAC.
Effective inertial coefficient for the dinuclear regime of the exotic decay of nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duarte, S.B.; Goncalves, M.G.
Geometric and incompressibility constraint relations are used explicitly in reducing the number of collective variables of the dinuclear phase of the fissioning system to calculate the barrier penetrability factor. Consistently, we define an effective inertial coefficient for the relative motion of the fissioning system. With this inertial coefficient, half-lives of the exotic and alpha decays are successfully reproduced for all available experimental data, using only one well-controlled nuclear parameter, the nuclear radius constant. {copyright} {ital 1996 The American Physical Society.}
Measurement of the heaviest β-delayed 2-neutron emitter: 136Sb
NASA Astrophysics Data System (ADS)
Caballero-Folch, R.; Dillmann, I.; Taín, J. L.; Agramunt, J.; Domingo-Pardo, C.; Algora, A.; Äystö, J.; Calviño, F.; Canete, L.; Cortès, G.; Eronen, T.; Ganioglu, E.; Gelletly, W.; Gorelov, D.; Guadilla, V.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V.; Koponen, J.; Marta, M.; Mendoza, E.; Montaner-Pizá, A.; Moore, I.; Nobs, Ch.; Orrigo, S.; Penttilä, H.; Pohjalainen, I.; Reinikainen, J.; Riego, A.; Rinta-Antila, S.; Rubio, B.; Salvador-Castiñeira, P.; Simutkin, V.; Voss, A.
2017-09-01
The β-delayed neutron emission probability, Pn, of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition β-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of β-delayed one-neutron emitters (β1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, which can be studied and analyzed using specific detection systems. This contribution reports two recent measurements of β-delayed neutron emitters which allowed the determination of half-lives and the neutron branching ratio of isotopes in the mass region above A = 200 and N > 126, and a second experiment which confirmed 136Sb as the heaviest double neutron emitter (β2n) measured so far.
PREFACE: Nuclear Cluster Conference; Cluster'07
NASA Astrophysics Data System (ADS)
Freer, Martin
2008-05-01
The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07
NASA Astrophysics Data System (ADS)
Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.
2013-12-01
Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.
FUSTIPEN—the France-U.S. Theory Institute for Physics with Exotic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papenbrock, Thomas
FUSTIPEN, the France-U.S. Theory Institute for Physics with Exotic Nuclei, was an international venue for theoretical research on the physics of nuclei during an era of particularly active experimental investigations of rare isotopes, see http://fustipen.ganil.fr/. It was dedicated to collaborative research between U.S.-based and French nuclear physicists, drawing on the complementary expertise in the two countries. The grant provided travel and local support for visits by U.S. nuclear physicists to GANIL, where the FUSTIPEN offices are located, and also supported collateral travel to other French research institutions.
NASA Astrophysics Data System (ADS)
Boutami, R.; Borge, M. J. G.; Mach, H.; Kurcewicz, W.; Fraile, L. M.; Gulda, K.; Aas, A. J.; García-Raffi, L. M.; Løvhøiden, G.; Martínez, T.; Rubio, B.; Taín, J. L.; Tengblad, O.
2008-10-01
The low-energy structure of 231Ac has been investigated by means of γ ray spectroscopy following the β decay of 231Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a MINI-ORANGE electron spectrometer. The decay scheme of 231Ra → 231Ac has been constructed for the first time. The Advanced Time Delayed βγγ(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus.
NASA Astrophysics Data System (ADS)
Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru
2008-04-01
Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al. -- Thermal pairing in nuclei / N. D. Dang -- Molecular-orbital and di-nuclei states in Ne and F isotopes / M. Kimura -- Low-momentum interactions for nuclei / A. Schwenk -- Nonrelativistic nuclear energy functionals including the tensor force / G. Colo et al. -- New aspects on dynamics in nuclei described by covariant density functional theory / P. Ring, D. Pena -- Theoretical studies on ground-state properties of superheavy nuclei / Z. Z. Ren et al. -- New results in the study of superfluid nuclei: many-body effects, spectroscopic factors / P. F. Bortignon et al. -- New Effective nucleon-nucleon interaction for the mean-field approximation / V. K. Au et al. -- Linear response calculations with the time-dependent Skyrme density functional / T. Nakatsukasa et al. -- Dissipative dynamics with exotic beams / M. Di Toro et al. -- Exploring the symmetry energy of asymmetric nuclear matter with heavy ion reactions / M. B. Tsang -- Invariant mass spectroscopy of halo nuclei / T. Nakamura et al. -- Core [symbol] structures in [symbol]C, [symbol]C and [symbol]C up to high excitation energies / H. G. Bohlen et al. -- Light neutron-rich nuclei studied by alpha-induced reactions / S. Shimoura -- Fusion and direct reactions around the Coulomb barrier for the system [symbol]He + [symbol]Zn / V. Scuderi et al. -- Analyzing power measurement for proton elastic scattering on [symbol]He / S. Sakaguchi et al. -- Knockout reaction spectroscopy of exotic nuclei / J. A. Tostevin -- Exotic nuclei, quantum phase transitions, and the evolution of structure / R. F. Casten -- Structure of exotic nuclei in the medium mass region / T. Otsuka -- Pairing correlations in halo nuclei / H. Sagawa, K. Hagino -- Experimental approach to high-temperature Stellar reactions with low-energy RI beams / S. Kubono et al. -- Transition to quark matter in neutron stars / G. X. Peng et al. -- Research at VATLY: main themes and recent results / P. N. Diep et al. -- Study of the astrophysical reaction [symbol]C([symbol], n)[symbol]O by the transfer reaction [symbol]C([symbol]Li, t)[symbol]O / F. Hammache et al. -- SPIRAL2 at GANIL: a world of leading ISOL facility for the physics of exotic nuclei / S. Gales -- Magnetic properties of light neutron-rich nuclei and shell evolution / T. Suzuki, T. Otsuka -- Multiple scattering effects in elastic and quasi free proton scattering from halo nuclei / R. Crespo et al. -- The dipole response of neutron halos and skins / T. Aumann -- Giant and pygmy resonances within axially-symmetric-deformed QRPA with the Gogny force / S. Péru, H. Goutte -- Soft K[symbol] = O+ modes unique to deformed neutron-rich unstable nuclei / K. Yoshida et al. -- Synthesis, decay properties, and identification of superheavy nuclei produced in [symbol]Ca-induced reactions / Yu. Ts. Oganessian et al. -- Highlights of the Brazilian RIB facility and its first results and hindrance of fusion cross section induced by [symbol]He / P. R. S. Gomes et al. -- Search for long fission times of super-heavy elements with Z = 114 / M. Morjean et al. -- Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara et al. -- [symbol]-cluster states and 4[symbol]-particle condensation in [symbol]O / Y. Funaki et al. -- Evolution of the N = 28 shell closure far from stability / O. Sorlin et al. -- Continuum QRPA approach and the surface di-neutron modes in nuclei near the neutron drip-line / M. Matsuo et al. -- Deformed relativistic Hartree-Bogoliubov model for exotic nuclei / S. G. Zhou et al. -- Two- and three-body correlations in three-body resonances and continuum states / K. Katō, K. Ikeda -- Pion- and Rho-Meson effects in relativistic Hartree-Fock and RPA / N. V. Giai et al. -- Study of the structure of neutron rich nuclei by using [symbol]-delayed neutron and gamma emission method / Y. Ye et al. -- Production of secondary radioactive [symbol] Na beam for the study of [symbol]Na([symbol], p)[symbol]Mg stellar reaction / D. N. Binh et al. -- Asymmetric nuclear matter properties within the Brueckner theory / W. Zuo et al. -- Study of giant dipole resonance in continuum relativistic random phase approximation / D. Yang et al. -- Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor / B. Qi et al. -- Continuum properties of the Hartree-Fock mean field with finite-range interactions / H. S. Than et al. -- A study of pairing interaction in a separable form / Y. Tian et al. -- Microscopic study of the inelastic [symbol]+[symbol]C scattering / D. C. Cuong, D. T. Khoa -- Probing the high density behavior of the symmetry energy / F. Zhang et al. -- Microscopic calculations based on a Skyrme functional plus the pairing contribution / J. Li et al. -- In-medium cross sections in Dirac-Brueckner-Hartree-Fock approach / L. Peiyan et al. -- The effect of the tensor force on single-particle states and on the isotope shift / W. Zou et al. -- [symbol]Ne excited states two-proton decay / M. De Napoli et al. -- The isomeric ratio and angular momentum of fragment [symbol]Xe in photofission of heavy nuclei / T. D. Thiep et al. -- Search for correlated two-nucleon systems in [symbol]Li and [symbol]He nuclei via one-nucleon exchange reaction / N. T. Khai et al. -- Summary talk of ISPUN07 / N. Alamanos.
Lifetime measurements using the recoil distance method—achievements and perspectives
NASA Astrophysics Data System (ADS)
Krücken, R.
2001-07-01
The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of "magnetic rotation" are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed.
Past and future detector arrays for complete event reconstruction in heavy-ion reactions
NASA Astrophysics Data System (ADS)
Cardella, G.; Acosta, L.; Auditore, L.; Boiano, C.; Castoldi, A.; D'Andrea, M.; De Filippo, E.; Dell'Aquila, D.; De Luca, S.; Fichera, F.; Giudice, N.; Gnoffo, B.; Grimaldi, A.; Guazzoni, C.; Lanzalone, G.; Librizzi, F.; Lombardo, I.; Maiolino, C.; Maffesanti, S.; Martorana, N. S.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Parsani, T.; Passaro, G.; Pirrone, S.; Politi, G.; Previdi, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccà, G.; Salemi, G.; Sciliberto, D.; Trifirò, A.; Trimarchi, M.; Vigilante, M.
2017-11-01
Complex and more and more complete detector arrays have been developed in the last two decades, or are in advanced design stage, in different laboratories. Such arrays are necessary to fully characterize nuclear reactions induced by stable and exotic beams. The need for contemporary detection of charged particles, and/or γ -rays, and/or neutrons, has been stressed in many fields of nuclear structure and reaction dynamics, with particular attention to the improvement of both high angular and energy resolution. Some examples of detection systems adapted to various energy ranges is discussed. Emphasis is given to the possible update of relatively old 4π detectors with new electronics and new detection methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
This volume contains all abstracts (931) received by the conference organizers before June 20, 1980. The abstracts are grouped according to the following topics: nucleon-nucleon interactions, free and in nuclei; distribution of matter, charge, and magnetism; exotic nuclei and exotic probes; giant resonances and other high-lying excitations; applications of nuclear science; nuclei with large angular momentum and deformation; heavy-ion reactions and relaxation phenomena; new techniques and instruments; pion absorption and scattering by nuclei; and miscellaneous. Some of these one-page abstracts contain data. A complete author index is provided. (RWR)
Nuclear Physics of neutron stars
NASA Astrophysics Data System (ADS)
Piekarewicz, Jorge
2015-04-01
One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.
Determination of the structure of the X(3872) in p¯A collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larionov, A. B.; Strikman, M.; Bleicher, M.
2015-07-22
The structure of the X(3872) meson is unknown. Different competing models of the cc¯ exotic state X(3872) exist, including the possibilities that this state is either a mesonic molecule with dominating D 0D¯* 0 + c.c. composition, a cc¯qq¯ tetraquark, or a cc¯-gluon hybrid state. It is expected that the X(3872) state is rather strongly coupled to the pp¯ channel and, therefore, can be produced in pp¯ and p¯A collisions at PANDA. We propose to test the hypothetical molecular structure of X(3872) by studying the D or D¯* source stripping reactions on a nuclear residue.
Testing Quantum Chromodynamics with Antiprotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S.
2004-10-21
The antiproton storage ring HESR to be constructed at GSI will open up a new range of perturbative and nonperturbative tests of QCD in exclusive and inclusive reactions. I discuss 21 tests of QCD using antiproton beams which can illuminate novel features of QCD. The proposed experiments include the formation of exotic hadrons, measurements of timelike generalized parton distributions, the production of charm at threshold, transversity measurements in Drell-Yan reactions, and searches for single-spin asymmetries. The interactions of antiprotons in nuclear targets will allow tests of exotic nuclear phenomena such as color transparency, hidden color, reduced nuclear amplitudes, and themore » non-universality of nuclear antishadowing. The central tool used in these lectures are light-front Fock state wavefunctions which encode the bound-state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions. QCD becomes scale free and conformally symmetric in the analytic limit of zero quark mass and zero {beta} function. This ''conformal correspondence principle'' determines the form of the expansion polynomials for distribution amplitudes and the behavior of non-perturbative wavefunctions which control hard exclusive processes at leading twist. The conformal template also can be used to derive commensurate scale relations which connect observables in QCD without scale or scheme ambiguity. The AdS/CFT correspondence of large N{sub C} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has important implications for hadron phenomenology in the conformal limit, including the nonperturbative derivation of counting rules for exclusive processes and the behavior of structure functions at large x{sub bj}. String/gauge duality also predicts the QCD power-law fall-off of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. I also review recent work which shows that the diffractive component of deep inelastic scattering, single spin asymmetries, as well as nuclear shadowing and antishadowing, cannot be computed from the LFWFs of hadrons in isolation.« less
Méndez, Verónica; Wood, Jamie R; Butler, Simon J
2018-05-01
Functional diversity metrics are increasingly used to augment or replace taxonomic diversity metrics to deliver more mechanistic insights into community structure and function. Metrics used to describe landscape structure and characteristics share many of the same limitations as taxonomy-based metrics, particularly their reliance on anthropogenically defined typologies with little consideration of structure, management, or function. However, the development of alternative metrics to describe landscape characteristics has been limited. Here, we extend the functional diversity framework to characterize landscapes based on the diversity of resources available across habitats present. We then examine the influence of resource diversity and provenance on the functional diversities of native and exotic avian communities in New Zealand. Invasive species are increasingly prevalent and considered a global threat to ecosystem function, but the characteristics of and interactions between sympatric native and exotic communities remain unresolved. Understanding their comparative responses to environmental change and the mechanisms underpinning them is of growing importance in predicting community dynamics and changing ecosystem function. We use (i) matrices of resource use (species) and resource availability (habitats) and (ii) occurrence data for 62 native and 25 exotic species and 19 native and 13 exotic habitats in 2015 10 × 10 km quadrats to examine the relationship between native and exotic avian and landscape functional diversity. The numbers of species in, and functional diversities of, native and exotic communities were positively related. Each community displayed evidence of environmental filtering, but it was significantly stronger for exotic species. Less environmental filtering occurred in landscapes providing a more diverse combination of resources, with resource provenance also an influential factor. Landscape functional diversity explained a greater proportion of variance in native and exotic community characteristics than the number of habitat types present. Resource diversity and provenance should be explicitly accounted for when characterizing landscape structure and change as they offer additional mechanistic understanding of the links between environmental filtering and community structure. Manipulating resource diversity through the design and implementation of management actions could prove a powerful tool for the delivery of conservation objectives, be they to protect native species, control exotic species, or maintain ecosystem service provision.
Recent advances in β-decay spectroscopy at CARIBU
NASA Astrophysics Data System (ADS)
Mitchell, A. J.; Copp, P.; Savard, G.; Lister, C. J.; Lane, G. J.; Carpenter, M. P.; Clark, J. A.; Zhu, S.; Ayangeakaa, A. D.; Bottoni, S.; Brown, T. B.; Chowdhury, P.; Chillery, T. W.; David, H. M.; Hartley, D. J.; Heckmaier, E.; Janssens, R. V. F.; Kolos, K.; Kondev, F. G.; Lauritsen, T.; McCutchan, E. A.; Norman, E. B.; Padgett, S.; Scielzo, N. D.; Seweryniak, D.; Smith, M. L.; Wilson, G. L.
2016-09-01
β-decay spectroscopy of nuclei far from stability can provide powerful insight into a broad variety of topics in nuclear science, ranging from exotic nuclear structure phenomena, stellar nucleosynthesis processes, and applied topics such as quantifying "decay heat" discrepancies for advanced nuclear fuel cycles. Neutronrich nuclei approaching the drip-line are difficult to access experimentally, leaving many key examples largely under studied. The CARIBU radioactive beam facility at Argonne National Laboratory exploits spontaneous fission of 252Cf in production of such beams. The X-Array and SATURN decay station have been commissioned to perform detailed decay spectroscopy of low-energy CARIBU beams. An extended science campaign was started during 2015; with projects investigating nuclear shape changes, collective octupole vibrations, β-delayed neutron emission, and decay-scheme properties which could explain the reactor antineutrino puzzle. In this article we review the current status of the setup, update on the first results and recent hardware upgrades, and look forward to future possibilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Joseph; Savage, Martin J.; Gerber, Richard
Imagine being able to predict — with unprecedented accuracy and precision — the structure of the proton and neutron, and the forces between them, directly from the dynamics of quarks and gluons, and then using this information in calculations of the structure and reactions of atomic nuclei and of the properties of dense neutron stars (NSs). Also imagine discovering new and exotic states of matter, and new laws of nature, by being able to collect more experimental data than we dream possible today, analyzing it in real time to feed back into an experiment, and curating the data with fullmore » tracking capabilities and with fully distributed data mining capabilities. Making this vision a reality would improve basic scientific understanding, enabling us to precisely calculate, for example, the spectrum of gravity waves emitted during NS coalescence, and would have important societal applications in nuclear energy research, stockpile stewardship, and other areas. This review presents the components and characteristics of the exascale computing ecosystems necessary to realize this vision.« less
Footer, Katherine H A; Lim, Sahnah; Brantley, Meredith R; Sherman, Susan G
2018-03-01
This paper provides longitudinal examination of women's health and sexual risk trajectories in US exotic dance clubs, which represent an important commercial setting for the economic mainstreaming of sexual services and an important target for public health programmes. Between July 2014 and May 2015, two semi-structured interviews (at baseline and at three months) were conducted with 24 female exotic dancers who had recently started working in in Baltimore City, USA. Results from a constant comparative analysis point to the interrelationship between the structures of the club setting, including the social context, and women's agentic practices concerning their sexual health. Study findings highlight the centrality of the interrelationship between individual- and structural-level experiences in influencing dancers' risk behavior. Findings point to the need for interventions to empower women both individually and collectively so as to provide the foundation for longer-term structural change.
NASA Astrophysics Data System (ADS)
Da Rocha, Roldão; Bernardini, Alex E.; da Silva, J. M. Hoff
2011-04-01
Exotic dark spinor fields are introduced and investigated in the context of inequivalent spin structures on arbitrary curved spacetimes, which induces an additional term on the associated Dirac operator, related to a Čech cohomology class. For the most kinds of spinor fields, any exotic term in the Dirac operator can be absorbed and encoded as a shift of the electromagnetic vector potential representing an element of the cohomology group {H^1}( {M,{{Z}_2}} ) . The possibility of concealing such an exotic term does not exist in case of dark (ELKO) spinor fields, as they cannot carry electromagnetic charge, so that the full topological analysis must be evaluated. Since exotic dark spinor fields also satisfy Klein-Gordon propagators, the dynamical constraints related to the exotic term in the Dirac equation can be explicitly calculated. It forthwith implies that the non-trivial topology associated to the spacetime can drastically engender — from the dynamics of dark spinor fields — constraints in the spacetime metric structure. Meanwhile, such constraints may be alleviated, at the cost of constraining the exotic spacetime topology. Besides being prime candidates to the dark matter problem, dark spinor fields are shown to be potential candidates to probe non-trivial topologies in spacetime, as well as probe the spacetime metric structure.
Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering
NASA Astrophysics Data System (ADS)
Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen
2014-09-01
Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Funded by DOE and NSF-REU Program; Grant No. PHY-1263281.
Core-satellite species hypothesis and native versus exotic species in secondary succession
Martinez, Kelsey A.; Gibson, David J.; Middleton, Beth A.
2015-01-01
A number of hypotheses exist to explain species’ distributions in a landscape, but these hypotheses are not frequently utilized to explain the differences in native and exotic species distributions. The core-satellite species (CSS) hypothesis predicts species occupancy will be bimodally distributed, i.e., many species will be common and many species will be rare, but does not explicitly consider exotic species distributions. The parallel dynamics (PD) hypothesis predicts that regional occurrence patterns of exotic species will be similar to native species. Together, the CSS and PD hypotheses may increase our understanding of exotic species’ distribution relative to natives. We selected an old field undergoing secondary succession to study the CSS and PD hypotheses in conjunction with each other. The ratio of exotic to native species (richness and abundance) was observed through 17 years of secondary succession. We predicted species would be bimodally distributed and that exotic:native species ratios would remain steady or decrease through time under frequent disturbance. In contrast to the CSS and PD hypotheses, native species occupancies were not bimodally distributed at the site, but exotic species were. The exotic:native species ratios for both richness (E:Nrichness) and abundance (E:Ncover) generally decreased or remained constant throughout supporting the PD hypothesis. Our results suggest exotic species exhibit metapopulation structure in old field landscapes, but that metapopulation structures of native species are disrupted, perhaps because these species are dispersal limited in the fragmented landscape.
New proton drip-line nuclei relevant to nuclear astrophysics
NASA Astrophysics Data System (ADS)
Ferreira, L. S.
2018-02-01
We discuss recent results on decay of exotic proton rich nuclei at the proton drip line for Z < 50, that are of great importance for nuclear astrophysics models. From the interpretation of the data, we assign their properties, and impose a constraint on the separation energy which has strong implications in the network calculations.
Nuclear Structure Studies of 44S and 26Si
NASA Astrophysics Data System (ADS)
Parker, John J., IV
Experimental results on the nuclear structure of 44 S and 26Si will be reported in this thesis. 44S is studied because of its interest in understanding how nuclei behave far from stability. 26Si is studied because of the impact of understanding its nuclear structure can have on the astrophysical 25Al(p,gamma) reaction rate. These are two very differently motivated studies and will be described separately in Chapters 2 and 3, respectively. Chapter 2 focuses on the exotic N=28 nucleus, in 44S. Previous experiments observed a 4+ state and suggested that this state may exhibit a hindered E2-decay rate, inconsistent with being a member of the collective ground state band. We populate this state via a two-proton knockout reaction from a beam of exotic 46Ar projectiles delivered from the coupled cyclotron facility and measure its lifetime using the recoil distance method with the GRETINA gamma ray spectrometer. The result, 76(14) stat(20)syst ps, implies a hindered transition of B(E2; 4+ →2+1 ) = 0.61(19) single- particle or Weisskopf units strength and supports the interpretation of the 4+ state as a K = 4 isomer, the first example of a high-K isomer in a nucleus of such low mass. Chapter 3 focuses on resonances above the proton threshold in 26Si. Previous experiments have solidified the placement of 3 resonances thought to contribute to the 25Al(p,gamma)26Si reaction. A fourth resonance has been suggested by various experiments, but more recent experiments have suggested that this level has been misidentified. We populate excited states in 26Si via the 24Mg( 3He,n) reaction at 10 MeV at the John Fox Lab at FSU. Neutron time-of-flight spectroscopy is used to identify which resonance is populated in 26 Si and the gamma-array at FSU is used to determine how these levels de-excite. The gamma ray sensitivity in this experiment is the highest sensitivity reached to date, but a 4th resonance above the proton threshold was not identified, giving further indication that this state may have been misidentified by past experiments.
Recent work of decay spectroscopy at RIBF
NASA Astrophysics Data System (ADS)
Söderström, Pär-Anders
2014-09-01
β- and isomer-decay spectroscopy are sensitive probes of nuclear structure, and are often the only techniques capable of providing data for exotic nuclei that are producted with very low rates. Decay properties of exotic nuclei are also essential to model astrophysical events responible for the evolution of the universe such as the rp- and r-process. The EURICA project (EUROBALL RIKEN Cluster Array) has been launched in 2012 with the goal of performing spectroscopy of very exotic nuclei. Since 2012, four experimental campaigns have been successfully completed using fragmentation of 124Xe beam and in-flight-fission of 238U beam, approaching for example the key nuclei 78Ni, 110Zr, 100Sn, 128Pd, and 138Sn. This contribution highlights the experiments performed, results obtained, and discusses the future perspective of the EURICA project. In collaboration with Shunji Nishimura, Hidetada Baba, RIKEN Nishina Center; Frank Browne, Brighton University; Pieter Doornenbal, RIKEN Nishina Center; Guillaume Gey, Universite Joseph Fourier Grenoble; Tadaaki Isobe and Giuseppe Lorusso, RIKEN Nishina Center; Daniel Lubos, Technische Universitat Munchen; Kevin Mochner, University of Cologne; Zena Patel and Simon Rice, University of Surrey; Hiroyoshi Sakurai, RIKEN Nishina Center; Laura Sinclair, University of York; Toshiyuki Sumikama, Tohoku University; Jan Taprogge, Universidad Autonoma de Madrid; Zsolt Vajta, MTA Atomki; Hiroshi Watanabe, Beihang University; Jin Wu, Peking University; and Zhengyu Xu, University of Tokyo.
Ab initio description of continuum effects in A=11 exotic systems with chiral NN+3N forces
NASA Astrophysics Data System (ADS)
Calci, Angelo; Navratil, Petr; Roth, Robert; Dohet-Eraly, Jeremy; Quaglioni, Sofia; Hupin, Guillaume
2016-09-01
Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N) and many-nucleon interactions in a consistent and systematically improvable scheme. The rapid developments to construct divers families of chiral NN+3N interactions and the conceptual and technical improvements of ab initio many-body approaches pose a great opportunity for nuclear physics. By studying particular interesting phenomena in nuclear structure and reaction observables one can discriminate between different forces and study the predictive power of chiral EFT. The accurate description of the 11Be nucleus, in particular, the ground-state parity inversion and exceptionally strong E1 transition between its two bound states constitute an enormous challenge for the developments of nuclear forces and many-body approaches. We present a sensitivity analysis of structure and reaction observables to different NN+3N interactions in 11Be and n+10Be as well as the mirror p+10C scattering using the ab initio NCSM with continuum (NCSMC). Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.
Exotic plants as ecosystem dominants
Julie S. Denslow; R. Flint Hughes
2004-01-01
Dominant species have long been appreciated for their role in determining ecosystem attributes such as vegetation structure, successional patterns, soil characteristics, hydrology, and productivity. Exotic species may reach such high densities that they become community dominants, and it is in this role that exotics pose the greatest threat to native ecosystems. Four...
NASA Astrophysics Data System (ADS)
McDaniel, S.; Gade, A.; Tostevin, J. A.; Baugher, T.; Bazin, D.; Brown, B. A.; Cook, J. M.; Glasmacher, T.; Grinyer, G. F.; Ratkiewicz, A.; Weisshaar, D.
2012-01-01
Background: Thick-target-induced nucleon-adding transfer reactions onto energetic rare-isotope beams are an emerging spectroscopic tool. Their sensitivity to single-particle structure complements one-nucleon removal reaction capabilities in the quest to reveal the evolution of nuclear shell structure in very exotic nuclei. Purpose: Our purpose is to add intermediate-energy, carbon-target-induced one-proton pickup reactions to the arsenal of γ-ray-tagged direct reactions applicable in the regime of low beam intensities and to apply these for the first time to fp-shell nuclei. Methods: Inclusive and partial cross sections were measured for the 12C(48Cr,49Mn+γ)X and 12C(50Fe,51Co+γ)X proton pickup reactions at 56.7 and 61.2 MeV/nucleon, respectively, using coincident particle-γ spectroscopy at the National Superconducting Cyclotron Laboratory. The results are compared to reaction theory calculations using fp-shell-model nuclear structure input. For comparison with our previous work, the same reactions were measured on 9Be targets. Results: The measured partial cross sections confirm the specific population pattern predicted by theory, with pickup into high-ℓ orbitals being strongly favored, driven by linear and angular momentum matching. Conclusion: Carbon-target-induced pickup reactions are well suited, in the regime of modest beam intensity, to study the evolution of nuclear structure, with specific sensitivities that are well described by theory.
NASA Astrophysics Data System (ADS)
Nilsson, Thomas; the NUSTAR Collaboration
2015-11-01
The FAIR facility, under construction at the GSI site in Darmstadt, will be addressing a wealth of outstanding questions within the realm of subatomic, atomic, plasma, bio-physics and applications through a combination of novel accelerators, storage rings and innovative experimental set-ups. One of the key installations is the fragment separator Super-FRS that will be able to deliver an unprecedented range of radioactive ion beams in the energy range of 0-1.5 GeV u-1. These beams will be distributed to three branches, each with its unique domain with respect to beam energies and properties. The high-energy branch will permit reactions with radioactive beams at relativistic energies, whereas the low-energy branch will supply decelerated beams for high-resolution spectroscopy, traps and laser spectroscopy. Finally, the ring branch will uniquely permit stored and cooled exotic beams for a range of methods only possible in a storage ring. Thus, by developing experimental set-ups tailored for these beams, there are several complementary possibilities to gain information on key nuclei and reaction, to further our understanding on contemporary questions within nuclear structure and nuclear astrophysics. This ambitious programme is to be exploited within the nuclear structure, astrophysics and reactions collaboration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaglioni, S.
2016-09-22
A 2011 DOE-NP Early Career Award (ECA) under Field Work Proposal (FWP) SCW1158 supported the project “Solving the Long-Standing Problem of Low-Energy Nuclear Reactions at the Highest Microscopic Level” in the five-year period from June 15, 2011 to June 14, 2016. This project, led by PI S. Quaglioni, aimed at developing a comprehensive and computationally efficient framework to arrive at a unified description of structural properties and reactions of light nuclei in terms of constituent protons and neutrons interacting through nucleon-nucleon (NN) and three-nucleon (3N) forces. Specifically, the project had three main goals: 1) arriving at the accurate predictions formore » fusion reactions that power stars and Earth-based fusion facilities; 2) realizing a comprehensive description of clustering and continuum effects in exotic nuclei, including light Borromean systems; and 3) achieving fundamental understanding of the role of the 3N force in nuclear reactions and nuclei at the drip line.« less
Brantley, Meredith L.; Footer, Katherine; Lim, Sahnah; Kerrigan, Deanna; Sherman, Susan G.
2017-01-01
Women who grow up in an environment of economic scarcity often face limited opportunities for upward mobility, as a result of challenges securing stable housing, quality education, and high-paying, steady employment. Chronically unstable women often also have reduced capacity to protect themselves against HIV/STI related harm when engaging in sexual activity or illicit drug use. Characterizing and targeting the structural contexts that facilitate HIV/STI risk are critical to effective design and implementation of drug and sexual harm reduction interventions. This study explores the nature and progression of structural vulnerability experienced by female exotic dancers during their early lives through the initial months of exotic dancing. We also examine the roles of drug use and social relationships regarding experiences of structural vulnerability and engagement in sexual risk behavior. We conducted semi-structured in-depth interviews with exotic dancers working in Baltimore City and County exotic dance clubs during July 2014 and May 2015. Using thematic analysis, interviews revealed important individual, social, and economic effects of structural vulnerability. Many dancers depicted early experiences of residential transience, violence, and independence, and were raised in an environment of social and economic scarcity. The accumulation of chronic, overlapping social and economic disadvantage continued upon entry into dancing. Substance use emerged as an important issue for the majority of women, operating cyclically as both precursor to and product of accumulating social and economic hardship. Dancers also revealed social strategies that buffered the effects of structural vulnerability and minimized exposure to workplace-related drug and sexual risks. This study provides insight on an understudied group of at-risk women with a unique demographic profile. Findings illustrate how the effects of structural vulnerability, substance abuse, social strategies, and opportunities for economic gain through sexual services in the workplace converge to produce varying levels of HIV/STI risk among exotic dancers. PMID:29040840
Human land use promotes the abundance and diversity of exotic species on caribbean islands.
Jesse, Wendy A M; Behm, Jocelyn E; Helmus, Matthew R; Ellers, Jacintha
2018-05-31
Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human-impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two PCA ordination axes related to habitat structure (i.e. forest or non-forest) and human impact level (i.e. addition of man-made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in non-forested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in non-forested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and non-forested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on species diversity and the establishment and spread of exotic species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Learning Nuclear Science with Marbles
ERIC Educational Resources Information Center
Constan, Zach
2010-01-01
Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…
Exotic cheatgrass and loss of soil biota decrease the performance of a native grass
Suzanne M. Owen; Carolyn Hull Sieg; Nancy Collins Johnson; Catherine A. Gehring
2013-01-01
Soil disturbances can alter microbial communities including arbuscular mycorrhizal (AM) fungi, which may in turn, affect plant community structure and the abundance of exotic species. We hypothesized that altered soil microbial populations owing to disturbance would contribute to invasion by cheatgrass (Bromus tectorum), an exotic annual grass, at the expense of the...
Endoscopy Practice Management, Fee Structures, and Marketing.
Divers, Stephen J
2015-09-01
Although our knowledge and appreciation of endoscopic procedures in exotic pets is extensive, associated management practices, including equipment preferences and fee structures, have rarely been discussed. This short article highlights the results of a small survey of 35 experienced exotic animal endoscopists and details their equipment ownership/preferences and fee structures. The importance of marketing is also emphasized. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J-M. Laget
Exclusive reactions induced at high momentum transfer in few body systems provide us with an original way to study the production and propagation of hadrons in cold nuclear matter. In very well-defined parts of the phase space, the reaction amplitude develops a logarithmic singularity. It is on solid ground since it depends on only on-shell elementary amplitudes and on low momentum components of the nuclear wave function. This is the best window for studying the propagation of exotic configurations of hadrons such as the onset of color transparency. It may appear earlier in meson-photoproduction reactions, more particularly in the strangemore » sector, than in the more classical quasi-elastic scattering of electrons. More generally, those reactions provide us with the best tool to determine the cross section of the scattering of various hadrons (strange particles, vector mesons) from the nucleon and to obtain the production of possible exotic states.« less
Remigi, P.; Faye, A.; Kane, A.; Deruaz, M.; Thioulouse, J.; Cissoko, M.; Prin, Y.; Galiana, A.; Dreyfus, B.; Duponnois, R.
2008-01-01
The response of microbial functional diversity as well as its resistance to stress or disturbances caused by the introduction of an exotic tree species, Acacia holosericea, ectomycorrhized or not with Pisolithus albus, was examined. The results show that this ectomycorrhizal fungus promotes drastically the growth of this fast-growing tree species in field conditions after 7 years of plantation. Compared to the crop soil surrounding the A. holosericea plantation, this exotic tree species, associated or not with the ectomycorrhizal symbiont, induced strong modifications in soil microbial functionalities (assessed by measuring the patterns of in situ catabolic potential of microbial communities) and reduced soil resistance in response to increasing stress or disturbance (salinity, temperature, and freeze-thaw and wet-dry cycles). In addition, A. holosericea strongly modified the structure of arbuscular mycorrhizal fungus communities. These results show clearly that exotic plants may be responsible for important changes in soil microbiota affecting the structure and functions of microbial communities. PMID:18203858
Pathways to exotic metastable silicon allotropes
Haberl, Bianca; Strobel, Timothy A.; Bradby, Jodie E.
2016-09-27
The Group 14 element silicon possesses a complex free-energy landscape with many (local) minima, allowing for the formation of a variety of unusual structures, some of which may be stabilized at ambient conditions. Such exotic silicon allotropes represent a significant opportunity to address the ever-increasing demand for novel materials with tailored functionality since these exotic forms are expected to exhibit superlative properties including optimized band gaps for solar power conversion. The application of pressure is a well-recognized and uniquely powerful method to access exotic states of silicon since it promotes large changes to atomic bonding. Conventional high-pressure syntheses, however, lackmore » the capability to access many of these local minima and only four forms of exotic silicon allotropes have been recovered over the last 50 years. However, more recently, signifi- cant advances in high pressure methodologies and the use of novel precursor materials have yielded at least three more recoverable exotic Si structures. This review aims to give an overview of these innovative methods of high-pressure application and precursor selection and the recent discoveries of new Si allotropes. The background context of the conventional pressure methods and multitude of predicted new phases are also provided. Furthermore, this review also offers a perspective for possible access to many further exotic functional allotropes not only of silicon but also of other materials, in a technologically feasible manner« less
Escobedo, Víctor M.; Rios, Rodrigo S.; Salgado-Luarte, Cristian; Stotz, Gisela C.
2017-01-01
Abstract Background and Aims Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Methods Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus, measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel’s lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. Key Results The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Conclusions Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be explained by high phenotypic and phylogenetic resemblance between exotic and native species. The use of continuous gradients when studying the effects of disturbance on community assembly is advocated. PMID:28087661
Higgs exotic decays in general NMSSM with self-interacting dark matter
NASA Astrophysics Data System (ADS)
Wang, Wenyu; Zhang, Mengchao; Zhao, Jun
2018-04-01
Under current LHC and dark matter constraints, the general NMSSM can have self-interacting dark matter to explain the cosmological small structure. In this scenario, the dark matter is the light singlino-like neutralino (χ) which self-interacts through exchanging the light singlet-like scalars (h1,a1). These light scalars and neutralinos inevitably interact with the 125 GeV SM-like Higgs boson (hSM), which cause the Higgs exotic decays hSM → h1h1, a1a1, χχ. We first demonstrate the parameter space required by the explanation of the cosmological small structure and then display the Higgs exotic decays. We find that in such a parameter space the Higgs exotic decays can have branching ratios of a few percent, which should be accessible in the future e+e‑ colliders.
Composition of fungal soil communities varies with plant abundance and geographic origin
Reininger, Vanessa; Martinez-Garcia, Laura B.; Sanderson, Laura; Antunes, Pedro M.
2015-01-01
Interactions of belowground fungal communities with exotic and native plant species may be important drivers of plant community structure in invaded grasslands. However, field surveys linking plant community structure with belowground fungal communities are missing. We investigated whether a selected number of abundant and relatively rare plants, either native or exotic, from an old-field site associate with different fungal communities. We also assessed whether these plants showed different symbiotic relationships with soil biota through their roots. We characterized the plant community and collected roots to investigate fungal communities using 454 pyrosequencing and assessed arbuscular mycorrhizal colonization and enemy-induced lesions. Differences in fungal communities were considered based on the assessment of α- and β diversity depending on plant ‘abundance’ and ‘origin’. Plant abundance and origin determined the fungal community. Fungal richness was higher for native abundant as opposed to relatively rare native plant species. However, this was not observed for exotics of contrasting abundance. Regardless of their origin, β diversity was higher for rare than for abundant species. Abundant exotics in the community, which happen to be grasses, were the least mycorrhizal whereas rare natives were most susceptible to enemy attack. Our results suggest that compared with exotics, the relative abundance of remnant native plant species in our old-field site is still linked to the structure of belowground fungal communities. In contrast, exotic species may act as a disturbing agent contributing towards the homogenization of soil fungal communities, potentially changing feedback interactions. PMID:26371291
NASA Astrophysics Data System (ADS)
Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V.; Jackson Kimball, Derek F.; Kozlov, Mikhail G.; Stadnik, Yevgeny V.; Budker, Dmitry
2018-05-01
Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.
Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V; Jackson Kimball, Derek F; Kozlov, Mikhail G; Stadnik, Yevgeny V; Budker, Dmitry
2018-05-04
Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.
Intermediate-energy nuclear chemistry workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, G.W.; Giesler, G.C.; Liu, L.C.
1981-05-01
This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.
The Structure of the Exotic N = Z Nucleus Germanium -64
NASA Astrophysics Data System (ADS)
Ennis, Patrick John
This dissertation reports a series of measurements of an intermediate mass N = Z nucleus which constrain generalized models of nuclear structure. In particular, in _sp{32}{64} {Ge }_{32}, the triaxial and octupole shape degrees of freedom are investigated, along with the possible isospin impurity of wave functions. This neutron -deficient isotope was produced in the reaction ^{12}C(^{54}Fe, 2ngamma )^{64}Ge at a beam energy of 165 MeV. The production cross section for ^{64}Ge was measured to be 640 +/- 70 mubarns, which represents only ~0.15% of the total fusion cross section. "In-beam" gamma-ray spectroscopy of nuclei produced at the sub-millibarn level has not previously been achieved. Recoil -gamma-gamma correlations and recoil-gamma angular distributions were measured using the Daresbury Recoil Separator operated in conjunction with a large array of Compton suppressed gamma-ray detectors. Absolute cross section measurements and Monte Carlo studies were performed at Yale University's A.W. Wright Nuclear Structure Laboratory. A level scheme for ^{64 }Ge was constructed which contains 19 states. The nucleus appears to have a structure consistent with a gamma-soft shape and shows little evidence for the predicted susceptibility to octupole deformation. Evidence for forbidden E1 transitions was found which may be indicative of considerable isospin mixing. Future directions for the continued study of exotic nuclei are discussed in the context of the new gamma-ray detector arrays and recoil mass separators being constructed around the world. In particular, we have compared our data which were triggered by recoiling nuclei and two detected gamma rays, to events triggered by detecting three gamma-rays. After proper analysis, it was found that for the strongly produced ^ {64}Zn (sigma = 160 +/- 7 mbarns, ~ 40% of the total fusion cross section), the two triggering methods produced spectra of comparable quality. However, for the much weaker reaction channel leading to ^{64}Ge, a recoil gate was found to be essential in order to identify any ^ {64}Ge transitions. The implications of these measurements are generalized to the next generation of gamma-ray spectrometers and recoil separators. The feasibility of performing more extensive spectroscopic measurements using these new devices is presented.
The experimental set-up of the RIB in-flight facility EXOTIC
NASA Astrophysics Data System (ADS)
Pierroutsakou, D.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Mazzocco, M.; Nicoletto, M.; Parascandolo, C.; Signorini, C.; Soramel, F.; Strano, E.; Toniolo, N.; Torresi, D.; Tortone, G.; Anastasio, A.; Bettini, M.; Cassese, C.; Castellani, L.; Corti, D.; Costa, L.; De Fazio, B.; Galet, G.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Pontoriere, G.; Rocco, R.; Romoli, M.; Roscilli, L.; Sandoli, M.; Stroe, L.; Tessaro, M.; Zatti, P. G.
2016-10-01
We describe the experimental set-up of the Radioactive Ion Beam (RIB) in-flight facility EXOTIC consisting of: (a) two position-sensitive Parallel Plate Avalanche Counters (PPACs), dedicated to the event-by-event tracking of the produced RIBs and to time of flight measurements and (b) the new high-granularity compact telescope array EXPADES (EXotic PArticle DEtection System), designed for nuclear physics and nuclear astrophysics experiments employing low-energy light RIBs. EXPADES consists of eight ΔE -Eres telescopes arranged in a cylindrical configuration around the target. Each telescope is made up of two Double Sided Silicon Strip Detectors (DSSSDs) with a thickness of 40/60 μm and 300 μm for the ΔE and Eres layer, respectively. Additionally, eight ionization chambers were constructed to be used as an alternative ΔE stage or, in conjunction with the entire DSSSD array, to build up more complex triple telescopes. New low-noise multi-channel charge-sensitive preamplifiers and spectroscopy amplifiers, associated with constant fraction discriminators, peak-and-hold and Time to Amplitude Converter circuits were developed for the electronic readout of the ΔE stage. Application Specific Integrated Circuit-based electronics was employed for the treatment of the Eres signals. An 8-channel, 12-bit multi-sampling 50 MHz Analog to Digital Converter, a Trigger Supervisor Board for handling the trigger signals of the whole experimental set-up and an ad hoc data acquisition system were also developed. The performance of the PPACs, EXPADES and of the associated electronics was obtained offline with standard α calibration sources and in-beam by measuring the scattering process for the systems 17O+58Ni and 17O+208Pb at incident energies around their respective Coulomb barriers and, successively, during the first experimental runs with the RIBs of the EXOTIC facility.
A spin-orbital-entangled quantum liquid on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.
2018-02-01
The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.
NASA Astrophysics Data System (ADS)
Fein, Howard
1999-03-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.
Gravitational birefringence and an exotic formula for redshifts
NASA Astrophysics Data System (ADS)
Duval, Christian; Pasquet, Johanna; Schücker, Thomas; Tilquin, André
2018-06-01
We compute the birefringence of light in curved Robertson-Walker spacetimes and propose an exotic formula for redshift based on the internal structure of the spinning photon. We then use the Hubble diagram of supernovae to test this formula.
Low-dimensional quantum magnetism in Cu (NCS) 2: A molecular framework material
NASA Astrophysics Data System (ADS)
Cliffe, Matthew J.; Lee, Jeongjae; Paddison, Joseph A. M.; Schott, Sam; Mukherjee, Paromita; Gaultois, Michael W.; Manuel, Pascal; Sirringhaus, Henning; Dutton, Siân E.; Grey, Clare P.
2018-04-01
Low-dimensional magnetic materials with spin-1/2 moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure, and magnetic properties of copper ii thiocyanate, Cu(NCS ) 2, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance spectroscopy, 13C magic-angle spinning nuclear magnetic resonance spectroscopy, and density functional theory investigations indicate that Cu(NCS ) 2 behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains [J2=133 (1 ) K , α =J1/J2=0.08 ] . Powder neutron-diffraction measurements confirm that Cu(NCS ) 2 orders as a commensurate antiferromagnet below TN=12 K , with a strongly reduced ordered moment (0.3 μB ) due to quantum fluctuations.
Escobedo, Víctor M; Rios, Rodrigo S; Salgado-Luarte, Cristian; Stotz, Gisela C; Gianoli, Ernesto
2017-03-01
Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus , measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel's lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be explained by high phenotypic and phylogenetic resemblance between exotic and native species. The use of continuous gradients when studying the effects of disturbance on community assembly is advocated. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Physics division annual report 2005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glover, J.; Physics
2007-03-12
This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments ismore » the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.« less
High pressure hydrogen stabilised by quantum nuclear motion
NASA Astrophysics Data System (ADS)
Needs, Richard; Monserrat, Bartomeu; Pickard, Chris
Hydrogen under extreme pressures is of fundamental interest, as it might exhibit exotic physical phenomena, and of practical interest, as it is a major component of many astrophysical objects. Structure searches have been successful at identifying promising candidates for the known phases of high pressure hydrogen. However, these searches have so far been restricted to the location of minima of the potential energy landscape. In this talk, we will describe a new structure searching method, ``saddle-point ab initio random structure searching'' (sp-AIRSS), that allows us to identify structures associated with saddle points of the potential energy landscape. Using sp-AIRSS, we find two new high-pressure hydrogen structures that exhibit a harmonic dynamical instability, but quantum and thermal anharmonic motion render them dynamically stable. These structures are formed by mixed layers of strongly and softly bound hydrogen molecules, and become thermodynamically competitive at the highest pressures reached in experiment. The experimental implications of these new structures will also be discussed. BM is supported by Robinson College, Cambridge, and the Cambridge Philosophical Society. RJN and CJP are supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK.
Structure of exotic light nuclei: Z = 2, 3, 4
NASA Astrophysics Data System (ADS)
Fortune, H. T.
2018-03-01
I examine the history and current state of knowledge of the structure of so-called "exotic" light nuclei with Z=2-4, from 7He to 16Be . I review the available experimental information and the models that have been applied to these nuclei. I pay particular attention to the interplay among energies, widths (or strengths), and microscopic structure. Throughout the presentation, I focus on a unified description of these nuclei. I point out contradictions within the data, and I suggest experiments that are still needed.
NASA Astrophysics Data System (ADS)
Khan, Md. Abdul
2014-09-01
In this paper, energies of the low-lying bound S-states (L = 0) of exotic three-body systems, consisting a nuclear core of charge +Ze (Z being atomic number of the core) and two negatively charged valence muons, have been calculated by hyperspherical harmonics expansion method (HHEM). The three-body Schrödinger equation is solved assuming purely Coulomb interaction among the binary pairs of the three-body systems XZ+μ-μ- for Z = 1 to 54. Convergence pattern of the energies have been checked with respect to the increasing number of partial waves Λmax. For available computer facilities, calculations are feasible up to Λmax = 28 partial waves, however, calculation for still higher partial waves have been achieved through an appropriate extrapolation scheme. The dependence of bound state energies has been checked against increasing nuclear charge Z and finally, the calculated energies have been compared with the ones of the literature.
Coupled-cluster computations of atomic nuclei
NASA Astrophysics Data System (ADS)
Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J.
2014-09-01
In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.
Some nuclear physics aspects of BBN
NASA Astrophysics Data System (ADS)
Coc, Alain
2017-09-01
Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7 Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Nuclear physics solutions to this lithium problem have been investigated by experimental means. Other solutions which were considered involve exotic sources of extra neutrons which inevitably leads to an increase of the deuterium abundance, but this seems now excluded by recent deuterium observations.
Murray, P K
1998-08-01
The unique structure, role and operations of government high-security (HS) laboratories which work on animal diseases are described, with particular reference to the laboratories of nine countries. High-security laboratories provide cost-effective insurance against catastrophic losses which could occur following exotic disease outbreaks. The importance of these laboratories is reflected in the fact that several new laboratories have recently been constructed at considerable expense and older facilities have undergone major renovations. Biosecurity is fundamental to the operation of high-security laboratories, so good facility design and microbiological security practices are very important. High-security laboratories conduct exotic disease diagnosis, certification and surveillance, and also perform research into virology, disease pathogenesis and improvements to diagnostic tests and vaccines. The mandate of these laboratories includes the training of veterinarians in the recognition of exotic diseases. One extremely important role is the provision of expert advice on exotic diseases and participation (both nationally and internationally) in policy decisions regarding animal disease issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strayer, M.R.
This talk surveys a thirteen-year collaboration with Chris Bottcher on various aspects of strong field electrodynamics. Most of the work centers on the atomic physics associated with the peripheral collisions of ultrarelativistic heavy atoms. The earliest, beginning in about 1979, dealt with the spontaneous emission of positrons from nuclear quasimolecules and touched briefly on the formation of axions as a possible explanation of the anomalous peaks in the spectrum. This work stimulated the extensive studies of particle production from coherent fields that laid the foundations for investigations of nuclear form factors, structure functions, and production mechanisms for the Higgs andmore » other exotic particles. Chris conjectured that the strong fields that are present in these collisions would give rise to nonperturbative effects. Thus, during this time, Chris also worked to develop basis-spline collocation methods for solving dynamical relativistic fermions in super strong fields. This was perhaps one of the best of times for Chris; on these problems alone, he co-authored fifty articles with more than twenty different collaborators.« less
Thirteen nuclear microsatellite loci for butternut (Juglans cinerea L.).
