Sample records for expanded plasma cells

  1. Measles virus–specific plasma cells are prominent in subacute sclerosing panencephalitis CSF

    PubMed Central

    Owens, G.P.; Ritchie, A.M.; Gilden, D.H.; Burgoon, M.P.; Becker, D.; Bennett, J.L.

    2012-01-01

    Objective To demonstrate the specificity of expanded CD138+ plasma cell clones recovered from the CSF of a patient with subacute sclerosing panencephalitis (SSPE) for measles virus (MV). Methods IgG variable region sequences of single-antibody-secreting CD138+ cells sorted from SSPE CSF were amplified by single-cell PCR and analyzed. Human IgG1 recombinant antibodies (rAbs) were produced from four expanded CD138+ clones and assayed for immunoreactivity against MV proteins. Results Clonal expansion was a prominent feature of the SSPE plasma cell repertoire, and each of the four rAbs assayed was specific for either the MV fusion or the MV nucleocapsid protein. Conclusions Expanded plasma cell clones in the CSF of patients with subacute sclerosing panencephalitis produce disease-relevant antibodies. Recombinant antibodies derived from CSF B cells could provide a tool to identify target antigens in idiopathic inflammatory disorders. PMID:17515543

  2. Supra-plasma expanders: the future of treating blood loss and anemia without red cell transfusions?

    PubMed

    Tsai, Amy G; Vázquez, Beatriz Y Salazar; Hofmann, Axel; Acharya, Seetharama A; Intaglietta, Marcos

    2015-01-01

    Oxygen delivery capacity during profoundly anemic conditions depends on blood's oxygen-carrying capacity and cardiac output. Oxygen-carrying blood substitutes and blood transfusion augment oxygen-carrying capacity, but both have given rise to safety concerns, and their efficacy remains unresolved. Anemia decreases oxygen-carrying capacity and blood viscosity. Present studies show that correcting the decrease of blood viscosity by increasing plasma viscosity with newly developed plasma expanders significantly improves tissue perfusion. These new plasma expanders promote tissue perfusion, increasing oxygen delivery capacity without increasing blood oxygen-carrying capacity, thus treating the effects of anemia while avoiding the transfusion of blood.

  3. Therapeutic potential of ixmyelocel-T, an expanded autologous multicellular therapy for treatment of ischemic cardiovascular diseases.

    PubMed

    Ledford, Kelly J; Murphy, Nikki; Zeigler, Frank; Bartel, Ronnda L; Tubo, Ross

    2015-03-13

    Bone marrow derived cellular therapies are an emerging approach to promoting therapeutic angiogenesis in ischemic cardiovascular disease. However, the percentage of regenerative cells in bone marrow mononuclear cells (BMMNCs) is small, and large amounts of BMMNCs are required. Ixmyelocel-T, an expanded autologous multicellular therapy, is manufactured from a small sample of bone marrow aspirate. Ixmyelocel-T contains expanded populations of mesenchymal stromal cells (MSCs) and M2-like macrophages, as well as many of the CD45+ cells found in the bone marrow. It is hypothesized that this expanded multi-cellular therapy would induce angiogenesis and endothelial repair. A rat model of hind limb ischemia was used to determine the effects of ixmyelocel-T on blood flow recovery. To further determine the effects on endothelial cells, ixmyelocel-T was co-cultured with human umbilical vein endothelial cells (HUVEC) in non-contacting Transwell® inserts. Co-culture of HUVECs with ixmyelocel-T resulted secretion of a variety of pro-angiogenic factors. HUVECs stimulated by ixmyelocel-T exhibited enhanced migration, proliferation, and branch formation. Ixmyelocel-T co-culture also resulted in increased endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production. In tumor necrosis factor alpha (TNFα)-stimulated HUVECs, ixmyelocel-T co-culture decreased apoptosis and reactive oxygen species generation, increased super oxide dismutase activity, and decreased nuclear factor kappa B (NFκB) activation. Treatment with ixmyelocel-T in a rat model of hind limb ischemia resulted in significantly increased blood flow perfusion and capillary density, gene expression and plasma levels of the anti-inflammatory cytokine interleukin (IL)-10, plasma nitrates, plasma platelet-derived growth factor (PDGF)-BB, vascular endothelial growth factor (VEGF) expression, and significantly decreased plasma thiobarbituric acid reactive substances (TBARS). This work demonstrates that ixmyelocel-T interacts with endothelial cells in a paracrine manner, resulting in angiogenesis and endothelial protection. This data suggests that ixmyelocel-T could be useful for promoting of angiogenesis and tissue repair in ischemic cardiovascular diseases. In conclusion, ixmyelocel-T therapy may provide a new aspect of therapeutic angiogenesis in this patient population where expanded populations of regenerative cells might be required.

  4. 21 CFR 606.122 - Instruction circular.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: (1) Instructions to administer a suitable plasma volume expander if Red Blood Cells are substituted... approximate volume of plasma from which a sample unit of Platelets is prepared. (2) Instructions to begin administration as soon as possible, but not more than 4 hours after entering the container. (m) For Plasma, the...

  5. Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support

    PubMed Central

    Muraglia, Anita; Nguyen, Van Thi; Nardini, Marta; Mogni, Massimo; Coviello, Domenico; Dozin, Beatrice; Strada, Paolo; Baldelli, Ilaria; Formica, Matteo; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2017-01-01

    Present cell culture medium supplements, in most cases based on animal sera, are not fully satisfactory especially for the in vitro expansion of cells intended for human cell therapy. This paper refers to (i) an heparin-free human platelet lysate (PL) devoid of serum or plasma components (v-PL) and (ii) an heparin-free human serum derived from plasma devoid of PL components (Pl-s) and to their use as single components or in combination in primary or cell line cultures. Human mesenchymal stem cells (MSC) primary cultures were obtained from adipose tissue, bone marrow, and umbilical cord. Human chondrocytes were obtained from articular cartilage biopsies. In general, MSC expanded in the presence of Pl-s alone showed a low or no proliferation in comparison to cells grown with the combination of Pl-s and v-PL. Confluent, growth-arrested cells, either human MSC or human articular chondrocytes, treated with v-PL resumed proliferation, whereas control cultures, not supplemented with v-PL, remained quiescent and did not proliferate. Interestingly, signal transduction pathways distinctive of proliferation were activated also in cells treated with v-PL in the absence of serum, when cell proliferation did not occur, indicating that v-PL could induce the cell re-entry in the cell cycle (cell commitment), but the presence of serum proteins was an absolute requirement for cell proliferation to happen. Indeed, Pl-s alone supported cell growth in constitutively activated cell lines (U-937, HeLa, HaCaT, and V-79) regardless of the co-presence of v-PL. Plasma- and plasma-derived serum were equally able to sustain cell proliferation although, for cells cultured in adhesion, the Pl-s was more efficient than the plasma from which it was derived. In conclusion, the cells expanded in the presence of the new additives maintained their differentiation potential and did not show alterations in their karyotype. PMID:29209609

  6. NaCl-Induced Alterations in Both Cell Structure and Tissue-Specific Plasma Membrane H+ -ATPase Gene Expression.

    PubMed Central

    Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.

    1996-01-01

    NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation. PMID:12226321

  7. NaCl-Induced Alterations in Both Cell Structure and Tissue-Specific Plasma Membrane H+ -ATPase Gene Expression.

    PubMed

    Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.

    1996-07-01

    NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation.

  8. Particle energization in magnetic reconnection in high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Deng, W.; Fox, W.; Bhattacharjee, A.

    2014-10-01

    Significant particle energization is inferred to occur in many astrophysical environments and magnetic reconnection has been proposed to be the driver in many cases. Recent observation of magnetic reconnection in high-energy-density (HED) plasmas on the Vulcan, Omega and Shenguang laser facilities has opened up a new regime of reconnection study of great interest to laboratory and plasma astrophysics. In these experiments, plasma bubbles, excited by laser shots on solid targets and carrying magnetic fields, expand into one another, squeezing the opposite magnetic fields together to drive reconnection. 2D particle-in-cell (PIC) simulations have been performed to study the particle energization in such experiments. Two energization mechanisms have been identified. The first is a Fermi acceleration process between the expanding plasma bubbles, wherein the electromagnetic fields of the expanding plasma bounce particles, acting as moving walls. Particles can gain significant energy through multiple bounces between the bubbles. The second mechanism is a subsequent direct acceleration by electric field at the reconnection X-line when the bubbles collide into each other and drive reconnection.

  9. Ex-vivo expansion of CFU-GM and BFU-E in unselected PBMC cultures with Flt3L is enhanced by autologous plasma.

    PubMed

    Guo, M; Miller, W M; Papoutsakis, E T; Patel, S; James, C; Goolsby, C; Winter, J N

    1999-01-01

    Previous ex-vivo expansion studies in our laboratory, comparing unselected and CD34(+)-selected PBMC, have shown no advantage for CD34(+) cell selection, in terms of the expansion achieved. Our goal was to develop procedures for consistent generation of large numbers of hematopoietic progenitor and post-progenitor cells from unselected PBMC. Unselected PBMC, collected from cancer patients undergoing apheresis prior to high-dose chemotherapy and autologous stem cell rescue, were expanded ex vivo in static cultures, without a stromal layer, in the presence of Flt3 ligand (Flt3L), a recombinant GM-CSF/IL-3 fusion protein (PIXY321), G-CSF and GM-CSF for 10 days. The addition of 2% autologous plasma to this cytokine combination enhanced expansion of total cell numbers (3.2 fold versus 1.9 fold; p < 0.01), colony-forming units granulocyte-macrophage (CFU-GM) (22.0 fold versus 8.1 fold, p < 0.01) and burst-forming units erythroid (BFU-E) (17.6 fold versus 7.0 fold, 0.01 < p < 0.02). The optimal seeding density for a given specimen was inversely related to the frequency of CD34(+) cells in the sample. CFU-GM expansion with the Flt3L-containing cytokine cocktail was equivalent to that obtained with IL-3, IL-6, G-CSF and SCF, whether or not the cultures were supplemented with autologous plasma. In plasma-free cultures, BFU-E expansion was significantly higher with IL-3, IL-6, G-CSF and SCF than with Flt3L, PIXY321, G-CSF and GM-CSF. In the presence of autologous plasma, however BFU-E expansion was higher in the Flt3L-containing media. In comparison studies, autologous plasma suppressed BFU-E expansion in SCF-containing cultures. Consistent with our colony assay results, dual-parameter flow cytometric analysis of the expanded cell population revealed that supplementation with autologous plasma yielded a significant increase in the numbers of myeloid progenitors in Flt3L-containing cultures. Unselected PBMC from cancer patients can be effectively expanded ex vivo in Flt3L, PIXY321, G-CSF and GM-CSF, supplemented with autologous plasma, yielding high numbers of myeloid and erythroid progenitors.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.

    We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presencemore » of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.« less

  11. Expanded Stem Cells, Stromal-Vascular Fraction, and Platelet-Rich Plasma Enriched Fat: Comparing Results of Different Facial Rejuvenation Approaches in a Clinical Trial

    PubMed Central

    Rigotti, Gino; Charles-de-Sá, Luiz; Gontijo-de-Amorim, Natale Ferreira; Takiya, Christina Maeda; Amable, Paola Romina; Borojevic, Radovan; Benati, Donatella; Bernardi, Paolo; Sbarbati, Andrea

    2016-01-01

    Background In a previous study, the authors demonstrated that treatment with expanded adipose-derived stem cells or stromal vascular fraction (SVF)-enriched fat modify the pattern of the dermis in human beings, representing a skin rejuvenation effect. Considering that expanded stem cells require a cell factor, the authors wanted to assess similar results by replacing them with platelet-rich plasma (PRP), which is easier to obtain and for which an empirical regenerative effect has been already described. Objectives To determine if PRP injection could replace the cutaneous regenerative effect of adipose-derived stem cells. Methods This study was performed in 13 patients who were candidates for facelift. The patients underwent sampling of fat by liposuction from the abdomen and submitted to one of three protocols: injection of SVF-enriched fat or expanded adipose-derived stem cells or fat plus PRP in the preauricular areas. Fragments of skin were removed before and 3 months after treatment and analyzed by optical and electron microscopy. Results The use of fat plus PRP led to the presence of more pronounced inflammatory infiltrates and a greater vascular reactivity, increasing in vascular permeability and a certain reactivity of the nervous component. The addition of PRP did not improve the regenerative effect. Conclusion The use of PRP did not have significant advantages in skin rejuvenation over the use of expanded adipose-derived stem cells or SVF-enriched fat. The effect of increased vascular reactivity may be useful in pathological situations in which an intense angiogenesis is desirable, such as tissular ischemia. Level of Evidence: 4 Therapeutic PMID:26879294

  12. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun

    2015-02-01

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.

  13. Structural Evaluation of Radially Expandable Cardiovascular Stents Encased in a Polyurethane Film

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; De, Samiran; Sharma, Rajesh; Mazumder, Malay K.; Mehta, Jawahar L.

    2004-01-01

    A method of encasing cardiovascular stents with an expandable polyurethane coating has been developed to provide a smooth homogeneous inner wall allowing for a confluent growth of endothelial cells. In this design, the metal wire stent structure is completely covered by the polyurethane film minimizing biocorrosion of the metal (stainless steel or nitinol), and providing a homogeneous surface for surface treatment and incorporation of various eluting drugs to prevent platelet aggregation while supporting endothelialization. The polyurethane surface was treated with a helium plasma for sterilization and promotes growth of cells. The paper details the performance of the coated film to expand with the metal stent up to 225 % during deployment. We present stress/strain behavior of polyurethane films, and subsequent plasma treatment of the surface and the adhesion of the coating to the stent structure upon expansion. A film of less than 25 tm was found to be sufficient for corrosion resistance and flexibility without producing any excess stress on the stent structure. Straining the film to 225 % and plasma modification did not affect the mechanical and surface properties while allowing for improved biocompatibility as determined by the critical surface tension, surface chemistry, and roughness.

  14. Bone Marrow Mesenchymal Stem Cells Enhance the Differentiation of Human Switched Memory B Lymphocytes into Plasma Cells in Serum-Free Medium

    PubMed Central

    Gervais-St-Amour, Catherine

    2016-01-01

    The differentiation of human B lymphocytes into plasma cells is one of the most stirring questions with regard to adaptive immunity. However, the terminal differentiation and survival of plasma cells are still topics with much to be discovered, especially when targeting switched memory B lymphocytes. Plasma cells can migrate to the bone marrow in response to a CXCL12 gradient and survive for several years while secreting antibodies. In this study, we aimed to get closer to niches favoring plasma cell survival. We tested low oxygen concentrations and coculture with mesenchymal stem cells (MSC) from human bone marrow. Besides, all cultures were performed using an animal protein-free medium. Overall, our model enables the generation of high proportions of CD38+CD138+CD31+ plasma cells (≥50%) when CD40-activated switched memory B lymphocytes were cultured in direct contact with mesenchymal stem cells. In these cultures, the secretion of CXCL12 and TGF-β, usually found in the bone marrow, was linked to the presence of MSC. The level of oxygen appeared less impactful than the contact with MSC. This study shows for the first time that expanded switched memory B lymphocytes can be differentiated into plasma cells using exclusively a serum-free medium. PMID:27872867

  15. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli

    2015-02-15

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay inmore » the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.« less

  16. Formation of electron energy spectra during magnetic reconnection in laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Lu, Quanming; Huang, Can; Dong, Quanli; Wang, Huanyu; Fan, Feibin; Sheng, Zhengming; Wang, Shui; Zhang, Jie

    2017-10-01

    Energetic electron spectra formed during magnetic reconnection between two laser-produced plasma bubbles are investigated by the use of two-dimensional particle-in-cell simulations. It is found that the evolution of such an interaction between the two plasma bubbles can be separated into two distinct stages: squeezing and reconnection stages. In the squeezing stage, when the two plasma bubbles expand quickly and collide with each other, the magnetic field in the inflow region is greatly enhanced. In the second stage, a thin current sheet is formed between the two plasma bubbles, and then, magnetic reconnection occurs therein. During the squeezing stage, electrons are heated in the perpendicular direction by betatron acceleration due to the enhancement of the magnetic field around the plasma bubbles. Meanwhile, non-thermal electrons are generated by the Fermi mechanism when these electrons bounce between the two plasma bubbles approaching quickly and get accelerated mainly by the convective electric field associated with the plasma bubbles. During the reconnection stage, electrons get further accelerated mainly by the reconnection electric field in the vicinity of the X line. When the expanding speed of the plasma bubbles is sufficiently large, the formed electron energy spectra have a kappa distribution, where the lower energy part satisfies a Maxwellian function and the higher energy part is a power-law distribution. Moreover, the increase in the expanding speed will result in the hardening of formed power-law spectra in both the squeezing and reconnection stages.

  17. 21 CFR 606.122 - Circular of information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... collecting the Whole Blood from each product is prepared. (e) A statement that the product was prepared from... and administration recommendations. (j) [Reserved] (k) For Red Blood Cells, the circular of information must contain: (1) Instructions to administer a suitable plasma volume expander if Red Blood Cells...

  18. Recombinant antibodies generated from both clonal and less abundant plasma cell immunoglobulin G sequences in subacute sclerosing panencephalitis brain are directed against measles virus

    PubMed Central

    Burgoon, Mark P; Caldas, Yupanqui A; Keays, Kathryne M; Yu, Xiaoli; Gilden, Donald H; Owens, Gregory P

    2012-01-01

    Increased immunoglobulin G (IgG) and intrathecally produced oligoclonal bands (OGBs) are characteristic of a limited number of inflammatory central nervous system (CNS) diseases and are often directed against the cause of disease. In subacute sclerosing panencephalitis (SSPE), the cause of disease and the target of the oligoclonal response is measles virus (MV). The authors previously showed that clonally expanded populations of CD38+ plasma cells in SSPE brain, the likely source of OGBs, are directed against MV. In characterizing the breadth of the plasma cell reactivities, the authors found that a large proportion of the less abundant plasma cells are also directed against MV. The intrathecal response may be useful in determining the causes of other inflammatory CNS diseases, such as multiple sclerosis, Behcet’s disease, and neurosarcoidosis. PMID:17065133

  19. Endoplasmic Reticulum-Plasma Membrane Contacts Regulate Cellular Excitability.

    PubMed

    Dickson, Eamonn J

    2017-01-01

    Cells that have intrinsic electrical excitability utilize changes in membrane potential to communicate with neighboring cells and initiate cellular cascades. Excitable cells like neurons and myocytes have evolved highly specialized subcellular architectures to translate these electrical signals into cellular events. One such structural specialization is sarco-/endoplasmic reticulum-plasma membrane contact sites. These membrane contact sites are positioned by specific membrane-membrane tethering proteins and contain an ever-expanding list of additional proteins that organize information transfer across the junctional space (~ 15-25 nm distance) to shape membrane identity and control cellular excitability. In this chapter we discuss how contacts between the sarco-/endoplasmic reticulum and plasma membrane are essential for regulated excitation-contraction coupling in striated muscle and control of lipid-dependent ion channels.

  20. Air plasma effect on dental disinfection

    NASA Astrophysics Data System (ADS)

    Duarte, S.; Kuo, S. P.; Murata, R. M.; Chen, C. Y.; Saxena, D.; Huang, K. J.; Popovic, S.

    2011-07-01

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  1. Air plasma effect on dental disinfection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte, S.; Murata, R. M.; Saxena, D.

    2011-07-15

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formationmore » was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.« less

  2. Plasma clots gelled by different amounts of calcium for stem cell delivery.

    PubMed

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2013-01-01

    Freshly prepared autologous plasma clots may serve as a carrier matrix for expanded multipotent mesenchymal stromal cells (MSCs) or bone marrow cells. By varying the calcium concentration, plasma clots with different properties can be produced. The purpose of this in vitro study was to determine the optimal calcium concentrations for the clotting process, intra-clot cell viability, and clot lysis. Different plasma clots were prepared by adding an equal volume of RPMI1640 (with or without MSCs) to citrate plasma (either containing platelets or platelet-free). Clotting was initiated by the addition of CaCl(2) (10 g/100 ml H(2)O, 10 % solution). The final concentration of CaCl(2) ranged from 1 to 10 % by volume of plasma. Viability and distribution of the MSCs were analysed by calcein-AM/propidium iodide staining. MSC-embedded plasma clots were dissolved with trypsin (0.25 %), and recovered cells were further incubated for 1 week under cell culture conditions. The viability of MSCs embedded in clots formed by the addition of 1-8 % by volume CaCl2 was not affected by incubation of up to 1 week. In contrast, clots produced by higher volumes of CaCl(2) solutions (9-10 % by volume of plasma) showed decreased numbers of viable cells. Intra-clot cell proliferation was highest in clots produced by addition of 5 % CaCl(2) by plasma volume. Osteocalcin release was not influenced in platelet-free plasma but decreased in platelet-containing plasma. Morphological analysis of stained recovered MSCs revealed that lysis of the plasma clot did not affect cell morphology or subsequent spontaneous proliferation. Clot formation and clot stability can be controlled by changing the concentration of CaCl(2) added to plasma. The addition of 5 % CaCl(2) produced a plasma clot with optimal results for stem cell delivery.

  3. Environmental and T cell-intrinsic factors limit the expansion of neonatal follicular T helper cells but may be circumvented by specific adjuvants.

    PubMed

    Mastelic, Béatris; Kamath, Arun T; Fontannaz, Paola; Tougne, Chantal; Rochat, Anne-Françoise; Belnoue, Elodie; Combescure, Christophe; Auderset, Floriane; Lambert, Paul-Henri; Tacchini-Cottier, Fabienne; Siegrist, Claire-Anne

    2012-12-15

    Follicular Th (T(FH)) cells have emerged as a new Th subset providing help to B cells and supporting their differentiation into long-lived plasma cells or memory B cells. Their differentiation had not yet been investigated following neonatal immunization, which elicits delayed and limited germinal center (GC) responses. We demonstrate that neonatal immunization induces CXCR5(high)PD-1(high) CD4(+) T(FH) cells that exhibit T(FH) features (including Batf, Bcl6, c-Maf, ICOS, and IL-21 expression) and are able to migrate into the GCs. However, neonatal T(FH) cells fail to expand and to acquire a full-blown GC T(FH) phenotype, as reflected by a higher ratio of GC T(FH)/non-GC CD4(+) T cells in immunized adults than neonates (3.8 × 10(-3) versus 2.2 × 10(-3), p = 0.01). Following the adoptive transfer of naive adult OT-II CD4(+) T cells, OT-II T(FH) cells expand in the vaccine-draining lymph nodes of immunized adult but not infant recipients, whereas naive 2-wk-old CD4(+) OT-II cells failed to expand in adult hosts, reflecting the influence of both environmental and T cell-intrinsic factors. Postponing immunization to later in life increases the number of T(FH) cells in a stepwise manner, in direct correlation with the numbers of GC B cells and plasma cells elicited. Remarkably, adjuvantation with CpG oligonucleotides markedly increased GC T(FH) and GC B cell neonatal responses, up to adult levels. To our knowledge, this is the first demonstration that the T(FH) cell development limits early life GC responses and that adjuvants/delivery systems supporting T(FH) differentiation may restore adultlike early life GC B cell responses.

  4. The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in Candida albicans

    PubMed Central

    Alvarez, Francisco J.; Douglas, Lois M.; Rosebrock, Adam

    2008-01-01

    The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains. PMID:18799621

  5. Plasma parameters of the cathode spot explosive electron emission cell obtained from the model of liquid-metal jet tearing and electrical explosion

    NASA Astrophysics Data System (ADS)

    Tsventoukh, M. M.

    2018-05-01

    A model has been developed for the explosive electron emission cell pulse of a vacuum discharge cathode spot that describes the ignition and extinction of the explosive pulse. The pulse is initiated due to hydrodynamic tearing of a liquid-metal jet which propagates from the preceding cell crater boundary and draws the ion current from the plasma produced by the preceding explosion. Once the jet neck has been resistively heated to a critical temperature (˜1 eV), the plasma starts expanding and decreasing in density, which corresponds to the extinction phase. Numerical and analytical solutions have been obtained that describe both the time behavior of the pulse plasma parameters and their average values. For the cell plasma, the momentum per transferred charge has been estimated to be some tens of g cm/(s C), which is consistent with the known measurements of ion velocity, ion erosion rate, and specific recoil force. This supports the model of the pressure-gradient-driven plasma acceleration mechanism for the explosive cathode spot cells. The ohmic electric field within the explosive current-carrying plasma has been estimated to be some tens of kV/cm, which is consistent with the known experimental data on cathode potential fall and explosive cell plasma size. This supports the model that assumes the ohmic nature of the cathode potential fall in a vacuum discharge.

  6. Nine unanswered questions about cytokinesis

    PubMed Central

    2017-01-01

    Experiments on model systems have revealed that cytokinesis in cells with contractile rings (amoebas, fungi, and animals) depends on shared molecular mechanisms in spite of some differences that emerged during a billion years of divergent evolution. Understanding these fundamental mechanisms depends on identifying the participating proteins and characterizing the mechanisms that position the furrow, assemble the contractile ring, anchor the ring to the plasma membrane, trigger ring constriction, produce force to form a furrow, disassemble the ring, expand the plasma membrane in the furrow, and separate the daughter cell membranes. This review reveals that fascinating questions remain about each step. PMID:28807993

  7. Nine unanswered questions about cytokinesis.

    PubMed

    Pollard, Thomas D

    2017-10-02

    Experiments on model systems have revealed that cytokinesis in cells with contractile rings (amoebas, fungi, and animals) depends on shared molecular mechanisms in spite of some differences that emerged during a billion years of divergent evolution. Understanding these fundamental mechanisms depends on identifying the participating proteins and characterizing the mechanisms that position the furrow, assemble the contractile ring, anchor the ring to the plasma membrane, trigger ring constriction, produce force to form a furrow, disassemble the ring, expand the plasma membrane in the furrow, and separate the daughter cell membranes. This review reveals that fascinating questions remain about each step. © 2017 Pollard.

  8. Plasma Medicine: Current Achievements and Future Prospects

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir

    2012-10-01

    Research on the biomedical applications of low temperature plasmas started with small scale experiments that were simply aimed at discovering what happens to biological cells when exposed to the chemically rich environment of plasma. These early experiments took place in the mid to late 1990s. As interest in this multidisciplinary field dramatically rose, various engineering and physics groups collaborated with biologists and medical experts to investigate the use of plasma technology as a basis for innovative medical approaches to cure various diseases. However, many questions concerning the fundamental mechanisms involved in cell-plasma interaction remained unanswered. As a result various workshops were organized to gather the diverse research community in the field of plasma medicine in order to have a fruitful exchange of ideas regarding the scientific challenges that needed to be surmounted to advance and expand the field's knowledge base. The present GEC workshop continues this important tradition of scientific cooperation since there is still a significant lack of understanding of many of the biochemical and molecular pathways that come into play when biological cells are exposed to plasmas. In this talk, first background information on the various plasma devices developed in our institute will be presented. This will be followed by a summary of our work on the effects of plasmas on prokaryotic and eukaryotic cells. The talk will be concluded by presenting our vision of the future of the field and an outline of the main challenges that need to be overcome if practical medical applications are to be achieved.

  9. Measurement of Debye length in laser-produced plasma.

    NASA Technical Reports Server (NTRS)

    Ehler, W.

    1973-01-01

    The Debye length of an expanded plasma created by placing an evacuated chamber with an entrance slit in the path of a freely expanding laser produced plasma was measured, using the slab geometry. An independent measurement of electron density together with the observed value for the Debye length also provided a means for evaluating the plasma electron temperature. This temperature has applications in ascertaining plasma conductivity and magnetic field necessary for confinement of the laser produced plasma. Also, the temperature obtained would be useful in analyzing electron-ion recombination rates in the expanded plasma and the dynamics of the cooling process of the plasma expansion.

  10. Immune memory: the basics and how to trigger an efficient long-term immune memory.

    PubMed

    Beverley, P C L

    2010-01-01

    Immunological memory consists of expanded clones of T and B lymphocytes that show an increased rate of cell division and shortened telomeres compared with naïve cells. However, exhaustion of clones is delayed by kinetic heterogeneity within clones and altered survival and up-regulation of telomerase. Prolonged maintenance of protective B-cell immunity is T-cell dependent and requires a balance between plasma cells and memory B cells. Protective T-cell immunity also requires correct quality of T cells and that they are located appropriately. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Deciphering the Role of B Cells in Multiple Sclerosis—Towards Specific Targeting of Pathogenic Function

    PubMed Central

    Lehmann-Horn, Klaus; Kinzel, Silke; Weber, Martin S.

    2017-01-01

    B cells, plasma cells and antibodies may play a key role in the pathogenesis of multiple sclerosis (MS). This notion is supported by various immunological changes observed in MS patients, such as activation and pro-inflammatory differentiation of peripheral blood B cells, the persistence of clonally expanded plasma cells producing immunoglobulins in the cerebrospinal fluid, as well as the composition of inflammatory central nervous system lesions frequently containing co-localizing antibody depositions and activated complement. In recent years, the perception of a respective pathophysiological B cell involvement was vividly promoted by the empirical success of anti-CD20-mediated B cell depletion in clinical trials; based on these findings, the first monoclonal anti-CD20 antibody—ocrelizumab—is currently in the process of being approved for treatment of MS. In this review, we summarize the current knowledge on the role of B cells, plasma cells and antibodies in MS and elucidate how approved and future treatments, first and foremost anti-CD20 antibodies, therapeutically modify these B cell components. We will furthermore describe regulatory functions of B cells in MS and discuss how the evolving knowledge of these therapeutically desirable B cell properties can be harnessed to improve future safety and efficacy of B cell-directed therapy in MS. PMID:28946620

  12. Comparison of human platelet lysate alternatives using expired and freshly isolated platelet concentrates for adipose-derived stromal cell expansion.

    PubMed

    Dessels, Carla; Durandt, Chrisna; Pepper, Michael S

    2018-03-19

    Pooled human platelet lysate (pHPL) has been used to expand adipose-derived stromal cells (ASCs) and can be formulated using fresh or expired buffy coats (BCs) which are then resuspended in either plasma or an additive solution. Not much is known about the effects that expired products and additive solutions have on ASC expansion, and the need for quality control and release criteria has been expressed. This pilot study compared proliferation, cell size, morphology and immunophenotype of ASCs expanded in the different pHPL alternatives versus foetal bovine serum (FBS). Quality control criteria were assessed prior to and during the manufacture of the pHPL alternatives. ASCs were then expanded in 1%, 2.5%, 5% or 10% of the different pHPL alternatives or in 10% FBS. Cell size, morphology, cell number and immunophenotype were measured using microscopy and flow cytometry. The majority of the pHPL alternatives were within the recommended ranges for the quality control criteria. ASCs expanded in the pHPL alternatives were smaller in size, displayed a tighter spindle-shaped morphology, increased cell growth and had a similar immunophenotype (with the exception of CD34 and CD36) when compared to ASCs expanded in FBS. Here we report on the effects that expired BC products and additive solutions have on ASC expansion. When taken together, our findings indicate that all of the pHPL alternatives can be considered to be suitable replacements for FBS for ASC expansion, and that expired BC products can be used as an alternative to fresh BC products.

  13. Diagnostic study of multiple double layer formation in expanding RF plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  14. Durable engraftment of genetically modified FVIII-secreting autologous bone marrow stromal cells in the intramedullary microenvironment.

    PubMed

    Lee, Sze Sing; Sivalingam, Jaichandran; Nirmal, Ajit J; Ng, Wai Har; Kee, Irene; Song, In Chin; Kiong, Chin Yong; Gales, Kristoffer A; Chua, Frederic; Pena, Edgar M; Ogden, Bryan E; Kon, Oi Lian

    2018-04-23

    Genetically modified FVIII-expressing autologous bone marrow-derived mesenchymal stromal cells (BMSCs) could cure haemophilia A. However, culture-expanded BMSCs engraft poorly in extramedullary sites. Here, we compared the intramedullary cavity, skeletal muscle, subcutaneous tissue and systemic circulation as tissue microenvironments that could support durable engraftment of FVIII-secreting BMSC in vivo. A zinc finger nuclease integrated human FVIII transgene into PPP1R12C (intron 1) of culture-expanded primary canine BMSCs. FVIII-secretory capacity of implanted BMSCs in each dog was expressed as an individualized therapy index (number of viable BMSCs implanted × FVIII activity secreted/million BMSCs/24 hours). Plasma samples before and after implantation were assayed for transgenic FVIII protein using an anti-human FVIII antibody having negligible cross-reactivity with canine FVIII. Plasma transgenic FVIII persisted for at least 48 weeks after implantation in the intramedullary cavity. Transgenic FVIII protein levels were low after intramuscular implantation and undetectable after both intravenous infusion and subcutaneous implantation. All plasma samples were negative for anti-human FVIII antibodies. Plasma concentrations and durability of transgenic FVIII secretion showed no correlation with the therapy index. Thus, the implantation site microenvironment is crucial. The intramedullary microenvironment, but not extramedullary tissues, supported durable engraftment of genetically modified autologous FVIII-secreting BMSCs. © 2018 National Cancer Centre of Singapore Pte Ltd. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Effects of different concentrations of Platelet-rich Plasma and Platelet-Poor Plasma on vitality and differentiation of autologous Adipose tissue-derived stem cells.

    PubMed

    Felthaus, Oliver; Prantl, Lukas; Skaff-Schwarze, Mona; Klein, Silvan; Anker, Alexandra; Ranieri, Marco; Kuehlmann, Britta

    2017-01-01

    Autologous fat grafts and adipose-derived stem cells (ASCs) can be used to treat soft tissue defects. However, the results are inconsistent and sometimes comprise tissue resorption and necrosis. This might be due to insufficient vascularization. Platelet-rich plasma (PRP) is a source of concentrated autologous platelets. The growth factors and cytokines released by platelets can facilitate angiogenesis. The simultaneous use of PRP might improve the regeneration potential of fat grafts. The optimal ratio has yet to be elucidated. A byproduct of PRP preparation is platelet-poor plasma (PPP). In this study we investigated the influence of different concentrations of PRP on the vitality and differentiation of ASCs. We processed whole blood with the Arthrex Angel centrifuge and isolated ASCs from the same donor. We tested the effects of different PRP and PPP concentrations on the vitality using resazurin assays and the differentiation of ASCs using oil-red staining. Both cell vitality and adipogenic differentiation increase to a concentration of 10% to 20% PRP. With a PRP concentration of 30% cell vitality and differentiation decrease. Both PRP and PPP can be used to expand ASCs without xenogeneic additives in cell culture. A PRP concentration above 20% has inhibitory effects.

  16. IgG4 related sclerosing mastitis: expanding the morphological spectrum of IgG4 related diseases.

    PubMed

    Chougule, Abhijit; Bal, Amanjit; Das, Ashim; Singh, Gurpreet

    2015-01-01

    IgG4 related disease (IgG4RD) is a recently recognised condition characterised by mass forming lesions associated with storiform fibrosis, obliterative phlebitis, lymphoplasmacytic infiltrate rich in IgG4 positive plasma cells and elevated serum IgG4 levels. Although rare, mammary involvement has been reported as IgG4 related sclerosing mastitis, the morphological counterpart of a growing family of IgG4 related diseases. A total of 17 cases belonging to mass forming benign inflammatory breast lesions such as plasma cell mastitis, granulomatous lobular mastitis, non-specific mastitis and inflammatory pseudotumour were investigated as a possible member of IgG4 related sclerosing mastitis. Clinical, radiological, histopathological and immunohistochemistry findings were noted in all cases. Cases diagnosed as inflammatory pseudotumour showed all the histopathological features of IgG4RD along with increased number of IgG4 positive plasma cells and IgG4/IgG ratio >40%. However, only a few IgG4 positive cells were seen in plasma cell mastitis, granulomatous lobular mastitis and non-specific mastitis cases. These cases also did not fulfill the morphological criteria for the diagnosis of IgG4 related diseases. IgG4RD should be excluded in plasma cell rich lesions diagnosed on core biopsies by IgG4 immunostaining. This can avoid unnecessary surgery as IgG4 related diseases respond to simple and effective steroid treatment.

  17. The potential of tumor-derived exosomes for noninvasive cancer monitoring

    PubMed Central

    Whiteside, Theresa L.

    2016-01-01

    Tumor-derived exosomes (TEXs) are emerging as a new type of cancer biomarker. TEXs are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEXs are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEXs as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward. PMID:26289602

  18. The potential of tumor-derived exosomes for noninvasive cancer monitoring.

    PubMed

    Whiteside, Theresa L

    2015-01-01

    Tumor-derived exosomes (TEX) are emerging as a new type of cancer biomarker. TEX are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEX are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEX as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward.

  19. Innovative research of plasma physics for life sciences

    NASA Astrophysics Data System (ADS)

    Boonyawan, D.

    2017-06-01

    In medicine, cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air-CAPs are O3, OH, NxOx, and HNOx. The current developments in this field have fuelled the hope that CAP could be an interesting new therapeutic approach in the treatment of cancer. CAP apparently demonstrated effect on cancer cell apoptosis which did not induce cell necrosis or disruption. Moreover, CAP seemed to be selective for cancer cells since it was more effective in tumor cells than in normal non-neoplastic cells. In bioscience, dentistry and veterinary medicine : Since CAP, is delivered at room temperature, which results in less damaging effects on living tissue, while still has the efficiency in disinfection and sterilization. Recent studies proved that it is able to inactivate gram-negative and gram-positive bacteria, fungi, virus, spore, various parasites, and foreign organisms or pathogens without harming tissue. Moreover, cold plasma has been used effectively in medical field such as dental use, inducing apoptosis of malignant cells, stopping bleeding, promoting wound healing and tissue regeneration. Sericin hydrolysates, originating from silkworm is found support cell proliferation, expand cell adhesion and increase cell yield. The covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer can slow down the release rate of protein compound into the phosphate buffer saline (PBS) solution. We found that a-C films and a-C:N2 films show good attachment of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). All of carbon modified-Polystyrene(PS) dishes revealed the less release rate of sericin molecules into PBS solution than PS control.

  20. Thermonuclear inverse magnetic pumping power cycle for stellarator reactor

    DOEpatents

    Ho, Darwin D.; Kulsrud, Russell M.

    1991-01-01

    The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.

  1. Exploring Ultrahigh-Intensity Laser-Plasma Interaction Physics with QED Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Luedtke, S. V.; Yin, L.; Labun, L. A.; Albright, B. J.; Stark, D. J.; Bird, R. F.; Nystrom, W. D.; Hegelich, B. M.

    2017-10-01

    Next generation high-intensity lasers are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. Modeling laser-plasma interactions in these extreme settings presents a challenge to traditional particle-in-cell (PIC) codes, which either do not have radiation reaction or include only classical radiation reaction. We discuss a semi-classical approach to adding quantum radiation reaction and photon production to the PIC code VPIC. We explore these intensity regimes with VPIC, compare with results from the PIC code PSC, and report on ongoing work to expand the capability of VPIC in these regimes. This work was supported by the U.S. DOE, Los Alamos National Laboratory Science program, LDRD program, NNSA (DE-NA0002008), and AFOSR (FA9550-14-1-0045). HPC resources provided by TACC, XSEDE, and LANL Institutional Computing.

  2. Flute Instability of Expanding Plasma Cloud

    NASA Astrophysics Data System (ADS)

    Dudnikova, Galina; Vshivkov, Vitali

    2000-10-01

    The expansion of plasma against a magnetized background where collisions play no role is a situation common to many plasma phenomena. The character of interaction between expanding plasma and background plasma is depending of the ratio of the expansion velocity to the ambient Alfven velocity. If the expansion speed is greater than the background Alfven speed (super-Alfvenic flows) a collisionless shock waves are formed in background plasma. It is originally think that if the expansion speed is less than Alfvenic speed (sub-Alfvenic flows) the interaction of plasma flows will be laminar in nature. However, the results of laboratory experiments and chemical releases in magnetosphere have shown the development of flute instability on the boundary of expanding plasma (Rayleigh-Taylor instability). A lot of theoretical and experimental papers have been devoted to study the Large Larmor Flute Instability (LLFI) of plasma expanding into a vacuum magnetic field. In the present paper on the base of computer simulation of plasma cloud expansion in magnetizied background plasma the regimes of development and stabilization LLFI for super- and sub-Alfvenic plasma flows are investigated. 2D hybrid numerical model is based on kinetic Vlasov equation for ions and hydrodynamic approximation for electrons. The similarity parameters characterizing the regimes of laminar flows are founded. The stabilization of LLFI takes place with the transition from sub- to super-Alfvenic plasma cloud expansion. The results of the comparision between computer simulation and laboratory simulation are described.

  3. Simulation of magnetic holes formation in the magnetosheath

    NASA Astrophysics Data System (ADS)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2017-12-01

    Magnetic holes have been frequently observed in the Earth's magnetosheath and are believed to be the consequence of the nonlinear evolution of the mirror instability. Mirror mode perturbations mainly form as magnetic holes in regions where the plasma is marginally mirror stable with respect to the linear instability criterion. We present an expanding box particle-in-cell simulation to mimic the changing conditions in the magnetosheath as the plasma is convected through it that produces mirror mode magnetic holes. We show that in the initial nonlinear evolution, where the plasma conditions are mirror unstable, the magnetic peaks are dominant, while later, as the plasma relaxes toward marginal stability, the fluctuations evolve into deep magnetic holes. While the averaged plasma parameters in the simulation remain close to the mirror instability threshold, the local plasma in the magnetic holes is highly unstable to mirror instability and locally mirror stable in the magnetic peaks.

  4. Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul

    2017-10-01

    Hypervelocity micro particles, including meteoroids and space debris with masses <1 ng, routinely impact spacecraft and create dense plasma that expands at the isothermal sound speed. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma. We also show results from particle-in-cell (PIC) and computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.

  5. Particle-in-cell simulation study of a lower-hybrid shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, M. E.; Ynnerman, A.; Sarri, G.

    2016-06-15

    The expansion of a magnetized high-pressure plasma into a low-pressure ambient medium is examined with particle-in-cell simulations. The magnetic field points perpendicular to the plasma's expansion direction and binary collisions between particles are absent. The expanding plasma steepens into a quasi-electrostatic shock that is sustained by the lower-hybrid (LH) wave. The ambipolar electric field points in the expansion direction and it induces together with the background magnetic field a fast E cross B drift of electrons. The drifting electrons modify the background magnetic field, resulting in its pile-up by the LH shock. The magnetic pressure gradient force accelerates the ambientmore » ions ahead of the LH shock, reducing the relative velocity between the ambient plasma and the LH shock to about the phase speed of the shocked LH wave, transforming the LH shock into a nonlinear LH wave. The oscillations of the electrostatic potential have a larger amplitude and wavelength in the magnetized plasma than in an unmagnetized one with otherwise identical conditions. The energy loss to the drifting electrons leads to a noticeable slowdown of the LH shock compared to that in an unmagnetized plasma.« less

  6. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma.

    PubMed

    Lodrini, Marco; Sprüssel, Annika; Astrahantseff, Kathy; Tiburtius, Daniela; Konschak, Robert; Lode, Holger N; Fischer, Matthias; Keilholz, Ulrich; Eggert, Angelika; Deubzer, Hedwig E

    2017-10-17

    The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients.

  7. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma

    PubMed Central

    Lodrini, Marco; Sprüssel, Annika; Astrahantseff, Kathy; Tiburtius, Daniela; Konschak, Robert; Lode, Holger N.; Fischer, Matthias; Keilholz, Ulrich; Eggert, Angelika; Deubzer, Hedwig E.

    2017-01-01

    The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients. PMID:29156716

  8. Spatial structure of ion beams in an expanding plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, E. M.; Scime, E. E.; Thompson, D. S.; Good, T. N.

    2017-12-01

    We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas.

  9. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    PubMed

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  11. Rebound of residual plasma viremia after initial decrease following addition of intravenous immunoglobulin to effective antiretroviral treatment of HIV.

    PubMed

    Mellberg, Tomas; Gonzalez, Veronica D; Lindkvist, Annica; Edén, Arvid; Sönnerborg, Anders; Sandberg, Johan K; Svennerholm, Bo; Gisslén, Magnus

    2011-06-28

    High dosage of intravenous immunoglobulin (IVIG) has been observed as a possible activator of HIV gene expression in latently infected resting CD4+ T-cells, leading to a substantial decrease in both the reservoir and the residual plasma viremia when added to effective ART. IVIG treatment has also been reported to expand T regulatory cells (Tregs). The aim of this study was to evaluate possible long-term effect of IVIG treatment on residual viremia and T-lymphocyte activation. Nine HIV-infected subjects on effective ART included in a previously reported study on IVIG treatment were evaluated 48-104 weeks after therapy. In addition, 14 HIV-infected controls on suppressive ART were included. HIV-1 RNA was analyzed in cell-free plasma by using an ultrasensitive PCR-method with a detection limit of 2 copies/mL. T-lymphocyte activation markers and serum interleukins were measured. Plasma residual viremia rebounded to pre-treatment levels, 48-104 weeks after the initial decrease that was observed following treatment with high-dosage IVIG. No long-term effect was observed regarding T-lymphocyte activation markers, T-regulatory cells or serum interleukins. In a post-hoc analysis, a correlation between plasma HIV-1-RNA and CD4+ T-cell count was found in both IVIG-treated patients and controls. These results indicate that the decrease in the latent HIV-1 pool observed during IVIG treatment is transient. Although not our primary objective, we found a correlation between HIV-1 RNA and CD4+ T-cell count suggesting the possibility that patients with a higher CD4+ T-cell count might harbor a larger residual pool of latently infected CD4+ T-cells.

  12. Waves generated in the plasma plume of helicon magnetic nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen

    2013-03-15

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of themore » plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.« less

  13. The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae.

    PubMed

    Roelants, Françoise M; Leskoske, Kristin L; Martinez Marshall, Maria Nieves; Locke, Melissa N; Thorner, Jeremy

    2017-09-05

    To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and masterregulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.

  14. The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Roelants, Françoise M.; Leskoske, Kristin L.; Martinez Marshall, Maria Nieves

    2017-01-01

    To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation. PMID:28872598

  15. Investigation of the functional role of CSLD proteins in plant cell wall deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Erik Etlar

    The overall goal of this research proposal was to characterize the molecular machinery responsible for polarized secretion of cell wall components in Arabidopsis thaliana. We have used the polarized expansion that occurs during root hair cell growth to identify membrane trafficking pathways involved in polarized secretion of cell wall components to the expanding tips of these cells, and we have recently shown that CSLD3 is preferentially targeted to the apical plasma membranes in root hair cells, where it plays essential roles during cell wall deposition in these cells. The specific aims of the project are designed to answer the followingmore » objective: Identification of the cell wall polysaccharide class that CSLD proteins synthesize.« less

  16. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.

    PubMed

    Zhang, Xiao; Ren, Juan; Wang, Jingren; Li, Shixie; Zou, Qingze; Gao, Nan

    2018-08-01

    Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals. © 2017 Wiley Periodicals, Inc.

  17. Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecz, Zs.; Andreev, A.; Max-Born Institute, Berlin

    The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter thanmore » the characteristic development time of the parasitic Weibel instability.« less

  18. Nonthermal plasma--A tool for decontamination and disinfection.

    PubMed

    Scholtz, Vladimir; Pazlarova, Jarmila; Souskova, Hana; Khun, Josef; Julak, Jaroslav

    2015-11-01

    By definition, the nonthermal plasma (NTP) is partially ionized gas where the energy is stored mostly in the free electrons and the overall temperature remains low. NTP is widely used for many years in various applications such as low-temperature plasma chemistry, removal of gaseous pollutants, in gas-discharge lamps or surface modification. However, during the last ten years, NTP usage expanded to new biological areas of application like plasma microorganisms' inactivation, ready-to-eat food preparation, biofilm degradation or in healthcare, where it seems to be important for the treatment of cancer cells and in the initiation of apoptosis, prion inactivation, prevention of nosocomial infections or in the therapy of infected wounds. These areas are presented and documented in this paper as a review of representative publications. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. TLR4 signaling augments B lymphocyte migration and overcomes the restriction that limits access to germinal center dark zones

    PubMed Central

    Hwang, Il-Young; Park, Chung; Harrison, Kathleen

    2009-01-01

    B lymphocyte–intrinsic Toll-like receptor (TLR) signals amplify humoral immunity and can exacerbate autoimmune diseases. We identify a new mechanism by which TLR signals may contribute to autoimmunity and chronic inflammation. We show that TLR4 signaling enhances B lymphocyte trafficking into lymph nodes (LNs), induces B lymphocyte clustering and interactions within LN follicles, leads to sustained in vivo B cell proliferation, overcomes the restriction that limits the access of nonantigen-activated B cells to germinal center dark zones, and enhances the generation of memory and plasma cells. Intravital microscopy and in vivo tracking studies of B cells transferred to recipient mice revealed that TLR4-activated, but not nonstimulated, B cells accumulated within the dark zones of preexisting germinal centers even when transferred with antigen-specific B cells. The TLR4-activated cells persist much better than nonstimulated cells, expanding both within the memory and plasma cell compartments. TLR-mediated activation of B cells may help to feed and stabilize the spontaneous and ectopic germinal centers that are so commonly found in autoimmune individuals and that accompany chronic inflammation. PMID:19917774

  20. Joint Service Chemical and Biological Defense Program: FY 06-07 Overview

    DTIC Science & Technology

    2006-01-01

    Performers Molecular model of human plasma-derived butyryl Electronmicrograph of bacillus spores adhering to cell membrane processes 38866_BATT_TX 11...agents, and radioactive fallout. CPS is integrated with the ship’s Heating, Ventilation, and Air-Conditioning ( HVAC ) systems and provides filtered air...molecules for intervention against protein NTA. • Identify and evaluate effectiveness of spore germination inhibitors. • Expand drug discovery program

  1. Canonical angular momentum compression near the Brillouin limit

    NASA Astrophysics Data System (ADS)

    Jeong, E.; Gilson, E.; Fajans, J.

    2000-10-01

    Near the Brillouin limit, the angular momentum of a trapped, T=0, pure-electron plasma approaches zero. If the plasma expands axially, its density would appear to drop. However, the plasma's canonical angular momentum is not changed by an axial expansion, so the plasma must stay near the Brillouin limit; thus the plasma's density cannot change when it is expanded. The only way for the plasma density to remain constant as the plasma length increases is for the plasma radius to decrease. Dynamically, this decrease is caused by the polarization drift induced by a small decrease in the density. In this poster we present preliminary experimental evidence demonstrating this radial compression. This work was supported by the ONR.

  2. The big freeze may be over: a contracting universe for cryopreservation?

    PubMed

    Gale, Robert Peter; Ruiz-Argüelles, Guillermo J

    2018-02-23

    According to current cosmological theory, the universe will continue to expand indefinitely. If so, it should cool eventually reaching temperatures too cold to sustain life. This theory is commonly referred to as heat-death or the big freeze. Putting aside this potentially unpleasant scenario, unlikely in the lifetime of current readers (about 10 × E + 2500 years from now), freezing, in contrast, has played an important role in hematopoietic cell autotransplants for disease such as plasma cell myeloma and lymphomas. Let us consider how.

  3. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling

    NASA Astrophysics Data System (ADS)

    Bonde, Jeffrey

    2018-04-01

    The dynamics of a magnetized, expanding plasma with a high ratio of kinetic energy density to ambient magnetic field energy density, or β, are examined by adapting a model of gaseous bubbles expanding in liquids as developed by Lord Rayleigh. New features include scale magnitudes and evolution of the electric fields in the system. The collisionless coupling between the expanding and ambient plasma due to these fields is described as well as the relevant scaling relations. Several different responses of the ambient plasma to the expansion are identified in this model, and for most laboratory experiments, ambient ions should be pulled inward, against the expansion due to the dominance of the electrostatic field.

  4. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory.

    PubMed

    Schaeffer, D B; Fox, W; Haberberger, D; Fiksel, G; Bhattacharjee, A; Barnak, D H; Hu, S X; Germaschewski, K

    2017-07-14

    We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.

  5. Giant plasma membrane vesicles: models for understanding membrane organization.

    PubMed

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Extramedullary plasmacytoma in the carotid space: Expanding the differential diagnosis.

    PubMed

    Deshpande, Sneha Satish; Kane, Shubhada; Arya, Supreeta

    2014-10-01

    Plasma cell neoplasms have been classified into various types, with a range of clinical and radiological presentations. Extramedullary plasmacytoma (EMP) is a subset of plasma cell neoplasms which presents as an isolated non-osseous soft tissue mass. Though carotid space neoplasms are commonly encountered, EMP in the carotid space is rare and seldom considered in the initial differential diagnosis of a carotid space mass. These tumors can be treated by surgery or radiotherapy. On the other hand, the commonly encountered tumors in the carotid space are treated surgically. Also, it is mandatory to exclude multiple myeloma in the patients presenting with EMP. Hence, accurate and early diagnosis has therapeutic and prognostic implications. We report a rare case of EMP of the carotid space, describing the imaging features and the differential diagnoses with clues pointing to this rare entity.

  7. Experiments on the transportation of a magnetized plasma stream in the GOL-3 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Batkin, V. I.; Burdakov, A. V.

    2016-04-15

    The program of the deep upgrade of the GOL-3 multiple-mirror trap is presented. The upgrade is aimed at creating a new GOL-NB open trap located at the GOL-3 site and intended to directly demonstrate the efficiency of using multiple-mirror magnetic cells to improve longitudinal plasma confinement in a gasdynamic open trap. The GOL-NB device will consist of a new central trap, adjoint cells with a multiple-mirror magnetic field, and end tanks (magnetic flux expanders). Plasma in the central trap will be heated by neutral beam injection with a power of up to 1.5 MW and duration of 1 ms. Atmore » present, physical experiments directed at developing plasma technologies that are novel for this facility are being carried out using the 6-m-long autonomous part of the GOL-3 solenoid. The aim of this work was to develop a method for filling the central trap with a low-temperature start plasma. Transportation of a plasma stream from an arc source over a distance of 3 m in a uniform magnetic field with an induction of 0.5–4.5 T is demonstrated. In these experiments, the axial plasma density was (1–4) × 10{sup 20} m{sup –3} and the mirror ratio varied from 5 to 60. In general, the experiments confirmed the correctness of the adopted decisions for the start plasma source of the GOL-NB device.« less

  8. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Yamada, Masaaki; Furth, Harold P.; Stix, Thomas H.; Todd, Alan M. M.

    1982-01-01

    A method and apparatus for forming a detached, compact toroidally shaped spheromak plasma by an inductive mechanism. A generally spheroidal vacuum vessel (1) houses a toroidally shaped flux ring or core (2) which contains poloidal and toroidal field generating coils. A plasma discharge occurs with the pulsing of the toroidal field coil, and the plasma is caused to expand away from the core (2) and toward the center of the vacuum vessel (1). When the plasma is in an expanded state, a portion of it is pinched off in order to form a separate, detached spheromak plasma configuration. The detached plasma is supported by a magnetic field generated by externally arranged equilibrium field coils (5).

  9. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    DOE PAGES

    Lu, San; Lu, Quanming; Guo, Fan; ...

    2016-01-25

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropymore » $${T}_{{\\rm{e}}\\perp }\\gt {T}_{{\\rm{e}}| | }$$ develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. Furthermore, the energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.« less

  10. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia

    PubMed Central

    Flint, Shaun M.; Gibson, Adele; Lucas, Geoff; Nandigam, Raghava; Taylor, Louise; Provan, Drew; Newland, Adrian C.; Savage, Caroline O.; Henderson, Robert B.

    2016-01-01

    Primary immune thrombocytopenia is an autoimmune disorder in which platelet destruction is a consequence of both B- and T-cell dysregulation. Flow cytometry was used to further characterize the B- and T-cell compartments in a cross-sectional cohort of 26 immune thrombocytopenia patients including antiplatelet antibody positive (n=14) and negative (n=12) patients exposed to a range of therapies, and a cohort of matched healthy volunteers. Markers for B-cell activating factor and its receptors, relevant B-cell activation markers (CD95 and CD21) and markers for CD4+ T-cell subsets, including circulating T-follicular helper-like cells, were included. Our results indicate that an expanded population of CD95+ naïve B cells correlated with disease activity in immune thrombocytopenia patients regardless of treatment status. A population of CD21-naïve B cells was specifically expanded in autoantibody-positive immune thrombocytopenia patients. Furthermore, the B-cell maturation antigen, a receptor for B-cell activating factor, was consistently and strongly up-regulated on plasmablasts from immune thrombocytopenia patients. These observations have parallels in other autoantibody-mediated diseases and suggest that loss of peripheral tolerance in naïve B cells may be an important component of immune thrombocytopenia pathogenesis. Moreover, the B-cell maturation antigen represents a potential target for plasma cell directed therapies in immune thrombocytopenia. PMID:26969086

  11. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia.

    PubMed

    Flint, Shaun M; Gibson, Adele; Lucas, Geoff; Nandigam, Raghava; Taylor, Louise; Provan, Drew; Newland, Adrian C; Savage, Caroline O; Henderson, Robert B

    2016-06-01

    Primary immune thrombocytopenia is an autoimmune disorder in which platelet destruction is a consequence of both B- and T-cell dysregulation. Flow cytometry was used to further characterize the B- and T-cell compartments in a cross-sectional cohort of 26 immune thrombocytopenia patients including antiplatelet antibody positive (n=14) and negative (n=12) patients exposed to a range of therapies, and a cohort of matched healthy volunteers. Markers for B-cell activating factor and its receptors, relevant B-cell activation markers (CD95 and CD21) and markers for CD4(+) T-cell subsets, including circulating T-follicular helper-like cells, were included. Our results indicate that an expanded population of CD95(+) naïve B cells correlated with disease activity in immune thrombocytopenia patients regardless of treatment status. A population of CD21-naïve B cells was specifically expanded in autoantibody-positive immune thrombocytopenia patients. Furthermore, the B-cell maturation antigen, a receptor for B-cell activating factor, was consistently and strongly up-regulated on plasmablasts from immune thrombocytopenia patients. These observations have parallels in other autoantibody-mediated diseases and suggest that loss of peripheral tolerance in naïve B cells may be an important component of immune thrombocytopenia pathogenesis. Moreover, the B-cell maturation antigen represents a potential target for plasma cell directed therapies in immune thrombocytopenia. Copyright© Ferrata Storti Foundation.

  12. Dynamics of a pulsed laser generated tin plasma expanding in an oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Barreca, F.; Fazio, E.; Neri, F.; Barletta, E.; Trusso, S.; Fazio, B.

    2005-10-01

    Semiconducting tin oxide can be successfully deposited by means of the laser ablation technique. In particular by ablating metallic tin in a controlled oxygen atmosphere, thin films of SnOx have been deposited. The partial oxygen pressure at which the films are deposited strongly influences both the stoichiometry and the structural properties of the films. In this work, we present a study of the expansion dynamics of the plasma generated by ablating a tin target by means of a pulsed laser using time and space resolved optical emission spectroscopy and fast photography imaging of the expanding plasma. Both Sn I and Sn II optical emission lines have been observed from the time-integrated spectroscopy. Time resolved-measurements revealed the dynamics of the expanding plasma in the ambient oxygen atmosphere. Stoichiometry of the films has been determined by means of X-ray photoelectron spectroscopy and correlated to the expansion dynamics of the plasma.

  13. Rgs13 constrains early B cell responses and limits germinal center sizes.

    PubMed

    Hwang, Il-Young; Hwang, Kyung-Sun; Park, Chung; Harrison, Kathleen A; Kehrl, John H

    2013-01-01

    Germinal centers (GCs) are microanatomic structures that develop in secondary lymphoid organs in response to antigenic stimulation. Within GCs B cells clonally expand and their immunoglobulin genes undergo class switch recombination and somatic hypermutation. Transcriptional profiling has identified a number of genes that are prominently expressed in GC B cells. Among them is Rgs13, which encodes an RGS protein with a dual function. Its canonical function is to accelerate the intrinsic GTPase activity of heterotrimeric G-protein α subunits at the plasma membrane, thereby limiting heterotrimeric G-protein signaling. A unique, non-canonical function of RGS13 occurs following translocation to the nucleus, where it represses CREB transcriptional activity. The functional role of RGS13 in GC B cells is unknown. To create a surrogate marker for Rgs13 expression and a loss of function mutation, we inserted a GFP coding region into the Rgs13 genomic locus. Following immunization GFP expression rapidly increased in activated B cells, persisted in GC B cells, but declined in newly generated memory B and plasma cells. Intravital microscopy of the inguinal lymph node (LN) of immunized mice revealed the rapid appearance of GFP(+) cells at LN interfollicular regions and along the T/B cell borders, and eventually within GCs. Analysis of WT, knock-in, and mixed chimeric mice indicated that RGS13 constrains extra-follicular plasma cell generation, GC size, and GC B cell numbers. Analysis of select cell cycle and GC specific genes disclosed an aberrant gene expression profile in the Rgs13 deficient GC B cells. These results indicate that RGS13, likely acting at cell membranes and in nuclei, helps coordinate key decision points during the expansion and differentiation of naive B cells.

  14. B Cell-Directed Therapeutics in Multiple Sclerosis: Rationale and Clinical Evidence.

    PubMed

    Kinzel, Silke; Weber, Martin S

    2016-12-01

    Over the last decade, evidence condensed that B cells, B cell-derived plasma cells and antibodies play a key role in the pathogenesis and progression of multiple sclerosis (MS). In many patients with MS, peripheral B cells show signs of chronic activation; within the cerebrospinal fluid clonally expanded plasma cells produce oligoclonal immunoglobulins, which remain a hallmark diagnostic finding. Confirming the clinical relevance of these immunological alterations, recent trials testing anti-CD20-mediated depletion of peripheral B cells showed an instantaneous halt in development of new central nervous system lesions and occurrence of relapses. Notwithstanding this enormous success, not all B cells or B cell subsets may contribute in a pathogenic manner, and may, in contrast, exert anti-inflammatory and, thus, therapeutically desirable properties in MS. Naïve B cells, in MS patients similar to healthy controls, are a relevant source of regulatory cytokines such as interleukin-10, which dampens the activity of other immune cells and promotes recovery from acute disease flares in experimental MS models. In this review, we describe in detail pathogenic but also regulatory properties of B and plasma cells in the context of MS and its animal model experimental autoimmune encephalomyelitis. In the second part, we review what impact current and future therapies may have on these B cell properties. Within this section, we focus on the highly encouraging data on anti-CD20 antibodies as future therapy for MS. Lastly, we discuss how B cell-directed therapy in MS could be possibly advanced even further in regard to efficacy and safety by integrating the emerging information on B cell regulation in MS into future therapeutic strategies.

  15. Effect of Phospholipidosis on the Cellular Pharmacokinetics of ChloroquineS⃞

    PubMed Central

    Zheng, Nan; Zhang, Xinyuan

    2011-01-01

    In vivo, the weakly basic, lipophilic drug chloroquine (CQ) accumulates in the kidney to concentrations more than a thousand-fold greater than those in plasma. To study the cellular pharmacokinetics of chloroquine in cells derived from the distal tubule, Madin-Darby canine kidney cells were incubated with CQ under various conditions. CQ progressively accumulated without exhibiting steady-state behavior. Experiments failed to yield evidence that known active transport mechanisms mediated CQ uptake at the plasma membrane. CQ induced a phospholipidosis-like phenotype, characterized by the appearance of numerous multivesicular and multilamellar bodies (MLBs/MVBs) within the lumen of expanded cytoplasmic vesicles. Other induced phenotypic changes including changes in the volume and pH of acidic organelles were measured, and the integrated effects of all these changes were computationally modeled to establish their impact on intracellular CQ mass accumulation. Based on the passive transport behavior of CQ, the measured phenotypic changes fully accounted for the continuous, nonsteady-state CQ accumulation kinetics. Consistent with the simulation results, Raman confocal microscopy of live cells confirmed that CQ became highly concentrated within induced, expanded cytoplasmic vesicles that contained multiple MLBs/MVBs. Progressive CQ accumulation was increased by sucrose, a compound that stimulated the phospholipidosis-like phenotype, and was decreased by bafilomycin A1, a compound that inhibited this phenotype. Thus, phospholipidosis-associated changes in organelle structure and intracellular membrane content can exert a major influence on the local bioaccumulation and biodistribution of drugs. PMID:21156819

  16. Confinement of laser plasma expansion with strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  17. Plasma-potentiated small molecules—possible alternative to antibiotics?

    NASA Astrophysics Data System (ADS)

    Bazaka, Kateryna; Bazaka, Olha; Levchenko, Igor; Xu, Shuyan; Ivanova, Elena P.; Keidar, Michael; (Ken Ostrikov, Kostya

    2017-09-01

    The efficacy of the existing arsenal of antibiotics is continuously compromised by their indiscriminative and often excessive use. The antibiotic arsenal can be expanded with agents that have different mechanisms of activity to conventional drugs, such as plant-derived natural antimicrobial small molecules, yet these often lack sufficient activity and selectivity to fulfill the antibiotics requirements and conventional thermochemical methods of their transient activation may not be compatible with biomedical applications. Here, non-equilibrium conditions of atmospheric-pressure plasma are used for rapid, single-step potentiation of activity of select terpenes without the use of chemicals or heating. Substantial potentiation of activity against Staphylococcus aureus cells in planktonic and biofilm states is observed in both inherently antibacterial terpenes, e.g. terpinen-4-ol, and compounds generally considered to have limited effect against S. aureus, e.g. γ-terpinene. The improved biological activity may arise, at least in part, from the changes in the physico-chemical properties of the terpenes induced by plasma-generated chemical species and physical effects, such as electric fields and UV irradiation. This activation approach is generic, and thus can potentially be applied to other molecules and their mixtures in an effort to expand the range of effective antimicrobial agents for deactivation of pathogenic organisms in hygiene, medical and food applications.

  18. Alterations in leucocyte subsets and histomorphology in normal-appearing perilesional skin and early and chronic hidradenitis suppurativa lesions.

    PubMed

    van der Zee, H H; de Ruiter, L; Boer, J; van den Broecke, D G; den Hollander, J C; Laman, J D; Prens, E P

    2012-01-01

    Current insight into the histopathological course of events during disease progression in hidradenitis suppurativa (HS) is fragmentary. To identify histological alterations and leucocyte subsets in normal-appearing perilesional skin, and early and chronic HS lesions. In this observational study we examined eight perilesional skin samples, and six early and 10 chronic prototypic HS lesions, as well as skin samples from four healthy donors using in situ immunostaining. Perilesional skin showed mild psoriasiform hyperplasia and follicular plugging as well as a low-grade influx of tryptase-positive mast cells, CD3+ T cells, CD138+ plasma cells and factor XIIIa+ dendritic cells. In early HS lesions, neutrophilic abscess formation and influx of mainly macrophages, monocytes and dendritic cells predominated. In chronic disease, the infiltrate expanded with markedly increased frequencies of CD20+ and CD79a+ B cells and CD138+ plasma cells. As in early lesions, free keratin fibres were detected in the dermis and within giant cells. Single detached keratinocytes and strands of follicular epithelium were observed in the dermis, the latter frequently expressing Ki67, indicative of active proliferation. Psoriasiform hyperplasia, follicular plugging and low-grade leucocytic infiltration are already present in normal-appearing perilesional skin. Keratin fibres in the dermis are associated with clinical disease. Early lesions are characterized by neutrophilic abscess formation and influx of mainly histiocytes, and chronic lesions mainly by expansion of B cells and plasma cells in 'pseudo' follicles. Proliferating strands of follicular epithelium may initiate fistula formation. Mast cells are increased in all stages of HS including perilesional skin. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  19. Characteristics of magnetised plasma flow around stationary and expanding magnetic clouds

    NASA Astrophysics Data System (ADS)

    Dalakishvili, Giorgi

    Studies of interplanetary magnetic clouds have shown that the characteristics of the region ahead of these objects, which are moving away from the Sun in the solar wind, play a role in determining their geo-efficiency, i.e. the kind and the degree of their effects on the Earth environment. Therefore, our main goal is to model and study the plasma parameters in the vicinity of interplanetary magnetic clouds. To this end we present a model in which the magnetic clouds are immersed in a magnetised plasma flow with a homogeneous magnetic field. We first calculate the resulting distortion of the external magnetic field and then determine the plasma velocity by employing the frozen-in condition. Subsequently, the plasma density and pressure are expressed as functions of the magnetic field and the velocity field. The plasma flow parameters are determined by solving the time-independent ideal MHD equations for both the stationary regime and for the case of an expand-ing cylindrical magnetic cloud, thus extending previous results that appeared in the literature.

  20. Ringing After a High-Energy Collision: Ambipolar Oscillations During Impact Plasma Expansion

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.

    2012-01-01

    High-velocity impacts on the Moon and other airless bodies deliver energy and material to the lunar surface and exosphere. The target and i mpactor material may become vaporized and ionized to form a collision al plasma that expands outward and eventually becomes collisionless. In the present work, kinetic simulations of the later collision less stage of impact plasma expansion are performed. Attention is paid to characterizing "ambipolar oscillations" in which thermodynamic distur bances propagate outward to generate "ringing" within the expanding e lectron cloud, which could radiate an electromagnetic signature of lo cal plasma conditions. The process is not unlike a beam-plasma intera ction, with the perturbing electron population in the present case ac ting as a highly thermal "beam" that resonates along the expanding de nsity gradient. Understanding the electromagnetic aspects of impact p lasma expansion could provide insight into the lasting effects of nat ural, impact-generated currents on airless surfaces and charging haza rds to human exploration infrastructure and instrumentation.

  1. Regulatory T cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to intravenous immunoglobulin therapy.

    PubMed

    Maddur, Mohan S; Stephen-Victor, Emmanuel; Das, Mrinmoy; Prakhar, Praveen; Sharma, Varun K; Singh, Vikas; Rabin, Magalie; Trinath, Jamma; Balaji, Kithiganahalli N; Bolgert, Francis; Vallat, Jean-Michel; Magy, Laurent; Kaveri, Srini V; Bayry, Jagadeesh

    2017-03-20

    Intravenous immunoglobulin (IVIG) is a polyspecific pooled immunoglobulin G preparation and one of the commonly used therapeutics for autoimmune diseases including those of neurological origin. A recent report in murine model proposed that IVIG expands regulatory T (T reg ) cells via induction of interleukin 33 (IL-33). However, translational insight on these observations is lacking. Ten newly diagnosed Guillain-Barré syndrome (GBS) patients were treated with IVIG at the rate of 0.4 g/kg for three to five consecutive days. Clinical evaluation for muscular weakness was performed by Medical Research Council (MRC) and modified Rankin scoring (MRS) system. Heparinized blood samples were collected before and 1, 2, and 4-5 weeks post-IVIG therapy. Peripheral blood mononuclear cells were stained for surface CD4 and intracellular Foxp3, IFN-γ, and tumor necrosis factor alpha (TNF-α) and were analyzed by flow cytometry. IL-33 and prostaglandin E2 in the plasma were measured by ELISA. The fold changes in plasma IL-33 at week 1 showed no correlation with the MRC and MRS scores at weeks 1, 2, and ≥4 post-IVIG therapy. Clinical recovery following IVIG therapy appears to be associated with T reg cell response. Contrary to murine study, there was no association between the fold changes in IL-33 at week 1 and T reg cell frequency at weeks 1, 2, and ≥4 post-IVIG therapy. T reg cell-mediated clinical response to IVIG therapy in GBS patients was associated with reciprocal regulation of effector T cells-expressing TNF-α. T reg cell expansion by IVIG in patients with autoimmune diseases lack correlation with IL-33. T reg cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to IVIG therapy.

  2. On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nariyuki, Y.

    A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation ofmore » Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.« less

  3. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation.

    PubMed

    Potter, Timothy M; Rodriguez, Jamie C; Neun, Barry W; Ilinskaya, Anna N; Cedrone, Edward; Dobrovolskaia, Marina A

    2018-01-01

    Blood clotting is a complex process which involves both cellular and biochemical components. The key cellular players in the blood clotting process are thrombocytes or platelets. Other cells, including leukocytes and endothelial cells, contribute to clotting by expressing the so-called pro-coagulant activity (PCA) complex on their surface. The biochemical component of blood clotting is represented by the plasma coagulation cascade, which includes plasma proteins also known as coagulation factors. The coordinated interaction between platelets, leukocytes, endothelial cells, and plasma coagulation factors is necessary for maintaining hemostasis and for preventing excessive bleeding. Undesirable activation of all or some of these components may lead to pathological blood coagulation and life-threatening conditions such as consumptive coagulopathy or disseminated intravascular coagulation (DIC). In contrast, unintended inhibition of the coagulation pathways may lead to hemorrhage. Thrombogenicity is the property of a test material to induce blood coagulation by affecting one or more elements of the clotting process. Anticoagulant activity refers to the property of a test material to inhibit coagulation. The tendency to cause platelet aggregation, perturb plasma coagulation, and induce leukocyte PCA can serve as an in vitro measure of a nanomaterial's likelihood to be pro- or anticoagulant in vivo. This chapter describes three procedures for in vitro analyses of platelet aggregation, plasma coagulation time, and activation of leukocyte PCA. Platelet aggregation and plasma coagulation procedures have been described earlier. The revision here includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, and updated details about assay controls. The chapter is expanded to describe a method for the leukocyte PCA analysis and case studies demonstrating the performance of these in vitro assays.

  4. Ambipolar ion acceleration in an expanding magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Longmier, Benjamin W.; Bering, Edgar A., III; Carter, Mark D.; Cassady, Leonard D.; Chancery, William J.; Díaz, Franklin R. Chang; Glover, Tim W.; Hershkowitz, Noah; Ilin, Andrew V.; McCaskill, Greg E.; Olsen, Chris S.; Squire, Jared P.

    2011-02-01

    The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s-1 argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 × 1020 m-3 and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 104 to 105 λDe depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 1015 m-3 and 2 × 10-5 Torr, respectively, in a 150 m3 vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.

  5. Lagrangian description of warm plasmas

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1970-01-01

    Efforts are described to extend the averaged Lagrangian method of describing small signal wave propagation and nonlinear wave interaction, developed by earlier workers for cold plasmas, to the more general conditions of warm collisionless plasmas, and to demonstrate particularly the effectiveness of the method in analyzing wave-wave interactions. The theory is developed for both the microscopic description and the hydrodynamic approximation to plasma behavior. First, a microscopic Lagrangian is formulated rigorously, and expanded in terms of perturbations about equilibrium. Two methods are then described for deriving a hydrodynamic Lagrangian. In the first of these, the Lagrangian is obtained by velocity integration of the exact microscopic Lagrangian. In the second, the expanded hydrodynamic Lagrangian is obtained directly from the expanded microscopic Lagrangian. As applications of the microscopic Lagrangian, the small-signal dispersion relations and the coupled mode equations are derived for all possible waves in a warm infinite, weakly inhomogeneous magnetoplasma, and their interactions are examined.

  6. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    DOE PAGES

    Schaeffer, D. B.; Fox, W.; Haberberger, D.; ...

    2017-07-13

    Here, we present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M ms ≈ 12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magneticmore » barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.« less

  7. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, D. B.; Fox, W.; Haberberger, D.

    Here, we present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M ms ≈ 12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magneticmore » barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.« less

  8. Hemopoiesis in the pig-tailed monkey Macaca nemestrina during chronic altitude exposure.

    NASA Technical Reports Server (NTRS)

    Buderer, M. C.; Pace, N.

    1972-01-01

    Study of monkeys for 180 days at 3800 m altitude to examine their hemopoietic response. Plasma volume was found to be reduced while red cell volume increased steadily for four to five months. Reduction in mean corpuscular hemoglobin content was observed from day 30 to day 120 at altitude. Total plasma protein concentration was unchanged at altitude, but marked reduction in the albumin/globulin ratio occurred. Total circulating plasma protein and albumin were reduced in amount, whereas nonalbumin protein was unchanged. These results imply loss of albumin coupled with a corresponding loss of water from the blood and maintenance of normal plasma osmotic pressure. The body/venous hematocrit ratio was found to be reduced at altitude, possibly as a consequence of the expanded capillary volume of the body. The hemopoietic responses of the pig-tailed monkey at altitude require at least several months for completion, and closely resemble those seen in man; thus, the monkey can serve well for long-term studies of high-altitude acclimatization.

  9. Electron dynamics in high energy density plasma bunch generation driven by intense picosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.

    2018-05-01

    When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.

  10. Renal lesions associated with plasma cell dyscrasias: practical approach to diagnosis, new concepts, and challenges.

    PubMed

    Herrera, Guillermo A

    2009-02-01

    Patients with plasma cell dyscrasias (myeloma) may exhibit a variety of renal manifestations as a result of damage from circulating light- and heavy-chain immunoglobulin components produced by the neoplastic plasma cells. The renal alterations can occur in any of the renal compartments, and in a significant number of the cases more than one compartment is affected. Research in the laboratory has helped considerably in providing a solid conceptual understanding of how renal damage occurs. To detail advances that have been made in the diagnosis of these conditions and to provide an account of research accomplishments that have solidified diagnostic criteria. The new knowledge that has been acquired serves to provide a solid platform for the future design of new therapeutic interventions aimed at ameliorating or abolishing the progressive renal damage that typically takes place. Translational efforts have substantially contributed to elucidate mechanistically the molecular events responsible for the renal damage. The spectrum of renal manifestations associated with plasma cell dyscrasias has expanded significantly in the last 10 years. Diagnostic criteria have also been refined. This information has been summarized from work done at several institutions. A number of significant challenges remain in the diagnosis of these conditions, some of which will be discussed in this article. Dealing with these challenges will require additional translational efforts and close cooperation between basic researchers, clinicians, and pathologists in order to improve the diagnostic tools available to renal pathologists and to acquire a more complete understanding of clinical and pathologic manifestations associated with these conditions.

  11. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling

    NASA Astrophysics Data System (ADS)

    Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter

    2018-04-01

    The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.

  12. Effects of Synthetic Versus Natural Colloid Resuscitation on Inducing Dilutional Coagulopathy and Increasing Hemorrhage in Rabbits

    DTIC Science & Technology

    2008-05-01

    hemostasis, and plasma expanders: a quarter century enigma. Fed Proc. 1975;34:1429–1440. 23. Bergqvist D. Dextran and haemostasis. a review. Acta Chir ...eds. Blood Substitutes and Plasma Expanders. Prog Clin Biol Res. 1978;19:293–298. 57. Kovalik SG, Ledgewood AM, Lucas CE, Higgins RF. The cardiac

  13. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.