Hoban, Sean; Anderson, Robert; McCleary, Tim; Schlarbaum, Scott; Romero-Severson, Jeanne
2008-05-01
Butternut (Juglans cinerea L.) is an eastern North American forest tree severely threatened by an exotic fungal pathogen, Sirococcus clavigignenti-juglandacearum. We report here 13 nuclear microsatellites for genetic evaluation of the remaining natural populations. Summary statistics are reported for individuals from a population of butternuts in central Kentucky (N = 63). All markers were polymorphic, with an average of 13.7 alleles per locus observed. Four loci exhibited significantly fewer heterozygotes than expected under Hardy-Weinberg equilibrium (P < 0.05). © 2007 The Authors.
The RIB production target for the SPES project
NASA Astrophysics Data System (ADS)
Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni
2015-10-01
Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.
NASA Astrophysics Data System (ADS)
Garnero, Ed; Wysession, Michael
Studied in earnest for 50 years time Is Earth's deep layer called Dee Double Prime. Exotic hypotheses new papers chime, But evasive big pictures halt reason or rhyme.Even before the first nuclear bomb, People like Gutenberg, Bullen, and Dahm And probably others: Dick, Harry, and Tom Proposed this new layer to address a qualm.
Understanding r-process Nucleosynthesis through Nuclear Data
NASA Astrophysics Data System (ADS)
Surman, Rebecca
2018-06-01
The electromagnetic counterpart of the GW170817 neutron star merger provided the first direct evidence of the astrophysical formation of nuclei via rapid neutron capture (r-process) nucleosynthesis. Full understanding of this event from first principles and its role in galactic chemical evolution requires progress in a number of areas. One key area is nuclear physics. A neutron star merger r-process involves thousands of exotic nuclear species, the majority of which have never been studied in the laboratory. Here we will discuss r-process nuclear data needs and how nuclear physics uncertainties influence our interpretation of observed abundance patterns and kilonova signals. We will explore the promise of experimental campaigns at rare isotope beam facilities to reduce these uncertainties, and describe recent efforts to directly connect nuclear data to astrophysical environments via the ‘reverse-engineering’ of unknown nuclear properties from the r-process abundance pattern.
COHERENT constraints to conventional and exotic neutrino physics
NASA Astrophysics Data System (ADS)
Papoulias, D. K.; Kosmas, T. S.
2018-02-01
The process of neutral-current coherent elastic neutrino-nucleus scattering, consistent with the Standard Model (SM) expectation, has been recently measured by the COHERENT experiment at the Spallation Neutron Source. On the basis of the observed signal and our nuclear calculations for the relevant Cs and I isotopes, the extracted constraints on both conventional and exotic neutrino physics are updated. The present study concentrates on various SM extensions involving vector and tensor nonstandard interactions as well as neutrino electromagnetic properties, with an emphasis on the neutrino magnetic moment and the neutrino charge radius. Furthermore, models addressing a light sterile neutrino state and scenarios with new propagator fields—such as vector Z' and scalar bosons—are examined, and the corresponding regions excluded by the COHERENT experiment are presented.
Progress on the accelerator based SPES-BNCT project at INFN Legnaro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, J.; Colautti, P.; Pisent, A.
2007-02-12
In the framework of an advanced Exotic Ion Beam facility, named SPES (Study and Production of Exotic Species), that will allow a frontier program both in nuclear and interdisciplinary physics, an intense thermal neutron beam facility, devoted to perform Boron Neutron Capture Therapy (BNCT) experimental treatments on skin melanoma tumor, is currently under construction based on the SPES proton driver. A vast radiobiological investigation in vitro and in vivo has started with the new 10B carriers developed. Special microdosimetric detectors have been constructed to properly measure all the BNCT dose components and their qualities. Both microdosimetric and radiobiological measurements aremore » being performed at the new HYTHOR beam shaping assembly at the Enea-Casaccia TAPIRO reactor.« less
Matthew L. Brooks; Cynthia S. Brown; Jeanne C. Chambers; Carla M. D' Antonio; Jon E. Keeley; Jayne Belnap
2016-01-01
Exotic annual Bromus species are widely recognized for their potential to invade, dominate, and alter the structure and function of ecosystems. In this chapter, we summarize the invasion potential, ecosystem threats, and management strategies for different Bromus species within each of five ecoregions of the western United States. We characterize invasion...
Ecosystem impacts of exotic annual invaders in the genus Bromus
Matthew J. Germino; Jayne Belnap; John M. Stark; Edith B Allen; Benjamin Rau
2016-01-01
An understanding of the impacts of exotic plant species on ecosystems is necessary to justify and guide efforts to limit their spread, restore natives, and plan for conservation. Invasive annual grasses such as Bromus tectorum, B. rubens, B. hordeaceus, and B. diandrus (hereafter collectively referred to as Bromus) transform the structure and function of ecosystems...
Microscopic derivation of IBM and structural evolution in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Kosuke
A Hamiltonian of the interacting boson model (IBM) is derived based on the mean-field calculations with nuclear energy density functionals (EDFs). The multi-nucleon dynamics of the surface deformation is simulated in terms of the boson degrees of freedom. The interaction strengths of the IBM Hamiltonian are determined by mapping the potential energy surfaces (PESs) of a given EDF with quadrupole degrees of freedom onto the corresponding PES of IBM. A fermion-to-boson mapping for a rotational nucleus is discussed in terms of the rotational response, which reflects a specific time-dependent feature. Ground-state correlation energy is evaluated as a signature of structuralmore » evolution. Some examples resulting from the present spectroscopic calculations are shown for neutron-rich Pt, Os and W isotopes including exotic ones.« less
Structures in general relativity
NASA Astrophysics Data System (ADS)
Tieu, Steven
Structures within general relativity are examined. The differences between man-made structures and those predicted by the Einstein differential equations are very subtle. Exotic structures such as the Godel Universe and the Gott cosmic string are examined with emphasis on closed time-like curves. Newtonian models are seen to also have an exotic aspect in that a vast halo consisting of unknown matter dominates the galaxy. We introduce a model for galaxies based on a general relativity framework with the goal of excluding such artifacts from the system while describing the flat-rotation curves. Structures within this model were speculated to be exotic but after close scrutiny, their nature is shown to be benign. Numerical approaches are applied to model four galaxies: The Milky Way, NGC 3031, NGC 3198 and NGC 7331. Density and mass are deduced from these models and compared to the Newtonian models. Within the visible/HI region, there is 30% reduction in total mass. Extending the model to 10 times beyond the HI region using various fall-off scenerios, it is shown that there is only modest increase of the accumulated mass. In comparison to the Newtonian approach to galactic dynamics, the massive halos are not required to account for the flat velocity profiles.
Huntly, N.; Bangert, R.; Hanser, S.E.
2011-01-01
Habitat fragmentation and invasion by exotic species are regarded as major threats to the biodiversity of many ecosystems. We surveyed the plant communities of two types of remnant sagebrush-steppe fragments from nearby areas on the Snake River Plain of southeastern Idaho, USA. One type resulted from land use (conversion to dryland agriculture; hereafter AG Islands) and the other from geomorphic processes (Holocene volcanism; hereafter kipukas). We assessed two predictions for the variation in native plant species richness of these fragments, using structural equation models (SEM). First, we predicted that the species richness of native plants would follow the MacArthur-Wilson (M-W) hypothesis of island biogeography, as often is expected for the communities of habitat fragments. Second, we predicted a negative relationship between native and exotic plants, as would be expected if exotic plants are decreasing the diversity of native plants. Finally, we assessed whether exotic species were more strongly associated with the fragments embedded in the agricultural landscape, as would be expected if agriculture had facilitated the introduction and naturalization of non-native species, and whether the communities of the two types of fragments were distinct. Species richness of native plants was not strongly correlated with M-W characteristics for either the AG Islands or the **kipukas. The AG Islands had more species and higher cover of exotics than the kipukas, and exotic plants were good predictors of native plant species richness. Our results support the hypothesis that proximity to agriculture can increase the diversity and abundance of exotic plants in native habitat. In combination with other information, the results also suggest that agriculture and exotic species have caused loss of native diversity and reorganization of the sagebrush-steppe plant community. ?? 2011 Springer Science+Business Media B.V.
Nuclear pulse. III - Playing a wild card
NASA Astrophysics Data System (ADS)
Broad, W. J.
1981-06-01
Implications of the phenomenon of electromagnetic pulse (EMP), a high-voltage by-product of nuclear explosions in space which could render useless unprotected communications equipment and power grids over a wide area, for the feasibility of conducting a limited nuclear war by the United States are discussed. Arguments on the one hand that the effects of EMP demand direct investigation and should be protected against by the hardening of U.S. military communications are summarized and contrasted with those on the other hand which assert that the presence of EMP, as well as other exotic nuclear effects, would, despite any attempts at hardening, make it impossible to maintain the precision of command and control necessary for a limited nuclear action against Soviet military targets. Uncertainties about Soviet intentions in regard to the use of EMP as a weapon are also pointed out.
USDA-ARS?s Scientific Manuscript database
Tamarix usneoides (Tamaricaceae) is a species native to southern Africa where it is currently being used in the mines for phytoremediation. However, Tamarix aphylla, T. ramosissima, T. chinensis, and T. parviflora have been reported as exotic species in South Africa, with T. ramosissima declared inv...
Moving Towards a State of the Art Charge-Exchange Reaction Code
NASA Astrophysics Data System (ADS)
Poxon-Pearson, Terri; Nunes, Filomena; Potel, Gregory
2017-09-01
Charge-exchange reactions have a wide range of applications, including late stellar evolution, constraining the matrix elements for neutrinoless double β-decay, and exploring symmetry energy and other aspects of exotic nuclear matter. Still, much of the reaction theory needed to describe these transitions is underdeveloped and relies on assumptions and simplifications that are often extended outside of their region of validity. In this work, we have begun to move towards a state of the art charge-exchange reaction code. As a first step, we focus on Fermi transitions using a Lane potential in a few body, Distorted Wave Born Approximation (DWBA) framework. We have focused on maintaining a modular structure for the code so we can later incorporate complications such as nonlocality, breakup, and microscopic inputs. Results using this new charge-exchange code will be shown compared to the analysis in for the case of 48Ca(p,n)48Sc. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S. DOE Cooperative Agreement No. DE- FG52-08NA2855.
Nuclear Structure Studies with Stable and Radioactive Beams: The SPES radioactive ion beam project
NASA Astrophysics Data System (ADS)
de Angelis, G.; SPES Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.
2015-04-01
A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.
Designing an Active Target Test Projection Chamber
NASA Astrophysics Data System (ADS)
Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration
2015-10-01
The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.
Ching-Yu Huang; Grizelle Gonzalez; Paul F. Hendrix
2006-01-01
Populations of some native earthworm species are decreasing or disappearing due to human activities like habitat disturbance and introduction of exotic earthworms. Habitat disturbance can cause changes in soil physical structure and nutrient cycling, which may reduce native earthworm populations prior to the invasion of exotic earthworms. Our purpose was 1) to...
Dean E. Pearson; Yvette K. Ortega; Kevin S. McKelvey; Leonard F. Ruggiero
2001-01-01
Agriculture and development have dramatically reduced the range of native bunchgrass habitats in the Northern Rocky Mountains, and the invasion of exotic plants threatens to greatly alter the remaining pristine prairie. Small mammals play many important roles in ecosystem functions, but little is known about small mammal community composition and structure in native...
Nuclear Threshold States: Yesterday, Today, Tomorrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogloblin, A. A.; Danilov, A. N.; Demyanova, A. S.
2010-04-30
50 years ago exotic nuclear states with abnormally large radii located close to the thresholds of emission of nucleons or clusters were predicted. Recently a hypothesis of possible existence of alpha-particle Bose condensation was proposed. The 0{sup +}{sub 2}(7.65 MeV) state of {sup 12}C(so-called Hoyle state) is considered to be the prototype of such condensed state and have a dilute structure. We propose two methods for searching the alpha-condensate signatures in the Hoyle state and some other ones near the alpha-thresholds by using inelastic diffractive and rainbow scattering. Inelastic scattering of {sup 2}H, {sup 3}He, {sup 4}He, {sup 6}Li, andmore » {sup 12}C on {sup 12}C was studied and the enhancement of the {sup 12}C radius in the Hoyle state relatively the ground state radius by a factor of 1.2 was demonstrated. Another signature of the condensate structure, 70% probability of all three alpha-particles to be in the s-state, was observed for the Hoyle state by studying the {sup 8}Be transfer reaction. The analogs of the Hoyle state with enhanced radii were identified in {sup 11}B and {sup 13}C. The proposed methods of measuring the nuclear radii allowed observation of neutron halos in the excited states of {sup 9}Be and {sup 13}C. The conception of abnormal dimensions of the threshold states finds its confirmation in many nuclear phenomena both well-known and new ones. One of the perspective domains of its manifestation are the nuclei heavier than {sup 100}Sn with N = Z, which are able to emit several alpha particles.« less
Choudhary, Shashi Bhushan; Sharma, Hariom Kumar; Kumar, Arroju Anil; Maruthi, Rangappa Thimmaiah; Mitra, Jiban; Chowdhury, Isholeena; Singh, Binay Kumar; Karmakar, Pran Gobinda
2017-02-01
A total of 130 flax accessions of diverse morphotypes and worldwide origin were assessed for genetic diversity and population structure using 11 morphological traits and microsatellite markers (15 gSSRs and 7 EST-SSRs). Analysis performed after classifying these accessions on the basis of plant height, branching pattern, seed size, Indian/foreign origin into six categories called sub-populations viz. fibre type exotic, fibre type indigenous, intermediate type exotic, intermediate type indigenous, linseed type exotic and linseed type indigenous. The study assessed different diversity indices, AMOVA, population structure and included a principal coordinate analysis based on different marker systems. The highest diversity was exhibited by gSSR markers (SI=0.46; He=0.31; P=85.11). AMOVA based on all markers explained significant difference among fibre type, intermediate type and linseed type populations of flax. In terms of variation explained by different markers, EST-SSR markers (12%) better differentiated flax populations compared to morphological (9%) and gSSR (6%) markers at P=0.01. The maximum Nei's unbiased genetic distance (D=0.11) was observed between fibre type and linseed type exotic sub-populations based on EST-SSR markers. The combined structure analysis by using all markers grouped Indian fibre type accessions (63.4%) in a separate cluster along with the Indian intermediate type (48.7%), whereas Indian accessions (82.16%) of linseed type constituted an independent cluster. These findings were supported by the results of the principal coordinate analysis. Morphological markers employed in the study found complementary with microsatellite based markers in deciphering genetic diversity and population structure of the flax germplasm. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Tamarisk control on public lands in the desert of southern California: two case studies
1994-01-01
As a land manager, the Federal Government faces enormous challenges from exotic pest invasions and associated changes to the structure and stability of native ecosystems (Bureau of Land Management, 1988). On public lands administered by the Bureau of Land Management (BLM) alone, it is estimated that almost three million hectares are occupied by invasive exotic plant species (weeds). Assuming an annual rate of invasion of 14 percent, 930 hectares of BLM-administered land are infested everyday by weeds (Jerry Asher, personal communication). When one considers the fact that BLM administers only about one-third of the public land in the United States (The Keystone Center, 1991), the magnitude of the problem assumes staggering proportions. The scenario described in the quote above portrays only some of the problems associated with the spread of the exotic plant tamarisk, a species on the California Exotic Pest Plant Council’s list of exotic pest plants of greatest concern (California Exotic Pest Plant Council, 1993). In this paper we review the threats posed by tamarisk invasion and proliferation and examine the traits that make the plant such a successful competitor. In addition, we highlight two tamarisk control efforts conducted by the Bureau of Land Management in the southern California desert.
Statistical model of exotic rotational correlations in emergent space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Craig; Kwon, Ohkyung; Richardson, Jonathan
2017-06-06
A statistical model is formulated to compute exotic rotational correlations that arise as inertial frames and causal structure emerge on large scales from entangled Planck scale quantum systems. Noncommutative quantum dynamics are represented by random transverse displacements that respect causal symmetry. Entanglement is represented by covariance of these displacements in Planck scale intervals defined by future null cones of events on an observer's world line. Light that propagates in a nonradial direction inherits a projected component of the exotic rotational correlation that accumulates as a random walk in phase. A calculation of the projection and accumulation leads to exact predictionsmore » for statistical properties of exotic Planck scale correlations in an interferometer of any configuration. The cross-covariance for two nearly co-located interferometers is shown to depart only slightly from the autocovariance. Specific examples are computed for configurations that approximate realistic experiments, and show that the model can be rigorously tested.« less
Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China
Hai Ren; Shuguang Jian; Hongfang Lu; Qianmei Zhang; Weijun Shen; Weidong Han; Zuoyun Yin; Qinfeng Guo
2008-01-01
To examine the natural colonisation of native mangrove species into remediated exotic mangrove stands in Leizhou Bay, South China, we compared soil physicalâchemical properties, community structure and recruitments of barren mangrove areas, native mangrove species plantations, and exotic mangrove speciesâSonneratia apetala Buch.Hamâbetween plantations and natural...
“This is Our Sanctuary”: Perceptions of Safety among Exotic Dancers in Baltimore, Maryland
Lilleston, Pamela; Reuben, Jacqueline; Sherman, Susan G.
2012-01-01
Occupational safety researchers have increasingly recognized the important influence of social and structural factors on safety perception and behaviours in occupational settings. This qualitative study was conducted to explore the nature of the safety climate of exotic dance clubs in Baltimore, Maryland and the mechanisms through which this sexual geography informs dancers’ perceptions of safety and experience of sex work. Structured observations and semi-structured qualitative interviews (N=40) were conducted with club dancers, doormen, managers, and bartenders from May through August, 2009. Data were analyzed using an inductive approach whereby themes emerged from the data itself. Atlas-ti was used for data analysis. Perceptions of safety within exotic dance clubs were born from an interplay between the physical, social, and symbolic environments. These perceptions were closely tied to dancers’ construction of sex work inside versus outside of the club. Understanding the contextual factors, which influence how dancers understand and prioritize risk in their work settings, is crucial for creating policies and programs, which effectively reduce risk in this environment. PMID:22361635
Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei
NASA Astrophysics Data System (ADS)
Holt, R. J.; Gilman, R.
2012-08-01
We provide a perspective on studies aimed at observing the transition between hadronic and quark-gluonic descriptions of reactions involving light nuclei. We begin by summarizing the results for relatively simple reactions such as the pion form factor and the neutral pion transition form factor as well as that for the nucleon and end with exclusive photoreactions in our simplest nuclei. A particular focus will be on reactions involving the deuteron. It is noted that a firm understanding of these issues is essential for unravelling important structure information from processes such as deeply virtual Compton scattering as well as deeply virtual meson production. The connection to exotic phenomena such as color transparency will be discussed. A number of outstanding challenges will require new experiments at modern facilities on the horizon as well as further theoretical developments.
Reaction Studies With Light, Unstable Nuclei
NASA Astrophysics Data System (ADS)
Ernst Rehm, K.
2006-10-01
The availability of beams of exotic nuclei allows us for the first time to study in a terrestrial laboratory reactions, which occur in stellar explosions, such as Novae, Supernovae or X-ray bursts. In this talk I will present results from recent experiments performed with beams of light, unstable nuclei, which are produced via the in-flight technique at the ATLAs accelerator at Argonne. This work was supported by the US Department of Energy, Nuclear Physics Division, under contract No. W-31-109-ENG-38 and by the NSF Grant No. PHY-02-16783 (Joint Institute for Nuclear Astrophysics).
Exotic nuclear systems with strangeness: Hypernuclei and Kaonic nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dote, Akinobu
2010-05-12
Nuclear systems with strangeness, hypernuclei and kaonic nuclei, are expected to have lots of interesting properties. In this article, after the recent development of hypernuclear study is reviewed, we report two results of our study of hypernuclei with antisymmetrized molecular dynamics; 1) impurity effect of LAMBDA on {sub L}AMBDA{sup 20}Ne, and 2){sub X}I{sup 12}Be studied with three kinds of XIN potentials. The current status of studies of kaonic nuclei is also introduced and our study with a phenomenological and a chiral-based K-barN potential are reported.
Heavy neutron rich nuclei: production and investigation
NASA Astrophysics Data System (ADS)
Zemlyanoy, S.; Avvakumov, K.; Kazarinov, N.; Fedosseev, V.; Bark, R.; Blazczak, Z.; Janas, Z.
2018-05-01
For production and investigation of heavy neutron rich nuclei devoted the new setup, which is under construction at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR, Dubna now. This setup is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the “north-east” region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.
Drechsler, Hauke; McAinsh, Andrew D.
2012-01-01
The emergence of eukaryotes around two billion years ago provided new challenges for the chromosome segregation machineries: the physical separation of multiple large and linear chromosomes from the microtubule-organizing centres by the nuclear envelope. In this review, we set out the diverse solutions that eukaryotic cells use to solve this problem, and show how stepping away from ‘mainstream’ mitosis can teach us much about the mechanisms and mechanics that can drive chromosome segregation. We discuss the evidence for a close functional and physical relationship between membranes, nuclear pores and kinetochores in generating the forces necessary for chromosome segregation during mitosis. PMID:23271831
Production and investigation of heavy neutron rich nuclei
NASA Astrophysics Data System (ADS)
Zemlyanoy, Sergey; Avvakumov, Konstantin; Kozulin, Eduard; Fedosseev, Valentin; Bark, Robert; Janas, Zenon
2017-11-01
A project devoted to the production and study of neutron rich heavy nuclei (GALS - project) is being realized at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR. GALS is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron rich nuclei located in the "north-east" region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.
Near-field environment/processes working group summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, W.M.
1995-09-01
This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of the near-field environment to geologic repositories for high-level nuclear waste. The near-field environment may be affected by thermal perturbations from the waste, and by disturbances caused by the introduction of exotic materials during construction of the repository. This group also discussed the application of modelling of performance-related processes.
Self organization of exotic oil-in-oil phases driven by tunable electrohydrodynamics
Varshney, Atul; Ghosh, Shankar; Bhattacharya, S.; Yethiraj, Anand
2012-01-01
Self organization of large-scale structures in nature - either coherent structures like crystals, or incoherent dynamic structures like clouds - is governed by long-range interactions. In many problems, hydrodynamics and electrostatics are the source of such long-range interactions. The tuning of electrostatic interactions has helped to elucidate when coherent crystalline structures or incoherent amorphous structures form in colloidal systems. However, there is little understanding of self organization in situations where both electrostatic and hydrodynamic interactions are present. We present a minimal two-component oil-in-oil model system where we can control the strength and lengthscale of the electrohydrodynamic interactions by tuning the amplitude and frequency of the imposed electric field. As a function of the hydrodynamic lengthscale, we observe a rich phenomenology of exotic structure and dynamics, from incoherent cloud-like structures and chaotic droplet dynamics, to polyhedral droplet phases, to coherent droplet arrays. PMID:23071902
NASA Astrophysics Data System (ADS)
Brodeur, M.; Brunner, T.; Ettenauer, S.; Lapierre, A.; Ringle, R.; Delheij, P.; Dilling, J.
2009-05-01
Exotic nuclei are characterized with an extremely unbalanced protons-neutrons ratio (p/n) where for instance, the halo isotopes of He and Li have up to 3X more n than p (compared to p/n = 1 in ^12C). The properties of these exotic halo nuclei have long been recognized as the most stringent tests of our understanding of the strong force. ^11Li belongs to a special category of halos called Borromean, bound as a three-body family, while the two-body siblings, ^10Li and 2 n, are unbound as separate entities. Last year, a first mass measurement of the radioisotope ^11Li using a Penning trap spectrometer was carried out at the TITAN (Triumf's Ion Trap for Atomic and Nuclear science) facility at TRIUMF-ISAC. Penning traps are proven to be the most precise device to make mass measurements, yet until now they were unable to reach these nuclei. At TRIUMF we managed to measure the mass of ^11Li to an unprecedented precision of dm/m = 60 ppb, which is remarkable since it has a half-life of only 8.8 ms which it the shortest-lived nuclide to be measured with this technique. Furthermore, new and improved masses for the 2 and 4 n halo ^6,8He, as well has the 1 n halo ^11Be have been performed. An overview of the TITAN mass measurement program and its impact in understanding the most exotic nuclei will be given.
Implications of altered rainfall and exotic plants on soil microbial communities and carbon biomass
NASA Astrophysics Data System (ADS)
Castro, S.; Lipson, D.; Cleland, E. E.
2016-12-01
Climate and exotic plant disturbances are among the most significant threats to Mediterranean-type ecosystems, compromising their renowned biodiversity and role in the global carbon cycle. Predicted shifts in rainfall patterns have become a particular concern, especially when interactions with other stressors and effects on biogeochemical processes remain poorly understood. To understand the impacts of altered rainfall on belowground dynamics as well as the role of inter- and intra-annual variation and plant community composition, we monitored soil microbial communities under native and exotic plant dominated plots with rainfall manipulation treatments in a semi-arid Mediterranean-type ecosystem. We measured microbial biomass, respiration rates, and community structure across treatments and vegetation types. Soil moisture and dissolved organic carbon were also measured to characterize abiotic soil properties. The soil moisture gradient established by the rainfall treatments had a positive correlation with microbial biomass carbon under native- and exotic-dominated plots but had no effect on respiration rates. A significant reduction in microbial biomass under exotic plants was found in 2013 but not in 2014 and 2015. Substrate-induced respiration values were higher in the exotic-dominated plots during the spring seasons, resulting in a significant interaction between plant community type and season. Bacterial communities showed little variation except in the Proteobacteria phyla, which was lower in exotic plants-dominated plots. Dissolved organic carbon was significantly reduced in exotic-dominated plots by approximately 26% based on average values of all plots throughout. Our results illustrate that rainfall quantity and exotic plants can cause changes in microbial biomass, community composition and respiration rates jeopardizing soil carbon storage. They also reinforce the importance of temporal variability and the need for repeated sampling to correctly interpret environmental changes in semi-arid ecosystems. We conclude that to improve predictions of the implications of global stressors on biogeochemical cycles in semi-arid ecosystems, there is a need to incorporate microbial data with the understanding that it is highly dependent on temporal dynamics and plant community.
Martin, Leigh J; Murray, Brad R
2011-05-01
The invasive spread of exotic plants in native vegetation can pose serious threats to native faunal assemblages. This is of particular concern for reptiles and amphibians because they form a significant component of the world's vertebrate fauna, play a pivotal role in ecosystem functioning and are often neglected in biodiversity research. A framework to predict how exotic plant invasion will affect reptile and amphibian assemblages is imperative for conservation, management and the identification of research priorities. Here, we present a new predictive framework that integrates three mechanistic models. These models are based on exotic plant invasion altering: (1) habitat structure; (2) herbivory and predator-prey interactions; (3) the reproductive success of reptile and amphibian species and assemblages. We present a series of testable predictions from these models that arise from the interplay over time among three exotic plant traits (growth form, area of coverage, taxonomic distinctiveness) and six traits of reptiles and amphibians (body size, lifespan, home range size, habitat specialisation, diet, reproductive strategy). A literature review provided robust empirical evidence of exotic plant impacts on reptiles and amphibians from each of the three model mechanisms. Evidence relating to the role of body size and diet was less clear-cut, indicating the need for further research. The literature provided limited empirical support for many of the other model predictions. This was not, however, because findings contradicted our model predictions but because research in this area is sparse. In particular, the small number of studies specifically examining the effects of exotic plants on amphibians highlights the pressing need for quantitative research in this area. There is enormous scope for detailed empirical investigation of interactions between exotic plants and reptile and amphibian species and assemblages. The framework presented here and further testing of predictions will provide a basis for informing and prioritising environmental management and exotic plant control efforts. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudek, Jozef; Essig, Rouven; Kumar, Krishna
2012-08-01
We are at the dawn of a new era in the study of hadronic nuclear physics. The non-Abelian nature of Quantum Chromodynamics (QCD) and the resulting strong coupling at low energies represent a significant challenge to nuclear and particle physicists. The last decade has seen the development of new theoretical and experimental tools to quantitatively study the nature of confinement and the structure of hadrons comprised of light quarks and gluons. Together these will allow both the spectrum and the structure of hadrons to be elucidated in unprecedented detail. Exotic mesons that result from excitation of the gluon field willmore » be explored. Multidimensional images of hadrons with great promise to reveal the dynamics of the key underlying degrees of freedom will be produced. In particular, these multidimensional distributions open a new window on the elusive spin content of the nucleon through observables that are directly related to the orbital angular momenta of quarks and gluons. Moreover, computational techniques in Lattice QCD now promise to provide insightful and quantitative predictions that can be meaningfully confronted with, and elucidated by, forthcoming experimental data. In addition, the development of extremely high intensity, highly polarized and extraordinarily stable beams of electrons provides innovative opportunities for probing (and extending) the Standard Model, both through parity violation studies and searches for new particles. Thus the 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new experimental program with substantial discovery potential to address these and other important topics in nuclear, hadronic and electroweak physics.« less
Unified equation of state for neutron stars on a microscopic basis
NASA Astrophysics Data System (ADS)
Sharma, B. K.; Centelles, M.; Viñas, X.; Baldo, M.; Burgio, G. F.
2015-12-01
We derive a new equation of state (EoS) for neutron stars (NS) from the outer crust to the core based on modern microscopic calculations using the Argonne v18 potential plus three-body forces computed with the Urbana model. To deal with the inhomogeneous structures of matter in the NS crust, we use a recent nuclear energy density functional that is directly based on the same microscopic calculations, and which is able to reproduce the ground-state properties of nuclei along the periodic table. The EoS of the outer crust requires the masses of neutron-rich nuclei, which are obtained through Hartree-Fock-Bogoliubov calculations with the new functional when they are unknown experimentally. To compute the inner crust, Thomas-Fermi calculations in Wigner-Seitz cells are performed with the same functional. Existence of nuclear pasta is predicted in a range of average baryon densities between ≃0.067 fm-3 and ≃0.0825 fm-3, where the transition to the core takes place. The NS core is computed from the new nuclear EoS assuming non-exotic constituents (core of npeμ matter). In each region of the star, we discuss the comparison of the new EoS with previous EoSs for the complete NS structure, widely used in astrophysical calculations. The new microscopically derived EoS fulfills at the same time a NS maximum mass of 2 M⊙ with a radius of 10 km, and a 1.5 M⊙ NS with a radius of 11.6 km.
NASA Astrophysics Data System (ADS)
Münzenberg, Gottfried; Geissel, Hans; Litvinov, Yuri A.
2010-04-01
This contribution is based on the combination of the talks: "What can we learn from large-scale mass measurements," "Present and future experiments with stored exotic nuclei at relativistic energies," and "Beta decay of highly-charged ions." Studying the nuclear mass surface gives information on the evolution of nuclear structure such as nuclear shells, the onset of deformation and the drip-lines. Previously, most of the masses far-off stability has been obtained from decay data. Modern methods allow direct mass measurements. They are much more sensitive, down to single atoms, access short-lived species and have high accuracy. Large-scale explorations of the nuclear mass surface are ideally performed with the combination of the in-flight FRagment Separator FRS and the Experimental Storage Ring ESR. After a brief historic introduction selected examples such as the evolution of shell closures far-off stability and the proton-neutron interaction will be discussed in the framework of our data. Recently, the experiments have been extended and led to the discovery of new heavy neutron-rich isotopes along with their mass and lifetime measurements. Storage rings applied at relativistic energies are a unique tool to study the radioactive decay of bare or few-electron atomic nuclei. New features observed with the analysis of stored circulating mother and daughter ions including oscillations in the decay curves of hydrogen-like nuclei will be addressed. Future experiments with NUSTAR at FAIR will further extend our knowledge to the borderlines of nuclear existence.
Observation of an Exotic Baryon with S=+1 in Photoproduction from the Proton
NASA Astrophysics Data System (ADS)
Kubarovsky, V.; Guo, L.; Weygand, D. P.; Stoler, P.; Battaglieri, M.; Devita, R.; Adams, G.; Li, Ji; Nozar, M.; Salgado, C.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Ciciani, L.; Cole, P. L.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Farhi, L.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gothe, R.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hancock, D.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Holtrop, M.; Hu, J.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Longhi, A.; Lukashin, K.; Major, R. W.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mozer, M. U.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; O'Brien, J. T.; O'Rielly, G. V.; Opper, A. K.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, T.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weisberg, A.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.
2004-01-01
The reaction γp→π+K-K+n was studied at Jefferson Laboratory using a tagged photon beam with an energy range of 3 5.47GeV. A narrow baryon state with strangeness S=+1 and mass M=1555±10 MeV/c2 was observed in the nK+ invariant mass spectrum. The peak’s width is consistent with the CLAS resolution (FWHM=26 MeV/c2), and its statistical significance is (7.8±1.0)σ. A baryon with positive strangeness has exotic structure and cannot be described in the framework of the naive constituent quark model. The mass of the observed state is consistent with the mass predicted by the chiral soliton model for the Θ+ baryon. In addition, the pK+ invariant mass distribution was analyzed in the reaction γp→K-K+p with high statistics in search of doubly charged exotic baryon states. No resonance structures were found in this spectrum.
Maron, John L; Auge, Harald; Pearson, Dean E; Korell, Lotte; Hensen, Isabell; Suding, Katharine N; Stein, Claudia
2014-04-01
Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed and undisturbed subplots in and out of rodent exclosures with seeds of native or exotic species in grasslands in Montana, California and Germany. Seed addition enhanced aboveground biomass and species richness compared with no-seeds-added controls, with exotics having disproportionate effects on productivity compared with natives. Disturbance enhanced the effects of seed addition on productivity and species richness, whereas rodents reduced productivity, but only in Germany and California. Our results demonstrate that experimental introduction of novel species can alter ecosystem function and community structure, but that local filters such as competition and herbivory influence the magnitude of these impacts. © 2014 John Wiley & Sons Ltd/CNRS.
Correlated factors in amphibian decline: Exotic species and habitat change in western Washington
Adams, Michael J.
1999-01-01
Amphibian declines may frequently be associated with multiple, correlated factors. In western North America, exotic species and hydrological changes are often correlated and are considered 2 of the greatest threats to freshwater systems. Bullfrog (Rana catesbeiana) introductions are frequently cited as a threat to lentic-breeding anurans native to western North America and are a suspected factor in the decline of red-legged frogs (Rana aurora) in California. Introduced fish and habitat change are cited less frequently but are equally viable hypotheses. I examined the relation among introduced species, habitat, and the distribution and abundance of red-legged frogs in western Washington. Red-legged frog occurrence in the Puget Lowlands was more closely associated with habitat structure and the presence of exotic fish than with the presence of bull-frogs. The spread of exotics is correlated with a shift toward greater permanence in wetland habitats regionally. Conservation of more ephemeral wetland habitats may have direct benefits for some native amphibians and may also reduce the threat of exotic fish and bullfrogs, both of which were associated with permanent wetlands. Research and conservation efforts for lowland anurans in the West should emphasize the complexities of multiple contributing factors to amphibian losses.
NASA Technical Reports Server (NTRS)
1985-01-01
Thermionic energy conversion is the production of energy from a nuclear source. It is a technology advanced by SNSO, a joint research and development organization formed by NASA and the AEC. SNSO contracted with Thermo Electron Corporation to develop high temperature applications, i.e., metals with high melting points. Thermo Electron Corporation's expertise resulted in contracts for products made from exotic metals such as bone implants, artificial hips, and heart pacemakers.
Refining mass formulas for astrophysical applications: A Bayesian neural network approach
NASA Astrophysics Data System (ADS)
Utama, R.; Piekarewicz, J.
2017-10-01
Background: Exotic nuclei, particularly those near the drip lines, are at the core of one of the fundamental questions driving nuclear structure and astrophysics today: What are the limits of nuclear binding? Exotic nuclei play a critical role in both informing theoretical models as well as in our understanding of the origin of the heavy elements. Purpose: Our aim is to refine existing mass models through the training of an artificial neural network that will mitigate the large model discrepancies far away from stability. Methods: The basic paradigm of our two-pronged approach is an existing mass model that captures as much as possible of the underlying physics followed by the implementation of a Bayesian neural network (BNN) refinement to account for the missing physics. Bayesian inference is employed to determine the parameters of the neural network so that model predictions may be accompanied by theoretical uncertainties. Results: Despite the undeniable quality of the mass models adopted in this work, we observe a significant improvement (of about 40%) after the BNN refinement is implemented. Indeed, in the specific case of the Duflo-Zuker mass formula, we find that the rms deviation relative to experiment is reduced from σrms=0.503 MeV to σrms=0.286 MeV. These newly refined mass tables are used to map the neutron drip lines (or rather "drip bands") and to study a few critical r -process nuclei. Conclusions: The BNN approach is highly successful in refining the predictions of existing mass models. In particular, the large discrepancy displayed by the original "bare" models in regions where experimental data are unavailable is considerably quenched after the BNN refinement. This lends credence to our approach and has motivated us to publish refined mass tables that we trust will be helpful for future astrophysical applications.
Is the exotic X(5568) a bound state?
NASA Astrophysics Data System (ADS)
Chen, Xiaoyun; Ping, Jialun
2016-06-01
Stimulated by the recent observation of the exotic X(5568) state by the D0 Collaboration, we study the four-quark system usbar{b}bar{d} with quantum numbers J^P=0^+ in the framework of the chiral quark model. Two structures, diquark-antidiquark and meson-meson, with all possible color configurations are investigated by using the Gaussian expansion method. The results show that the energies of the tetraquark states with diquark-antiquark structure are too high to be candidates of X(5568), and no molecular structure can be formed in our calculations. The calculation is also extended to the four-quark system usbar{c}bar{d} and the same results as that of usbar{b}bar{d} are obtained.
Atomic-scale investigation of nuclear quantum effects of surface water: Experiments and theory
NASA Astrophysics Data System (ADS)
Guo, Jing; Li, Xin-Zheng; Peng, Jinbo; Wang, En-Ge; Jiang, Ying
2017-12-01
Quantum behaviors of protons in terms of tunneling and zero-point motion have significant effects on the macroscopic properties, structure, and dynamics of water even at room temperature or higher. In spite of tremendous theoretical and experimental efforts, accurate and quantitative description of the nuclear quantum effects (NQEs) is still challenging. The main difficulty lies in that the NQEs are extremely susceptible to the structural inhomogeneity and local environments, especially when interfacial systems are concerned. In this review article, we will highlight the recent advances of scanning tunneling microscopy and spectroscopy (STM/S), which allows the access to the quantum degree of freedom of protons both in real and energy space. In addition, we will also introduce recent development of ab initio path-integral molecular dynamics (PIMD) simulations at surfaces/interfaces, in which both the electrons and nuclei are treated as quantum particles in contrast to traditional ab initio molecular dynamics (MD). Then we will discuss how the combination of STM/S and PIMD are used to directly visualize the concerted quantum tunneling of protons within the water clusters and quantify the impact of zero-point motion on the strength of a single hydrogen bond (H bond) at a water/solid interface. Those results may open up the new possibility of exploring the exotic quantum states of light nuclei at surfaces, as well as the quantum coupling between the electrons and nuclei.
Looking for Strange Quark Matter in Cosmic Rays.
NASA Astrophysics Data System (ADS)
Shaulov, S. B.; Bezshapov, S. P.
2013-06-01
Usually it is supposed that the definition of the CR mass composition in knee region is the key to problem of CR spectrum modification in this range. However tens of the experiments were done for the last half of century and have not decided this problem up to now. The possible causes of fiasco and arguments in favour of necessity to reformulate attack method are discussed, taking into account a new experimental data about fine structure of CR spectrum and EAS core investigations. The possible presence of the exotic processes in the area of a knee is discussed. If exotic component really exists in CR then impossible to formulate correctly more common problem of mass composition without solving this one. It is represented, that the problem of presence of an exotic component in CR should be solved easier than a CR composition problem. The observational basis is discussed. The hypothesis of strange quark matter in CR is suggested for the exotic component.
Structure of the exotic He 9 nucleus from the no-core shell model with continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorabbi, Matteo; Calci, Angelo; Navratil, Petr
2018-03-13
Here, the exotic 9He nucleus, which presents one of the most extreme neutron-to-proton ratios, belongs to the N = 7 isotonic chain famous for the phenomenon of ground-state parity inversion with decreasing number of protons. Consequently, it would be expected to have an unnatural (positive) parity ground state similar to 11Be and 10Li. Despite many experimental and theoretical investigations, its structure remains uncertain. Apart from the fact that it is unbound, other properties including the spin and parity of its ground state, and the very existence of additional low-lying resonances are still a matter of debate
NASA Astrophysics Data System (ADS)
2015-02-01
The 11th International Seminar on Nuclear Physics was held in Ischia from May 12 to May 16, 2014. This Seminar was dedicated to Aldo Covello, who has been the promoter of this series of meetings, which started in Sorrento in 1986 and continued with meetings held every two or three years in the Naples area. Aldo's idea was to offer to a group of researchers, actively working in selected fields of Nuclear Physics, the opportunity to confront their points of view in a lively and informal way. The choice for the period of the year, Spring, as well as the sites chosen reflected this intent. The first meeting was of a purely theoretical nature, but it was immediately clear that the scope of these conferences needed to be enlarged calling into play the experimental community. Then, starting from the second meeting, all the following ones have been characterized by fruitful discussion between theoretical and experimental researchers on current achievements and future developments of nuclear structure. This may be read, in fact, as one of the motivating factors for Aldo's election as Fellow of the American Physical Society in 2008 "... for his outstanding contributions to the international nuclear physics community by providing, for over two decades, a venue for theorists and experimentalists to share their latest ideas." The present meeting, organized by Aldo's former students and with the benefit of his suggestions, has maintained this tradition. The title "Shell model and nuclear structure: achievements of the past two decades" recalls that of the 2nd International Spring Seminar "Shell Model and Nuclear Structure: where do we stand?". The main aim of this 11th Seminar was, in fact, to discuss the changes of the past two decades on our view of nuclei in terms of shell structure as well as the perspectives of the shell model, which has been one of the key points in Aldo's research. This point is well accounted by the Opening Speech of Igal Talmi, one of the fathers of the shell model. Then, as usual, the program of the meeting consisted of general talks and more specialized contributions, which covered five main topics: i) From nuclear forces to nuclear structure; ii) Exploring nuclear structure toward the drip line; iii) Role of the shell model in the study of exotic nuclei; iv) Nuclear structure aspects outside the shell model; and v) Special topics. The main conclusions were drawn in two keynote talks given by Amand Faessler and Franco Iachello. The Conference had about 90 participants from some 20 countries [please see the list of participants]. This is well in line with the tradition of these meetings, as is the fact that more than 50% of the present participants attended one or more of the previous Seminars. We received 58 manuscripts out of the 73 invited papers and contributions presented at the Seminar. All of these have been peer reviewed and are collected in this volume. We would like to thank all the colleagues who have acted as referees to assess the suitability of the various articles for publication in the Journal of Physics: Conference Series. We are confident that the high quality of both invited and contributed papers contained in these Proceedings will be appreciated by the nuclear physics community. We gratefully acknowledge the members of the Advisory Committee for their valuable cooperation in preparing the scientific program as well as the financial support of the Istituto Nazionale di Fisica Nucleare, the University of Naples Federico II, and the Dipartimento di Fisica who helped make the Seminar possible. Angela Gargano Luigi Coraggio Nunzio Itaco Editors
New nuclear structure data beyond 136Sn
NASA Astrophysics Data System (ADS)
Lozeva, Radomira
2018-05-01
Exotic nuclei beyond the 132Sn double shell-closure are influenced by both the Sn superfluity and the evolving collectivity only few nucleons away. Toward even more neutron-rich nuclei, especially at intermediate mass number, the interplay between single-particle and collective particle-hole excitations competes. In some cases with the extreme addition of neutrons also other effects as the formation of neutron skin, stabilization as sub-shell gaps or orbital crossings may be expected. The knowledge of nuclear ingredients is especially interesting beyond 132Sn and little is known on how the excitation modes develop with the addition of both protons and neutrons and for example systematic prompt and decay studies can be such very sensitive probe. Recently, we have approached this region of nuclei in several experimental measurements following 238U projectile fission on 9Be and n-induced fission on 241Pu and 235U. Consistent data analysis allows to access various spins and excitation energies and provide new input to theory. Examples from these studies on several nuclei in the A 140 region were presented during the conference together with the possible interpretation of the new data. Here, we will illustrate one example on 136I using two complementary data sets.
Integrated Remote Sensing Modalities for Classification at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Lee, D. J.; Anderson, D.; Craven, J.
2016-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.
NASA Astrophysics Data System (ADS)
Rijal, Nabin; Wiedenhover, Ingo; Baby, L. T.; Blackmon, J. C.; Rogachev, G.
2017-09-01
Astrophysically observed 7Li is 3 -4 times less than predicted amount by current models of Standard Big Bang Nucleosynthesis (SBBN). The nuclear reaction 7Be + d at energies relevant to SBBN, has been discussed as a possible means to destroy mass-7 nuclei. We investigated the 7Be + d and it's mirror nuclear reaction 7Li + d at SBBN energies using a radioactive 7Be and stable 7Li beam both in deuterium gas target inside ANASEN at Florida State University. ANASEN is an active target detector system which tracks the charged particles using a position sensitive proportional counter and 24-SX3 and 4-QQQ position sensitive Silicon detectors, all backed up by CsI detectors. ANASEN has wide angular coverage. The experiment measures a continuous excitation function by slowing down the beam in the target gas down to zero energy by using a single beam energy. Our set-up provides a high detection efficiency for all relevant reaction channels including (d , p) , (d , α) and/or direct breakup that can destroy mass-7 nuclei in contrast to previous measurements. The preliminary results of these experiments along with details of ANASEN detector will be presented. *ANASEN: Array for Nuclear Astrophysics and Structure with Exotic Nuclei. This work is supported by the US NSF MRI program, Grant No. PHY-0821308 and NSF Grant PHY-1401574.
NASA Astrophysics Data System (ADS)
Civitarese, O.; Suhonen, J.; Zuber, K.
2015-09-01
The extension of the Standard Model of electroweak interactions, to accommodate massive neutrinos and/or right-handed currents, is one of the fundamental questions to answer in the cross-field of particle and nuclear physics. The consequences of such extensions would reflect upon nuclear decays, like the very exotic nuclear double-beta-decay, as well as upon high-energy proton-proton reactions of the type performed at the LHC accelerator. In this talk we shall address this question by looking at the results reported by the ATLAS and CMS collaborations, where the excitation and decay of a heavy-mass boson may be mediated by a heavy-mass neutrino in proton-proton reactions leading to two jets and two leptons, and by extracting limits on the left-right mixing, from the latest measurements of nuclear-double-beta decays reported by the GERDA and EXO collaborations.
Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naviliat-Cuncic, Oscar
2013-05-06
Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar ormore » tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.« less
Nuclear-Structure Physics with MINIBALL at HIE-ISOLDE
NASA Astrophysics Data System (ADS)
Reiter, P.;
2018-02-01
The MINIBALL spectrometer utilizes successfully a variety of post-accelerated radioactive ion beams provided by the new HIE-ISOLDE accelerator at CERN. In-beam γ-ray spectroscopy after Coulomb excitation (CE) or transfer reactions is performed with optimized setups of ancillary detectors for particle detection. The physics program covers a wide range of shell model investigations. Exotic heavy ion beams will enable unique studies of collective properties up to the actinide region. First data taking with HIE-ISOLDE beams started recently. The higher energies and intensities of the new post-accelerator provides a promising perspective for a new generation of MINIBALL experiments. Intriguing first results were obtained by employing beams of 74,76,78Zn, 110,132Sn, 144Xe with beam energies in the range of 4.0 - 5.5 MeV/u for CE experiments at ‘safe’ energies. In all cases first results for various B(Eλ) values for these isotopes were obtained.
Clark, L V; Jasieniuk, M
2012-01-01
Facultative asexual reproduction is a trait commonly found in invasive species. With a combination of sexual and asexual reproductive modes, such species may adapt to new environments via sexual recombination during range expansion, while at the same time having the benefits of asexuality such as the maintenance of fitness effects that depend upon heterozygosity. In the Western United States, native species of Rubus (Rosaceae) reproduce sexually whereas exotic naturalized Rubus species reproduce by pseudogamous apomixis. We hypothesized that new asexual lineages of Rubus could arise from hybridization in this range. To detect hybridization between native and exotic Rubus, we genotyped 579 individuals collected across California, Oregon and Washington with eight nuclear microsatellites and two chloroplast markers. Principal Coordinate Analysis and Bayesian clustering revealed a limited amount of hybridization of the native R. ursinus with the exotic R. armeniacus and R. pensilvanicus, as well as cultivated varieties. Genetic distances between these hybrids and their offspring indicated that both R. ursinus × R. armeniacus and R. ursinus × R. pensilvanicus produced a mix of apomictic and sexual seeds, with sexual seeds being more viable. Although neither of these hybrid types is currently considered invasive, they model the early stages of evolution of new invasive lineages, given the potential for fixed heterosis and the generation of novel genotypes. The hybrids also retain the ability to increase their fitness via sexual recombination and natural selection. Mixed reproductive systems such as those described here may be an important step in the evolution of asexual invasive species. PMID:22850699
Role of invasive Melilotus officinalis in two native plant communities
Van Riper, Laura C.; Larson, Diane L.
2009-01-01
This study examines the impact of the exotic nitrogen-fixing legume Melilotus officinalis (L.) Lam. on native and exotic species cover in two Great Plains ecosystems in Badlands National Park, South Dakota. Melilotus is still widely planted and its effects on native ecosystems are not well studied. Melilotus could have direct effects on native plants, such as through competition or facilitation. Alternatively, Melilotus may have indirect effects on natives, e.g., by favoring exotic species which in turn have a negative effect on native species. This study examined these interactions across a 4-year period in two contrasting vegetation types: Badlands sparse vegetation and western wheatgrass (Pascopyrum smithii) mixed-grass prairie. Structural equation models were used to analyze the pathways through which Melilotus, native species, and other exotic species interact over a series of 2-year time steps. Melilotus can affect native and exotic species both in the current year and in the years after its death (a lag effect). A lag effect is possible because the death of a Melilotus plant can leave an open, potentially nitrogen-enriched site on the landscape. The results showed that the relationship between Melilotus and native and exotic species varied depending on the habitat and the year. In Badlands sparse vegetation, there was a consistent, strong, and positive relationship between Melilotus cover and native and exotic species cover suggesting that Melilotus is acting as a nurse plant and facilitating the growth of other species. In contrast, in western wheatgrass prairie, Melilotus was acting as a weak competitor and had no consistent effect on other species. In both habitats, there was little evidence for a direct lag effect of Melilotus on other species. Together, these results suggest both facilitative and competitive roles for Melilotus, depending on the vegetation type it invades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jean-Marc Laget
Exclusive reactions induced at high momentum transfer in few body systems allow to adjust the formation time of the produced particles to the distance between two nucleons in the target. They are the best windows to study the propagation of exotic configurations of hadrons such as for instance the onset of color transparency. It may appear earlier in meson photo-production reactions, in the strange sector more particularly, than in more classical quasi elastic scattering of electrons. More generally, those reactions provide them with the best tool to determine the cross section of the scattering of various hadrons (strange particles, vectormore » mesons) with nucleon, to better understand the mechanisms of their formation in cold hadronic matter, and to access the production of possible exotic states. At the top of the unitary rescattering peak (triangular logarithmic singularity), the reaction amplitude is on solid ground since it depends only on on-shell elementary amplitudes and on low momentum components of the nuclear wave function.« less
TITAN's multiple-reflection time-of-flight isobar separator
NASA Astrophysics Data System (ADS)
Reiter, Moritz Pascal; Titan Collaboration
2016-09-01
At the ISAC facility located at TRIUMF exotic nuclei are produced by the ISOL method. Exotic nuclei are separated by a magnetic separator and transported to TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). TITAN is a system of multiple ion traps for high precision mass measurements and in-trap decay spectroscopy. Although ISAC can deliver some of the highest yields for even many of the most exotic species many measurements suffer from a strong isobaric background. This background often prevents the high precision measurement of the species of interest. To overcome this limitation an additional isobar separator based on the Multiple-Reflection Time-Of-Flight Mass Spectrometry (MR-TOF-MS) technique has been developed for TITAN. Mass selection is achieved using dynamic re-trapping of the species of interest after a time-of-flight analysis in an electrostatic isochronous reflector system. Additionally the MR-TOF-MS will, on its own, enable mass measurements of very short-lived nuclides that are weakly produced. Being able to measure all isobars of a given mass number at the same time the MR-TOF-MS can be used for beam diagnostics or determination of beam compositions. Results from the offline commissioning showing mass resolving power and separation power will be presented.
Brooks, Matthew L.; Brown, Cynthia S.; Chambers, Jeanne C.; D'Antonio, Carla M.; Keeley, Jon E.; Belnap, Jayne
2016-01-01
Exotic annual Bromus species are widely recognized for their potential to invade, dominate, and alter the structure and function of ecosystems. In this chapter, we summarize the invasion potential, ecosystem threats, and management strategies for different Bromus species within each of five ecoregions of the western United States. We characterize invasion potential and threats in terms of ecosystem resistance to Bromus invasion and ecosystem resilience to disturbance with an emphasis on the importance of fi re regimes. We also explain how soil temperature and moisture regimes can be linked to patterns of resistance and resilience and provide a conceptual framework that can be used to evaluate the relative potential for invasion and ecological impact of the dominant exotic annual Bromus species in the western United States.
Possible exotic superconductivity in the monolayer and bilayer silicene
NASA Astrophysics Data System (ADS)
Yang, Fan; Yao, Yugui; Zhang, Li-Da; Liu, Cheng-Cheng; Liu, Feng
2014-03-01
Silicene, the silicon-based counterpart of graphene, has attracted a lot of research interest since synthesized recently. Similar honeycomb lattice structures of the two systems let them share most of their marvelous physical properties. The most important structural difference between the two systems lie in the noncoplanar lowbuckled geometry in silicene, which brings up a lot of interesting physical consequence to the system. Here we focus on possible exotic superconductivity (SC) in the family, via random phase approximation (RPA) study on the relevant Hubbard-models. Two systems of this family are studied, including the monolayer and bilayer silicene. For the former system, we found an electric-field driven quantum phase transition (QPT) from chiral d+id to f-wave SC when the field is perpendicular to the silicene plane. For the latter system, we found that even the undoped system is intrinsically metallic and superconducting with chiral d+id symmetry and tunable Tc which can be high . Our study not only provides a new playground for the study of the exotic SC, but also brings a new epoch to the familiar Si industry.
Time Crystal Platform: From Quasicrystal Structures in Time to Systems with Exotic Interactions.
Giergiel, Krzysztof; Miroszewski, Artur; Sacha, Krzysztof
2018-04-06
Time crystals are quantum many-body systems that, due to interactions between particles, are able to spontaneously self-organize their motion in a periodic way in time by analogy with the formation of crystalline structures in space in condensed matter physics. In solid state physics properties of space crystals are often investigated with the help of external potentials that are spatially periodic and reflect various crystalline structures. A similar approach can be applied for time crystals, as periodically driven systems constitute counterparts of spatially periodic systems, but in the time domain. Here we show that condensed matter problems ranging from single particles in potentials of quasicrystal structure to many-body systems with exotic long-range interactions can be realized in the time domain with an appropriate periodic driving. Moreover, it is possible to create molecules where atoms are bound together due to destructive interference if the atomic scattering length is modulated in time.
Time Crystal Platform: From Quasicrystal Structures in Time to Systems with Exotic Interactions
NASA Astrophysics Data System (ADS)
Giergiel, Krzysztof; Miroszewski, Artur; Sacha, Krzysztof
2018-04-01
Time crystals are quantum many-body systems that, due to interactions between particles, are able to spontaneously self-organize their motion in a periodic way in time by analogy with the formation of crystalline structures in space in condensed matter physics. In solid state physics properties of space crystals are often investigated with the help of external potentials that are spatially periodic and reflect various crystalline structures. A similar approach can be applied for time crystals, as periodically driven systems constitute counterparts of spatially periodic systems, but in the time domain. Here we show that condensed matter problems ranging from single particles in potentials of quasicrystal structure to many-body systems with exotic long-range interactions can be realized in the time domain with an appropriate periodic driving. Moreover, it is possible to create molecules where atoms are bound together due to destructive interference if the atomic scattering length is modulated in time.
The r-process nucleosynthesis and related challenges
NASA Astrophysics Data System (ADS)
Goriely, Stephane; Bauswein, Andreas; Janka, Hans-Thomas; Just, Oliver; Pllumbi, Else
2018-01-01
The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Recently, special attention has been paid to neutron star (NS) mergers following the confirmation by hydrodynamic simulations that a non-negligible amount of matter can be ejected and by nucleosynthesis calculations combined with the predicted astrophysical event rate that such a site can account for the majority of r-material in our Galaxy. We show here that the combined contribution of both the dynamical (prompt) ejecta expelled during binary NS or NS-black hole (BH) mergers and the neutrino and viscously driven outflows generated during the post-merger remnant evolution of relic BH-torus systems can lead to the production of r-process elements from mass number A ≳ 90 up to actinides. The corresponding abundance distribution is found to reproduce the solar distribution extremely well. It can also account for the elemental distributions observed in low-metallicity stars. However, major uncertainties still affect our understanding of the composition of the ejected matter. These concern (i) the β-interactions of electron (anti)neutrinos with free neutrons and protons, as well as their inverse reactions, which may affect the neutron-richness of the matter at the early phase of the ejection, and (ii) the nuclear physics of exotic neutron-rich nuclei, including nuclear structure as well as nuclear interaction properties, which impact the calculated abundance distribution. Both aspects are discussed in the light of recent hydrodynamical simulations of NS mergers and microscopic calculations of nuclear decay and reaction probabilities.
NASA Astrophysics Data System (ADS)
Drouin, Melanie; Fugere, Martine; Lapointe, Line; Vellend, Mark; Bradley, Robert L.
2016-04-01
In Eastern Canada, native earthworm species did not survive the Wisconsin glaciation, which ended over 11,000 years ago. Accordingly, the 17 known Lumbricidae species in the province of Québec were introduced in recent centuries by European settlers. Given that natural migration rates are no more than 5-10 m yr-1, exotic earthworm dispersal across the landscape is presumed to be mediated by human activities, although this assertion needs further validation. In agroecosystems, earthworms have traditionally been considered beneficial soil organisms that facilitate litter decomposition, increase nutrient availability and improve soil structure. However, earthworm activities could also increase soil nutrient leaching and CO2 emissions. Furthermore, in natural forest ecosystems, exotic earthworms may reduce organic forest floors provoking changes in watershed hydrology and loss of habitat for some faunal species. Over the past decade, studies have also suggested a negative effect of exotic earthworms on understory plant diversity, but the underlying mechanisms remain elusive. Finally, there are no studies to our knowledge that have tested the effects of Lumbricidae species on the production of N2O (an important greenhouse gas) in forest ecosystems. We report on a series of field, greenhouse and laboratory studies on the human activities responsible for the dispersal of exotic earthworms, and on their ecological / geochemical impacts in natural forest ecosystems. Our results show: (1) Car tire treads and bait discarded by fishermen are important human vectors driving the dispersal of earthworms into northern temperate forests; (2) Exotic earthworms significantly modify soil physicochemical properties, nutrient cycling, microbial community structure and biomass; (3) Earthworm abundances in the field correlate with a decrease in understory plant diversity; (4) Lumbricus terrestris, an anecic earthworm species and favorite bait of fishermen, reduces seed germination and seedling survival of some temperate and boreal trees species; (5) The abundance of L. terrestris correlates with higher potential rates of N2O production. Taken collectively, our data provide scientific evidence that earthworm dispersal mitigation strategies are required to conserve the ecological integrity of forest ecosystems in Eastern Canada.
MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR
NASA Astrophysics Data System (ADS)
Rodríguez, D.; Blaum, K.; Nörtershäuser, W.; Ahammed, M.; Algora, A.; Audi, G.; Äystö, J.; Beck, D.; Bender, M.; Billowes, J.; Block, M.; Böhm, C.; Bollen, G.; Brodeur, M.; Brunner, T.; Bushaw, B. A.; Cakirli, R. B.; Campbell, P.; Cano-Ott, D.; Cortés, G.; Crespo López-Urrutia, J. R.; Das, P.; Dax, A.; de, A.; Delheij, P.; Dickel, T.; Dilling, J.; Eberhardt, K.; Eliseev, S.; Ettenauer, S.; Flanagan, K. T.; Ferrer, R.; García-Ramos, J.-E.; Gartzke, E.; Geissel, H.; George, S.; Geppert, C.; Gómez-Hornillos, M. B.; Gusev, Y.; Habs, D.; Heenen, P.-H.; Heinz, S.; Herfurth, F.; Herlert, A.; Hobein, M.; Huber, G.; Huyse, M.; Jesch, C.; Jokinen, A.; Kester, O.; Ketelaer, J.; Kolhinen, V.; Koudriavtsev, I.; Kowalska, M.; Krämer, J.; Kreim, S.; Krieger, A.; Kühl, T.; Lallena, A. M.; Lapierre, A.; Le Blanc, F.; Litvinov, Y. A.; Lunney, D.; Martínez, T.; Marx, G.; Matos, M.; Minaya-Ramirez, E.; Moore, I.; Nagy, S.; Naimi, S.; Neidherr, D.; Nesterenko, D.; Neyens, G.; Novikov, Y. N.; Petrick, M.; Plaß, W. R.; Popov, A.; Quint, W.; Ray, A.; Reinhard, P.-G.; Repp, J.; Roux, C.; Rubio, B.; Sánchez, R.; Schabinger, B.; Scheidenberger, C.; Schneider, D.; Schuch, R.; Schwarz, S.; Schweikhard, L.; Seliverstov, M.; Solders, A.; Suhonen, M.; Szerypo, J.; Taín, J. L.; Thirolf, P. G.; Ullrich, J.; van Duppen, P.; Vasiliev, A.; Vorobjev, G.; Weber, C.; Wendt, K.; Winkler, M.; Yordanov, D.; Ziegler, F.
2010-05-01
Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10-5 to below 10-8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10-9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e.g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility.Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner.The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with β-delayed neutron detection) has been achieved with rates of only a few atoms per second.This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.
Visualized kinematics code for two-body nuclear reactions
NASA Astrophysics Data System (ADS)
Lee, E. J.; Chae, K. Y.
2016-05-01
The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.
The EXPERT project: part of the Super-FRS Experiment Collaboration
NASA Astrophysics Data System (ADS)
Chudoba, V.; "EXPERT project,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedenhoever, Ingo
The Fourteenth Annual Exotic Beam Summer School EBSS 2015 was held August 2nd - August 7th, 2015, and belongs to the series of summer programs aimed at educating future workforce in nuclear physics-related areas, mostly about the challenges of radioactive ion beam physics. Through these schools the research community will be able to exploit fully the opportunities created by the exotic beam facilities. These facilities in the US include CARIBU at ANL, the NSCL and the future FRIB laboratory as well as smaller-scale university laboratories. The skill set needed by the future workforce is very diverse and a fundamental understandingmore » of theoretical, technical, computational and applied fields are all important. Therefore, the Exotic Beam Summer Schools follow a unique approach, in which the students not only receive lectures but also participate in hands-on activities. The lectures covered broad topics in both the experimental and theoretical physics of nuclei far from stability as well as radioactive ions production and applications. The afternoons provided opportunities for "hands-on" projects with experimental equipment and techniques useful in FRIB research. Five activities were performed in groups of eight students, rotating through the activities over the five afternoons of the school. The center of the activities was an experiment at the FSU tandem accelerator, measuring the angular distribution and cross section of the 12C(d,p) 13C transfer reaction, measured with a silicon telescope in a scattering chamber. The experimental data were analyzed by performing a DWBA calculation with the program DWUCK, and the resulting spectroscopic factors were compared to a shell model calculation. The other activities included target preparation, digital gamma-spectroscopy and modern neutron detection methods.« less
Exotic differentiable structures and general relativity
NASA Astrophysics Data System (ADS)
Brans, Carl H.; Randall, Duane
1993-02-01
We review recent developments in differential topology with special concern for their possible significance to physical theories, especially general relativity. In particular we are concerned here with the discovery of the existence of non-standard (“fake” or “exotic”) differentiable structures on topologically simple manifolds such asS 7, ℝ4 andS 3 X ℝ1. Because of the technical difficulties involved in the smooth case, we begin with an easily understood toy example looking at the role which the choice of complex structures plays in the formulation of two-dimensional vacuum electrostatics. We then briefly review the mathematical formalisms involved with differentiable structures on topological manifolds, diffeomorphisms and their significance for physics. We summarize the important work of Milnor, Freedman, Donaldson, and others in developing exotic differentiable structures on well known topological manifolds. Finally, we discuss some of the geometric implications of these results and propose some conjectures on possible physical implications of these new manifolds which have never before been considered as physical models.
Nowak, Magdalena
2010-05-11
The problem of the unnatural transfer of exotic ticks (Acari: Ixodida) on reptiles (Reptilia) imported to Poland is presented. In the period from 2003 to 2007, 382 specimens of reptiles belonging to the following genera were investigated: Testudo, Iguana, Varanus, Gongylophis, Python, Spalerosophis, Psammophis. The reptiles most infested with ticks are imported to Poland from Ghana in Africa, and are the commonly bred terrarium reptiles: Varanus exanthematicus and Python regius. As a result of the investigations, the transfer of exotic ticks on reptiles to Poland was confirmed. There were 2104 specimens of the genera Amblyomma and Hyalomma. The following species were found: Amblyomma exornatum Koch, 1844, Amblyomma flavomaculatum (Lucas, 1846), Amblyomma latum Koch, 1844, Amblyomma nuttalli Donitz, 1909, Amblyomma quadricavum (Schulze, 1941), Amblyomma transversale (Lucas, 1844), Amblyomma varanense (Supino, 1897), Amblyomma sp. Koch, 1844, Hyalomma aegyptium (Linnaeus, 1758). All the species of ticks of genus Amblyomma revealed have been discovered in Poland for the first time. During the research, 13 cases of anomalies of morphological structure were confirmed in the ticks A. flavomaculatum, A. latum and H. aegyptium. The expanding phenomenon of the import of exotic reptiles in Poland and Central Europe is important for parasitological and epidemiological considerations, and therefore requires monitoring and wide-ranging prophylactic activities to prevent the inflow of exotic parasites to Poland. (c) 2010 Elsevier B.V. All rights reserved.
Kalkhan, M.A.; Stafford, E.J.; Woodly, P.J.; Stohlgren, T.J.
2007-01-01
Rocky Mountain National Park (RMNP), Colorado, USA, contains a diversity of plant species. However, many exotic plant species have become established, potentially impacting the structure and function of native plant communities. Our goal was to quantify patterns of exotic plant species in relation to native plant species, soil characteristics, and other abiotic factors that may indicate or predict their establishment and success. Our research approach for field data collection was based on a field plot design called the pixel nested plot. The pixel nested plot provides a link to multi-phase and multi-scale spatial modeling-mapping techniques that can be used to estimate total species richness and patterns of plant diversity at finer landscape scales. Within the eastern region of RMNP, in an area of approximately 35,000 ha, we established a total of 60 pixel nested plots in 9 vegetation types. We used canonical correspondence analysis (CCA) and multiple linear regressions to quantify relationships between soil characteristics and native and exotic plant species richness and cover. We also used linear correlation, spatial autocorrelation and cross correlation statistics to test for the spatial patterns of variables of interest. CCA showed that exotic species were significantly (P < 0.05) associated with photosynthetically active radiation (r = 0.55), soil nitrogen (r = 0.58) and bare ground (r = -0.66). Pearson's correlation statistic showed significant linear relationships between exotic species, organic carbon, soil nitrogen, and bare ground. While spatial autocorrelations indicated that our 60 pixel nested plots were spatially independent, the cross correlation statistics indicated that exotic plant species were spatially associated with bare ground, in general, exotic plant species were most abundant in areas of high native species richness. This indicates that resource managers should focus on the protection of relatively rare native rich sites with little canopy cover, and fertile soils. Using the pixel nested plot approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and cost-effective manner. ?? 2006 Elsevier B.V. All rights reserved.
Nuclear Astrophysics At ISAC With DRAGON
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Auria, John M.
2005-05-24
The unique DRAGON (recoil mass separator) facility is now available to provide measurements of radiative capture reactions involving short-lived exotic reactants which are considered important in explosive stellar scenarios such as novae and X-ray bursts. A description of the first study completed, the 1H(21Na,22Mg){gamma} reaction, will be summarized and updated. In addition, the planned program for DRAGON will be presented along with a summary of the upgrade of the ISAC Radioactive Beams laboratory.
NASA Technical Reports Server (NTRS)
Schmalzer, Paul A.; Hinkle, C. Ross
1987-01-01
Invasive exotic plants can displace native flora and modify community and ecosystem structure and function. Ammophila arenaria, Corpobrotus edulis, Cortaderia jubata, and Gasoul crystallinum are invasive plants present on Vandenberg Air Force Base, California, designated for study by the Environmental Task Force because of the perceived threat they represent to the native flora. Each plant's native habitat, how they came to be at Vandenberg, their propagation, and how they can be controlled is discussed.
Microscopic heavy-ion theory. Final Report. February 2014-June 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, David J.; Oberacker, Volker E.; Umar, A. Sait
The Vanderbilt nuclear theory group conducts research in the areas of low-energy nuclear reactions and in neutrino oscillations. Specically, we study dynamics of nuclear reactions microscopically, in particular for neutron-rich nuclei which will be accessible with current and future radioactive ion beam facilities. The neutrino work concentrates on constructing computational tools for analyzing neutrino oscillation data. The most important of these is the analysis of the Super K atmospheric data. Our research concentrates on the following topics which are part of the DOE Long-Range Plan: STUDIES OF LOW-ENERGY REACTIONS OF EXOTIC NUCLEI (Professors Umar and Oberacker), including sub-barrier fusion crossmore » sections, capture cross sections for superheavy element production, and nuclear astrophysics applications. Our theory project is strongly connected to experiments at RIB facilities around the world, including NSCL-FRIB (MSU) and ATLAS-CARIBU (Argonne). PHENOMENOLOGY OF NEUTRINO OSCILLATIONS (Prof. Ernst), extracting information from existing neutrino oscillation experiments and proposing possible future experiments in order to better understand the oscillation phenomenon.« less
Current Status of Nuclear Physics Research
NASA Astrophysics Data System (ADS)
Bertulani, Carlos A.; Hussein, Mahir S.
2015-12-01
In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in pursuing a career in nuclear physics.
The compression-mode giant resonances and nuclear incompressibility
NASA Astrophysics Data System (ADS)
Garg, Umesh; Colò, Gianluca
2018-07-01
The compression-mode giant resonances, namely the isoscalar giant monopole and isoscalar giant dipole modes, are examples of collective nuclear motion. Their main interest stems from the fact that one hopes to extrapolate from their properties the incompressibility of uniform nuclear matter, which is a key parameter of the nuclear Equation of State (EoS). Our understanding of these issues has undergone two major jumps, one in the late 1970s when the Isoscalar Giant Monopole Resonance (ISGMR) was experimentally identified, and another around the turn of the millennium since when theory has been able to start giving reliable error bars to the incompressibility. However, mainly magic nuclei have been involved in the deduction of the incompressibility from the vibrations of finite nuclei. The present review deals with the developments beyond all this. Experimental techniques have been improved, and new open-shell, and deformed, nuclei have been investigated. The associated changes in our understanding of the problem of the nuclear incompressibility are discussed. New theoretical models, decay measurements, and the search for the evolution of compressional modes in exotic nuclei are also discussed.
NASA Astrophysics Data System (ADS)
Romero, Jonathan; Posada, Edwin; Flores-Moreno, Roberto; Reyes, Andrés
2012-08-01
In this work we propose an extended propagator theory for electrons and other types of quantum particles. This new approach has been implemented in the LOWDIN package and applied to sample calculations of atomic and small molecular systems to determine its accuracy and performance. As a first application of the method we have studied the nuclear quantum effects on electron ionization energies. We have observed that ionization energies of atoms are similar to those obtained with the electron propagator approach. However, for molecular systems containing hydrogen atoms there are improvements in the quality of the results with the inclusion of nuclear quantum effects. An energy term analysis has allowed us to conclude that nuclear quantum effects are important for zero order energies whereas propagator results correct the electron and electron-nuclear correlation terms. Results presented for a series of n-alkanes have revealed the potential of this method for the accurate calculation of ionization energies of a wide variety of molecular systems containing hydrogen nuclei. The proposed methodology will also be applicable to exotic molecular systems containing positrons or muons.
NASA Astrophysics Data System (ADS)
Wu, Wei
2015-05-01
The electronic structures of cubic and tetragonal MnV2O4 have been studied using hybrid-exchange density-functional theory. The computed electronic structure of the tetragonal phase shows an antiferro-orbital ordering on V sites and a ferrimagnetic ground state (the spins on V and Mn are antialigned). These results are in good agreement with the previous theoretical result obtained from the local-density approximation + U methods [S. Sarkar et al., Phys. Rev. Lett. 102, 216405 (2009), 10.1103/PhysRevLett.102.216405]. Moreover, the electronic structure, especially the projected density of states of the cubic phase, has been predicted with good agreement with the recent soft x-ray spectroscopy experiment. Similar to the tetragonal phase, the spins on V and Mn in the cubic structure favor a ferrimagnetic configuration. Most interesting is that the computed charge densities of the spin-carrying orbitals on V in the cubic phase show an exotic orbital ordering, i.e., a ferro-orbital ordering along [110] but an antiferro-orbital ordering along [1 ¯10 ] .
Search for Structure in the B_{s}^{0}π^{±} Invariant Mass Spectrum.
Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, I; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S
2016-10-07
The B_{s}^{0}π^{±} invariant mass distribution is investigated in order to search for possible exotic meson states. The analysis is based on a data sample recorded with the LHCb detector corresponding to 3 fb^{-1} of pp collision data at sqrt[s]=7 and 8 TeV. No significant excess is found, and upper limits are set on the production rate of the claimed X(5568) state within the LHCb acceptance. Upper limits are also set as a function of the mass and width of a possible exotic meson decaying to the B_{s}^{0}π^{±} final state. The same limits also apply to a possible exotic meson decaying through the chain B_{s}^{*0}π^{±}, B_{s}^{*0}→B_{s}^{0}γ where the photon is excluded from the reconstructed decays.
The SPES High Power ISOL production target
NASA Astrophysics Data System (ADS)
Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.
2016-11-01
SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.
Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project
NASA Astrophysics Data System (ADS)
Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.
2014-02-01
SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.
Attempt to probe nuclear charge radii by cluster and proton emissions
NASA Astrophysics Data System (ADS)
Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong
2013-05-01
We deduce the rms nuclear charge radii for ground states of light and medium-mass nuclei from experimental data of cluster radioactivity and proton emission in a unified framework. On the basis of the density-dependent cluster model, the calculated decay half-lives are obtained within the modified two-potential approach. The charge distribution of emitted clusters in the cluster decay and that of daughter nuclei in the proton emission are determined to correspondingly reproduce the experimental half-lives within the folding model. The obtained charge distribution is then employed to give the rms charge radius of the studied nuclei. Satisfactory agreement between theory and experiment is achieved for available experimental data, and the present results are found to be consistent with theoretical estimations. This study is expected to be helpful in the future detection of nuclear sizes, especially for these exotic nuclei near the proton dripline.
Kerman's Problem in the Continuum
NASA Astrophysics Data System (ADS)
Macchiavelli, A. O.; Casten, R. F.; Clark, R. M.; Campbell, C. M.; Crawford, H. L.; Cromaz, M.; Fallon, P.; Jones, M. D.; Salathe, M.
2017-09-01
In 1956 Kerman published a seminal paper on rotational perturbations in nuclei. Since then, Coriolis and rotational alignment effects have been extensively studied and are rather well understood. With the development of exotic beam facilities and advanced instrumentation it is becoming possible to access regions of deformation in the nuclear chart, near the neutron drip-line. Here, the effects of weak binding are expected to play an important role, affecting the dynamics of the nuclear motion. In this work we study Kerman's problem when the single-particle levels involved are resonant states. We will present results showing the behavior of the kinematic and dynamic moments of inertia as a function of the state widths. Connection to possible experiments will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).
Current status of GALS setup in JINR
NASA Astrophysics Data System (ADS)
Zemlyanoy, S.; Avvakumov, K.; Fedosseev, V.; Bark, R.; Blazczak, Z.; Janas, Z.
2017-11-01
This is a brief report on the current status of the new GAs cell based Laser ionization Setup (GALS) at the Flerov Laboratory for Nuclear Reactions (FLNR) of the Joint Institute for Nuclear Research (JINR) in Dubna. GALS will exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the "north-east" region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are thermalized and neutralized in a high pressure gas cell and subsequently selectively laser re-ionized. In order to choose the best scheme of ion extraction the results of computer simulations of two different systems are presented. The first off- and online experiment will be performed on osmium atoms that is regarded as a most convenient element for producing isotopes with neutron number in the vicinity of the magic N = 126.
Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui
2014-01-01
In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.
Dissipative Dynamics with Exotic Beams
NASA Astrophysics Data System (ADS)
di Toro, M.; Colonna, M.; Greco, V.; Ferini, G.; Rizzo, C.; Rizzo, J.; Baran, V.; Wolter, H. H.; Zielinska-Pfabe, M.
2008-04-01
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation and at high nucleon momenta. In this report we present a selection of reaction observables particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS) At low and Fermi energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. Predictions are shown for fusion, deep-inelastic and fragmentation collisions induced by neutron rich projectiles. At all energies the isospin transport data are supplying valuable information on value and slope of the symmetry term below saturation. The importance of studying violent collisions with radioactive beams in this energy range is finally stressed.
Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics
NASA Astrophysics Data System (ADS)
Berthier, Claude; Horvatić, Mladen; Julien, Marc-Henri; Mayaffre, Hadrien; Krämer, Steffen
2017-05-01
In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observables, we consider several topics: quantum spin systems (spin-Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus, and Bose-Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic superconductivity including the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino-Peter mechanism.
Nuclear Physics with 10 PW laser beams at Extreme Light Infrastructure - Nuclear Physics (ELI-NP)
NASA Astrophysics Data System (ADS)
Zamfir, N. V.
2014-05-01
The field of the uncharted territory of high-intensity laser interaction with matter is confronted with new exotic phenomena and, consequently, opens new research perspectives. The intense laser beams interacting with a gas or solid target generate beams of electrons, protons and ions. These beams can induce nuclear reactions. Electrons also generate ions high-energy photons via bremsstrahlung processes which can also induce nuclear reactions. In this context a new research domain began to form in the last decade or so, namely nuclear physics with high power lasers. The observation of high brilliance proton beams of tens of MeV energy from solid targets has stimulated an intense research activity. The laser-driven particle beams have to compete with conventional nuclear accelerator-generated beams. The ultimate goal is aiming at applications of the laser produced beams in research, technology and medicine. The mechanism responsible for ion acceleration are currently subject of intensive research in many laboratories in the world. The existing results, experimental and theoretical, and their perspectives are reviewed in this article in the context of IZEST and the scientific program of ELI-NP.
Stroh, E.D.; Struckhoff, M.A.
2009-01-01
We compared the extent to which exotic species are associated with horse trails, old roads, and intact communities within three native vegetation types in Ozark National Scenic Riverways, Missouri. We used a general linear model procedure and a Bonferroni multiple comparison test to compare exotic species richness, exotic to native species ratios, and exotic species percent cover across three usage types (horse trails, old roads, and intact communities) and three community types (river bottoms, upland waterways, and glades). We found that both exotic species richness and the ratio of exotic species to native species were greater in plots located along horse trails than in plots located either in intact native communities or along old roads. Native community types did not differ in the number of exotic species present, but river bottoms had a significantly higher exotic to native species ratio than glades. Continued introduction of exotic plant propagules may explain why horse trails contain more exotic species than other areas in a highly disturbed landscape.
NASA Astrophysics Data System (ADS)
Dobaczewski, Jacek
2010-06-01
Nuclear structure theory is a domain of physics faced at present with great challenges and opportunities. A larger and larger body of high-precision experimental data has been and continues to be accumulated. Experiments on very exotic short-lived isotopes are the backbone of activity at numerous large-scale facilities. Over the years, tremendous progress has been made in understanding the basic features of nuclei. However, the theoretical description of nuclear systems is still far from being complete and is often not very precise. Many questions, both basic and practical, remain unanswered. The goal of publishing this special focus issue of Journal of Physics G: Nuclear and Particle Physics on Open Problems in Nuclear Structure Theory (OPeNST) is to construct a fundamental inventory thereof, so that the tasks and available options become more clearly exposed and that this will help to stimulate a boost in theoretical activity, commensurate with the experimental progress. The requested format and scope of the articles on OPeNST was quite flexible. The journal simply offered the possibility to provide a forum for the material, which is very often discussed at conferences during the coffee breaks but does not normally have sufficient substance to form regular publications. Nonetheless, very often formulating a problem provides a major step towards its solution, and it may constitute a scientific achievement on its own. Prospective authors were therefore invited to find their own balance between the two extremes of very general problems on the one hand (for example, to solve exactly the many-body equations for a hundred particles) and very specific problems on the other hand (for example, those that one could put in one's own grant proposal). The authors were also asked not to cover results already obtained, nor to limit their presentations to giving a review of the subject, although some elements of those could be included to properly introduce the subject matter. The focus of these collected articles is therefore on the discussion of topics that are not yet understood, or that are poorly understood. We very much welcomed presentations on: (i) contradictory approaches, models, or theories that are, at present, difficult to reconcile, (ii) unsolved theoretical problems that hamper applications of existing methods, (iii) limitations of current approaches, (iv) difficulties in deriving and justifying models and theories, (v) generic problems in understanding or describing specific experimental data, and even (vi) all possible, wildest speculations and/or conjectures. The main idea behind the focus issue was to stimulate creative, unbounded thinking and provide young, but not only young, researchers with ideas that would promote further progress in this domain of science. The community of nuclear structure theorists enthusiastically responded to the idea of publishing the volume on OPeNST. It seemed that the idea struck the right chord and many colleagues were willing to share their observations on what research directions to follow and which problems to attack. The volume turned out to be a snapshot of the domain, revealing the burning questions that the community wants to address. All the articles also have a very interesting personal touch. They sometimes even present opposing or conflicting points of view, which is exactly what one would expect within a vibrant scientific discussion. All in all, the Editors of Journal of Physics G are very happy to offer you this unique collection, which will constitute very interesting reading for all those working in nuclear structure theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uberuaga, Blas Pedro
In this study, complex oxides such as pyrochlores have a myriad of potential technological applications, including as fast ion conductors and radiation-tolerant nuclear waste forms. They are also of interest for their catalytic and spin ice properties. Many of these functional properties are enabled by the atomic structure of the cation sublattices. Pyrochlores (A2B2O7) contain two different cations (A and B), typically a 3+ rare earth and a 4+ transition metal such as Hf, Zr, or Ti. The large variety of chemistries that can form pyrochlores leads to a rich space in which to search for exotic new materials. Furthermore,more » how cations order or disorder on their respective sublattices for a given chemical composition influences the functional properties of the oxide. For example, oxygen ionic conductivity is directly correlated with the level of cation disorder — the swapping of A and B cations 1. Further, the resistance of these materials against amorphization has also been connected with the ability of the cations to disorder 2, 3. These correlations between cation structure and functionality have spurred great interest in the structure of the cation sublattice under irradiation, with significant focus on the disordering mechanisms and disordered structure. Previous studies have found that, upon irradiation, pyrochlores often undergo an order-to-disorder transformation, in which the resulting structure is, from a diffraction point of view, indistinguishable from fluorite (AO2) (ref. 3). Shamblin et al. now reveal that the structure of disordered pyrochlore is more complicated than previously thought 4.« less
Predicting invasion in grassland ecosystems: Is exotic dominance the real embarrassment of richness?
Seabloom, Eric; Borer, Elizabeth; Buckley, Yvonne; Cleland, Elsa E.; Davies, Kendi; Firn, Jennifer; Harpole, W. Stanley; Hautier, Yann; Lind, Eric M.; MacDougall, Andrew; Orrock, John L.; Prober, Suzanne M.; Adler, Peter; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Caldeira, Maria; Chu, Cheng-Jin; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; D'Antonio, Carla M.; DeCrappeo, Nicole M.; Dickman, Chris R.; Du, Guozhen; Fay, Philip A.; Frater, Paul; Gruner, Daniel S.; Hagenah, Nicole; Hector, Andrew; Helm, Aveliina; Hillebrand, Helmut; Hofmockel, Kirsten S.; Humphries, Hope C.; Iribarne, Oscar; Jin, Virginia L.; Kay, Adam; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Ladwig, Laura M.; ,; John, G.; Leakey, Andrew D.B.; Li, Qi; Li, Wei; McCulley, Rebecca; Melbourne, Brett; ,; Charles, E.; Moore, Joslin L.; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R.; Pärtel, Meelis; Pascual, Jesús; Pyke, David A.; Risch, Anita C.; Salguero-Gómez, Roberto; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda; Stevens, Carly; Sullivan, Lauren; Wardle, Glenda M.; Wolkovich, Elizabeth M.; Wragg, Peter D.; Wright, Justin; Yang, Louie
2013-01-01
Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions
Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seabloom, Eric W.; Borer, Elizabeth T.; Buckley, Yvonne
2013-10-16
Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, nativemore » community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species’ relative abundance will more rapidly advance our understanding of invasions.« less
Pearson, Dean E; Ortega, Yvette K; Villarreal, Diego; Lekberg, Ylva; Cock, Marina C; Eren, Özkan; Hierro, José L
2018-06-01
Invasibility is a key indicator of community susceptibility to changes in structure and function. The fluctuating resource hypothesis (FRH) postulates that invasibility is an emergent community property, a manifestation of multiple processes that cannot be reliably predicted by individual community attributes like diversity or productivity. Yet, research has emphasized the role of these individual attributes, with the expectation that diversity should deter invasibility and productivity enhance it. In an effort to explore how these and other factors may influence invasibility, we evaluated the relationship between invasibility and species richness, productivity, resource availability, and resilience in experiments crossing disturbance with exotic seed addition in 1-m 2 plots replicated over large expanses of grasslands in Montana, USA and La Pampa, Argentina. Disturbance increased invasibility as predicted by FRH, but grasslands were more invasible in Montana than La Pampa whether disturbed or not, despite Montana's higher species richness and lower productivity. Moreover, invasibility correlated positively with nitrogen availability and negatively with native plant cover. These patterns suggested that resource availability and the ability of the community to recover from disturbance (resilience) better predicted invasibility than either species richness or productivity, consistent with predictions from FRH. However, in ambient, unseeded plots in Montana, disturbance reduced native cover by >50% while increasing exotic cover >200%. This provenance bias could not be explained by FRH, which predicts that colonization processes act on species' traits independent of origins. The high invasibility of Montana grasslands following disturbance was associated with a strong shift from perennial to annual species, as predicted by succession theory. However, this shift was driven primarily by exotic annuals, which were more strongly represented than perennials in local exotic vs. native species pools. We attribute this provenance bias to extrinsic biogeographic factors such as disparate evolutionary histories and/or introduction filters selecting for traits that favor exotics following disturbance. Our results suggest that (1) invasibility is an emergent property best explained by a community's efficiency in utilizing resources, as predicted by FRH but (2) understanding provenance biases in biological invasions requires moving beyond FRH to incorporate extrinsic biogeographic factors that may favor exotics in community assembly. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Fritsch, A.; Ayyad, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Carpenter, L.; Cortesi, M.; Mittig, W.; Suzuki, D.; Ahn, T.; Kolata, J. J.; Becchetti, F. D.; Howard, A. M.
2016-03-01
Some exotic nuclei appear to exhibit α-cluster structure. While various theoretical models currently describe such clustering, more experimental data are needed to constrain model predictions. The Prototype Active-Target Time-Projection Chamber (PAT-TPC) has low-energy thresholds for charged-particle decay and a high luminosity due to its thick gaseous active target volume, making it well-suited to search for low-energy α-cluster reactions. Radioactive-ion beams produced by the TwinSol facility at the University of Notre Dame were delivered to the PAT-TPC to study nuclei including 14C and 14O via α-resonant scattering. Differential cross sections and excitation functions were measured. Preliminary results from our recent experiments will be presented. This work is supported by the U.S. National Science Foundation.
Self-similar conductance patterns in graphene Cantor-like structures.
García-Cervantes, H; Gaggero-Sager, L M; Díaz-Guerrero, D S; Sotolongo-Costa, O; Rodríguez-Vargas, I
2017-04-04
Graphene has proven to be an ideal system for exotic transport phenomena. In this work, we report another exotic characteristic of the electron transport in graphene. Namely, we show that the linear-regime conductance can present self-similar patterns with well-defined scaling rules, once the graphene sheet is subjected to Cantor-like nanostructuring. As far as we know the mentioned system is one of the few in which a self-similar structure produces self-similar patterns on a physical property. These patterns are analysed quantitatively, by obtaining the scaling rules that underlie them. It is worth noting that the transport properties are an average of the dispersion channels, which makes the existence of scale factors quite surprising. In addition, that self-similarity be manifested in the conductance opens an excellent opportunity to test this fundamental property experimentally.
On the constituent counting rule for hard exclusive processes involving multi-quark states
NASA Astrophysics Data System (ADS)
Guo, Feng-Kun; Meißner, Ulf-G.; Wang, Wei
2017-05-01
At high energy, the cross section at finite scattering angle of a hard exclusive process falls off as a power of the Manderstam variable s. If all involved quark-gluon compositions undergo hard momentum transfers, the fall-off scaling is determined by the underlying valence structures of the initial and final hadrons, known as the constituent counting rule. In spite of the complication due to helicity conservation, it has been argued that when applied to exclusive process with exotic multiquark states, the counting rule is a powerful way to determine the valence degrees of freedom inside hadron exotics. In this work, we demonstrate that for hadrons with hidden flavors, the naive application of the constituent counting rule to exclusive process with hadron exotic multiquark states is problematic, since it is not mandatory for all components to participate in hard scattering at the scale . We illustrate the problems in the viewpoint based on effective field theory. We clarify the misleading results that may be obtained from the constituent counting rule in exclusive processes with exotic candidates such as , , X(3872), etc. Supported in part by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311), Thousand Talents Plan for Young Professionals, Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) (2015VMA076), National Natural Science Foundation of China (11575110, 11655002), Natural Science Foundation of Shanghai (15DZ2272100, 15ZR1423100), Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF111CJ1), and by Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education.
Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui
2014-01-01
In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration. PMID:24618793
Sensitivity of the fusion cross section to the density dependence of the symmetry energy
NASA Astrophysics Data System (ADS)
Reinhard, P.-G.; Umar, A. S.; Stevenson, P. D.; Piekarewicz, J.; Oberacker, V. E.; Maruhn, J. A.
2016-04-01
Background: The study of the nuclear equation of state (EOS) and the behavior of nuclear matter under extreme conditions is crucial to our understanding of many nuclear and astrophysical phenomena. Nuclear reactions serve as one of the means for studying the EOS. Purpose: It is the aim of this paper to discuss the impact of nuclear fusion on the EOS. This is a timely subject given the expected availability of increasingly exotic beams at rare isotope facilities [A. B. Balantekin et al., Mod. Phys. Lett. A 29, 1430010 (2014), 10.1142/S0217732314300109]. In practice, we focus on 48Ca+48Ca fusion. Method: We employ three different approaches to calculate fusion cross sections for a set of energy density functionals with systematically varying nuclear matter properties. Fusion calculations are performed using frozen densities, using a dynamic microscopic method based on density-constrained time-dependent Hartree-Fock (DC-TDHF) approach, as well as direct TDHF study of above barrier cross sections. For these studies, we employ a family of Skyrme parametrizations with systematically varied nuclear matter properties. Results: The folding-potential model provides a reasonable first estimate of cross sections. DC-TDHF, which includes dynamical polarization, reduces the fusion barriers and delivers much better cross sections. Full TDHF near the barrier agrees nicely with DC-TDHF. Most of the Skyrme forces which we used deliver, on the average, fusion cross sections in good agreement with the data. Trying to read off a trend in the results, we find a slight preference for forces which deliver a slope of symmetry energy of L ≈50 MeV that corresponds to a neutron-skin thickness of 48Ca of Rskin=(0.180 -0.210 ) fm. Conclusions: Fusion reactions in the barrier and sub-barrier region can be a tool to study the EOS and the neutron skin of nuclei. The success of the approach will depend on reduced experimental uncertainties of fusion data as well as the development of fusion theories that closely couple to the microscopic structure and dynamics.
Phytophagous insect fauna tracks host plant responses to exotic grass invasion.
Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M
2011-04-01
The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.
Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China
Ren, H.; Jian, S.; Lu, H.; Zhang, Q.; Shen, W.; Han, W.; Yin, Z.; Guo, Q.
2008-01-01
To examine the natural colonisation of native mangrove species into remediated exotic mangrove stands in Leizhou Bay, South China, we compared soil physical-chemical properties, community structure and recruitments of barren mangrove areas, native mangrove species plantations, and exotic mangrove species-Sonneratia apetala Buch.Ham-between plantations and natural forest. We found that severely degraded mangrove stands could not regenerate naturally without human intervention due to severely altered local environments, whereas some native species had been recruited into the 4-10 year S. apetala plantations. In the first 10 years, the exotic species S. apetala grew better than native species such as Rhizophora stylosa Griff and Kandelia candel (Linn.) Druce. The mangrove plantation gradually affected soil physical and chemical properties during its recovery. The exotic S. apetala was more competitive than native species and its plantation was able to restore soil organic matter in about 14 years. Thus, S. apetala can be considered as a pioneer species to improve degraded habitats to facilitate recolonisation by native mangrove species. However, removal to control proliferation may be needed at late stages to facilitate growth of native species. To ensure sustainability of mangroves in South China, the existing mangrove wetlands must be managed as an ecosystem, with long-term scientific monitoring program in place. ?? 2007 The Ecological Society of Japan.
Native Plant and Microbial Contributions to a Negative Plant-Plant Interaction1[OA
Bains, Gurdeep; Sampath Kumar, Amutha; Rudrappa, Thimmaraju; Alff, Emily; Hanson, Thomas E.; Bais, Harsh P.
2009-01-01
A number of hypotheses have been suggested to explain why invasive exotic plants dramatically increase their abundance upon transport to a new range. The novel weapons hypothesis argues that phytotoxins secreted by roots of an exotic plant are more effective against naïve resident competitors in the range being invaded. The common reed Phragmites australis has a diverse population structure including invasive populations that are noxious weeds in North America. P. australis exudes the common phenolic gallic acid, which restricts the growth of native plants. However, the pathway for free gallic acid production in soils colonized by P. australis requires further elucidation. Here, we show that exotic, invasive P. australis contain elevated levels of polymeric gallotannin relative to native, noninvasive P. australis. We hypothesized that polymeric gallotannin can be attacked by tannase, an enzymatic activity produced by native plant and microbial community members, to release gallic acid in the rhizosphere and exacerbate the noxiousness of P. australis. Native plants and microbes were found to produce high levels of tannase while invasive P. australis produced very little tannase. These results suggest that both invasive and native species participate in signaling events that initiate the execution of allelopathy potentially linking native plant and microbial biochemistry to the invasive traits of an exotic species. PMID:19776161
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penionzhkevich, Yu. E., E-mail: pyuer@mail.ru
2016-07-15
Extreme states of nuclearmatter (such that feature high spins, large deformations, high density and temperature, or a large excess of neutrons and protons) play an important role in studying fundamental properties of nuclei and are helpful in solving the problem of constructing the equation of state for nuclear matter. The synthesis of neutron-rich nuclei near the nucleon drip lines and investigation of their properties permit drawing conclusions about the positions of these boundaries and deducing information about unusual states of such nuclei and about their decays. At the present time, experimental investigations along these lines can only be performed viamore » the cooperation of leading research centers that possess powerful heavy-ion accelerators, such as the Large Hadron Collider (LHC) at CERN and the heavy-ion cyclotrons at the Joint Institute for Nuclear Research (JINR, Dubna), where respective experiments are being conducted by physicists from about 20 JINR member countries. The present article gives a survey of the most recent results in the realms of super neutron-rich nuclei. Implications of the change in the structure of such nuclei near the nucleon drip lines are discussed. Information about the results obtained by measuring the masses (binding energies) of exotic nuclei, the nucleon-distribution radii (neutron halo) and momentum distributions in them, and their deformations and quantum properties is presented. It is shown that the properties of nuclei lying near the stability boundaries differ strongly from the properties of other nuclei. The problem of the stability of nuclei that is associated with the magic numbers of 20 and 28 is discussed along with the effect of new magic numbers.« less
Extension of the nuclear mass surface for neutron-rich isotopes of argon through iron
NASA Astrophysics Data System (ADS)
Meisel, Zachary Paul
Nuclear mass measurement has maintained an important position in the field of nuclear physics for a little over a century. Nuclear masses provide key evidence of the structural transformation of nuclei away from the valley of beta-stability and are essential input for many simulations of extreme astrophysical environments. However, obtaining these masses is often a challenging endeavor due to the low production cross sections and short half-lives of the exotic nuclei which are of particular interest. To this end, the time-of-flight mass measurement technique has been developed to obtain the masses of several nuclei at once to precisions of 1 part in 105 with virtually no half-life limitation. This dissertation contains a description of the experiment, analysis, and results of the second implementation of the time-of-flight nuclear mass measurement technique at the National Superconducting Cyclotron Laboratory. 18 masses were obtained for neutron-rich isotopes of argon through iron, where the masses of 48Ar, 49Ar, 56Sc, 57Sc, 64Cr, 67Mn, and 69Fe were measured for the first time. These newly obtained masses were applied to outstanding problems in nuclear structure and nuclear astrophysics, resulting in significant scientific advances. The measurement results for 48Ar and 49Ar, which were found to have atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively, provide strong evidence for the closed shell nature of neutron number N = 28 in argon. It follows that argon is therefore the lowest even-Z element exhibiting the N = 28 closed shell. The masses of 64Cr, 67 Mn, and 69Fe, which were found to have atomic mass excesses of -33.48(44) MeV, -34.09(62) MeV, and -39.35(60) MeV, respectively, show signs of nuclear deformation occurring around the N = 40 subshell. In addition, we found 64Cr is substantially less bound than predicted by global mass models that are commonly used in nuclear astrophysics simulations, resulting in a significant reduction in the predicted strength and depth of electron capture heating in the accreted neutron star crust due to the rather abundant A = 64 mass-chain. The reported value for the atomic mass excess of 56Sc, -24.85(59)(+0,-54) MeV, which contains an asymmetric systematic uncertainty due to potential isomeric contamination, results in a smaller than expected odd-even mass staggering in the A = 56 mass chain. Depending on the choice of theoretical models for electron capture transition strengths and energies, this could lead to strong Urca cooling in accreted neutron star crusts, due to the large amount of A = 56 material predicted to be present on the surface of accreted neutron stars.
Use of seeded exotic grasslands by wintering birds
George, Andrew D.; O'Connell, Timothy J.; Hickman, Karen R.; Leslie,, David M.
2013-01-01
Despite widespread population declines of North American grassland birds, effects of anthropogenic disturbance of wintering habitat of this guild remain poorly understood. We compared avian abundance and habitat structure in fields planted by the exotic grass Old World bluestem (Bothriochloa ischaemum; OWB) to that in native mixed-grass prairie. During winters of 2007-2008 and 2008-2009, we conducted bird and vegetation surveys in six native grass and six OWB fields in Garfield, Grant, and Alfalfa counties, Oklahoma. We recorded 24 species of wintering birds in native fields and 14 species in OWB monocultures. While vegetation structure was similar between field types, abundance of short-eared owls (Asio flammeus), northern harriers (Circus cyaneus) and Smith's longspurs (Calcarius pictus) was higher in OWB fields during at least one year. The use of OWB fields by multiple species occupying different trophic positions suggested that vegetation structure of OWB can meet habitat requirements of some wintering birds, but there is insufficient evidence to determine if it provides superior conditions to native grasses.
Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium
NASA Astrophysics Data System (ADS)
Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.
2015-06-01
Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.
Social and cultural vulnerability to sexually transmitted infection: the work of exotic dancers.
Maticka-Tyndale, E; Lewis, J; Clark, J P; Zubick, J; Young, S
1999-01-01
This article examines the social and cultural factors that influence the vulnerability of female exotic dancers to sexually transmitted infections. Results are based on a qualitative, exploratory study using observations in 10 clubs and in-depth interviews with 30 dancers in southern Ontario. The social and cultural context within which exotic dancing takes place contributes to a chronic state of sexual harassment and sexual assault in the strip clubs. Women are pressured by economics and by their customers to engage in sex for pay. The defence mechanisms that some women use to deal with these work conditions also contribute to women's vulnerability. The social structure of strip clubs and their policies toward employees and customers can either reduce or exacerbate the vulnerability of dancers. Workplace policies and health and safety standards appear to be the most effective ways to decrease the vulnerability of dancers. Public health units can work with employers and dancers to establish workplace policies and programmes that contribute to the health and wellbeing of dancers.