    PubMed

    Frölich, Daniela; Giesecke, Claudia; Mei, Henrik E; Reiter, Karin; Daridon, Capucine; Lipsky, Peter E; Dörner, Thomas

    2010-09-01

    Rechallenge with T cell-dependent Ags induces memory B cells to re-enter germinal centers (GCs) and undergo further expansion and differentiation into plasma cells (PCs) and secondary memory B cells. It is currently not known whether the expanded population of memory B cells and PCs generated in secondary GCs are clonally related, nor has the extent of proliferation and somatic hypermutation of their precursors been delineated. In this study, after secondary tetanus toxoid (TT) immunization, TT-specific PCs increased 17- to 80-fold on days 6-7, whereas TT-specific memory B cells peaked (delayed) on day 14 with a 2- to 22-fold increase. Molecular analyses of V(H)DJ(H) rearrangements of individual cells revealed no major differences of gene usage and CDR3 length between TT-specific PCs and memory B cells, and both contained extensive evidence of somatic hypermutation with a pattern consistent with GC reactions. This analysis identified clonally related TT-specific memory B cells and PCs. Within clusters of clonally related cells, sequences shared a number of mutations but also could contain additional base pair changes. The data indicate that although following secondary immunization PCs can derive from memory B cells without further somatic hypermutation, in some circumstances, likely within GC reactions, asymmetric mutation can occur. These results suggest that after the fate decision to differentiate into secondary memory B cells or PCs, some committed precursors continue to proliferate and mutate their V(H) genes.

  14. Ion beams in multi-species plasmas

    NASA Astrophysics Data System (ADS)

    Aguirre, E. M.; Scime, E. E.; Good, T. N.

    2018-04-01

    Argon and xenon ion velocity distribution functions are measured in Ar-He, Ar-Xe, and Xe-He expanding helicon plasmas to determine if ion beam velocity is enhanced by the presence of lighter ions. Contrary to observations in mixed gas sheath experiments, we find that adding a lighter ion does not increase the ion beam speed. The predominant effect is a reduction of ion beam velocity consistent with increased drag arising from increased gas pressure under all conditions: constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for the acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in expanding helicon plasmas.

  15. Clinical-grade quality platelet-rich plasma releasate (PRP-R/SRGF) from CaCl2 -activated platelet concentrates promoted expansion of mesenchymal stromal cells.

    PubMed

    Borghese, C; Agostini, F; Durante, C; Colombatti, A; Mazzucato, M; Aldinucci, D

    2016-08-01

    The aim of our study was to test a platelet-rich plasma releasate (PRP-R/SRGF) from CaCl2 -activated platelets as a source of growth factors for the expansion of mesenchymal stromal cells (MSCs). PRP-R/SRGF, obtained with a low-cost procedure, is characterized by a reduced variability of growth factor release. PRP-R/SRGF is a clinical-grade quality solution obtained from CaCl2 -activated platelets. Its activity was evaluated by measuring the proliferation, the phenotype, the differentiation potential and the immunosuppressive properties of MSCs derived from bone marrow (BM) and adipose tissue (AT). PRP-R/SRGF was more active than FBS to expand BM- and AT-derived MSCs. PRP-R/SRGF treatment did not affect the expression of typical MSCs surface markers, neither MSCs differentiation potential nor their capability to inhibit activated T-cell proliferation. The clinical-grade PRP-R/SRGF may be used in the clinical setting for the expansion of MSCs. © 2016 International Society of Blood Transfusion.

  16. Microtubules and cellulose biosynthesis: the emergence of new players.

    PubMed

    Li, Shundai; Lei, Lei; Yingling, Yaroslava G; Gu, Ying

    2015-12-01

    Microtubules determine the orientation of newly formed cellulose microfibrils in expanding cells. There are many hypotheses regarding how the information is transduced across the plasma membrane from microtubules to cellulose microfibrils. However, the molecular mechanisms underlying the co-alignment between microtubules and cellulose microfibrils were not revealed until the recent discovery of cellulose synthase interacting (CSI) proteins. Characterization of CSIs and additional cellulose synthase-associated proteins will greatly advance the knowledge of how cellulose microfibrils are organized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. High density plasma gun generates plasmas at 190 kilometers per second

    NASA Technical Reports Server (NTRS)

    Espy, P. N.

    1971-01-01

    Gun has thin metal foil disc which positions or localizes gas to be ionized during electrical discharge cycle, overcoming major limiting factor in obtaining such plasmas. Expanding plasma front travels at 190 km/sec, compared to plasmas of 50 to 60 km/sec previously achieved.

  18. G protein-coupled receptors: the inside story.

    PubMed

    Jalink, Kees; Moolenaar, Wouter H

    2010-01-01

    Recent findings necessitate revision of the traditional view of G protein-coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either stimulate or inhibit cAMP production in a sustained manner. They do so by remaining associated with their cognate G protein subunit and adenylyl cyclase at endosomal compartments. Once internalized, the GPCRs produce cellular responses distinct from those elicited at the cell surface.

  19. Transition from single to multiple axial potential structure in expanding helicon plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Chattopadhyay, P. K.; Ghosh, J.; Pal, R.; Bora, D.

    2017-02-01

    Transition from single to multiple axial potential structure (MAPS) formation is reported in expanding helicon plasma. This transition is created by forming a cusp magnetic field at the downstream after the expansion throat. Two distinct potential drops are separated by a uniform axial potential zone. Non-uniform axial density distribution exists in expanding helicon systems. A cusp-like field nourishes both the axial density gradients sufficient enough for the formation of these two distinct potential drops. It is also shown that both single and multiple axial potential structures are observed only when both geometric and magnetic expansions closely coincide with each other. Coexistence of these two expansions at the same location enhances plasma expansion which facilitates deviation from Boltzmann distribution and violates quasi-neutrality locally.

  20. 3D printed lattices as an activation and expansion platform for T cell therapy.

    PubMed

    Delalat, Bahman; Harding, Frances; Gundsambuu, Batjargal; De-Juan-Pardo, Elena M; Wunner, Felix M; Wille, Marie-Luise; Jasieniak, Marek; Malatesta, Kristen A L; Griesser, Hans J; Simula, Antonio; Hutmacher, Dietmar W; Voelcker, Nicolas H; Barry, Simon C

    2017-09-01

    One of the most significant hurdles to the affordable, accessible delivery of cell therapy is the cost and difficulty of expanding cells to clinically relevant numbers. Immunotherapy to prevent autoimmune disease, tolerate organ transplants or target cancer critically relies on the expansion of specialized T cell populations. We have designed 3D-printed cell culture lattices with highly organized micron-scale architectures, functionalized via plasma polymerization to bind monoclonal antibodies that trigger cell proliferation. This 3D technology platform facilitate the expansion of therapeutic human T cell subsets, including regulatory, effector, and cytotoxic T cells while maintaining the correct phenotype. Lentiviral gene delivery to T cells is enhanced in the presence of the lattices. Incorporation of the lattice format into existing cell culture vessels such as the G-Rex system is feasible. This cell expansion platform is user-friendly and expedites cell recovery and scale-up, making it ideal for translating T cell therapies from bench to bedside. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  2. Research Activities at Plasma Research Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya

    2000-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas phase and surface reaction rates, species concentration, temperature, ion energy distribution, and electron number density.

  3. Laboratory simulation of energetic flows of magnetospheric planetary plasma

    NASA Astrophysics Data System (ADS)

    Shaikhislamov, I. F.; Posukh, V. G.; Melekhov, A. V.; Boyarintsev, E. L.; Zakharov, Yu P.; Prokopov, P. A.; Ponomarenko, A. G.

    2017-01-01

    Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere.

  4. Comparison of whole body and tissue blood volumes in rainbow trout (Salmo gairdneri) with 125I bovine serum albumin and 51Cr-erythrocyte tracers

    USGS Publications Warehouse

    Gingerich, W.H.; Pityer, R.A.

    1989-01-01

    Total, packed cell and, plasma volume estimates were made for the whole body and selected tissues of rainbow trout by the simultaneous injection of radiolabelled trout erythrocyte (51Cr-RBC) and radioiodinated bovine serum albumin (125I-BSA) tracers. Blood volumes were estimated with both markers separately by the tracer-hematocrit method and as the combination of the 51Cr-RBC packed cell and 125I-BSA plasma volumes. Mean whole body blood volume was significantly less when calculated from the 51Cr-RBC tracer data (3.52±0.78 ml/100 g; ±SD) than when calculated with the 125I-BSA tracer (5.06±0.86 ml/100 g) or as the sum of the two volumes combined (4.49±0.60 ml/100 g). The whole body hematocrit (28±5%), estimated as the quotient of the 51Cr-RBC volume divided by the sum of the 125I-BSA and the 51Cr-RBC volumes, also was significantly less than the dorsal aortic microhematocrit (36±4%). Estimates of total blood volumes in most tissues were significantly smaller when calculated from the51Cr-RBC data than when calculated by the other two methods. Tissue blood volumes were greatest in highly vascularized and well perfused tissues and least in poorly vascularized tissues. The relative degree of vascularization among tissues generally remained the same regardless of whether the red cell or the plasma tracer was used to calculated blood volume. It is not clear whether the expanded plasma volume is the result of the distribution of erythrocyte-poor blood into the secondary circulation or the result of extravascular exchange of plasma proteins.

  5. Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial

    PubMed Central

    Ackerman, Margaret; Saunders, Kevin O.; Pollara, Justin; Vandergrift, Nathan; Parks, Rob; Michael, Nelson L.; O’Connell, Robert J.; Vasan, Sandhya; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Sinangil, Faruk; Phogat, Sanjay; Alam, S. Munir; Liao, Hua-Xin; Ferrari, Guido; Seaman, Michael S.; Montefiori, David C.; Harrison, Stephen C.; Haynes, Barton F.

    2017-01-01

    The canary pox vector and gp120 vaccine (ALVAC-HIV and AIDSVAX B/E gp120) in the RV144 HIV-1 vaccine trial conferred an estimated 31% vaccine efficacy. Although the vaccine Env AE.A244 gp120 is antigenic for the unmutated common ancestor of V1V2 broadly neutralizing antibody (bnAbs), no plasma bnAb activity was induced. The RV305 (NCT01435135) HIV-1 clinical trial was a placebo-controlled randomized double-blinded study that assessed the safety and efficacy of vaccine boosting on B cell repertoires. HIV-1-uninfected RV144 vaccine recipients were reimmunized 6–8 years later with AIDSVAX B/E gp120 alone, ALVAC-HIV alone, or a combination of ALVAC-HIV and AIDSVAX B/E gp120 in the RV305 trial. Env-specific post-RV144 and RV305 boost memory B cell VH mutation frequencies increased from 2.9% post-RV144 to 6.7% post-RV305. The vaccine was well tolerated with no adverse events reports. While post-boost plasma did not have bnAb activity, the vaccine boosts expanded a pool of envelope CD4 binding site (bs)-reactive memory B cells with long third heavy chain complementarity determining regions (HCDR3) whose germline precursors and affinity matured B cell clonal lineage members neutralized the HIV-1 CRF01 AE tier 2 (difficult to neutralize) primary isolate, CNE8. Electron microscopy of two of these antibodies bound with near-native gp140 trimers showed that they recognized an open conformation of the Env trimer. Although late boosting of RV144 vaccinees expanded a novel pool of neutralizing B cell clonal lineages, we hypothesize that boosts with stably closed trimers would be necessary to elicit antibodies with greater breadth of tier 2 HIV-1 strains. Trial Registration: ClinicalTrials.gov NCT01435135 PMID:28235027

  6. Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial.

    PubMed

    Easterhoff, David; Moody, M Anthony; Fera, Daniela; Cheng, Hao; Ackerman, Margaret; Wiehe, Kevin; Saunders, Kevin O; Pollara, Justin; Vandergrift, Nathan; Parks, Rob; Kim, Jerome; Michael, Nelson L; O'Connell, Robert J; Excler, Jean-Louis; Robb, Merlin L; Vasan, Sandhya; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Sinangil, Faruk; Tartaglia, James; Phogat, Sanjay; Kepler, Thomas B; Alam, S Munir; Liao, Hua-Xin; Ferrari, Guido; Seaman, Michael S; Montefiori, David C; Tomaras, Georgia D; Harrison, Stephen C; Haynes, Barton F

    2017-02-01

    The canary pox vector and gp120 vaccine (ALVAC-HIV and AIDSVAX B/E gp120) in the RV144 HIV-1 vaccine trial conferred an estimated 31% vaccine efficacy. Although the vaccine Env AE.A244 gp120 is antigenic for the unmutated common ancestor of V1V2 broadly neutralizing antibody (bnAbs), no plasma bnAb activity was induced. The RV305 (NCT01435135) HIV-1 clinical trial was a placebo-controlled randomized double-blinded study that assessed the safety and efficacy of vaccine boosting on B cell repertoires. HIV-1-uninfected RV144 vaccine recipients were reimmunized 6-8 years later with AIDSVAX B/E gp120 alone, ALVAC-HIV alone, or a combination of ALVAC-HIV and AIDSVAX B/E gp120 in the RV305 trial. Env-specific post-RV144 and RV305 boost memory B cell VH mutation frequencies increased from 2.9% post-RV144 to 6.7% post-RV305. The vaccine was well tolerated with no adverse events reports. While post-boost plasma did not have bnAb activity, the vaccine boosts expanded a pool of envelope CD4 binding site (bs)-reactive memory B cells with long third heavy chain complementarity determining regions (HCDR3) whose germline precursors and affinity matured B cell clonal lineage members neutralized the HIV-1 CRF01 AE tier 2 (difficult to neutralize) primary isolate, CNE8. Electron microscopy of two of these antibodies bound with near-native gp140 trimers showed that they recognized an open conformation of the Env trimer. Although late boosting of RV144 vaccinees expanded a novel pool of neutralizing B cell clonal lineages, we hypothesize that boosts with stably closed trimers would be necessary to elicit antibodies with greater breadth of tier 2 HIV-1 strains. ClinicalTrials.gov NCT01435135.

  7. In situ CF3 Detection in Low Pressure Inductive Discharges by Fourier Transform Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.

  8. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis.

    PubMed

    Schindelman, G; Morikami, A; Jung, J; Baskin, T I; Carpita, N C; Derbyshire, P; McCann, M C; Benfey, P N

    2001-05-01

    To control organ shape, plant cells expand differentially. The organization of the cellulose microfibrils in the cell wall is a key determinant of differential expansion. Mutations in the COBRA (COB) gene of Arabidopsis, known to affect the orientation of cell expansion in the root, are reported here to reduce the amount of crystalline cellulose in cell walls in the root growth zone. The COB gene, identified by map-based cloning, contains a sequence motif found in proteins that are anchored to the extracellular surface of the plasma membrane through a glycosylphosphatidylinositol (GPI) linkage. In animal cells, this lipid linkage is known to confer polar localization to proteins. The COB protein was detected predominately on the longitudinal sides of root cells in the zone of rapid elongation. Moreover, COB RNA levels are dramatically upregulated in cells entering the zone of rapid elongation. Based on these results, models are proposed for the role of COB as a regulator of oriented cell expansion.

  9. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis

    PubMed Central

    Schindelman, Gary; Morikami, Atsushi; Jung, Jee; Baskin, Tobias I.; Carpita, Nicholas C.; Derbyshire, Paul; McCann, Maureen C.; Benfey, Philip N.

    2001-01-01

    To control organ shape, plant cells expand differentially. The organization of the cellulose microfibrils in the cell wall is a key determinant of differential expansion. Mutations in the COBRA (COB) gene of Arabidopsis, known to affect the orientation of cell expansion in the root, are reported here to reduce the amount of crystalline cellulose in cell walls in the root growth zone. The COB gene, identified by map-based cloning, contains a sequence motif found in proteins that are anchored to the extracellular surface of the plasma membrane through a glycosylphosphatidylinositol (GPI) linkage. In animal cells, this lipid linkage is known to confer polar localization to proteins. The COB protein was detected predominately on the longitudinal sides of root cells in the zone of rapid elongation. Moreover, COB RNA levels are dramatically upregulated in cells entering the zone of rapid elongation. Based on these results, models are proposed for the role of COB as a regulator of oriented cell expansion. PMID:11331607

  10. Plasma Physics/Fusion Energy Education at the Liberty Science Center

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff

    2007-11-01

    The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.

  11. Proton probing of a relativistic laser interaction with near-critical plasma

    NASA Astrophysics Data System (ADS)

    Willingale, Louise; Zulick, C.; Thomas, A. G. R.; Maksimchuk, A.; Krushelnick, K.; Nilson, P. M.; Stoeckl, C.; Sangster, T. C.; Nazarov, W.

    2014-10-01

    The Omega EP laser (1000 J in 10 ps pulses) was used to investigate a relativistic intensity laser interaction with near-critical density plasma using a transverse proton beam to diagnose the large electromagnetic fields generated. A very low density foam target mounted in a washer provided the near-critical density conditions. The fields from a scaled, two-dimensional particle-in-cell simulation were inputed into a particle-tracking code to create simulated proton probe images. This allows us to understand the origins of the complex features in the experimental images, including a rapidly expanding sheath field, evidence for ponderomotive channeling and fields at the foam-washer interface. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0002028.

  12. Interferon-β1a reduces plasma CD31+ endothelial microparticles (CD31+EMP) in multiple sclerosis

    PubMed Central

    Sheremata, William A; Jy, Wenche; Delgado, Sylvia; Minagar, Alireza; McLarty, Jerry; Ahn, Yeon

    2006-01-01

    Background A correlation between plasma CD31+ endothelial microparticles (CD31+EMP) levels and clinical, as well as brain MRI activity, in multiple sclerosis (MS) patients has been previously reported. However, the effect(s) of treatment with interferon-β1a (IFN-β1a) on plasma levels of CD31+EMP has not been assessed. In a prospective study, we measured plasma CD31+EMP levels in 30 patients with relapsing-remitting MS. Methods Using flow cytometry, in a blinded study, we measured plasma CD31+EMP in 30 consecutive patients with relapsing-remitting MS (RRMS) prior to and 4, 12, 24 and 52 weeks after initiation of intramuscular therapy with interferon-β1a (IFN-β1a), 30 micrograms weekly. At each visit, clinical examination was performed and expanded disability status scale (EDSS) scores were assessed. Results Plasma levels of CD31+EMP were significantly reduced from 24 through 52 weeks following initiation of treatment with IFN-β1a. Conclusion Our data suggest that serial measurement of plasma CD31+EMP levels may be used as a surrogate marker of response to therapy with INF-β1a. In addition, the decline in plasma levels of CD31+EMP further supports the concept that IFN-β1a exerts stabilizing effect on the cerebral endothelial cells in pathogenesis of MS. PMID:16952316

  13. Interferon-beta1a reduces plasma CD31+ endothelial microparticles (CD31+EMP) in multiple sclerosis.

    PubMed

    Sheremata, William A; Jy, Wenche; Delgado, Sylvia; Minagar, Alireza; McLarty, Jerry; Ahn, Yeon

    2006-09-04

    A correlation between plasma CD31+ endothelial microparticles (CD31+EMP) levels and clinical, as well as brain MRI activity, in multiple sclerosis (MS) patients has been previously reported. However, the effect(s) of treatment with interferon-beta1a (IFN-beta1a) on plasma levels of CD31+EMP has not been assessed. In a prospective study, we measured plasma CD31+EMP levels in 30 patients with relapsing-remitting MS. Using flow cytometry, in a blinded study, we measured plasma CD31+EMP in 30 consecutive patients with relapsing-remitting MS (RRMS) prior to and 4, 12, 24 and 52 weeks after initiation of intramuscular therapy with interferon-beta1a (IFN-beta1a), 30 micrograms weekly. At each visit, clinical examination was performed and expanded disability status scale (EDSS) scores were assessed. Plasma levels of CD31+EMP were significantly reduced from 24 through 52 weeks following initiation of treatment with IFN-beta1a. Our data suggest that serial measurement of plasma CD31+EMP levels may be used as a surrogate marker of response to therapy with INF-beta1a. In addition, the decline in plasma levels of CD31+EMP further supports the concept that IFN-beta1a exerts stabilizing effect on the cerebral endothelial cells in pathogenesis of MS.

  14. Long Time-lapse Nanoscopy with Spontaneously Blinking Membrane Probes

    PubMed Central

    Takakura, Hideo; Zhang, Yongdeng; Erdmann, Roman S.; Thompson, Alexander D.; Lin, Yu; McNellis, Brian; Rivera-Molina, Felix; Uno, Shin-nosuke; Kamiya, Mako; Urano, Yasuteru; Rothman, James E.; Bewersdorf, Joerg; Schepartz, Alanna; Toomre, Derek

    2017-01-01

    Long time-lapse, diffraction-unlimited super-resolution imaging of cellular structures and organelles in living cells is highly challenging, as it requires dense labeling, bright, highly photostable dyes, and non-toxic conditions. We developed a set of high-density, environment-sensitive (HIDE) membrane probes based on HMSiR that assemble in situ and enable long time-lapse, live cell nanoscopy of discrete cellular structures and organelles with high spatio-temporal resolution. HIDE-enabled nanoscopy movies are up to 50x longer than movies obtained with labeled proteins, reveal the 2D dynamics of the mitochondria, plasma membrane, and filopodia, and the 2D and 3D dynamics of the endoplasmic reticulum in living cells. These new HIDE probes also facilitate the acquisition of live cell, two-color, super-resolution images, greatly expanding the utility of nanoscopy to visualize processes and structures in living cells. PMID:28671662

  15. Actin-myosin network is required for proper assembly of influenza virus particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregatedmore » on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.« less

  16. PIC Simulations of Hypersonic Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Decyk, V.; Schriver, D.; Clark, E.

    2013-12-01

    The plasma sheaths formed around hypersonic aircraft (Mach number, M > 10) are relatively unexplored and of interest today to both further the development of new technologies and solve long-standing engineering problems. Both laboratory experiments and analytical/numerical modeling are required to advance the understanding of these systems; it is advantageous to perform these tasks in tandem. There has already been some work done to study these plasmas by experiments that create a rapidly expanding plasma through ablation of a target with a laser. In combination with a preformed magnetic field, this configuration leads to a magnetic "bubble" formed behind the front as particles travel at about Mach 30 away from the target. Furthermore, the experiment was able to show the generation of fast electrons which could be due to instabilities on electron scales. To explore this, future experiments will have more accurate diagnostics capable of observing time- and length-scales below typical ion scales, but simulations are a useful tool to explore these plasma conditions theoretically. Particle in Cell (PIC) simulations are necessary when phenomena are expected to be observed at these scales, and also have the advantage of being fully kinetic with no fluid approximations. However, if the scales of the problem are not significantly below the ion scales, then the initialization of the PIC simulation must be very carefully engineered to avoid unnecessary computation and to select the minimum window where structures of interest can be studied. One method of doing this is to seed the simulation with either experiment or ion-scale simulation results. Previous experiments suggest that a useful configuration for studying hypersonic plasma configurations is a ring of particles rapidly expanding transverse to an external magnetic field, which has been simulated on the ion scale with an ion-hybrid code. This suggests that the PIC simulation should have an equivalent configuration; however, modeling a plasma expanding radially in every direction is computationally expensive. In order to reduce the computational expense, we use a radial density profile from the hybrid simulation results to seed a self-consistent PIC simulation in one direction (x), while creating a current in the direction (y) transverse to both the drift velocity and the magnetic field (z) to create the magnetic bubble observed in experiment. The simulation will be run in two spatial dimensions but retain three velocity dimensions, and the results will be used to explore the growth of micro-instabilities present in hypersonic plasmas in the high-density region as it moves through the simulation box. This will still require a significantly large box in order to compare with experiment, as the experiments are being performed over distances of 104 λDe and durations of 105 ωpe-1.

  17. Intact stable isotope labeled plasma proteins from the SILAC-labeled HepG2 secretome.

    PubMed

    Mangrum, John B; Martin, Erika J; Brophy, Donald F; Hawkridge, Adam M

    2015-09-01

    The plasma proteome remains an attractive biospecimen for MS-based biomarker discovery studies. The success of these efforts relies on the continued development of quantitative MS-based proteomics approaches. Herein we report the use of the SILAC-labeled HepG2 secretome as a source for stable isotope labeled plasma proteins for quantitative LC-MS/MS measurements. The HepG2 liver cancer cell line secretes the major plasma proteins including serum albumin, apolipoproteins, protease inhibitors, coagulation factors, and transporters that represent some of the most abundant proteins in plasma. The SILAC-labeled HepG2 secretome was collected, spiked into human plasma (1:1 total protein), and then processed for LC-MS/MS analysis. A total of 62 and 56 plasma proteins were quantified (heavy:light (H/L) peptide pairs) from undepleted and depleted (serum albumin and IgG), respectively, with log2 H/L = ± 6. Major plasma proteins quantified included albumin, apolipoproteins (e.g., APOA1, APOA2, APOA4, APOB, APOC3, APOE, APOH, and APOM), protease inhibitors (e.g., A2M and SERPINs), coagulation factors (e.g., Factor V, Factor X, fibrinogen), and transport proteins (e.g., TTR). The average log2 H/L values for shared plasma proteins in both undepleted and depleted plasma samples were 0.43 and 0.44, respectively. This work further expands the SILAC strategy into MS-based biomarker discovery of clinical biospecimens. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Collisionless plasma expansion into vacuum: Two new twists on an old problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arefiev, Alexey V.; Breizman, Boris N.

    The paper deals with a generic problem of collisionless plasma expansion into vacuum in the regimes where the expanding plasma consists of hot electrons and cold ions. The expansion is caused by electron pressure and serves as an energy transfer mechanism from electrons to ions. This process is often described under the assumption of Maxwellian electrons, which easily fails in the absence of collisions. The paper discusses two systems with a naturally occurring non-Maxwellian distribution: an expanding laser-irradiated nanoplasma and a supersonic jet coming out of a magnetic nozzle. The presented rigorous kinetic description demonstrates how the deviation from themore » Maxwellian distribution fundamentally alters the process of ion acceleration during plasma expansion. This result points to the critical importance of a fully kinetic treatment in problems with collisionless plasma expansion.« less

  19. Collisionless plasma expansion into vacuum: Two new twists on an old problema)

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexey V.; Breizman, Boris N.

    2009-05-01

    The paper deals with a generic problem of collisionless plasma expansion into vacuum in the regimes where the expanding plasma consists of hot electrons and cold ions. The expansion is caused by electron pressure and serves as an energy transfer mechanism from electrons to ions. This process is often described under the assumption of Maxwellian electrons, which easily fails in the absence of collisions. The paper discusses two systems with a naturally occurring non-Maxwellian distribution: an expanding laser-irradiated nanoplasma and a supersonic jet coming out of a magnetic nozzle. The presented rigorous kinetic description demonstrates how the deviation from the Maxwellian distribution fundamentally alters the process of ion acceleration during plasma expansion. This result points to the critical importance of a fully kinetic treatment in problems with collisionless plasma expansion.

  20. Preliminary study of the CRRES magnetospheric barium releases

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Bernhardt, P. A.; Lyon, J. G.

    1992-01-01

    Preliminary theoretical and computational analyses of the Combined Release and Radiation Effects Satellite (CRRES) magnetospheric barium releases are presented. The focus of the studies is on the evolution of the diamagnetic cavity which is formed by the barium ions as they expand outward, and on the structuring of the density and magnetic field during the expansion phase of the releases. Two sets of simulation studies are discussed. The first set is based upon a 2D ideal MHD code and provides estimates of the time and length scales associated with the formation and collapse of the diamagnetic cavity. The second set uses a nonideal MHD code; specifically, the Hall term is included. This additional term is critical to the dynamics of sub-Alfvenic plasma expansions, such as the CRRES barium releases, because it leads to instability of the expanding plasma. Detailed simulations of the G4 and G10 releases were performed. In both cases the expanding plasma rapidly structured: the G4 release structured at time t less than about 3 s and developed scale sizes of about 1-2 km, while the G10 release structured at time t less than about 22 s and developed scale sizes of about 10-15 km. It is also found that the diamagnetic cavity size is reduced from those obtained from the ideal MHD results because of the structure. On the other hand, the structuring allows the formation of plasma blobs which appear to free stream across the magnetic field; thus, the barium plasma can propagate to larger distances traverse to the magnetic field than the case where no structuring occurs. Finally, a new normal mode of the system was discovered which may be excited at the leading edge of the expanding barium plasma.

  1. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  2. A simulation study of interactions of Space-Shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  3. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  4. Intra-articular injections of expanded mesenchymal stem cells with and without addition of platelet-rich plasma are safe and effective for knee osteoarthritis.

    PubMed

    Bastos, Ricardo; Mathias, Marcelo; Andrade, Renato; Bastos, Raquel; Balduino, Alex; Schott, Vinicius; Rodeo, Scott; Espregueira-Mendes, João

    2018-03-06

    To compare the effectiveness and safety of intra-articular injections of autologous expanded mesenchymal stromal stem cells alone (MSCs), or in combination with platelet-rich plasma (MSCs + PRP), in patients with knee osteoarthritis. Eighteen patients (57.6 ± 9.6 years) with radiographic symptomatic knee osteoarthritis (Dejour grades II-IV) were randomized to receive intra-articular injections of MSCs (n = 9) or MSCs + PRP (n = 9). Injections were performed 2-3 weeks after bone marrow aspiration (± 80-100 ml) which was obtained from both posterior iliac crests. The Knee Injury and Osteoarthritis Outcome Score (KOOS) improved significantly throughout the 12 months for both groups (p < 0.05). No statistically significant differences between groups were found in KOOS subscales and global score improvements at 12-month end-point (n.s.). The MSCs group showed significant improvements in the pain, function and daily living activities, and sports and recreational activities subscales (p < 0.05). Similarly, the MSCs + PRP group showed significant improvements in the pain, function and daily living activities and quality of life subscales (p < 0.05). The average number of fibroblast colony forming units (CFU-F) was 56.8 + 21.9 for MSCs group and 50.7 ± 21.7 for MSCs + PRP group. Minimal adverse effects were seen in both groups (10 adverse events, in 5 patients). Intra-articular injections of expanded MSCs alone or in combination with PRP are safe and have a beneficial effect on symptoms in patients with symptomatic knee osteoarthritis. Adding PRP to the MSCs injections did not provide additional benefit. These results are encouraging and support the recommendation of this minimally invasive procedure in patients with knee osteoarthritis, without requiring hospitalization. The CFU-F results may be used as reference for future research. Prospective cohort study, Level II.

  5. Estradiol selectively enhances auditory function in avian forebrain neurons

    PubMed Central

    Caras, Melissa L.; O’Brien, Matthew; Brenowitz, Eliot A.; Rubel, Edwin W

    2012-01-01

    Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or non-breeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate-level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate-level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner. PMID:23223283

  6. Neonatal Plasma Transfusion: An Evidence-Based Review.

    PubMed

    Keir, Amy K; Stanworth, Simon J

    2016-10-01

    Several clinical scenarios for plasma transfusion are repeatedly identified in audits, including treatment of bleeding in association with laboratory evidence of coagulopathy, correction of disseminated intravascular coagulation, prevention of intraventricular hemorrhage, management of critically ill neonates (eg, during sepsis or as a volume expander), or correction of markers of prolonged coagulation in the absence of bleeding. The findings of at least one national audit of transfusion practice indicated that almost half of plasma transfusions are given to neonates with abnormal coagulation values with no evidence of active bleeding, despite the limited evidence base to support the effectiveness of this practice. Plasma transfusions to neonates should be considered in the clinical context of bleeding (eg, vitamin K dependent), disseminated intravascular coagulation, and very rare inherited deficiencies of coagulation factors. There seems to be no role for prophylactic plasma to prevent intraventricular hemorrhage or for use as a volume expander. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Electron diamagnetic effect in a magnetic nozzle on a helicon plasma thruster performance

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod

    2012-10-01

    The axial force, which is called thrust sometimes, imparted from a magnetically expanding helicon plasma thruster is directly measured and the results are compared with a two-dimensional fluid theory. The force component solely transmitted to the expanding field is directly measured and identified as an axial force produced by the azimuthal current due to an electron diamagnetic drift and the radial component of the applied magnetic field. In this type of configuration, plasma diffusion in magnetic field affects a spatial profile of the plasma density and the resultant axial force onto the magnetic field. It is observed that the force component onto the magnetic field increases with an increase in the magnetic field strength, simultaneously with an increase in the plasma density downstream of the source exit, which could be due to suppression of the cross field diffusion in the magnetic nozzle.

  8. Expanding sheath in a bounded plasma in the context of the post-arc phase of a vacuum arc

    NASA Astrophysics Data System (ADS)

    Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Sandolache, G.; Rowe, S.; Jusselin, B.; Boeuf, J. P.

    2008-01-01

    A numerical model of sheath expansion and plasma decay in a bounded plasma subjected to a linearly increasing voltage has been developed. Numerical results obtained with a hybrid-MB model (Maxwell-Boltzmann electrons, particle ions and Poisson's equations) are compared with analytical theory and results from particle-in-cell (PIC) simulations. The hybrid-MB model is similar to models used for plasma immersion ion implantation except that plasma decay due to particle losses to the electrodes is taken into account. The comparisons with more accurate and much more time consuming PIC models show that the hybrid-MB model provides a very satisfactory description of the sheath expansion and plasma decay even for conditions where the grid spacing is much larger than the Debye length. The model is used for high plasma density conditions, corresponding to the post-arc phase of a vacuum arc circuit breaker where a vacuum gap is subject to a transient recovery voltage (TRV) after it has ceased to sustain a vacuum arc. The results show that the plasma sheath expansion is subsonic under these conditions, and that the plasma starts to decay exponentially after two rarefaction waves from the cathode and anode merge in the centre of the gap. A parametric study also shows the strong influence of the TRV rise rate and initial plasma density on the plasma decay time and on the ion current collected by each electrode. The effect of collisions between charged particles and metal atoms resulting for the electrode evaporation is also discussed.

  9. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.

    PubMed

    Kreuz, P C; Gentili, C; Samans, B; Martinelli, D; Krüger, J P; Mittelmeier, W; Endres, M; Cancedda, R; Kaps, C

    2013-12-01

    Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Light source employing laser-produced plasma

    DOEpatents

    Tao, Yezheng; Tillack, Mark S

    2013-09-17

    A system and a method of generating radiation and/or particle emissions are disclosed. In at least some embodiments, the system includes at least one laser source that generates a first pulse and a second pulse in temporal succession, and a target, where the target (or at least a portion the target) becomes a plasma upon being exposed to the first pulse. The plasma expand after the exposure to the first pulse, the expanded plasma is then exposed to the second pulse, and at least one of a radiation emission and a particle emission occurs after the exposure to the second pulse. In at least some embodiments, the target is a solid piece of material, and/or a time period between the first and second pulses is less than 1 microsecond (e.g., 840 ns).

  11. 21 CFR 606.122 - Instruction circular.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... instruction circular shall contain: (1) Instructions to administer a suitable plasma volume expander if Red... circular shall contain: (1) The approximate volume of plasma from which a sample unit of Platelets is... entering the container. (m) For Plasma, the instruction circular shall contain: (1) A warning against...

  12. 21 CFR 606.122 - Instruction circular.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... instruction circular shall contain: (1) Instructions to administer a suitable plasma volume expander if Red... circular shall contain: (1) The approximate volume of plasma from which a sample unit of Platelets is... entering the container. (m) For Plasma, the instruction circular shall contain: (1) A warning against...

  13. Microscopic analysis of nanostructured plasma coatings

    NASA Astrophysics Data System (ADS)

    Ageev, E. V.; Altukhov, A. Yu; Ageeva, E. V.; Khardikov, S. V.

    2018-03-01

    In the course of the study, it was found that plasma nanocomposite coating obtained from a mixture of powders of BRS, VK8 and nichrome with a portable plasma device “ALPES-02M” has high performance properties, which significantly expands the scope of its application.

  14. Analysis of antigen-specific B-cell memory directly ex vivo.

    PubMed

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2004-01-01

    Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.

  15. 2D Kinetic Particle in Cell Simulations of a Shear-Flow Stabilized Z-Pinch

    NASA Astrophysics Data System (ADS)

    Tummel, Kurt; Higginson, Drew; Schmidt, Andrea; Link, Anthony; McLean, Harry; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Claveau, Elliot; Lawrence Livermore National Lab Team; University of Washington Team

    2016-10-01

    The Z-pinch is a relatively simple and attractive potential fusion reactor design, but attempts to develop such a reactor have consistently struggled to overcome Z-pinch instabilities. The ``sausage'' and ``kink'' modes are among the most robust and prevalent Z-pinch instabilities, but theory and simulations suggest that axial flow-shear, dvz / dr ≠ 0 , can suppress these modes. Experiments have confirmed that Z-pinch plasmas with embedded axial flow-shear display a significantly enhanced resilience to the sausage and kink modes at a demonstration current of 50kAmps. A new experiment is under way to test the concept at higher current, and efforts to model these plasmas are being expanded. The performance and stability of these devices will depend on features like the plasma viscosity, anomalous resistivity, and finite Larmor radius effects, which are most accurately characterized in kinetic models. To predict these features, kinetic simulations using the particle in cell code LSP are now in development, and initial benchmarking and 2D stability analyses of the sausage mode are presented here. These results represent the first kinetic modeling of the flow-shear stabilized Z-pinch. This work is funded by the USDOE/ARPAe Alpha Program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know

    PubMed Central

    Bogers, Sophie Helen

    2018-01-01

    Biological cell-based therapies for the treatment of joint disease in veterinary patients include autologous-conditioned serum, platelet-rich plasma, and expanded or non-expanded mesenchymal stem cell products. This narrative review outlines the processing and known mechanism of action of these therapies and reviews current preclinical and clinical efficacy in joint disease in the context of the processing type and study design. The significance of variation for biological activity and consequently regulatory approval is also discussed. There is significant variation in study outcomes for canine and equine cell-based products derived from whole blood or stem cell sources such as adipose and bone marrow. Variation can be attributed to altering bio-composition due to factors including preparation technique and source. In addition, study design factors like selection of cases with early vs. late stage osteoarthritis (OA), or with intra-articular soft tissue injury, influence outcome variation. In this under-regulated field, variation raises concerns for product safety, consistency, and efficacy. Cell-based therapies used for OA meet the Food and Drug Administration’s (FDA’s) definition of a drug; however, researchers must consider their approach to veterinary cell-based research to meet future regulatory demands. This review explains the USA’s FDA guidelines as an example pathway for cell-based therapies to demonstrate safety, effectiveness, and manufacturing consistency. An understanding of the variation in production consistency, effectiveness, and regulatory concerns is essential for practitioners and researchers to determine what products are indicated for the treatment of joint disease and tactics to improve the quality of future research. PMID:29713634

  17. Establishment of mouse expanded potential stem cells

    PubMed Central

    Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao

    2018-01-01

    Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987

  18. In–Depth Characterization of Viral Isolates from Plasma and Cells Compared with Plasma Circulating Quasispecies in Early HIV-1 Infection

    PubMed Central

    Erkizia, Itziar; Pino, Maria; Pou, Christian; Paredes, Roger; Clotet, Bonaventura; Martinez-Picado, Javier; Prado, Julia G.

    2012-01-01

    Background The use of in vitro models to unravel the phenotypic characteristics of circulating viral variants is key to understanding HIV-1 pathogenesis but limited by the availability of primary viral isolates from biological samples. However, overall in vivo genetic variability of HIV-1 within a subject may not be reflected in the viable viral population obtained after isolation. Although several studies have tried to determine whether viral populations expanded in vitro are representative of in vivo findings, the answer remains unclear due to the reduced number of clonal sequences analyzed or samples compared. In order to overcome previous experimental limitations, here we applied Deep Pyrosequencing (DPS) technology in combination with phenotypic experiments to analyze and compare with unprecedented detail the composition of viral isolates and in vivo quasispecies. Methodology/Principal Findings We amplified by DPS HIV-1 genomic regions covering gag, protease, integrase and env-V3 to characterize paired isolates from plasma and peripheral blood mononuclear cells and compare them with total plasma viral RNA in four recently HIV-1 infected subjects. Our study demonstrated the presence of unique haplotypes scattered between sample types with conservation of major variants. In addition, no differences in intra- and inter-population encoded protein variability were found between the different types of isolates or when these were compared to plasma viral RNA within subjects. Additionally, in vitro experiments demonstrated phenotypic similarities in terms of replicative capacity and co-receptor usage between viral isolates and plasma viral RNA. Conclusion This study is the first in-depth comparison and characterization of viral isolates from different sources and plasma circulating quasispecies using DPS in recently HIV-1 infected subjects. Our data supports the use of primary isolates regardless of their plasma or cellular origin to define genetic variability and biological traits of circulating HIV-1 quasispecies. PMID:22393441

  19. Double layers in expanding plasmas and their relevance to the auroral plasma processes

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Khazanov, George

    2003-04-01

    When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [, 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [, 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two-stream interactions on the high-potential side of the RFS generate electron-acoustic waves, which evolve into electron phase-space holes. The ion population originating from the low-potential side and trapped by the RFS is energized by the e-i and i-i instabilities and it eventually precipitates into the high-potential plasma along with an electron beam. Applications of these findings to the auroral plasma physics are discussed.

  20. Double Layers in Expanding Plasmas and Their Relevance to the Auroral Plasma Processes

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George

    2003-01-01

    When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [Bezzerides et al., 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [Barakat and Schunk, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [Ergun et al., 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an ,extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two-stream interactions on the high-potential side of the RFS generate electron-acoustic waves, which evolve into electron phase-space holes. The ion population originating from the low-potential side and trapped by the RFS is energized by the e-i and i-i instabilities and it eventually precipitates into the high-potential plasma along with an electron beam. Applications of these findings to the auroral plasma physics are discussed.

  1. Matrix expansion and syncytial aggregation of syndecan-1+ cells underpin villous atrophy in coeliac disease.

    PubMed

    Salvestrini, Camilla; Lucas, Mark; Lionetti, Paolo; Torrente, Franco; James, Sean; Phillips, Alan D; Murch, Simon H

    2014-01-01

    We studied the expression of sulphated glycosaminoglycans (GAGs) in coeliac disease (CD) mucosa, as they are critical determinants of tissue volume, which increases in active disease. We also examined mucosal expression of IL-6, which stimulates excess GAG synthesis in disorders such as Grave's ophthalmopathy. We stained archival jejunal biopsies from 5 children with CD at diagnosis, on gluten-free diet and challenge for sulphated GAGs. We then examined duodenal biopsies from 9 children with CD compared to 9 histological normal controls, staining for sulphated GAGs, heparan sulphate proteoglycans (HSPG), short-chain HSPG (Δ-HSPG) and the proteoglycan syndecan-1 (CD138), which is expressed on epithelium and plasma cells. We confirmed findings with a second monoclonal in another 12 coeliac children. We determined mucosal IL-6 expression by immunohistochemistry and PCR in 9 further cases and controls, and used quantitative real time PCR for other Th17 pathway cytokines in an additional 10 cases and controls. In CD, HSPG expression was lost in the epithelial compartment but contrastingly maintained within an expanded lamina propria. Within the upper lamina propria, clusters of syndecan-1(+) plasma cells formed extensive syncytial sheets, comprising adherent plasma cells, lysed cells with punctate cytoplasmic staining and shed syndecan ectodomains. A dense infiltrate of IL-6(+) mononuclear cells was detected in active coeliac disease, also localised to the upper lamina propria, with significantly increased mRNA expression of IL-6 and IL-17A but not IL-23 p19. Matrix expansion, through syndecan-1(+) cell recruitment and lamina propria GAG increase, underpins villous atrophy in coeliac disease. The syndecan-1(+) cell syncytia and excess GAG production recapitulate elements of the invertebrate encapsulation reaction, itself dependent on insect transglutaminase and glutaminated early response proteins. As in other matrix expansion disorders, IL-6 is upregulated and represents a logical target for immunotherapy in patients with coeliac disease refractory to gluten-free diet.

  2. Matrix Expansion and Syncytial Aggregation of Syndecan-1+ Cells Underpin Villous Atrophy in Coeliac Disease

    PubMed Central

    Salvestrini, Camilla; Lucas, Mark; Lionetti, Paolo; Torrente, Franco; James, Sean; Phillips, Alan D.; Murch, Simon H.

    2014-01-01

    Background We studied the expression of sulphated glycosaminoglycans (GAGs) in coeliac disease (CD) mucosa, as they are critical determinants of tissue volume, which increases in active disease. We also examined mucosal expression of IL-6, which stimulates excess GAG synthesis in disorders such as Grave's ophthalmopathy. Methods We stained archival jejunal biopsies from 5 children with CD at diagnosis, on gluten-free diet and challenge for sulphated GAGs. We then examined duodenal biopsies from 9 children with CD compared to 9 histological normal controls, staining for sulphated GAGs, heparan sulphate proteoglycans (HSPG), short-chain HSPG (Δ-HSPG) and the proteoglycan syndecan-1 (CD138), which is expressed on epithelium and plasma cells. We confirmed findings with a second monoclonal in another 12 coeliac children. We determined mucosal IL-6 expression by immunohistochemistry and PCR in 9 further cases and controls, and used quantitative real time PCR for other Th17 pathway cytokines in an additional 10 cases and controls. Results In CD, HSPG expression was lost in the epithelial compartment but contrastingly maintained within an expanded lamina propria. Within the upper lamina propria, clusters of syndecan-1+ plasma cells formed extensive syncytial sheets, comprising adherent plasma cells, lysed cells with punctate cytoplasmic staining and shed syndecan ectodomains. A dense infiltrate of IL-6+ mononuclear cells was detected in active coeliac disease, also localised to the upper lamina propria, with significantly increased mRNA expression of IL-6 and IL-17A but not IL-23 p19. Conclusions Matrix expansion, through syndecan-1+ cell recruitment and lamina propria GAG increase, underpins villous atrophy in coeliac disease. The syndecan-1+ cell syncytia and excess GAG production recapitulate elements of the invertebrate encapsulation reaction, itself dependent on insect transglutaminase and glutaminated early response proteins. As in other matrix expansion disorders, IL-6 is upregulated and represents a logical target for immunotherapy in patients with coeliac disease refractory to gluten-free diet. PMID:25198673

  3. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process wasmore » rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.« less

  4. Cold plasma processing to improve food safety

    USDA-ARS?s Scientific Manuscript database

    Cold plasma is an antimicrobial process being developed for application as a food processing technology. This novel intervention is the subject of an expanding research effort by groups around the world. A variety of devices can be used to generate cold plasma and apply it to the food commodity bein...

  5. Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Amitava, E-mail: roy@fzu.cz, E-mail: aroy@barc.gov.in; HiLASE Project, Department of Diode-pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague; Murtaza Hassan, Syed

    2014-05-15

    We investigated the role of a guiding magnetic field on extreme ultraviolet (EUV) and ion emission from a laser produced Sn plasma for various laser pulse duration and intensity. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm, Nd:YAG laser pulses with varying pulse duration (5–15 ns) and intensity. A magnetic trap was fabricated with the use of two neodymium permanent magnets which provided a magnetic field strength ∼0.5 T along the plume expansion direction. Our results indicate that the EUV conversion efficiency do not depend significantly on applied axial magnetic field. Faraday Cup ion analysis of Sn plasmamore » show that the ion flux reduces by a factor of ∼5 with the application of an axial magnetic field. It was found that the plasma plume expand in the lateral direction with peak velocity measured to be ∼1.2 cm/μs and reduced to ∼0.75 cm/μs with the application of an axial magnetic field. The plume expansion features recorded using fast photography in the presence and absence of 0.5 T axial magnetic field are simulated using particle-in-cell code. Our simulation results qualitatively predict the plasma behavior.« less

  6. A computer simulation of the plasma leakage through a vascular prosthesis made of expanded polytetrafluoroethylene.

    PubMed

    Tabata, R; Kobayashi, T; Mori, A; Matsuno, S; Watarida, S; Onoe, M; Sugita, T; Shiraisi, S; Nojima, T

    1993-04-01

    We explored the blood-retaining mechanism of a vascular prosthesis made of expanded polytetrafluoroethylene through analysis of its structure and physicochemical properties. Plasma leakage through this vascular prosthesis was simulated by computer to explore its etiology. These examinations disclosed that leakage is dependent upon the inner pressure and the density of fibers. In other words, the study revealed that the mean distance between fibers constituting the wall of the expanded polytetrafluoroethylene vascular prosthesis is increased by tension (that is, inner pressure), resulting in an increased probability of leakage. It was additionally found that a thin membrane is formed on the polytetrafluoroethylene surface if blood in contact with the surface is dried. This membrane was found to reduce the water-repelling property of polytetrafluoroethylene and to make it impossible to preserve the inter-fiber liquid surface, thus causing leakage through the expanded polytetrafluoroethylene vascular prosthesis.

  7. A simple model for estimating a magnetic field in laser-driven coils

    DOE PAGES

    Fiksel, Gennady; Fox, William; Gao, Lan; ...

    2016-09-26

    Magnetic field generation by laser-driven coils is a promising way of magnetizing plasma in laboratory high-energy-density plasma experiments. A typical configuration consists of two electrodes—one electrode is irradiated with a high-intensity laser beam and another electrode collects charged particles from the expanding plasma. The two electrodes are separated by a narrow gap forming a capacitor-like configuration and are connected with a conducting wire-coil. The charge-separation in the expanding plasma builds up a potential difference between the electrodes that drives the electrical current in the coil. A magnetic field of tens to hundreds of Teslas generated inside the coil has beenmore » reported. This paper presents a simple model that estimates the magnetic field using simple assumptions. Lastly, the results are compared with the published experimental data.« less

  8. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.

  9. Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells: A comparison of fresh versus three types of platelet lysates from outdated buffy coat-derived platelet concentrates.

    PubMed

    Glovinski, Peter V; Herly, Mikkel; Mathiasen, Anders B; Svalgaard, Jesper D; Borup, Rehannah; Talman, Maj-Lis M; Elberg, Jens J; Kølle, Stig-Frederik T; Drzewiecki, Krzysztof T; Fischer-Nielsen, Anne

    2017-02-01

    Platelet lysates (PL) represent a promising replacement for xenogenic growth supplement for adipose-derived stem cell (ASC) expansions. However, fresh platelets from human blood donors are not clinically feasible for large-scale cell expansion based on their limited supply. Therefore, we tested PLs prepared via three methods from outdated buffy coat-derived platelet concentrates (PCs) to establish an efficient and feasible expansion of ASCs for clinical use. PLs were prepared by the freeze-thaw method from freshly drawn platelets or from outdated buffy coat-derived PCs stored in the platelet additive solution, InterSol. Three types of PLs were prepared from outdated PCs with platelets suspended in either (1) InterSol (not manipulated), (2) InterSol + supplemented with plasma or (3) plasma alone (InterSol removed). Using these PLs, we compared ASC population doubling time, cell yield, differentiation potential and cell surface markers. Gene expression profiles were analyzed using microarray assays, and growth factor concentrations in the cell culture medium were measured using enzyme-linked immunosorbent assay (ELISA). Of the three PL compositions produced from outdated PCs, removal of Intersol and resuspension in plasma prior to the first freezing process was overall the best. This specific outdated PL induced ASC growth kinetics, surface markers, plastic adherence and differentiation potentials comparable with PL from fresh platelets. ASCs expanded in PL from fresh versus outdated PCs exhibited different expressions of 17 overlapping genes, of which 10 were involved in cellular proliferation, although not significantly reflected by cell growth. Only minor differences in growth factor turnover were observed. PLs from outdated platelets may be an efficient and reliable source of human growth supplement allowing for large-scale ASC expansion for clinical use. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues.

    PubMed

    Bennett, Vann; Lorenzo, Damaris N

    2016-01-01

    Ankyrins are membrane-associated proteins that together with their spectrin partners are responsible for micron-scale organization of vertebrate plasma membranes, including those of erythrocytes, excitable membranes of neurons and heart, lateral membrane domains of columnar epithelial cells, and striated muscle. Ankyrins coordinate functionally related membrane transporters and cell adhesion proteins (15 protein families identified so far) within plasma membrane compartments through independently evolved interactions of intrinsically disordered sequences with a highly conserved peptide-binding groove formed by the ANK repeat solenoid. Ankyrins are coupled to spectrins, which are elongated organelle-sized proteins that form mechanically resilient arrays through cross-linking by specialized actin filaments. In addition to protein interactions, cellular targeting and assembly of spectrin/ankyrin domains also critically depend on palmitoylation of ankyrin-G by aspartate-histidine-histidine-cysteine 5/8 palmitoyltransferases, as well as interaction of beta-2 spectrin with phosphoinositide lipids. These lipid-dependent spectrin/ankyrin domains are not static but are locally dynamic and determine membrane identity through opposing endocytosis of bulk lipids as well as specific proteins. A partnership between spectrin, ankyrin, and cell adhesion molecules first emerged in bilaterians over 500 million years ago. Ankyrin and spectrin may have been recruited to plasma membranes from more ancient roles in organelle transport. The basic bilaterian spectrin-ankyrin toolkit markedly expanded in vertebrates through gene duplications combined with variation in unstructured intramolecular regulatory sequences as well as independent evolution of ankyrin-binding activity by ion transporters involved in action potentials and calcium homeostasis. In addition, giant vertebrate ankyrins with specialized roles in axons acquired new coding sequences by exon shuffling. We speculate that early axon initial segments and epithelial lateral membranes initially were based on spectrin-ankyrin-cell adhesion molecule assemblies and subsequently served as "incubators," where ion transporters independently acquired ankyrin-binding activity through positive selection. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Flux Compression Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    In pulsed fusion propulsion schemes in which the fusion energy creates a radially expanding plasma, a magnetic nozzle is required to redirect the radially diverging flow of the expanding fusion plasma into a rearward axial flow, thereby producing a forward axial impulse to the vehicle. In a highly electrically conducting plasma, the presence of a magnetic field B in the plasma creates a pressure B(exp 2)/2(mu) in the plasma, the magnetic pressure. A gradient in the magnetic pressure can be used to decelerate the plasma traveling in the direction of increasing magnetic field, or to accelerate a plasma from rest in the direction of decreasing magnetic pressure. In principle, ignoring dissipative processes, it is possible to design magnetic configurations to produce an 'elastic' deflection of a plasma beam. In particular, it is conceivable that, by an appropriate arrangement of a set of coils, a good approximation to a parabolic 'magnetic mirror' may be formed, such that a beam of charged particles emanating from the focal point of the parabolic mirror would be reflected by the mirror to travel axially away from the mirror. The degree to which this may be accomplished depends on the degree of control one has over the flux surface of the magnetic field, which changes as a result of its interaction with a moving plasma.

  12. Coagulability and Rheology: Hematologic Benefits From Exercise, Fish, and Aspirin. Implications for Athletes and Nonathletes.

    PubMed

    Eichner, E R

    1986-10-01

    In brief: Physical activity makes the blood more fluid and less likely to clot. The healthy hematologic adaptations to exercise (enhanced fibrinolysis, expanded plasma volume, decreased hematocrit, increased red cell deformability, and decreased blood viscosity) seem to enhance the delivery of oxygen and decrease the risk of thrombosis. Regular exercise, then, by changing the blood, may offer the elite athlete enhanced performance and the general population reduced risk of heart attack. Increased amounts of fish in the diet and-for selected persons-low-dose aspirin, may be useful antithrombotic adjuncts to exercise.

  13. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-11-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant.

  14. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed Central

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-01-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant. PMID:8022933

  15. In situ electrostatic characterisation of ion beams in the region of ion acceleration

    NASA Astrophysics Data System (ADS)

    Bennet, Alexander; Charles, Christine; Boswell, Rod

    2018-02-01

    In situ and ex situ techniques have been used to measure directional ion beams created by a sharp axial potential drop in low pressure expanding plasmas. Although Retarding Field Energy Analysers (RFEAs) are the most convenient technique to measure the ion velocities and plasma potentials along with the plasma density, they are bulky and are contained in a grounded shield that may perturb the electric potential profile of the expanding plasma. In principle, ex situ techniques produce a more reliable measurement and Laser Induced Fluorescence spectroscopy (LIF) has previously been used to characterise the spatial velocity profile of ion beams in the same region of acceleration for a range of pressures. Here, satisfactory agreement between the ion velocity profiles measured by LIF and RFEA techniques has allowed the RFEA method to be confidently used to probe the ion beam characteristics in the regions of high gradients in plasma density and DC electric fields which have previously proven difficult.

  16. Study of magnetic field expansion using a plasma generator for space radiation active protection

    NASA Astrophysics Data System (ADS)

    Jia, Xiang-Hong; Jia, Shao-Xia; Xu, Feng; Bai, Yan-Qiang; Wan, Jun; Liu, Hong-Tao; Jiang, Rui; Ma, Hong-Bo; Wang, Shou-Guo

    2013-09-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power.

  17. Characterization of Flow and Ohm's Law in the Rotating Wall Machine

    NASA Astrophysics Data System (ADS)

    Hannum, David; Brookhart, M.; Forest, C. B.; Kendrick, R.; Mengin, G.; Paz-Soldan, C.

    2010-11-01

    The rotating wall machine is a linear screw-pinch built to study the role of different electromagnetic boundary conditions on the Resistive Wall Mode (RWM). Its plasma is created by an array of electrostatic washer guns which can be biased to discharge up to 1 kA of current each. Individual flux ropes from the guns shear, merge, and expand into a 20 cm diameter, ˜1 m long plasma column. Langmuir (singletip) and tri-axial B-dot probes move throughout the column to measure radial and axial profiles of key plasma parameters. As the plasma current increases, more H2 fuel is ionized, raising ne to 5 x10^20 m-3 while Te stays at a constant 3 eV. The electron density expands to the wall while the current density (Jz) stays pinched to the central axis. E xB and diamagnetic drifts create radially and axially sheared plasma rotation. Plasma resistivity follows the Spitzer model in the core while exceeding it at the edge. These measurements improve the model used to predict the RWM growth rate.

  18. Complex astrophysical experiments relating to jets, solar loops, and water ice dusty plasma

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.; Zhai, X.; Chai, K. B.; Ha, B. N.

    2015-10-01

    > Recent results of three astrophysically relevant experiments at Caltech are summarized. In the first experiment magnetohydrodynamically driven plasma jets simulate astrophysical jets that undergo a kink instability. Lateral acceleration of the kinking jet spawns a Rayleigh-Taylor instability, which in turn spawns a magnetic reconnection. Particle heating and a burst of waves are observed in association with the reconnection. The second experiment uses a slightly different setup to produce an expanding arched plasma loop which is similar to a solar corona loop. It is shown that the plasma in this loop results from jets originating from the electrodes. The possibility of a transition from slow to fast expansion as a result of the expanding loop breaking free of an externally imposed strapping magnetic field is investigated. The third and completely different experiment creates a weakly ionized plasma with liquid nitrogen cooled electrodes. Water vapour injected into this plasma forms water ice grains that in general are ellipsoidal and not spheroidal. The water ice grains can become quite long (up to several hundred microns) and self-organize so that they are evenly spaced and vertically aligned.

  19. Autologous human plasma in stem cell culture and cryopreservation in the creation of a tissue-engineered vascular graft.

    PubMed

    Zhang, Ping; Policha, Aleksandra; Tulenko, Thomas; DiMuzio, Paul

    2016-03-01

    Previous work demonstrated the effectiveness of autologous adipose-derived stem cells (ASCs) as endothelial cell (EC) substitutes in vascular tissue engineering. We further this work toward clinical translation by evaluating ASC function after (1) replacement of fetal bovine serum (FBS) with autologous human plasma (HP) in culture and (2) cryopreservation. Human ASCs and plasma, isolated from periumbilical fat and peripheral blood, respectively, were collected from the same donors. ASCs were differentiated in endothelial growth medium supplemented with FBS (2%) vs HP (2%). Proliferation was measured by growth curves and MTT assay. Endothelial differentiation was measured by quantitative polymerase chain reaction, assessment of acetylated low-density lipoprotein uptake, and cord formation after plating on Matrigel (BD Biosciences, San Jose, Calif). Similar studies were conducted before and after cryopreservation of ASCs and included assessment of cell retention on the luminal surface of a vascular graft. ASCs expanded in HP-supplemented medium showed (1) similar proliferation to FBS-cultured ASCs, (2) consistent differentiation toward an EC lineage (increases in CD31, von Willebrand factor, and CD144 message; acetylated low-density lipoprotein uptake; and cord formation on Matrigel), and (3) retention on the luminal surface after seeding and subsequent flow conditioning. Cryopreservation did not significantly alter ASC viability, proliferation, acquisition of endothelial characteristics, or retention after seeding onto a vascular graft. This study suggests that (1) replacement of FBS with autologous HP--a step necessary for the translation of this technology into human use--does not significantly impair proliferation or endothelial differentiation of ASCs used as EC substitutes and (2) ASCs are tolerant to cryopreservation in terms of maintaining EC characteristics and retention on a vascular graft. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  20. Increased upstream ionization due to formation of a double layer.

    PubMed

    Thakur, S Chakraborty; Harvey, Z; Biloiu, I A; Hansen, A; Hardin, R A; Przybysz, W S; Scime, E E

    2009-01-23

    We report observations that confirm a theoretical prediction that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The theoretical model argues that the increased ionization is needed to balance the difference in diffusive losses upstream and downstream of the expansion region. In our expanding helicon source experiments, we find that the upstream plasma density increases sharply at the same antenna frequency at which the double layer appears.

  1. EFFECTS OF LASER RADIATION ON MATTER: Calculation of the gain of a C VI laser plasma expanding as a cylinder and a cylindrical layer

    NASA Astrophysics Data System (ADS)

    Gulov, A. V.; Derzhiev, V. I.; Zhidkov, A. G.; Pritula, A. G.; Chekmezov, A. N.; Yakovlenko, Sergei I.

    1990-08-01

    Calculations are reported of the gain due to the 3-2 transition in the C VI ion in an expanding plasma cylinder or a cylindrical layer. Under the conditions in the experiments at the Rutherford Appleton Laboratory (Chilton, England) amplification was observed as a result of evaporation of a fairly thin (~ 0.1 μm) cylindrical layer. A peak of the gain was reached in a relatively short time (~ 0.1 ns).

  2. Visualization of transient phenomena during the interaction of pulsed CO2 laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Schmitt, R.; Hugenschmidt, Manfred

    1996-05-01

    Carbon-dioxide-lasers operating in the pulsed mode with energy densities up to several tens of J/cm2 and peak power densities in the multi-MW/cm2-range may cause fast heating and melting. Eventually quasi-explosive ejection, decomposition or vaporization of material can be observed. Surface plasmas are strongly influencing the energy transfer from the laser radiation field to any target. For optically transparent plastics, such as PMMA for example, only slowly expanding plasmas (LSC-waves) are ignited at fluences around 20 J/cm2, with a low level of self-luminosity. High brightness, supersonically expanding plasma jets (LSD-waves) are generated at the same fluences on glasses. Similar conditions were found for metals as well. From recordings with a high speed CCD-camera, interesting features concerning the initial plasma phases and temporal evolution were deduced. Additionally, information was obtained concerning the quasi explosive ejection of material for PMMA.

  3. The hybrid reactor project based on the straight field line mirror concept

    NASA Astrophysics Data System (ADS)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on the implications of the geometry for possible diagnostics. Reactor safety issues are addressed and a vertical orientation of the device could assist passive coolant circulation. Specific attention is put to a device with a 25 m long confinement region and 40 cm plasma radius in the mid-plane. In an optimal case (keff = 0.97) with a fusion power of only 10 MW, such a device may be capable of producing a power of 1.5 GWth.

  4. State of the metal core in nanosecond exploding wires and related phenomena

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Sasorov, P. V.; Struve, K. W.; McDaniel, D. H.

    2004-08-01

    Experiments show that an expanding metal wire core that results from a nanosecond electrical explosion in vacuum consists primarily of three different states: solid, microdrop, and gas-plasma. The state of the wire core depends both on the amount of energy deposited before the voltage breakdown and on the heating conditions. For small amounts of deposited energy (on the order of solid-stage enthalpy), the wire core remains in a solid state or is partially disintegrated. For a high level of deposited energy (more than vaporization energy) the wire core is in a gas-plasma state. For an intermediate level of deposited energy (more than melting but less than vaporization), the wire disintegrates into hot liquid microdrops or clusters of submicron size. For a wire core in the cluster state, interferometry demonstrates weak (or even absent) phaseshift. Light emission shows a "firework effect"—the long late-time radiation related to the emission by the expanding cylinder of hot microparticles. For the wire core in a gas-plasma state, interferometry demonstrates a large phaseshift and a fast reduction in light emission due to adiabatic cooling of the expanding wire core. The simulation of this firework effect agrees well with experimental data, assuming submicron size and a temperature approaching boiling for the expanded microparticles cylinder.

  5. The devil is in the details: retention of recipient group A type 5 years after a successful allogeneic bone marrow transplant from a group O donor.

    PubMed

    Cooling, Laura L W; Herrst, Michelle; Hugan, Sherri L

    2018-01-01

    ABO-incompatible (ABOi) hematopoietic stem cell transplants (HSCTs) can present challenges in the blood bank. During transplantation, patients receive components that are ABO-compatible with both the donor graft and recipient; this practice can strain group O red blood cell (RBC) inventories.1 In addition, there are risks for acute hemolysis at the time of infusion and in the early post-transplant period.1,2 In ABO major-incompatible bone marrow HSCTs, which contain significant quantities of donor RBCs that are ABOi with recipient plasma, it is common to perform a RBC depletion of the bone marrow in an effort to minimize hemolysis at the time of infusion.2 Furthermore, patients with high-titer ABO antibodies may undergo a prophylactic, pre-transplant plasma exchange to further reduce the risk of acute hemolysis, delayed RBC engraftment, and pure RBC aplasia.2-4 ABO minor-incompatible HSCTs, in which donor plasma is ABOi with the recipient, have less risk for hemolysis at the time of infusion but can result in transient hemolysis approximately 10-21 days post-transplant, especially in patients undergoing nonmyeloablative HSCT and/or patients who have not received methotrexate for graft-versus-host-disease (GVHD) prophylaxis.1-4 In these patients, viable donor B-lymphocytes in the graft may expand and produce ABO antibodies capable of hemolyzing patient RBCs.

  6. High current ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  7. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  8. Drug effects on orthostatic intolerance induced by bedrest

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Dallman, M. F.; Van Loon, G.; Keil, L. C.

    1991-01-01

    Effective and practical preventive procedures for postflight orthostatic intolerance are highly desirable. The current practice of attempts to expand plasma volume by ingestion of salt and fluids before reentry has proven benefits. This study evaluated alternative options using fludrocortisone (F) to expand plasma volume (PV), dextroamphetamine (Dex) to enhance norepinephrine (NE) release, and atropine (A) to reduce the effects of vagal stimulation. Seven subjects with proven post-bedrest orthostatic intolerance returned for a 7-day 6-deg head-down bedrest study. F (0.2 mg) was given at 8:00 AM and 8:00 PM the day before and 8:00 AM the day the subjects got out of bed (2 hours before standing). PV was measured before and 1 hour after the last dose of F. Dex (5 mg) and A (0.8 mg) were then taken orally 1 hour before the stand test. F expanded PV by 16 percent and caused sodium retention. Four of the 7 subjects stood for 1 hour post-bedrest and heart rate, plasma NE and plasma renin responses to standing were greatly enhanced and sustained. Although there was a narrowing of pulse pressure, the ability to overcome orthostatic intolerance with these countermeasures was largely due to vasoconstriction and sustained high heart rate.

  9. Expansion of NK cells by engineered K562 cells co-expressing 4-1BBL and mMICA, combined with soluble IL-21.

    PubMed

    Jiang, Bo; Wu, Xuan; Li, Xi-Ning; Yang, Xi; Zhou, Yulai; Yan, Haowei; Wei, An-Hui; Yan, Weiqun

    2014-07-01

    NK cells hold promise for protecting hosts from cancer and pathogen infection through direct killing and expressing immune-regulatory cytokines. In our study, a genetically modified K562 cell line with surface expression of 4-1BBL and MICA was constructed to expand functional NK cells in vitro for further adoptive immunotherapy against cancer. After a long-term up to 21 day co-culture with newly isolated peripheral blood mononuclear cells (PBMCs) in the presence of soluble IL-21 (sIL-21), notable increase in proportion of expanded NK cells was observed, especially the CD56(bright)CD16(+) subset. Apparent up-regulation of activating receptors CD38, CD69 and NKG2D was detected on expanded NK cells, so did inhibitory receptor CD94; the cytotoxicity of expanded NK cells against target tumor cells exceeded that of NK cells within fresh PBMCs. The intracellular staining showed expanded NK cells produced immune-regulatory IFN-γ. Taken together, we expanded NK cells with significant up-regulation of activating NKG2D and moderate enhancement of cytotoxicity, with IFN-γ producing ability and a more heterogeneous population of NK cells. These findings provide a novel perspective on expanding NK cells in vitro for further biology study and adoptive immunotherapy of NK cells against cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Ex vivo expanded natural killer cells from breast cancer patients and healthy donors are highly cytotoxic against breast cancer cell lines and patient-derived tumours.

    PubMed

    Shenouda, Mira M; Gillgrass, Amy; Nham, Tina; Hogg, Richard; Lee, Amanda J; Chew, Marianne V; Shafaei, Mahsa; Aarts, Craig; Lee, Dean A; Hassell, John; Bane, Anita; Dhesy-Thind, Sukhbinder; Ashkar, Ali A

    2017-07-01

    Natural killer (NK) cells play a critical role in cancer immunosurveillance. Recent developments in NK cell ex-vivo expansion makes it possible to generate millions of activated NK cells from a small volume of peripheral blood. We tested the functionality of ex vivo expanded NK cells in vitro against breast cancer cell lines and in vivo using a xenograft mouse model. The study aim was to assess functionality and phenotype of expanded NK cells from breast cancer patients against breast cancer cell lines and autologous primary tumours. We used a well-established NK cell co-culture system to expand NK cells ex vivo from healthy donors and breast cancer patients and examined their surface marker expression. Moreover, we tested the ability of expanded NK cells to lyse the triple negative breast cancer and HER2-positive breast cancer cell lines MDA-MB-231 and MDA-MB-453, respectively. We also tested their ability to prevent tumour growth in vivo using a xenograft mouse model. Finally, we tested the cytotoxicity of expanded NK cells against autologous and allogeneic primary breast cancer tumours in vitro. After 3 weeks of culture we observed over 1000-fold expansion of NK cells isolated from either breast cancer patients or healthy donors. We also showed that the phenotype of expanded NK cells is comparable between those from healthy donors and cancer patients. Moreover, our results confirm the ability of ex vivo expanded NK cells to lyse tumour cell lines in vitro. While the cell lines examined had differential sensitivity to NK cell killing we found this was correlated with level of major histocompatibility complex (MHC) class I expression. In our in vivo model, NK cells prevented tumour establishment and growth in immunocompromised mice. Finally, we showed that NK cells expanded from the peripheral blood of breast cancer patients show high cytotoxicity against allogeneic and autologous patient-derived tumour cells in vitro. NK cells from breast cancer patients can be expanded similarly to those from healthy donors, have a high cytotoxic ability against breast cancer cell lines and patient-derived tumour cells, and can be compatible with current cancer treatments to restore NK cell function in cancer patients.

  11. Purα Repaired Expanded Hexanucleotide GGGGCC Repeat Noncoding RNA-Caused Neuronal Toxicity in Neuro-2a Cells.

    PubMed

    Shen, Jianying; Zhang, Yu; Zhao, Shi; Mao, Hong; Wang, Zhongjing; Li, Honglian; Xu, Zihui

    2018-05-01

    Expanded hexanucleotide GGGGCC repeat in a noncoding region of C9ORF72 is the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). However, its molecular pathogenesis remains unclear. In our previous study, the expanded GGGGCC repeats have been shown to be sufficient to cause neurodegeneration. In order to investigate the further role of expanded GGGGCC repeats in the neuron, the normal r(GGGGCC) 3 and mutant-type expanded r(GGGGCC) 30 expression vectors were transfected into Neuro-2a cells. Cell proliferation, dendrite development, and the proteins' levels of microtubule-associated protein-2 (MAP2) and cyclin-dependent kinase-5 (CDK5) were used to evaluate the cell toxicity of GGGGCC repeats on Neuro-2a cells. The results were shown that expression of expanded GGGGCC repeats caused neuronal cell toxicity in Neuro-2a cells, enhanced the expression of pMAP2 and pCDK5. Moreover, overexpression of Purα repaired expanded GGGGCC repeat-inducing neuronal toxicity in Neuro-2a cells and reduced the expression of pMAP2 and pCDK5. In all, our findings suggested that the expanded GGGGCC repeats might cause neurodegeneration through destroyed neuron cells. And the GGGGCC repeat-induced neuronal cell toxicity was inhibited by upregulation of Purα. We inferred that Purα inhibits expanded GGGGCC repeat-inducing neurodegeneration, which might reveal a novel mechanism of neurodegenerative diseases ALS and FTD.

  12. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.

    2013-08-15

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. Whilemore » their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.« less

  13. HvALMT1 from barley is involved in the transport of organic anions

    PubMed Central

    Gruber, Benjamin D.; Ryan, Peter R.; Richardson, Alan E.; Tyerman, Stephen D.; Ramesh, Sunita; Hebb, Diane M.; Howitt, Susan M.; Delhaize, Emmanuel

    2010-01-01

    Members of the ALMT gene family contribute to the Al3+ resistance of several plant species by facilitating malate efflux from root cells. The first member of this family to be cloned and characterized, TaALMT1, is responsible for most of the natural variation of Al3+ resistance in wheat. The current study describes the isolation and characterization of HvALMT1, the barley gene with the greatest sequence similarity to TaALMT1. HvALMT1 is located on chromosome 2H which has not been associated with Al3+ resistance in barley. The relatively low levels of HvALMT1 expression detected in root and shoot tissues were independent of external aluminium or phosphorus supply. Transgenic barley plants transformed with the HvALMT1 promoter fused to the green fluorescent protein (GFP) indicated that expression of HvALMT1 was relatively high in stomatal guard cells and in root tissues containing expanding cells. GFP fused to the C-terminus of the full HvALMT1 protein localized to the plasma membrane and motile vesicles within the cytoplasm. HvALMT1 conferred both inward and outward currents when expressed in Xenopus laevis oocytes that were bathed in a range of anions including malate. Both malate uptake and efflux were confirmed in oocyte assays using [14C]malate as a radiotracer. It is suggested that HvALMT1 functions as an anion channel to facilitate organic anion transport in stomatal function and expanding cells. PMID:20176888

  14. HvALMT1 from barley is involved in the transport of organic anions.

    PubMed

    Gruber, Benjamin D; Ryan, Peter R; Richardson, Alan E; Tyerman, Stephen D; Ramesh, Sunita; Hebb, Diane M; Howitt, Susan M; Delhaize, Emmanuel

    2010-03-01

    Members of the ALMT gene family contribute to the Al(3+) resistance of several plant species by facilitating malate efflux from root cells. The first member of this family to be cloned and characterized, TaALMT1, is responsible for most of the natural variation of Al(3+) resistance in wheat. The current study describes the isolation and characterization of HvALMT1, the barley gene with the greatest sequence similarity to TaALMT1. HvALMT1 is located on chromosome 2H which has not been associated with Al(3+) resistance in barley. The relatively low levels of HvALMT1 expression detected in root and shoot tissues were independent of external aluminium or phosphorus supply. Transgenic barley plants transformed with the HvALMT1 promoter fused to the green fluorescent protein (GFP) indicated that expression of HvALMT1 was relatively high in stomatal guard cells and in root tissues containing expanding cells. GFP fused to the C-terminus of the full HvALMT1 protein localized to the plasma membrane and motile vesicles within the cytoplasm. HvALMT1 conferred both inward and outward currents when expressed in Xenopus laevis oocytes that were bathed in a range of anions including malate. Both malate uptake and efflux were confirmed in oocyte assays using [(14)C]malate as a radiotracer. It is suggested that HvALMT1 functions as an anion channel to facilitate organic anion transport in stomatal function and expanding cells.

  15. Liver cell therapy and tissue engineering for transplantation.

    PubMed

    Vacanti, Joseph P; Kulig, Katherine M

    2014-06-01

    Liver transplantation remains the only definitive treatment for liver failure and is available to only a tiny fraction of patients with end-stage liver diseases. Major limitations for the procedure include donor organ shortage, high cost, high level of required expertise, and long-term consequences of immune suppression. Alternative cell-based liver therapies could potentially greatly expand the number of patients provided with effective treatment. Investigative research into augmenting or replacing liver function extends into three general strategies. Bioartificial livers (BALs) are extracorporeal devices that utilize cartridges of primary hepatocytes or cell lines to process patient plasma. Injection of liver cell suspensions aims to foster organ regeneration or provide a missing metabolic function arising from a genetic defect. Tissue engineering recreates the organ in vitro for subsequent implantation to augment or replace patient liver function. Translational models and clinical trials have highlighted both the immense challenges involved and some striking examples of success. Copyright © 2014. Published by Elsevier Inc.

  16. Multiple Click-Selective tRNA Synthetases Expand Mammalian Cell-Specific Proteomics.

    PubMed

    Yang, Andrew C; du Bois, Haley; Olsson, Niclas; Gate, David; Lehallier, Benoit; Berdnik, Daniela; Brewer, Kyle D; Bertozzi, Carolyn R; Elias, Joshua E; Wyss-Coray, Tony

    2018-06-13

    Bioorthogonal tools enable cell-type-specific proteomics, a prerequisite to understanding biological processes in multicellular organisms. Here we report two engineered aminoacyl-tRNA synthetases for mammalian bioorthogonal labeling: a tyrosyl ( ScTyr Y43G ) and a phenylalanyl ( MmPhe T413G ) tRNA synthetase that incorporate azide-bearing noncanonical amino acids specifically into the nascent proteomes of host cells. Azide-labeled proteins are chemoselectively tagged via azide-alkyne cycloadditions with fluorophores for imaging or affinity resins for mass spectrometric characterization. Both mutant synthetases label human, hamster, and mouse cell line proteins and selectively activate their azido-bearing amino acids over 10-fold above the canonical. ScTyr Y43G and MmPhe T413G label overlapping but distinct proteomes in human cell lines, with broader proteome coverage upon their coexpression. In mice, ScTyr Y43G and MmPhe T413G label the melanoma tumor proteome and plasma secretome. This work furnishes new tools for mammalian residue-specific bioorthogonal chemistry, and enables more robust and comprehensive cell-type-specific proteomics in live mammals.