Burgess, Kevin M N; Korobkov, Ilia; Bryce, David L
2012-04-27
Multinuclear ((31)P and (79/81)Br), multifield (9.4, 11.75, and 21.1 T) solid-state nuclear magnetic resonance experiments are performed for seven phosphonium bromides bearing the triphenylphosphonium cation, a molecular scaffold found in many applications in chemistry. This is undertaken to fully characterise their bromine electric field gradient (EFG) tensors, as well as the chemical shift (CS) tensors of both the halogen and the phosphorus nuclei, providing a rare and novel insight into the local electronic environments surrounding them. New crystal structures, obtained from single-crystal X-ray diffraction, are reported for six compounds to aid in the interpretation of the NMR data. Among them is a new structure of BrPPh(4), because the previously reported one was inconsistent with our magnetic resonance data, thereby demonstrating how NMR data of non-standard nuclei can correct or improve X-ray diffraction data. Our results indicate that, despite sizable quadrupolar interactions, (79/81)Br magnetic resonance spectroscopy is a powerful characterisation tool that allows for the differentiation between chemically similar bromine sites, as shown through the range in the characteristic NMR parameters. (35/37)Cl solid-state NMR data, obtained for an analogous phosphonium chloride sample, provide insight into the relationship between unit cell volume, nuclear quadrupolar coupling constants, and Sternheimer antishielding factors. The experimental findings are complemented by gauge-including projector-augmented wave (GIPAW) DFT calculations, which substantiate our experimentally determined strong dependence of the largest component of the bromine CS tensor, δ(11), on the shortest Br-P distance in the crystal structure, a finding that has possible application in the field of NMR crystallography. This trend is explained in terms of Ramsey's theory on paramagnetic shielding. Overall, this work demonstrates how careful NMR studies of underexploited exotic nuclides, such as (79/81)Br, can afford insights into structure and bonding environments in the solid state. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ecosystem management, forest health, and silviculture
Merrill R. Kaufmann; Claudia M. Regan
1995-01-01
Forest health issues include the effects of fire suppression and grazing on forest stands, reduction in amount of old-growth forests, stand structural changes associated with even-aged management, .changes in structure of the landscape mosaic, loss of habitat for threatened species, and the introduction of exotic species. The consequences of these impacts can be...
9 CFR 352.3 - Application by official exotic animal establishment for inspection services.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (a) Any person desiring to process an exotic animal, exotic animal carcasses, exotic animal meat and... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Application by official exotic animal establishment for inspection services. 352.3 Section 352.3 Animals and Animal Products FOOD SAFETY AND...
Morrison, Wendy E.; Hay, Mark E.
2011-01-01
Enemy release and biotic resistance are competing, but not mutually exclusive, hypotheses addressing the success or failure of non-native plants entering a new region. Enemy release predicts that exotic plants become invasive by escaping their co-adapted herbivores and by being unrecognized or unpalatable to native herbivores that have not been selected to consume them. In contrast, biotic resistance predicts that native generalist herbivores will suppress exotic plants that will not have been selected to deter these herbivores. We tested these hypotheses using five generalist herbivores from North or South America and nine confamilial pairs of native and exotic aquatic plants. Four of five herbivores showed 2.4–17.3 fold preferences for exotic over native plants. Three species of South American apple snails (Pomacea sp.) preferred North American over South American macrophytes, while a North American crayfish Procambarus spiculifer preferred South American, Asian, and Australian macrophytes over North American relatives. Apple snails have their center of diversity in South America, but a single species (Pomacea paludosa) occurs in North America. This species, with a South American lineage but a North American distribution, did not differentiate between South American and North American plants. Its preferences correlated with preferences of its South American relatives rather than with preferences of the North American crayfish, consistent with evolutionary inertia due to its South American lineage. Tests of plant traits indicated that the crayfish responded primarily to plant structure, the apple snails primarily to plant chemistry, and that plant protein concentration played no detectable role. Generalist herbivores preferred non-native plants, suggesting that intact guilds of native, generalist herbivores may provide biotic resistance to plant invasions. Past invasions may have been facilitated by removal of native herbivores, introduction of non-native herbivores (which commonly prefer native plants), or both. PMID:21394202
Selepe, Mokhethi Matthews; Ceccobelli, Simone; Lasagna, Emiliano; Kunene, Nokuthula Winfred
2018-01-01
The population of Zulu sheep is reported to have declined by 7.4% between 2007 and 2011 due to crossbreeding. There is insufficient information on the genetic diversity of the Zulu sheep populations in the different area of KwaZulu Natal where they are reared. The study investigated genetic variation and genetic structure within and among eight Zulu sheep populations using 26 microsatellite markers. In addition, Damara, Dorper and South African Merino breeds were included to assess the genetic relationship between these breeds and the Zulu sheep. The results showed that there is considerable genetic diversity among the Zulu sheep populations (expected heterozygosity ranging from 0.57 to 0.69) and the level of inbreeding was not remarkable. The structure analysis results revealed that Makhathini Research Station and UNIZULU research station share common genetic structure, while three populations (Nongoma, Ulundi and Nquthu) had some admixture with the exotic Dorper breed. Thus, there is a need for sustainable breeding and conservation programmes to control the gene flow, in order to stop possible genetic dilution of the Zulu sheep.
Kunene, Nokuthula Winfred
2018-01-01
The population of Zulu sheep is reported to have declined by 7.4% between 2007 and 2011 due to crossbreeding. There is insufficient information on the genetic diversity of the Zulu sheep populations in the different area of KwaZulu Natal where they are reared. The study investigated genetic variation and genetic structure within and among eight Zulu sheep populations using 26 microsatellite markers. In addition, Damara, Dorper and South African Merino breeds were included to assess the genetic relationship between these breeds and the Zulu sheep. The results showed that there is considerable genetic diversity among the Zulu sheep populations (expected heterozygosity ranging from 0.57 to 0.69) and the level of inbreeding was not remarkable. The structure analysis results revealed that Makhathini Research Station and UNIZULU research station share common genetic structure, while three populations (Nongoma, Ulundi and Nquthu) had some admixture with the exotic Dorper breed. Thus, there is a need for sustainable breeding and conservation programmes to control the gene flow, in order to stop possible genetic dilution of the Zulu sheep. PMID:29698497
NASA Astrophysics Data System (ADS)
Spirito, Florencia; Yahdjian, Laura; Tognetti, Pedro M.; Chaneton, Enrique J.
2014-01-01
Old fields often become dominated by exotic plants establishing persistent community states. Ecosystem functioning may differ widely between such novel communities and the native-dominated counterparts. We evaluated soil ecosystem attributes in native and exotic (synthetic) grass assemblages established on a newly abandoned field, and in remnants of native grassland in the Inland Pampa, Argentina. We asked whether exotic species alter soil functioning through the quality of the litter they shed or by changing the decomposition environment. Litter decomposition of the exotic dominant Festuca arundinacea in exotic assemblages was faster than that of the native dominant Paspalum quadrifarium in native assemblages and remnant grasslands. Decomposition of a standard litter (Triticum aestivum) was also faster in exotic assemblages than in native assemblages and remnant grasslands. In a common garden, F. arundinacea showed higher decay rates than P. quadrifarium, which reflected the higher N content and lower C:N of the exotic grass litter. Soil respiration rates were higher in the exotic than in the native assemblages and remnant grasslands. Yet there were no significant differences in soil N availability or net N mineralization between exotic and native assemblages. Our results suggest that exotic grass dominance affected ecosystem function by producing a more decomposable leaf litter and by increasing soil decomposer activity. These changes might contribute to the extended dominance of fast-growing exotic grasses during old-field succession. Further, increased organic matter turnover under novel, exotic communities could reduce the carbon storage capacity of the system in the long term.
Reciprocal Effects of Litter from Exotic and Congeneric Native Plant Species via Soil Nutrients
Meisner, Annelein; de Boer, Wietse; Cornelissen, Johannes H. C.; van der Putten, Wim H.
2012-01-01
Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener. PMID:22359604
The solid state physics programme at ISOLDE: recent developments and perspectives
NASA Astrophysics Data System (ADS)
Johnston, Karl; Schell, Juliana; Correia, J. G.; Deicher, M.; Gunnlaugsson, H. P.; Fenta, A. S.; David-Bosne, E.; Costa, A. R. G.; Lupascu, Doru C.
2017-10-01
Solid state physics (SSP) research at ISOLDE has been running since the mid-1970s and accounts for about 10%-15% of the overall physics programme. ISOLDE is the world flagship for the on-line production of exotic radioactive isotopes, with high yields, high elemental selectivity and isotopic purity. Consequently, it hosts a panoply of state-of-the-art nuclear techniques which apply nuclear methods to research on life sciences, material science and bio-chemical physics. The ease of detecting radioactivity—<1 ppm concentrations—is one of the features which distinguishes the use of radioisotopes for materials science research. The manner in which nuclear momenta of excited nuclear states interact with their local electronic and magnetic environment, or how charged emitted particles interact with the crystalline lattices allow the determination of the location, its action and the role of the selected impurity element at the nanoscopic state. ISOLDE offers an unrivalled range of available radioactive elements and this is attracting an increasing user community in the field of nuclear SSP research and brings together a community of materials scientists and specialists in nuclear solid state techniques. This article describes the current status of this programme along with recent illustrative results, predicting a bright future for these unique research methods and collaborations.
Landscape of α preformation probability for even-even nuclei in medium mass region
NASA Astrophysics Data System (ADS)
Qian, Yibin; Ren, Zhongzhou
2018-03-01
The behavior of α cluster preformation probability, in α decay, is a rich source of the structural information, such as the clustering, pairing, and shell evolution in heavy nuclei. Meanwhile, the experimental α decay data have been very recently compiled in the newest table NUBASE2016. Through a least square fit to the available experimental data of nuclear charge radii plus the neutron skin thickness, we obtain a new set of parameters for the two-parameter Fermi nucleon density distributions in target nuclei. Subsequently, we make use of these refreshed inputs, involved in the density-dependent cluster model, to extract α preformation factor ({P}α ) for a large range of medium α emitters with N < 126 from the newest data table. Besides checking the supposed smooth pattern of P α in the open-shell region, the special attention has been paid to those exotic α-decaying nuclei around the Z = 50 and N = 82 shell closures. Moreover, the correlation between the α preformation factor and the microscopic correction of nuclear mass, corresponding to the effect of shell and pairing plus deformation, is in particular investigated, to pursue the valuable knowledge of the P α pattern over the nuclide chart. The feature of α preformation factor along with the neutron-proton asymmetry is then detected and discussed to some extent.
Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity
NASA Astrophysics Data System (ADS)
Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka
We show a cooling scenario of compact stars to satisfy recent observations of compact stars. The central density of compact stars can exceed the nuclear density, and it is considered that many hadronic phases appear at such a density. It is discussed that neutron superfluidity (1S0 for lower density, and 3P2 for higher density) and proton superfluidity/superconductivity (1S0) appears in all compact stars. And some "Exotic" states are considered to appear in compact stars, such as meson condensation, hyperon mixing, deconfinement of quarks and quark colour superconductivity. These exotic states appear at the density region above the threshold densities of each state. We demonstrate the thermal evolution of isolated compact stars, adopting the effects of nucleon superfluidity and quark colour superconductivity. We assume large gap energy (Δ > 10 MeV) for colour superconducting quark phase, and include the effects of nucleon superfluidity with parametrised models. We simulate the cooling history of compact stars, and shows that the heavier star does not always cool faster than lighter one, which is determined by the parameters of neutron 3P2 superfluidity.
Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms
NASA Astrophysics Data System (ADS)
Bhuyan, M.; Carlson, B. V.; Patra, S. K.; Zhou, Shan-Gui
2018-02-01
In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed self-consistent relativistic mean field for the nonlinear NL 3* and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 ≤A ≤96 . From this analysis, we found a notable signature of a shell closure at N =50 in the isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei.
Dean E. Pearson; Robert J. Fletcher
2008-01-01
The threat posed by exotic organisms to native systems has led to extensive research on exotic invaders, yet management of invasives has progressed relatively slowly. This is partly due to poor understanding of how exotic species management influences native organisms. To address this shortfall, we experimentally evaluated the efficacy of an invasives management tool...
Are Local Filters Blind to Provenance? Ant Seed Predation Suppresses Exotic Plants More than Natives
Pearson, Dean E.; Icasatti, Nadia S.; Hierro, Jose L.; Bird, Benjamin J.
2014-01-01
The question of whether species’ origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species’ traits interact with community filters, a process presumably blind to species’ origins. Yet, exotic plant introductions commonly result in monospecific plant densities not commonly seen in native assemblages, suggesting that exotic species may respond to community filters differently than natives. Here, we tested whether exotic and native species differed in their responses to a local community filter by examining how ant seed predation affected recruitment of eighteen native and exotic plant species in central Argentina. Ant seed predation proved to be an important local filter that strongly suppressed plant recruitment, but ants suppressed exotic recruitment far more than natives (89% of exotic species vs. 22% of natives). Seed size predicted ant impacts on recruitment independent of origins, with ant preference for smaller seeds resulting in smaller seeded plant species being heavily suppressed. The disproportionate effects of provenance arose because exotics had generally smaller seeds than natives. Exotics also exhibited greater emergence and earlier peak emergence than natives in the absence of ants. However, when ants had access to seeds, these potential advantages of exotics were negated due to the filtering bias against exotics. The differences in traits we observed between exotics and natives suggest that higher-order introduction filters or regional processes preselected for certain exotic traits that then interacted with the local seed predation filter. Our results suggest that the interactions between local filters and species traits can predict invasion outcomes, but understanding the role of provenance will require quantifying filtering processes at multiple hierarchical scales and evaluating interactions between filters. PMID:25099535
NASA Astrophysics Data System (ADS)
Fritsch, A.; Ayyad, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Carpenter, L.; Cortesi, M.; Mittig, W.; Suzuki, D.; Ahn, T.; Kolata, J. J.; Howard, A. M.; Becchetti, F. D.; Wolff, M.
Some exotic nuclei appear to exhibit α -cluster structure, which may impact nucleosynthesis reaction rates. While various theoretical models currently describe such clustering, more experimental data are needed to constrain model predictions. The Prototype Active-Target Time-Projection Chamber (PAT-TPC) has low-energy thresholds for charged-particle decay and a high detection efficiency due to its thick gaseous active target volume, making it well-suited to search for low-energy α -cluster reactions. Radioactive-ion beams produced by the TwinSol facility at the University of Notre Dame were delivered to the PAT-TPC to study 14C via α -resonant scattering. Differential cross sections and excitation functions were measured and show evidence of three-body exit channels. Additional data were measured with an updated Micromegas detector more sensitive to three-body decay. Preliminary results are presented.
Patterns of plant invasions: A case example in native species hotspots and rare habitats
Stohlgren, T.J.; Otsuki, Yuka; Villa, C.A.; Lee, M.; Belnap, J.
2001-01-01
Land managers require landscape-scale information on where exotic plant species have successfully established, to better guide research, control, and restoration efforts. We evaluated the vulnerability of various habitats to invasion by exotic plant species in a 100,000 ha area in the southeast corner of Grand Staircase-Escalante National Monument, Utah. For the 97 0.1-ha plots in 11 vegetation types, exotic species richness (log10) was strongly negatively correlated to the cover of cryptobiotic soil crusts (r = −0.47, P < 0.001), and positively correlated to native species richness (r = 0.22, P < 0.03), native species cover (r = 0.23, P < 0.05), and total nitrogen in the soil (r = 0.40, P < 0.001). Exotic species cover was strongly positively correlated to exotic species richness (r = 0.68, P < 0.001). Only 6 of 97 plots did not contain at least one exotic species. Exotic species richness was particularly high in locally rare, mesic vegetation types and nitrogen rich soils. Dry, upland plots (n = 51) had less than half of the exotic species richness and cover compared to plots (n = 45) in washes and lowland depressions that collect water intermittently. Plots dominated by trees had significantly greater native and exotic species richness compared to plots dominated by shrubs. For the 97 plots combined, 33% of the variance in exotic species richness could be explained by a positive relationship with total plant cover, and negative relationships with the cover of cryptobiotic crusts and bare ground. There are several reasons for concern: (1) Exotic plant species are invading hot spots of native plant diversity and rare/unique habitats. (2) The foliar cover of exotic species was greatest in habitats that had been invaded by several exotic species.(3) Continued disturbance of fragile cryptobiotic crusts by livestock, people, and vehicles may facilitate the further invasion of exotic plant species.
Wilcox, Rebecca C; Fletcher, Robert J
2016-01-01
Identifying impacts of exotic species on native populations is central to ecology and conservation. Although the effects of exotic predators on native prey have received much attention, the role of exotic prey on native predators is poorly understood. Determining if native predators actively prefer invasive prey over native prey has implications for interpreting invasion impacts, identifying the presence of evolutionary traps, and predator persistence. One of the world's most invasive species, Pomacea maculata, has recently established in portions of the endangered Everglade snail kite's (Rostrhamus sociabilis plumbeus) geographic range. Although these exotic snails could provide additional prey resources, they are typically much larger than the native snail, which can lead to lower foraging success and the potential for diminished energetic benefits in comparison to native snails. Nonetheless, snail kites frequently forage on exotic snails. We used choice experiments to evaluate snail kite foraging preference in relation to exotic species and snail size. We found that snail kites do not show a preference for native or exotic snails. Rather, snail kites generally showed a preference for medium-sized snails, the sizes reflective of large native snails. These results suggest that while snail kites frequently forage on exotic snails in the wild, this behavior is likely driven simply by the abundance of exotic snails rather than snail kites preferring exotics. This lack of preference offers insights to hypotheses regarding effects of exotic species, guidance regarding habitat and invasive species management, and illustrates how native-exotic relationships can be misleading in the absence of experimental tests of such interactions.
Amarillo-Suárez, A; Repizo, A; Robles, J; Diaz, J; Bustamante, S
2017-08-01
The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.
Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.
2013-01-01
The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169
Large-scale causes of variation in the serpentine vegetation of California
Grace, J.B.; Safford, H.D.; Harrison, S.
2007-01-01
Serpentine vegetation in California ranges from forest to shrubland and grassland, harbors many rare and endemic species, and is only moderately altered by invasive exotic species at the present time. To better understand the factors regulating the distribution of common/representative species, endemic/rare species, and the threat of exotics in this important flora, we analyzed broad-scale community patterns and environmental conditions in a geographically stratified set of samples from across the state. We considered three major classes of environmental influences: climate (especially precipitation), soils (especially the Mg2+/Ca2+ ratio), and the indirect influences of climate on soils. We used ordination to identify the major axes of variation in common species abundances, structural equation models to analyze the relationship of community axes and endemic and exotic species richness to the environment, and group analysis techniques to identify consistent groupings of species and characterize their properties. We found that community variation could be explained by a two-axis ordination. One axis ranged from conifer forest to grassland and was strongly related to precipitation. The second axis ranged from chaparral to grassland and had little relationship to current environmental conditions, suggesting a possible role for successional history. Precipitation and elevation were respectively the largest influences on endemic and exotic richness, followed by Mg 2+/Ca2+. The results also support the idea that long-term precipitation patterns have altered the Mg2+/Ca2+ ratio via selective leaching, resulting in indirect influences on endemics (positive) and exotics (negative) but not affecting the abundances of common species. We discuss implications of these findings for the conservation of the California serpentine flora. ?? 2007 Springer Science+Business Media B.V.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION EXOTIC ANIMALS AND HORSES; VOLUNTARY INSPECTION Exotic Animals § 352.13 Handling and disposal of...
Complex oxides: Intricate disorder
Uberuaga, Blas Pedro
2016-02-29
In this study, complex oxides such as pyrochlores have a myriad of potential technological applications, including as fast ion conductors and radiation-tolerant nuclear waste forms. They are also of interest for their catalytic and spin ice properties. Many of these functional properties are enabled by the atomic structure of the cation sublattices. Pyrochlores (A2B2O7) contain two different cations (A and B), typically a 3+ rare earth and a 4+ transition metal such as Hf, Zr, or Ti. The large variety of chemistries that can form pyrochlores leads to a rich space in which to search for exotic new materials. Furthermore,more » how cations order or disorder on their respective sublattices for a given chemical composition influences the functional properties of the oxide. For example, oxygen ionic conductivity is directly correlated with the level of cation disorder — the swapping of A and B cations 1. Further, the resistance of these materials against amorphization has also been connected with the ability of the cations to disorder 2, 3. These correlations between cation structure and functionality have spurred great interest in the structure of the cation sublattice under irradiation, with significant focus on the disordering mechanisms and disordered structure. Previous studies have found that, upon irradiation, pyrochlores often undergo an order-to-disorder transformation, in which the resulting structure is, from a diffraction point of view, indistinguishable from fluorite (AO2) (ref. 3). Shamblin et al. now reveal that the structure of disordered pyrochlore is more complicated than previously thought 4.« less
Coutinho-Silva, R D; Montes, M A; Oliveira, G F; de Carvalho-Neto, F G; Rohde, C; Garcia, A C L
2017-10-01
Seasonality is an important aspect associated with population dynamic and structure of tropical insect assemblages. This study evaluated the effects of seasonality on abundance, richness, diversity and composition of an insect group, drosophilids, including species native to the Neotropical region and exotic ones. Three preserved fragments of the northern Atlantic Forest were surveyed, where temperatures are above 20 °C throughout the year and rainfall regimes define two seasons (dry and rainy). As opposed to other studies about arthropods in tropical regions, we observed that abundance of drosophilids was significantly higher in the dry season, possibly due to biological aspects and the colonization strategy adopted by the exotic species in these environments. Contrarily to abundance, we did not observe a seasonal pattern for richness. As for other parts of the Atlantic Forest, the most representative Neotropical species (Drosophila willistoni, D. sturtevanti, D. paulistorum and D. prosaltans) were significantly more abundant in the rainy season. Among the most abundant exotic species, D. malerkotliana, Zaprionus indianus and Scaptodrosophila latifasciaeformis were more importantly represented the dry season, while D. simulans was more abundant in the rainy period. The seasonality patterns exhibited by the most abundant species were compared to findings published in other studies. Our results indicate that exotic species were significantly more abundant in the dry season, while native ones exhibited an opposite pattern.
Spatial dynamics of invasion: the geometry of introduced species.
Korniss, Gyorgy; Caraco, Thomas
2005-03-07
Many exotic species combine low probability of establishment at each introduction with rapid population growth once introduction does succeed. To analyse this phenomenon, we note that invaders often cluster spatially when rare, and consequently an introduced exotic's population dynamics should depend on locally structured interactions. Ecological theory for spatially structured invasion relies on deterministic approximations, and determinism does not address the observed uncertainty of the exotic-introduction process. We take a new approach to the population dynamics of invasion and, by extension, to the general question of invasibility in any spatial ecology. We apply the physical theory for nucleation of spatial systems to a lattice-based model of competition between plant species, a resident and an invader, and the analysis reaches conclusions that differ qualitatively from the standard ecological theories. Nucleation theory distinguishes between dynamics of single- and multi-cluster invasion. Low introduction rates and small system size produce single-cluster dynamics, where success or failure of introduction is inherently stochastic. Single-cluster invasion occurs only if the cluster reaches a critical size, typically preceded by a number of failed attempts. For this case, we identify the functional form of the probability distribution of time elapsing until invasion succeeds. Although multi-cluster invasion for sufficiently large systems exhibits spatial averaging and almost-deterministic dynamics of the global densities, an analytical approximation from nucleation theory, known as Avrami's law, describes our simulation results far better than standard ecological approximations.
NASA Astrophysics Data System (ADS)
Piscicchia, K.; Curceanu, C.; Cargnelli, M.; Del Grande, R.; Fabbietti, L.; Marton, J.; Scordo, A.; Sirghi, D.; Tucakovic, I.; Vazquez Doce, O.; Wycech, S.; Zmeskal, J.; Mandaglio, G.; Martini, M.; Moskal, P.
2018-01-01
The AMADEUS collaboration aims to provide unique quality results from K- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon K- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters and to the role of strangeness in neutron stars. AMADEUS takes advantage of the DAΦNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for K- nuclear capture on H, 4He, 9Be and 12C, both at-rest and in-flight.
Shivega, W. Gaya
2017-01-01
Abstract While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen. PMID:28122737
Dean Pearson; Steve Sutherland; Jack Butler; Jane Smith; Carolyn Sieg
2011-01-01
Exotic plants dramatically impact natural communities and disrupt ecosystem services (Mack and others 2000). Although the bulk of current impacts are caused by relatively few exotic species, many additional exotics that are currently established at low levels are increasing in density and distribution and present substantial imminent threats. Additionally, new exotic...
9 CFR 352.2 - Type of service available.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION EXOTIC ANIMALS AND HORSES; VOLUNTARY INSPECTION Exotic Animals § 352.2 Type of... slaughter of exotic animals, and the preparation, labeling, and certification of the exotic animal meat and...
Exotic annual grass alters fuel amounts, continuity and moisture content
USDA-ARS?s Scientific Manuscript database
1. Invasion by exotic plants are one of the most serious threats to native plant communities, biodiversity, and ecosystem functioning. Of particular concern are exotic plants that alter disturbance regimes. Exotic annual grasses are believed to increase wildfire frequency to the detriment of nativ...
Distinctive exotic flavor and aroma compounds of some exotic tropical fruits and berries: a review.
Lasekan, Ola; Abbas, Kassim A
2012-01-01
The characteristic flavor of exotic tropical fruits is one of their most attractive attributes to consumers. In this article, the enormous diversity of exotic fruit flavors is reviewed. Classifying some of the exotic fruits into two classes on the basis of whether esters or terpenes predominate in the aroma was also attempted. Indeed, as far as exotic tropical fruits are concerned, the majority of fruits have terpenes predominating in their aroma profile. Some of the fruits in this group are the Amazonian fruits such as pitanga, umbu-caja, camu-camu, garcinia, and bacuri. The ester group is made up of rambutan, durians, star fruit, snake fruit, acerola, tamarind, sapodilla, genipap, soursop, cashew, melon, jackfruit, and cupuacu respectively. Also, the role of sulphur-volatiles in some of the exotic fruits is detailed.
Promoting the exotic pet practice.
Harris, Don J
2005-09-01
The marketing and promotion of an exotic pet veterinary practice allows the use of strategies that are not necessarily available in other veterinary disciplines. The advantage that an exotics practice enjoys is that it is able to capitalize not only on the unique nature of the species being attended but also on the specialized features of the hospital itself that make it specifically appropriate in caring for exotic pets. Before marketing, however, comes the responsibility that the practice live up to the claims made in promotional materials. A practice cannot ethically be presented as an "exotics" practice if it is nothing more than a dog and cat facility that is willing to attend to exotic pets. It is the competence of the veterinary staff and the appropriateness of the facility that determines the suitability of the practice for exotics management.
Welshofer, Kileigh B; Zarnetske, Phoebe L; Lany, Nina K; Read, Quentin D
2018-05-01
Climate change is expected to favor exotic plant species over native species, because exotics tend to have wider climatic tolerances and greater phenological plasticity, and also because climate change may intensify enemy release. Here, we examine direct effects of warming (+ 1.8 °C above ambient) on plant abundance and phenology, as well as indirect effects of warming propagated through herbivores, in two heavily invaded plant communities in Michigan, USA, separated by approximately three degrees latitude. At the northern site, warming increased exotic plant abundance by 19% but decreased native plant abundance by 31%, indicating that exotic species may be favored in a warmer world. Warming also resulted in earlier spring green-up (1.65 ± 0.77 days), earlier flowering (2.18 ± 0.92 days), and greater damage by herbivores (twofold increase), affecting exotic and native species equally. Contrary to expectations, native and exotic plants experienced similar amounts of herbivory. Warming did not have strong ecological effects at the southern site, only resulting in a delay of flowering time by 2.42 ± 0.83 days for both native and exotic species. Consistent with the enemy release hypothesis, exotic plants experienced less herbivory than native plants at the southern site. Herbivory was lower under warming for both exotic and native species at the southern site. Thus, climate warming may favor exotic over native plant species, but the response is likely to depend on additional environmental and individual species' traits.
9 CFR 352.3 - Application by official exotic animal establishment for inspection services.
Code of Federal Regulations, 2011 CFR
2011-01-01
... establishment for inspection services. 352.3 Section 352.3 Animals and Animal Products FOOD SAFETY AND... INSPECTION Exotic Animals § 352.3 Application by official exotic animal establishment for inspection services... meat food products in an establishment under exotic animal inspection service must receive approval of...
9 CFR 352.3 - Application by official exotic animal establishment for inspection services.
Code of Federal Regulations, 2013 CFR
2013-01-01
... establishment for inspection services. 352.3 Section 352.3 Animals and Animal Products FOOD SAFETY AND... INSPECTION Exotic Animals § 352.3 Application by official exotic animal establishment for inspection services... meat food products in an establishment under exotic animal inspection service must receive approval of...
9 CFR 352.3 - Application by official exotic animal establishment for inspection services.
Code of Federal Regulations, 2012 CFR
2012-01-01
... establishment for inspection services. 352.3 Section 352.3 Animals and Animal Products FOOD SAFETY AND... INSPECTION Exotic Animals § 352.3 Application by official exotic animal establishment for inspection services... meat food products in an establishment under exotic animal inspection service must receive approval of...
9 CFR 352.3 - Application by official exotic animal establishment for inspection services.
Code of Federal Regulations, 2014 CFR
2014-01-01
... establishment for inspection services. 352.3 Section 352.3 Animals and Animal Products FOOD SAFETY AND... INSPECTION Exotic Animals § 352.3 Application by official exotic animal establishment for inspection services... meat food products in an establishment under exotic animal inspection service must receive approval of...
Sustainability of the Lake Superior fish community: Interactions in a food web context
Kitchell, James F.; Cox, Sean P.; Harvey, Chris J.; Johnson, Timothy B.; Mason, Doran M.; Schoen, Kurt K.; Aydin, Kerim; Bronte, Charles; Ebener, Mark; Hansen, Michael; Hoff, Michael; Schram, Steve; Schreiner, Don; Walters, Carl J.
2000-01-01
The restoration and rehabilitation of the native fish communities is a long-term goal for the Laurentian Great Lakes. In Lake Superior, the ongoing restoration of the native lake trout populations is now regarded as one of the major success stories in fisheries management. However, populations of the deepwater morphotype (siscowet lake trout) have increased much more substantially than those of the nearshore morphotype (lean lake trout), and the ecosystem now contains an assemblage of exotic species such as sea lamprey, rainbow smelt, and Pacific salmon (chinook, coho, and steelhead). Those species play an important role in defining the constraints and opportunities for ecosystem management. We combined an equilibrium mass balance model (Ecopath) with a dynamic food web model (Ecosim) to evaluate the ecological consequences of future alternative management strategies and the interaction of two different sets of life history characteristics for fishes at the top of the food web. Relatively rapid turnover rates occur among the exotic forage fish, rainbow smelt, and its primary predators, exotic Pacific salmonids. Slower turnover rates occur among the native lake trout and burbot and their primary prey—lake herring, smelt, deepwater cisco, and sculpins. The abundance of forage fish is a key constraint for all salmonids in Lake Superior. Smelt and Mysis play a prominent role in sustaining the current trophic structure. Competition between the native lake trout and the exotic salmonids is asymmetric. Reductions in the salmon population yield only a modest benefit for the stocks of lake trout, whereas increased fishing of lake trout produces substantial potential increases in the yields of Pacific salmon to recreational fisheries. The deepwater or siscowet morphotype of lake trout has become very abundant. Although it plays a major role in the structure of the food web it offers little potential for the restoration of a valuable commercial or recreational fishery. Even if a combination of strong management actions is implemented, the populations of lean (nearshore) lake trout cannot be restored to pre-fishery and pre-lamprey levels. Thus, management strategy must accept the ecological constraints due in part to the presence of exotics and choose alternatives that sustain public interest in the resources while continuing the gradual progress toward restoration.
NASA Astrophysics Data System (ADS)
Wakabayashi, J.
2014-12-01
The >1000 km by >100 km Franciscan complex of California records >100 Ma of subduction history that terminated with conversion to a transform margin. It affords an ideal natural laboratory to study the rock record of subduction-interface and related processes exhumed from 10-70 km. The Franciscan comprises coherent and block-in-matrix (mélange) units forming a nappe stack that youngs structurally downward in accretion age, indicating progressive subduction accretion. Gaps in accretion ages indicate periods of non-accretion or subduction erosion. The Franciscan comprises siliciclastic trench fill rocks, with lesser volcanic and pelagic rocks and serpentinite derived from the downgoing plate, as well as serpentinite and felsic-intermediate igneous blocks derived as detritus from the upper plate. The Franciscan records subduction, accretion, and metamorphism (including HP), spanning an extended period of subduction, rather than a single event superimposed on pre-formed stratigraphy. Melanges (serpentinite and siliciclastic matrix) with exotic blocks, that include high-grade metamorphic blocks, and felsic-intermediate igneous blocks from the upper plate, are mostly/entirely of sedimentary origin, whereas block-in-matrix rocks formed by tectonism lack exotic blocks and comprise disrupted ocean plate stratigraphy. Mélanges with exotic blocks are interbedded with coherent sandstones. Many blocks-in-melange record two HP burial events followed by surface exposure, and some record three. Paleomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow fault zones of <100's of m thickness, and <50 m in best constrained cases; these zones lack exotic blocks. Large-scale displacements, whether paleomegathrust horizons, shortening within accreted nappes, or exhumation structures, are accommodated by discrete faults or narrow shear zones, rather than by significant penetrative strain. Exhumation of Franciscan HP units, both coherent and mélange, was accommodated by significant extension of the overlying plate, and possibly extension within the subduction complex, with cross-sectional extrusion, and like subduction burial, took place at different times.
Intraguild predation and native lady beetle decline.
Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A
2011-01-01
Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild predation by both native and exotic predators may contribute to native coccinellid decline, and that landscape structure interacts with local predator communities to shape the specific outcomes of predator-predator interactions.
NASA Astrophysics Data System (ADS)
Delion, D. S.; Zamfir, N. V.; Raduta, A. R.; Gulminelli, F.
2013-02-01
This proceedings volume contains the invited lectures and contributions presented at the International Summer School on Nuclear Physics held at Trei Brazi, a summer resort of the Bioterra University, near the city of Predeal, Romania, on 9-20 July 2012. The long tradition of International Summer Schools on Nuclear Physics in Romania dates as far back as 1964, with the event being scheduled every two years. During this period of almost 50 years, many outstanding nuclear scientists have lectured on various topics related to nuclear physics and particle physics. This year we celebrate the 80th birthday of Aureliu Sandulescu, one of the founders of the Romanian school of theoretical nuclear physics. He was Serban Titeica's PhD student, one of Werner Heisenberg's PhD students, and he organized the first edition of this event. Aureliu Sandulescu's major contributions to the field of theoretical nuclear physics are related in particular to the prediction of cluster radioactivity, the physics of open quantum systems and the innovative technique of detecting superheavy nuclei using the double magic projectile 48Ca (Calcium), nowadays a widely used method at the JINR—Dubna and GSI—Darmstadt laboratories. The title of the event, 'Dynamics of Open Nuclear Systems', is in recognition of Aureliu Sandulescu's great personality. The lectures were attended by Romanian and foreign Master and PhD students and young researchers in nuclear physics. About 25 reputable professors and researchers in nuclear physics delivered lectures during this period. According to a well-established tradition, an interval of two hours was allotted for each lecture (including discussions). Therefore we kept a balance between the school and conference format. Two lectures were held during the morning and afternoon sessions. After lecture sessions, three or four oral contributions were given by young scientists. This was a good opportunity for them to present the results of their research in front of renowned professors and researchers in nuclear physics. This proceedings volume is organized into four chapters, which reflects the traditional chapter structure of nuclear physics textbooks, but seen from the perspective of open quantum systems: INuclear structure IIDecay processes IIINuclear reactions and astrophysics IVContributions The lectures and contributions are listed alphabetically by author within each chapter. The volume contains many comprehensive reviews related to the topics of the School. The first week of the School was focused on nuclear structure and decay phenomena, considering the nucleus as an open system. Experts in these fields lectured on cluster radioactivity, the stability of superheavy nuclei, alpha-decay fine structure, fission versus fusion, beta and double beta decay and pairing versus alpha-clustering. New experimental results related to the nuclear stability of low-lying and high spin states were also presented. Recent developments at JINR—Dubna and GSI—Darmstadt international laboratories were also reported by their current or former directors. The second week of the event was dedicated to the physics of exotic nuclei, heavy ion reactions and multi-fragmentation, symmetries and phase transitions of open quantum systems. The stability of the atomic nucleus is an important and always interesting discussion point, especially in the context of newly discovered nuclear systems close to the stability line, such as proton/neutron rich or superheavy nuclei. Several lectures and contributions were focused on nuclear structure models describing low-lying states. This includes the status of density functional theory, new developments in Bohr-Mottelsohn Hamiltonian and shell-model theory, proton-neutron correlations, shape coexistence, back-bending phenomena and the thermodynamics of open quantum systems. Open systems in astrophysics, such as supernovae and neutron stars, were presented in detail by several lecturers. Important topics connected to the status of the equation of state, hyperonic and quark matter and neutrino physics, as well as the applications of nuclear structure in astrophysics, were also on the School's agenda. There were many discussions and questions both during and after presentations. An open and friendly atmosphere characterized our School, although different opinions quite often divided the participants. Many discussions continued during coffee breaks and excursions organized in the beautiful surroundings. We hope that this proceedings volume will be useful for future reference to both young scientists and senior researchers working in various fields of nuclear physics. We cannot end without expressing our many thanks to the National Authority for Scientific Research and the Romanian Academy (Elias Foundation) for their financial support. We acknowledge the Horia Hulubei National Institute of Physics and Nuclear Engineering and Bioterra University for their important contribution in organizing the School. Guest Editors D S Delion, N V Zamfir, A R Raduta and F Gulminelli First Week International Summer School on Nuclear Physics: First Week Second Week International Summer School on Nuclear Physics: Second Week Sponsors Sponsor logoSponsor logoSponsor logoSponsor logoSponsor logo
Shah, Syed Hussinien H; Kar, Rajiv K; Asmawi, Azren A; Rahman, Mohd Basyaruddin A; Murad, Abdul Munir A; Mahadi, Nor M; Basri, Mahiran; Rahman, Raja Noor Zaliha A; Salleh, Abu B; Chatterjee, Subhrangsu; Tejo, Bimo A; Bhunia, Anirban
2012-01-01
Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
Asmawi, Azren A.; Rahman, Mohd Basyaruddin A.; Murad, Abdul Munir A.; Mahadi, Nor M.; Basri, Mahiran; Rahman, Raja Noor Zaliha A.; Salleh, Abu B.; Chatterjee, Subhrangsu; Tejo, Bimo A.; Bhunia, Anirban
2012-01-01
Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities. PMID:23209600
Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M
2014-07-01
It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential.
Seabloom, Eric W; Borer, Elizabeth T; Buckley, Yvonne M; Cleland, Elsa E; Davies, Kendi F; Firn, Jennifer; Harpole, W Stanley; Hautier, Yann; Lind, Eric M; MacDougall, Andrew S; Orrock, John L; Prober, Suzanne M; Adler, Peter B; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Blumenthal, Dana M; Brown, Cynthia S; Brudvig, Lars A; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L; Crawley, Michael J; Damschen, Ellen I; Dantonio, Carla M; DeCrappeo, Nicole M; Du, Guozhen; Fay, Philip A; Frater, Paul; Gruner, Daniel S; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S; Humphries, Hope C; Jin, Virginia L; Kay, Adam; Kirkman, Kevin P; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Ladwig, Laura; Lambrinos, John G; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R; Pyke, David A; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D; Wright, Justin; Yang, Louie
2015-07-15
Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.
Seabloom, Eric W.; Borer, Elizabeth T.; Buckley, Yvonne M.; Cleland, Elsa E.; Davies, Kendi F.; Firn, Jennifer; Harpole, W. Stanley; Hautier, Yann; Lind, Eric M.; MacDougall, Andrew S.; Orrock, John L.; Prober, Suzanne M.; Adler, Peter B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Blumenthal, Dana M.; Brown, Cynthia S.; Brudvig, Lars A.; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen I.; Dantonio, Carla M.; DeCrappeo, Nicole M.; Du, Guozhen; Fay, Philip A.; Frater, Paul; Gruner, Daniel S.; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S.; Humphries, Hope C.; Jin, Virginia L.; Kay, Adam; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M. H.; La Pierre, Kimberly J.; Ladwig, Laura; Lambrinos, John G.; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R.; Pyke, David A.; Risch, Anita C.; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D.; Wright, Justin; Yang, Louie
2015-01-01
Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands. PMID:26173623
Mapping plant invadedness in watersheds across the continental United States
Exotic aquatic plant invasions trigger a cascade of negative effects, resulting in altered structure and function of freshwater ecosystems, loss of native biodiversity, and reduction of valuable ecosystem services such as recreation and water quality. The problem of biological in...
Innovative Stemless Valve Eliminates Emissions
NASA Technical Reports Server (NTRS)
2008-01-01
Big Horn Valve Inc. (BHVI), of Sheridan, Wyoming, won a series of SBIR and Small Business Technology Transfer (STTR) contracts with Kennedy Space Center and Marshall Space Flight Center to explore and develop a revolutionary valve technology. BHVI developed a low-mass, high-efficiency, leak-proof cryogenic valve using composites and exotic metals, and had no stem-actuator, few moving parts, with an overall cylindrical shape. The valve has been installed at a methane coal gas field, and future applications are expected to include in-flight refueling of military aircraft, high-volume gas delivery systems, petroleum refining, and in the nuclear industry.
Nuclear physics with antiprotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dover, C.B.
1984-01-01
Transparencies of an invited talk presented at the Nashville meeting of the American Physical Society, October 18-20, 1984, are included. Topics include: (1) Salient features of two-body N anti N interactions (N anti N reversible NN, annihilation mechanisms (quark models), and optical model phenomenology); (2) anti N-nucleus interactions - elastic, inelastic, etc. (new cross section data, optical potentials, signatures of spin-isospin dependence of N anti N force, and (anti p, p) reactions); and (3) anti N-nucleus annihilation processes (features of cascade or fluid dynamics calculations, searches for baryonium and other exotics, meson interferometry, and (anti p, NN) reactions. (WHK)
How Illinois kicked the exotic habit
Francis M. Harty
1998-01-01
For the purpose of this paper, an exotic species is defined as "a plant or animal not native to North America." The history of folly surrounding the premeditated and accidental introduction of exotic animals has been well-documented. In 1963, Dr. E. Raymond Hall wrote, "Introducing exotic species of vertebrates is unscientific, economically wasteful,...
Exotic plant invasions in tropical forests: Patterns and hypotheses
J.S. Denslow; S.J. DeWalt
2008-01-01
In the tropics, exotic plants have been widely introduced for industrial timber, for land reclamation and forage crops, and as ornamentals. In spite of the apparent opportunity for naturalization and spread, invasive exotic plants are scarce in many continental tropical forests. We examine several conditions under which exotic species do pose substantial threats to...
2008-07-01
exotic plant species. Specifically, natalgrass (Rhynchelytrum repens), cogon grass ( Imperata cylindrica ), both invasive exotics have the potential to...maintenance, the potential for exotic, invasive weeds is likely, especially cogon grass ( Imperata cylindrical). The main concern is that if exotic
Exotic Plants are Invading Southeastern Forests
James H. Miller
1997-01-01
Millions of acres of forest land in the Southeast are being occupied increasingly by non-indigenous harmful plants--exotic invasive plants. They are called exotic invasive plants, because these plants from other continents invade areas in the U.S. faster and more completely than most native species. Invasive exotic plants impede forest productivity, hinder forest-use...
Thompson, Amibeth H; Knight, Tiffany M
2018-05-01
Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.
New approaches for sampling and modeling native and exotic plant species richness
Chong, G.W.; Reich, R.M.; Kalkhan, M.A.; Stohlgren, T.J.
2001-01-01
We demonstrate new multi-phase, multi-scale approaches for sampling and modeling native and exotic plant species to predict the spread of invasive species and aid in control efforts. Our test site is a 54,000-ha portion of Rocky Mountain National Park, Colorado, USA. This work is based on previous research wherein we developed vegetation sampling techniques to identify hot spots of diversity, important rare habitats, and locations of invasive plant species. Here we demonstrate statistical modeling tools to rapidly assess current patterns of native and exotic plant species to determine which habitats are most vulnerable to invasion by exotic species. We use stepwise multiple regression and modified residual kriging to estimate numbers of native species and exotic species, as well as probability of observing an exotic species in 30 × 30-m cells. Final models accounted for 62% of the variability observed in number of native species, 51% of the variability observed in number of exotic species, and 47% of the variability associated with observing an exotic species. Important independent variables used in developing the models include geographical location, elevation, slope, aspect, and Landsat TM bands 1-7. These models can direct resource managers to areas in need of further inventory, monitoring, and exotic species control efforts.
Gaya Shivega, W; Aldrich-Wolfe, Laura
2017-01-24
While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species, and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice-versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen. Published by Oxford University Press on behalf of the Annals of Botany Company.
Akanno, E C; Schenkel, F S; Sargolzaei, M; Friendship, R M; Robinson, J A B
2014-10-01
Genetic improvement of pigs in tropical developing countries has focused on imported exotic populations which have been subjected to intensive selection with attendant high population-wide linkage disequilibrium (LD). Presently, indigenous pig population with limited selection and low LD are being considered for improvement. Given that the infrastructure for genetic improvement using the conventional BLUP selection methods are lacking, a genome-wide selection (GS) program was proposed for developing countries. A simulation study was conducted to evaluate the option of using 60 K SNP panel and observed amount of LD in the exotic and indigenous pig populations. Several scenarios were evaluated including different size and structure of training and validation populations, different selection methods and long-term accuracy of GS in different population/breeding structures and traits. The training set included previously selected exotic population, unselected indigenous population and their crossbreds. Traits studied included number born alive (NBA), average daily gain (ADG) and back fat thickness (BFT). The ridge regression method was used to train the prediction model. The results showed that accuracies of genomic breeding values (GBVs) in the range of 0.30 (NBA) to 0.86 (BFT) in the validation population are expected if high density marker panels are utilized. The GS method improved accuracy of breeding values better than pedigree-based approach for traits with low heritability and in young animals with no performance data. Crossbred training population performed better than purebreds when validation was in populations with similar or a different structure as in the training set. Genome-wide selection holds promise for genetic improvement of pigs in the tropics. © 2014 Blackwell Verlag GmbH.
Amézquita, Sandra; Favila, Mario E
2010-04-01
Many studies have evaluated the effect of forest fragmentation on dung beetle assemblage structure. However, few have analyzed how forest fragmentation affects the processes carried out by these insects in tropical forests where their food sources consist mainly of dung produced by native herbivore mammals. With the conversion of forests to pastures, cattle dung has become an exotic alternative and abundant food for dung beetles. This study compares dung removal rates of native (monkey) and exotic (cow) dung in different-sized fragments of tropical rain forests, during the dry and rainy seasons at the Los Tuxtlas Biosphere Reserve. Dung removal rates were affected by season, dung type, and the interaction between resource type and season. During the dry season, the removal rates of monkey dung were somewhat similar than during the rainy season, whereas the removal rates of cow dung were much higher during the rainy season. Dung beetle biomass and species richness were almost three times greater in monkey dung than in cow dung. Monkey dung attracted species belonging to the dweller, roller, and tunneler guilds; cow dung attracted mostly tunnelers. Therefore, the use of exotic dung may result in a biased misconception of the rates of dung removal in tropical forest and an underestimation of dung beetle diversity. This study highlights the importance of working with natural tropical forest resources when attempting to identify realistic tendencies concerning processes in natural habitats and those modified by fragmentation and by other human activities.
Exotic pests: major threats to forest health
J. Robert Bridges
1995-01-01
Over 360 exotic forest insects and about 20 exotic diseases have become established in the U.S. Many of these organisms have become serious pests, causing great economic impacts and irreversible ecological harm. Despite efforts to exclude exotic species, forest insects and disease organisms continue to be introduced at a rather rapid rate. In the last few years, one...
Emerging Avenues for Utilization of Exotic Germplasm.
Wang, Cuiling; Hu, Songlin; Gardner, Candice; Lübberstedt, Thomas
2017-07-01
Breeders have been successful in increasing crop performance by exploiting genetic diversity over time. However, the reported annual yield increases are not sufficient in view of rapid human population growth and global environmental changes. Exotic germplasm possesses high levels of genetic diversity for valuable traits. However, only a small fraction of naturally occurring genetic diversity is utilized. Moreover, the yield gap between elite and exotic germplasm widens, which increases the effort needed to use exotic germplasm and to identify beneficial alleles and for their introgression. The advent of high-throughput genotyping and phenotyping technologies together with emerging biotechnologies provide new opportunities to explore exotic genetic variation. This review will summarize potential challenges for utilization of exotic germplasm and provide solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Civitarese, O.; Suhonen, J.; Zuber, K.
2015-10-01
The existence of massive neutrinos forces the extension of the Standard Model of electroweak interactions, to accommodate them and/or right-handed currents. This is one of the fundamental questions in todays's physics. The consequences of it would reflect upon several decay processes, like the very exotic nuclear double-beta-decay. By the other hand, high-energy proton-proton reactions of the type performed at the LHC accelerator can provide information about the existence of a right-handed generation of the W and Z-bosons. Here we shall address the possibility of performing a joint analysis of the results reported by the ATLAS and CMS collaborations (σ(pp- > 2l + jets)) and the latest measurements of nuclear-double-beta decays reported by the GERDA and EXO collaborations.
Nuclear astrophysics with radioactive ions at FAIR
NASA Astrophysics Data System (ADS)
Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.
2016-01-01
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar; Suhonen, J.; Zuber, K.
2015-10-28
The existence of massive neutrinos forces the extension of the Standard Model of electroweak interactions, to accommodate them and/or right-handed currents. This is one of the fundamental questions in todays’s physics. The consequences of it would reflect upon several decay processes, like the very exotic nuclear double-beta-decay. By the other hand, high-energy proton-proton reactions of the type performed at the LHC accelerator can provide information about the existence of a right-handed generation of the W and Z-bosons. Here we shall address the possibility of performing a joint analysis of the results reported by the ATLAS and CMS collaborations (σ(pp− >more » 2l + jets)) and the latest measurements of nuclear-double-beta decays reported by the GERDA and EXO collaborations.« less
Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype
NASA Astrophysics Data System (ADS)
Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.
2013-05-01
The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.