  17. Ex vivo expanded cord blood cells provide rapid engraftment in fetal sheep but lack long-term engrafting potential.

    PubMed

    McNiece, Ian K; Almeida-Porada, Graça; Shpall, Elizabeth J; Zanjani, Esmail

    2002-06-01

    Cord blood (CB) products are becoming routinely used in unrelated allogeneic transplantation for smaller pediatric patients. Because of the low numbers of cells in CB compared to bone marrow or peripheral blood progenitor cells, their use is more limited in larger adults. Therefore, we developed ex vivo expansion conditions for CB and currently are transplanting ex vivo expanded CB products to patients receiving high-dose chemotherapy. As there is concern that ex vivo expansion may exhaust long-term engrafting cells, the current clinical protocols consist of both an expanded fraction and an unexpanded fraction. To determine the effect of expansion culture on long-term engrafting cells, we evaluated the short- and long-term engrafting potential of ex vivo expanded CB using a fetal sheep xenogeneic transplant model. CD 34(+) cells were selected from CB products and cultured in a two-step procedure in the presence of stem cell factor, megakaryocyte growth and differentiation factor, and granulocyte colony-stimulating factor for 14 days. Starting cells (CD34(+) cells), and cultured cells (day 7 and day 14 cells) were transplanted in 60-day-old fetal sheep and evaluated at various time points post transplant for the presence of human cells. Long-term engrafting cells were assessed by serial passage into secondary and tertiary recipients. Day 14 expanded CB cells provided more rapid engraftment than either the day 7 expanded cells or the day 0 cells; however, this engraftment was transient, and no human cells were detectable at 16 months post transplant in the animals that received the day 14 expanded cells. Day 0 cells had engrafted animals at 2 months post transplant and both the day 0 and day 7 cells persisted to 16 months or longer. In the secondary animals, the day 0 and day 7 cells engrafted equivalently at 3 months post transplant; however, no secondary engraftment resulted from the day 14 cells. The levels of engraftment in secondary animals receiving day 7 cells decreased with time to barely detectable levels at 12 months post transplant. Ex vivo expansion of CB CD34(+) cells under the conditions described results in the generation of increased mature cells and progenitors that are capable of more rapid engraftment in fetal sheep compared to unexpanded CB CD34(+) cells. The expanded cells engrafted primary sheep but lacked secondary and tertiary engrafting potential. These studies demonstrate that although ex vivo expanded cells may be able to provide rapid short-term engraftment, the long-term potential of expanded grafts may be compromised. Therefore, clinical protocols may require transplantation of two fractions of cells, an expanded CB graft to provide rapid short-term engraftment and an unmanipulated fraction of CB graft to provide stem cells for long-term engraftment.

  18. Host virus and pneumococcus-specific immune responses in high-count monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia: implications for disease progression

    PubMed Central

    Criado, Ignacio; Muñoz-Criado, Santiago; Rodríguez-Caballero, Arancha; Nieto, Wendy G.; Romero, Alfonso; Fernández-Navarro, Paulino; Alcoceba, Miguel; Contreras, Teresa; González, Marcos; Orfao, Alberto; Almeida, Julia

    2017-01-01

    Patients diagnosed with chronic lymphocytic leukemia (CLL) display a high incidence of infections due to an associated immunodeficiency that includes hypogammaglobulinemia. A higher risk of infections has also been recently reported for high-count monoclonal B-cell lymphocytosis, while no information is available in low-count monoclonal B-cell lymphocytosis. Here, we evaluated the status of the humoral immune system in patients with chronic lymphocytic leukemia (n=58), as well as in low- (n=71) and high- (n=29) count monoclonal B-cell lymphocytosis versus healthy donors (n=91). Total free plasma immunoglobulin titers and specific levels of antibodies against cytomegalovirus, Epstein-Barr virus, influenza and S.pneumoniae were measured by nephelometry and ELISA-based techniques, respectively. Overall, our results show that both CLL and high-count monoclonal B-cell lymphocytosis patients, but not low-count monoclonal B-cell lymphocytosis subjects, present with relatively high levels of antibodies specific for the latent viruses investigated, associated with progressively lower levels of S.pneumoniae-specific immunoglobulins. These findings probably reflect asymptomatic chronic reactivation of humoral immune responses against host viruses associated with expanded virus-specific antibody levels and progressively decreased protection against other micro-organisms, denoting a severe humoral immunodeficiency state not reflected by the overall plasma immunoglobulin levels. Alternatively, these results could reflect a potential role of ubiquitous viruses in the pathogenesis of the disease. Further analyses are necessary to establish the relevance of such asymptomatic humoral immune responses against host viruses in the expansion of the tumor B-cell clone and progression from monoclonal B-cell lymphocytosis to CLL. PMID:28385786

  19. Dynamics of the spatial electron density distribution of EUV-induced plasmas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-11-01

    We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.

  20. Plasma waves associated with the AMPTE artificial comet

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.; Haeusler, B.; Haerendel, G.; Bauer, O. H.

    1985-01-01

    Numerous plasma wave effects were detected by the AMPTE/IRM spacecraft during the artificial comet experiment on December 27, 1984. As the barium ion cloud produced by the explosion expanded over the spacecraft, emissions at the electron plasma frequency and ion plasma frequency provided a determination of the local electron density. The electron density in the diamagnetic cavity produced by the ion cloud reached a peak of more than 5 x 10 to the 5th per cu cm, then decayed smoothly as the cloud expanded, varying approximately as t exp-2. As the cloud began to move due to interactions with the solar wind, a region of compressed plasma was encountered on the upstream side of the diamagnetic cavity. The peak electron density in the compression region was about 1.5 x 10 to the 4th per cu cm. Later, a very intense (140 mVolt/m) broadband burst of electrostatic noise was encountered on the sunward side of the compression region. This noise has characteristics very similar to noise observed in the earth's bow shock, and is believed to be a shocklike interaction produced by an ion beam-plasma instability between the nearly stationary barium ions and the streaming solar wind protons.

  1. Plasma-assisted quadruple-channel optosensing of proteins and cells with Mn-doped ZnS quantum dots.

    PubMed

    Li, Chenghui; Wu, Peng; Hou, Xiandeng

    2016-02-21

    Information extraction from nano-bio-systems is crucial for understanding their inner molecular level interactions and can help in the development of multidimensional/multimodal sensing devices to realize novel or expanded functionalities. The intrinsic fluorescence (IF) of proteins has long been considered as an effective tool for studying protein structures and dynamics, but not for protein recognition analysis partially because it generally contributes to the fluorescence background in bioanalysis. Here we explored the use of IF as the fourth channel optical input for a multidimensional optosensing device, together with the triple-channel optical output of Mn-doped ZnS QDs (fluorescence from ZnS host, phosphorescence from Mn(2+) dopant, and Rayleigh light scattering from the QDs), to dramatically improve the protein recognition and discrimination resolution. To further increase the cross-reactivity of the multidimensional optosensing device, plasma modification of proteins was explored to enhance the IF difference as well as their interactions with Mn-doped ZnS QDs. Such a sensor device was demonstrated for highly discriminative and precise identification of proteins in human serum and urine samples, and for cancer and normal cells as well.

  2. Implication of Highly Cytotoxic Natural Killer Cells for Esophageal Squamous Cell Carcinoma Treatment.

    PubMed

    Lim, Kee Siang; Mimura, Kosaku; Kua, Ley-Fang; Shiraishi, Kensuke; Kono, Koji

    2018-04-20

    Esophageal squamous cell carcinoma (ESCC) is an aggressive upper gastrointestinal cancer and effective treatments are limited. Previous studies reported that natural killer (NK) cells expanded by coculturing with K562-mb15-41BBL feeder cells, a genetically modified K562 leukemia cell line that expresses membrane-bound interleukin (IL)-15 and 41BBL ligand, were highly proliferative and highly cytotoxic. Here, we investigated the potential of expanded NK cells for ESCC treatment. We analyzed both genetic and surface expression levels of NKG2D ligands (NKG2DLs) in ESCC using publicly available microarray data sets and ESCC cell lines. The cytotoxicity of resting and of IL-2-activated NK cells against ESCC cell lines was compared with that of expanded NK cells. We then also investigated the effect of epithelial mesenchymal transition (EMT) inducers, GSK3β inhibitor and epidermal growth factor, on NKG2DLs expressions. As a result, MICA and MICB were significantly overexpressed in ESCC compared with adjacent normal tissues and surface NKG2DLs were expressed in ESCC cell lines. Expanded NK cells were much potent than IL-2-activated and resting NK cells against ESCC cell lines. Blocking of NKG2D with anti-NKG2D monoclonal antibody dampened expanded NK cell cytotoxicity, suggesting that the NKG2DLs-NKG2D interaction is crucial for NK cells to eliminate ESCC cells. EMT inducers concurrently induced EMT and NKG2DLs expression in ESCC cell lines rendering transitioned cells more sensitive to expanded NK cells. In conclusion, expanded NK cells were highly cytotoxic against NKG2DLs-expressing ESCC cells, particularly the EMT phenotype. These results provide a strong rationale for clinical use of these NK cells in ESCC patients.

  3. Stability of stagnation via an expanding accretion shock wave

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  4. Stability of stagnation via an expanding accretion shock wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Giuliani, J. L.; Murakami, M.

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never beenmore » studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.« less

  5. Explosive Emission and Gap Closure from a Relativistic Electron Beam Diode

    DTIC Science & Technology

    2013-06-01

    relationship, impedance and perveance curves, plasma expansion velocity, and the time-resolved light emission on the surface of the cathode. I...indicating a cathode plasma density ~1017 cm-3 that migrates into the gap at ~50 cm/µs and an anode plasma of lower density ~1012 cm-3 that expands axially... plasma to the gap closure velocity. Initial estimates indicate the closure velocity for this relativistic diode is ~ 10 cm/µs. These measurements

  6. Solar-Wind Observations of Collisional Thermalization among Multiple Ion-Species

    NASA Astrophysics Data System (ADS)

    Maruca, B.; Qudzi, R.; Hellinger, P.; Stevens, M. L.; Kasper, J. C.; Korreck, K. E.

    2017-12-01

    The rate of Coulomb collisions among ions in the solar wind is low enough that significant departures from thermal equilibrium (e.g., different ion species having different temperatures) are frequently observed. Nevertheless, collisions have been found to play an important role in the plasma's large-scale evolution as it expands from the corona and through the heliosphere. Many statistical analyses have found that the temperature ratio of the two most abundant ions, protons (ionized hydrogen) and alpha-particles (fully ionized helium), is heavily influenced by collisional thermalization. This ongoing study expands on this work by including oxygen +6, which, during select periods (of cold, slow, dense plasma), the Wind spacecraft's Faraday Cups can measure at high cadences. Using well-established models of collisional relaxation, the in-situ measurements at 1 AU can be used to estimate ion conditions earlier in the plasma's expansion history. Assessing the physicality of these predictions can indicate to what degree preferential heating and/or heating beyond the corona affected the plasma's evolution.

  7. Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin.

    PubMed

    Vegt, Erik; Wetzels, Jack F M; Russel, Frans G M; Masereeuw, Rosalinde; Boerman, Otto C; van Eerd, Juliette E; Corstens, Frans H M; Oyen, Wim J G

    2006-03-01

    Peptide receptor-mediated radiotherapy of neuroendocrine and other somatostatin receptor-positive tumors with radiolabeled somatostatin analogs has been applied in several experimental settings. The kidneys are the organs responsible for dose-limiting toxicity attributable to the retention of radiolabeled octreotide in the renal cortex, leading to a relatively high radiation dose that may result in irreversible loss of kidney function. The administration of basic amino acids reduces renal uptake but does have significant side effects. We observed that gelatin-based plasma expanders induced tubular low-molecular-weight proteinuria in healthy volunteers, suggesting that components in these solutions can interfere with the tubular reabsorption of proteins and peptides. Here, we studied the effects of infusion of low doses of the plasma expander succinylated gelatin (GELO) on the renal uptake of 111In-labeled octreotide (111In-OCT). Five healthy volunteers were given 111In-OCT, first in combination with normal saline and 2 wk later in combination with GELO. Scintigraphic images of the kidneys as well as blood and urine samples were analyzed. To exclude a nonspecific hemodynamic effect of the plasma expander, the procedure was repeated with 5 other volunteers who received the carbohydrate-based plasma expander hydroxyethyl starch (HES). Low doses of GELO were able to effectively reduce the kidney retention of 111In-OCT. The renal radiation dose was significantly reduced by 45% +/- 10% (mean +/- SD) (P = 0.006), whereas HES showed no significant effect (0% +/- 12%). The infusion of GELO did not cause any side effects. GELO effectively reduces the renal uptake of 111In-OCT. In contrast to currently used mixtures of amino acids, GELO does not cause any side effects.

  8. Ex vivo-expanded bone marrow CD34(+) for acute myocardial infarction treatment: in vitro and in vivo studies.

    PubMed

    Gunetti, Monica; Noghero, Alessio; Molla, Fabiola; Staszewsky, Lidia Irene; de Angelis, Noeleen; Soldo, Annarita; Russo, Ilaria; Errichiello, Edoardo; Frasson, Chiara; Rustichelli, Deborah; Ferrero, Ivana; Gualandris, Anna; Berger, Massimo; Geuna, Massimo; Scacciatella, Paolo; Basso, Giuseppe; Marra, Sebastiano; Bussolino, Federico; Latini, Roberto; Fagioli, Franca

    2011-10-01

    Bone marrow (BM)-derived cells appear to be a promising therapeutic source for the treatment of acute myocardial infarction (AMI). However, the quantity and quality of the cells to be used, along with the appropriate time of administration, still need to be defined. We thus investigated the use of BM CD34(+)-derived cells as cells suitable for a cell therapy protocol (CTP) in the treatment of experimental AMI. The need for a large number of cells was satisfied by the use of a previously established protocol allowing the expansion of human CD34(+) cells isolated from neonatal and adult hematopoietic tissues. We evaluated gene expression, endothelial differentiation potential and cytokine release by BM-derived cells during in vitro culture. Basal and expanded CD34(+) cells were used as a delivery product in a murine AMI model consisting of a coronary artery ligation (CAL). Cardiac function recovery was evaluated after injecting basal or expanded cells. Gene expression analysis of in vitro-expanded cells revealed that endothelial markers were up-regulated during culture. Moreover, expanded cells generated a CD14(+) subpopulation able to differentiate efficiently into VE-cadherin-expressing cells. In vivo, we observed a cardiac function recovery in mice sequentially treated with basal and expanded cells injected 4 h and 7 days after CAL, respectively. Our data suggest that combining basal and expanded BM-derived CD34(+) cells in a specific temporal pattern of administration might represent a promising strategy for a successful cell-based therapy.

  9. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by "inflamm-ageing".

    PubMed

    Bulati, Matteo; Caruso, Calogero; Colonna-Romano, Giuseppina

    2017-07-01

    Ageing is a complex process characterized by a general decline in physiological functions with increasing morbidity and mortality. The most important aspect of ageing is the chronic inflammatory status, named "inflamm-ageing", strictly associated with the deterioration of the immune function, termed "immunosenescence". Both are causes of increased susceptibility of elderly to infectious diseases, cancer, dementia, cardiovascular diseases and autoimmunity, and of a decreased response to vaccination. It has been widely demonstrated that ageing has a strong impact on the remodelling of the B cell branch of immune system. The first evident effect is the significant decrease in circulating B cells, primarily due to the reduction of new B cell coming from bone marrow (BM) progenitors, as inflammation directly impacts on B lymphopoiesis. Besides, in aged individuals, there is a shift from naïve to memory immunoglobulins production, accompanied by the impaired ability to produce high affinity protective antibodies against newly encountered antigens. This is accompanied by the increase of expanded clones of B cells, which correlates with poor health status. Age-related modifications also occur in naïve/memory B cells subsets. Indeed, in the elderly, there is a reduction of naïve B cells, accompanied by the expansion of memory B cells that show a senescence-associated phenotype. Finally, elderly show the impaired ability of memory B cells to differentiate into plasma cells. It can be concluded that inflammation is the leading cause of the age-related impairment of B cell compartment, which play certainly a key role in the development of age-related diseases. This makes study of B cells in the aged an important tool for monitoring immunosenescence, chronic inflammatory disorders and the effectiveness of vaccines or pharmacological therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Highly intensified emission of laser-accelerated electrons from a foil target through an additional rear laser plasma

    NASA Astrophysics Data System (ADS)

    Inoue, Shunsuke; Nakamiya, Yoshihide; Teramoto, Kensuke; Hashida, Masaki; Sakabe, Shuji

    2018-04-01

    Intensification of electrons escaping from an intense laser-produced plasma is demonstrated by using double femtosecond laser pulses. The electron density distribution at the rear surface of a laser-irradiated foil target is controlled by preirradiation to suppress sheath field growth and to expand the plasma into which the fast electrons are released. Consequently, the number of electrons escaping from the plasma that have an energy of 380 keV increases by a factor of 7. The experimental results are well explained by numerical simulations of a foil plasma with a preformed plasma and analytical evaluations considering the plasma expansion.

  11. The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces.

    PubMed

    Annunziata, Marco; Oliva, Adriana; Basile, Maria Assunta; Giordano, Michele; Mazzola, Nello; Rizzo, Antonietta; Lanza, Alessandro; Guida, Luigi

    2011-11-01

    Titanium nitride (TiN) coating has been proposed as an adjunctive surface treatment aimed to increase the physico-mechanical and aesthetic properties of dental implants. In this study we investigated the surface characteristics of TiN-coated titanium plasma sprayed (TiN-TPS) and uncoated titanium plasma sprayed (TPS) surfaces and their biological features towards both primary human bone marrow mesenchymal stem cells (BM-MSC) and bacterial cultures. 15 mm×1 mm TPS and TiN-TPS disks (P.H.I. s.r.l., San Vittore Olona, Milano, Italy) were topographically analysed by confocal optical profilometry. Primary human BM-MSC were obtained from healthy donors, isolated and expanded. Cells were seeded on the titanium disks and cell adhesion, proliferation, protein synthesis and osteoblastic differentiation in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular mineralization, were evaluated. Furthermore, adhesion and proliferation of Streptococcus pyogenes and Streptococcus sanguinis on both surfaces were also analysed. TiN-TPS disks showed a decreased roughness (about 50%, p < 0.05) and a decreased bacterial adhesion and proliferation compared to TPS ones. No difference (p > 0.05) in terms of BM-MSC adhesion, proliferation and osteoblastic differentiation between TPS and TiN-TPS surfaces was found. TiN coating showed to modify the topographical characteristics of TPS titanium surfaces and to significantly reduce bacterial adhesion and proliferation, although maintaining their biological affinity towards bone cell precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Transfer of in vitro expanded T lymphocytes after activation with dendritomas prolonged survival of mice challenged with EL4 tumor cells.

    PubMed

    Li, Jinhua; Theofanous, Leigh; Stickel, Sara; Bouton-Verville, Hilary; Burgin, Kelly E; Jakubchak, Susan; Wagner, Thomas E; Wei, Yanzhang

    2007-07-01

    Adoptive T cell transfer after in vitro expansion represents an attractive cancer immunotherapy. The majority of studies so far have been focusing on the expansion of tumor infiltrated lymphocytes (TIL) and some have shown very encouraging results. Recently, we have developed a unique tumor immune response activator, dendritomas, by fusion of dendritic cells and tumor cells. Animal studies and early clinical trials have shown that dendritomas are able to activate tumor specific immune responses. In this study, we hypothesized that naïve T cells can be primed with dendritomas and expanded in vitro to develop an adoptive transfer therapy for patients who do not have solid tumors, such as leukemia. T cells were isolated and purified from lymph nodes of mice. The cells were then incubated with dendritomas made from syngeneic DCs and tumor cells and expanded in vitro using Dynabeads mouse CD3/CD28 T cell expander for approximately three weeks. The in vitro primed and expanded T cells showed tumor cell specific CTL activity and increased secretion of IFN-gamma. Tumor bearing mice receiving the in vitro expanded T cells survived significantly longer than control mice. Furthermore, the depletion of regulator T cells enhanced the survival of the mice that received the adoptive transfer therapy.

  13. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  14. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of amplified spontaneous radiation in an expanding laser plasma allowing for refraction

    NASA Astrophysics Data System (ADS)

    Gulov, A. V.; Derzhiev, V. I.; Zhidkov, A. G.; Terskikh, A. O.; Yakovlenko, Sergei I.

    1990-06-01

    Calculations are made of the divergence of amplified spontaneous radiation in a laser plasma allowing for refraction by free electrons. An analysis is made of the divergence of the radiation generated due to a 3p→3s' transition in neon-like ions. Calculations are made of the divergence of the radiation due to the 4→3 transition in the O VIII ion allowing for refraction during expansion of a Formvar plasma.

  15. Inflammatory and oxidative stress-related effects associated with neurotoxicity are maintained after exclusively prenatal trichloroethylene exposure

    PubMed Central

    Blossom, Sarah J.; Melnyk, Stepan B.; Li, Ming; Wessinger, William D.; Cooney, Craig A.

    2016-01-01

    Trichloroethylene (TCE) is a widespread environmental toxicant with immunotoxic and neurotoxic potential. Previous studies have shown that continuous developmental exposure to TCE encompassing gestation and early life as well as postnatal only exposure in the drinking water of MRL+/+ mice promoted CD4+ T cell immunotoxicity, glutathione depletion and oxidative stress in the cerebellum, as well increased locomotor activity in male offspring. The purpose of this study was to characterize the effects of exclusively prenatal exposure on these parameters. Another goal was to investigate potential plasma oxidative stress/inflammatory biomarkers to possibly be used as predictors of TCE-mediated neurotoxicity. In the current study, 6 week old male offspring of dams exposed gestationally to 0, 0.01, and 0.1 mg/ml TCE in the drinking water were evaluated. Our results confirmed that the oxidized phenotype in plasma and cerebellum was maintained after exclusively prenatal exposure. A Phenotypic analysis by flow cytometry revealed that TCE exposure expanded the effector/memory subset of peripheral CD4+ T cells in association with increased production of pro-inflammatory cytokines IFN-γ and IL-17. Serum biomarkers of oxidative stress and inflammation were also elevated in plasma suggesting that systemic effects are important and may be used to predict neurotoxicity in our model. These results suggested that the prenatal period is a critical stage of life by which the developing CNS and immune system are susceptible to long-lasting changes mediated by TCE. PMID:26812193

  16. Comparative analyses of industrial-scale human platelet lysate preparations.

    PubMed

    Pierce, Jan; Benedetti, Eric; Preslar, Amber; Jacobson, Pam; Jin, Ping; Stroncek, David F; Reems, Jo-Anna

    2017-12-01

    Efforts are underway to eliminate fetal bovine serum from mammalian cell cultures for clinical use. An emerging, viable replacement option for fetal bovine serum is human platelet lysate (PL) as either a plasma-based or serum-based product. Nine industrial-scale, serum-based PL manufacturing runs (i.e., lots) were performed, consisting of an average ± standard deviation volume of 24.6 ± 2.2 liters of pooled, platelet-rich plasma units that were obtained from apheresis donors. Manufactured lots were compared by evaluating various biochemical and functional test results. Comprehensive cytokine profiles of PL lots and product stability tests were performed. Global gene expression profiles of mesenchymal stromal cells (MSCs) cultured with plasma-based or serum-based PL were compared to MSCs cultured with fetal bovine serum. Electrolyte and protein levels were relatively consistent among all serum-based PL lots, with only slight variations in glucose and calcium levels. All nine lots were as good as or better than fetal bovine serum in expanding MSCs. Serum-based PL stored at -80°C remained stable over 2 years. Quantitative cytokine arrays showed similarities as well as dissimilarities in the proteins present in serum-based PL. Greater differences in MSC gene expression profiles were attributable to the starting cell source rather than with the use of either PL or fetal bovine serum as a culture supplement. Using a large-scale, standardized method, lot-to-lot variations were noted for industrial-scale preparations of serum-based PL products. However, all lots performed as well as or better than fetal bovine serum in supporting MSC growth. Together, these data indicate that off-the-shelf PL is a feasible substitute for fetal bovine serum in MSC cultures. © 2017 AABB.

  17. A systems approach to hemostasis: 4. How hemostatic thrombi limit the loss of plasma-borne molecules from the microvasculature

    PubMed Central

    Welsh, John D.; Muthard, Ryan W.; Stalker, Timothy J.; Taliaferro, Joshua P.; Diamond, Scott L.

    2016-01-01

    Previous studies have shown that hemostatic thrombi formed in response to penetrating injuries have a core of densely packed, fibrin-associated platelets overlaid by a shell of less-activated, loosely packed platelets. Here we asked, first, how the diverse elements of this structure combine to stem the loss of plasma-borne molecules and, second, whether antiplatelet agents and anticoagulants that perturb thrombus structure affect the re-establishment of a tight vascular seal. The studies combined high-resolution intravital microscopy with a photo-activatable fluorescent albumin marker to simultaneously track thrombus formation and protein transport following injuries to mouse cremaster muscle venules. The results show that protein loss persists after red cell loss has ceased. Blocking platelet deposition with an αIIbβ3 antagonist delays vessel sealing and increases extravascular protein accumulation, as does either inhibiting adenosine 5′-diphosphate (ADP) P2Y12 receptors or reducing integrin-dependent signaling and retraction. In contrast, sealing was unaffected by introducing hirudin to block fibrin accumulation or a Gi2α gain-of-function mutation to expand the thrombus shell. Collectively, these observations describe a novel approach for studying vessel sealing after injury in real time in vivo and show that (1) the core/shell architecture previously observed in arterioles also occurs in venules, (2) plasma leakage persists well beyond red cell escape and mature thrombus formation, (3) the most critical events for limiting plasma extravasation are the stable accumulation of platelets, ADP-dependent signaling, and the emergence of a densely packed core, not the accumulation of fibrin, and (4) drugs that affect platelet accumulation and packing can delay vessel sealing, permitting protein escape to continue. PMID:26738537

  18. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle.

    PubMed

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-26

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5/3, when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  19. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-01

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  20. PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Trávnícek, Pavel M.; Matteini, Lorenzo

    The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heatedmore » in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.« less

  1. The Plasma-Based Instruction in Ethiopia: Utopia or Dystopia?

    ERIC Educational Resources Information Center

    Abera, Berhanu

    2013-01-01

    This article highlights the utopian and dystopian viewpoints held on the plasma-based instruction in Ethiopian by looking into the existing literature works and by analyzing attitudes of implementing bodies and implementers towards the program. The article identified that though implementing bodies were enthusiastic in developing and expanding the…

  2. FLOCK cluster analysis of plasma cell flow cytometry data predicts bone marrow involvement by plasma cell neoplasia.

    PubMed

    Dorfman, David M; LaPlante, Charlotte D; Li, Betty

    2016-09-01

    We analyzed plasma cell populations in bone marrow samples from 353 patients with possible bone marrow involvement by a plasma cell neoplasm, using FLOCK (FLOw Clustering without K), an unbiased, automated, computational approach to identify cell subsets in multidimensional flow cytometry data. FLOCK identified discrete plasma cell populations in the majority of bone marrow specimens found by standard histologic and immunophenotypic criteria to be involved by a plasma cell neoplasm (202/208 cases; 97%), including 34 cases that were negative by standard flow cytometric analysis that included clonality assessment. FLOCK identified discrete plasma cell populations in only a minority of cases negative for involvement by a plasma cell neoplasm by standard histologic and immunophenotypic criteria (38/145 cases; 26%). Interestingly, 55% of the cases negative by standard analysis, but containing a FLOCK-identified discrete plasma cell population, were positive for monoclonal gammopathy by serum protein electrophoresis and immunofixation. FLOCK-identified and quantitated plasma cell populations accounted for 3.05% of total cells on average in cases positive for involvement by a plasma cell neoplasm by standard histologic and immunophenotypic criteria, and 0.27% of total cells on average in cases negative for involvement by a plasma cell neoplasm by standard histologic and immunophenotypic criteria (p<0.0001; area under the curve by ROC analysis=0.96). The presence of a FLOCK-identified discrete plasma cell population was predictive of the presence of plasma cell neoplasia with a sensitivity of 97%, compared with only 81% for standard flow cytometric analysis, and had specificity of 74%, PPV of 84% and NPV of 95%. FLOCK analysis, which has been shown to provide useful diagnostic information for evaluating patients with suspected systemic mastocytosis, is able to identify neoplastic plasma cell populations analyzed by flow cytometry, and may be helpful in the diagnostic evaluation of bone marrow samples for involvement by plasma cell neoplasia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Viscous plasma evolution from gravity using anti-de sitter/conformal-field-theory correspondence.

    PubMed

    Janik, Romuald A

    2007-01-12

    We analyze the anti-de Sitter/conformal-field-theory dual geometry of an expanding boost-invariant plasma. We show that the requirement of nonsingularity of the dual geometry for leading and subasymptotic times predicts, without any further assumptions about gauge theory dynamics, hydrodynamic expansion of the plasma with viscosity coefficient exactly matching the one obtained earlier in the static case by Policastro, Son, and Starinets.

  4. Ion Acceleration by Double Layers with Multi-Component Ion Species

    NASA Astrophysics Data System (ADS)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  5. Interactions of the plasma needle with cells in culture

    NASA Astrophysics Data System (ADS)

    Stoffels, E.; Broers, J. L. V.; Kunts, S.; Cornelis, R. A. A.; Caubet, V.; Ramaekers, F. C. S.

    2002-10-01

    A non-thermal atmospheric plasma source (plasma needle) has been developed. This plasma operates at room temperature, low voltages and power levels, so it can be applied for fine treatment of organic material. In this work the impact of the plasma needle on living cells is explored. For this purpose CHO-K1 (Chinese hamster ovary) cells in culture have been plasma-treated and their responses have been recorded by means of propidium iodide staining. Plasma treatment at low to intermediate power levels leads to damage of the DNA in the cell nucleus, which causes cell death. Characteristic features are high precision of plasma action (influenced cells are strictly localized) and induction of cell death without destroying the cell integrity. Possibilities of using plasma treatment for removal of unwanted cells (e.g. cancer cells) will be investigated.

  6. A linear helicon plasma device with controllable magnetic field gradient.

    PubMed

    Barada, Kshitish K; Chattopadhyay, P K; Ghosh, J; Kumar, Sunil; Saxena, Y C

    2012-06-01

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.

  7. Activation Mobilizes the Cholesterol in the Late Endosomes-Lysosomes of Niemann Pick Type C Cells

    PubMed Central

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2012-01-01

    A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L). We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl)-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3–4 hours, ∼4–5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours). The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a) the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein) over a few hours; b) this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c) intracellular cholesterol is even more mobile in fixed cells; and d) amphipaths that activate cholesterol might be useful in treating NPC disease. PMID:22276143

  8. CRISPR/Cas9 knockout of HAS2 in rat chondrosarcoma chondrocytes demonstrates the requirement of hyaluronan for aggrecan retention

    PubMed Central

    Huang, Yi; Askew, Emily B.; Knudson, Cheryl B.; Knudson, Warren

    2016-01-01

    Hyaluronan (HA) plays an essential role in cartilage where it functions to retain aggrecan. Previous studies have suggested that aggrecan is anchored indirectly to the plasma membrane of chondrocytes via its binding to cell-associated HA. However, reagents used to test these observations such as hyaluronidase and HA oligosaccharides are short term and may have side activities that complicate interpretation. Using the CRISPR/Cas9 gene editing approach, a model system was developed by generating HA-deficient chondrocyte cell lines. HA synthase-2 (Has2)-specific single guide RNA was introduced into two different variant lines of rat chondrosarcoma chondrocytes; knockout clones were isolated and characterized. Two other members of the HA synthase gene family were expressed at very low relative copy number but showed no compensatory response in the Has2 knockouts. Wild type chondrocytes of both variants exhibited large pericellular matrices or coats extending from the plasma membrane. Addition of purified aggrecan monomer expanded the size of these coats as the proteoglycan became retained within the pericellular matrix. Has2 knockout chondrocytes lost all capacity to assemble a particle-excluding pericellular matrix and more importantly, no matrices formed around the knockout cells following the addition of purified aggrecan. When grown as pellet cultures so as to generate a bioengineered neocartilage tissue, the Has2 knockout chondrocytes assumed a tightly-compacted morphology as compared to the wild type cells. When knockout chondrocytes were transduced with Adeno-ZsGreen1-mycHas2, the cell-associated pericellular matrices were restored including the capacity to bind and incorporate additional exogenous aggrecan into the matrix. These results suggest that HA is essential for aggrecan retention and maintaining cell separation during tissue formation. PMID:27094859

  9. Laboratory Observation of High-Mach Number, Laser-Driven Magnetized Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek; Fox, Will; Haberberger, Dan; Fiksel, Gennady; Bhattacharjee, Amitava; Barnak, Daniel; Hu, Suxing; Germaschewski, Kai

    2017-06-01

    Collisionless shocks are common phenomena in space and astrophysical systems, including solar and planetary winds, coronal mass ejections, supernovae remnants, and the jets of active galactic nuclei, and in many the shocks are believed to efficiently accelerate particles to some of the highest observed energies. Only recently, however, have laser and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of collisionless shocks over a large parameter regime. We present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on timescales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier, between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration. The platform is also flexible, allowing us to study shocks in different magnetic field geometries, in different ambient plasma conditions, and in relation to other effects in magnetized, high-Mach number plasmas such as magnetic reconnection or the Weibel instability.

  10. Generator of chemically active low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Demirov, N. A.; Spector, N. O.

    2016-11-01

    A new generator of high enthalpy (H 0 > 40 kJ/g), chemically active nitrogen and air plasmas was designed and constructed. Main feature of the generator is an expanding channel of an output electrode; the generator belongs to the class of DC plasma torches with thermionic cathode with an efficiency of 80%. The generator ensures the formation of a slightly divergent plasma jet (2α = 12°) with a diameter of D = 10-12 mm, an electric arc maximum power of 20-50 kW, plasma forming gas flow rate 1.0-2.0 g/s, and the average plasma temperature at an outlet of 8000-11000 K.

  11. Application of low-temperature plasma for the synthesis of hydrogenated graphene (graphane)

    NASA Astrophysics Data System (ADS)

    Shavelkina, M. B.; Amirov, R. H.; Katarzhis, V. A.; Kiselev, V. I.

    2017-12-01

    The possibility of a direct synthesis of hydrogenated graphene in decomposition of methane by means of low-temperature plasma was investigated. A DC plasma torch with an expanding channel-anode, a vortex gas supply and a self-setting arc length was used as a generator of low-temperature plasma. Argon was used as the plasma-forming gas. The temperatures of argon plasma and with methane addition to it were determined on the basis of spectral measurements. The synthesis products were characterized by electron microscopy and thermogravimetry. The effect of hydrogenated graphene as a nanomodifier on the properties of the cubic boron nitride based functional ceramics was investigated.

  12. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    NASA Astrophysics Data System (ADS)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  13. Fields in laser-ablated plasmas generalized to degenerate electrons and to Fermi energy in nuclei with change to quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George H.; Osman, Frederick; Hammerling, Peter X.

    2004-09-01

    The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets, contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension of plasmas and to the internal dynamic electric fields in all inhomogeneous plasmas. The surface causes stabilization by short length surface waves smoothing the expanding plasma plume. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature, resulted in the surface tension of metals in agreement with measurements. Taking then the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well known nuclear density, and in the Debye length equal to Hofstadter's decay of the nuclear surface. Increasing the nuclear density by a factor of 6 leads to the change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark-gluon plasma. Expansion of this higher density at the big band or in a supernova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range limited to about uranium.

  14. Alfvén Waves Generated by Expanding Plasmas in the Laboratory and in Space

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; Vanzeeland, M.; Vincena, S.; Pribyl, P.

    2002-12-01

    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma, that can support Alfvén waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvén waves propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. Then a new class of experiments which involve the expansion of a dense (initially, n/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvén waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The laser beam impacts a solid target such that the initial plasma burst is directed either along or across the magnetic field. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. The magnetic fields of the waves are obtained with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are measured at over {10}4 locations and will be shown in dramatic movies. These are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, which replace fast electrons escaping the initial blast. Work supported by ONR, DOE, and NSF

  15. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition

    PubMed Central

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández

    2017-01-01

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1–4%, 5–20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6–9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×109/L vs. 214×109/L, P<0.0001) and higher bone marrow plasma cells (median 53% vs. 36%, P=0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. PMID:28255016

  16. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome

    PubMed Central

    Di Gioia, Silvio Alessandro; Connors, Samantha; Matsunami, Norisada; Cannavino, Jessica; Rose, Matthew F.; Gilette, Nicole M.; Artoni, Pietro; de Macena Sobreira, Nara Lygia; Chan, Wai-Man; Webb, Bryn D.; Robson, Caroline D.; Cheng, Long; Van Ryzin, Carol; Ramirez-Martinez, Andres; Mohassel, Payam; Leppert, Mark; Scholand, Mary Beth; Grunseich, Christopher; Ferreira, Carlos R.; Hartman, Tyler; Hayes, Ian M.; Morgan, Tim; Markie, David M.; Fagiolini, Michela; Swift, Amy; Chines, Peter S.; Speck-Martins, Carlos E.; Collins, Francis S.; Jabs, Ethylin Wang; Bönnemann, Carsten G.; Olson, Eric N.; Andrews, Caroline V.; Barry, Brenda J.; Hunter, David G.; Mackinnon, Sarah E.; Shaaban, Sherin; Erazo, Monica; Frempong, Tamiesha; Hao, Ke; Naidich, Thomas P.; Rucker, Janet C.; Zhang, Zhongyang; Biesecker, Barbara B.; Bonnycastle, Lori L.; Brewer, Carmen C.; Brooks, Brian P.; Butman, John A.; Chien, Wade W.; Farrell, Kathleen; FitzGibbon, Edmond J.; Gropman, Andrea L.; Hutchinson, Elizabeth B.; Jain, Minal S.; King, Kelly A.; Lehky, Tanya J.; Lee, Janice; Liberton, Denise K.; Narisu, Narisu; Paul, Scott M.; Sadeghi, Neda; Snow, Joseph; Solomon, Beth; Summers, Angela; Toro, Camilo; Thurm, Audrey; Zalewski, Christopher K.; Carey, John C.; Robertson, Stephen P.; Manoli, Irini; Engle, Elizabeth C.

    2017-01-01

    Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymkinsT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits. PMID:28681861

  17. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome.