Twisted rogue-wave pairs in the Sasa-Satsuma equation.
Chen, Shihua
2013-08-01
Exact explicit rogue wave solutions of the Sasa-Satsuma equation are obtained by use of a Darboux transformation. In addition to the double-peak structure and an analog of the Peregrine soliton, the rogue wave can exhibit an intriguing twisted rogue-wave pair that involves four well-defined zero-amplitude points. This exotic structure may enrich our understanding on the nature of rogue waves.
Exotic chemical arrangements and magnetic moment evolution of NixPt1-x (0 ≤x≤ 1) nanoparticles
NASA Astrophysics Data System (ADS)
Mokkath, Junais Habeeb
2018-06-01
We present a systematic study on the chemical ordering pattern and the magnetic properties of NixPt1-x (0 ⩽ x≤ 1) nanoparticles having a size of 1.5 nm by means of an approach which combines basin hopping structure sampling technique and spin-polarized density functional theory. We found exotic chemical ordering patterns for different Ni/Pt ratios. In addition, we observed a sharp phase transition from non-magnetic to ferromagnetic behaviour around x = 67%. We show that this is a direct consequence of a unique atomic arrangement on the surface in which Ni atoms club together causing the strong Ni-Ni magnetic interaction. The observed magnetic properties are correlated to the electronic density of states.
Exotic objects of atomic physics
NASA Astrophysics Data System (ADS)
Eletskii, A. V.
2017-11-01
There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.
The South African isotope facility project
NASA Astrophysics Data System (ADS)
Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.
2018-05-01
The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.
The d*(2380) in Neutron Stars - A New Degree of Freedom?
NASA Astrophysics Data System (ADS)
Vidaña, I.; Bashkanov, M.; Watts, D. P.; Pastore, A.
2018-06-01
Elucidating the appropriate microscopic degrees of freedom within neutron stars remains an open question which impacts nuclear physics, particle physics and astrophysics. The recent discovery of the first non-trivial dibaryon, the d* (2380), provides a new candidate for an exotic degree of freedom in the nuclear equation of state at high matter densities. In this paper a first calculation of the role of the d* (2380) in neutron stars is performed based on a relativistic mean field description of the nucleonic degrees of freedom supplemented by a free boson gas of d* (2380). The calculations indicate that the d* (2380) would appear at densities around three times normal nuclear matter saturation density and comprise around 20% of the matter in the centre of heavy stars with higher fractions possible in the higher densities of merger processes. The d* (2380) would also reduce the maximum star mass by around 15% and have significant influence on the fractional proton/neutron composition. New possibilities for neutron star cooling mechanisms arising from the d* (2380) are also predicted.
NASA Astrophysics Data System (ADS)
Wilsey, B. J.; Xu, X.; Polley, H. W.; Hofmockel, K. S.
2017-12-01
Global change includes invasion by non-native plant species, and invasion may affect carbon cycling and storage. We tested predictions in central Texas in an experiment that compares mixtures of all exotic or all native species under two summer irrigation treatments (128 or 0 mm) that varies the amount of summer drought stress. At the end of the eighth growing season after establishment, soils were sampled in 10 cm increments to 100 cm depth to determine if soil C differed among treatments, and if treatments differentially affected soil C in deeper soils. Soil C content was significantly (5%) higher under native plantings than under exotic species plantings (P < 0.001). The difference between native and exotic plantings increased with depth, and native plantings had higher soil C in deeper soil layers than in surface layers (native-exotic x depth, P < 0.001). Exotic plantings had decreasing soil C with depth. Soil C:N ratio and δ13C/12C were also significantly affected by native-exotic status, with soils in exotic plots having a significantly greater C4 contribution than native soils. Soil C was unaffected by summer irrigation treatments. Our results suggest that a significant amount of carbon could be sequestered by replacing exotic plant species with native species in the southern Plains, and that more work should be conducted at deeper soil depths. If we had restricted our analyses to surface soil layers (e.g. top 30 cm), we would have failed to detect depth differences between natives and exotics.
Kirichenko, Natalia; Kenis, M
2016-09-01
The adoption of exotic plants by indigenous herbivores in the region of introduction can be influenced by numerous factors. A botanical garden in Western Siberia was used to test various hypotheses on the adaptation of indigenous phyllophagous insects to exotic plants invasions, focusing on two feeding guilds, external leaf chewers and leaf miners. A total of 150 indigenous and exotic woody plant species were surveyed for insect damage, abundance and species richness. First, exotic woody plants were much less damaged by chewers and leaf miners than native plants, and the leaf miners' species richness was much lower on exotic than native plants. Second, exotic woody plants having a congeneric species in the region of introduction were more damaged by chewers and hosted a more abundant and species-rich community of leaf miners than plants without native congeneric species. Third, damage by chewers significantly increased with the frequency of planting of exotic host plants outside the botanical garden, and leaf miners' abundance and species richness significantly increased with residence time in the garden. Finally, no significant relationship was found between insect damage or abundance and the origin of the exotic plants. Besides the ecological implications of the results, this study also illustrates the potential of botanical gardens to test ecological hypotheses on biological invasions and insect-plant interactions on a large set of plant species.
William F. Hammond
1998-01-01
Providing individuals with effective information, programs, and educational materials about "exotics" or non-indigenous species is generally not a very effective way to get people to act to control, eliminate, and restore damage from exotic species to native ecosystems. Information tends to inform the motivated and educated. Educational research and marketing...
James F. Fowler; Carolyn Hull Sieg; Brett G. Dickson; Victoria Saab
2008-01-01
Many studies have investigated the ecological effects of roads and roadsides as both habitat and dispersal corridors for exotic plant species. Several of these compared roadside exotic species richness and abundance with adjacent interior habitats, but we found no studies of individual exotic species' abundance between the two habitats in the context of prescribed...
How exotic plants integrate into pollination networks
Stouffer, Daniel B; Cirtwill, Alyssa R; Bascompte, Jordi; Bartomeus, Ignasi
2014-01-01
Summary There is increasing world-wide concern about the impact of the introduction of exotic species on ecological communities. Since many exotic plants depend on native pollinators to successfully establish, it is of paramount importance that we understand precisely how exotic species integrate into existing plant–pollinator communities. In this manuscript, we have studied a global data base of empirical pollination networks to determine whether community, network, species or interaction characteristics can help identify invaded communities. We found that a limited number of community and network properties showed significant differences across the empirical data sets – namely networks with exotic plants present are characterized by greater total, plant and pollinator richness, as well as higher values of relative nestedness. We also observed significant differences in terms of the pollinators that interact with the exotic plants. In particular, we found that specialist pollinators that are also weak contributors to community nestedness are far more likely to interact with exotic plants than would be expected by chance alone. Synthesis. By virtue of their interactions, it appears that exotic plants may provide a key service to a community's specialist pollinators as well as fill otherwise vacant ‘coevolutionary niches’. PMID:25558089
A Phylogenetic Perspective on the Evolution of Mediterranean Teleost Fishes
Meynard, Christine N.; Mouillot, David; Mouquet, Nicolas; Douzery, Emmanuel J. P.
2012-01-01
The Mediterranean Sea is a highly diverse, highly studied, and highly impacted biogeographic region, yet no phylogenetic reconstruction of fish diversity in this area has been published to date. Here, we infer the timing and geographic origins of Mediterranean teleost species diversity using nucleotide sequences collected from GenBank. We assembled a DNA supermatrix composed of four mitochondrial genes (12S ribosomal DNA, 16S ribosomal DNA, cytochrome c oxidase subunit I and cytochrome b) and two nuclear genes (rhodopsin and recombination activating gene I), including 62% of Mediterranean teleost species plus 9 outgroups. Maximum likelihood and Bayesian phylogenetic and dating analyses were calibrated using 20 fossil constraints. An additional 124 species were grafted onto the chronogram according to their taxonomic affinity, checking for the effects of taxonomic coverage in subsequent diversification analyses. We then interpreted the time-line of teleost diversification in light of Mediterranean historical biogeography, distinguishing non-endemic natives, endemics and exotic species. Results show that the major Mediterranean orders are of Cretaceous origin, specifically ∼100–80 Mya, and most Perciformes families originated 80–50 Mya. Two important clade origin events were detected. The first at 100–80 Mya, affected native and exotic species, and reflects a global diversification period at a time when the Mediterranean Sea did not yet exist. The second occurred during the last 50 Mya, and is noticeable among endemic and native species, but not among exotic species. This period corresponds to isolation of the Mediterranean from Indo-Pacific waters before the Messinian salinity crisis. The Mediterranean fish fauna illustrates well the assembly of regional faunas through origination and immigration, where dispersal and isolation have shaped the emergence of a biodiversity hotspot. PMID:22590545
Exotic Forest Insect Pests and Their Impact on Forest Management
Therese M. Poland; Robert A. Haack
2003-01-01
More than 4500 exotic organisms are now established in the United States, of which over 400 are insects that feed on trees and shrubs. While most exotic insects cause little or no damage, a few have become serious pests and have greatly altered native forest ecosystems. Three of the most recently introduced exotic forest pests are the pine shoot beetle, the Asian...
2017-01-01
We assessed changes in phylogenetic diversity of angiosperm flora on six oceanic islands located in the southeastern Pacific Ocean, by comparing flora from two periods: the pre-European colonization of islands and current times. We hypothesize that, in the time between these periods, extinction of local plant species and addition of exotic plants modified phylogenetic-α-diversity at different levels (deeper and terminal phylogeny) and increased phylo-β-diversity among islands. Based on floristic studies, we assembled a phylogenetic tree from occurrence data that includes 921 species, of which 165 and 756 were native or exotic in origin, respectively. Then, we studied change in the phylo-α-diversity and phylo-β-diversity (1 –Phylosor) by comparing pre-European and current times. Despite extinction of 18 native angiosperm species, an increase in species richness and phylo-α-diversity was observed for all islands studied, attributed to introduction of exotic plants (between 6 to 477 species per island). We did not observe significant variation of mean phylogenetic distance (MPD), a measure of the ‘deeper’ phylogenetic diversity of assemblages (e.g., orders, families), suggesting that neither extinctions nor introductions altered phylogenetic structure of the angiosperms of these islands. In regard to phylo-β-diversity, we detected temporal turnover (variation in phylogenetic composition) between periods to flora (0.38 ± 0.11). However, when analyses were performed only considering native plants, we did not observe significant temporal turnover between periods (0.07 ± 0.06). These results indicate that introduction of exotic angiosperms has contributed more notably than extinctions to the configuration of plant assemblages and phylogenetic diversity on the studied islands. Because phylogenetic diversity is closely related to functional diversity (species trait variations and roles performed by organisms), our results suggests that the introduction of exotic plants to these islands could have detrimental impacts for ecosystem functions and ecosystem services that islands provide (e.g. productivity). PMID:28763508
Native weeds and exotic plants: Relationships to disturbance in mixed-grass prairie
Larson, D.L.
2003-01-01
Disturbance frequently is implicated in the spread of invasive exotic plants. Disturbances may be broadly categorized as endogenous (e.g., digging by fossorial animals) or exogenous (e.g., construction and maintenance of roads and trails), just as weedy species may be native or exotic in origin. The objective of this study was to characterize and compare exotic and native weedy plant occurrence in and near three classes of disturbance -digging by prairie dogs (an endogenous disturbance to which native plants have had the opportunity to adapt), paved or gravel roads (an exogenous disturbance without natural precedent), and constructed trails (an exogenous disturbance with a natural precedent in trails created by movement of large mammals) - in three geographically separate national park units. I used plant survey data from the North and South Units of Theodore Roosevelt National Park and Wind Cave National Park in the northern mixed-grass prairie of western North and South Dakota, USA, to characterize the distribution of weedy native and exotic plants with respect to the three disturbance classes as well as areas adjacent to them. There were differences both in the susceptibility of the disturbance classes to invasion and in the distributions of native weeds and exotic species among the disturbance classes. Both exotic and native weedy species richness were greatest in prairie dog towns and community composition there differed most from undisturbed areas. Exotic species were more likely to thrive near roadways, where native weedy species were infrequently encountered. Exotic species were more likely to have spread beyond the disturbed areas into native prairie than were weedy native species. The response of individual exotic plant species to the three types of disturbance was less consistent than that of native weedy species across the three park units.
Magnoli, Susan M; Kleinhesselink, Andrew R; Cushman, J Hall
2013-12-01
The spread of exotic, invasive species is a global phenomenon that is recognized as a major source of environmental change. Although many studies have addressed the effects of exotic plants on the communities they invade, few have quantified the effects of invader removal on plant communities, or considered the degree to which different plant groups vary in response to invasion and invader removal. We evaluated the effects of an exotic succulent, iceplant (Carpobrotus edulis), on a coastal dune plant community in northern California, as well as the community responses to its removal. To assess possible mechanisms by which iceplant affects other plants, we also evaluated its above- and belowground influences on the germination and growth of a dominant exotic annual grass, Bromus diandrus. We found that iceplant invasion was associated with reduced native plant cover as well as increased cover and density of some exotic plants-especially exotic annual grasses. However, iceplant removal did not necessarily lead to a reversal of these effects: removal increased the cover and density of both native and exotic species. We also found that B. diandrus grown in iceplant patches, or in soil where iceplant had been removed, had poorer germination and growth than B. diandrus grown in soil not influenced by iceplant. This suggests that the influence of iceplant on this dune plant community occurs, at least in part, due to belowground effects, and that these effects remain after iceplant has been removed. Our study demonstrates the importance of considering how exotic invasive plants affect not only native species, but also co-occurring exotic taxa. It also shows that combining observational studies with removal experiments can lead to important insights into the influence of invaders and the mechanisms of their effects.
Song, Guang; Li, Xinrong; Hui, Rong
2017-01-01
Biological soil crusts (BSCs) can improve the stability and health of native plant communities in arid ecosystems. However, it is unknown whether BSCs can also inhibit invasions of exotic vascular plants on stabilized reclaimed sand dunes. To answer this question, we conducted a greenhouse experiment to test the effects of cyanobacteria-dominated BSCs on 1) seed germination and biomass of an exotic grass (Stipa glareosa P. Smirn.), and 2) individual biomass of the exotic S. glareosa growing with two native plants, Eragrostis poaeoides Beauv. and Artemisia capillaris Thunb. Our experiment included three BSC treatments (intact crust, disturbed crust, and bare soil) and five species trials (native E. poaeoides alone, E. poaeoides mixed with exotic S. glareosa, native A. capillaris alone, A. capillaris mixed with exotic S. glareosa, and S. glareosa alone). The results showed that cyanobacteria-dominated crusts can significantly reduce the cumulative percent germination of the exotic grass (P<0.001) and native plants (P<0.001). Maximum cumulative percent germinations of the exotic grass and two native plants were found in bare soil, and minimum in intact crusts. The interaction of crust treatment × species trials on shoot biomass of the two native plants was significant (P<0.05). These results indicate that the presence of BSCs on stabilized sand dunes may reduce the germination of the exotic and two native plants. The effect of reducing exotic and native plant seeds germination would maintain more diverse plant communities and contribute to the formation of clumped vegetation patterns. We conclude that BSCs act as a natural regulator for vegetation patterns and thus promote ecosystem stability and sustainability.
Medeiros, Patrícia Muniz de; Ferreira Júnior, Washington Soares; Ramos, Marcelo Alves; Silva, Taline Cristina da; Ladio, Ana Haydée; Albuquerque, Ulysses Paulino
2017-01-01
Efforts have been made to understand the processes that lead to the introduction of exotic species into local pharmacopoeias. Among those efforts, the diversification hypothesis predicts that exotic plants are introduced in local medical systems to amplify the repertoire of knowledge related to the treatment of diseases, filling blanks that were not occupied by native species. Based on such hypothesis, this study aimed to contribute to this discussion using the context of local Brazilian populations. We performed a systematic review of Brazilian studies up to 2011 involving medicinal plants, excluding those studies that presented a high risk of bias (because of sampling or plant identification problems). An analysis of similarities (ANOSIM) was conducted in different scales to test for differences in the repertoire of therapeutic indications treated using native and exotic species. We have found that although there is some overlap between native and exotic plants regarding their therapeutic indications and the body systems (BSs) that they treat, there are clear gaps present, that is, there are therapeutic indications and BSs treated that are exclusive to exotic species. This scenario enables the postulation of two alternative unfoldings of the diversification hypothesis, namely, (1) exotic species are initially introduced to fill gaps and undergo subsequent expansion of their use for medical purposes already addressed using native species and (2) exotic species are initially introduced to address problems already addressed using native species to diversify the repertoire of medicinal plants and to increase the resilience of medical systems. The reasons why exotic species may have a competitive advantage over the native ones, the implications of the introduction of exotic species for the resilience of medical systems, and the contexts in which autochthonous plants can gain strength to remain in pharmacopoeias are also discussed.
Li, Xinrong; Hui, Rong
2017-01-01
Biological soil crusts (BSCs) can improve the stability and health of native plant communities in arid ecosystems. However, it is unknown whether BSCs can also inhibit invasions of exotic vascular plants on stabilized reclaimed sand dunes. To answer this question, we conducted a greenhouse experiment to test the effects of cyanobacteria-dominated BSCs on 1) seed germination and biomass of an exotic grass (Stipa glareosa P. Smirn.), and 2) individual biomass of the exotic S. glareosa growing with two native plants, Eragrostis poaeoides Beauv. and Artemisia capillaris Thunb. Our experiment included three BSC treatments (intact crust, disturbed crust, and bare soil) and five species trials (native E. poaeoides alone, E. poaeoides mixed with exotic S. glareosa, native A. capillaris alone, A. capillaris mixed with exotic S. glareosa, and S. glareosa alone). The results showed that cyanobacteria-dominated crusts can significantly reduce the cumulative percent germination of the exotic grass (P<0.001) and native plants (P<0.001). Maximum cumulative percent germinations of the exotic grass and two native plants were found in bare soil, and minimum in intact crusts. The interaction of crust treatment × species trials on shoot biomass of the two native plants was significant (P<0.05). These results indicate that the presence of BSCs on stabilized sand dunes may reduce the germination of the exotic and two native plants. The effect of reducing exotic and native plant seeds germination would maintain more diverse plant communities and contribute to the formation of clumped vegetation patterns. We conclude that BSCs act as a natural regulator for vegetation patterns and thus promote ecosystem stability and sustainability. PMID:28977018
Quantum nuclear pasta and nuclear symmetry energy
NASA Astrophysics Data System (ADS)
Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.
2017-05-01
Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.
9 CFR 352.7 - Marking inspected products.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., exotic animal tongues, and exotic animal hearts. EC11SE91.031 (2) For application to exotic animal calf... used on shipping containers, bond labels, artificial casings, and other articles with the approval of...
9 CFR 352.7 - Marking inspected products.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., exotic animal tongues, and exotic animal hearts. EC11SE91.031 (2) For application to exotic animal calf... used on shipping containers, bond labels, artificial casings, and other articles with the approval of...
Plant and root endophyte assembly history: interactive effects on native and exotic plants.
Sikes, Benjamin A; Hawkes, Christine V; Fukami, Tadashi
2016-02-01
Differences in the arrival timing of plants and soil biota may result in different plant communities through priority effects, potentially affecting the success of native vs. exotic plants, but experimental evidence is largely lacking. We conducted a greenhouse experiment to investigate whether the assembly history of plants and fungal root endophytes could interact to influence plant emergence and biomass. We introduced a grass species and eight fungal species from one of three land-use types (undisturbed, disturbed, or pasture sites in a Florida scrubland) in factorial combinations. We then introduced all plants and fungi from the other land-use types 2 weeks later. Plant emergence was monitored for 6 months, and final plant biomass and fungal species composition assessed. The emergence and growth of the exotic Melinis repens and the native Schizacharyium niveum were affected negatively when introduced early with their "home" fungi, but early introduction of a different plant species or fungi from a different site type eliminated these negative effects, providing evidence for interactive priority effects. Interactive effects of plant and fungal arrival history may be an overlooked determinant of plant community structure and may provide an effective management tool to inhibit biological invasion and aid ecosystem restoration.
Final Report - Few-Body Studies Using Electromagnetic Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norum, Blaine
The work discussed here is an extension of work previously funded by U.S. Department of Energy Grant DE-FG02-97ER41025. Measurements of charged pion photoproduction from deuterium using the Laser Electron Gamma Source (LEGS) at the Brookhaven National Laboratory previously made by us, as members of the LEGS Collaboration, resulted in the most interesting result of two decades of work. By measuring the production of a charged pion (π +) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of rare, long-lived states not explicable by standard nuclear theory; they suggested a setmore » of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued. Several measurements at various laboratories have supported, but not proved, the existence of these exotic states. The rarity of these states made their existence undetectable in most previous measurements. Only by observing characteristic signatures of such states (i.e., decay photons), by using very specific kinematics which isolate certain reaction products, or by measuring polarization-dependent observables. During the period of this grant we pursued and made progress on the development of experiments to be performed at the High Intensity Gamma Source (HIGS) of the Tri Universities Nuclear Laboratory (TUNL). Our understanding of photon- and electron-induced nuclear reactions depends on understanding of the basic electron and photon interaction. Recently, the issue of two-photon contributions has arisen in the context of deeply inelastic electron scattering. One way to address this is to measure asymmetries in the Bethe-Heitler ee process. We also made progress in developing the detectors required to measure these asymmetries at HIGS. During the last several years the apparent discrepancy between the size of the proton as measured using electrons and that as measured using muons has received a great deal of attention. Working with colleagues at the Jefferson Laboratory (JLAB) we showed that the apparent discrepancy was almost surely the result of mistakes in the statistical analysis of electron scattering data, that there is almost surely no discrepancy.« less
A new perspective on trait differences between native and invasive exotic plants.
Leffler, A Joshua; James, Jeremy J; Monaco, Thomas A; Sheley, Roger L
2014-02-01
Functional differences between native and exotic species potentially constitute one factor responsible for plant invasion. Differences in trait values between native and exotic invasive species, however, should not be considered fixed and may depend on the context of the comparison. Furthermore, the magnitude of difference between native and exotic species necessary to trigger invasion is unknown. We propose a criterion that differences in trait values between a native and exotic invasive species must be greater than differences between co-occurring natives for this difference to be ecologically meaningful and a contributing factor to plant invasion. We used a meta-analysis to quantify the difference between native and exotic invasive species for various traits examined in previous studies and compared this value to differences among native species reported in the same studies. The effect size between native and exotic invasive species was similar to the effect size between co-occurring natives except for studies conducted in the field; in most instances, our criterion was not met although overall differences between native and exotic invasive species were slightly larger than differences between natives. Consequently, trait differences may be important in certain contexts, but other mechanisms of invasion are likely more important in most cases. We suggest that using trait values as predictors of invasion will be challenging.
Exotic Dance in Baltimore: From Entry to STI/HIV Risk.
Lilleston, Pamela S; Reuben, Jacqueline; Sherman, Susan G
2015-01-01
Research has documented health risks associated with sex work, but few U.S. studies have focused on the exotic dance industry. We undertook this study to describe the factors that influenced women's entry into exotic dance and explored the relation of these forces to their subsequent sexually transmitted infection (STI)/HIV risk trajectory. Qualitative interviews (N = 25) were conducted with female exotic dancers from June through August 2009. Data were analyzed through Atlas-ti using an inductive approach. Economic vulnerability was the primary force behind women's initiation into the profession. Drug use, physical abuse, and enjoyment of dancing were often concurrent with economic need and provided a further push toward exotic dance. Social networks facilitated entry by normalizing the profession and presenting it as a solution to financial hardship. Characteristics of exotic dance clubs, such as immediate hire and daily pay, attracted women in a state of financial vulnerability. Women's motivations for dancing, including economic vulnerability and drug use practices, shaped their STI/HIV risk once immersed in the club environment, with social networks often facilitating sexual risk behavior. Understanding the factors that drive women to exotic dance and influence risk behavior in the club may assist in the development of targeted harm reduction interventions for exotic dancers.
Exotic Dance in Baltimore: From Entry to STI/HIV Risk
Reuben, Jacqueline; Sherman, Susan G.
2015-01-01
Research has documented health risks associated with sex work, but few U.S. studies have focused on the exotic dance industry. We undertook to describe the factors that influenced women's entry into exotic dance and explored the relation of these forces to their subsequent Sexually Transmitted Infection (STI)/HIV risk trajectory. Qualitative interviews (N=25) were conducted with female exotic dancers from June through August, 2009. Data were analyzed through Atlas-ti using an inductive approach. Economic vulnerability was the primary force behind women's initiation into the profession. Drug use, physical abuse, and enjoyment of dancing were often concurrent with economic need and provided a further push toward exotic dance. Social networks facilitated entry by normalizing the profession and presenting it as a solution to financial hardship. Characteristics of exotic dance clubs, such as immediate hire and daily pay, attracted women in a state of financial vulnerability. Women's motivations for dancing, including economic vulnerability and drug use practices, shaped their STI/HIV risk once immersed in the club environment, with social networks often facilitating sexual risk behavior. Understanding the factors that drive women to exotic dance and influence risk behavior in the club may assist in the development of targeted harm reduction interventions for exotic dancers. PMID:25807063
Fire Alters Emergence of Invasive Plant Species from Soil Surface-Deposited Seeds
USDA-ARS?s Scientific Manuscript database
1. Fire is recognized as an important process controlling ecosystem structure and function. Restoration of fire regimes is complicated by global concerns about exotic plants invasions, yet little is known of how the two may interact. Characterizing relationships between fire conditions and the vi...
Fraser fir stand structure in the Black Mountains of North Carolina
Rachael H. McManamay; Lynn M. Resle; James B. Campbell
2010-01-01
Over the past several decades, naturally occurring populations of Fraser fir (Abies fraseri [Pursh.] Poir) have experienced devastating mortality rates due to attack by the exotic insect, balsam woolly adelgid (BWA) (Adelges piceae Ratz.). The decline in Fraser fir is particularly concerning because its natural geographic...
Weed biocontrol insects reduce native plant recruitment through second-order apparent competition
Dean E. Pearson; Ragan M. Callaway
2008-01-01
Small-mammal seed predation is an important force structuring native-plant communities that may also influence exotic-plant invasions. In the intermountain West, deer mice (Peromyscus maniculatus) are prominent predators of native-plant seeds, but they avoid consuming seeds of certain widespread invasives like spotted knapweed (Centaurea...
Reciprocating Linear Electric Motor
NASA Technical Reports Server (NTRS)
Goldowsky, M. P.
1984-01-01
Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.
Human impacts on genetic diversity in forest ecosystems
F. Thomas Ledig
1992-01-01
Humans have converted forest to agricultural and urban uses, exploited species, fragmented wildlands. changed the demographic structure of forests, altered habitat, degraded the environment with atmospheric and soil pollutants, introduced exotic pests and competitors, and domesticated favored species. None of they activities is new; perhaps with the exception of...
The mass formula for an exotic BTZ black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Baocheng, E-mail: zhangbc.zhang@yahoo.com
2016-04-15
An exotic Bañados–Teitelboim–Zanelli (BTZ) black hole has an angular momentum larger than its mass in three dimension (3D), which suggests the possibility that cosmic censorship could be violated if angular momentum is extracted by the Penrose process. In this paper, we propose a mass formula for the exotic BTZ black hole and show no violation of weak cosmic censorship in the gedanken process above by understanding properly its mass formula. Unlike the other black holes, the total energy of the exotic BTZ black hole is represented by the angular momentum instead of the mass, which supports a basic point ofmore » view that the same geometry should be determined by the same energy in 3D general relativity whose equation of motion can be given either by normal 3D Einstein gravity or by exotic 3D Einstein gravity. However, only the mass of the exotic black hole is related to the thermodynamics and other forms of energy are “dumb”, which is consistent with the earlier thermodynamic analysis about exotic black holes.« less
NASA Astrophysics Data System (ADS)
Eyrich, Wolfgang
2007-01-01
In the last two years, starting with the LEPS collaboration1 several experiments reported evidence for a manifestly exotic narrow state with a mass of about 1530 MeV/c2. The state was found to decay into K0p and K+n. This object with strangeness S = +1 was named Θ+ and identified with the lightest exotic antidecuplet baryon predicted in the soliton model2. Many experiments have scanned their data for a pentaquark signal with varying results. Some searches resulted in evidence for the Θ+ while others fail to produce any narrow structure in the region of interest. Currently, a number of high statistics experiments are being evaluated with the goal to confirm or refute the existence of the Θ+. In this contribution the experimental status and further prospects will be discussed.
In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems
Pearsons, Kirsten A.
2017-01-01
The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators. PMID:28783074
In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems.
Pearsons, Kirsten A; Tooker, John F
2017-08-05
The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators.
Transition-Metal Oxide (111) Bilayers
Okamoto, Satoshi; Xiao, Di
2018-04-15
Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics, mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. Here in this paper, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographicmore » axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM d electrons further enrich the behavior.« less
Transition-Metal Oxide (111) Bilayers
NASA Astrophysics Data System (ADS)
Okamoto, Satoshi; Xiao, Di
2018-04-01
Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics, mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. In this article, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographic axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM d electrons further enrich the behavior.
Bateman, H.L.; Merritt, D.M.; Glenn, E.P.; Nagler, P.L.
2014-01-01
The biological control agent (tamarisk leaf beetle, Diorhabda spp.) is actively being used to defoliate exotic saltcedar or tamarisk (Tamarix spp.) in riparian ecosystems in western USA. The Virgin River in Arizona and Nevada is a system where tamarisk leaf beetle populations are spreading. Saltcedar biocontrol, like other control methods, has the potential to affect non-target species. Because amphibians and reptiles respond to vegetation changes in habitat and forage in areas where beetles are active, herpetofauna are model taxa to investigate potential impacts of biocontrol defoliation. Our objectives related herpetofauna abundance to vegetation cover and indices (normalized difference vegetation index, NDVI; enhanced vegetation index, EVI) and timing of biocontrol defoliation. We captured herpetofauna and ground-dwelling arthropods in trap arrays and measured vegetation using remotely sensed images and on-the-ground measurements at 16–21 sites 2 years before (2009–2010) and 2 years following (2011–2012) biocontrol defoliation. Following defoliation, riparian stands (including stands mixed with native and exotic trees and stands of monotypic exotic saltcedar) had significantly lower NDVI and EVI values and fewer captures of marked lizards. Total captures of herpetofauna (toads, lizards, and snakes) were related to higher vegetation cover and sites with a lower proportion of saltcedar. Our results suggest that effects of biocontrol defoliation are likely to be site-specific and depend upon the proportion of native riparian trees established prior to biocontrol introduction and defoliation. The mechanisms by which habitat structure, microclimate, and ultimately vertebrate species are affected by exotic plant biocontrol riparian areas should be a focus of natural-resource managers.
β-decay spectroscopy for the r-process nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Shunji; Collaboration: RIBF Decay Collaborations
2014-05-09
Series of decay spectroscopy experiments, utilizing of high-purity Ge detectors and double-sided silicon-strip detectors, have been conducted to harvest the decay properties of very exotic nuclei relevant to the r-process nucleosynthesis at the RIBF. The decay properties such as β-decay half-lives, low-lying states, β-delayed neutron emissions, isomeric states, and possibly Q{sub β} of the very neutron-rich nuclei are to be measured to give significant constraints in the uncertainties of nuclear properties for the r-process nucleosynthesis. Recent results of βγ spectroscopy study using in-flight fission of {sup 238}U-beam will be presented together with our future perspectives.
Fission Fragment Studies by Gamma-Ray Spectrometry with the Mass Separator Lohengrin
NASA Astrophysics Data System (ADS)
Materna, T.; Amouroux, C.; Bail, A.; Bideau, A.; Chabod, S.; Faust, H.; Capellan, N.; Kessedjian, G.; Köster, U.; Letourneau, A.; Litaize, O.; Martin, F.; Mathieu, L.; Méplan, O.; Panebianco, S.; Régis, J.-M.; Rudigier, M.; Sage, C.; Serot, O.; Urban, W.
2014-09-01
A gamma spectrometric technique was implemented at the exit of the fission fragment separator of the ILL. It allows a precise measurement of isotopic yields of most important actinides in the heavy fragment region by an unambiguous identification of the nuclear charge of the fragments selected by the mass spectrometer. The status of the project and last results are reviewed. A spin-off of this activity is the identification of unknown nanosecond isomers in exotic nuclei through the observation of a disturbed ionic charge distribution. This technique has been improved to provide an estimation of the lifetime of the isomeric state.
Pomaro, B; Salomoni, V A; Gramegna, F; Prete, G; Majorana, C E
2011-10-30
Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties. Copyright © 2011 Elsevier B.V. All rights reserved.
Housing is positively associated with invasive exotic plant species richness in New England, USA.
Gavier-Pizarro, Gregorio I; Radeloff, Volker C; Stewart, Susan I; Huebner, Cynthia D; Keuler, Nicholas S
2010-10-01
Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating dispersal of propagules along roads. To evaluate relationships between housing and the distribution of invasive exotic plants, we asked (1) how strongly is housing associated with the spatial distribution of invasive exotic plants compared to other anthropogenic and environmental factors; (2) what type of housing pattern is related to the richness of invasive exotic plants; and (3) do invasive plants represent ecological traits associated with specific housing patterns? Using two types of regression analysis (best subset analysis and hierarchical partitioning analysis), we found that invasive exotic plant richness was equally or more strongly related to housing variables than to other human (e.g., mean income and roads) and environmental (e.g., topography and forest cover) variables at the county level across New England. Richness of invasive exotic plants was positively related to area of wildland-urban interface (WUI), low-density residential areas, change in number of housing units between 1940 and 2000, mean income, plant productivity (NDVI), and altitudinal range and rainfall; it was negatively related to forest area and connectivity. Plant life history traits were not strongly related to housing patterns. We expect the number of invasive exotic plants to increase as a result of future housing growth and suggest that housing development be considered a primary factor in plans to manage and monitor invasive exotic plant species.
Effects of exotic grasses on soil seed banks in Southeastern Arizona grasslands
McLaughlin, S.P.; Bowers, Janice E.
2007-01-01
At the Appleton-Whittell Research Ranch, an ungrazed grassland preserve in southeastern Arizona, soil seed banks were sampled in June, August, and October 2002 and June 2003. Wildfire had previously burned 90% of the research ranch in May 2002. Seed density and species richness in burned native grassland (2 plots) were compared to those in burned exotic grassland (2 plots). Averaged over 4 sample dates, seed densities were as follows: burned native grassland, 591 ?? 243.1 seeds??m-2 and 784 ?? 334.9 seeds??m-2; burned exotic grassland, 501 ?? 198.9 seeds??m-2 and 196 ?? 123.8 seeds??m-2. Species richness in the seed bank, also averaged over 4 sample dates, was as follows: burned native grassland, 16.3 ?? 1.7 species??m -2 and 19.5 ?? 1.0 species??m-2; burned exotic grassland, 12.0 ?? 3.4 species??m-2 and 11.06 ?? 2.5 species??m-2. The seed bank of burned exotic grassland contained significantly fewer seeds and species than that of burned native grassland. In addition, the seed bank in burned exotic grassland comprised mainly exotic grasses, whereas annual and perennial herbs, most of them native, dominated the seed bank of burned native grassland. Of the 50 species detected in soil samples, only 20 had a persistent seed bank, and only 1 of these was a native perennial bunchgrass. The preponderance of transient species means that eradication of exotic grasses must be followed by reseeding of native grasses and herbs, perhaps repeatedly, if native grassland is to replace exotic grassland.
USDA Forest Service, Northeastern Area State and Private Forestry; PA Department of Conservation and Natural Resources; Pennsylvania Department of Agriculture
2006-01-01
Help stop the movement of exotic pests. Don't move Firewood! Exotic wood borers like emerald ash borer, Asian Long-horned beetle and Sirex wood wasp threaten Pennsylvania's forestland. Exotic wood boring insects can become established when infested firewood is transported to new areas.
NASA Technical Reports Server (NTRS)
Evensen, N. M.; Murthy, V. R.; Coscio, M. R., Jr.
1974-01-01
Sieve fraction analyses of lunar soils reveal the presence of a fine-grained exotic component enriched in K, Rb, Sr, Ba, and in radiogenic Sr in all soils. The probable source of this exotic component is the areas of high-surficial radioactivity observed by orbital gamma ray spectrometry, such as those at Fra Mauro and Archimedes. If the exotic component is fine-grained KREEP, the origin and distribution of KREEP fragments in the soils are identified. It is suggested that the exotic component represents trace element enriched material located at some depth in the Imbrium area which was surficially deposited during Imbrium excavation.
Cynthia D. Huebner
2003-01-01
Are oak-dominated forests immune to invasive exotic plants? Herbarium and land classification data were used to evaluate the extent of spread of nine invasive exotic plants and to relate their distributions to remotely-sensed land use types in West Virginia. Collector-defined habitats indicated that the most common habitat was roadsides, but seven of the nine species...
Bashkin, Michael A.; Stohlgren, Thomas J.; Otsuki, Yuka; Lee, Michelle; Evangelista, Paul H; Belnap, Jayne
2003-01-01
The Grand Staircase - Escalante National Monument (GSENM) contains a rich diversity of native plant communities. However, many exotic plant species have become established, potentially threatening native plant diversity. We sought to quantify patterns of native and exotic plant species and cryptobiotic crusts (mats of lichens, algae, and mosses on the soil surface), and to examine soil characteristics that may indicate or predict exotic species establishment and success. We established 97 modified-Whittaker vegetation plots in 11 vegetation types over a 29,000 ha area in the Monument. Canonical correspondence analysis (CCA) and multiple linear regressions were used to quantify relationships between soil characteristics and associated native and exotic plant species richness and cover. CCA showed that exotic species richness was significantly (P<0.05) associated with soil P (r=0.84), percentage bare ground (r=0.71), and elevation (r=0.67). Soil characteristics alone were able to predict 41 and 46% of the variation in exotic species richness and cover, respectively. In general, exotic species invasions tend to occur in fertile soils relatively high in C, N and P. These areas are represented by rare mesic high-elevation habitats that are rich in native plant diversity. This suggests that management should focus on the protection of the rare but important vegetation types with fertile soils.
Local dominance of exotic plants declines with residence time: a role for plant–soil feedback?
Speek, Tanja A.A.; Schaminée, Joop H.J.; Stam, Jeltje M.; Lotz, Lambertus A.P.; Ozinga, Wim A.; van der Putten, Wim H.
2015-01-01
Recent studies have shown that introduced exotic plant species may be released from their native soil-borne pathogens, but that they become exposed to increased soil pathogen activity in the new range when time since introduction increases. Other studies have shown that introduced exotic plant species become less dominant when time since introduction increases, and that plant abundance may be controlled by soil-borne pathogens; however, no study yet has tested whether these soil effects might explain the decline in dominance of exotic plant species following their initial invasiveness. Here we determine plant–soil feedback of 20 plant species that have been introduced into The Netherlands. We tested the hypotheses that (i) exotic plant species with a longer residence time have a more negative soil feedback and (ii) greater local dominance of the introduced exotic plant species correlates with less negative, or more positive, plant–soil feedback. Although the local dominance of exotic plant species decreased with time since introduction, there was no relationship of local dominance with plant–soil feedback. Plant–soil feedback also did not become more negative with increasing time since introduction. We discuss why our results may deviate from some earlier published studies and why plant–soil feedback may not in all cases, or not in all comparisons, explain patterns of local dominance of introduced exotic plant species. PMID:25770013
Hanafiah, Marlia M; Leuven, Rob S E W; Sommerwerk, Nike; Tockner, Klement; Huijbregts, Mark A J
2013-12-17
While the ecological impact of anthropogenically introduced exotic species is considered a major threat for biodiversity and ecosystems functioning, it is generally not accounted for in the environmental life cycle assessment (LCA) of products. In this article, we propose a framework that includes exotic species introduction in an LCA context. We derived characterization factors for exotic fish species introduction related to the transport of goods across the Rhine-Main-Danube canal. These characterization factors are expressed as the potentially disappeared fraction (PDF) of native freshwater fish species in the rivers Rhine and Danube integrated over space and time per amount of goods transported (PDF·m(3)·yr·kg(-1)). Furthermore, we quantified the relative importance of exotic fish species introduction compared to other anthropogenic stressors in the freshwater environment (i.e., eutrophication, ecotoxicity, greenhouse gases, and water consumption) for transport of goods through the Rhine-Main-Danube waterway. We found that the introduction of exotic fish species contributed to 70-85% of the total freshwater ecosystem impact, depending on the distance that goods were transported. Our analysis showed that it is relevant and feasible to include the introduction of exotic species in an LCA framework. The proposed framework can be further extended by including the impacts of other exotic species groups, types of water bodies and pathways for introduction.
Grassland birds wintering at U.S. Navy facilities in southern Texas
Woodin, Marc C.; Skoruppa, Mary Kay; Bryan, Pearce D.; Ruddy, Amanda J.; Hickman, Graham C.
2010-01-01
Grassland birds have undergone widespread decline throughout North America during the past several decades. Causes of this decline include habitat loss and fragmentation because of conversion of grasslands to cropland, afforestation in the East, brush and shrub invasion in the Southwest and western United States, and planting of exotic grass species to enhance forage production. A large number of exotic plant species, including grasses, have been introduced in North America, but most research on the effects of these invasions on birds has been limited to breeding birds, primarily those in northern latitudes. Research on the effects of exotic grasses on birds in winter has been extremely limited.This is the first study in southern Texas to examine and compare winter bird responses to native and exotic grasslands. This study was conducted during a period of six years (2003–2009) on United States Navy facilities in southern Texas including Naval Air Station–Corpus Christi, Naval Air Station–Kingsville, Naval Auxiliary Landing Field Waldron, Naval Auxiliary Landing Field Orange Grove, and Escondido Ranch, all of which contained examples of native grasslands, exotic grasslands, or both. Data from native and exotic grasslands were collected and compared for bird abundance and diversity; ground cover, vegetation density, and floristic diversity; bird and vegetation relationships; diversity of insects and arachnids; and seed abundance and diversity. Effects of management treatments in exotic grasslands were evaluated by comparing numbers and diversity of birds and small mammals in mowed, burned, and control areas.To determine bird abundance and bird species richness, birds were surveyed monthly (December–February) during the winters of 2003–2008 in transects (100 meter × 20 meter) located in native and exotic grasslands distributed at all five U.S. Navy facilities. To compare vegetation in native and exotic grasslands, vegetation characteristics were measured during 2003–2008 in the same transects used for bird surveys and included five measures of ground cover, plus estimates of plant species richness, vegetation density (visual obstruction) at two different heights, and shrub numbers. These data, plus seasonal rainfall, were then used to evaluate components of variation in native and exotic grasslands. Relations between total bird numbers and bird species richness with environmental variation in native and exotic grasslands were compared. To compare diversity of arthropods in native and exotic grasslands, insects and arachnids were collected using three different methodologies (standardized sweep-net, random sweep-net, and pitfall traps) during four seasons, (2005–2006), at Naval Air Station–Corpus Christi, Naval Auxiliary Landing Field Waldron, and Naval Air Station–Kingsville. To compare seed abundance and diversity between native and exotic grasslands, seeds were collected for two winters (2004–2006) at Naval Air Station–Corpus Christi and Naval Air Station–Kingsville. To evaluate effects of management on grassland vertebrates, abundance and diversity of birds and small mammals were estimated and compared in exotic grasses subjected to mowing, burning, or no active management (control) for one full year (2008–2009).Observations were made of 1,044 birds of 30 species in grassland transects during five winters. The Savannah Sparrow (Passerculus sandwichensis) was the most common bird, which, with 644 detections, accounted for 63 percent of all individuals identified to species. Meadowlarks (Sturnella spp.) and Le Conte’s Sparrows (Ammodramus leconteii) were the second (10 percent) and third (7 percent) most abundant bird species, respectively. Six of the seven most abundant species detected in grasslands were grassland species, and their numbers accounted for 87 percent of all birds, but 20 of the 30 species (67 percent) that used grasslands were not grassland species. Seven species observed in grassland transects during the study were Species of Conservation Concern: Le Conte’s Sparrow, Sedge Wren (Cistothorus platensis), Grasshopper Sparrow (Ammodramus savannarum), Long-billed Curlew (Numenius americanus), Sprague’s Pipit (Anthus spragueii), Cassin’s Sparrow (Aimophila cassinii), and Loggerhead Shrike (Lanius ludovicianus). Native grasslands consistently supported greater bird species richness than exotic grasslands. In one winter, exotic grasslands supported more birds than native grasslands.Native grasslands were determined to have more forb cover, more bare ground, and greater plant species richness than exotic grasslands, whereas exotic grasslands were characterized by more grass cover and relatively greater vegetation density during dry years. Not only did these individual measures differ between native and exotic grasslands, but components of variation also differed. In native grasslands, grass density and cover contributed more to variation, whereas in exotic grasslands, non-grass vegetation was a greater component of variation. Total bird numbers and bird species richness in native grasslands were related to the principal component that contained a measure of litter cover. Total bird numbers and bird species richness in exotic grasslands indicated no significant relationships with any of the principal components of variation.The two most common insect orders in native grasslands were Hymenoptera and Coleoptera, which accounted for 42 percent of all insects. The two most common insect orders in exotic grasslands were Hemiptera and Homoptera, which accounted for about 80 percent of all insects. Insect family richness was greater in exotic grasslands than in native grasslands in two of four seasons. Proportions of arachnid families were similar in native and exotic grasslands, but arachnid family richness was greater in exotic grasslands than in native grasslands.Abundance of seeds was greater in exotic than in native grasslands. However, seed diversity was greater in native grasslands than in exotic grasslands.Among the three types of management (mowed, burned, and control) applied to exotic grasses, birds were most abundant in the mowed area. Sedge Wrens, however, were never encountered in mowed sites. Meadowlarks were similarly abundant in all treatments, but Le Conte’s Sparrows were detected only in the control (unmanaged) area. Hispid cotton rats (Sigmodon hispidus) accounted for 93 percent of all rodent captures, with the number of captures peaking December through February. Hispid cotton rat numbers and total rodent numbers were greatest in control and pre-burn areas, and lowest in the mowed area. Mammal diversity, however, was greatest in the mowed habitat.Native and exotic grasslands differed essentially in all categories (bird numbers and diversity, vegetation characteristics, components of variation, diversity of insects and arachnids, and seed abundance and diversity) used to measure and compare them. This indicates that fundamental ecosystem processes have been altered after native grasslands have undergone invasion and ultimate domination by exotic grass species. Future research in Texas grassland ecosystems is essential because: 1) Texas sustains more area in grasslands than any other state or province in the Central Flyway; 2) Texas serves as the winter destination or migration pathway for hundreds of species of birds, including winter residents and Neotropical migrants; 3) ecology, distribution, and numbers of grassland birds wintering in southern latitudes of the United States remains poorly understood; and 4) climate change threatens to further accelerate advances of invading grass species.
Ferreira Júnior, Washington Soares; Ramos, Marcelo Alves; da Silva, Taline Cristina; Ladio, Ana Haydée; Albuquerque, Ulysses Paulino
2017-01-01
Efforts have been made to understand the processes that lead to the introduction of exotic species into local pharmacopoeias. Among those efforts, the diversification hypothesis predicts that exotic plants are introduced in local medical systems to amplify the repertoire of knowledge related to the treatment of diseases, filling blanks that were not occupied by native species. Based on such hypothesis, this study aimed to contribute to this discussion using the context of local Brazilian populations. We performed a systematic review of Brazilian studies up to 2011 involving medicinal plants, excluding those studies that presented a high risk of bias (because of sampling or plant identification problems). An analysis of similarities (ANOSIM) was conducted in different scales to test for differences in the repertoire of therapeutic indications treated using native and exotic species. We have found that although there is some overlap between native and exotic plants regarding their therapeutic indications and the body systems (BSs) that they treat, there are clear gaps present, that is, there are therapeutic indications and BSs treated that are exclusive to exotic species. This scenario enables the postulation of two alternative unfoldings of the diversification hypothesis, namely, (1) exotic species are initially introduced to fill gaps and undergo subsequent expansion of their use for medical purposes already addressed using native species and (2) exotic species are initially introduced to address problems already addressed using native species to diversify the repertoire of medicinal plants and to increase the resilience of medical systems. The reasons why exotic species may have a competitive advantage over the native ones, the implications of the introduction of exotic species for the resilience of medical systems, and the contexts in which autochthonous plants can gain strength to remain in pharmacopoeias are also discussed. PMID:28953960
Madrigal, Jaime; Kelt, Douglas A; Meserve, Peter L; Gutierrez, Julio R; Squeo, Francisco A
2011-02-01
The abundance of exotic plants is thought to be limited by competition with resident species (including plants and generalist herbivores). In contrast, observations in semiarid Chile suggest that a native generalist rodent, the degu (Octodon degus), may be facilitating the expansion of exotic annual plants. We tested this hypothesis with a 20-year data set from a World Biosphere Reserve in mediterranean Chile. In this semiarid environment, rainfall varies annually and dramatically influences cover by both native and exotic annual plants; degu population density affects the composition and cover of exotic and native annual plants. In low-rainfall years, cover of both native and exotic herbs is extremely low. Higher levels of precipitation result in proportional increases in cover of all annual plants (exotic and native species), leading in turn to increases in degu population densities, at which point they impact native herbs in proportion to their greater cover, indirectly favoring the expansion of exotic plants. We propose that bottom-up control of consumers at our site results in top-down indirect facilitation of invasive annual herbs, and that this pattern may be general to other semiarid ecosystems.
Native weeds and exotic plants: relationships to disturbance in mixed grass prairie
Larson, D.L.
2003-01-01
The paper compares distributions of native weedy species and exotic species with respect to three kinds of disturbance, roads, trails, and prairie dog towns. Data were collected at the north and south units of Theodore Roosevelt National Park and at Wind Cave National Park. The paper concludes that many exotic species differ substantially from native weeds in their exploitation of disturbance. It is thus not useful to manage exotics as if they were just another weed.
Invasive plant erodes local song diversity in a migratory passerine
Yvette K. Ortega; Aubree Benson; Erick Greene
2014-01-01
Exotic plant invasions threaten ecosystems globally, but we still know little about the specific consequences for animals. Invasive plants can alter the quality of breeding habitat for songbirds, thereby impacting important demographic traits such as dispersal, philopatry, and age structure. These demographic effects may in turn alter song-learning conditions to affect...
Richard C. Cobb; David M. Rizzo
2016-01-01
Forest pathogens have strong potential to shape ecosystem function by altering litterfall, microclimate, and changing community structure. We quantified changes in litter decomposition from a set of distinct diseases caused by Phytophthora ramorum, an exotic generalist pathogen. Phytophthora ramorum causes leaf blight and...