    PubMed

    Di Gioia, Silvio Alessandro; Connors, Samantha; Matsunami, Norisada; Cannavino, Jessica; Rose, Matthew F; Gilette, Nicole M; Artoni, Pietro; de Macena Sobreira, Nara Lygia; Chan, Wai-Man; Webb, Bryn D; Robson, Caroline D; Cheng, Long; Van Ryzin, Carol; Ramirez-Martinez, Andres; Mohassel, Payam; Leppert, Mark; Scholand, Mary Beth; Grunseich, Christopher; Ferreira, Carlos R; Hartman, Tyler; Hayes, Ian M; Morgan, Tim; Markie, David M; Fagiolini, Michela; Swift, Amy; Chines, Peter S; Speck-Martins, Carlos E; Collins, Francis S; Jabs, Ethylin Wang; Bönnemann, Carsten G; Olson, Eric N; Carey, John C; Robertson, Stephen P; Manoli, Irini; Engle, Elizabeth C

    2017-07-06

    Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymk insT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits.

  18. Pressure dependence of an ion beam accelerating structure in an expanding helicon plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Aguirre, Evan; Thompson, Derek S.; McKee, John; Henriquez, Miguel; Scime, Earl E.

    2018-02-01

    We present measurements of the parallel ion velocity distribution function and electric field in an expanding helicon source plasma plume as a function of downstream gas pressure and radial and axial positions. The ion beam that appears spontaneously in the plume persists for all downstream pressures investigated, with the largest parallel ion beam velocities obtained for the lowest downstream pressures. However, the change in ion beam velocity exceeds what would be expected simply for a change in the collisionality of the system. Electric field measurements confirm that it is the magnitude of the potential structure responsible for accelerating the ion beam that changes with downstream pressure. Interestingly, the ion density radial profile is hollow close to the end of the plasma source for all pressures, but it is hollow at downstream distances far from the source only at the highest downstream neutral pressures.

  19. Expansion of Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Salem, S.; Moslem, W. M.; Radi, A.

    2017-05-01

    Self-similar plasma expansion approach is used to solve a plasma model based on the losing phenomenon of Titan atmospheric composition. To this purpose, a set of hydrodynamic fluid equations describing a plasma consisting of two positive ions with different masses and isothermal electrons is used. With the aid of self-similar transformation, numerical solution of the fluid equations has been performed to examine the density, velocity, and potential profiles. The effects of different plasma parameters, i.e., density and temperature ratios, are studied on the expanding plasma profiles. The present investigation could be useful to recognize the ionized particles escaping from Titan atmosphere.

  20. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells

    PubMed Central

    Kim, Sun Ja; Chung, T. H.

    2016-01-01

    Cold atmospheric helium plasma jets were fabricated and utilized for plasma–cell interactions. The effect of operating parameters and jet design on the generation of specific reactive oxygen and nitrogen species (RONS) within cells and cellular response were investigated. It was found that plasma treatment induced the overproduction of RONS in various cancer cell lines selectively. The plasma under a relatively low applied voltage induced the detachment of cells, a reduction in cell viability, and apoptosis, while the plasma under higher applied voltage led to cellular necrosis in our case. To determine whether plasma-induced reactive oxygen species (ROS) generation occurs through interfering with mitochondria-related cellular response, we examined the plasma effects on ROS generation in both parental A549 cells and A549 ρ0 cells. It was observed that cancer cells were more susceptible to plasma-induced RONS (especially nitric oxide (NO) and nitrogen dioxide (NO2−) radicals) than normal cells, and consequently, plasma induced apoptotic cell responses mainly in cancer cells. PMID:26838306

  1. Low molecular weight fraction secreted by SKOV3 cells expands peripheral CD4+CD25+ regulatory T cells and enhances their suppressive capacity.

    PubMed

    Li, Xiao; Wan, Xiaoyun; Mao, Yuyan; Lu, Weiguo; Xie, Xing

    2010-09-01

    The increase of CD4+CD25+ regulatory T cells in patients with ovarian carcinoma has been verified. Here we investigated the effects of supernatant derived from ovarian carcinoma cell SKOV3 on peripheral regulatory T cells. Supernatant from SKOV3 was collected and fractionated into three different molecular weight fractions (MWFs). The proliferation of the CD4+CD25+ regulatory T cells cultured in complete RPMI 1640 medium with the different stimulators was detected. The phenotype (GITR and CTLA-4) of natural and expanded CD4+CD25+ T cells was detected by flow cytometry. Foxp3 mRNA expression of low MWF-expanded CD4+CD25+ T cells was detected by RT-PCR. Those expanded CD4+CD25+ regulatory T cells showed enhanced capacity to suppress CD4+CD25- T proliferation and increased expression of GITR and CTLA-4. In brief, low molecular weight fraction of supernatant secreted by SKOV3 could expand peripheral CD4+CD25+ regulatory T cells and enhance their suppressive function.

  2. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of a plasma jet of multiply charged ions in the interaction of a laser plasma with an external pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Dyakin, V. M.; Pikuz, T. A.; Skobelev, I. Yu; Faenov, A. Ya; Wolowski, J.; Karpinski, L.; Kasperczuk, A.; Pisarczyk, T.

    1994-12-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. Images were formed by spectral lines and the soft x-ray spectrum range of the plasma jet was obtained with a large-aperture spectrograph containing a mica crystal bent to form a spherical surface with a radius of R = 10 cm. A tenfold increase in the density of the He-like Mg XI plasma, compared with a freely expanding plasma, was observed at a distance of 5 mm from the target.

  3. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    PubMed Central

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592

  4. Interaction of laser radiation with plasma under the MG external magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; Sawada, H.; Sentoku, Y.

    2016-10-01

    Strong magnetic fields play an important role in many physical processes relevant to astrophysical events and fusion research. Laser produced plasma in the MG external magnetic field was studied at the 1 MA pulsed power generator coupled with the laser operated in ns and ps regimes. Rod loads and coils under 1 MA current were used to produce a magnetic field of 2-3 MG. In one type of experiments, a 0.8 ns laser pulse was focused on the load surface with intensity of 3x1015 W/cm2. Laser diagnostics showed that the laser produced plasma expands in the transversal magnetic field and forms a thin plasma disc with a typical diameter of 3-7 mm and thickness of 0.2-0.4 mm. A magnetosonic-type wave was observed in the plasma disc and on the surface of the rod load. The plasma disc expands radially across the magnetic field with a velocity of the order of the magnetosonic velocity. Physical mechanisms involved in the formation of the plasma disc may be relevant to the generation of plasma loops in sun flares. Other experiments, with a 0.4 ps laser pulse were carried for investigation of the isochoric heating of plasma with fast electrons confined by the strong magnetic field. The laser beam was focused by the parabola mirror on a solid target in the magnetic field of the coil. Work was supported by the DOE Grant DE-SC0008824 and DOE/NNSA UNR Grant DE-FC52-06NA27616.

  5. [Pooled Umbilical Cord Blood Plasma for Culturing UCMSC and Ex Vivo Expanding Umbilical Cord Blood CD34⁺ Cells].

    PubMed

    Wu, Jie-Ying; Lu, Yan; Chen, Jin-Song; Wu, Shao-Qing; Tang, Xue-Wei; Li, Yan

    2015-08-01

    To investigate the feasibility of umbilical cord blood plasma (UCP) as a replacement for fetal bovine serum (FBS) for culturing mesenchymal stem cells (MSC) derived from umbilical cord, and to observe the supporting effects of these cells (served as a feeder layer) on ex vivo expanding of human umbilical cord blood CD34(+) cells. Umbilical cord blood (UCB) units were suitable if the Guangzhou cord blood bank donor selection criteria strictly were fulfilled. UCP were ready to use after the collection from the plasma depletion/reduction during the processing and pooling of suitable UCB units (at least 30 units were screened for pathogens and microorganisms, and qualified). Umbilical cord mesenchymal stem cells (UCMSC) were harvested from the umbilical cord tissue of health full-term newborns after delivery by enzyme digestion and divided into 3 groups: group 1 and 2 were cultured in the presence of DMEM/F12 containing either FBS or UCP; and group 3 was cultured in serum-free medium (StemPro® MSC SFM CTS™). Morphology, proliferation and surface marker expression were examined by flow cytometry, and the differentiation toward adipogenic and osteogenic lineages was used for investigating the effect of media on UCMSC after 3-5 passages. Next, the cells cultured in the three different media were cryopreserved and thawed, then prepared as feeder layers with the name of UCMSC(FBS), UCMSC(UCP), and UCMSC(SFM), respectively. The CD34⁺ cells were separated from UCB by magnetic activated cell sorting (MACS) and divided into 4 groups cultured in StemPro(-34) SFM medium added with hematopoietic cytokine combination (StemSpan® CC100). The control group included only CD34⁺ cells as group A (blank control) and experimental groups included UCMSC(FBS) + CD34⁺ cells as group B, UCMSC(UCP) + CD34⁺ cells as group C, UCMSC(SFM) + CD34⁺ cells as group D, and cells in all groups were cultured ex vivo for 7 days. The nucleated cell (NC) number was counted by cell counter, CD34⁺ cells were measured by flow cytometry, and clonogenic assay was conducted at day 0 and 7 of culture. The expansion efficiency was assessed. The morphology (spindle-shaped and plastic-adherent), the immunophenotype (high positive percentage of CD73, CD90, CD105 and CD166) and the differentiation potential (osteogenic and adipogenic) were almost indistinguishable among the cells cultured in any of these three media except for the expression of CD105 in group 3 (serum-free medium) was lower than that in other 2 groups (P < 0.05). UCMSC grown in UCP medium demonstrated significantly higher proliferation rates than that in media containing FBS or commercial serum-free supplement (P < 0.05). After co-culture for 7 days, the CD34⁺ cell percentage decreased in all the groups, while NC were amplified effectively and the CD34⁺ cell number increased with the same order as group C or D group B or A (control group) (P < 0.05). As compared with the colony-forming unit (CFU) number at day 0, there was no significant difference in the expansion multiple between group C and D, while the expansion of CFU in group C were higher than that in group B and A. The UCP can be used as a better animal-free serum supplement for growth, maintenance and differentiation of UCMSC, thus would be a safe choice for clinical-scale production of human MSC.

  6. Transient stimulation expands superior antitumor T cells for adoptive therapy.

    PubMed

    Kagoya, Yuki; Nakatsugawa, Munehide; Ochi, Toshiki; Cen, Yuchen; Guo, Tingxi; Anczurowski, Mark; Saso, Kayoko; Butler, Marcus O; Hirano, Naoto

    2017-01-26

    Adoptive cell therapy is a potentially curative therapeutic approach for patients with cancer. In this treatment modality, antitumor T cells are exponentially expanded in vitro prior to infusion. Importantly, the results of recent clinical trials suggest that the quality of expanded T cells critically affects their therapeutic efficacy. Although anti-CD3 mAb-based stimulation is widely used to expand T cells in vitro, a protocol to generate T cell grafts for optimal adoptive therapy has yet to be established. In this study, we investigated the differences between T cell stimulation mediated by anti-CD3/CD28 mAb-coated beads and cell-based artificial antigen-presenting cells (aAPCs) expressing CD3/CD28 counter-receptors. We found that transient stimulation with cell-based aAPCs, but not prolonged stimulation with beads, resulted in the superior expansion of CD8 + T cells. Transiently stimulated CD8 + T cells maintained a stem cell-like memory phenotype and were capable of secreting multiple cytokines significantly more efficiently than chronically stimulated T cells. Importantly, the chimeric antigen receptor-engineered antitumor CD8 + T cells expanded via transient stimulation demonstrated superior persistence and antitumor responses in adoptive immunotherapy mouse models. These results suggest that restrained stimulation is critical for generating T cell grafts for optimal adoptive immunotherapy for cancer.

  7. Expanded GAA repeats impair FXN gene expression and reposition the FXN locus to the nuclear lamina in single cells.

    PubMed

    Silva, Ana M; Brown, Jill M; Buckle, Veronica J; Wade-Martins, Richard; Lufino, Michele M P

    2015-06-15

    Abnormally expanded DNA repeats are associated with several neurodegenerative diseases. In Friedreich's ataxia (FRDA), expanded GAA repeats in intron 1 of the frataxin gene (FXN) reduce FXN mRNA levels in averaged cell samples through a poorly understood mechanism. By visualizing FXN expression and nuclear localization in single cells, we show that GAA-expanded repeats decrease the number of FXN mRNA molecules, slow transcription, and increase FXN localization at the nuclear lamina (NL). Restoring histone acetylation reverses NL positioning. Expanded GAA-FXN loci in FRDA patient cells show increased NL localization with increased silencing of alleles and reduced transcription from alleles positioned peripherally. We also demonstrate inefficiencies in transcription initiation and elongation from the expanded GAA-FXN locus at single-cell resolution. We suggest that repressive epigenetic modifications at the expanded GAA-FXN locus may lead to NL relocation, where further repression may occur. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Generation, cryopreservation, function and in vivo persistence of ex-vivo expanded cynomolgus monkey regulatory T cells

    PubMed Central

    Guo, Hao; Zhang, Hong; Lu, Lien; Ezzelarab, Mohamed B.; Thomson, Angus W.

    2015-01-01

    We expanded flow-sorted Foxp3+ cynomolgus monkey regulatory T cells (Treg) >1000-fold after three rounds of stimulation with anti-CD3 mAb-loaded artificial antigen-presenting cells, rapamycin (first round only) and IL-2. The expanded Treg maintained their expression of Treg signature markers, CD25, CD27, CD39, Foxp3, Helios, and CTLA-4, as well as CXCR3, which plays an important role in T cell migration to sites of inflammation. In contrast to expanded effector T cells (Teff), expanded Treg produced minimal IFN-γ and IL-17 and no IL-2 and potently suppressed Teff proliferation. Following cryopreservation, thawed Treg were less viable than their freshly-expanded counterparts, although no significant changes in phenotype or suppressive ability were observed. Additional rounds of stimulation/expansion restored maximal viability. Furthermore, adoptively-transferred autologous Treg expanded from cryopreserved second round stocks and labeled with CFSE or VPD450 were detected in blood and secondary lymphoid tissues of normal or immunosuppressed recipients at least two months after their systemic infusion. PMID:25732601

  9. Successful treatment of plasma cell cheilitis with topical tacrolimus: report of two cases.

    PubMed

    Hanami, Yuka; Motoki, Yoshikazu; Yamamoto, Toshiyuki

    2011-02-15

    Plasma cell cheilitis is an uncommon chronic inflammatory dermatitis that presents with flat to slightly elevated erosive erythematous plaques. It is histologically characterized by plasma cell infiltrates into the mucosa. Other than the lip, genital areas are often involved, which is called plasma cell balanitis or vulvitis. Plasma cell cheilitis is sometimes resistant to conventional topical corticosteroid therapy. Other choices include oral griseofulvin, topical cyclosporine, and intralesional corticosteroid injection, all of which occasionally fail to produce satisfactory results. Recent reports show that topical calcineurin inhibitors are effective for plasma cell cheilitis, balanitis, and vulvitis. However, there are so far only 2 reports of plasma cell cheilitis successfully treated with topical pimecrolimus and tacrolimus. We present herein two cases of plasma cell cheilitis, in which topical tacrolimus showed beneficial effects, suggesting that this immunomodulatory agent is a promising option for plasma cell cheilitis.

  10. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition.

    PubMed

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández

    2017-06-01

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6-9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×10 9 /L vs 214×10 9 /L, P <0.0001) and higher bone marrow plasma cells (median 53% vs 36%, P =0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. Copyright© Ferrata Storti Foundation.

  11. Controllable robust laser driven ion acceleration from near-critical density relativistic self-transparent plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Meyer-Ter-Vehn, Juergen; Ruhl, Hartmut

    2017-10-01

    We introduce an alternative approach for laser driven self-injected high quality ion acceleration. We call it ion wave breaking acceleration. It operates in relativistic self-transparent plasma for ultra-intense ultra-short laser pulses. Laser propagating in a transparent plasma excites an electron wave as well as an ion wave. When the ion wave breaks, a fraction of ions is self-injected into the positive part of the laser driven wake. This leads to a superior ion pulse with peaked energy spectra; in particular in realistic three-dimensional geometry, the injection occurs localized close to the laser axis producing highly directed bunches. A theory is developed to investigate the ion wave breaking dynamics. Three dimensional Particle-in-Cell simulations with pure-gaussian laser pulses and pre-expanded near-critical density plasma targets have been done to verify the theoretical results. It is shown that hundreds of MeV, easily controllable and manipulable, micron-scale size, highly collimated and quasi-mono-energetic ion beams can be produced by using ultra-intense ultra-short laser pulses with total laser energies less than 10 Joules. Such ion beams may find important applications in tumour therapy. B. Liu acknowledges support from the Alexander von Humboldt Foundation. B. Liu and H. Ruhl acknowledge supports from the Gauss Centre for Supercomputing (GCS), and the Cluster-of-Excellence Munich Centre for Advanced Photonics (MAP).

  12. Transient stimulation expands superior antitumor T cells for adoptive therapy

    PubMed Central

    Kagoya, Yuki; Nakatsugawa, Munehide; Ochi, Toshiki; Guo, Tingxi; Anczurowski, Mark; Saso, Kayoko; Butler, Marcus O.

    2017-01-01

    Adoptive cell therapy is a potentially curative therapeutic approach for patients with cancer. In this treatment modality, antitumor T cells are exponentially expanded in vitro prior to infusion. Importantly, the results of recent clinical trials suggest that the quality of expanded T cells critically affects their therapeutic efficacy. Although anti-CD3 mAb-based stimulation is widely used to expand T cells in vitro, a protocol to generate T cell grafts for optimal adoptive therapy has yet to be established. In this study, we investigated the differences between T cell stimulation mediated by anti–CD3/CD28 mAb–coated beads and cell-based artificial antigen-presenting cells (aAPCs) expressing CD3/CD28 counter-receptors. We found that transient stimulation with cell-based aAPCs, but not prolonged stimulation with beads, resulted in the superior expansion of CD8+ T cells. Transiently stimulated CD8+ T cells maintained a stem cell–like memory phenotype and were capable of secreting multiple cytokines significantly more efficiently than chronically stimulated T cells. Importantly, the chimeric antigen receptor–engineered antitumor CD8+ T cells expanded via transient stimulation demonstrated superior persistence and antitumor responses in adoptive immunotherapy mouse models. These results suggest that restrained stimulation is critical for generating T cell grafts for optimal adoptive immunotherapy for cancer. PMID:28138559

  13. Red cell substitutes.

    PubMed

    Winslow, Robert M

    2007-01-01

    Oxygen-carrying plasma expanders (blood substitutes) have been sought for over a century. Development of current products is a result of evolution in the understanding of proteins in general, of hemoglobin in particular, and of how cell-free hemoglobin interacts with the control of local blood flow to ensure adequate tissue oxygenation. Hemoglobin-based products are considered in four "generations" corresponding to major improvements. First-generation products consisted of hemoglobin, freed of red cell membranes (stroma-free hemoglobin [SFH]), which was renal toxic and vasoactive. Second-generation products were polymerized with aldehyde reagents to reduce or eliminate the renal toxicity, but the products were heterogeneous and still vasoactive. Third-generation products employed more specific intramolecular crosslinking to eliminate polymerization and promote homogeneity, but they also remained vasoactive. Fourth-generation products are based on a new understanding of the way in which microvascular blood flow is controlled and the influence of O(2) delivery to vascular walls. After more than a century of research, one of these new solutions should find use as an alternative to red cells for transfusion in certain clinical settings.

  14. Influence of Factors of Cryopreservation and Hypothermic Storage on Survival and Functional Parameters of Multipotent Stromal Cells of Placental Origin

    PubMed Central

    Pogozhykh, Olena; Mueller, Thomas; Prokopyuk, Olga

    2015-01-01

    Human placenta is a highly perspective source of multipotent stromal cells (MSCs) both for the purposes of patient specific auto-banking and allogeneic application in regenerative medicine. Implementation of new GMP standards into clinical practice enforces the search for relevant methods of cryopreservation and short-term hypothermic storage of placental MSCs. In this paper we analyze the effect of different temperature regimes and individual components of cryoprotective media on viability, metabolic and culture properties of placental MSCs. We demonstrate (I) the possibility of short-term hypothermic storage of these cells; (II) determine DMSO and propanediol as the most appropriate cryoprotective agents; (III) show the possibility of application of volume expanders (plasma substituting solutions based on dextran or polyvinylpyrrolidone); (IV) reveal the priority of ionic composition over the serum content in cryopreservation media; (V) determine a cooling rate of 1°C/min down to -40°C followed by immersion into liquid nitrogen as the optimal cryopreservation regime for this type of cells. This study demonstrates perspectives for creation of new defined cryopreservation methods towards GMP standards. PMID:26431528

  15. Spatial Studies of Ion Beams in an Expanding Plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, Evan; Good, Timothy; Scime, Earl; Thompson, Derek

    2017-10-01

    We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.

  16. Optimizing stellarator coil winding surfaces with Regcoil

    NASA Astrophysics Data System (ADS)

    Bader, Aaron; Landreman, Matt; Anderson, David; Hegna, Chris

    2017-10-01

    We show initial attempts at optimizing a coil winding surface using the Regcoil code [1] for selected quasi helically symmetric equilibria. We implement a generic optimization scheme which allows for variation of the winding surface to allow for improved diagnostic access and allow for flexible divertor solutions. Regcoil and similar coil-solving algorithms require a user-input winding surface, on which the coils lie. Simple winding surfaces created by uniformly expanding the plasma boundary may not be ideal. Engineering constraints on reactor design require a coil-plasma separation sufficient for the introduction of neutron shielding and a tritium generating blanket. This distance can be the limiting factor in determining reactor size. Furthermore, expanding coils in other regions, where possible, can be useful for diagnostic and maintenance access along with providing sufficient room for a divertor. We minimize a target function that includes as constraints, the minimum coil-plasma distance, the winding surface volume, and the normal magnetic field on the plasma boundary. Results are presented for two quasi-symmetric equilibria at different aspect ratios. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  17. Beneficial Effects of cART Initiated during Primary and Chronic HIV-1 Infection on Immunoglobulin-Expression of Memory B-Cell Subsets

    PubMed Central

    Pensieroso, Simone; Tolazzi, Monica; Chiappetta, Stefania; Nozza, Silvia; Lazzarin, Adriano; Tambussi, Giuseppe; Scarlatti, Gabriella

    2015-01-01

    Introduction During HIV-1 infection the B-cell compartment undergoes profound changes towards terminal differentiation, which are only partially restored by antiretroviral therapy (cART). Materials and Methods To investigate the impact of infection as early as during primary HIV-1 infection (PHI) we assessed distribution of B-cell subsets in 19 PHI and 25 chronic HIV-1-infected (CHI) individuals before and during 48 weeks of cART as compared to healthy controls (n = 23). We also analysed Immunoglobulin-expression of memory B-cell subsets to identify alterations in Immunoglobulin-maturation. Results Determination of B-cell subsets at baseline showed that total and Naive B-cells were decreased whereas Activated Memory (AM), Tissue-like Memory (TLM) B-cells and Plasma cells were increased in both PHI and CHI patients. After 4 weeks of cART total B-cells increased, while AM, TLM B-cells and Plasma cells decreased, although without reaching normal levels in either group of individuals. This trend was maintained until week 48, though only total B-cells normalized in both PHI and CHI. Resting Memory (RM) B-cells were preserved since baseline. This subset remained stable in CHI, while was expanded by an early initiation of cART during PHI. Untreated CHI patients showed IgM-overexpression at the expenses of switched (IgM-IgD-) phenotypes of the memory subsets. Interestingly, in PHI patients a significant alteration of Immunoglobulin-expression was evident at BL in TLM cells, and after 4 weeks, despite treatment, in AM and RM subsets. After 48 weeks of therapy, Immunoglobulin-expression of AM and RM almost normalized, but remained perturbed in TLM cells in both groups. Conclusions In conclusion, aberrant activated and exhausted B-cell phenotypes rose already during PHI, while most of the alterations in Ig-expression seen in CHI appeared later, despite 4 weeks of effective cART. After 48 weeks of cART B-cell subsets distribution improved although without full normalization, while Immunoglobulin-expression normalized among AM and RM, remaining perturbed in TLM B-cells of PHI and CHI. PMID:26474181

  18. Beneficial Effects of cART Initiated during Primary and Chronic HIV-1 Infection on Immunoglobulin-Expression of Memory B-Cell Subsets.

    PubMed

    Pogliaghi, Manuela; Ripa, Marco; Pensieroso, Simone; Tolazzi, Monica; Chiappetta, Stefania; Nozza, Silvia; Lazzarin, Adriano; Tambussi, Giuseppe; Scarlatti, Gabriella

    2015-01-01

    During HIV-1 infection the B-cell compartment undergoes profound changes towards terminal differentiation, which are only partially restored by antiretroviral therapy (cART). To investigate the impact of infection as early as during primary HIV-1 infection (PHI) we assessed distribution of B-cell subsets in 19 PHI and 25 chronic HIV-1-infected (CHI) individuals before and during 48 weeks of cART as compared to healthy controls (n = 23). We also analysed Immunoglobulin-expression of memory B-cell subsets to identify alterations in Immunoglobulin-maturation. Determination of B-cell subsets at baseline showed that total and Naive B-cells were decreased whereas Activated Memory (AM), Tissue-like Memory (TLM) B-cells and Plasma cells were increased in both PHI and CHI patients. After 4 weeks of cART total B-cells increased, while AM, TLM B-cells and Plasma cells decreased, although without reaching normal levels in either group of individuals. This trend was maintained until week 48, though only total B-cells normalized in both PHI and CHI. Resting Memory (RM) B-cells were preserved since baseline. This subset remained stable in CHI, while was expanded by an early initiation of cART during PHI. Untreated CHI patients showed IgM-overexpression at the expenses of switched (IgM-IgD-) phenotypes of the memory subsets. Interestingly, in PHI patients a significant alteration of Immunoglobulin-expression was evident at BL in TLM cells, and after 4 weeks, despite treatment, in AM and RM subsets. After 48 weeks of therapy, Immunoglobulin-expression of AM and RM almost normalized, but remained perturbed in TLM cells in both groups. In conclusion, aberrant activated and exhausted B-cell phenotypes rose already during PHI, while most of the alterations in Ig-expression seen in CHI appeared later, despite 4 weeks of effective cART. After 48 weeks of cART B-cell subsets distribution improved although without full normalization, while Immunoglobulin-expression normalized among AM and RM, remaining perturbed in TLM B-cells of PHI and CHI.

  19. TRAVELING WAVE PYROTRON

    DOEpatents

    Post, R.F.

    1963-06-11

    The invention relates to a pyrotron, i.e., magnetic mirror device, designed for continuous operation in producing a high-temperature fusion reaction plasma and for directly converting the plasma energy into electrical power. The device utilizes a system in which an axially symmetric magnetic field is produced and transports plasma through a first zone of progressively rising field intensity, a second reaction zone of slowly increasing intensity, and thenceforth through a third zone of progressively decreasing intensity wherein the plasma expands against the magnetic field thereby producing electrical current in magnetic field generating solenoids associated with said third zone. (AEC)

  20. Selective cytotoxic effect of non-thermal micro-DBD plasma

    NASA Astrophysics Data System (ADS)

    Kwon, Byung-Su; Choi, Eun Ha; Chang, Boksoon; Choi, Jeong-Hyun; Kim, Kyung Sook; Park, Hun-Kuk

    2016-10-01

    Non-thermal plasma has been extensively researched as a new cancer treatment technology. We investigated the selective cytotoxic effects of non-thermal micro-dielectric barrier discharge (micro-DBD) plasma in cervical cancer cells. Two human cervical cancer cell lines (HeLa and SiHa) and one human fibroblast (HFB) cell line were treated with micro-DBD plasma. All cells underwent apoptotic death induced by plasma in a dose-dependent manner. The plasma showed selective inhibition of cell proliferation in cervical cancer cells compared to HFBs. The selective effects of the plasma were also observed between the different cervical cancer cell lines. Plasma treatment significantly inhibited the proliferation of SiHa cells in comparison to HeLa cells. The changes in gene expression were significant in the cervical cancer cells in comparison to HFBs. Among the cancer cells, apoptosis-related genes were significantly enriched in SiHa cells. These changes were consistent with the differential cytotoxic effects observed in different cell lines.

  1. Studies of Magnetic Reconnection in Colliding Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Rosenberg, Michael

    2013-10-01

    Novel images of magnetic fields and measurements of electron and ion temperatures have been obtained in the magnetic reconnection region of high- β, laser-produced plasmas. Experiments using laser-irradiated foils produce expanding, hemispherical plasma plumes carrying MG Biermann-battery magnetic fields, which can be driven to interact and reconnect. Thomson-scattering measurements of electron and ion temperatures in the interaction region of two colliding, magnetized plasmas show no thermal enhancement due to reconnection, as expected for β ~ 8 plasmas. Two different proton radiography techniques used to image the magnetic field structures show deformation, pileup, and annihilation of magnetic flux. High-resolution images reveal unambiguously reconnection-induced jets emerging from the interaction region and show instabilities in the expanding plasma plumes and supersonic, hydrodynamic jets due to the plasma collision. Quantitative magnetic flux data show that reconnection in experiments with asymmetry in the scale size, density, temperature, and plasma flow across the reconnection region occurs less efficiently than in similar, symmetric experiments. This result is attributed to disruption of the Hall mechanism mediating collisionless reconnection. The collision of plasmas carrying parallel magnetic fields has also been probed, illustrating the deformation of magnetic field structures in high-energy-density plasmas in the absence of reconnection. These experiments are particularly relevant to high- β reconnection environments, such as the magnetopause. This work was performed in collaboration with C. Li, F. Séguin, A. Zylstra, H. Rinderknecht, H. Sio, J. Frenje, and R. Petrasso (MIT), I. Igumenshchev, V. Glebov, C. Stoeckl, and D. Froula (LLE), J. Ross and R. Town (LLNL), W. Fox (UNH), and A. Nikroo (GA), and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL, and LLE.

  2. EDITORIAL: Gas plasmas in biology and medicine

    NASA Astrophysics Data System (ADS)

    Stoffels, Eva

    2006-08-01

    It is my great pleasure to introduce this special cluster devoted to recent developments in biomedical plasma technology. It is an even greater pleasure to behold the enormous progress which has been made in this area over the last five years. Research on biomedical plasma applications proceeds hand in hand with the development of new material processing technologies, based on atmospheric plasma sources. In the beginning, major research effort was invested in the development and control of new plasma sources—in this laborious process, novel devices were constructed and characterized, and also new plasma physical phenomena were discovered. Self-constriction of micro-plasmas, pattern formation, filamentation of glow discharges and various mode transitions are just a few examples. It is a real challenge for theorists to gain an understanding of these complex phenomena. Later, the devices had to be thoroughly tested and automated, and various safety issues had to be addressed. At present, many atmospheric plasma sources are ready to use, but not all fundamental and technical problems have been resolved by far. There is still plenty of room for improvement, as in any dynamic area of research. The recent trends are clear: the application area of plasmas expands into processing of unconventional materials such as biological scaffolds, and eventually living human, animal and plant tissues. The gentle, precise and versatile character of cold plasmas simply invites this new application. Firstly, non-living surfaces have been plasma-treated to attain desired effects in biomedical research; tissue engineering will soon fully profit from this powerful technique. Furthermore, studies on cultured plant and animal cells have provided many findings, which are both fundamentally interesting and potentially applicable in health care, veterinary medicine and agriculture. The most important and hitherto unique property of plasma treatment is that it can evade accidental cell death and its attendant complications, such as inflammation and scarring. Another substantial research direction makes use of the bactericidal properties of the plasma. The number of findings on plasma inactivation of bacteria and spores is growing; plasma sterilization has already achieved some commercial success. In future, bacteriostatic properties of cold plasmas will even facilitate non-contact disinfection of human tissues. At this moment, one cannot explicitly list all the medical procedures in which cold plasmas will be involved. My personal intuition predicts widespread use of plasma treatment in dentistry and dermatology, but surely more applications will emerge in the course of this multi-disciplinary research. In fact, some plasma techniques, such as coagulation and coblation, are already used in clinical practice—this is another image of plasma science, which is so far unfamiliar to plasma physicists. Therefore, this particular topic forms a perfect platform for contacts between physicists and medical experts. Our colleagues from the medical scientific community will continue giving us feedback, suggestions or even orders. Biomedical plasmas should not become an isolated research area—we must grow together with medical research, listen to criticism, and eventually serve the physicians. Only then will this new field grow, flourish and bear fruit. All the above-mentioned topics meet in this issue of Journal of Physics D: Applied Physics, comprising the most significant examples of modern biomedical plasma research. Browsing through the contributions, the reader can trace back the progress in this field: from fundamental physical (numerical) studies, through phenomenology and physics of new discharges, studies on plasma-surface modification, bacterial inactivation tests, fundamental cell biological investigations, to final in vivo applications. One may ask why this selection has found its place in a purely physical journal—many contributions are concerned with (micro)-biology rather than physics. To me, the answer is clear: it is important to maintain the visibility of this fascinating and growing cross-disciplinary field within the (plasma) physical community. This is not the `physics we are used to', but one we will eventually get used to and accept.

  3. Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics

    NASA Astrophysics Data System (ADS)

    Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2015-01-01

    We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.

  4. Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration - Explosive growth phase

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Mcentire, R. W.; Iijima, T.

    1992-01-01

    The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.

  5. Changes in visceral adipose tissue plasma membrane lipid composition in old rats are associated with adipocyte hypertrophy with aging.

    PubMed

    Bonzón-Kulichenko, Elena; Moltó, Eduardo; Pintado, Cristina; Fernández, Alejandro; Arribas, Carmen; Schwudke, Dominik; Gallardo, Nilda; Shevchenko, Andrej; Andrés, Antonio

    2018-04-16

    Increased adiposity, through adipocyte hypertrophy and/or hyperplasia, characterizes aging and obesity. Both are leptin-resistant states, associated to disturbed lipid metabolism, reduced insulin sensitivity and inflammation. Nevertheless, fat tissue dysfunction appears earlier in obesity than in normal aging. In contrast, lipodystrophy is accompanied by diabetes, and improving the fat cell capacity to expand rescues the diabetic phenotype. Fat tissue dysfunction is extensively studied in the diet-induced obesity, but remains relatively neglected in the aging-associated obesity. In the Wistar rat, as occurs in humans, early or middle aging is accompanied by an increase in adiposity. Using this experimental model, we describe the molecular mechanisms contributing to the white adipose tissue (WAT) hypertrophy. WAT from middle-old age rats is characterized by decreased basal lipogenesis and lipolysis, increased esterification, as demonstrated by the higher TAG and cholesterol content in visceral WAT, and the maintenance of total ceramide levels within normal values. In addition, we describe alterations in the adipose tissue plasma membrane lipid composition, as increased total ether-phosphatidylcholine, sphingomyelin and free cholesterol levels that favor an enlarged fat cell size with aging. All these metabolic changes may be regarded as a survival advantage that prevents the aged rats from becoming overtly diabetic.

  6. Ferrokinetic and hematologic studies in cystic fibrosis patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagener, J.S.; McNeill, G.C.; Taussig, L.M.

    We investigated 28 cystic fibrosis (CF) patients to determine why hypoxia from their obstructive pulmonary disease does not produce polycythemia. Oxygen saturation was lower and erythropoietin levels were higher in CF patients than in 25 age-comparable reference subjects (90.8% and 47 mimu vs. 94.7% and 29 mimu, p less than 0.01). Hematocrit and red blood cell (RBC) indices were not different between groups. Serum vitamin and iron levels, ferrokinetics, RBC volume, and RBC survival were studied in 10 of the 28 CF patients. Total iron-binding capacity and vitamin E levels were low, and serum iron, ferritin, vitamin B12, and folatemore » levels were normal in these patients. Red blood cell survival was minimally decreased in six patients although there was no other evidence for hemolysis. Ferrokinetics (/sup 59/Fe) indicated a reduction in total erythropoiesis in only two patients. Plasma volume was high-normal in five and above normal in four CF patients; RBC mass was increased appropriately for each patient's degree of hypoxia, when compared to healthy individuals living at different altitudes. These results suggest that CF patients are able to compensate for hypoxia by increasing RBC mass; however, an expanded plasma volume prevents a detectable rise in hematocrit.« less

  7. The role of autologous hematopoietic progenitor and cell reinfusion for intensive chemotherapy in women with poor-prognosis breast cancer. Clinical studies with ex-vivo expanded cells produced with the Aastrom Replicell technology.

    PubMed

    Chabannon, C; Novakovitch, G; Blache, J L; Olivero, S; Camerlo, J; Genre, D; Maraninchi, D; Viens, P

    1999-04-01

    In recent years, we have initiated two clinical studies, to evaluate the usefulness of ex-vivo expanded cells in patients with breast cancer who receive sequential high-dose chemotherapy. Ex-vivo expanded cells were produced from autologous cryopreserved bone marrow nucleated cells, using a biomedical device. The Aastrom Replicell system cultures cells in animal serum-replete medium, with a combination of flt3-L, PIXY321 and Epo, for 12 days. The initial pilot trial was set up to establish the feasibility and safety of the technique: 6 patients completed the study. An ongoing randomized study searches to establish whether ex-vivo expanded cells provide a clinical benefit.

  8. Re-appraisal and extension of the Gratton-Vargas two-dimensional analytical snowplow model of plasma focus. II. Looking at the singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auluck, S. K. H., E-mail: skhauluck@gmail.com

    2015-11-15

    The Gratton-Vargas snowplow model, recently revisited and expanded [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], has given rise to significant new insights into some aspects of the Dense Plasma Focus (DPF), in spite of being a purely kinematic description having no reference to plasma phenomena. It is able to provide a good fit to the experimental current waveforms in at least 4 large facilities. It has been used for construction of a local curvilinear frame of reference, in which conservation laws for mass, momentum, and energy can be reduced to effectively-one-dimensional hyperbolic conservation law equations. Its utility inmore » global parameter optimization of device parameters has been demonstrated. These features suggest that the Gratton-Vargas model deserves a closer look at its supposed limitations near the singular phase of the DPF. This paper presents a discussion of its development near the device axis, based on the original work of Gratton and Vargas, with some differences. It is shown that the Gratton-Vargas partial differential equation has solutions for times after the current singularity, which exhibit an expanding bounded volume (which can serve as model of an expanding plasma column) and decreasing dynamic inductance of the discharge, in spite of having no built-in hydrodynamics. This enables the model to qualitatively reproduce the characteristic shape of the current derivative in DPF experiments without reference to any plasma phenomena, such as instabilities, anomalous resistance, or reflection of hydrodynamic shock wave from the axis. The axial propagation of the solution exhibits a power-law dependence on the dimensionless time starting from the time of singularity, which is similar to the power-law relations predicted by theory of point explosions in ideal gases and which has also been observed experimentally.« less

  9. Assessment of bone marrow plasma cell infiltrates in multiple myeloma: the added value of CD138 immunohistochemistry

    PubMed Central

    Al-Quran, Samer Z.; Yang, Lijun; Magill, James M.; Braylan, Raul C.; Douglas-Nikitin, Vonda K.