Weimin Xi; Szu-Hung Chen; Andrew G. Birt; John D. Waldron; Charles W. Lafon; David M. Cairns; Maria D. Tchakerian; Kier D. Klepzig; Robert N. Coulson
2011-01-01
Southern Appalachian forests face multiple environmental threats, including periodic fires, insect outbreaks, and more recently, exotic invasive plants. Past studies suggest these multiple disturbances interact to shape species-rich forest landscape, and they hypothesize that changes in fire regimes and increasing landscape fragmentation may influence invasive...
Lubich, Carol; Krenzelok, Edward P
2009-01-01
Emergency departments throughout the USA may have some familiarity with the management of envenomation from indigenous snake species such as Crotalinae (rattlesnakes) and Micrurus (coral snakes). However, venomous species may include exotic reptiles whose bites pose substantial treatment challenges due to both a lack of experience and the difficulty in obtaining antivenoms. Two pet cobra envenomation incidents illustrate the challenges that face emergency departments, especially in urban settings, that are confronted with these exposures. It is important for emergency departments to be aware of the large underground presence of exotic venomous reptile pets and to utilise the expertise of regional poison centres that will also assist in the procurement of exotic antivenoms. PMID:21686401
Lubich, Carol; Krenzelok, Edward P
2009-01-01
Emergency departments throughout the USA may have some familiarity with the management of envenomation from indigenous snake species such as Crotalinae (rattlesnakes) and Micrurus (coral snakes). However, venomous species may include exotic reptiles whose bites pose substantial treatment challenges due to both a lack of experience and the difficulty in obtaining antivenoms. Two pet cobra envenomation incidents illustrate the challenges that face emergency departments, especially in urban settings, that are confronted with these exposures. It is important for emergency departments to be aware of the large underground presence of exotic venomous reptile pets and to utilise the expertise of regional poison centres that will also assist in the procurement of exotic antivenoms.
Lubich, Carol; Krenzelok, Edward P
2007-01-01
Emergency departments throughout the USA may have some familiarity with the management of envenomation from indigenous snake species such as Crotalinae (rattlesnakes) and Micrurus (coral snakes). However, venomous species may include exotic reptiles whose bites pose substantial treatment challenges due to both a lack of experience and the difficulty in obtaining antivenoms. Two pet cobra envenomation incidents illustrate the challenges that face emergency departments, especially in urban settings, that are confronted with these exposures. It is important for emergency departments to be aware of the large underground presence of exotic venomous reptile pets and to utilise the expertise of regional poison centres that will also assist in the procurement of exotic antivenoms. PMID:17954846
Lubich, Carol; Krenzelok, Edward P
2007-11-01
Emergency departments throughout the USA may have some familiarity with the management of envenomation from indigenous snake species such as Crotalinae (rattlesnakes) and Micrurus (coral snakes). However, venomous species may include exotic reptiles whose bites pose substantial treatment challenges due to both a lack of experience and the difficulty in obtaining antivenoms. Two pet cobra envenomation incidents illustrate the challenges that face emergency departments, especially in urban settings, that are confronted with these exposures. It is important for emergency departments to be aware of the large underground presence of exotic venomous reptile pets and to utilise the expertise of regional poison centres that will also assist in the procurement of exotic antivenoms.
Properties of the exotic metastable ST12 germanium allotrope
Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; Hu, Wentao; Bullock, Emma S.; Strobel, Timothy A.
2017-01-01
The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic' forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations. PMID:28045027
Biodiversity maintenance mechanisms differ between native and novel exotic-dominated communities
USDA-ARS?s Scientific Manuscript database
The ongoing homogenization of the Earth’s biota is affecting nearly every region of Earth. We experimentally compared species diversity decline between nine-species grassland communities containing either all exotic (i.e. introduced) or all native species under controlled field conditions. Exotic ...
The quest for novel modes of excitation in exotic nuclei
NASA Astrophysics Data System (ADS)
Paar, N.
2010-06-01
This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.
Exotic germplasm introgression effects on adapted cotton genotypes
USDA-ARS?s Scientific Manuscript database
Our research is mainly focused on the objective of determining the effect of exotic germplasm introgression on agronomic and fiber properties of adapted cotton varieties. For this we studied eight populations derived by crossing two exotic parents (TX 245 and TX 1419) with four locally adapted culti...
Established perennial vegetation provides high resistance to reinvasion by exotic annual grasses
USDA-ARS?s Scientific Manuscript database
Exotic annual grasses have invaded millions of hectares of sagebrush (Artemisia L.) steppe in the Great Basin region and degraded wildlife habitat, reduced forage production, and promoted increasingly frequent wildfires. Revegetation after control of exotic annual grasses is needed to restore ecosy...
Biodiversity and native plant abundance decline with increasing abundance of exotic annual grass
USDA-ARS?s Scientific Manuscript database
Exotic plants are generally considered a serious problem in wildlands around the world. However, some argue that the impacts of exotic plants have been exaggerated and that biodiversity and other important plant community characteristics are commonly improved with invasion. Thus, disagreement exis...
Toward the excited isoscalar meson spectrum from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; ...
2013-11-18
We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most J PC channels; one notable exception is the pseudoscalar sector where the approximate SU(3) F octet, singlet structure of the η, η' is reproduced. We extract exotic Jmore » PC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.« less
Phenomenology of the SU(3)c⊗SU(3)L⊗U(1)X model with exotic charged leptons
NASA Astrophysics Data System (ADS)
Salazar, Juan C.; Ponce, William A.; Gutiérrez, Diego A.
2007-04-01
A phenomenological analysis of the three-family model based on the local gauge group SU(3)c⊗SU(3)L⊗U(1)X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model.
NASA Astrophysics Data System (ADS)
Dudek, J.; Curien, D.; Dedes, I.; Mazurek, K.; Tagami, S.; Shimizu, Y. R.; Bhattacharjee, T.
2018-02-01
We formulate criteria for identification of the nuclear tetrahedral and octahedral symmetries and illustrate for the first time their possible realization in a rare earth nucleus 152Sm. We use realistic nuclear mean-field theory calculations with the phenomenological macroscopic-microscopic method, the Gogny-Hartree-Fock-Bogoliubov approach, and general point-group theory considerations to guide the experimental identification method as illustrated on published experimental data. Following group theory the examined symmetries imply the existence of exotic rotational bands on whose properties the spectroscopic identification criteria are based. These bands may contain simultaneously states of even and odd spins, of both parities and parity doublets at well-defined spins. In the exact-symmetry limit those bands involve no E 2 transitions. We show that coexistence of tetrahedral and octahedral deformations is essential when calculating the corresponding energy minima and surrounding barriers, and that it has a characteristic impact on the rotational bands. The symmetries in question imply the existence of long-lived shape isomers and, possibly, new waiting point nuclei—impacting the nucleosynthesis processes in astrophysics—and an existence of 16-fold degenerate particle-hole excitations. Specifically designed experiments which aim at strengthening the identification arguments are briefly discussed.
Strange Particles and Heavy Ion Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassalleck, Bernd; Fields, Douglas
This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for thismore » award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.« less
Exotic magnetic structures in high-pressure synthesized perovskites
NASA Astrophysics Data System (ADS)
Manuel, Pascal; Khalyavin, Dmitry; Ding, Lei; Yi, Wei; Kumagai, Yu; Oba, Fumiyasu; Orlandi, Fabio; Belik, Alexei
We present a neutron powder diffraction study of the crystal and magnetic structures of the high-pressure stabilized perovskite phases of TlMnO3, ScCrO3, InCrO3 and TlCrO3. These compounds exhibit original magnetic structures compared to other members of their respective manganite and orthochromite families with TlMnO3 also displaying unusual orbital ordering pattern. For both systems, we rationalise the structures through a combination of group theory and first principle calculations. We also highlight the dominant mechanism controlling the spin direction as being the single ion anisotropy.
Study of clustering structures through breakup reactions
NASA Astrophysics Data System (ADS)
Capel, Pierre
2014-12-01
Models for the description of breakup reactions used to study the structure of exotic cluster structures like halos are reviewed. The sensitivity of these models to the projectile description is presented. Calculations are sensitive to the projectile ground state mostly through its asymptotic normalisation coefficient (ANC). They also probe the continuum of the projectile. This enables studying not only resonant states of the projectile but also its non-resonant continuum both resonant and non-resonant. This opens the possibility to study correlations between both halo neutrons in two-neutron halo nuclei.
Structure of 10 N in 9 C+p resonance scattering
Hooker, J.; Rogachev, G. V.; Goldberg, V. Z.; ...
2017-03-17
We studied the structure of exotic nucleus 10N using 9C+p resonance scattering. Two ℓ=0 resonances were found to be the lowest states in 10N. Furthermore, the ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2) MeV depending on the 2 -or 1 -spin-parity assignment, and the first excited state is unbound by 2.8(2) MeV.
Status of exotic grasses and grass-like vegetation and potential impacts on wildlife in New England
DeStefano, Stephen
2013-01-01
The Northeastern section of the United States, known as New England, has seen vast changes in land cover and human population over the past 3 centuries. Much of the region is forested; grasslands and other open-land cover types are less common, but provide habitat for many species that are currently declining in abundance and distribution. New England also consists of some of the most densely populated and developed states in the country. The origin, distribution, and spread of exotic species are highly correlated with human development. As such, exotics are common throughout much of New England, including several species of graminoids (grasses and grass-like plants such as sedges and rushes). Several of the more invasive grass species can form expansive dense mats that exclude native plants, alter ecosystem structure and functions, and are perceived to provide little-to-no value as wildlife food or cover. Although little research has been conducted on direct impacts of exotic graminoids on wildlife populations in New England, several studies on the common reed (Phragmites australis) in salt marshes have shown this species to have variable effects as cover for birds and other wildlife, depending on the distribution of the plant (e.g., patches and borders of reeds are used more by wildlife than expansive densely growing stands). Direct impacts of other grasses on wildlife populations are largely unknown. However, many of the invasive graminoid species that are present in New England have the capability of outcompeting native plants and thereby potentially affecting associated fauna. Preservation, protection, and restoration of grassland and open-land cover types are complex but necessary challenges in the region to maintain biological and genetic diversity of grassland, wetland, and other open-land obligate species.
Thermal stability of simple tetragonal and hexagonal diamond germanium
Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca; ...
2017-11-07
Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less
Thermal stability of simple tetragonal and hexagonal diamond germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca
Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less
Production of neutron-rich nuclei approaching r-process by gamma-induced fission of 238U at ELI-NP
NASA Astrophysics Data System (ADS)
Mei, Bo; Balabanski, Dimiter; Constantin, Paul; Anh Le, Tuan; Viet Cuong, Phan
2018-05-01
The investigation of neutron-rich exotic nuclei is crucial not only for nuclear physics but also for nuclear astrophysics. Experimentally, only few neutron-rich nuclei near the stability have been studied, however, most neutron-rich nuclei have not been measured due to their small production cross sections as well as short half-lives. At ELI-NP, gamma beams with high intensities will open new opportunities to investigate very neutron-rich fragments produced by photofission of 238U targets in a gas cell. Based on some simulations, a novel gas cell has been designed to produce, stop and extract 238U photofission fragments. The extraction time and efficiency of photofission fragments have been optimized by using SIMION simulations. According to these simulations, a high extraction efficiency and a short extraction time can be achieved for 238U photofission fragments in the gas cell, which will allow one to measure very neutron-rich fragments with short half-lives by using the IGISOL facility proposed at ELI-NP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goriely, S.; Chamel, N.; Pearson, J. M.
The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A>60 stable nuclei observed in nature. In recent years nuclear astrophysicists have developed more and more sophisticated r-process models, eagerly trying to add new astrophysical or nuclear physics ingredients to explain the solar system composition in a satisfactory way.We show here that the decompression of the neutron star matter may provide suitable conditions for a robust r-processing. After decompression, the inner crust material gives rise to an abundance distribution for A>130 nuclei similar to the one observed inmore » the solar system. Similarly, the outer crust if heated at a temperature of about 8 10{sup 9} K before decompression is made of exotic neutron-rich nuclei with a mass distribution close to the 80{<=}A{<=}130 solar one. During the decompression, the free neutrons (initially liberated by the high temperatures) are re-captured leading to a final pattern similar to the solar system distribution.« less
The Dynamical Dipole Radiation in Dissipative Collisions with Exotic Beams
NASA Astrophysics Data System (ADS)
di Toro, M.; Colonna, M.; Rizzo, C.; Baran, V.
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. We will review in detail all the main properties, yield, spectrum, damping and angular distributions, revealing important isospin effects. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. Predictions are also presented for deep-inelastic and fragmentation collisions induced by neutron rich projectiles. The importance of studying violent collisions with radioactive beams at low and Fermi energies is finally stressed.
USDA-ARS?s Scientific Manuscript database
Western rangelands are currently under severe threat from exotic annual grasses. To successfully manage rangelands that are either infested with or susceptible to exotic annual grasses, we must focus on increasing resilience to disturbance and resistance to exotic annual grass invasion. Here, we p...
Rapid detection of exotic Lymantriids and Scolytids pilot study
Mary Ellen Dix
2003-01-01
Exotic invasive species, inadvertently introduced into North America through importation and travel, are threatening the integrity of North American forest ecosystems. The National Invasive Species Council in their 2001 Strategic Plan identified a collaborative program for early detection, diagnosis and response to high-risk, exotic, invasive insects, pathogens and...
Predicting invasion in grassland ecosystems: Is exotic dominance the real embarrassment of richness?
USDA-ARS?s Scientific Manuscript database
For two centuries there has been a perception that while exotic species are dominant in many areas, others remain largely unaffected. This unquantified observation suggests a fundamental ecological question: why do exotics dominate some locations and not others? While invasions are clearly important...
Exotic plant species attack revegetation plants in post-coal mining areas
NASA Astrophysics Data System (ADS)
Yusuf, Muhammad; Arisoesilaningsih, Endang
2017-11-01
This study aimed to explore some invasive exotic plant species that have the potential to disrupt the growth of revegetation plants in post-coal mining areas. This research was conducted in a revegetation area of PT, Amanah Anugerah Adi Mulia (A3M) Kintap site, South Borneo. Direct observation was carried out on some revegetation areas by observing the growth of revegetation plants disturbed by exotic plant species and the spread of exotic plant species. Based on observation, several invasive exotic plant species were identified including Mikania cordata, Centrosema pubescence, Calopogonium mucunoides, Mimosa pudica, Ageratum conyzoides, and Chromolaena odorata. These five plant species grew wild in the revegetation area and showed ability to disrupt the growth of other plants. In some tree species, such as Acacia mangium, Paraserianthes falcataria, M. cordata could inhibit the growth and even kill the trees through covering the tree canopy. So, the trees could not receive optimum sun light for photosynthesis processes. M. cordata was also observed to have the most widespread distribution. Several exotic plant species such as C. mucunoides, M. pudica, and A. conyzoides were observed to have deep root systems compared with plant species used for revegetation. This growth characteristic allowed exotic plant species to win the competition for nutrient absorption with other plant species.
Colunga-Garcia, Manuel; Magarey, Roger A; Haack, Robert A; Gage, Stuart H; Qi, Jiaquo
2010-03-01
Urban areas are hubs of international transport and therefore are major gateways for exotic pests. Applying an urban gradient to analyze this pathway could provide insight into the ecological processes involved in human-mediated invasions. We defined an urban gradient for agricultural and forest ecosystems in the contiguous United States to (1) assess whether ecosystems nearer more urbanized areas were at greater risk of invasion, and (2) apply this knowledge to enhance early detection of exotic pests. We defined the gradient using the tonnage of imported products in adjacent urban areas and their distance to nearby agricultural or forest land. County-level detection reports for 39 exotic agricultural and forest pests of major economic importance were used to characterize invasions along the gradient. We found that counties with more exotic pests were nearer the urban end of the gradient. Assuming that the exotic species we analyzed represent typical invaders, then early detection efforts directed at 21-26% of U.S. agricultural and forest land would likely be able to detect 70% of invaded counties and 90% of the selected species. Applying an urban-gradient framework to current monitoring strategies should enhance early detection efforts of exotic pests, facilitating optimization in allocating resources to areas at greater risk of future invasions.
Exotic Meson Results from BNL E852
NASA Astrophysics Data System (ADS)
Manak, Joseph J.
1998-10-01
Results from BNL experiment 852 on exotic (non-q\\overlineq) meson production are presented. Production of final states with J^PC = 1^-+ is observed in π^-p interactions at 18 GeV/c in the ηπ^-, ρπ^- and η^'π^- channels. Since such states are manifestly exotic if they are resonant, we describe amplitude analyses which use the interference between these states and other well known states to measure the phase behavior of the J^PC = 1^-+ amplitudes. The analyses show that, in addition to the previously reported(D.R. Thompson et al.), Phys. Rev. Lett. 79, 1630 (1997) evidence for an exotic meson in the ηπ^- channel, there is strong evidence for a second exotic meson decaying to ρπ^- with a mass of M=1593 ±8^+29_-47 MeV/c^2 and a width of Γ=168 ±20^+150_-12 MeV/c^2. We also show that the η^'π^- system is dominated by J^PC = 1^-+ production and we use those data to determine decay branching ratios for the exotic mesons. Such measurements are expected to be crucial in determining the constituent nature of the exotic mesons - that is, whether they are consistent with being hybrid mesons or four-quark states.
Studies of Heavy-Ion Reactions and Transuranic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, W. Udo
2016-07-28
Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, targetmore » nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.« less
Simplified Analysis of Airspike Heat Flux Into Lightcraft Thermal Management System
NASA Astrophysics Data System (ADS)
Head, Dean R.; Seo, Junghwa; Cassenti, Brice N.; Myrabo, Leik N.
2005-04-01
An approximate method is presented for estimating the airspike heat flux into a 9-meter diameter lightcraft, integrated over its flight to low Earth orbit. The super-pressure lightcraft's exotic twin-hull, sandwich structure is assumed to be fabricated from SiC/SiC thin-film ceramic matrix composites of semiconductor grade purity, giving superior structural properties while being transparent to 35-GHz microwave radiation. The vehicle's MHD slipstream accelerator engine is energized by an annular microwave power beam — converted on-board into DC electric power by two concentric, water-cooled microwave rectenna arrays. The vehicle's airspike is created by a central 3-m diameter laser beam that sustains a laser-supported detonation wave at a distance of 10-m ahead of the craft; the LSD wave propagates up the beam with a velocity that matches the lightcraft's flight speed. The simplified analysis, which is based on aerodynamic heating during re-entry, shows that helium flowing at a velocity of 10 m/s through the lightcraft's double-hull is sufficient to keep the outer, 0.13-mm thick SiC skin safely under its maximum service temperature. The interior helium pressurant that maintains the structural integrity of this exotic pressure-airship, increases in temperature by only 25 K during the flight to LEO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klintenberg, M.; Haraldsen, Jason T.; Balatsky, Alexander V.
In this paper, we report a data-mining investigation for the search of topological insulators by examining individual electronic structures for over 60,000 materials. Using a data-mining algorithm, we survey changes in band inversion with and without spin-orbit coupling by screening the calculated electronic band structure for a small gap and a change concavity at high-symmetry points. Overall, we were able to identify a number of topological candidates with varying structures and composition. Lastly, our overall goal is expand the realm of predictive theory into the determination of new and exotic complex materials through the data mining of electronic structure.
Klintenberg, M.; Haraldsen, Jason T.; Balatsky, Alexander V.
2014-06-19
In this paper, we report a data-mining investigation for the search of topological insulators by examining individual electronic structures for over 60,000 materials. Using a data-mining algorithm, we survey changes in band inversion with and without spin-orbit coupling by screening the calculated electronic band structure for a small gap and a change concavity at high-symmetry points. Overall, we were able to identify a number of topological candidates with varying structures and composition. Lastly, our overall goal is expand the realm of predictive theory into the determination of new and exotic complex materials through the data mining of electronic structure.
Chen, Yaping; Chen, Guangcheng; Ye, Yong
2015-09-01
Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27 mg CO2 m(-2) h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14 μmol m(-2) h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. Copyright © 2015. Published by Elsevier B.V.
Exotic pediculosis and hair-loss syndrome in deer (Odocoileus hemionus) populations in California.
Roug, Annette; Swift, Pamela; Puschner, Birgit; Gerstenberg, Greg; Mertins, James W; Johnson, Christine Kreuder; Torres, Steve; Mortensen, Jack; Woods, Leslie
2016-07-01
Infestation with nonnative, "exotic" lice was first noted in Washington black-tailed deer (Odocoileus hemionus columbianus) in 1994 and has since then spread throughout the western United States. In California, infestation with the exotic louse Damalinia (Cervicola) sp. was first detected in black-tailed deer from northern California in 2004, and, in 2009, the exotic louse species Bovicola tibialis and Linognathus africanus were identified on mule deer (Odocoileus hemionus californicus) in central Sierra Nevada in association with a mortality event. Exotic lice have since been detected in various locations throughout the state. We describe the geographic distribution of these exotic lice within California, using data from 520 live-captured and 9 postmortem-sampled, free-ranging mule deer examined between 2009 and 2014. Data from live-captured deer were used to assess possible associations between louse infestation and host age, host sex, migratory behavior, season, and blood selenium and serum copper concentrations. Damalinia (Cervicola) sp. and B. tibialis lice were distinctively distributed geographically, with D. (Cervicola) sp. infesting herds in northern and central coastal California, B. tibialis occurring in the central coastal mountains and the Sierra Nevada, and L. africanus occurring only sporadically. Younger age classes and low selenium concentrations were significantly associated with exotic louse infestation, whereas no significant relationship was detected with serum copper levels. Our results show that exotic lice are widespread in California, and younger age classes with low blood selenium concentrations are more likely to be infested with lice than older deer. © 2016 The Author(s).
Soil biotic legacy effects of extreme weather events influence plant invasiveness
Meisner, Annelein; De Deyn, Gerlinde B.; de Boer, Wietse; van der Putten, Wim H.
2013-01-01
Climate change is expected to increase future abiotic stresses on ecosystems through extreme weather events leading to more extreme drought and rainfall incidences [Jentsch A, et al. (2007) Front Ecol Environ 5(7):365–374]. These fluctuations in precipitation may affect soil biota, soil processes [Evans ST, Wallenstein MD (2012) Biogeochemistry 109:101–116], and the proportion of exotics in invaded plant communities [Jiménez MA, et al. (2011) Ecol Lett 14:1277–1235]. However, little is known about legacy effects in soil on the performance of exotics and natives in invaded plant communities. Here we report that drought and rainfall effects on soil processes and biota affect the performance of exotics and natives in plant communities. We performed two mesocosm experiments. In the first experiment, soil without plants was exposed to drought and/or rainfall, which affected soil N availability. Then the initial soil moisture conditions were restored, and a mixed community of co-occurring natives and exotics was planted and exposed to drought during growth. A single stress before or during growth decreased the biomass of natives, but did not affect exotics. A second drought stress during plant growth resetted the exotic advantage, whereas native biomass was not further reduced. In the second experiment, soil inoculation revealed that drought and/or rainfall influenced soil biotic legacies, which promoted exotics but suppressed natives. Our results demonstrate that extreme weather events can cause legacy effects in soil biota, promoting exotics and suppressing natives in invaded plant communities, depending on the type, frequency, and timing of extreme events. PMID:23716656
Wolkovich, Elizabeth M; Davies, T Jonathan; Schaefer, Hanno; Cleland, Elsa E; Cook, Benjamin I; Travers, Steven E; Willis, Charles G; Davis, Charles C
2013-07-01
The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occupy unique phenological niches and track climate change more closely than native species. Here, we use long-term records of species’ first flowering dates from fi ve northern hemisphere temperate sites (Chinnor, UK and in the United States, Concord, Massachusetts; Fargo, North Dakota; Konza Prairie, Kansas; and Washington,D.C.) to examine whether invaders have distinct phenologies. Using a broad phylogenetic framework, we tested for differences between exotic and native species in mean annual flowering time, phenological changes in response to temperature and precipitation,and longer-term shifts in first flowering dates during recent pronounced climate change (“flowering time shifts”). Across North American sites, exotic species have shifted flowering with climate change while native species, on average, have not. In the three mesic systems, exotic species exhibited higher tracking of interannual variation in temperature,such that flowering advances more with warming, than native species. Across the two grassland systems, however, exotic species differed from native species primarily in responses to precipitation and soil moisture, not temperature. Our findings provide cross-site support for the role of phenology and climate change in explaining species’ invasions.Further, they support recent evidence that exotic species may be important drivers of extended growing seasons observed with climate change in North America.
Gibson, D.J.; Middleton, B.A.; Foster, K.; Honu, Y.A.K.; Hoyer, E.W.; Mathis, M.
2005-01-01
Question: Can patterns of species frequency in an old-field be explained within the context of a metapopulation model? Are the patterns observed related to time, spatial scale, disturbance, and nutrient availability? Location: Upland and lowland old-fields in Illinois, USA. Method: Species richness was recorded annually for seven years following plowing of an upland and lowland old-field subject to crossed fertilizer and disturbance treatments (mowing and rototilling). Species occupancy distributions were assessed with respect to the numbers of core and satellite species. Results: In both fields, species richness became higher in disturbed plots than in undisturbed plots over time, and decreased in fertilized plots irrespective of time. A bimodal pattern of species richness consistent with the Core-satellite species (CSS) hypothesis occurred in the initial seed bank and through the course of early succession. The identity of native and exotic core species (those present in > 90% of blocks) changed with time. Some core species from the seed bank became core species in the vegetation, albeit after several years. At the scale of individual plots, a bimodal fit consistent with the CSS hypothesis applied only in year 1 and rarely thereafter. Conclusions: The CSS hypothesis provides a metapopulation perspective for understanding patterns of species richness but requires the assessment of spatial and temporal scaling effects. Regional processes (e.g. propagule availability) at the largest scale have the greatest impact influencing community structure during early secondary succession. Local processes (e.g., disturbance and soil nutrients) are more important at smaller scales and place constraints on species establishment and community structure of both native and exotic species. Under the highest intensity of disturbance, exotic species may be able to use resources unavailable to, or unused by, native species. ?? IAVS; Opulus Press.
More than a dance: the production of sexual health risk in the exotic dance clubs in Baltimore, USA.
Sherman, Susan G; Lilleston, Pamela; Reuben, Jacqueline
2011-08-01
Women who exchange sex for money, drugs, or goods are disproportionately infected with HIV and have high rates of illicit drug use. A growing body of research has underscored the primacy of environmental factors in shaping individual behaviors. HIV/STI rates among sex workers are influenced by environmental factors such as the physical (e.g., brothel) and economic (e.g., increased pay for unsafe sex) context in which sex work occurs. Exotic dance clubs (EDCs) could be a risk environment that is epidemiologically significant to the transmission of HIV/STIs among vulnerable women, but it is a context that has received scant research attention. This study examines the nature of the physical, social, and economic risk environments in promoting drug and sexual risk behaviors. Structured observations and semi-structured qualitative interviews (N = 40) were conducted with club dancers, doormen, managers, and bartenders from May through August, 2009. Data were analyzed inductively using the constant comparative method common to grounded theory methods. Atlas-ti was used for data analysis. Dancers began working in exotic dance clubs primarily because of financial need and lack of employment opportunities, and to a lesser extent, the need to support illicit drug habits. The interviews illuminated the extent to which the EDCs' physical (e.g., secluded areas for lap dances), economic (e.g., high earnings from dancers selling sex), and social (e.g., prevailing social norms condoning sex work) environments facilitated dancers' engaging in sex work. Drug use and alcohol use were reported as coping mechanisms in response to these stressful working conditions and often escalated sexual risk behaviors. The study illuminated characteristics of the environment that should be targeted for interventions. Copyright © 2011 Elsevier Ltd. All rights reserved.
More than a dance: The production of sexual health risk in the exotic dance clubs in Baltimore, USA
Sherman, Susan G.; Lilleston, Pamela; Reuben, Jacqueline
2011-01-01
Women who exchange sex for money, drugs, or goods are disproportionately infected with HIV and have high rates of illicit drug use. A growing body of research has underscored the primacy of environmental factors in shaping individual behaviors. HIV/STI rates among sex workers are influenced by environmental factors such as the physical (e.g., brothel) and economic (e.g., increased pay for unsafe sex) context in which sex work occurs. Exotic dance clubs (EDCs) could be a risk environment that is epidemiologically significant to the transmission of HIV/STIs among vulnerable women, but it is a context that has received scant research attention. This study examines the nature of the physical, social, and economic risk environments in promoting drug and sexual risk behaviors. Structured observations and semi-structured qualitative interviews (N=40) were conducted with club dancers, doormen, managers, and bartenders from May through August, 2009. Data were analyzed inductively using the constant comparative method common to grounded theory methods. Atlas-ti was used for data analysis. Dancers began working in exotic dance clubs primarily because of financial need and lack of employment opportunities, and to a lesser extent, the need to support illicit drug habits. The interviews illuminated the extent to which the EDCs’ physical (e.g., secluded areas for lap dances), economic (e.g., high earnings from dancers selling sex), and social (e.g., prevailing social norms condoning sex work) environments facilitated dancers’ engaging in sex work. Drug use and alcohol use were reported as coping mechanisms in response to these stressful working conditions and often escalated sexual risk behaviors. The study illuminated characteristics of the environment that should be targeted for interventions. PMID:21724311
Superfluidity in the Core of Neutron Stars
NASA Astrophysics Data System (ADS)
Page, Dany
2013-04-01
The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.
Search for anomalous C-jets in Chacaltaya emulsion chamber experiment
NASA Technical Reports Server (NTRS)
Kumano, H.
1985-01-01
Anomalous C-jets were measured in Chacaltaya emulsion chamber No.17. Measurement of 150 C-jets nuclear interactions occured in the target layer in the chamber itself with total visible energy greater than 5 TeV was completed. they are recorded in area of 11 sq m, corresponding to 17.1 sq m year exposure. Among them, seven events have no pinaught and two events are peculiar in that three showers out of four show abnormal cascade development. Two show remarkable characteristics indicating that they are coming from exotic interactions in the target layer. Illustrations of these events are presented and the thresholds of this type of event are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC
The NICA collider project at the Joint Institute for Nuclear Research in Dubna will have the capability of colliding protons, polarized deuterons, and nuclei at an effective nucleon-nucleon center-of mass energy in the range {radical}s{sub NN} = 4 to 11 GeV. I briefly survey a number of novel hadron physics processes which can be investigated at the NICA collider. The topics include the formation of exotic heavy quark resonances near the charm and bottom thresholds, intrinsic strangeness, charm, and bottom phenomena, hidden-color degrees of freedom in nuclei, color transparency, single-spin asymmetries, the RHIC baryon anomaly, and non-universal antishadowing.
Electron screening and its effects on big-bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Biao; Bertulani, C. A.; Balantekin, A. B.
We study the effects of electron screening on nuclear reaction rates occurring during the big-bang nucleosynthesis epoch. The sensitivity of the predicted elemental abundances on electron screening is studied in detail. It is shown that electron screening does not produce noticeable results in the abundances unless the traditional Debye-Hueckel model for the treatment of electron screening in stellar environments is enhanced by several orders of magnitude. This work rules out electron screening as a relevant ingredient to big-bang nucleosynthesis, confirming a previous study [see Itoh et al., Astrophys. J. 488, 507 (1997)] and ruling out exotic possibilities for the treatmentmore » of screening beyond the mean-field theoretical approach.« less
Neutron-rich isotope production using the uranium carbide multi-foil SPES target prototype
NASA Astrophysics Data System (ADS)
Scarpa, D.; Biasetto, L.; Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Carturan, S.; Prete, G.; Zanonato, P.; Stracener, D. W.
2011-03-01
In the framework of the R&D program for the SPES (Selective Production of Exotic Species) project of the Istituto Nazionale di Fisica Nucleare (INFN), production yields of neutron-rich isotopes have been measured at the Holifield Radioactive Ion Beam Facility (HRIBF, Oak Ridge National Laboratory, USA). This experiment makes use of the multi-foil SPES target prototype composed of 7 uranium carbide discs, with excess of graphite (ratio C/ U = 4 . 77 isotopes of medium mass (between 72 and 141amu), produced via proton-induced fission of uranium using a 40MeV proton beam, have been collected and analyzed for the target heated at 2000 ° C target temperature.
Riparian zones as havens for exotic plant species in the central grasslands
Stohlgren, T.J.; Bull, K.A.; Otsuki, Yuka; Villa, C.A.; Lee, M.
1998-01-01
In the Central Grasslands of the United States, we hypothesized that riparian zones high in soil fertility would contain more exotic plant species than upland areas of low soil fertility. Our alternate hypothesis was that riparian zones high in native plant species richness and cover would monopolize available resources and resist invasion by exotic species. We gathered nested-scale vegetation data from 40 1 m2subplots (nested in four 1000 m2 plots) in both riparian and upland sites at four study areas in Colorado, Wyoming, and South Dakota (a total of 320 1 m2subplots and 32 1000 m2 plots). At the 1 m2 scale, mean foliar cover of native species was significantly greater (P < 0.001) in riparian zones (36.6% ?? 1.7%) compared to upland sites (28.7% ?? 1.5%), but at this small scale there were no consistent patterns of native and exotic species richness among the four management areas. Mean exotic species cover was slightly higher in upland sites compared to riparian sites (9.0% ?? 3.8% versus 8.2% ?? 3.0% cover). However, mean exotic species richness and cover were greater in the riparian zones than upland sites in three of four management areas. At the 1000 m2 scale, mean exotic species richness was also significantly greater (P < 0.05) in riparian zones (7.8 ?? 1.0 species) compared to upland sites (4.8 ?? 1.0 species) despite the heavy invasion of one upland site. For all 32 plots combined, 21% of the variance in exotic species richness was explained by positive relationships with soil % silt (t = 1.7, P = 0.09) and total foliar cover (t = 2.4, P = 0.02). Likewise, 26% of the variance in exotic species cover (log10 cover) was explained by positive relationships with soil % silt (t = 2.3, P = 0.03) and total plant species richness (t = 2.4, P = 0.02). At landscape scales (four 1000 m2 plots per type combined), total foliar cover was significantly and positively correlated with exotic species richness (r = 0.73, P < 0.05) and cover (r = 0.74, P < 0.05). Exotic species cover (log10 cover) was positively correlated with log10% N in the soil (r = 0.61, P = 0.11) at landscape scales. On average, we found that 85% (??5%) of the total number of exotic species in the sampling plots of a given management area could be found in riparian zones, while only 50% (??8%) were found in upland plots. We conclude that: (1 species-rich and productive riparian zones are particularly invasible in grassland ecosystems; and (2) riparian zones may act as havens, corridors, and sources of exotic plant invasions for upland sites and pose a significant challenge to land managers and conservation biologists.
Exotic species patterns and function in urban landscapes
Wayne C. Zipperer
2003-01-01
Mack et al. (2000) state "Biotic invaders are species that establish a new range in which they proliferate, spread, and persist to the detriment of the environment." This statement is true for many natural landscapes. In urban landscapes, however, exotic species are critical components of the landscape and enhance its livability. Exotic species provide...
Weak gravity conjecture as a razor criterium for exotic D-brane instantons
NASA Astrophysics Data System (ADS)
Addazi, Andrea
2017-01-01
We discuss implications of weak gravity conjecture (WGC) for exotic D-brane instantons. In particular, WGC leads to indirect stringent bounds on non-perturbative superpotentials generated by exotic instantons with many implications for phenomenology: R-parity violating processes, neutrino mass, μ-problem, neutron-antineutron transitions and collider physics.
A review of impacts by invasive exotic plants on forest ecosystem services
Kevin Devine; Songlin Fei
2011-01-01
Many of our forest ecosystems are at risk due to the invasion of exotic invasive plant species. Invasive plant species pose numerous threats to ecosystems by decreasing biodiversity, deteriorating ecosystem processes, and degrading ecosystem services. Literature on Kentucky's most invasive exotic plant species was examined to understand their potential impacts on...
USDA-ARS?s Scientific Manuscript database
Revegetation of exotic annual grass-invaded rangeland with pre-emergent herbicides is challenging because seeding is delayed until herbicide toxicity has diminished, but at this time, exotic annuals can be re-invading. Incorporating seeds into activated carbon pellets may allow seeding to occur at t...
Invasion of exotic earthworms into ecosystems inhabited by native earthworms
P.F. Hendrix; G.H. Baker; M.A. Jr. Callaham; G.A. Damoff; C. Fragoso; G. Gonzalez; S.W. James; S.L. Lachnicht; T. Winsome; X. Zou
2006-01-01
The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in...
Brian Bowen
1998-01-01
The Exotic Pest Plant Council (EPPC) is a proactive organization established to raise awareness about the threat posed by invasive exotic pest plants in natural areas and acts to stop the continued spread of invasive species. EPPC provides fora for sharing information and provides networking opportunities regarding all matters concerning this issue. EPPC was first...
USDA-ARS?s Scientific Manuscript database
Reestablishment of perennial vegetation is often need after wildfires to limit exotic species and restore ecosystem services. Some ecosystems, however, are resilient to disturbance and resistant to exotic plant invasions and do not require restoration efforts. If restoration is needed, an addition...
Invasive exotic plants in the tropical Pacific Islands: Patterns of Diversity
J.S. Denslow; J.C. Space; P.A. Thomas
2009-01-01
Oceanic islands are good model systems with which to explore factors affecting exotic species diversity. Islands vary in size, topography, substrate type, degree of isolation, native species diversity, history, human population characteristics, and economic development. Moreover, islands are highly vulnerable to exotic species establishment. We used AICc analyses of...
Response of native versus exotic plant guilds to cattle and elk herbivory in forested rangeland
Burak K. Pekin; Michael J. Wisdom; Catherine G. Parks; Bryan A. Endress; Bridgett J. Naylor; Ralf Ohlemuller
2015-01-01
Questions: Are exotic plant species favoured by non-native ungulate herbivores and disadvantaged by native herbivores in forested rangelands? Do the impacts of ungulates on exotic vs native plants depend on forest management activities such as prescribed fire and stand thinning?Location: Northeastern Oregon, USA....
Soil properties and exotic plant invasions: a two-way street
Joan G. Ehrenfeld
2003-01-01
Invasions of exotic plant species have become not only widespread but also a major threat to the health of native ecosystems. In order to manage these invasions, it is important to understand the changes that exotic plants may cause in the environment, and the signs that such changes are taking place.
50 CFR 15.26 - Approval of cooperative breeding programs.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-sustaining population in captivity of the exotic bird species; (iii) Details on the system of recordkeeping... the exotic bird species in the world; (v) Details on the funding of this program; and (vi) Plans for... program intended to enhance the survival of the population from which the exotic bird species was or would...
Potential effects of an invasive nitrogen-fixing tree on a Hawaiian stream food web
Trisha B. Atwood; Tracy N. Wiegner; Jason P. Turner; Richard A. MacKenzie
2010-01-01
Falcataria moluccana (albizia) is an exotic nitrogen (N)-fixing tree currently invading riparian forests in Hawai'i, U.S.A. This study examined how this invasion is impacting stream ecosystems by using naturally occurring stable isotopes of carbon (C) and N to compare food web structure between a noninvaded and an albizia-invaded...
Tim Sexton
2006-01-01
There is no doubt that wildland fuel conditions on large portions of federal wildlands in the United States have changed significantly over the last 100 years. The changes include: Increased density of woody species; Artificial fragmentation of fuel mosaics; Exotic species invasions; Structural changes which reduce ecosystem resilience to fire.
Tropical sea snail shells: Possible exotic sources for ceramic biomaterial synthesis
NASA Astrophysics Data System (ADS)
Oktar, F. N.; Kiyici, I. A.; Gökçe, H.; Aǧaogulları, D.; Kayali, E. S.
2013-12-01
In this study, chemical and structural properties of sea snail shell based bioceramic materials (i.e. hydroxyapatite, whitlockite and other phases) are produced by using mechano-chemical (ultrasonic) conversion method. For this purpose, differential thermal and gravimetric analysis (DTA/TG), X-ray diffraction, infra-red (IR) and scanning electron microscope (SEM) studies are performed.
Dean E. Pearson
2010-01-01
Indirect interactions are important for structuring ecological systems. However, research on indirect effects has been heavily biased toward top-down trophic interactions, and less is known about other indirect-interaction pathways. As autogenic ecosystem engineers, plants can serve as initiators of nontrophic indirect interactions that, like top-down pathways, can...
Restoration of tropical moist forest on bauxite mined lands in the Brazilian Amazon
John A Parrotta; Oliver H. Knowles
1999-01-01
We evaluated forest structure and composition in 9- to 13-year-old stands established on a bauxite-mined site at Trombetas (Pará), Brazil, using four different reforestation techniques following initial site preparation and topsoil replacement. These techniques included reliance on natural forest regeneration, mixed commercial species plantings of mostly exotic timber...
Sato, Yukie; Mochizuki, Atsushi
2011-08-01
Two exotic phytoseiid mites, Neoseiulus cucumeris and Amblyseius swirskii, are commercially available in Japan for the control of thrips and other pest insects. As part of a risk assessment of the non-target effects of releasing these two species, we investigated intraguild predation (IGP) between these exotic phytoseiid mites and an indigenous phytoseiid mite Gynaeseius liturivorus, which is promising as an indigenous natural enemy for the control of thrips in Japan. To understand IGP relations between the exotic and indigenous phytoseiid mites after use of the exotic mites for biological control, we investigated IGP between them in the absence of their shared prey. When an IG prey was offered to an IG predator, both exotic and indigenous females consumed the IG prey at all immature stages (egg, larva, protonymph, deutonymph), especially at its larval stages. The propensity for IGP in a no-choice test was measured by the survival time of IG prey corrected using the survival time of thrips offered to the IG predator. There was no significant difference in the propensity for IGP between N. cucumeris and G. liturivorus, but the propensity was significantly higher in A. swirskii than G. liturivorus. The propensity for IGP in a choice test was measured by the prey choice of the IG predator when a conspecific and a heterospecific larva were offered simultaneously as IG prey. Both exotic females consumed the heterospecific larva only. The indigenous female preferentially consumed the heterospecific larva when the heterospecific larva was N. cucumeris, but consumed the conspecific larva when the heterospecific larva was A. swirskii. We concluded that further investigation would be necessary for the exotic mites' risk assessment, since the propensity for IGP of the two exotic females was similar to or higher than that of the indigenous female in both the no-choice and choice tests.
Acceleration of exotic plant invasion in a forested ecosystem by a generalist herbivore.
Eschtruth, Anne K; Battles, John J
2009-04-01
The successful invasion of exotic plants is often attributed to the absence of coevolved enemies in the introduced range (i.e., the enemy release hypothesis). Nevertheless, several components of this hypothesis, including the role of generalist herbivores, remain relatively unexplored. We used repeated censuses of exclosures and paired controls to investigate the role of a generalist herbivore, white-tailed deer (Odocoileus virginianus), in the invasion of 3 exotic plant species (Microstegium vimineum, Alliaria petiolata, and Berberis thunbergii) in eastern hemlock (Tsuga canadensis) forests in New Jersey and Pennsylvania (U.S.A.). This work was conducted in 10 eastern hemlock (T. canadensis) forests that spanned gradients in deer density and in the severity of canopy disturbance caused by an introduced insect pest, the hemlock woolly adelgid (Adelges tsugae). We used maximum likelihood estimation and information theoretics to quantify the strength of evidence for alternative models of the influence of deer density and its interaction with the severity of canopy disturbance on exotic plant abundance. Our results were consistent with the enemy release hypothesis in that exotic plants gained a competitive advantage in the presence of generalist herbivores in the introduced range. The abundance of all 3 exotic plants increased significantly more in the control plots than in the paired exclosures. For all species, the inclusion of canopy disturbance parameters resulted in models with substantially greater support than the deer density only models. Our results suggest that white-tailed deer herbivory can accelerate the invasion of exotic plants and that canopy disturbance can interact with herbivory to magnify the impact. In addition, our results provide compelling evidence of nonlinear relationships between deer density and the impact of herbivory on exotic species abundance. These findings highlight the important role of herbivore density in determining impacts on plant abundance and provide evidence of the operation of multiple mechanisms in exotic plant invasion.
Farris, Zach J.; Golden, Christopher D.; Karpanty, Sarah; Murphy, Asia; Stauffer, Dean; Ratelolahy, Felix; Andrianjakarivelo, Vonjy; Holmes, Christopher M.; Kelly, Marcella J.
2015-01-01
The wide-ranging, cumulative, negative effects of anthropogenic disturbance, including habitat degradation, exotic species, and hunting, on native wildlife has been well documented across a range of habitats worldwide with carnivores potentially being the most vulnerable due to their more extinction prone characteristics. Investigating the effects of anthropogenic pressures on sympatric carnivores is needed to improve our ability to develop targeted, effective management plans for carnivore conservation worldwide. Utilizing photographic, line-transect, and habitat sampling, as well as landscape analyses and village-based bushmeat hunting surveys, we provide the first investigation of how multiple forms of habitat degradation (fragmentation, exotic carnivores, human encroachment, and hunting) affect carnivore occupancy across Madagascar’s largest protected area: the Masoala-Makira landscape. We found that as degradation increased, native carnivore occupancy and encounter rates decreased while exotic carnivore occupancy and encounter rates increased. Feral cats (Felis species) and domestic dogs (Canis familiaris) had higher occupancy than half of the native carnivore species across Madagascar’s largest protected landscape. Bird and small mammal encounter rates were negatively associated with exotic carnivore occupancy, but positively associated with the occupancy of four native carnivore species. Spotted fanaloka (Fossa fossana) occupancy was constrained by the presence of exotic feral cats and exotic small Indian civet (Viverricula indica). Hunting was intense across the four study sites where hunting was studied, with the highest rates for the small Indian civet (x¯ = 90 individuals consumed/year), the ring-tailed vontsira (Galidia elegans) (x¯ = 58 consumed/year), and the fosa (Cryptoprocta ferox) (x¯ = 31 consumed/year). Our modeling results suggest hunters target intact forest where carnivore occupancy, abundance, and species richness, are highest. These various anthropogenic pressures and their effects on carnivore populations, especially increases in exotic carnivores and hunting, have wide-ranging, global implications and demand effective management plans to target the influx of exotic carnivores and unsustainable hunting that is affecting carnivore populations across Madagascar and worldwide. PMID:26375991
Waterton, Joseph; Cleland, Elsa E
2016-12-01
Ecological trade-offs are fundamental to theory in community ecology; critical for understanding species coexistence in diverse plant communities, as well as the evolution of diverse life-history strategies. Invasions by exotic species can provide insights into the importance of trade-offs in community assembly, because the ecological strategies of invading species often differ from those present in the native species pool. Exotic annual species have invaded many Mediterranean-climate areas around the globe, and often germinate and emerge earlier in the growing season than native species. Early-season growth can enable exotic annual species to preempt space and resources, competitively suppressing later-emerging native species; however, early-emerging individuals may also be more apparent to herbivores. This suggests a potential trade-off between seasonal phenology and susceptibility to herbivory. To evaluate this hypothesis, we monitored the emergence and growth of 12 focal species (six each native and exotic) in monoculture and polyculture, while experimentally excluding generalist herbivores both early and later in the growing season. Consistent with past studies, the exotic species emerged earlier than native species. Regardless of species origin, earlier-emerging species achieved greater biomass by the end of the experiment, but were more negatively impacted by herbivory, particularly in the early part of the growing season. This greater impact of early-season herbivory on early-active species led to a reduction in the competitive advantage of exotic species growing in polyculture, and improved the performance of later-emerging natives. Such a trade-off between early growth and susceptibility to herbivores could be an important force in community assembly in seasonal herbaceous-dominated ecosystems. These results also show how herbivore exclusion favors early-active exotic species in this system, with important implications for management in many areas invaded by early-active exotic species.
Coutant, Thomas; Vergneau-Grosset, Claire; Langlois, Isabelle
2018-05-01
Drug delivery to exotic animals may be extrapolated from domestic animals, but some physiologic and anatomic differences complicate treatment administration. Knowing these differences enables one to choose optimal routes for drug delivery. This review provides practitioners with a detailed review of the currently reported methods used for drug delivery of various medications in the most common exotic animal species. Exotic animal peculiarities that are relevant for drug administration are discussed in the text and outlined in tables and boxes to help the reader easily find targeted information. Copyright © 2018 Elsevier Inc. All rights reserved.
MOLECULAR THEORY OF HYDROPHOBIC EFFECTS: "She is too mean to have her name repeated."*
NASA Astrophysics Data System (ADS)
Pratt, Lawrence R.
2002-10-01
This paper reviews the molecular theory of hydrophobic effects relevant to biomolecular structure and assembly in aqueous solution. Recent progress has resulted in simple, validated molecular statistical thermodynamic theories and clarification of confusing theories of decades ago. Current work is resolving effects of wider variations of thermodynamic state, e.g., pressure denaturation of soluble proteins, and more exotic questions such as effects of surface chemistry in treating stability of macromolecular structures in aqueous solution.
Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure
NASA Astrophysics Data System (ADS)
Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.
2014-08-01
Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver hfodd that is based on the harmonic-oscillator basis expansion. Several examples are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. Conclusions: The new madness-hfb framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.
Martín-Forés, Irene; Acosta-Gallo, Belén; Castro, Isabel; de Miguel, José M; Del Pozo, Alejandro; Casado, Miguel A
2018-01-01
Scientists have been interested in many topics driven by biological invasions, such as shifts in the area of distribution of plant species and rapid evolution. Invasiveness of exotic plant species depends on variations on morphological and reproductive traits potentially associated with reproductive fitness and dispersal ability, which are expected to undergo changes during the invasion process. Numerous Asteraceae are invasive and display dimorphic fruits, resulting in a bet-hedging dispersal strategy -wind-dispersed fruits versus animal-dispersed fruits-. We explored phenotypic differentiation in seed morphology and reproductive traits of exotic (Chilean) and native (Spanish) populations of Hypochaeris glabra. We collected flower heads from five Spanish and five Chilean populations along rainfall gradients in both countries. We planted seeds from the ten populations in a common garden trial within the exotic range to explore their performance depending on the country of origin (native or exotic) and the environmental conditions at population origin (precipitation and nutrient availability). We scored plant biomass, reproductive traits and fruit dimorphism patterns. We observed a combination of bet-hedging strategy together with phenotypic differentiation. Native populations relied more on bet-hedging while exotic populations always displayed greater proportion of wind-dispersed fruits than native ones. This pattern may reflect a strategy that might entail a more efficient long distance dispersal of H. glabra seeds in the exotic range, which in turn can enhance the invasiveness of this species.
Effects of exotic species on Yellowstone's grizzly bears
Reinhart, Daniel P.; Haroldson, Mark A.; Mattson, D.J.; Gunther, Kerry A.
2001-01-01
Humans have affected grizzly bears (Ursus arctos horribilis) by direct mortality, competition for space and resources, and introduction of exotic species. Exotic organisms that have affected grizzly bears in the Greater Yellowstone Area include common dandelion (Taraxacum officinale), nonnative clovers (Trifolium spp.), domesticated livestock, bovine brucellosis (Brucella abortus), lake trout (Salvelinus namaycush), and white pine blister rust (Cronartium ribicola). Some bears consume substantial amounts of dandelion and clover. However, these exotic foods provide little digested energy compared to higher-quality bear foods. Domestic livestock are of greater energetic value, but use of this food by bears often leads to conflicts with humans and subsequent increases in bear mortality. Lake trout, blister rust, and brucellosis diminish grizzly bears foods. Lake trout prey on native cutthroat trout (Oncorhynchus clarkii) in Yellowstone Lake; white pine blister rust has the potential to destroy native whitebark pine (Pinus albicaulis) stands; and management response to bovine brucellosis, a disease found in the Yellowstone bison (Bison bison) and elk (Cervus elaphus), could reduce populations of these 2 species. Exotic species will likely cause more harm than good for Yellowstone grizzly bears. Managers have few options to mitigate or contain the impacts of exotics on Yellowstone's grizzly bears. Moreover, their potential negative impacts have only begun to unfold. Exotic species may lead to the loss of substantial highquality grizzly bear foods, including much of the bison, trout, and pine seeds that Yellowstone grizzly bears currently depend upon.
Exotic diseases of dogs and cats at risk of importation to Ireland
2005-01-01
Changes in legislation that facilitate movement of companion animals within the European Union will expose those animals to microbial and parasitic organisms currently exotic to Ireland. This paper reviewed information on the exotic diseases most likely to be introduced to Ireland by travelling dogs and cats: rabies, leishmaniosis, babesiosis, ehrlichiosis, anaplasmosis and dirofilariosis. PMID:21851670
Cross-Attraction between an Exotic and a Native Pine Bark Beetle: A Novel Invasion Mechanism?.
Min Lu; Daniel Miller; Jiang-Hua Sun
2007-01-01
Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain...
Cross-attraction between an exotic and a native pine bark beetle: a novel invasion mechanism?
Min Lu; Daniel R. Miller; Jiang-Hua Sun
2007-01-01
Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain...
Invasion of an exotic forb impacts reproductive success and site fidelity of a migratory songbird
Yvette Katina Ortega; Kevin Scot McKelvey; Diana Lee Six
2006-01-01
Although exotic plant invasions threaten natural systems worldwide, we know little about the specific ecological impacts of invaders, including the magnitude of effects and underlying mechanisms. Exotic plants are likely to impact higher trophic levels when they overrun native plant communities, affecting habitat quality for breeding songbirds by altering food...
Effects of biological control agents and exotic plant invasion on deer mouse populations
Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey
2004-01-01
Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...
Remote analysis of biological invasion and the impact of enemy release
James R. Kellner; Gregory P. Asner; Kealoha M. Kinney; Scott R. Loarie; David E. Knapp; Ty Kennedy-Bowdoin; Erin J. Questad; Susan Cordell; Jarrod M. Thaxton
2011-01-01
Escape from natural enemies is a widely held generalization for the success of exotic plants. We conducted a large-scale experiment in Hawaii (USA) to quantify impacts of ungulate removal on plant growth and performance, and to test whether elimination of an exotic generalist herbivore facilitated exotic success. Assessment of impacted and control sites before and...
ERIC Educational Resources Information Center
Kannan, Srimathi; Smith, Rebecca; Foley, Christine; Del Sole, Sarah; White, Alissa; Sheldon, Lisa A.; Mietlcki-Floyd, Shirley; Severin, Suzanne
2011-01-01
FruitZotic incorporated fruit stories (exotic-fruits-literacy), a "See, Smell, Hear, Touch and Taste" (sensory) segment and a question-prompted discussion. Three take-home components incorporating the exotic fruits were: Coloring Activity, Recipes, and Fact Sheets. Sensory based nutrition education can increase familiarity with exotic…
PROSPECTS FOR PENTAQUARK SEARCHES IN E+D- ANNIHILATIONS AND VV COLLISIONS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ARMSTRONG,S.; MELLADO,B.; WU,S.L.
2004-06-28
Recent strong experimental evidence of a narrow exotic S = +1 baryon resonance, {Theta}{sup +}, suggests the existence of other exotic baryons. We discuss the prospects of confirming earlier experimental evidence of {Theta}{sup +} and the observation of additional hypothetical exotic baryons in e{sup +}e{sup -} annihilations and {gamma}{gamma} collisions at LEP and B Factories.
Nest site selection in native and exotic trees by Black-chinned Hummingbirds
Deborah M. Finch; Jeffrey Kelly
2002-01-01
We studied nest site selection and nesting success in Black-chinned Hummingbirds (Archilochus alexandri) along the middle Rio Grande, New Mexico. The study was conducted in association with an exotic woody plant removal program to determine whether the removal of exotic plants would affect wildlife populations and nesting success, either positively or negatively. Point...
Biotic resistance: Exclusion of native rodent consumers releases populations of a weak invader
Dean E. Pearson; Teal Potter; John L. Maron
2012-01-01
Biotic resistance is a commonly invoked hypothesis to explain why most exotic plant species naturalize at low abundance. Although numerous studies have documented negative impacts of native consumers on exotic plant performance, longer-term multi-generation studies are needed to understand how native consumer damage to exotics translates to their population-level...
Loblolly pine seedling response to competition from exotic vs. native plants
Pedram Daneshgar; Shibu Jose; Craig Ramsey; Robin Collins
2006-01-01
A field study was conducted in Santa Rosa County, FL to test the hypothesis that an exotic understory would exert a higher degree of competition on tree seedling establishment and growth than native vegetation. The study site was a 60 ha cutover area infested with the invasive exotic cogongrass [Imperata cylindrica (L.) Raeusch.]. A completely...
Persistence of invading gypsy moth populations in the United States
Stefanie L. Whitmire; Patrick C. Tobin
2006-01-01
Abstract Exotic invasive species are a mounting threat to native biodiversity, and their effects are gaining more public attention as each new species is detected. Equally important are the dynamics of exotic invasives that are previously well established. While the literature reports many examples of the ability of a newly arrived exotic invader to persist prior to...
Diseases of Forest Trees: Consequences of Exotic Ecosystems?
William J. Otrosina
1998-01-01
Much attention is now given to risks and impacts of exotic pest introductions in forest ecosystems. This concern is for good reason because, once introduced, an exotic pathogen or insect encounters little resistance in the native plant population and can produce catastrophic losses in relatively short periods of time. Most native fungal pathogens of forest trees have...
Naturalized Exotic Tree Species in Puerto Rico
John K. Francis; Henri A. Liogier
1991-01-01
Many exotic tree species have been imported into Puerto Rico for their wood, fruit, and use as coffee shade and ornamentals. Some of these trees have naturalized (reproduced without human intervention) and some have escaped into natural forests. At least 118 exotic species are reproducing in Puerto Rico. Estimates are given for the general rate of spread and future...
A survey of exotic plants in federal wilderness areas
Marilyn Marler
2000-01-01
I conducted a survey of wilderness areas to provide an overview of plant invasions in the National Wilderness Preservation System. Fifteen per cent of responding mangers reported that exotic plants were among their top 10 management concerns, either because they are actively dealing with control of exotic pest plants or have prioritized prevention of their...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Liu, Z. K.; Sun, Y.
Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe 2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leadsmore » to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe 2 was discovered to be superconducting recently) and their topological order.« less
Tissiani, A S O; Sousa, W O; Santos, G B; Ide, S; Battirola, L; Marques, M I
2015-11-01
Here we examine assemblage structure of coprophagous Scarabaeidae (dung beetles) in the Pantanal of the state of Mato Grosso with respect to flooding regimes, soil texture, leaf litter volume and tree dominance in native and exotic pastures. Samples were collected along 30 transects of 250 m in length in a 5×5 km grid (25 km2). Five pitfalls baited with human feces were placed in each transect. A total of 1692 individuals in 19 species were captured, the majority in the subfamily Scarabaeinae and Aphodiinae. Assemblages were influenced by the duration of flooding and leaf litter volume. None of the other habitat variables was correlated with species richness. Cultivated pastures with exotic grasses were unimportant for composition of the assemblages of beetles. These results indicate that duration of flooding is the most important regulating force in this community.
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.
2015-01-01
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906
Signature of Type-II Weyl Semimetal Phase in MoTe2
NASA Astrophysics Data System (ADS)
Jiang, Juan; Liu, Zhongkai; Yang, Haifeng; Yang, Lexian; Chen, Cheng; Peng, Han; Hwang, Chan-Cuk; Mo, Sung-Kwan; Chen, Yulin; ShanghaiTech University Collaboration; Oxford University Collaboration; Lawrence Berkeley National Lab Collaboration; Pohang University of Science; Technology Collaboration
Topological Weyl semimetal (TWS) is a new state of quantum matter, which has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. Here, by using angle-resolved photoemission spectroscopy, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS, which do not respect Lorentz symmetry compared with type-I TWS. Furthermore, we unravel the unique surface Fermi arcs, in good agreement with our ab-initio calculations, which have non-trivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity and their topological order.
Signature of type-II Weyl semimetal phase in MoTe2
NASA Astrophysics Data System (ADS)
Jiang, J.; Liu, Z. K.; Sun, Y.; Yang, H. F.; Rajamathi, C. R.; Qi, Y. P.; Yang, L. X.; Chen, C.; Peng, H.; Hwang, C.-C.; Sun, S. Z.; Mo, S.-K.; Vobornik, I.; Fujii, J.; Parkin, S. S. P.; Felser, C.; Yan, B. H.; Chen, Y. L.
2017-01-01
Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order.
An Exotic Species Is the Favorite Prey of a Native Enemy
Li, Yiming; Ke, Zunwei; Wang, Supen; Smith, Geoffrey R.; Liu, Xuan
2011-01-01
Although native enemies in an exotic species' new range are considered to affect its ability to invade, few studies have evaluated predation pressures from native enemies on exotic species in their new range. The exotic prey naiveté hypothesis (EPNH) states that exotic species may be at a disadvantage because of its naïveté towards native enemies and, therefore, may suffer higher predation pressures from the enemy than native prey species. Corollaries of this hypothesis include the native enemy preferring exotic species over native species and the diet of the enemy being influenced by the abundance of the exotic species. We comprehensively tested this hypothesis using introduced North American bullfrogs (Lithobates catesbeianus, referred to as bullfrog), a native red-banded snake (Dinodon rufozonatum, the enemy) and four native anuran species in permanent still water bodies as a model system in Daishan, China. We investigated reciprocal recognition between snakes and anuran species (bullfrogs and three common native species) and the diet preference of the snakes for bullfrogs and the three species in laboratory experiments, and the diet preference and bullfrog density in the wild. Bullfrogs are naive to the snakes, but the native anurans are not. However, the snakes can identify bullfrogs as prey, and in fact, prefer bullfrogs over the native anurans in manipulative experiments with and without a control for body size and in the wild, indicating that bullfrogs are subjected to higher predation pressures from the snakes than the native species. The proportion of bullfrogs in the snakes' diet is positively correlated with the abundance of bullfrogs in the wild. Our results provide strong evidence for the EPNH. The results highlight the biological resistance of native enemies to naïve exotic species. PMID:21915306
The relative importance of disturbance and exotic-plant abundance in California coastal sage scrub
Fleming, G.M.; Diffendorfer, J.E.; Zedler, P.H.
2009-01-01
Many ecosystems of conservation concern require some level of disturbance to sustain their species composition and ecological function. However, inappropriate disturbance regimes could favor invasion or expansion of exotic species. In southern California coastal sage scrub (CSS) fire is a natural disturbance, but because of human influence, frequencies may now be unnaturally high. Other anthropogenic disturbances such as grazing also occur in reserve areas. Managers charged with imposing or tolerating fire or other disturbance within their reserves are concerned that habitat quality may be degraded by an increasing abundance of exotic plants. We used vegetation monitoring data from Camp Pendleton, California, USA, to assess the correlation between past disturbances (frequent fire, agriculture, or grazing and mechanical disturbances) and current exotic species abundance in CSS. We found that disturbance history was only modestly related to exotic abundance overall, but fire frequency showed the strongest association. We also examined whether cover and richness of various native plant life forms (woody species, perennial herbs, and annual herbs) were more strongly influenced by disturbance history or by exotic-plant abundance. Native plant responses varied among life forms, but woody species and annual herbs were generally more strongly and negatively associated with exotic abundance than with disturbance. Effective CSS conservation will require developing means to curb the negative impacts of exotic plants, which may abound with or without severe or recent disturbance. Additionally, more focus should be given to understory herbs showing sensitivity to invasion. Though understudied, native herbs comprise the greatest portion of plant diversity in CSS and are critical to preservation of the community as a whole. ?? 2009 by the Ecological Society of America.
Berman, Maïa; Andersen, Alan N.; Hély, Christelle; Gaucherel, Cédric
2013-01-01
Ants are among the most ubiquitous and harmful invaders worldwide, but there are few regional studies of their relationships with habitat and native ant communities. New Caledonia has a unique and diverse ant fauna that is threatened by exotic ants, but broad-scale patterns of exotic and native ant community composition in relation to habitat remain poorly documented. We conducted a systematic baiting survey of 56 sites representing the main New Caledonian habitat types: rainforest on ultramafic soils (15 sites), rainforest on volcano-sedimentary soils (13), maquis shrubland (15), Melaleuca-dominated savannas (11) and Acacia spirorbis thickets (2). We collected a total of 49 species, 13 of which were exotic. Only five sites were free of exotic species, and these were all rainforest. The five most abundant exotic species differed in their habitat association, with Pheidole megacephala associated with rainforests, Brachymyrmex cf. obscurior with savanna, and Wasmannia auropunctata and Nylanderia vaga present in most habitats. Anoplolepis gracilipes occurred primarily in maquis-shrubland, which contrasts with its rainforest affinity elsewhere. Multivariate analysis of overall ant species composition showed strong differentiation of sites according to the distribution of exotic species, and these patterns were maintained at the genus and functional group levels. Native ant composition differed at invaded versus uninvaded rainforest sites, in the absence of differences in habitat variables. Generalised Myrmicinae and Forest Opportunists were particularly affected by invasion. There was a strong negative relationship between the abundance of W. auropunctata and native ant abundance and richness. This emphasizes that, in addition to dominating many ant communities numerically, some exotic species, and in particular W. auropunctata, have a marked impact on native ant communities. PMID:23840639
Smith, Chelsea A.; Gardiner, Mary M.
2013-01-01
Exotic species are widely accepted as a leading cause of biodiversity decline. Lady beetles (Coccinellidae) provide an important model to study how competitor introductions impact native communities since several native coccinellids have experienced declines that coincide with the establishment and spread of exotic coccinellids. This study tested the central hypothesis that intraguild predation by exotic species has caused these declines. Using sentinel egg experiments, we quantified the extent of predation on previously-common (Hippodamia convergens) and common (Coleomegilla maculata) native coccinellid eggs versus exotic coccinellid (Harmonia axyridis) eggs in three habitats: semi-natural grassland, alfalfa, and soybean. Following the experiments quantifying egg predation, we used video surveillance to determine the composition of the predator community attacking the eggs. The extent of predation varied across habitats, and egg species. Native coccinellids often sustained greater egg predation than H. axyridis. We found no evidence that exotic coccinellids consumed coccinellid eggs in the field. Harvestmen and slugs were responsible for the greatest proportion of attacks. This research challenges the widely-accepted hypothesis that intraguild predation by exotic competitors explains the loss of native coccinellids. Although exotic coccinellids may not be a direct competitor, reduced egg predation could indirectly confer a competitive advantage to these species. A lower proportion of H. axyridis eggs removed by predators may have aided its expansion and population increase and could indirectly affect native species via exploitative or apparent competition. These results do not support the intraguild predation hypothesis for native coccinellid decline, but do bring to light the existence of complex interactions between coccinellids and the guild of generalist predators in coccinellid foraging habitats. PMID:24386383
An exotic species is the favorite prey of a native enemy.
Li, Yiming; Ke, Zunwei; Wang, Supen; Smith, Geoffrey R; Liu, Xuan
2011-01-01
Although native enemies in an exotic species' new range are considered to affect its ability to invade, few studies have evaluated predation pressures from native enemies on exotic species in their new range. The exotic prey naiveté hypothesis (EPNH) states that exotic species may be at a disadvantage because of its naïveté towards native enemies and, therefore, may suffer higher predation pressures from the enemy than native prey species. Corollaries of this hypothesis include the native enemy preferring exotic species over native species and the diet of the enemy being influenced by the abundance of the exotic species. We comprehensively tested this hypothesis using introduced North American bullfrogs (Lithobates catesbeianus, referred to as bullfrog), a native red-banded snake (Dinodon rufozonatum, the enemy) and four native anuran species in permanent still water bodies as a model system in Daishan, China. We investigated reciprocal recognition between snakes and anuran species (bullfrogs and three common native species) and the diet preference of the snakes for bullfrogs and the three species in laboratory experiments, and the diet preference and bullfrog density in the wild. Bullfrogs are naive to the snakes, but the native anurans are not. However, the snakes can identify bullfrogs as prey, and in fact, prefer bullfrogs over the native anurans in manipulative experiments with and without a control for body size and in the wild, indicating that bullfrogs are subjected to higher predation pressures from the snakes than the native species. The proportion of bullfrogs in the snakes' diet is positively correlated with the abundance of bullfrogs in the wild. Our results provide strong evidence for the EPNH. The results highlight the biological resistance of native enemies to naïve exotic species.
The extended BLMSSM with a 125 GeV Higgs boson and dark matter
NASA Astrophysics Data System (ADS)
Zhao, Shu-Min; Feng, Tai-Fu; Ning, Guo-Zhu; Chen, Jian-Bin; Zhang, Hai-Bin; Dong, Xing Xing
2018-04-01
To extend the BLMSSM, we not only add exotic Higgs superfields (Φ _{NL},φ_{NL}) to make the exotic lepton heavy, but also introduce the superfields ( Y,Y^' ) having couplings with lepton and exotic lepton at tree level. The obtained model is called as EBLMSSM, which has difference from BLMSSM especially for the exotic slepton (lepton) and exotic sneutrino (neutrino). We deduce the mass matrices and the needed couplings in this model. To confine the parameter space, the Higgs boson mass m_{h^0} and the processes h^0→ γ γ , h^0→ VV, V=(Z,W) are studied in the EBLMSSM. With the assumed parameter space, we obtain reasonable numerical results according to data on Higgs from ATLAS and CMS. As a cold dark mater candidate, the relic density for the lightest mass eigenstate of Y and Y' mixing is also studied.
Exotic grasslands on reclaimed midwestern coal mines: An ornithological perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, P.E.; Lima, S.L.
The largest grasslands in Indiana and Illinois are on reclaimed surface coal mines, which are numerous in the Illinois Coal Basin. The reclamation goal of establishing a vegetation cover with inexpensive, hardy exotic grass species (e.g., tall fescue, smooth brome) inadvertently created persistent, large grassland bird refuges. We review research documenting the importance of these sites for native prairie birds. On mines, grassland specialist birds (restricted to grassland throughout their range) prefer sites dominated by exotic grasses to those rich in forbs, whereas nonspecialist bird species show no significant preference. Midwestern mine grasslands potentially could be converted into landscapes thatmore » include native warm-season grasses and forbs adapted to the relatively dry, poor soil conditions, in addition to the present successful exotic grass stands. A key question is whether native mixtures will resist conversion to forb-rich or woody growth over the long term, as the exotic grasses have done.« less
Megan M. Taylor; Ann L. Hild; Nancy L. Shaw; Urszula Norton; Timothy R. Collier
2014-01-01
One goal of post-fire native species seeding is to increase plant community resistance to exotic weed invasions, yet few studies address the impacts of seeding on exotic annual establishment and persistence. In 2010 and 2011, we investigated the influence of seedings on exotic annuals and the underlying microbial communities. The wildfire site in northern Utah was...
Risk maps for targeting exotic plant pest detection programs in the United States
R.D. Magarey; D.M. Borchert; J.S. Engle; M Garcia-Colunga; Frank H. Koch; et al
2011-01-01
In the United States, pest risk maps are used by the Cooperative Agricultural Pest Survey for spatial and temporal targeting of exotic plant pest detection programs. Methods are described to create standardized host distribution, climate and pathway risk maps for the top nationally ranked exotic pest targets. Two examples are provided to illustrate the risk mapping...
Domestic exotics and the perception of invasibility
Qinfeng Guo; Robert Ricklefs
2010-01-01
Susceptibility of an area to invasion by exotic species is often judged by the fraction of introduced species in the local biota. However, the degree of invasion, particularly in mainland areas, has often been underestimated because of the exclusion of âdomestic exoticsâ (those introduced to internal units from within the national border) in calculations. Because all...
Temporal changes in native-exotic richness correlations during early post-fire succession
Qinfeng Guo
2017-01-01
The relationship between native and exotic richness has mostly been studied with respect to space (i.e., positive at larger scales, but negative or more variable at smaller scales) and its temporal patterns have rarely been investigated. Although some studies have monitored the temporal trends of both native and exotic richness, how these two groups of species might be...
Detection of Tetropium castaneum L., an exotic longhorned beetle in the Dalles, Oregon
Kathleen J.R. Johnson; Alan D. Mudge; James R. LaBonte; Karl A. Puls
2003-01-01
Concerns about the unintentional introduction of exotic woodboring insects prompted surveys of high-risk sites in Oregon beginning in 1997. Ports, port areas, mills and businesses known to have received imported wood or wood products and urban forests have been monitored statewide. These surveys have produced new state and regional records for exotic woodborers (Mudge...
Prudent Use of Antimicrobials in Exotic Animal Medicine.
Broens, Els M; van Geijlswijk, Ingeborg M
2018-05-01
Reduction of antimicrobial use can result in reduction of resistance in commensal bacteria. In exotic animals, information on use of antimicrobials and resistance in commensals and pathogens is scarce. However, use of antimicrobials listed as critically important antimicrobials for human medicine seems high in exotic animals. Ideally, the selection of a therapy should be based on an accurate diagnosis and antimicrobial susceptibility testing. When prescribing antimicrobials based on empiricism, knowledge of the most common pathogens causing specific infections and the antimicrobial spectrum of antimicrobial agents is indispensable. Implementing antimicrobial stewardship promotes the prudent use of antimicrobials in exotic animals. Copyright © 2018 Elsevier Inc. All rights reserved.
Therapeutic Contraindications in Exotic Pets.
Petritz, Olivia A; Chen, Sue
2018-05-01
The selection and dosing of medications for exotic pets are often challenging because most drugs are used in an extralabel manner without pharmacokinetic and pharmacodynamic studies. Doses are often extrapolated from common domestic animals and safety data are often lacking in exotic species. Just as the bioavailability and therapeutic levels are different for each species, what may be a safe and commonly used medication in one species can be deadly in another. Various drugs with documented contraindications in certain exotic pet species are outlined in this review and the pathophysiology, clinical signs, and treatment options are described when applicable. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Andrews, H.; Eberwein, J. R.; Jenerette, D.
2016-12-01
As humans continue to introduce exotic plants and to alter climate and fire regimes in semi-arid ecosystems, many plant communities have begun to shift from perennial forbs and shrubs to annual grasses with different functional traits. Shifts in plant types are also associated with shifts in microclimate, microbial activity, and litter inputs, all of which contribute to the efficiency of nitrogen processing and the magnitude of trace gas emissions (NOx and N2O), which are increasingly important fluxes in water-limited systems. Here, we explored how changes in plant litter impact trace gas emissions, asking the question: How does conversion from a native shrubland to exotic grassland ecosystem alter NOx and N2O fluxes in a semi-arid climate? We posed two hypotheses to explain the impacts of different types of litter on soils disturbed by exotic grasses and those that were still considered shrublands: 1.) Soils that have undergone conversion by exotic grasses release higher amounts of NOx and N2O than do those of unconverted shrublands, due to disruptions of native plant and soil processes by exotic grasses, and 2.) Because litter of exotic grasses has lower C:N than that of shrubs, litter inputs from exotic grasses will increase NOx and N2O emissions from soils more than will litter inputs from shrubs. As a preliminary study, we experimentally wetted mesocosms in a laboratory incubation containing converted and unconverted soils that had been mixed with no litter or either exotic grass or coastal sage scrub (CSS) litter. We measured N2O fluxes from mesocosms over a 48-hour period. 24 hours after wetting, samples with grass litter produced higher amounts of N2O than those with CSS litter; similarly, converted soils produced higher amounts of N2O than unconverted soils. These two effects combined resulted in exotic grassland conditions (converted soils with exotic grass litter) producing 10 times the amount of N2O as those containing native shrubland conditions (unconverted soils with CSS litter). Additionally, soils with no litter peaked in N2O emissions earlier than those with litter (12 hours after wetting compared to 24 hours after wetting). Following preliminary results, we suggest that differences in plant traits, such as litter, play a significant role in the magnitude and timing of trace gas nitrogen emissions.
Superconductivity in BaPtSb with an Ordered Honeycomb Network
NASA Astrophysics Data System (ADS)
Kudo, Kazutaka; Saito, Yuki; Takeuchi, Takaaki; Ayukawa, Shin-ya; Kawamata, Takayuki; Nakamura, Shinichiro; Koike, Yoji; Nohara, Minoru
2018-06-01
Superconductivity in BaPtSb with the SrPtSb-type structure (space group P\\bar{6}m2, D3h1, No. 187) is reported. The structure consists of a PtSb ordered honeycomb network that stacks along the c-axis so that spatial inversion symmetry is broken globally. Electrical resistivity and specific-heat measurements revealed that the compound exhibited superconductivity at 1.64 K. The noncentrosymmetric structure and the strong spin-orbit coupling of Pt and Sb make BaPtSb an attractive compound for studying the exotic superconductivity predicted for a honeycomb network.
Helical quantum states in HgTe quantum dots with inverted band structures.
Chang, Kai; Lou, Wen-Kai
2011-05-20
We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.
Woodland structure affects intensity of infection by an exotic forest pathogen
Nathan Rank; Hall Cushman; Ross Meentemeyer
2008-01-01
Woodland ecosystems often consist of a mosaic of interacting dominant woody species that vary in density and abundance. Local variation in dominant species abundance may influence spread of plant pathogens across this heterogeneous landscape. We investigated this possibility in a 275 km2 study area in eastern Sonoma County, which is being invaded by the pathogen that...
Robert T. Brooks
2001-01-01
Eastern hemlock (Tsuga canadensis) is a common conifer throughout northeastern North America. The species is threatened by the exotic hemlock woolly adelgid (HWA), Adelges tsugae; infestation by this forest pest can result in high levels of mortality of overstory trees with a resultant change in understory vegetation composition and structure. Pre-salvage harvesting of...
USDA-ARS?s Scientific Manuscript database
In sutu decomposition of above and below ground plant biomass of the native grass species Andropogon glmoeratus (Walt.) B.S.P and exotic Imperata cylindrica (L.) Beauv. (cogongrass) was investigated using litter bags over the course of a 12 month period. The above and below ground biomass of the inv...
John L. Maron; Harald Auge; Dean E. Pearson; Lotte Korell; Isabell Hensen; Katharine N. Suding; Claudia Stein
2014-01-01
Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed...
Anna W. Schoettle; Betsy A. Goodrich; Valerie Hipkins; Christopher Richards; Julie Kray
2011-01-01
Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow geographic and elevational distribution and occurs in disjunct mountain-top populations throughout Colorado and New Mexico in its core range. The species' unique aesthetic and ecological traits combined with the threats of the exotic disease white pine blister rust (WPBR), climate change in high...
Phil S. Allen; Susan E. Meyer
2014-01-01
Ecological restoration of shrub-steppe communities in the western United States is often hampered by invasion of exotic annual grasses during the process. An important question is how to create restored communities that can better resist reinvasion by these weeds. One hypothesis is that communities comprised of species that are functionally similar to the invader will...
Ann M. Lynch
2009-01-01
Spruce aphid is an exotic insect recently introduced to the Pinaleno Mountains. It feeds on dormant Engelmann spruce, and possible effects include tree-growth suppression, tree mortality, and reduction in seed and cone production. Potential longer-term effects include changes in forest structure and species composition - primarily through reduction in Engelmann spruce...
Direct reaction theories for exotic nuclei: An introduction via semi-classical methods
NASA Astrophysics Data System (ADS)
Bonaccorso, Angela
2018-07-01
The structure of exotic nuclei has only been studied from around 1985, because they are very short lived and because before that, it was not possible to produce and deliver them as beams on a target. They have large N / Z or Z / N ratios, are weakly bound and quite extended most of the time. Thus breakup, transfer and/or inelastic excitations of the surface are some of their most common reaction mechanisms. Direct reactions, for their simplicity, have played a fundamental role in the last thirty years in the process of understanding such "new" type of structures. On the other hand, direct reactions have been studied and understood for a much longer time, starting with the pioneering experiments in the early '50 on deuteron-induced reactions and the reaction models developed by S.T. Butler and collaborators. Both subjects are extremely vast and there is a large literature available of books, review articles and original papers. I will discuss here only a few selected examples of the many interesting problems that have been encountered and solved in all those years. I consider them breakthroughs in the field and as such I hope they can inspire young generations of researchers.
Hidden phase in parent Fe-pnictide superconductors
NASA Astrophysics Data System (ADS)
Ali, Khadiza; Adhikary, Ganesh; Thakur, Sangeeta; Patil, Swapnil; Mahatha, Sanjoy K.; Thamizhavel, A.; De Ninno, Giovanni; Moras, Paolo; Sheverdyaeva, Polina M.; Carbone, Carlo; Petaccia, Luca; Maiti, Kalobaran
2018-02-01
We investigate the origin of exoticity in Fe-based systems via studying the fermiology of CaFe2As2 employing angle-resolved photoemission spectroscopy. While the Fermi surfaces (FSs) at 200 K and 31 K are observed to exhibit two-dimensional and three-dimensional (3D) topology, respectively, the FSs at intermediate temperatures reveal the emergence of the 3D topology at a temperature much lower than the structural and magnetic phase transition temperature (170 K, for the sample under scrutiny). This leads to the conclusion that the evolution of FS topology is not directly driven by the structural transition. In addition, we discover the existence in ambient conditions of energy bands related to the cT phase. These bands are distinctly resolved in the high-photon energy spectra exhibiting strong Fe 3 d character. They gradually move to higher binding energies due to thermal compression with cooling, leading to the emergence of 3D topology in the Fermi surface. These results reveal the so-far hidden existence of a cT phase under ambient conditions, which is argued to lead to quantum fluctuations responsible for the exotic electronic properties in Fe-pnictide superconductors.
Negative Effects of an Exotic Grass Invasion on Small-Mammal Communities
Freeman, Eric D.; Sharp, Tiffanny R.; Larsen, Randy T.; Knight, Robert N.; Slater, Steven J.; McMillan, Brock R.
2014-01-01
Exotic invasive species can directly and indirectly influence natural ecological communities. Cheatgrass (Bromus tectorum) is non-native to the western United States and has invaded large areas of the Great Basin. Changes to the structure and composition of plant communities invaded by cheatgrass likely have effects at higher trophic levels. As a keystone guild in North American deserts, granivorous small mammals drive and maintain plant diversity. Our objective was to assess potential effects of invasion by cheatgrass on small-mammal communities. We sampled small-mammal and plant communities at 70 sites (Great Basin, Utah). We assessed abundance and diversity of the small-mammal community, diversity of the plant community, and the percentage of cheatgrass cover and shrub species. Abundance and diversity of the small-mammal community decreased with increasing abundance of cheatgrass. Similarly, cover of cheatgrass remained a significant predictor of small-mammal abundance even after accounting for the loss of the shrub layer and plant diversity, suggesting that there are direct and indirect effects of cheatgrass. The change in the small-mammal communities associated with invasion of cheatgrass likely has effects through higher and lower trophic levels and has the potential to cause major changes in ecosystem structure and function. PMID:25269073
The majority of bold statements expressed during grand rounds lack scientific merit.
Linthorst, Gabor E; Daniels, Johannes M A; van Westerloo, David J
2007-10-01
Frequently, during grand rounds and other medical conferences, bold statements are made regarding 'exotic medical facts'. Such exotic expert opinions are frequently voiced with great conviction and are usually subsequently assimilated by junior staff as medical fact. The level of scientific evidence for each exotic expert opinion expressed during daily grand rounds over a 4-month period was evaluated. If, following a short discussion of the statement, any doubt as to the merits of the claim persisted, the person who made the statement was asked to perform a search in the medical literature on the subject. In total, 25 cases of exotic expert opinion were identified during the study period. Of these, 22 statements were made by senior staff and 3 by residents. Careful review of the literature showed only 8 of the statements were actually evidence-based. In 17 cases the available literature actually contradicted the statement (n = 13) or no literature on the subject could be located (n = 4). Although opinions were most often expressed by staff members, the reviews of their merits were more often performed by residents. The vast majority of exotic expert opinions expressed by senior staff members during grand rounds are not evidence-based. Thus, great care must be taken to ensure that exotic expert opinion is not accepted as factual without careful review. Furthermore, this study shows that although seniority is (as expected) associated with a higher incidence of voicing exotic expert opinion, it is negatively associated with reviewing the merits of such opinion.
Wallace, K J; Laughlin, Daniel C; Clarkson, Bruce D
2017-06-01
Restoring forest structure and composition is an important component of urban land management, but we lack clear understanding of the mechanisms driving restoration success. Here we studied two indicators of restoration success in temperate rainforests: native tree regeneration and epiphyte colonization. We hypothesized that ecosystem properties such as forest canopy openness, abundance of exotic herbaceous weeds, and the microclimate directly affect the density and diversity of native tree seedlings and epiphytes. Relationships between environmental conditions and the plant community were investigated in 27 restored urban forests spanning 3-70 years in age and in unrestored and remnant urban forests. We used structural equation modelling to determine the direct and indirect drivers of native tree regeneration and epiphyte colonization in the restored forests. Compared to remnant forest, unrestored forest had fewer native canopy tree species, significantly more light reaching the forest floor annually, and higher exotic weed cover. Additionally, epiphyte density was lower and native tree regeneration density was marginally lower in the unrestored forests. In restored forests, light availability was reduced to levels found in remnant forests within 20 years of restoration planting, followed shortly thereafter by declines in herbaceous exotic weeds and reduced fluctuation of relative humidity and soil temperatures. Contrary to expectations, canopy openness was only an indirect driver of tree regeneration and epiphyte colonization, but it directly regulated weed cover and microclimatic fluctuations, both of which directly drove the density and richness of regeneration and epiphyte colonization. Epiphyte density and diversity were also positively related to forest basal area, as large trees provide physical habitat for colonization. These results imply that ecosystem properties change predictably after initial restoration plantings, and that reaching critical thresholds in some ecosystem properties makes conditions suitable for the regeneration of late successional species, which is vital for restoration success and long-term ecosystem sustainability. Abiotic and biotic conditions that promote tree regeneration and epiphyte colonization will likely be present in forests with a basal area ≥27 m 2 /ha. We recommend that urban forest restoration plantings be designed to promote rapid canopy closure to reduce light availability, suppress herbaceous weeds, and stabilize the microclimate. © 2017 by the Ecological Society of America.
16th International Conference on Nuclear Structure: NS2016
Galindo-Uribarri, Alfredo
2016-10-28
Every two years the Nuclear Structure (NS) conference series brings together researchers from an international community of experimental and theoretical nuclear physicists to present and discuss their latest results in nuclear structure. This biennial conference covered the latest results on experimental and theoretical research into the structure of nuclei at the extremes of isospin, excitation energy, mass, and angular momentum. Topics included many of the most exciting areas of modern nuclear structure research such as transitional behavior, nuclear structure and its evolution across the nuclear landscape, shell structure, collectivity, nuclear structure with radioactive beams, and macroscopic and microscopic approaches tomore » nuclear structure.« less
16th International Conference on Nuclear Structure: NS2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galindo-Uribarri, Alfredo
Every two years the Nuclear Structure (NS) conference series brings together researchers from an international community of experimental and theoretical nuclear physicists to present and discuss their latest results in nuclear structure. This biennial conference covered the latest results on experimental and theoretical research into the structure of nuclei at the extremes of isospin, excitation energy, mass, and angular momentum. Topics included many of the most exciting areas of modern nuclear structure research such as transitional behavior, nuclear structure and its evolution across the nuclear landscape, shell structure, collectivity, nuclear structure with radioactive beams, and macroscopic and microscopic approaches tomore » nuclear structure.« less
Struelens, Quentin; Gonzales Pomar, Karina; Loza Herrera, Susi; Nina Huanca, Gaby; Dangles, Olivier; Rebaudo, François
2017-01-01
Grazing areas management is of utmost importance in the Andean region. In the valleys of the Bolivian Cordillera Real near La Paz, pastoralism constitutes the traditional way for people to insure food security and economical sustainability. In these harsh mountains, unique and productive wetlands sustained by glacial water streams are of utmost importance for feeding cattle herds during the dry season. After the colonization by the Spanish, a shift in livestock species has been observed, with the introduction of exotic species such as cows and sheep, resulting in a different impact on pastures compared to native camelid species-llamas and alpacas. Here we explored some of the social-economical and environmental drivers that motivate Bolivian pastoralists to prefer exotic over native livestock species, based on 36 household surveys in the Cordillera Real. We constructed a Partial Least Squares Structural Equation Model in order to assess the relationships between these drivers. Our results suggest that the access to market influenced pastoralists to reshape their herd composition, by increasing the number of sheep. They also suggest that community size increased daily grazing time in pastures, therefore intensifying the grazing pressure. At a broader scale, this study highlights the effects of some social-economical and environmental drivers on mountain herding systems.
Struelens, Quentin; Gonzales Pomar, Karina; Loza Herrera, Susi; Nina Huanca, Gaby; Dangles, Olivier
2017-01-01
Grazing areas management is of utmost importance in the Andean region. In the valleys of the Bolivian Cordillera Real near La Paz, pastoralism constitutes the traditional way for people to insure food security and economical sustainability. In these harsh mountains, unique and productive wetlands sustained by glacial water streams are of utmost importance for feeding cattle herds during the dry season. After the colonization by the Spanish, a shift in livestock species has been observed, with the introduction of exotic species such as cows and sheep, resulting in a different impact on pastures compared to native camelid species—llamas and alpacas. Here we explored some of the social-economical and environmental drivers that motivate Bolivian pastoralists to prefer exotic over native livestock species, based on 36 household surveys in the Cordillera Real. We constructed a Partial Least Squares Structural Equation Model in order to assess the relationships between these drivers. Our results suggest that the access to market influenced pastoralists to reshape their herd composition, by increasing the number of sheep. They also suggest that community size increased daily grazing time in pastures, therefore intensifying the grazing pressure. At a broader scale, this study highlights the effects of some social-economical and environmental drivers on mountain herding systems. PMID:29228062
Effective theory of exotic superconductivity in LaAlO3/SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Esmailzadeh, Haniyeh; Moghaddam, Ali G.
2018-05-01
Motivated by experimental and theoretical works about superconductivity at the oxide interfaces, we provide a simple model for possible unconventional pairings inside the exotic two-dimensional electron gas formed in heterostructures of SrTiO3 and LaAlO3. At the low energy limit, the electron gas at the interfaces is usually modeled with an effective three band model considering of 3d t2g orbitals which are slightly coupled by atomic spin-orbit couplings (SOC). Considering direct superconducting pairing in two higher delocalized bands and by exploiting a perturbative scheme based on canonical transformation, we derive the effective pairing amplitudes with possibly exotic nature inside the localized dxy band as well as various inter-band pairing components. In particular we show that equal-spin triplet pairings are possible between the band dxy and any of other dxz and dyz bands. In addition weaker effective pairings take place inside the localized band itself and between delocalized dxz and dyz bands with singlet and opposite-spin triplet characters. These unconventional effective pairings are indeed mediated by SOC-induced higher order virtual transitions between the bands and particularly into the localized band. Our model suggest that unconventional effective superconductivity is possible at oxide interfaces, simply, due to the special band structure and important role of atomic SOC and perhaps other magnetic effects present at these heterostructures.
Estomba, Diego; Ladio, Ana; Lozada, Mariana
2006-01-03
Medicinal plant use has persisted as a long standing tradition in the Mapuche communities of Southern Argentina and Chile. An ethnobotanical survey was conducted in the rural Curruhuinca community located near the mountain city of San Martin de los Andes, Argentina. Semi-structured interviews were carried out on 22 families in order to examine the present use of medicinal plants and their reputed therapeutic effects. Ecological variables, such as distance to the gathering site and biogeographical origin were also analyzed. Our results showed that the Curruhuinca dwellers cited 89 plant species for medicinal purposes, both of native and exotic origin. They know about 47 native plants, of which they use 40, and they know of 42 exotic medicinal plants of which they use 34. A differential pattern was observed given that only native species, relevant for the traditional Mapuche medicine, were collected at more distant gathering sites. The interviewees mentioned 268 plant usages. Those most frequently reported had therapeutic value for treating digestive ailments (33%), as analgesic/anti-inflammatory (25%) and antitusive (13%). Native species were mainly cited as analgesics, and for gynecological, urinary and "cultural syndrome" effects, whereas exotic species were mainly cited for digestive ailments. The total number of medicinal plants known and used by the interviewees was positively correlated with people's age, indicating that this ancient knowledge tends to disappear in the younger generations.
NASA Astrophysics Data System (ADS)
Galatà, A.; Patti, G.; Roncolato, C.; Angot, J.; Lamy, T.
2016-02-01
The Selective Production of Exotic Species (SPES) project is an ISOL facility under construction at Istituto Nazionale di Fisica Nucleare-Laboratori Nationali di Legnaro (INFN-LNL). 1+ radioactive ions, produced and extracted from the target-ion-source system, will be charge bred to high charge states by an ECR charge breeder (SPES-CB): the project will adopt an upgraded version of the PHOENIX charge breeder, developed since about twenty years by the Laboratoire de Physique Subatomique et de Cosmologie (LPSC). The collaboration between LNL and LPSC started in 2010 with charge breeding experiments performed on the LPSC test bench and led, in June 2014, to the signature of a Research Collaboration Agreement for the delivery of a complete charge breeder and ancillaries, satisfying the SPES requirements. Important technological aspects were tackled during the construction phase, as, for example, beam purity issues, electrodes alignment, and vacuum sealing. This phase was completed in spring 2015, after which the qualification tests were carried out at LPSC on the 1+/q+ test stand. This paper describes the characteristics of the SPES-CB, with particular emphasis on the results obtained during the qualification tests: charge breeding of Ar, Xe, Rb, and Cs satisfied the SPES requirements for different intensities of the injected 1+ beam, showing very good performances, some of which are "best ever" for this device.
Lauren P. Waller; Ragan M. Callaway; John N. Klironomos; Yvette K. Ortega; John L. Maron
2016-01-01
1. Arbuscular mycorrhizal (AM) fungi can exert a powerful influence on the outcome of plantâplant competition. Since some exotic plants interact differently with soil biota such as AM fungi in their new range, range-based shifts in AM responsiveness could shift competitive interactions between exotic and resident plants, although this remains poorly studied. 2. We...
Megan Taylor
2013-01-01
Post-fire seeding of native species is intended to reduce weed entry, yet few studies have addressed the impacts of seeding methods on the establishment and persistence of exotic annuals. In summers of 2010 and 2011, we investigated productivity of exotic annuals across rehabilitation seedings that were established on the Scooby Wildfire site in northern Utah. The site...
USDA-ARS?s Scientific Manuscript database
Invasion by the exotic annual grass Bromus tectorum often increases soil nutrient availability. It is unclear, however, if other grasses benefit from this higher nutrient status. Soil from three sites in the northern Great Basin U.S.A. conditioned by B. tectoruminvasion (BTCS=B. tectorum conditioned...
FUEL CONDITIONS ASSOCIATED WITH NATIVE AND EXOTIC GRASSES IN A SUBTROPICAL DRY FOREST IN PUERTO RICO
Jarrod M. Thaxton; Skip J. Van Bloem; Stefanie Whitmire
2012-01-01
Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of...
NASA Astrophysics Data System (ADS)
Nabi, Jameel-Un; Böyükata, Mahmut
2016-03-01
We investigate even-even nuclei in the A ∼ 70 mass region within the framework of the proton-neutron quasi-particle random phase approximation (pn-QRPA) and the interacting boson model-1 (IBM-1). Our work includes calculation of the energy spectra and the potential energy surfaces V (β , γ) of Zn, Ge, Se, Kr and Sr nuclei with the same proton and neutron number, N = Z. The parametrization of the IBM-1 Hamiltonian was performed for the calculation of the energy levels in the ground state bands. Geometric shape of the nuclei was predicted by plotting the potential energy surfaces V (β , γ) obtained from the IBM-1 Hamiltonian in the classical limit. The pn-QRPA model was later used to compute half-lives of the neutron-deficient nuclei which were found to be in very good agreement with the measured ones. The pn-QRPA model was also used to calculate the Gamow-Teller strength distributions and was found to be in decent agreement with the measured data. We further calculate the electron capture and positron decay rates for these N = Z waiting point (WP) nuclei in the stellar environment employing the pn-QRPA model. For the rp-process conditions, our total weak rates are within a factor two compared with the Skyrme HF +BCS +QRPA calculation. All calculated electron capture rates are comparable to the competing positron decay rates under rp-process conditions. Our study confirms the finding that electron capture rates form an integral part of the weak rates under rp-process conditions and should not be neglected in the nuclear network calculations.
Thermodynamics of "exotic" Bañados-Teitelboim-Zanelli black holes.
Townsend, Paul K; Zhang, Baocheng
2013-06-14
A number of three-dimensional (3D) gravity models, such as 3D conformal gravity, admit "exotic" black hole solutions: the metric is the same as the Bañados-Teitelboim-Zanelli metric of 3D Einstein gravity but with reversed roles for mass and angular momentum, and an entropy proportional to the length of the inner horizon instead of the event horizon. Here we show that the Bañados-Teitelboim-Zanelli solutions of the exotic 3D Einstein gravity (with parity-odd action but Einstein field equations) are exotic black holes, and we investigate their thermodynamics. The first and second laws of black hole thermodynamics still apply, and the entropy still has a statistical interpretation.
NASA Astrophysics Data System (ADS)
Das, Praloy; Ghosh, Subir
2017-12-01
A noncommutative extension of an ideal (Hamiltonian) fluid model in 3 +1 dimensions is proposed. The model enjoys several interesting features: it allows a multiparameter central extension in Galilean boost algebra (which is significant being contrary to the existing belief that a similar feature can appear only in 2 +1 -dimensions); noncommutativity generates vorticity in a canonically irrotational fluid; it induces a nonbarotropic pressure leading to a nonisentropic system. (Barotropic fluids are entropy preserving as the pressure depends only on the matter density.) Our fluid model is termed "exotic" since it has a close resemblance with the extensively studied planar (2 +1 dimensions) exotic models and exotic (noncommutative) field theories.
Issues and opportunities in exotic hadrons
Briceno, Raul A.; Cohen, Thomas D.; Coito, S.; ...
2016-04-01
The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. Consequently, it is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimentalmore » and theoretical issues concerning heavy exotic hadrons is presented.« less
Are bison exotic in the Wrangell-St. Elias National Park and Preserve?
NASA Astrophysics Data System (ADS)
Peek, James M.; Miquelle, Dale G.; Wright, R. Gerald
1987-03-01
The effect of past distributions of animal populations now extinct in an area from unknown causes is considered relative to their status as exotic or native in national parks. The example is the bison (Bison bison) on the Copper and Chitina river drainages in Alaska in the USA which was introduced prior to establishment of Wrangell-St. Elias National Park and Preserve. The fossil record suggests that bison were present as recently as 500 years ago in Alaska. The policy of the US National Park Service to maintain natural ecosystems and restrict or eliminate exotic species raises the issue of whether this species should be treated as exotic or native.
Compounding and Extralabel Use of Drugs in Exotic Animal Medicine.
Powers, Lauren V; Davidson, Gigi
2018-05-01
Extralabel drug use is the use of a Food and Drug Administration (FDA)-approved drug in a manner different from what is stipulated on the approved label. Compounding is the process of preparing a medication in a manner not indicated on the label to create a formulation specifically tailored to the needs of an individual patient. Extralabel drug use and compounding are vital aspects of safe and effective drug delivery to patients in exotic animal practice. There are few FDA-approved drugs for exotic animal species, and many approved drugs for other species are not available in suitable formulations for use in exotic animals. Copyright © 2018 Elsevier Inc. All rights reserved.
The exotic remnants of compact object binary mergers
NASA Astrophysics Data System (ADS)
Duez, Matthew
2017-01-01
The collision and merger of a neutron star with a black hole or another neutron star is a strong source of gravitational waves and a promising setup for the creation of bright infrared (kilonova) and gamma ray (gamma ray burst) transients. These violent events can be modeled by numerical simulations incorporating general relativity, fluid dynamics, and nuclear physics. In this talk, I will explain the findings of some of these simulations. Depending on the properties of the binary, the merger leaves a black hole, a black hole accreting matter from a torus at an incredible rate, or a massive spinning neutron star. The latter two cases are characterized by the importance of differential rotation, magnetohydrodynamic processes, and neutrino radiation. To understand these systems, I will focus on what we know of their dynamical and thermal equilibrium structure, what we know of the dynamical instabilities to which they might be prone, and what we can tentatively say about their subsequent secular evolution from outflow, magnetic, radiative, and other effects. Computer simulations are becoming ever more impressive but remain unequal to the problem at hand, so I will address the challenges still posed by small-scale magnetohydrodynamic effects and by radiation transport. The author is a member of the SXS Collaboration and acknowledges support from NSF.