    2012-01-01

    Summary Assessment of bone marrow involvement by malignant plasma cells is an important element in the diagnosis and follow-up of patients with multiple myeloma and other plasma cell dyscrasias. Microscope-based differential counts of bone marrow aspirates are used as the primary method to evaluate bone marrow plasma cell percentages. However, multiple myeloma is often a focal process, a fact that impacts the accuracy and reliability of the results of bone marrow plasma cell percentages obtained by differential counts of bone marrow aspirate smears. Moreover, the interobserver and intraobserver reproducibility of counting bone marrow plasma cells microscopically has not been adequately tested. CD138 allows excellent assessment of plasma cell numbers and distribution in bone marrow biopsies. We compared estimates of plasma cell percentages in bone marrow aspirates and in hematoxylin-eosin– and CD138-stained bone marrow biopsy sections (CD138 sections) in 79 bone marrows from patients with multiple myeloma. There was a notable discrepancy in bone marrow plasma cell percentages using the different methods of observation. In particular, there was a relatively poor concordance of plasma cell percentage estimation between aspirate smears and CD138 sections. Estimates of plasma cell percentage using CD138 sections demonstrated the highest interobserver concordance. This observation was supported by computer-assisted image analysis. In addition, CD138 expression highlighted patterns of plasma cell infiltration indicative of neoplasia even in the absence of plasmacytosis. We conclude that examination of CD138 sections should be considered for routine use in the estimation of plasma cell load in the bone marrow. PMID:17714757

  10. Experiments on the Expansion of a Dense Plasma into a Background Magnetoplasma

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Vanzeeland, Mike; Vincena, Steve; Pribyl, Pat

    2003-10-01

    There are many situations, which occur in space (coronal mass ejections, or are man-made (upper atmospheric detonations) as well as the initial stages of a supernovae, in which a dense plasma expands into a background magnetized plasma, that can support Alfvèn waves. The upgraded LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvèn wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments,which involve the expansion of a dense (initially, n_laser-plasma/n_0≫1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvèn waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The interaction results in the production of intense shear Alfvèn waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. In the initial phase the background magnetic field is expelled from a plasma bubble. Currents in the main body of the plasma are generated to neutralize the positively charged bubble. The current system which results, becomes that of a spectrum of shear Alfvèn waves. Spatial patterns of the wave magnetic fields waves are measured at over 10^4 locations. As the dense plasma expands across the magnetic field it seeds the column with shear waves. Most of the Alfvèn wave energy is in shear waves, which become field line resonances after a machine transit time. The interplay between waves, currents, inductive electric fields and space charge is analyzed in great detail. Dramatic movies of the measured wave fields and their associated currents will be presented. Work supported by ONR, and DOE /NSF.

  11. Generator of the low-temperature heterogeneous plasma flow

    NASA Astrophysics Data System (ADS)

    Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.

    2018-01-01

    A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.

  12. [The induction and cryopreservation of erythroid progenitor cells derived from umbilical cord blood mononuclear cells].

    PubMed

    Chen, Lin; Xie, Xiaoyan; Xi, Jiafei; Lyu, Yang; Tian, Yu; Liu, Daqing; Yue, Wen; Li, Yanhua; Nan, Xue; Li, Siting; Fan, Zeng; Pei, Xuetao

    2016-01-01

    To discover the techniques for ex vivo generation and cryopreservation of erythroid progenitor cells (EPCs)derived from umbilical cord blood (UCB)mononuclear cells (MNCs). UCB was chosen as the source of EPCs. Erythrocytes were precipitated by hydroxyethyl starch (HES). MNCs were separated by Ficoll density gradient centrifugation. Erythroid progenitor cell were generated from MNC ex vivo in suspension culture supplemented with stem cell growth factor, insulin growth factor, erythropoietin, Fms- liketyrosinekinase ligand, transferrin and dexamethasone. Cell maturation was evaluated by morphologic analysis and CD71/CD235a expression profiling. In vitro induced cells were cryopreserved using different cryopreservation media. The cell survival rate, phenotype and proliferation curves were detected after cell thawing. With the extension of culture time, the total number of cells increased significantly accompanied with the elevation of CD71 and CD235 positive populations. After 14- day inducing, the cells reached to approximately 110 times of the starting number with the cell viability as (88.92±0.95)%. The percentages of cell surface markers were (86.77±9.11)% for CD71 and (64.47±16.67)% for CD71/CD235, respectively. With the extension of inducing time, wright- Giemsa staining showed that the middle erythroblasts appeared mostly at day 10, and the late erythroblasts were seen at day 14. The red pellets were present at day 14, which indicated the more production of hemoglobin. Colony forming assay showed that erythroid colonies at induction day 7 were higher than that for non-induced cells (326.00±97.96vs 61.60±20.03 per 2 000 cells). With the extension of culture time, the number of erythroid colonies decreased. Induced EPCs were preserved with different cryopreservation solutions, in which 10% DMSO were better than 5% DMSO. Additionally, 10% DMSO + 2% HSA showed no different with 10% DMSO + 5% HSA. Combined 50% plasma with 2% HSA was more effective. This non- serum culture media could effectively induced and expanded EPCs, and 10% DMSO + 2% HSA + 50% plasma appeared to be a desirable cryopreservation solution for EPCs from UCB.

  13. Leukemia Cutis Associated with Secondary Plasma Cell Leukemia.

    PubMed

    DeMartinis, Nicole C; Brown, Megan M; Hinds, Brian R; Cohen, Philip R

    2017-05-09

    Plasma cell leukemia is an uncommon, aggressive variant of leukemia that may occur de novo or in association with multiple myeloma. Leukemia cutis is the cutaneous manifestation of leukemia, and indicates an infiltration of the skin by malignant leukocytes or their precursors. Plasma cell leukemia cutis is a rare clinical presentation of leukemia. We present a man who developed plasma cell leukemia cutis in association with multiple myeloma. Cutaneous nodules developed on his arms and legs 50 days following an autologous stem cell transplant. Histopathologic examination showed CD138-positive nodular aggregates of atypical plasma cells with kappa light chain restriction, similar to the phenotype of his myeloma. In spite of systemic treatment of his underlying disease, he died 25 days after the presentation of leukemia cutis. Pub-Med was searched for the following terms: cutaneous plasmacytomas, leukemia cutis, plasma cell leukemia nodules, plasma cell leukemia cutis, and secondary cutaneous plasmacytoma. Papers were reviewed and appropriate references evaluated. Leukemia cutis in plasma cell leukemia patients is an infrequent occurrence. New skin lesions in patients with plasma cell leukemia should be biopsied for pathology and for tissue cultures to evaluate for cancer or infection, respectively. The diagnosis plasma cell leukemia cutis is associated with a very poor prognosis.

  14. MYC protein expression is detected in plasma cell myeloma but not in monoclonal gammopathy of undetermined significance (MGUS).

    PubMed

    Xiao, Ruobing; Cerny, Jan; Devitt, Katherine; Dresser, Karen; Nath, Rajneesh; Ramanathan, Muthalagu; Rodig, Scott J; Chen, Benjamin J; Woda, Bruce A; Yu, Hongbo

    2014-06-01

    It has been recognized that monoclonal gammopathy of undetermined significance (MGUS) precedes a diagnosis of plasma cell myeloma in most patients. Recent gene expression array analysis has revealed that an MYC activation signature is detected in plasma cell myeloma but not in MGUS. In this study, we performed immunohistochemical studies using membrane CD138 and nuclear MYC double staining on bone marrow biopsies from patients who met the diagnostic criteria of plasma cell myeloma or MGUS. Our study demonstrated nuclear MYC expression in CD138-positive plasma cells in 22 of 26 (84%) plasma cell myeloma samples and in none of the 29 bone marrow samples from patients with MGUS. In addition, our data on the follow-up biopsies from plasma cell myeloma patients with high MYC expression demonstrated that evaluation of MYC expression in plasma cells can be useful in detecting residual disease. We also demonstrated that plasma cells gained MYC expression in 5 of 8 patients (62.5%) when progressing from MGUS to plasma cell myeloma. Analysis of additional lymphomas with plasmacytic differentiation, including lymphoplasmacytic lymphoma, marginal zone lymphoma, and plasmablastic lymphoma, reveals that MYC detection can be a useful tool in the diagnosis of plasma cell myeloma.

  15. SCA17 repeat expansion: mildly expanded CAG/CAA repeat alleles in neurological disorders and the functional implications.

    PubMed

    Chen, Chiung-Mei; Lee, Li-Ching; Soong, Bing-Wen; Fung, Hon-Chung; Hsu, Wen-Chuin; Lin, Pei-Ying; Huang, Hui-Ju; Chen, Fen-Lin; Lin, Cheng-Yueh; Lee-Chen, Guey-Jen; Wu, Yih-Ru

    2010-03-01

    Spinocerebellar ataxia type 17 (SCA17) involves the expression of a CAG/CAA expansion mutation in the gene encoding TATA-box binding protein (TBP), a general transcription initiation factor. The spectrum of SCA17 clinical presentation is broad. We screened for triplet expansion in the TBP gene in Taiwanese Parkinson's disease (PD), Alzheimer's disease (AD) and atypical parkinsonism and investigated the functional implication of expanded alleles using lymphoblastoid cells as a model. A total of 6 mildly expanded alleles (44-46) were identified in patients group. The frequency of the individuals carrying expanded alleles in PD (3/602 [0.5%]), AD (2/245 [0.8%]) and atypical parkinsonism (1/44 [2.3%]) is not significant as compared to that in the control subjects (0/644 [0.0%]). In lymphoblastoid cells, HSPA5, HSPA8 and HSPB1 expression levels in cells with expanded TBP were significantly lower than that of the control cells. Although not significantly, the levels of PARK7 protein isoforms 6.1 and 6.4 are notably increased in SCA17 lymphoblastoid cells. Treatment of TBH (tert-butyl hydroperoxide) significantly increases cell death in the cells with mildly expanded TBP. Our findings expand the spectrum of SCA17 phenotype and may contribute to our understanding of the disease. Copyright 2009 Elsevier B.V. All rights reserved.

  16. A linear helicon plasma device with controllable magnetic field gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.

    2012-06-15

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well asmore » its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.« less

  17. Stages of Plasma Cell Neoplasms (Including Multiple Myeloma)

    MedlinePlus

    ... Health Professional Plasma Cell Neoplasms Treatment Research Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional Version Key Points ...

  18. On-line atomic data access

    NASA Astrophysics Data System (ADS)

    Schultz, David R.; Nash, Jeffrey K.

    1996-07-01

    The need for atomic data is one which continues to expand in a wide variety of applications including fusion energy, astrophysics, laser-produced plasma research, and plasma processing. Modern computer database and communications technology enables this data to be placed on-line and obtained by users over the INTERNET. Presented here is a summary of the observations and conclusions regarding such on-line atomic data access derived from a forum held at the Tenth APS Topical Conference on Atomic Processes in Plasmas.

  19. Electrical Conductivity of Dense Al, Ti, Fe, Ni, Cu, Mo, Ta, and W Plasmas

    DTIC Science & Technology

    2011-06-01

    for all but tantalum and titanium shows a minimum at approximately 0.01 times solid density, followed by an increase as the density decreases further...internal energy and specific volume. Conductivity is observed to fall as the plasma expands for fixed internal energy, and for all but tantalum and...plasmas formed from elemental metal wires heated rapidly in a water bath by the electric current from discharge of a charged capacitor . Electrical

  20. Exhaustive exercise--a near death experience for skeletal muscle cells?

    PubMed

    Behringer, Michael; Montag, Johannes; Franz, Alexander; McCourt, Molly L; Mester, Joachim; Nosaka, Kazunori Ken

    2014-12-01

    In sports medicine, muscle enzymes in the blood are frequently used as an indicator of muscle damage. It is commonly assumed that mechanical stress disrupts plasma membrane to an extent that allows large molecules, such as enzymes, to leak into the extracellular space. However, this does not appear to fully explain changes in muscle enzyme activity in the blood after exercise. Apart from this mechanically induced membrane damage, we hypothesize that, under critical metabolic conditions, ATP consuming enzymes like creatine kinase (CK) are "volitionally" expulsed by muscle cells in order to prevent cell death. This would put themselves into a situation comparable to that of CK deficient muscle fibers, which have been shown in animal experiments to be virtually infatigable at the expense of muscle strength. Additionally we expand on this hypothesis with the idea that membrane blebbing is a way for the muscle fibers to store CK in fringe areas of the muscle fiber or to expulse CK from the cytosol by detaching the blebs from the plasma membrane. The blebbing has been shown to occur in heart muscle cells under ischaemic conditions and has been speculated to be an alternative pathway for the expulsion of troponin. The blebbing has also been seen skeletal muscle cells when intracellular calcium concentration increases. Cytoskeletal damage, induced by reactive oxygen species (ROS) or by calcium activated proteases in concert with increasing intracellular pressure, seems to provoke this type of membrane reaction. If these hypotheses are confirmed by future investigations, our current understanding of CK as a blood muscle damage marker will be fundamentally affected. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Irradiated and activated autologous PBMCs induce expansion of highly cytotoxic human NK cells in vitro.

    PubMed

    Ahn, Yong-Oon; Kim, Saerom; Kim, Tae Min; Song, Eun Young; Park, Myoung Hee; Heo, Dae Seog

    2013-09-01

    Adoptive cell transfer of ex vivo-activated natural killer (NK) cells is a promising therapy for cancer treatment. Because of inhibitory signaling through killer immunoglobulin-like receptor (KIR)-KIR ligands, KIR-mismatched allogeneic NK cell transfer is considered to be a more effective strategy than is autologous transfer. However, purified NK cells do not expand well enough in vitro with good manufacturing practice-compliant components for clinical use. Some investigators have developed selective expansion of NK cells from peripheral blood mononuclear cells, but these cells have the risk of graft-versus-host disease in allogeneic settings because of T cells contamination. In this study, we developed a novel method for NK cell activation and expansion. Using only good manufacturing practice-compliant components and autologous feeder cells, once purified NK cells were effectively expanded (2500-fold at day 17). The expanded cells were highly purified NK cells, and the use of these cells is suitable for allogeneic transfer without the risk of graft-versus-host disease induction. Importantly, the expanded NK cells also showed enhanced cytotoxicity compared with NK cells conventionally expanded by recombinant human interleukin 2. Finally, induction of NKG2D ligand expression on feeder cells implies that the NKG2D-NKG2DL interaction may play a role in NK cell expansion. In conclusion, this method can be used to obtain NK cells for more successful allogeneic NK cell adoptive transfer for use in antitumor immune therapy.

  2. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    NASA Astrophysics Data System (ADS)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  3. Treatment Options for Plasma Cell Neoplasms (Including Multiple Myeloma)

    MedlinePlus

    ... Health Professional Plasma Cell Neoplasms Treatment Research Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional Version Key Points ...

  4. Treatment Option Overview (Plasma Cell Neoplasms Including Multiple Myeloma)

    MedlinePlus

    ... Health Professional Plasma Cell Neoplasms Treatment Research Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional Version Key Points ...

  5. Expansion of natural killer cell receptor (CD94/NKG2A)-expressing cytolytic CD8 T cells and CD4+CD25+ regulatory T cells from the same cord blood unit.

    PubMed

    Tanaka, Junji; Sugita, Junichi; Kato, Naoko; Toubai, Tomomi; Ibata, Makoto; Shono, Yusuke; Ota, Shuichi; Kondo, Takeshi; Kobayashi, Takahiko; Kobayashi, Masanobu; Asaka, Masahiro; Imamura, Masahiro

    2007-10-01

    Cord blood contains a significant number of precursor cells that differentiate to cytotoxic effector cells and immunoregulatory cells. We tried to expand inhibitory natural killer cell receptor CD94-expressing CD8 T cells with cytolytic activity and CD4(+)CD25(+) regulatory T cells from the same cord cell unit. Cytotoxic CD94-expressing CD8 T cells were expanded from CD4-depleted cord blood using an immobilized anti-CD3 monoclonal antibody and a cytokine and also CD4(+)CD25(+) regulatory T cells were expanded from a CD4-enriched fraction derived from the same cord blood unit using anti-CD3/CD28 monoclonal antibody-coated Dynabeads and cytokines. We were able to obtain a more than 1000-fold expansion of CD94-expressing CD8 T cells and a more than 50-fold expansion of CD4(+)CD25(+) cells from the same cord blood unit. These expanded CD4(+)CD25(+) cells expressed FoxP3 mRNA at a level about 100-fold higher than that in isolated CD25(-) cells and could suppress allogeneic mixed lymphocyte culture by >80% (effector cells: CD4(+)CD25(+) cells = 2:1). Cytolytic activities of purified CD94-expressing cells detected by a 4-hour (51)Cr release assay against K562 were >60%. Coculture of CD94-expressing cells with expanded CD4(+)CD25(+) cells did not have any effect on cytolytic activities of purified CD94-expressing cells against K562 cells. These expanded cytolytic CD94-expressing CD8 cells might be able to induce a graft-vs-leukemia effect without enhancing graft-vs-host disease, and CD4(+)CD25(+) cells might be able to suppress allogeneic responses, including graft-vs-host disease and graft rejection after cord blood transplantation.

  6. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  7. Inflammatory and oxidative stress-related effects associated with neurotoxicity are maintained after exclusively prenatal trichloroethylene exposure.

    PubMed

    Blossom, Sarah J; Melnyk, Stepan B; Li, Ming; Wessinger, William D; Cooney, Craig A

    2017-03-01

    Trichloroethylene (TCE) is a widespread environmental toxicant with immunotoxic and neurotoxic potential. Previous studies have shown that continuous developmental exposure to TCE encompassing gestation and early life as well as postnatal only exposure in the drinking water of MRL+/+ mice promoted CD4 + T cell immunotoxicity, glutathione depletion and oxidative stress in the cerebellum, as well increased locomotor activity in male offspring. The purpose of this study was to characterize the effects of exclusively prenatal exposure on these parameters. Another goal was to investigate potential plasma oxidative stress/inflammatory biomarkers to possibly be used as predictors of TCE-mediated neurotoxicity. In the current study, 6 week old male offspring of dams exposed gestationally to 0, 0.01, and 0.1mg/ml TCE in the drinking water were evaluated. Our results confirmed that the oxidized phenotype in plasma and cerebellum was maintained after exclusively prenatal exposure. A Phenotypic analysis by flow cytometry revealed that TCE exposure expanded the effector/memory subset of peripheral CD4 + T cells in association with increased production of pro-inflammatory cytokines IFN-γ and IL-17. Serum biomarkers of oxidative stress and inflammation were also elevated in plasma suggesting that systemic effects are important and may be used to predict neurotoxicity in our model. These results suggested that the prenatal period is a critical stage of life by which the developing CNS and immune system are susceptible to long-lasting changes mediated by TCE. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Basic Research in Plasma Medicine - A Throughput Approach from Liquids to Cells

    PubMed Central

    Bekeschus, Sander; Schmidt, Anke; Niessner, Felix; Gerling, Torsten; Weltmann, Klaus-Dieter; Wende, Kristian

    2017-01-01

    In plasma medicine, ionized gases with temperatures close to that of vertebrate systems are applied to cells and tissues. Cold plasmas generate reactive species known to redox regulate biological processes in health and disease. Pre-clinical and clinical evidence points to beneficial effects of plasma treatment in the healing of chronic ulcer of the skin. Other emerging topics, such as plasma cancer treatment, are receiving increasing attention. Plasma medical research requires interdisciplinary expertise in physics, chemistry, and biomedicine. One goal of plasma research is to characterize plasma-treated cells in a variety of specific applications. This includes, for example, cell count and viability, cellular oxidation, mitochondrial activity, cytotoxicity and mode of cell death, cell cycle analysis, cell surface marker expression, and cytokine release. This study describes the essential equipment and workflows required for such research in plasma biomedicine. It describes the proper operation of an atmospheric pressure argon plasma jet, specifically monitoring its basic emission spectra and feed gas settings to modulate reactive species output. Using a high-precision xyz-table and computer software, the jet is hovered in millisecond-precision over the cavities of 96-well plates in micrometer-precision for maximal reproducibility. Downstream assays for liquid analysis of redox-active molecules are shown, and target cells are plasma-treated. Specifically, melanoma cells are analyzed in an efficient sequence of different consecutive assays but using the same cells: measurement of metabolic activity, total cell area, and surface marker expression of calreticulin, a molecule important for the immunogenic cell death of cancer cells. These assays retrieve content-rich biological information about plasma effects from a single plate. Altogether, this study describes the essential steps and protocols for plasma medical research. PMID:29286412

  9. Basic Research in Plasma Medicine - A Throughput Approach from Liquids to Cells.

    PubMed

    Bekeschus, Sander; Schmidt, Anke; Niessner, Felix; Gerling, Torsten; Weltmann, Klaus-Dieter; Wende, Kristian

    2017-11-17

    In plasma medicine, ionized gases with temperatures close to that of vertebrate systems are applied to cells and tissues. Cold plasmas generate reactive species known to redox regulate biological processes in health and disease. Pre-clinical and clinical evidence points to beneficial effects of plasma treatment in the healing of chronic ulcer of the skin. Other emerging topics, such as plasma cancer treatment, are receiving increasing attention. Plasma medical research requires interdisciplinary expertise in physics, chemistry, and biomedicine. One goal of plasma research is to characterize plasma-treated cells in a variety of specific applications. This includes, for example, cell count and viability, cellular oxidation, mitochondrial activity, cytotoxicity and mode of cell death, cell cycle analysis, cell surface marker expression, and cytokine release. This study describes the essential equipment and workflows required for such research in plasma biomedicine. It describes the proper operation of an atmospheric pressure argon plasma jet, specifically monitoring its basic emission spectra and feed gas settings to modulate reactive species output. Using a high-precision xyz-table and computer software, the jet is hovered in millisecond-precision over the cavities of 96-well plates in micrometer-precision for maximal reproducibility. Downstream assays for liquid analysis of redox-active molecules are shown, and target cells are plasma-treated. Specifically, melanoma cells are analyzed in an efficient sequence of different consecutive assays but using the same cells: measurement of metabolic activity, total cell area, and surface marker expression of calreticulin, a molecule important for the immunogenic cell death of cancer cells. These assays retrieve content-rich biological information about plasma effects from a single plate. Altogether, this study describes the essential steps and protocols for plasma medical research.

  10. Millimeter wave generation by relativistic electron beams and microwave-plasma interaction

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer

    1990-12-01

    The design and operation of a compact, high power, millimeter wave source (cusptron) has been completed and proven successful. Extensive theoretical analysis of cusptron beam and rf dynamics has been carried out and published. Theory agrees beautifully with experiment. Microwave Bragg scattering due to been achieved by using expanding plasmas to upshift rf signal frequencies.

  11. Experimental Characterization of Plasma Detachment from Magnetic Nozzles

    NASA Astrophysics Data System (ADS)

    Olsen, Christopher Scott

    Magnetic nozzles, like Laval nozzles, are observed in several natural systems and have application in areas such as electric propulsion and plasma processing. Plasma flowing through these nozzles is inherently tied to the field lines and must separate for momentum redirection or particle transport to occur. Plasma detachment and associated mechanisms from a magnetic nozzle are investigated. Experimental results are presented from the plume of the VASIMRRTM VX-200 device flowing along an axisymmetric magnetic nozzle and operated at two ion energies to explore momentum dependent detachment. The argon plume expanded into a 150m3 vacuum chamber where the background pressure was low enough that charge-exchange mean-free-paths were longer than experiment scale lengths. This magnetic nozzle system is demonstrated to hydrodynamically scale up to astrophysical plasmas, particularly the solar chromosphere, implying general relevance to many systems. Plasma parameters were mapped over a large spatial range using measurements from multiple plasma diagnostics. The data show that the plume does not follow the magnetic field lines. A mapped integration of the ion flux shows the plume may be divided into three regions where 1) the plume briefly follows the magnetic flux, 2) diverges quadratically before 3) expanding with linear trajectories. Transitioning from region 1→2, the ion flux departs from the magnetic flux suggesting ion detachment. An instability forms in region 2 driving an oscillating electric field that causes ions to expand before enhancing electron cross-field transport through anomalous resistivity. Transitioning from region 2→3 the electric field dissipates, the trajectories linearize, and the plume effectively detaches. A delineation of sub-to-super Alfvenic flow aligns well with the inflection points of the linearization without a change in magnetic topology. The detachment process is best described as a two part process: First, ions detach by a breakdown of the magnetic moment when the quantity |v/fcLB| becomes of order unity. Second, the turbulent electric field enhances electron transport up to a factor of 4+/-1 above collisional diffusion; electron cross-field velocities approximate that of the ions and depart on more centralized field lines. Electrons are believed to detach by breakdown of magnetic moment further downstream in the weaker magnetic field.

  12. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-07-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity.

  13. The Geopause

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Delcourt, D. C.

    1995-01-01

    Coupled to the Earth and protected by the geomagnetic field, terrestrial matter in the plasma state dominates a larger region of space than was suspected when the 'space age' began, a region we refer to as the geosphere. Accelerated and heated by solar wind energy, this matter expands in size and increases in mass density in response to the Sun's ultraviolet spectrum, heliospheric conditions, and the occurrence of severe space storms. Such storms regularly damage spacecraft, interfere with communications, and trigger power grid interruptions or failures. They occur within the geopause region, that is, the volume defined by the limits of the instantaneous boundary between plasmas that are primarily heliospheric and geospheric. The geopause is analogous in some ways to the heliopause but also resembles the terrestrial air-sea interface. It is the boundary layer across which the supersonically expanding solar plasma delivers momentum and energy to the terrestrial plasma and gas, exciting them into motion, 'evaporating' them into space, and dissipating considerable amounts of power in thermal forms, while generating energetic particles through repeated storage and explosive release of electromagnetic energy. The intensity of the solar wind and the orientation of its magnetic field jointly control the strength of the coupling between solar and terrestrial plasmas and hence the occurrence of severe storms in the geopause region.

  14. Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas.

    PubMed

    Hou, Huaming; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E

    2017-07-18

    Recently, laser ablated molecular isotopic spectrometry (LAMIS) has expanded its capability to explore molecules formation mechanism in laser-induced plasma in addition to isotope analysis. LAMIS is a powerful tool for tracking the origination of atoms that is involved in formation of investigated molecules by labeling atoms with their isotopic substitution. The evolutionary formation pathways of organic molecules, especially of C 2 dimers and CN radicals, were frequently reported. However, very little is known about the formation pathways for metallic radicals and heterodimers in laser ablated plasma. This research focuses on elucidating the formation pathways of AlO radicals in femtosecond laser ablated plasma from 18 O-labeled Al 2 O 3 pellet. Plasmas expanding with strong forward bias in the direction normal to the sample surface were generated in the wake of a weakly ionized channel created by a femtosecond laser. The formation mechanism of AlO and influence of air were investigated with multiple plasma diagnostic methods such as monochromatic fast gating imaging, spatiotemporal resolved optical emission spectroscopy, and LAMIS. An advanced LAMIS fitting procedure was used to deduce the spatiotemporal distributions of Al 18 O and Al 16 O number densities and also their ratios. We found that the Al 16 O/Al 18 O number density ratio is higher for plasma portion closer to the sample surface, which suggests that chemical reactions between the plasma plume and ambient air are more intense at the tail of the plasma. The results also reveals that direct association of free Al and O atoms is the main mechanism for the formation of AlO at the early stage of the plasma. To the contrast, chemical reactions between plasma materials and ambient oxygen molecules and the isotope exchange effect are the dominant mechanisms of the formation of AlO and evolution of Al 16 O/Al 18 O number density ratio at the late stage of the plasma.

  15. Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma

    NASA Astrophysics Data System (ADS)

    Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Lee, B. R.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Niemann, C.

    2017-08-01

    The explosive expansion of a localized plasma cloud into a relatively tenuous, magnetized, ambient plasma characterizes a variety of astrophysical and space phenomena. In these rarified environments, collisionless electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the expanding "debris" plasma to the surrounding ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms, compliment in situ measurements of space phenomena, and provide validation of previous computational and theoretical work, the present research jointly utilizes the Large Plasma Device and the Raptor laser facility at the University of California, Los Angeles to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and a magnetic flux probe. Doppler shifts detected in a He1+ ion spectral line indicate that the ambient ions initially accelerate transverse to both the debris plasma flow and the background magnetic field. A qualitative analysis in the framework of a "hybrid" plasma model (kinetic ions and inertia-less fluid electrons) demonstrates that the ambient ion trajectories are consistent with the large-scale laminar electric field expected to develop due to the expanding debris. In particular, the transverse ambient ion motion provides direct evidence of Larmor coupling, a collisionless momentum exchange mechanism that has received extensive theoretical and numerical investigation. In order to quantitatively evaluate the observed Doppler shifts, a custom simulation utilizing a detailed model of the laser-produced debris plasma evolution calculates the laminar electric field and computes the initial response of a distribution of ambient test ions. A synthetic Doppler-shifted spectrum constructed from the simulated test ion velocities excellently reproduces the experimental measurements, verifying that the observed ambient ion motion corresponds to collisionless coupling through the laminar electric field.

  16. Insights in the laser induced breakdown spectroscopy signal generation underwater using dual pulse excitation — Part II: Plasma emission intensity as a function of interpulse delay

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Laserna, J. J.; Jovicevic, S.

    2013-04-01

    Influence of time delay between two laser pulses on the LIBS (laser induced breakdown spectroscopy) signal inside liquids was investigated and the results are compared with data from literature. Plasma was produced by laser ablation (LA) of aluminum inside water and its emission after the second laser pulse was characterized by spectrally and time resolved detection. Light propagation through the vapor bubble formed by the first laser pulse was studied by measurements of beam scattering and transmission. Optical absorption by the evolving bubble is not significant, but its growth is accompanied by lowering of its refraction index nb with respect to surrounding liquid; this effect increases defocusing both of the incident beam and of the out-coming plasma radiation. Collection efficiency of the secondary plasma emission rapidly degrades with the cavity growth, but close to its full expansion the LIBS signal partially recovers through Snell's reflections at the liquid-vapor interface, which produce a bright spot close to the bubble center. Such a light redistribution allows detecting of the emission from external plasma volume, otherwise deflected out of the collection system. Except for strong line transitions from the main sample constituents, self-absorbed inside the high-pressure cavity, we observed the highest LIBS signal when sending the second pulse well before the bubble is fully expanded. Transitions of the pressure wave through the focal volume, formed by the first laser pulse and reflected from the cell's walls and sample back-plane, enhances the LIBS signal importantly. The measured lifetime of the secondary plasma rapidly decreases with the bubble expansion. Here, we also discuss the optimization of the optical collection system and some analytical aspects of double-pulse (DP) LIBS inside liquids.

  17. A study of the effect on human mesenchymal stem cells of an atmospheric pressure plasma source driven by different voltage waveforms

    NASA Astrophysics Data System (ADS)

    Laurita, R.; Alviano, F.; Marchionni, C.; Abruzzo, P. M.; Bolotta, A.; Bonsi, L.; Colombo, V.; Gherardi, M.; Liguori, A.; Ricci, F.; Rossi, M.; Stancampiano, A.; Tazzari, P. L.; Marini, M.

    2016-09-01

    The effect of an atmospheric pressure non-equilibrium plasma on human mesenchymal stem cells was investigated. A dielectric barrier discharge non-equilibrium plasma source driven by two different high-voltage pulsed generators was used and cell survival, senescence, proliferation, and differentiation were evaluated. Cells deprived of the culture medium and treated with nanosecond pulsed plasma showed a higher mortality rate, while higher survival and retention of proliferation were observed in cells treated with microsecond pulsed plasma in the presence of the culture medium. While a few treated cells showed the hallmarks of senescence, unexpected delayed apoptosis ensued in cells exposed to plasma-treated medium. The plasma treatment did not change the expression of OCT4, a marker of mesenchymal stem cell differentiation.

  18. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future.

    PubMed

    Astori, Giuseppe; Amati, Eliana; Bambi, Franco; Bernardi, Martina; Chieregato, Katia; Schäfer, Richard; Sella, Sabrina; Rodeghiero, Francesco

    2016-07-13

    The use of fetal bovine serum (FBS) as a cell culture supplement is discouraged by regulatory authorities to limit the risk of zoonoses and xenogeneic immune reactions in the transplanted host. Additionally, FBS production came under scrutiny due to animal welfare concerns. Platelet derivatives have been proposed as FBS substitutes for the ex-vivo expansion of mesenchymal stem/stromal cells (MSCs) since platelet-derived growth factors can promote MSC ex-vivo expansion. Platelet-derived growth factors are present in platelet lysate (PL) obtained after repeated freezing-thawing cycles of the platelet-rich plasma or by applying physiological stimuli such as thrombin or CaCl2.PL-expanded MSCs have been used already in the clinic, taking advantage of their faster proliferation compared with FBS-expanded preparations. Should PL be applied to other biopharmaceutical products, its demand is likely to increase dramatically. The use of fresh platelet units for the production of PL raises concerns due to limited availability of platelet donors. Expired units might represent an alternative, but further data are needed to define safety, including pathogen reduction, and functionality of the obtained PL. In addition, relevant questions concerning the definition of PL release criteria, including concentration ranges of specific growth factors in PL batches for various clinical indications, also need to be addressed. We are still far from a common definition of PL and standardized PL manufacture due to our limited knowledge of the mechanisms that mediate PL-promoting cell growth. Here, we concisely discuss aspects of PL as MSC culture supplement as a preliminary step towards an agreed definition of the required characteristics of PL for the requirements of manufacturers and users.

  19. Nucleoid halo expansion indirectly measures DNA damage in single cells.

    PubMed

    Thomas, E A; Thomas, C A

    1989-07-01

    A simple test has been developed that measures how much DNA damage has occurred in a single mammalian cell. The procedure is based on the microscopic examination of "halos" of nucleoids that adhere to coverslips. Nucleoids are produced by flowing salt solutions containing detergents over the attached cells. The nucleoid halos are thought to be a tangle of loops of free DNA that emanate from the remnants of the nucleus. When visualized by staining with ethidium bromide the nucleoid halos first expand, and then contract as the concentration of ethidium increases. Exposure of nucleoids to very low levels of DNA chain-breaking treatments results in the incremental expansion of the halos to a maximum of 15 microns or more. Our assay is based upon quantitating the degree of halo expansion. If intact cells are exposed to DNA-damaging treatments, then allowed increasing periods of post-treatment growth before forming nucleoids, the DNA repair processes result first in expanded and then in contracted halos. By admixing a supercoiled plasma DNA of known length (38 kb) to nucleoids with contracted halos, the fractional halo expansion and the fraction of surviving plasmid supercoils can be measured from the same solution. Use of photodynamic DNA damage showed that the halo expansion was 11.6 times more sensitive than plasmid relaxation. Use of gamma-irradiation showed that the halo expansion was 3.6 times more sensitive than plasmid relaxation. The latter value demonstrates that one break per 137,000 bp results in the expansion of the halos to 63% of their maximal value. We estimate that this method will detect about 5000 breaks per nucleus containing 5 x 10(9) bp.

  20. Ex-vivo expanded umbilical cord blood stem cells retain capacity for myocardial regeneration.

    PubMed

    Schlechta, Bernhard; Wiedemann, Dominik; Kittinger, Clemens; Jandrositz, Anita; Bonaros, Nikolaos E; Huber, Johannes C; Preisegger, Karl-Heinz; Kocher, Alfred A

    2010-01-01

    Umbilical cord blood (UCB) is a source of human hematopoietic precursor cells (HPCs), a stem cell (SC) type that has been used in several trials for myocardial repair. A certain minimal number of cells is required for measurable regeneration and a major challenge of SC-based regenerative therapy constitutes ex-vivo expansion of the primitive cell compartment. The aim of this study was to investigate the ex-vivo expansion potential of UCB-derived HPCs and the ability of these expanded cells to migrate to the site of damage and improve ventricular function in a rodent model of myocardial infarction (MI). UCB-derived HPCs, defined by coexpression of CD133 and CD34, were expanded using various cytokine combinations. MI was induced by left anterior descending artery ligation in nude rats. Cells were injected intravenously 2 days after infarction. The combination of SC factor, thrombopoietin, flt3-ligand and interleukin-6 was found to be the most effective for inducing proliferation of HPCs. The migratory capacity of expanded HPCs was similar to that of non-expanded HPCs and improvement of ejection fraction was significant in both groups, with a relative increase of >60%. UCB-derived HPCs can be reproducibly expanded ex-vivo and retain their potential to improve cardiac function post-MI. (Circ J 2010; 74: 188 - 194).

  1. Single-Cell RNA Sequencing Reveals Expanded Clones of Islet Antigen-Reactive CD4+ T Cells in Peripheral Blood of Subjects with Type 1 Diabetes.

    PubMed

    Cerosaletti, Karen; Barahmand-Pour-Whitman, Fariba; Yang, Junbao; DeBerg, Hannah A; Dufort, Matthew J; Murray, Sara A; Israelsson, Elisabeth; Speake, Cate; Gersuk, Vivian H; Eddy, James A; Reijonen, Helena; Greenbaum, Carla J; Kwok, William W; Wambre, Erik; Prlic, Martin; Gottardo, Raphael; Nepom, Gerald T; Linsley, Peter S

    2017-07-01

    The significance of islet Ag-reactive T cells found in peripheral blood of type 1 diabetes (T1D) subjects is unclear, partly because similar cells are also found in healthy control (HC) subjects. We hypothesized that key disease-associated cells would show evidence of prior Ag exposure, inferred from expanded TCR clonotypes, and essential phenotypic properties in their transcriptomes. To test this, we developed single-cell RNA sequencing procedures for identifying TCR clonotypes and transcript phenotypes in individual T cells. We applied these procedures to analysis of islet Ag-reactive CD4 + memory T cells from the blood of T1D and HC individuals after activation with pooled immunodominant islet peptides. We found extensive TCR clonotype sharing in Ag-activated cells, especially from individual T1D subjects, consistent with in vivo T cell expansion during disease progression. The expanded clonotype from one T1D subject was detected at repeat visits spanning >15 mo, demonstrating clonotype stability. Notably, we found no clonotype sharing between subjects, indicating a predominance of "private" TCR specificities. Expanded clones from two T1D subjects recognized distinct IGRP peptides, implicating this molecule as a trigger for CD4 + T cell expansion. Although overall transcript profiles of cells from HC and T1D subjects were similar, profiles from the most expanded clones were distinctive. Our findings demonstrate that islet Ag-reactive CD4 + memory T cells with unique Ag specificities and phenotypes are expanded during disease progression and can be detected by single-cell analysis of peripheral blood. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.

    2015-12-01

    We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min-1). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81  ×  10-10-9.47  ×  10-8 M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis.

  3. Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures.

    PubMed

    Bieback, Karen

    2013-10-01

    Mesenchymal stromal cells (MSC) emerged as highly attractive in cell-based regenerative medicine. Initially thought to provide cells capable of differentiation towards mesenchymal cell types (osteoblasts, chondrocytes, adipocytes etc.), by and by potent immunoregulatory and pro-regenerative activities have been discovered, broadening the field of potential applications from bone and cartilage regeneration to wound healing and treatment of autoimmune diseases. Due to the limited frequency in most tissue sources, ex vivo expansion of MSC is required compliant with good manufacturing practice (GMP) guidelines to yield clinically relevant cell doses. Though, still most manufacturing protocols use fetal bovine serum (FBS) as cell culture supplement to isolate and to expand MSC. However, the high lot-to-lot variability as well as risk of contamination and immunization call for xenogenic-free culture conditions. In terms of standardization, chemically defined media appear as the ultimate achievement. Since these media need to maintain all key cellular and therapy-relevant features of MSC, the development of chemically defined media is still - albeit highly investigated - only in its beginning. The current alternatives to FBS rely on human blood-derived components: plasma, serum, umbilical cord blood serum, and platelet derivatives like platelet lysate. Focusing on quality aspects, the latter will be addressed within this review.