Dynamics of 28,30S i* compound nuclei formed at sub-barrier energies
NASA Astrophysics Data System (ADS)
Kaur, Manpreet; Singh, Bir Bikram; Kaur, Sarbjeet
2018-05-01
The decay of 28S i* and 30S i* compound nuclei (CN) formed at sub-barrier energies, in the reactions induced by stable projectile 16O and exotic projectile 18O, respectively, has been investigated within the quantum mechanical fragmentation theory based dynamical cluster-decay model (DCM). The collective potential energy surface shows that xα-type (x is an integer) clusters are minimized in the decay of 28S i* while in case of 30S i* in addition to xα-type clusters, np-xα (n, p are neutron and proton, respectively) type clusters are also minimized. These minimized fragments have more preformation probability P0, which is an important factor through which nuclear structure effects of decaying CN are probed, within DCM. The results show that light particles (LPs) are contributing mostly in the fusion cross-section, σfusion. In case of 30S i*, the contribution of 1n is highest and more compared to 4He in case of 28S i*, which seems to play an important role in fusion enhancement. The DCM calculated σfusion for both the CN formed with same Ec.m. = 7.0 MeV gives more value for σfusion of 30S i*, in agreement with the experimental data.
Design study of a re-bunching RFQ for the SPES project
NASA Astrophysics Data System (ADS)
Shin, Seung Wook; Palmieri, A.; Comunian, M.; Grespan, F.; Chai, Jong Seo
2014-05-01
An upgrade to the 2nd generation of the selective production of exotic species (SPES) to produce a radioactive ion beam (RIB) has been studied at the istituto nazionale di fisica nucleare — laboratory nazionali di Legnaro (INFN-LNL). Due to the long distance between the isotope separator online (ISOL) facility and the superconducting quarter wave resonator (QWR) cavity acceleratore lineare per ioni (ALPI), a new re-buncher cavity must be introduced to maintain the high beam quality during the beam transport. A particular radio frequency quadrupole (RFQ) structure has been suggested to meet the requirements of this project. A window-type RFQ, which has a high mode separation, less power dissipation and compact size compared to the conventional normal 4-vane RFQ, has been introduced. The RF design has been studied considering the requirements of the re-bunching machine for high figures of merit such as a proper operation frequency, a high shunt impedance, a high quality factor, a low power dissipation, etc. A sensitivity analysis of the fabrication and the misalignment error has been conducted. A micro-movement slug tuner has been introduced to compensate for the frequency variations that may occur due to the beam loading, the thermal instability, the microphonic effect, etc.
The GlueX Experiment: First Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanelli, Cristiano
GlueX is a nuclear physics experiment located at the Thomas Jefferson National Accelerator Facility designed to study and understand the nature of confinement in QCD by mapping the spectrum of exotic mesons. The experiment will be able to probe new areas by using photoproduction, i.e. the scattering on nucleon of ~9 GeV linearly polarized photons derived from the recently upgraded CEBAF with a 12 GeV electron beam. Spring 2016 has been characterized by a continued detector commissioning and initial running at the full design energy. The current status of the GlueX detector performance and data collection will be discussed, withmore » a brief overview of first physics results, future run plans, and long term upgrades.« less
Physical considerations relevant to HZE-particle transport in matter.
Schimmerling, W
1988-06-01
High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.
Pairing and (9/2)n configuration in nuclei in the 208Pb region
NASA Astrophysics Data System (ADS)
Stepanov, M.; Imasheva, L.; Ishkhanov, B.; Tretyakova, T.
2018-04-01
Excited states in low-energy spectra in nuclei near 208Pb are considered. The pure (j = 9/2)n configuration approximation with delta-force is used for ground state multiplet calculations. The multiplet splitting is determined by the pairing energy, which can be defined from the even-odd straggering of the nuclear masses. For the configurations with more than two valence nucleons, the seniority scheme is used. The results of the calculations agree with the experimental data for both stable and exotic nuclei within 0.06-6.16%. Due to simplicity and absence of the fitted parameters, the model can be easily applied for studies of nature of the excited states in a wide range of nuclei.
Neutron capture by hook or by crook
NASA Astrophysics Data System (ADS)
Mosby, Shea
2016-03-01
The neutron capture reaction is a topic of fundamental interest for both heavy element (A>60) nucleosynthesis and applications in such fields as nuclear energy and defense. The full suite of interesting isotopes ranges from stable nuclei to the most exotic, and it is not possible to directly measure all the relevant reaction rates. The DANCE instrument at Los Alamos provides direct access to the neutron capture reaction for stable and long-lived nuclei, while Apollo coupled to HELIOS at Argonne has been developed as an indirect probe for cases where a direct measurement is impossible. The basic techniques and their implications will be presented, and the status of ongoing experimental campaigns to address neutron capture in the A=60 and A=100 mass regions will be discussed.
Conceptual design of the AGATA 1 π array at GANIL
NASA Astrophysics Data System (ADS)
Clément, E.; Michelagnoli, C.; de France, G.; Li, H. J.; Lemasson, A.; Barthe Dejean, C.; Beuzard, M.; Bougault, P.; Cacitti, J.; Foucher, J.-L.; Fremont, G.; Gangnant, P.; Goupil, J.; Houarner, C.; Jean, M.; Lefevre, A.; Legeard, L.; Legruel, F.; Maugeais, C.; Ménager, L.; Ménard, N.; Munoz, H.; Ozille, M.; Raine, B.; Ropert, J. A.; Saillant, F.; Spitaels, C.; Tripon, M.; Vallerand, Ph.; Voltolini, G.; Korten, W.; Salsac, M.-D.; Theisen, Ch.; Zielińska, M.; Joannem, T.; Karolak, M.; Kebbiri, M.; Lotode, A.; Touzery, R.; Walter, Ch.; Korichi, A.; Ljungvall, J.; Lopez-Martens, A.; Ralet, D.; Dosme, N.; Grave, X.; Karkour, N.; Lafay, X.; Legay, E.; Kojouharov, I.; Domingo-Pardo, C.; Gadea, A.; Pérez-Vidal, R. M.; Civera, J. V.; Birkenbach, B.; Eberth, J.; Hess, H.; Lewandowski, L.; Reiter, P.; Nannini, A.; De Angelis, G.; Jaworski, G.; John, P.; Napoli, D. R.; Valiente-Dobón, J. J.; Barrientos, D.; Bortolato, D.; Benzoni, G.; Bracco, A.; Brambilla, S.; Camera, F.; Crespi, F. C. L.; Leoni, S.; Million, B.; Pullia, A.; Wieland, O.; Bazzacco, D.; Lenzi, S. M.; Lunardi, S.; Menegazzo, R.; Mengoni, D.; Recchia, F.; Bellato, M.; Isocrate, R.; Egea Canet, F. J.; Didierjean, F.; Duchêne, G.; Baumann, R.; Brucker, M.; Dangelser, E.; Filliger, M.; Friedmann, H.; Gaudiot, G.; Grapton, J.-N.; Kocher, H.; Mathieu, C.; Sigward, M.-H.; Thomas, D.; Veeramootoo, S.; Dudouet, J.; Stézowski, O.; Aufranc, C.; Aubert, Y.; Labiche, M.; Simpson, J.; Burrows, I.; Coleman-Smith, P. J.; Grant, A.; Lazarus, I. H.; Morrall, P. S.; Pucknell, V. F. E.; Boston, A.; Judson, D. S.; Lalović, N.; Nyberg, J.; Collado, J.; González, V.; Kuti, I.; Nyakó, B. M.; Maj, A.; Rudigier, M.
2017-05-01
The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This set-up exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA 1 π array are presented.
NASA Astrophysics Data System (ADS)
Aygun, M.; Kucuk, Y.; Boztosun, I.; Ibraheem, Awad A.
2010-12-01
The elastic scattering angular distributions of 6He projectile on different medium and heavy mass target nuclei including 12C, 27Al, 58Ni, 64Zn, 65Cu, 197Au, 208Pb and 209Bi have been examined by using the few-body and Gaussian-shaped density distributions at various energies. The microscopic real parts of the complex nuclear optical potential have been obtained by using the double-folding model for each of the density distributions and the phenomenological imaginary potentials have been taken as the Woods-Saxon type. Comparative results of the few-body and Gaussian-shaped density distributions together with the experimental data are presented within the framework of the optical model.
Orrock, John L; Dutra, Humberto P; Marquis, Robert J; Barber, Nicholas
2015-04-01
Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition.
Impacts of mixed severity wildfire on exotic plants in a Colorado ponderosa pine-Douglas-fir forest
Paula J. Fornwalt; Merrill R. Kaufmann; Thomas J. Stohlgren
2010-01-01
The 2002 Hayman Fire burned with mixed severity across 55,800 ha of montane Colorado forest, including pre-existing plots that were originally measured for understory plant composition and cover in 1997. We examined the influence of the Hayman Fire on exotic plants by remeasuring these plots annually from 2003 to 2007. We found that (1) exotic richness and cover...
Meteors, space aliens, and other exotic encounters
Tom Hofacker
1998-01-01
Exotics have had a big impact on our environment. If you do not think so, just look at how many people believe that humans would not exist on this planet were it not for exotics. This belief centers on two main theories: (1) that humans could not have evolved were it not for a huge meteor from outer space striking the earth resulting in extinction of the dinasours, the...
Iveson, J B; Bradshaw, S D; How, R A; Smith, D W
2014-11-01
The exposure of indigenous humans and native fauna in Australia and the Wallacea zoogeographical region of Indonesia to exotic Salmonella serovars commenced during the colonial period and has accelerated with urbanization and international travel. In this study, the distribution and prevalence of exotic Salmonella serovars are mapped to assess the extent to which introduced infections are invading native wildlife in areas of high natural biodiversity under threat from expanding human activity. The major exotic Salmonella serovars, Bovismorbificans, Derby, Javiana, Newport, Panama, Saintpaul and Typhimurium, isolated from wildlife on populated coastal islands in southern temperate areas of Western Australia, were mostly absent from reptiles and native mammals in less populated tropical areas of the state. They were also not recorded on the uninhabited Mitchell Plateau or islands of the Bonaparte Archipelago, adjacent to south-eastern Indonesia. Exotic serovars were, however, isolated in wildlife on 14/17 islands sampled in the Wallacea region of Indonesia and several islands off the west coast of Perth. Increases in international tourism, involving islands such as Bali, have resulted in the isolation of a high proportion of exotic serovar infections suggesting that densely populated island resorts in the Asian region are acting as staging posts for the interchange of Salmonella infections between tropical and temperate regions.
Martin, Leanne M; Polley, H Wayne; Daneshgar, Pedram P; Harris, Mary A; Wilsey, Brian J
2014-06-01
Human activities have caused non-native plant species with novel ecological interactions to persist on landscapes, and it remains controversial whether these species alter multiple aspects of communities and ecosystems. We tested whether native and exotic grasslands differ in species diversity, ecosystem services, and an important aspect of functional diversity (C3:C4 proportions) by sampling 42 sites along a latitudinal gradient and conducting a controlled experiment. Exotic-dominated grasslands had drastically lower plant diversity and slightly higher tissue N concentrations and forage quality compared to native-dominated sites. Exotic sites were strongly dominated by C4 species at southern and C3 species at northern latitudes with a sharp transition at 36-38°, whereas native sites contained C3:C4 mixtures. Large differences in C3:C4 proportions and temporal niche partitioning were found between native and exotic mixtures in the experiment, implying that differences in C3:C4 proportions along the latitudinal gradient are caused partially by species themselves. Our results indicate that the replacement of native- by exotic-dominated grasslands has created a management tradeoff (high diversity versus high levels of certain ecosystem services) and that models of global change impacts and C3/C4 distribution should consider effects of exotic species.
Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, V N; Farrington, S; Fauré, A; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gogota, O; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Knoepfel, K; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neu, C; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Osta, J; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savitskyi, M; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S
2015-04-17
Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with exotic spin J and parity P are presented and compared with results obtained assuming the standard model value JP=0+. Both collaborations analyzed approximately 10 fb(-) of proton-antiproton collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models predicting exotic Higgs bosons with JP=0- and JP=2+ are tested. The kinematic properties of exotic Higgs boson production in association with a vector boson differ from those predicted for the standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate, are set at 0.36 for both the JP=0- hypothesis and the JP=2+ hypothesis. If the production rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard deviations and 4.9 standard deviations for the JP=0- and JP=2+ hypotheses, respectively.
SPIRAL2 at GANIL: A world leading ISOL facility at the dawn of the next decade
NASA Astrophysics Data System (ADS)
Gales, S.
2007-07-01
To pursue the investigation of a new territory of nuclei with extreme N/Z, called “terra incognita”, several projects, all aiming at the increase by several orders of magnitude of RIB intensities are now under discussion worldwide. In Europe, two major new projects have been approved recently: FAIR@GSI, using the so-called “in-flight” method, and SPIRAL2@GANIL, based on the ISOL method. The main goal of SPIRAL2 is clearly to extend our knowledge of the limit of existence and the structure of nuclei deeply in the medium and heavy mass region ( A=60-140), which is today an almost unexplored continent. SPIRAL2 is based on a high power, CW, superconducting driver LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 kW) directed on a C converter+ Uranium target and producing therefore more than 10 13 fissions/s. The expected radioactive beam intensities for exotic species in the mass range from A=60 to A=140, of the order of 10 6-10 10 pps will surpass by two order of magnitude any existing facility in the world. These unstable atoms will be available at energies between a few keV/n to 15 MeV/n. The same driver will accelerate high intensity (100 μA to 1 mA), heavier ions up to Ar at 14 MeV/n producing also proton rich exotic nuclei. In applied areas SPIRAL2 is considered as a powerful variable energy neutron source, a must for studying the impact of nuclear fission and fusion on materials. The intensities of these unstable species are excellent opportunities for new tracers and diagnostics either for solid state, material or for radiobiological science and medicine. The technical design has reached the point where SPIRAL2 is ready for construction. Project status and foreseen schedules will be presented. Scientific and technical R&D programs in collaboration with EU and International partners for the facility as well as for the associated innovative new instruments will be discussed.
Effects of an exotic prey species on a native specialist: example of the snail kite
Cattau, Christopher E.; Martin, J.; Kitchens, Wiley M.
2010-01-01
Despite acknowledging that exotic species can exhibit tremendous influence over native populations, few case studies have clearly demonstrated the effects of exotic prey species on native predators. We examined the effects of the recently introduced island apple snail (Pomacea insularum) on the foraging behavior and energetics of the endangered snail kite (Rostrhamus sociabilis plumbeus) in Florida. We conducted time-activity budgets: (i) on kites foraging for native Florida apple snails (Pomacea paludosa) in major wetland units within the kites' range that had not been invaded by the exotic island apple snail and (ii) on kites foraging for exotic apple snails in Lake Tohopekaliga, the only major wetland utilized by the snail kite that had suffered a serious invasion of P. insularum. When foraging for P. insularum, snail kites dropped a greater proportion of snails, and they experienced increased handling times and decreased consumption rates; however, kites foraging for P. insularum also spent a smaller proportion of the day in flight. Estimates of net daily energy balances between kites feeding on P. insularum versus P. paludosa were comparable for adults, but juveniles experienced energetic deficiencies when feeding on the exotic snail. Due to this discrepancy, we hypothesize that wetlands invaded by P. insularum, such as Lake Tohopekaliga, may function as ecological traps for the snail kite in Florida by attracting breeding adults but simultaneously depressing juvenile survival. This study highlights the conservation implications and importance of elucidating the effects that exotic species have on native specialists, especially those that are endangered, because subtle influences on behavior may have significant population consequences.
Effects of an exotic prey species on a native specialist: Eexample of the snail kite
Cattau, Christopher E.; Martin, J.; Kitchens, W.M.
2010-01-01
Despite acknowledging that exotic species can exhibit tremendous influence over native populations, few case studies have clearly demonstrated the effects of exotic prey species on native predators. We examined the effects of the recently introduced island apple snail (Pomacea insularum) on the foraging behavior and energetics of the endangered snail kite (Rostrhamus sociabilis plumbeus) in Florida. We conducted time-activity budgets: (i) on kites foraging for native Florida apple snails (Pomacea paludosa) in major wetland units within the kites' range that had not been invaded by the exotic island apple snail and (ii) on kites foraging for exotic apple snails in Lake Tohopekaliga, the only major wetland utilized by the snail kite that had suffered a serious invasion of P. insularum. When foraging for P. insularum, snail kites dropped a greater proportion of snails, and they experienced increased handling times and decreased consumption rates; however, kites foraging for P. insularum also spent a smaller proportion of the day in flight. Estimates of net daily energy balances between kites feeding on P. insularum versus P. paludosa were comparable for adults, but juveniles experienced energetic deficiencies when feeding on the exotic snail. Due to this discrepancy, we hypothesize that wetlands invaded by P. insularum, such as Lake Tohopekaliga, may function as ecological traps for the snail kite in Florida by attracting breeding adults but simultaneously depressing juvenile survival. This study highlights the conservation implications and importance of elucidating the effects that exotic species have on native specialists, especially those that are endangered, because subtle influences on behavior may have significant population consequences. ?? 2009 Elsevier Ltd.
Saunders, W. Carl; Budy, Phaedra E.; Thiede, Gary P.
2015-01-01
Exotic species present a great threat to native fish conservation; however, eradicating exotics is expensive and often impractical. Mechanical removal can be ineffective for eradication, but nonetheless may increase management effectiveness by identifying portions of a watershed that are strong sources of exotics. We used mechanical removal to understand processes driving exotic brown trout (Salmo trutta) populations in the Logan River, Utah. Our goals were to: (i) evaluate the demographic response of brown trout to mechanical removal, (ii) identify sources of brown trout recruitment at a watershed scale and (iii) evaluate whether mechanical removal can reduce brown trout densities. We removed brown trout from 2 km of the Logan River (4174 fish), and 5.6 km of Right Hand Fork (RHF, 15,245 fish), a low-elevation tributary, using single-pass electrofishing. We compared fish abundance and size distributions prior to, and after 2 years of mechanical removal. In the Logan River, immigration to the removal reach and high natural variability in fish abundances limited the response to mechanical removal. In contrast, mechanical removal in RHF resulted in a strong recruitment pulse, shifting the size distribution towards smaller fish. These results suggest that, before removal, density-dependent mortality or emigration of juvenile fish stabilised adult populations and may have provided a source of juveniles to the main stem. Overall, in sites demonstrating strong density-dependent population regulation, or near sources of exotics, short-term mechanical removal has limited effects on brown trout populations but may help identify factors governing populations and inform large-scale management of exotic species.
Sofaer, Helen R.; Jarnevich, Catherine S.
2017-01-01
AimThe distributions of exotic species reflect patterns of human-mediated dispersal, species climatic tolerances and a suite of other biotic and abiotic factors. The relative importance of each of these factors will shape how the spread of exotic species is affected by ongoing economic globalization and climate change. However, patterns of trade may be correlated with variation in scientific sampling effort globally, potentially confounding studies that do not account for sampling patterns.LocationGlobal.Time periodMuseum records, generally from the 1800s up to 2015.Major taxa studiedPlant species exotic to the United States.MethodsWe used data from the Global Biodiversity Information Facility (GBIF) to summarize the number of plant species with exotic occurrences in the United States that also occur in each other country world-wide. We assessed the relative importance of trade and climatic similarity for explaining variation in the number of shared species while evaluating several methods to account for variation in sampling effort among countries.ResultsAccounting for variation in sampling effort reversed the relative importance of trade and climate for explaining numbers of shared species. Trade was strongly correlated with numbers of shared U.S. exotic plants between the United States and other countries before, but not after, accounting for sampling variation among countries. Conversely, accounting for sampling effort strengthened the relationship between climatic similarity and species sharing. Using the number of records as a measure of sampling effort provided a straightforward approach for the analysis of occurrence data, whereas species richness estimators and rarefaction were less effective at removing sampling bias.Main conclusionsOur work provides support for broad-scale climatic limitation on the distributions of exotic species, illustrates the need to account for variation in sampling effort in large biodiversity databases, and highlights the difficulty in inferring causal links between the economic drivers of invasion and global patterns of exotic species occurrence.
Diversity patterns and composition of native and exotic floras in central Chile
NASA Astrophysics Data System (ADS)
Figueroa, Javier A.; Teillier, Sebastián; Castro, Sergio A.
2011-03-01
Floristic changes in the Mediterranean region of central Chile brought about by human impact appear to be shared with other climatic regions, although there is a notable absence of empirical studies and available quantitative evidence for the central Chile region. This study examines the cover, richness and composition of native and exotic plant species in a representative area of central Chile. Through floristic characterization of 33 sites sampled using 40 × 40 m plots distributed along transect on which the two farthest sites were separated by 50 km, the floristic richness and cover patterns, as well as the general land use characteristics were evaluated (native matorral, espinal, abandoned farming field, forest plantations, periurban sites, road sites, river bank, and burnt site). We recorded 327 species of plants; 213 species were native and 114 were exotic. The average number of species was heterogeneous in all sites, showing a greater relative native frequency in those sites with a lower level of anthropic intervention. Except for the matorral, the cover of exotic species was greater than that of native species. No relation was found between richness and cover in relation to the different types of land use. The relationship between cover of native and exotic was negative, although for richness did not show relationship. Results show that the exotic species are limited by resources, although they have not completely displaced the native species. The native and exotic floras respond to different spatial distribution patterns, so their presence makes it possible to establish two facts rarely quantified in central Chile: first, that the exotic flora replaces (but does not necessarily displace) the native flora, and second, that at the same time, because of its greater geographic ubiquity and the abundance levels that it achieves, it contributes to the taxonomic and physiognomic homogenization of central Chile.
Bourg, Norman; McShea, William J.; Herrmann, Valentine; Stewart, Chad M.
2017-01-01
Mammalian herbivory and exotic plant species interactions are an important ongoing research topic, due to their presumed impacts on native biodiversity. The extent to which these interactions affect forest understory plant community composition and persistence was the subject of our study. We conducted a 5-year, 2 × 2 factorial experiment in three mid-Atlantic US deciduous forests with high densities of white-tailed deer (Odocoileus virginianus) and exotic understory plants. We predicted: (i) only deer exclusion and exotic plant removal in tandem would increase native plant species metrics; and (ii) deer exclusion alone would decrease exotic plant abundance over time. Treatments combining exotic invasive plant removal and deer exclusion for plots with high initial cover, while not differing from fenced or exotic removal only plots, were the only ones to exhibit positive richness responses by native herbaceous plants compared to control plots. Woody seedling metrics were not affected by any treatments. Deer exclusion caused significant increases in abundance and richness of native woody species >30 cm in height. Abundance changes in two focal members of the native sapling community showed that oaks (Quercus spp.) increased only with combined exotic removal and deer exclusion, while shade-tolerant maples (Acer spp.) showed no changes. We also found significant declines in invasive Japanese stiltgrass (Microstegium vimineum) abundance in deer-excluded plots. Our study demonstrates alien invasive plants and deer impact different components and life-history stages of the forest plant community, and controlling both is needed to enhance understory richness and abundance. Alien plant removal combined with deer exclusion will most benefit native herbaceous species richness under high invasive cover conditions while neither action may impact native woody seedlings. For larger native woody species, only deer exclusion is needed for such increases. Deer exclusion directly facilitated declines in invasive species abundance. Resource managers should consider addressing both factors to achieve their forest management goals.
de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M.; Almeida-Neto, Mário
2015-01-01
Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones. PMID:25565141
de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M; Almeida-Neto, Mário
2015-01-01
Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones.
Maria Gabriela Buamscha
2002-01-01
The southern portion of Argentina is called Patagonia, and is located between 37° and 55° south latitude. Across this region, there is a strong topographic and environmental gradient. Precipitation decreases from the western mountains towards the east and temperatures from north to south. These geographic gradients impose different structural patterns of soils and...
David H. Peter; Timothy B. Harrington
2012-01-01
To increase timber production and manage other forest resource values, some land managers have undertaken logging debris and vegetation control treatments after forest harvest. We explored the roles of clearcutting on plant community composition and structure at three sites where logging debris was dispersed, piled, or removed and vegetation was annually treated or not...
Impacts of invasive plants on songbirds: Using song structure as an indicator of habitat quality
Yvette Ortega
2007-01-01
Invasive species can alter habitat quality over broad scales, so they pose a severe threat to songbird populations. Through our long-term research program supported by BEMRP, we have found that changes in habitat quality induced by exotic plants like spotted knapweed can lead to subtle yet profound changes in songbird populations. For example, in knapweed-invaded...
Abdurakhmonov, I Y; Kohel, R J; Yu, J Z; Pepper, A E; Abdullaev, A A; Kushanov, F N; Salakhutdinov, I B; Buriev, Z T; Saha, S; Scheffler, B E; Jenkins, J N; Abdukarimov, A
2008-12-01
The narrow genetic base of cultivated cotton germplasm is hindering the cotton productivity worldwide. Although potential genetic diversity exists in Gossypium genus, it is largely 'underutilized' due to photoperiodism and the lack of innovative tools to overcome such challenges. The application of linkage disequilibrium (LD)-based association mapping is an alternative powerful molecular tool to dissect and exploit the natural genetic diversity conserved within cotton germplasm collections, greatly accelerating still 'lagging' cotton marker-assisted selection (MAS) programs. However, the extent of genome-wide linkage disequilibrium (LD) has not been determined in cotton. We report the extent of genome-wide LD and association mapping of fiber quality traits by using a 95 core set of microsatellite markers in a total of 285 exotic Gossypium hirsutum accessions, comprising of 208 landrace stocks and 77 photoperiodic variety accessions. We demonstrated the existence of useful genetic diversity within exotic cotton germplasm. In this germplasm set, 11-12% of SSR loci pairs revealed a significant LD. At the significance threshold (r(2)>/=0.1), a genome-wide average of LD declines within the genetic distance at <10 cM in the landrace stocks germplasm and >30 cM in variety germplasm. Genome wide LD at r(2)>/=0.2 was reduced on average to approximately 1-2 cM in the landrace stock germplasm and 6-8 cM in variety germplasm, providing evidence of the potential for association mapping of agronomically important traits in cotton. We observed significant population structure and relatedness in assayed germplasm. Consequently, the application of the mixed liner model (MLM), considering both kinship (K) and population structure (Q) detected between 6% and 13% of SSR markers associated with the main fiber quality traits in cotton. Our results highlight for the first time the feasibility and potential of association mapping, with consideration of the population structure and stratification existing in cotton germplasm resources. The number of SSR markers associated with fiber quality traits in diverse cotton germplasm, which broadly covered many historical meiotic events, should be useful to effectively exploit potentially new genetic variation by using MAS programs.
Neck formation and deformation effects in a preformed cluster model of exotic cluster decays
NASA Astrophysics Data System (ADS)
Kumar, Satish; Gupta, Raj K.
1997-01-01
Using the nuclear proximity approach and the two center nuclear shape parametrization, the interaction potential between two deformed and pole-to-pole oriented nuclei forming a necked configuration in the overlap region is calculated and its role is studied for the cluster decay half-lives. The barrier is found to move to a larger relative separation, with its proximity minimum lying in the neighborhood of the Q value of decay and its height and width reduced considerably. For cluster decay calculations in the preformed cluster model of Malik and Gupta, due to deformations and orientations of nuclei, the (empirical) preformation factor is found to get reduced considerably and agrees nicely with other model calculations known to be successful for their predictions of cluster decay half-lives. Comparison with the earlier case of nuclei treated as spheres suggests that the effects of both deformations and neck formation get compensated by choosing the position of cluster preformation and the inner classical turning point for penetrability calculations at the touching configuration of spherical nuclei.
NASA Astrophysics Data System (ADS)
Liu, Jian; Zhang, Jinjuan; Xu, Chang; Ren, Zhongzhou
2017-05-01
In this paper, the nuclear longitudinal form factors are systematically studied from the intrinsic charge multipoles. For axially deformed nuclei, two different types of density profiles are used to describe their charge distributions. For the same charge distributions expanded with different basis functions, the corresponding longitudinal form factors are derived and compared with each other. Results show the multipoles Cλ of longitudinal form factors are independent of the basis functions of charge distributions. Further numerical calculations of longitudinal form factors of 12C indicates that the C 0 multipole reflects the contributions of spherical components of all nonorthogonal basis functions. For deformed nuclei, their charge RMS radii can also be determined accurately by the C 0 measurement. The studies in this paper examine the model-independent properties of electron scattering, which are useful for interpreting electron scattering experiments on exotic deformed nuclei. Supported by National Natural Science Foundation of China (11505292, 11175085, 11575082, 11235001, 11275138, and 11447226), by Shandong Provincial Natural Science Foundation, China (BS2014SF007), Fundamental Research Funds for Central Universities (15CX02072A).
Nova Eruptions from Radio to Gamma-raysówith AAVSO Data in the Middle (Abstract)
NASA Astrophysics Data System (ADS)
Mukai, K.; Kafka, S.; Chomiuk, L.; Li, R.; Finzell, T.; Linford, J.; Sokoloski, J.; Nelson, T.; Rupen, M.; Mioduszewski, A.; Weston, J.
2018-06-01
(Abstract only) Novae are among the longest-known class of optical transients. In recent years, V1369 Cen in the south reached magnitude 3.3 in late 2013, and had repeated (but not periodic) cycles of re-brightening. Earlier in 2013, V339 Del almost reached magnitude 4.0 during the northern summer. An expanding ball of gas, at about 10,000 K, expelled by a nuclear explosion on the surface of a white dwarf, can explain much of the visible light outputs of novae. But these spectacular visible light displays turn out to be just a small part of the show. Novae are also transient objects in the radio through gamma-raysóin addition to the warm, visible light-emitting gas, we need cold dust particles that emit in the infra-red, 10 million degree shock-heated gas that emits hard X-rays, and the exposed surface of the nuclear-burning white dwarf that emits soft X-rays. Last but not least, we need an exotic process of particle acceleration to explain the gamma-rays and some radio data.
Interspecific competition among Hawaiian forest birds
Mountainspring, S.; Scott, J.M.
1985-01-01
The object of this study was to determine whether interspecific competition modified local geographic distribution, after taking into account the effect of habitat structure. The tendencies for 14 passerine birds to have positive or negative associations were examined, using 7861 sample points in seven native forests on the islands of Hawaii, Maui, and Kauai. All birds were at least partly insectivorous and were fairly common in forested areas, although some fed chiefly on nectar or fruit. Species-pairs were classified as primary or secondary potential competitors based on general dietary similarity. To evaluate the association between species and to account for the effect of individual species habitat preferences, partial correlations were computed for each species-pair in a study area from the simple correlations between the species and 26 habitat variables plus two quadratic terms to represent nonlinearity. The partial correlations represented a short-term ('instantaneous') assessment of the strength of competitive interactions, and did not reflect the accumulation of competitive displacement through time. Of 170 partial correlations in the analysis, only 10 indicated significant negative association. The general pattern was of positive association (76 significantly positive partials), which probably resulted from flocking and from attraction of birds to areas of resource superabundance. Two species showed consistent patterns of negative partial correlations over several adjacent study areas, the Japanese White-eye/Iiwi in montane Hawaii, and the Japanese White-eye/Elepaio in windward Hawaii; both patterns could be reasonably attributed to direct competition. Species-pairs were grouped by the native or exotic status of the component species. Native/exotic pairs had a significantly greater proportion of negative partial correlations (37%) than either native/native pairs (8%) or exotic/exotic pairs (0%). This pattern was consistent across the seven study areas and appeared to reflect the occurrence of interspecific competition along a broad and diffuse ecological 'front' between a co-evolved native avifauna and recently introduced exotic species. The role of competition in the pattern was corroborated by the significantly higher proportion of negative partial correlations among species-pairs of primary potential competitors than among those of secondary potential competitors. Our results suggested that 47% of the primary potential competitors among native/exotic species-pairs may experience at least small depressions in local population density due to competition. Although the negative correlations were for the most part small (average negative r = 0.06), one species could eventually replace another as spatial displacement accumulated through time. The Japanese White-eye appeared to have a principal role in native/exotic interactions, with 62% of the partial correlations between it and native primary potential competitor species being negative. Noteworthy implications were that (1) it was important to account for the habitat responses of individual species when studying the role of interspecific competition in modifying small-scale geographic distribution; (2) competition was frequently sporadic in its geographic occurrence and in the species affected, thus supporting Wiens' (1977) theory of competition; and (3) as a consequence, the role of interspecific competition in modifying distribution may be difficult to detect statistically with small data sets.
NASA Astrophysics Data System (ADS)
Valenzuela, Alejandro E. J.; Anderson, Christopher B.; Fasola, Laura; Cabello, José L.
2014-01-01
Understanding processes and impacts of biological invasions is fundamental for ecology and management. Recent reviews summarized the mechanisms by which invasive species alter entire ecosystems, but quantitative assessments of these mechanisms are lacking for actual assemblages to determine their relative importance, frequency and patterns. We updated information on introduced vertebrates in the Tierra del Fuego Archipelago (TDF) via an exhaustive literature review and new data to evaluate ecosystem impact mechanisms and provide management recommendations. To date, 24 exotic vertebrates have naturalized in TDF, outnumbering natives nearly 2:1, with the North American beaver (Castor canadensis) and muskrat (Ondatra zibethica) being the most widely distributed species and also impacting the ecosystem through the greatest number of mechanisms. Introduced vertebrates occupied most parts of the archipelago with human-inhabited islands having greater taxa richness. All exotics potentially altered ecosystems by one or more mechanisms: 100% food webs, 92% invasional meltdown, 42% habitat modification, 38% disease or parasite transmission, 21% soil property and disturbance regime changes. Impact to habitat structure was the main clustering criterion for this assemblage. Within the species that physically alter habitats, we found two sub-groups: 1) large herbivores and 2) "others" including beavers and muskrats. Species that did not alter habitat were divided further into those with predatory trophic effects (carnivorous mammals and trout, sub-group 4) and the rest with assorted impacts (sub-group 3). By establishing high quality information on archipelago-wide assemblage, distribution, impacts and mechanisms for exotic vertebrates, we recommend, based on ecological criteria, prioritizing the management of sub-group 2. A secondary priority might be given to the carnivores in sub-group 4, while species in sub-groups 1 and 3 are less urgent. As the first systematic survey of introduced fauna on an archipelago-scale, we identified knowledge gaps, such as population abundance and dynamics for specific species, which are needed to orient future work, but the notable progress made to date is highlighted.
Robert A. Haack; Therese M. Poland; Rui-Tong Gao
2000-01-01
It is estimated that there are at least 4500 exotic (non-indigenous) organisms currently established in the United States(US) (US Congress 1993) and possibly as many as 50,000 (Pimentel et al. 2000). Of the many exotic organisms now in the US, more than 400 are insects that feed on trees and shrubs.(Haack and Byler 1993, Mattson et al. 1994, Niemela and Mattson 1996)....
9 CFR 352.17 - Transportation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION EXOTIC ANIMALS AND HORSES; VOLUNTARY INSPECTION Exotic Animals § 352.17 Transportation. This shall...
New trends in chemistry and materials science in extremely tight space
Song, Yang; Manaa, M. Riad
2012-01-26
Pressure plays a critical role in regulating the structures and properties of materials. Since Percy Bridgeman was recognized by the 1946 Nobel Prize in Physics for his contribution in high-pressure physics, high-pressure research has remained an interdisciplinary scientific frontier with many extraordinary breakthroughs. Over the past decade or so, in particular, high-pressure chemistry and materials research has undergone major advances with the discovery of numerous exotic structures and properties. Furthermore, brand new classes of inorganic materials of unusual stoichiometries and crystal structures, which have a wide range of optical, mechanical, electronic and magnetic properties, have been produced at high pressures.
New trends in chemistry and materials science in extremely tight space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yang; Manaa, M. Riad
Pressure plays a critical role in regulating the structures and properties of materials. Since Percy Bridgeman was recognized by the 1946 Nobel Prize in Physics for his contribution in high-pressure physics, high-pressure research has remained an interdisciplinary scientific frontier with many extraordinary breakthroughs. Over the past decade or so, in particular, high-pressure chemistry and materials research has undergone major advances with the discovery of numerous exotic structures and properties. Furthermore, brand new classes of inorganic materials of unusual stoichiometries and crystal structures, which have a wide range of optical, mechanical, electronic and magnetic properties, have been produced at high pressures.
Exotic plant species invade hot spots of native plant diversity
Stohlgren, T.J.; Binkley, Dan; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Yuka; Newman, G.; Bashkin, Michael A.; Son, Y.
1999-01-01
Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm.At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon.At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and biodiversity), are invasible in many landscapes; and (2) this pattern may be more closely related to the degree resources are available in native plant communities, independent of species richness. Exotic plant invasions in rare habitats and distinctive plant communities pose a significant challenge to land managers and conservation biologists.
9 CFR 352.18 - Cooperation of States in Federal programs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION EXOTIC ANIMALS AND HORSES; VOLUNTARY INSPECTION Exotic...
9 CFR 352.11 - Post-mortem inspection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION EXOTIC ANIMALS AND HORSES; VOLUNTARY INSPECTION Exotic Animals § 352.11 Post...
NASA Astrophysics Data System (ADS)
Fernández-Mort, A.; Riquelme, R.; Alonso-Zarza, A. M.; Campos, E.; Bissig, T.; Mpodozis, C.; Carretier, S.; Herrera, C.; Tapia, M.; Pizarro, H.; Muñoz, S.
2017-12-01
Although the formation of exotic-Cu deposits is controlled by multiple factors, the role of the sedimentary environment has not been well defined. We present a case study of the El Tesoro Central exotic-Cu deposit located in the Atacama Desert of northern Chile. This deposit consists of two mineralized bodies hosted within Late Cenozoic gravels deposited in an arid continental environment dominated by alluvial fans with sub-surficial ponded water bodies formed at the foot of these fans or within the interfan areas. Both exotic-Cu orebodies mostly consist of chrysocolla, copper wad, atacamite, paratacamite, quartz, opal, and calcite. The most commonly observed paragenesis comprises chrysocolla, silica minerals, and calcite and records a progressive increase in pH, which is notably influenced by evaporation. The results of stable isotope analyses (δ13C and δ18O) and hydrogeochemical simulations confirm that evapoconcentration is the main controlling factor in the exotic-Cu mineralization at El Tesoro Central. This conclusion complements the traditional genetic model based on the gradual neutralization of highly oversaturated Cu-bearing solutions that progressively cement the gravels and underlying bedrock regardless of the depositional environment. This study concludes that in exotic-Cu deposits formed relatively far from the source, a favorable sedimentary environment and particular hydrologic and climatic conditions are essential to trap, accumulate, evapoconcentrate, neutralize and saturate Cu-bearing solutions to trigger mineralization. Thus, detailed sedimentological studies should be incorporated when devising exploration strategies in order to discover new exotic-Cu resources, particularly if they are expected to have formed relatively far from the metal sources.
Raphael, Kurian; Velmourougane, K
2011-06-01
Coffee pulp is the main solid residue from the wet processing of coffee berries. Due to presence of anti-physiological and anti-nutritional factors, coffee pulp is not considered as adequate substrate for bioconversion process by coffee farmers. Recent stringent measures by Pollution Control authorities, made it mandatory to treat all the solid and liquid waste emanating from the coffee farms. A study was conducted to evaluate the efficiency of an exotic (Eudrilus eugeniae) and a native earthworm (Perionyx ceylanesis) from coffee farm for decomposition of coffee pulp into valuable vermicompost. Exotic earthworms were found to degrade the coffee pulp faster (112 days) as compared to the native worms (165 days) and the vermicomposting efficiency (77.9%) and vermicompost yield (389 kg) were found to significantly higher with native worms. The multiplication rate of earthworms (280%) and worm yield (3.78 kg) recorded significantly higher with the exotic earthworms. The percentage of nitrogen, phosphorous, potassium, calcium and magnesium in vermicompost was found to increase while C:N ratio, pH and total organic carbon declined as a function of the vermicomposting. The plant nutrients, nitrogen (80.6%), phosphorus (292%) and potassium (550%) content found to increase significantly in the vermicompost produced using native earthworms as compared to the initial values, while the calcium (85.7%) and magnesium (210%) content found to increase significantly in compost produced utilizing exotic worms. Vermicompost and vermicasts from native earthworms recorded significantly higher functional microbial group's population as compared to the exotic worms. The study reveals that coffee pulp can be very well used as substrate for vermicomposting using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis).
Forecasting weed distributions using climate data: a GIS early warning tool
Jarnevich, Catherine S.; Holcombe, Tracy R.; Barnett, David T.; Stohlgren, Thomas J.; Kartesz, John T.
2010-01-01
The number of invasive exotic plant species establishing in the United States is continuing to rise. When prevention of exotic species from entering into a country fails at the national level and the species establishes, reproduces, spreads, and becomes invasive, the most successful action at a local level is early detection followed eradication. We have developed a simple geographic information system (GIS) analysis for developing watch lists for early detection of invasive exotic plants that relies upon currently available species distribution data coupled with environmental data to aid in describing coarse-scale potential distributions. This GIS analysis tool develops environmental envelopes for species based upon the known distribution of a species thought to be invasive and represents the first approximation of its potential habitat while the necessary data are collected to perform more in-depth analyses. To validate this method we looked at a time series of species distributions for 66 species in Pacific Northwest, and northern Rocky Mountain counties. The time series analysis presented here did select counties that the invasive exotic weeds invaded in subsequent years, showing that this technique could be useful in developing watch lists for the spread of particular exotic species. We applied this same habitat-matching model based upon bioclimaric envelopes to 100 invasive exotics with various levels of known distributions within continental U.S. counties. For species with climatically limited distributions, county watch lists describe county-specific vulnerability to invasion. Species with matching habitats in a county would be added to that county's list. These watch lists can influence management decisions for early warning, control prioritization, and targeted research to determine specific locations within vulnerable counties. This tool provides useful information for rapid assessment of the potential distribution based upon climate envelopes of current distributions for new invasive exotic species.
Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification
Righolt, Christiaan H.; Zatreanu, Diana A.; Raz, Vered
2013-01-01
The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification. PMID:27335676
Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification.
Righolt, Christiaan H; Zatreanu, Diana A; Raz, Vered
2013-01-01
The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification.
Exotic Optical Beam Classes for Free-Space Communication
2016-03-24
such DISTRIBUTION A: Distribution approved for public release. superoscillations have been shown to be connected with the spacing of zeros in a wave...AFRL-AFOSR-VA-TR-2016-0131 Exotic optical beam classes for free- space communication Greg Gbur UNIVERSITY OF NOTH CAROLINA AT CHARLOTTE Final Report...12-2015 4. TITLE AND SUBTITLE Exotic optical beam classes for free- space communication 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0009 5c
Perry, Laura G.; Shafroth, Patrick B.; Blumenthal, Dana M.; Morgan, Jack A.; LeCain, Daniel R.
2013-01-01
In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO2 might ameliorate these effects by improving plant water-use efficiency. We examined the effects of CO2 and water availability on seedlings of two native (Populus deltoids spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO2-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. Low water availability reduced seedling biomass by 70–97%, and hindered the native species more than the exotics. Elevated CO2 increased biomass by 15%, with similar effects on natives and exotics. Elevated CO2 increased intrinsic water-use efficiency (Δ13Cleaf), but did not increase biomass more in drier treatments than wetter treatments. The moderate positive effects of elevated CO2 on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO2, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species.
Perry, Laura G.; Shafroth, Patrick B.; Blumenthal, Dana M.; Morgan, Jack A.; LeCain, Daniel R.
2013-01-01
* In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO2 might ameliorate these effects by improving plant water-use efficiency. * We examined the effects of CO2 and water availability on seedlings of two native (Populus deltoides spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO2-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. * Low water availability reduced seedling biomass by 70–97%, and hindered the native species more than the exotics. Elevated CO2 increased biomass by 15%, with similar effects on natives and exotics. Elevated CO2 increased intrinsic water-use efficiency (Δ13Cleaf), but did not increase biomass more in drier treatments than wetter treatments. * The moderate positive effects of elevated CO2 on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO2, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species.
Perry, Laura G; Shafroth, Patrick B; Blumenthal, Dana M; Morgan, Jack A; LeCain, Daniel R
2013-01-01
In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO₂ might ameliorate these effects by improving plant water-use efficiency. We examined the effects of CO₂ and water availability on seedlings of two native (Populus deltoides spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO₂-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. Low water availability reduced seedling biomass by 70-97%, and hindered the native species more than the exotics. Elevated CO₂ increased biomass by 15%, with similar effects on natives and exotics. Elevated CO₂ increased intrinsic water-use efficiency (Δ¹³C(leaf) ), but did not increase biomass more in drier treatments than wetter treatments. The moderate positive effects of elevated CO₂ on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO₂, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.
Exotic decays of the 125 GeV Higgs boson at future e +e – colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhen; Wang, Lian -Tao; Zhang, Hao
Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less
Aaltonen, T.
2015-04-15
In this study, combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with exotic spin J and parity P are presented and compared with results obtained assuming the standard model value J P = 0 +. Both collaborations analyzed approximately 10 fb –1 of proton-antiproton collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models predicting exotic Higgs bosons with J P = 0 – and J P = 2 + are tested. The kinematic properties of exotic Higgs boson production in association with a vector boson differ from thosemore » predicted for the standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate, are set at 0.36 for both the J P = 0 – hypothesis and the J P = 2 + hypothesis. If the production rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard deviations and 4.9 standard deviations for the J P = 0 – and J P = 2 + hypotheses, respectively.« less
Gossner, Martin M; Chao, Anne; Bailey, Richard I; Prinzing, Andreas
2009-05-01
The relative roles of evolutionary history and geographical and ecological contingency for community assembly remain unknown. Plant species, for instance, share more phytophages with closer relatives (phylogenetic conservatism), but for exotic plants introduced to another continent, this may be overlaid by geographically contingent evolution or immigration from locally abundant plant species (mass effects). We assessed within local forests to what extent exotic trees (Douglas-fir, red oak) recruit phytophages (Coleoptera, Heteroptera) from more closely or more distantly related native plants. We found that exotics shared more phytophages with natives from the same major plant lineage (angiosperms vs. gymnosperms) than with natives from the other lineage. This was particularly true for Heteroptera, and it emphasizes the role of host specialization in phylogenetic conservatism of host use. However, for Coleoptera on Douglas-fir, mass effects were important: immigration from beech increased with increasing beech abundance. Within a plant phylum, phylogenetic proximity of exotics and natives increased phytophage similarity, primarily in younger Coleoptera clades on angiosperms, emphasizing a role of past codiversification of hosts and phytophages. Overall, phylogenetic conservatism can shape the assembly of local phytophage communities on exotic trees. Whether it outweighs geographic contingency and mass effects depends on the interplay of phylogenetic scale, local abundance of native tree species, and the biology and evolutionary history of the phytophage taxon.
Diepenbrock, Lauren M; Fothergill, Kent; Tindall, Kelly V; Losey, John E; Smyth, Rebecca R; Finke, Deborah L
2016-08-01
The diversity and abundance of native lady beetles (Coccinellidae) in North America has declined in recent decades. This decline is often correlated with the introduction and establishment of exotic lady beetle species, including Coccinella septempunctata L. and Harmonia axyridis Pallas, suggesting that exotic species precipitated the decline of native lady beetles. We examined species records of native coccinellids in Missouri over 118 yr and asked whether the species composition of the community experienced a shift following the establishment of the exotic species. We found that the contemporary native coccinellid community is different from the community that was present nearly a century ago. However, there was no evidence for a recent abrupt shift in composition triggered by the establishment of exotic species. Instead, our data suggest that the native lady beetle community has been undergoing consistent and gradual change over time, with some species decreasing in abundance and others increasing. While not excluding exotic species as a factor contributing to the decline of native lady beetle species, our findings suggest that other continuous factors, like land use change, may have played a more influential role in determining the composition of the native coccinellid communities within our region. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Exotic decays of the 125 GeV Higgs boson at future e +e – colliders
Liu, Zhen; Wang, Lian -Tao; Zhang, Hao
2017-06-01
Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less
Zhu, Li-Ping; Yue, Xin-Jing; Han, Kui; Li, Zhi-Feng; Zheng, Lian-Shuai; Yi, Xiu-Nan; Wang, Hai-Long; Zhang, You-Ming; Li, Yue-Zhong
2015-07-22
Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes.
Search for the Photoexcitation of Exotic Mesons in the π+π+π- System
NASA Astrophysics Data System (ADS)
Nozar, M.; Salgado, C.; Weygand, D. P.; Guo, L.; Adams, G.; Li, Ji; Eugenio, P.; Amaryan, M. J.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Blaszczyk, L.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Casey, L.; Cazes, A.; Chen, S.; Cheng, L.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Dale, D.; Dashyan, N.; de Masi, R.; de Vita, R.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dhuga, K. S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; El Fassi, L.; Elouadrhiri, L.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Forest, T. A.; Fradi, A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hardie, J.; Hassall, N.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Livingston, K.; Lu, H. Y.; MacCormick, M.; Markov, N.; Mattione, P.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Munevar, E.; Mutchler, G. S.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Anefalos Pereira, S.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rubin, P. D.; Sabatié, F.; Salamanca, J.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Sharov, D.; Shvedunov, N. V.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.
2009-03-01
A search for exotic mesons in the π+π+π- system photoproduced by the charge exchange reaction γp→π+π+π-(n) was carried out by the CLAS Collaboration at Jefferson Lab. A tagged-photon beam with energies in the 4.8 to 5.4 GeV range, produced through bremsstrahlung from a 5.744 GeV electron beam, was incident on a liquid-hydrogen target. A partial wave analysis was performed on a sample of 83 000 events, the highest such statistics to date in this reaction at these energies. The main objective of this study was to look for the photoproduction of an exotic JPC=1-+ resonant state in the 1 to 2 GeV mass range. Our partial wave analysis shows production of the a2(1320) and the π2(1670) mesons, but no evidence for the a1(1260), nor the π1(1600) exotic state at the expected levels. An upper limit of 13.5 nb is determined for the exotic π1(1600) cross section, less than 2% of the a2(1320) production.
Stanley, Jon G.; Peoples, Robert A.; McCann, James A.
1991-01-01
Within the Federal government, the U. S. Fish and Wildlife Service (Service) has primary responsibility for legal and policy responsibility for introduced exotic species. The Lacey Act of 1900 authorizes the Service to prohibit the importation of species that are potentially injurious to native fish and wildlife. However, regulations under authority of the Lacey Act cover only a few species. The Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990 established a Task Force co-chaired by the Director of the Service and Under Secretary of Commerce for Oceans and Atmosphere. The Task Force consults with the Secretary of Transportation to develop regulations to prevent the importation and spread of aquatic nuisance species into the Great Lakes through exchange of ballast water. Federal agencies must comply with Presidential Executive Order 1198, Exotic Organisms, that prohibits Federal agencies or activities they fund or authorize from introducing exotic species. The Service conducts research and evaluation of exotic species to support Federal, State, and local efforts to prevent further importation of harmful species. Effective regulation will also depend on the full cooperation with Canada.