  4. Platelet Lysate as Replacement for Fetal Bovine Serum in Mesenchymal Stromal Cell Cultures

    PubMed Central

    Bieback, Karen

    2013-01-01

    Summary Mesenchymal stromal cells (MSC) emerged as highly attractive in cell-based regenerative medicine. Initially thought to provide cells capable of differentiation towards mesenchymal cell types (osteoblasts, chondrocytes, adipocytes etc.), by and by potent immunoregulatory and pro-regenerative activities have been discovered, broadening the field of potential applications from bone and cartilage regeneration to wound healing and treatment of autoimmune diseases. Due to the limited frequency in most tissue sources, ex vivo expansion of MSC is required compliant with good manufacturing practice (GMP) guidelines to yield clinically relevant cell doses. Though, still most manufacturing protocols use fetal bovine serum (FBS) as cell culture supplement to isolate and to expand MSC. However, the high lot-to-lot variability as well as risk of contamination and immunization call for xenogenic-free culture conditions. In terms of standardization, chemically defined media appear as the ultimate achievement. Since these media need to maintain all key cellular and therapy-relevant features of MSC, the development of chemically defined media is still – albeit highly investigated – only in its beginning. The current alternatives to FBS rely on human blood-derived components: plasma, serum, umbilical cord blood serum, and platelet derivatives like platelet lysate. Focusing on quality aspects, the latter will be addressed within this review. PMID:24273486

  5. Leaky phenotype of X-linked agammaglobulinaemia in a Japanese family

    PubMed Central

    Kaneko, H; Kawamoto, N; Asano, T; Mabuchi, Y; Horikoshi, H; Teramoto, T; JIN-RONG; Matsui, E; Kondo, M; Fukao, T; Kasahara, K; Kondo, N

    2005-01-01

    X-linked agammaglobulinaemia (XLA) is an inherited immunodeficiency that is caused by a block in early B-cell differentiation. Whereas early B precursors in the bone marrow are present in substantial numbers, XLA-affected individuals have dramatically reduced numbers of circulating mature B cells, plasma cells and immunoglobulins of all isotypes. We report on a Japanese family with 3 XLA patients, in whom the serum immunoglobulin levels and number of B cells showed a significant difference among them in spite of harbouring the same splice donor site mutation in the BTK gene. We developed concise method for detection of this mutation, which is helpful for discovering the carrier. Patient 2 showed a significant serum immunoglobulin levels of all isotypes, including allergen-specific IgE. Expression of a normal and truncated size BTK gene was detected in patient 2′s peripheral blood mononuclear cells (PBMCs). Expression of BTK protein was also detected in some B cells. These results suggest that the leaky phenotype in patient 2 was caused in part by the expression of a normal BTK gene transcript. The increased frequency of infection with age expanded the number of B cells with normal BTK gene expression and produced the serum immunoglobulin, including IgE. PMID:15932514

  6. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration.

    PubMed

    Karki, Surya B; Yildirim-Ayan, Eda; Eisenmann, Kathryn M; Ayan, Halim

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  7. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold.

    PubMed

    Mazlyzam, A L; Aminuddin, B S; Fuzina, N H; Norhayati, M M; Fauziah, O; Isa, M R; Saim, L; Ruszymah, B H I

    2007-05-01

    Our aim of this study was to develop a new methodology for constructing a bilayer human skin equivalent to create a more clinical compliance skin graft composite for the treatment of various skin defects. We utilized human plasma derived fibrin as the scaffold for the development of a living bilayer human skin equivalent: fibrin-fibroblast and fibrin-keratinocyte (B-FF/FK SE). Skin cells from six consented patients were culture-expanded to passage 1. For B-FF/FK SE formation, human fibroblasts were embedded in human fibrin matrix and subsequently another layer of human keratinocytes in human fibrin matrix was stacked on top. The B-FF/FK SE was then transplanted to athymic mice model for 4 weeks to evaluate its regeneration and clinical performance. The in vivo B-FF/FK SE has similar properties as native human skin by histological analysis and expression of basal Keratin 14 gene in the epidermal layer and Collagen type I gene in the dermal layer. Electron microscopy analysis of in vivo B-FF/FK SE showed well-formed and continuous epidermal-dermal junction. We have successfully developed a technique to engineer living bilayer human skin equivalent using human fibrin matrix. The utilization of culture-expanded human skin cells and fibrin matrix from human blood will allow a fully autologous human skin equivalent construction.

  8. No strict requirement for eosinophils for bone marrow plasma cell survival.

    PubMed

    Bortnick, Alexandra; Chernova, Irene; Spencer, Sean P; Allman, David

    2018-02-14

    Lasting antibody responses are maintained by long-lived plasma cells, which are thought to lodge in the BM in specialized survival niches. Eosinophils have been reported to function as a critical component of the BM survival niche where they are thought to provide pro-survival signals to nearby plasma cells. Recent study shows that many BM plasma cells are recently generated and chiefly short-lived cells, raising the possibility that rare plasma cell-eosinophil interactions are a rate-limiting step needed to establish lasting humoral immunity. To address these issues, we examined the impact of eosinophil depletion on short- and long-lived BM plasma cells in the context of antibody responses induced by both T-cell dependent and T-cell independent antigens. Surprisingly, our results failed to support a role for eosinophils in either plasma cell generation or survival. These studies included examination of plasma cell frequencies in mice lacking eosinophils either after antibody-mediated depletion, or due to mutation of the GATA1 locus. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Modeling dynamic plasmas driven by ultraintense nano-focused x-ray laser pulses in solid iron targets

    NASA Astrophysics Data System (ADS)

    Royle, Ryan; Sentoku, Yasuhiko; Mancini, Roberto

    2017-10-01

    The hard x-ray free electron laser has proven to be a valuable tool for high energy density (HED) physics as it is able to produce well-characterized samples of HED matter at exactly solid density and homogeneous temperatures. However, if the x-ray pulses are focused to sub-micron spot sizes, where peak intensities can exceed 1020 W/cm2, the plasmas driven by sources of non-thermal photoelectrons and Auger electrons can be highly dynamic and so cannot be modeled by atomic kinetics or fluid codes. We apply the 2D/3D particle-in-cell code, PICLS-which has been extended with numerous physics models to enable the simulation of XFEL-driven plasmas-to the modeling of such dynamic plasmas driven by nano-focused XFEL pulses in solid iron targets. In the case of the smallest focal spot investigated of just 100 nm in diameter, keV plasmas induce strong radial E-fields that accelerate keV ions radially as well as sheath fields that accelerate surface ions to hundreds of keV. The heated spot, which is initially larger than the laser spot due to the kinetic nature of the fast Auger electrons, expands as ion and electron waves propagate radially, leaving a low density region along the laser axis. This research was supported by the US DOE-OFES under Grant No. DE-SC0008827, the DOE-NNSA under Grant No. DE-NA0002075, and the JSPS KAKENHI under Grant No. JP15K21767.

  10. Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro

    NASA Astrophysics Data System (ADS)

    Hoentsch, Maxi; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Nebe, J. Barbara

    2012-01-01

    The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells.

  11. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki

    2012-03-12

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  12. Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response.

    PubMed

    Tellier, Julie; Shi, Wei; Minnich, Martina; Liao, Yang; Crawford, Simon; Smyth, Gordon K; Kallies, Axel; Busslinger, Meinrad; Nutt, Stephen L

    2016-03-01

    Plasma cell differentiation requires silencing of B cell transcription, while it establishes antibody-secretory function and long-term survival. The transcription factors Blimp-1 and IRF4 are essential for the generation of plasma cells; however, their function in mature plasma cells has remained elusive. We found that while IRF4 was essential for the survival of plasma cells, Blimp-1 was dispensable for this. Blimp-1-deficient plasma cells retained their transcriptional identity but lost the ability to secrete antibody. Blimp-1 regulated many components of the unfolded protein response (UPR), including XBP-1 and ATF6. The overlap in the functions of Blimp-1 and XBP-1 was restricted to that response, with Blimp-1 uniquely regulating activity of the kinase mTOR and the size of plasma cells. Thus, Blimp-1 was required for the unique physiological ability of plasma cells that enables the secretion of protective antibody.

  13. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma.

    PubMed

    Choi, Hyeongwon; Choi, Eun Ha; Kim, Kyung Sook

    2017-10-01

    Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes. © 2017 Wiley Periodicals, Inc.

  14. Exploiting novel sterilization techniques for porous polyurethane scaffolds.

    PubMed

    Bertoldi, Serena; Farè, Silvia; Haugen, Håvard Jostein; Tanzi, Maria Cristina

    2015-05-01

    Porous polyurethane (PU) structures raise increasing interest as scaffolds in tissue engineering applications. Understanding the effects of sterilization on their properties is mandatory to assess their potential use in the clinical practice. The aim of this work is the evaluation of the effects of two innovative sterilization techniques (i.e. plasma, Sterrad(®) system, and ozone) on the morphological, chemico-physical and mechanical properties of a PU foam synthesized by gas foaming, using water as expanding agent. In addition, possible toxic effects of the sterilization were evaluated by in vitro cytotoxicity tests. Plasma sterilization did not affect the morphological and mechanical properties of the PU foam, but caused at some extent degradative phenomena, as detected by infrared spectroscopy. Ozone sterilization had a major effect on foam morphology, causing the formation of new small pores, and stronger degradation and oxidation on the structure of the material. These modifications affected the mechanical properties of the sterilized PU foam too. Even though, no cytotoxic effects were observed after both plasma and ozone sterilization, as confirmed by the good values of cell viability assessed by Alamar Blue assay. The results here obtained can help in understanding the effects of sterilization procedures on porous polymeric scaffolds, and how the scaffold morphology, in particular porosity, can influence the effects of sterilization, and viceversa.

  15. Persistent Effectivity of Gas Plasma-Treated, Long Time-Stored Liquid on Epithelial Cell Adhesion Capacity and Membrane Morphology

    PubMed Central

    Hoentsch, Maxi; Bussiahn, René; Rebl, Henrike; Bergemann, Claudia; Eggert, Martin; Frank, Marcus; von Woedtke, Thomas; Nebe, Barbara

    2014-01-01

    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first time-dependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics. PMID:25170906

  16. Evaluation of foaming polypropylene modified with ramified polymer

    NASA Astrophysics Data System (ADS)

    Demori, Renan; de Azeredo, Ana Paula; Liberman, Susana A.; Mauler, Raquel S.

    2015-05-01

    Polypropylene foams have great industrial interest because of balanced physical and mechanical properties, recyclability as well as low material cost. During the foaming process, the elongational forces applied to produce the expanded polymer are strong enough to rupture cell walls. As a result, final foam has a high amount of coalesced as well as opened cells which decreases mechanical and also physical properties. To increase melt strength and also avoid the coalescence effect, one of the current solution is blend PP with ramified polymers as well as branched polypropylene (LCBPP) or ethylene-octene copolymer (POE). In this research to provide extensional properties and achieve uniform cellular structures of expanded PP, 20 phr of LCBPP or POE was added into PP matrix. The blend of PP with ramified polymers was prepared by twin-screw extrusion. Injection molding process was used to produce PP foams using azodicarbonamide (ACA) as chemical blowing agent. The morphological results of the expanded PP displayed a non-uniform geometrical cell, apparent density of 0.48 g/cm3 and cell density of 13.9.104 cell/cm3. Otherwise, the expanded PP blended with LCBPP or POE displayed a homogeneous cell structure and increased the amount of smaller cells (50-100 μm of size). The apparent density slightly increased with addition of LCBPP or POE, 0.64 and 0.57 g/cm3, respectively. Thus, the cell density reduced to 65% in PP/LCBPP 100/20 and 75% in the sample PP/POE 100/20 compared to expanded PP. The thermo-mechanical properties (DMTA) of PP showed specific stiffness of 159 MPa.cm-3.g-1, while the sample PP/LCBPP 100/20 increased the stiffness values of 10%. Otherwise, the expanded PP/POE 100/20 decreased the specific stiffness values at -30%, in relation to expanded PP. In summary, blending PP with ramified polymers showed increasing of the homogenous cellular structure as well as the amount of smaller cells in the expanded material.

  17. Cosmological Implications of the Electron-Positron Aether

    NASA Astrophysics Data System (ADS)

    Rothwarf, Allen

    1997-04-01

    An aether is not prohibited on theoretical nor experimental grounds; only a credible physical model for it is lacking.By assuming that the particles and anti-particles created during the "big-bang" origin of the universe have not annihilated one another, but instead, form a bound state plasma, we have a model for a real aether.This aether is dominated by electron-positron pairs at very high density(10**30/cm3),in close analogy with electron-hole droplets formed in laser irradiated semiconductors. The Fermi velocity of this plasma is the speed of light, and the plasma expands at this speed. This gives results for the expanding universe in agreement with the Einstein-deSitter result for a universe dominated by radiation.The speed of light varies with time as do the other fundamental constants.This leads to an alternate explanation for cosmological redshifts. Independent,mini big bangs can occur and account for observed anomalous redshifts. The model can be tested using LIGO apparatus.

  18. Full-thickness skin with mature hair follicles generated from tissue culture expanded human cells.

    PubMed

    Wu, Xunwei; Scott, Larry; Washenik, Ken; Stenn, Kurt

    2014-12-01

    The goal of regenerative medicine is to reconstruct fully functional organs from tissue culture expanded human cells. In this study, we report a method for human reconstructed skin (hRSK) when starting with human cells. We implanted tissue culture expanded human epidermal and dermal cells into an excision wound on the back of immunodeficient mice. Pigmented skin covered the wound 4 weeks after implantation. Hair shafts were visible at 12 weeks and prominent at 14 weeks. Histologically, the hRSK comprises an intact epidermis and dermis with mature hair follicles, sebaceous glands and most notably, and unique to this system, subcutis. Morphogenesis, differentiation, and maturation of the hRSK mirror the human fetal process. Human antigen markers demonstrate that the constituent cells are of human origin for at least 6 months. The degree of new skin formation is most complete when using tissue culture expanded cells from fetal skin, but it also occurs with expanded newborn and adult cells; however, no appendages formed when we grafted both adult dermal and epidermal cells. The hRSK system promises to be valuable as a laboratory model for studying biological, pathological, and pharmaceutical problems of human skin.

  19. Magnetic field in expanding quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Stewart, Evan; Tuchin, Kirill

    2018-04-01

    Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.

  20. Plasma expansion into a waveguide created by a linearly polarized femtosecond laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, N.; Grismayer, T.; Cardoso, L.

    2013-06-15

    We demonstrate the efficient generation of 4 mm and 8 mm long plasma waveguides in hydrogen and helium. These waveguides have matching spots sizes for 13 to 34 μm laser beams. The plasma waveguides are created by ultra-short laser pulses (sub-picosecond) of moderate intensities, ∼10{sup 15}–10{sup 16} W cm{sup −2}, that heat the plasma to initial temperatures of tens of eV in order to create a hot plasma column that will expand into a plasma waveguide. We have determined that the main heating mechanism when using fs laser pulses and plasma densities ∼10{sup 18–19} cm{sup −3} is Above Threshold Ionization.more » Detailed time and space electron density measurements are presented for the laser produced plasma waveguides.« less

  1. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    NASA Astrophysics Data System (ADS)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a plasma thruster is explored, possibly for a low thrust, high specific impulse mode in a multi-mode helicon thruster. This work could also explain similar potential gradients in expanding helicon plasmas that are ascribed to double layer formation in the literature.

  2. Current-free double layers: A review

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra

    2011-12-01

    During the last decade, there has been an upsurge in the research on current-free DLs (CFDLs). Research includes theory, laboratory measurements, and various applications of CFDLs ranging from plasma thrusters to acceleration of charged particles in space and astrophysical plasmas. The purpose of this review is to present a unified understanding of the basic plasma processes, which lead to the formation of CFDLs. The review starts with the discussion on early research on electric fields and double layers (DLs) and ion acceleration in planar plasma expansion. The review continues with the formation of DLs and rarefaction shocks (RFS) in expanding plasma with two electron populations with different temperatures. The basic theory mitigating the formation of a CFDL by two-electron temperature population is reviewed; we refer to such CFDLs as double layers structures formation by two-temperature electron populations (TET-CFDLs). Application of TET-CFDLS to ion acceleration in laboratory and space plasmas was discussed including the formation of stationary steady-state DLs. A quite different type of CFDLs forms in a helicon plasma device (HPD), in which plasma abruptly expands from a narrow plasma source tube into a wide diffusion tube with abruptly diverging magnetic fields. The formation mechanism of the CFDL in HPD, referred here as current free double layer structure in helicon plasma device (HPD-CFDL), and its applications are reviewed. The formation of a TET-CFDL is due to the self-consistent separation of the two electron populations parallel to the ambient magnetic field. In contrast, a HPD-CFDL forms due to self-consistent separation of electrons and ion perpendicular to the abruptly diverging magnetic field in conjunction with the conducting wall of the expansion chamber in the HPD. One-dimensional theoretical models of CFDLs based on steady-state solution of Vlasov-Poisson system of equations are briefly discussed. Applications of CFDLs ranging from helicon double-layer thrusters (HDLTs) to the accelerations of ions in space and astrophysical plasmas are summarized.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baalrud, S. D.; Lafleur, T.; Boswell, R. W.

    Current-free double layers of the type reported in plasmas in the presence of an expanding magnetic field [C. Charles and R. W. Boswell, Appl. Phys. Lett. 82, 1356 (2003)] are modeled theoretically and with particle-in-cell/Monte Carlo simulations. Emphasis is placed on determining what mechanisms affect the electron velocity distribution function (EVDF) and how the EVDF influences the double layer. A theoretical model is developed based on depletion of electrons in certain velocity intervals due to wall losses and repletion of these intervals due to ionization and elastic electron scattering. This model is used to predict the range of neutral pressuresmore » over which a double layer can form and the electrostatic potential drop of the double layer. These predictions are shown to compare well with simulation results.« less

  4. Inactivation of myeloma cancer cells by helium and argon plasma jets: The effect comparison and the key reactive species

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu; Cui, Qingjie; Chen, Chen; Xu, Dehui; Liu, Dingxin; Chen, H. L.; Kong, Michael G.

    2018-02-01

    In plasma cancer therapy, the inactivation of cancer cells under plasma treatment is closely related to the reactive oxygen and nitrogen species (RONS) induced by plasmas. Quantitative study on the plasma-induced RONS that related to cancer cells apoptosis is critical for advancing the research of plasma cancer therapy. In this paper, the effects of several reactive species on the inactivation of LP-1 myeloma cancer cells are comparatively studied with variable working gas composition, surrounding gas composition, and discharge power. The results show that helium plasma jet has a higher cell inactivation efficiency than argon plasma jet under the same discharge power. By comparing the concentration of aqueous phase reactive species and the cell inactivation efficiency under different working gases and discharge powers, it is demonstrated that the inactivation efficiency of LP-1 myeloma cancer cells is strongly correlated with the concentration of peroxynitrite (ONOOH/ONOO-).

  5. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy

    PubMed Central

    Chen, Can; Tan, Wee-Kiat; Chi, Zhixia; Xu, Xue-Hu; Wang, Shu

    2016-01-01

    Gamma delta (γδ) T cells and cytokine-induced killer (CIK) cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT) cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs) using Zometa, interferon-gamma (IFN-γ), interleukin 2 (IL-2), anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR), anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer. PMID:27598655

  6. Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn's disease patients in a mouse model of colitis.

    PubMed

    Forte, Dorian; Ciciarello, Marilena; Valerii, Maria Chiara; De Fazio, Luigia; Cavazza, Elena; Giordano, Rosaria; Parazzi, Valentina; Lazzari, Lorenza; Laureti, Silvio; Rizzello, Fernando; Cavo, Michele; Curti, Antonio; Lemoli, Roberto M; Spisni, Enzo; Catani, Lucia

    2015-09-09

    Due to their immunomodulatory properties, mesenchymal stromal cells (MSCs) have been used for auto-immune disease treatment. Crohn disease (CD) and ulcerative colitis are two major inflammatory bowel diseases (IBDs), resulting from pathological immune responses to environmental or microbial antigens. Preclinical and clinical studies have suggested that MSC-based cellular therapy hold promising potential for IBD treatment. However, open issues include the selection of the proper cell dose, the source and the optimal route of administration of MSCs for more effective results. Platelet lysate has gained clinical interest due to its efficacy in accelerating wound healing. Thus, we propose to combine the administration of MSCs with a human umbilical cord blood-derived platelet lysate (hCBPL) as a novel strategy to improve MSC-based therapy for IBD resolution. Colitis was induced in 8-week-old C57BL/6J mice by daily oral administration of dextran sulphate sodium (DSS) (1.5 % w/v in tap water) for 9 days. MSCs were isolated from adipose tissue of CD patients (adCD-MSCs), expanded in proliferation medium, resuspended in hCBPL or PBS and administrated via enema for three times (1 × 10(6) cells/mouse/time) every other day starting on day +7 from DSS induction. The colitis evolution was evaluated by daily monitoring of body weight, stool consistency and bleeding. Histopathological analysis was performed. Inflammatory cytokine plasma levels were determined. adCD-MSCs stained with lipophilic membrane dye Nile Red, were injected in DSS mice as described above. Colon section of mice sacrificed 24 hours after last cell administration, were analyzed by confocal microscopy. We found that adCD-MSCs could be easily isolated and expanded from CD patients. Upon injection, adCD-MSCs exerted a therapeutic effect on DSS-induced colitis. Moreover, hCBPL increased adCD-MSCs efficacy by significantly reducing colitis scores, extension of the colon inflamed area and plasma levels of inflammatory mediators. Finally, Nile Red staining of MSCs is very efficient, stable and does not impair their vitality and function. Nile Red-labelling was clearly detected in the colitic area of adCD-MSCs injected mice and it was significantly brighter in the colon sections of mice that had received adCD-MSCs/hCBPL. In summary, with this study we propose a novel and promising adCD-MSC/hCBPL-based therapy for refractory IBDs.

  7. Evolution of relative drifts and temperature anisotropies in expanding collisionless plasmas—1.5D vs. 2.5D hybrid simulations

    NASA Astrophysics Data System (ADS)

    Maneva, Y. G.; Poedts, S.; Araneda, J. A.

    2016-02-01

    We compare the results from 1.5D and 2.5D hybrid simulations (with fluid electrons, and kinetic/particle-in-cell protons and α particles) to investigate the effect of the solar wind expansion on the evolution of ion relative drifts in collisionless fast wind streams. We initialize the system with initial relative drifts and follow its evolution in time within and without the expanding box model, which takes into account the gradual solar wind expansion in the interplanetary medium. The decay of the differential streaming follows similar pattern in the 1.5D and 2.5D non-expanding cases. For the 1.5D studies we find no difference in the evolution of the initial relative drift speed with and without expansion, whereas in the two-dimensional case the differential streaming is further suppressed once the solar wind expansion is taken into account. This implies that a stronger acceleration source is required to compensate for the effect of the expansion and produce the observed solar wind acceleration rate. The 1.5D case shows stronger oscillations in all plasma properties with higher temperature anisotropies for the minor ions in the first few hundred gyro-periods of the simulations. Yet the preferential perpendicular heating for the minor ions is stronger in the 2.5D case with higher temperature anisotropies at the final stage.

  8. A power-balance model for local helicity injection startup in a spherical tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Jayson L.; Bongard, Michael W.; Burke, Marcus G.

    A 0D circuit model for predicting I p( t) in Local Helicity Injection (LHI) discharges is developed. Analytic formulas for estimating the surface flux of finite-A plasmas developed are modified and expanded to treat highly shaped, ultralow-A tokamak geometry using a database of representative equilibria. Model predictions are compared to sample LHI discharges in the A ~ 1 Pegasus spherical tokamak, and are found to agree within 15% of experimental I p( t). High performance LHI discharges are found to follow the Taylor relaxation current limit for approximately the first half of the current ramp, or I p ≲ 75more » kA. The second half of the current ramp follows a limit imposed by power-balance as plasmas expand from high- A to ultralow- A. Here, this shape evolution generates a significant drop in external plasma inductance, effectively using the plasma’s initially high inductance to drive the current ramp and provide > 70% of the current drive V-s. Projections using this model indicate the relative influences of higher helicity input rate and injector current on the attainable total plasma current.« less

  9. A power-balance model for local helicity injection startup in a spherical tokamak

    DOE PAGES

    Barr, Jayson L.; Bongard, Michael W.; Burke, Marcus G.; ...

    2018-05-15

    A 0D circuit model for predicting I p( t) in Local Helicity Injection (LHI) discharges is developed. Analytic formulas for estimating the surface flux of finite-A plasmas developed are modified and expanded to treat highly shaped, ultralow-A tokamak geometry using a database of representative equilibria. Model predictions are compared to sample LHI discharges in the A ~ 1 Pegasus spherical tokamak, and are found to agree within 15% of experimental I p( t). High performance LHI discharges are found to follow the Taylor relaxation current limit for approximately the first half of the current ramp, or I p ≲ 75more » kA. The second half of the current ramp follows a limit imposed by power-balance as plasmas expand from high- A to ultralow- A. Here, this shape evolution generates a significant drop in external plasma inductance, effectively using the plasma’s initially high inductance to drive the current ramp and provide > 70% of the current drive V-s. Projections using this model indicate the relative influences of higher helicity input rate and injector current on the attainable total plasma current.« less

  10. Myeloid transformation of plasma cell myeloma: molecular evidence of clonal evolution revealed by next generation sequencing.

    PubMed

    Gralewski, Jonathon H; Post, Ginell R; van Rhee, Frits; Yuan, Youzhong

    2018-02-20

    Plasma cell myeloma (PCM) is a neoplasm of terminally differentiated B lymphocytes with molecular heterogeneity. Although therapy-related myeloid neoplasms are common in plasma cell myeloma patients after chemotherapy, transdifferentiation of plasma cell myeloma into myeloid neoplasms has not been reported in literature. Here we report a very rare case of myeloid neoplasm transformed from plasma cell myeloma. A 60-year-old man with a history of plasma cell myeloma with IGH-MAF gene rearrangement and RAS/RAF mutations developed multiple soft tissue lesions one year following melphalan-based chemotherapy and autologous stem cell transplant. Morphological and immunohistochemical characterization of the extramedullary disease demonstrated that the tumor cells were derived from the monocyte-macrophage lineage. Next generation sequencing (NGS) studies detected similar clonal aberrations in the diagnostic plasma cell population and post-therapy neoplastic cells, including IGH-MAF rearrangement, multiple genetic mutations in RAS signaling pathway proteins, and loss of tumor suppressor genes. Molecular genetic analysis also revealed unique genomic alterations in the transformed tumor cells, including gain of NF1 and loss of TRAF3. To our knowledge, this is the first case of myeloid sarcoma transdifferentiated from plasma cell neoplasm. Our findings in this unique case suggest clonal evolution of plasma cell myeloma to myeloma neoplasm and the potential roles of abnormal RAS/RAF signaling pathway in lineage switch or transdifferentiation.

  11. The Role of an Electric Field in the Formation of a Detached Regime in Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Senichenkov, I.; Kaveeva, E.; Rozhansky, V.; Sytova, E.; Veselova, I.; Voskoboynikov, S.; Coster, D.

    2018-03-01

    Modeling of the transition to the detachment of ASDEX Upgrade tokamak plasma with increasing density is performed using the SOLPS-ITER numerical code with a self-consistent account of drifts and currents. Their role in plasma redistribution both in the confinement region and in the scrape-off layer (SOL) is investigated. The mechanism of high field side high-density formation in the SOL in the course of detachment is suggested. In the full detachment regime, when the cold plasma region expands above the X-point and reaches closed magnetic-flux surfaces, plasma perturbation in a confined region may lead to a change in the confinement regime.

  12. Cryopreservation of hematopoietic stem and progenitor cells amplified ex vivo from cord blood CD34+ cells.

    PubMed

    Duchez, Pascale; Chevaleyre, Jean; Brunet de la Grange, Philippe; Vlaski, Marija; Boiron, Jean-Michel; Wouters, Guy; Ivanovic, Zoran

    2013-09-01

    Our ex vivo expansion procedure starting from cord blood (CB) CD34+ cells enabled expansion of committed progenitors (CPs) without a negative impact on hematopoietic stem cells (HSCs) exhibiting both short- and long-term repopulating capacity. Upgraded to clinical scale (Macopharma HP01 in the presence of stem cell factor, FLT3-L [100 ng/mL each], granulocyte-colony-stimulating factor [10 ng/mL], and thrombopoietin [20 ng/mL]), it is being used for an ongoing clinical trial (adult allogeneic context) yielding promising preliminary results. Transplantation of ex vivo expanded CB cells is becoming a reality, while the issue of expanded cells' cryopreservation emerges as an option that allows the conservation of the product for transportation and future use. Here, we investigated whether it is possible to maintain the functional HSC and CP properties after freezing and thawing of expanded cells. We compared cryopreservation efficiency of the ex vivo expanded CB cells using the standard protocol (freezing solution human serum albumin (HSA)-dimethyl sulfoxide [DMSO]) with the newly designed protocol based on an enriched freezing solution (HP01-DMSO) with respect to the viability index, number of CD34+ and total cells, and recovery of CPs (colony-forming units) and HSCs (NOG/Scid/gamma-null mice engraftment). Cryopreservation and thawing of expanded CB cells using the "standard" procedure (HSA-DMSO) reduced recovery of the CPs (40%) and HSCs (drastically decreasing engraftment capacity). HP01-based protocol resulted in improvement of preservation of both CPs (>60%) and HSCs (nonaltered engraftment capacities). Functional maintenance of the expanded graft by cryopreservation is feasible in conditions compatible with human cell therapy requirements. © 2012 American Association of Blood Banks.

  13. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 5.Challenge to Innovative Technologies and the Expected Market Appeal

    NASA Astrophysics Data System (ADS)

    Tobita, Kenji; Konishi, Satoshi; Tokimatsu, Koji; Nishio, Satoshi; Hiwatari, Ryoji

    This section describes the future of fusion energy in terms of its impact on the global energy supply and global warming mitigation, the possible entry scenarios of fusion into future energy market, and innovative technologies for deploying and expanding fusion's share in the market. Section 5.1 shows that fusion energy can contribute to the stabilization of atmospheric CO2 concentration if fusion is introduced into the future energy market at a competitive price. Considerations regarding fusion's entry scenarios into the energy market are presented in Sec. 5.2, suggesting that fusion should replace fossil energy sources and thus contribute to global warming mitigation. In this sense, first generation fusion power plants should be a viable energy source with global appeal and be so attractive as to be employed in developing countries rather than in developed countries. Favorable factors lending to this purpose are fusion's stability as a power source, and its security, safety, and environmental frendliness as well as its cost-of-electricity. The requirements for core plasma to expand the share of fusion in the market in the latter half of this century are given in Sec.5.3, pointing out the importance of high beta access with low aspect ratio and plasma profile control. From this same point of view, innovative fusion technologies worthy of further development are commented on in Sec. 5.4, addressing the high temperature blanket, hydrogen production, high temperature superconductors, and hot cell maintenance.

  14. Formulation and development of plasma volume expander using natural and modified starch from Solanum tuberosum

    PubMed Central

    Thombre, Nilima A.; Vishwakarma, Ajit V.; Jadhav, Trupti S.; Kshirsagar, Sanjay J.

    2016-01-01

    Background: To formulation and development of plasma volume expander (PVE) by using natural and modified starch from Solanum tuberosum. The function of blood circulation is to provide the needs of the body tissues and to maintain an appropriate environment in all tissue fluids of the body for the optimal survival and functions of the cells. Rapid restoration of the blood volume is necessary to decrease reduction in the amount of the blood. The PVEs are isotonic colloidal solutions, act by increasing the osmotic pressure of the intravascular compartment, which leads to the influx of the interstitial fluids through the capillary pore which, in turn, leads to the increase in the volume of the blood. Therefore, there is a need to discover the PVE with less side effects. The main aim of the present study is to use amylopectin as PVEs, fractionated from natural and modified starch obtained from S. tuberosum. Methods: The starch extracted from the normal grains and the tubers of potatoes was selected for the production of starch. Statistical analysis includes in vitro characterization that involves viscosity studies, plasma–product interaction, osmotic pressure detection, molecular weight–viscosity relationship, determination of weight average molecular weight, enzymatic interaction, and in vivo characterization such as toxicity studies and the effect of the products on the blood coagulation. The isolated starch and fractionated amylopectin were analyzed for the physicochemical characteristics. Result and Conclusion: The amylopectin fractionated from isolated starch from grains and tubers of potatoes can be used as PVE, as per the outcome of the study. PMID:28123990

  15. Expansion of Human and Murine Hematopoietic Stem and Progenitor Cells Ex Vivo without Genetic Modification Using MYC and Bcl-2 Fusion Proteins

    PubMed Central

    Bird, Gregory A.; Polsky, Avital; Estes, Patricia; Hanlon, Teri; Hamilton, Haley; Morton, John J.; Gutman, Jonathan; Jimeno, Antonio

    2014-01-01

    The long-term repopulating hematopoietic stem cell (HSC) population can self-renew in vivo, support hematopoiesis for the lifetime of the individual, and is of critical importance in the context of bone marrow stem cell transplantation. The mechanisms that regulate the expansion of HSCs in vivo and in vitro remain unclear to date. Since the current set of surface markers only allow for the identification of a population of cells that is highly enriched for HSC activity, we will refer to the population of cells we expand as Hematopoietic Stem and Progenitor cells (HSPCs). We describe here a novel approach to expand a cytokine-dependent Hematopoietic Stem and Progenitor Cell (HSPC) population ex vivo by culturing primary adult human or murine HSPCs with fusion proteins including the protein transduction domain of the HIV-1 transactivation protein (Tat) and either MYC or Bcl-2. HSPCs obtained from either mouse bone marrow, human cord blood, human G-CSF mobilized peripheral blood, or human bone marrow were expanded an average of 87 fold, 16.6 fold, 13.6 fold, or 10 fold, respectively. The expanded cell populations were able to give rise to different types of colonies in methylcellulose assays in vitro, as well as mature hematopoietic populations in vivo upon transplantation into irradiated mice. Importantly, for both the human and murine case, the ex vivo expanded cells also gave rise to a self-renewing cell population in vivo, following initial transplantation, that was able to support hematopoiesis upon serial transplantation. Our results show that a self-renewing cell population, capable of reconstituting the hematopoietic compartment, expanded ex vivo in the presence of Tat-MYC and Tat-Bcl-2 suggesting that this may be an attractive approach to expand human HSPCs ex vivo for clinical use. PMID:25170611

  16. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  17. Debye sheath mechanism at laser plasma interaction and generalization to nuclear forces and quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Osman, Frederick; Ghahramani, Nader; Hora, Heinrich

    2005-10-01

    The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation, and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension in plasmas, and led to the internal dynamic electric fields in all inhomogeneous plasmas. The surface tension causes stabilization by short length surface wave smoothing the expanding plasma plume and to stabilization against the Rayleigh Taylor instability. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature resulted in the first quantum theory of surface tension of metals in agreement with measurements. Taking the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well-known nuclear density, and the Debye lengths equal to the Hofstadter decay of the nuclear surface. Increasing the nuclear density by a factor of 10 leads to a change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark gluon plasma. Expansion of this higher density at the big bang or in super-nova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range, however with the limit to about uranium. A relation for the magic numbers leads to a quark structure of nuclear shells that can be understood as a duality property of nuclei with respect to nucleons and quarks

  18. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells

    PubMed Central

    Choi, Jae-Sun; Kim, Jeongho; Hong, Young-Jun; Bae, Woom-Yee; Choi, Eun Ha; Jeong, Joo-Won; Park, Hun-Kuk

    2017-01-01

    Non-thermal atmospheric-pressure plasma has been introduced in various applications such as sterilization, wound healing, blood coagulation, and other biomedical applications. The most attractive application of non-thermal atmospheric-pressure plasma is in cancer treatment, where the plasma is used to produce reactive oxygen species (ROS) to facilitate cell apoptosis. We investigate the effects of different durations of exposure to dielectric-barrier discharge (DBD) plasma on colon cancer cells using measurement of cell viability and ROS levels, western blot, immunocytochemistry, and Raman spectroscopy. Our results suggest that different kinds of plasma-treated cells can be differentiated from control cells using the Raman data. PMID:28663896

  19. Cold atmospheric plasma as a potential tool for multiple myeloma treatment.

    PubMed

    Xu, Dehui; Xu, Yujing; Cui, Qingjie; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Yang, Yanjie; Feng, Miaojuan; Liang, Rong; Chen, Hailan; Ye, Kai; Kong, Michael G

    2018-04-06

    Multiple myeloma (MM) is a fatal and incurable hematological malignancy thus new therapy need to be developed. Cold atmospheric plasma, a new technology that could generate various active species, could efficiently induce various tumor cells apoptosis. More details about the interaction of plasma and tumor cells need to be addressed before the application of gas plasma in clinical cancer treatment. In this study, we demonstrate that He+O 2 plasma could efficiently induce myeloma cell apoptosis through the activation of CD95 and downstream caspase cascades. Extracellular and intracellular reactive oxygen species (ROS) accumulation is essential for CD95-mediated cell apoptosis in response to plasma treatment. Furthermore, p53 is shown to be a key transcription factor in activating CD95 and caspase cascades. More importantly, we demonstrate that CD95 expression is higher in tumor cells than in normal cells in both MM cell lines and MM clinical samples, which suggests that CD95 could be a favorable target for plasma treatment as it could selectively inactivate myeloma tumor cells. Our results illustrate the molecular details of plasma induced myeloma cell apoptosis and it shows that gas plasma could be a potential tool for myeloma therapy in the future.

  20. Dysmegakaryocytopoiesis and maintaining platelet count in patients with plasma cell neoplasm.

    PubMed

    Mair, Yasmin; Zheng, Yan; Cai, Donghong

    2013-05-01

    Dysmegakaryocytopoiesis in patients with the plasma cell neoplasm (PCN) is rarely discussed in the literature. The puzzling phenomenon, which PCN patients maintaining normal platelet count even when the marrow is mostly replaced by plasma cells, is hardly explored. This study was aimed to determine the frequency of dysmegakaryocytopoiesis in PCN and the relationships between bone marrow (BM) plasma cell percentage, plasma cell immunomarkers, the severity of dysmegakaryocytopoiesis, and peripheral blood platelet count in PCN. We randomly selected 16 cases of PCN, among which 4 were with monoclonal gammopathy of undetermined significance and 12 were with plasma cell myeloma. OUR STUDY SHOWED THAT: (1) Dysmegakaryocytopoiesis was present in all the selected cases of PCN and its severity was not correlated with the percentage of the plasma cells in BM; (2) almost all patients maintained normal platelet count even when BM was mostly replaced by plasma cells; (3) immunomarkers of the neoplastic plasma cells were not associated with dysmegakaryocytopoiesis or maintaining of platelet count. The possible mechanisms behind dysmegakaryocytopoiesis and maintaining of platelet count were also discussed. Despite the universal presence of dysmegakaryocytopoiesis in PCN, the platelet count is maintained at normal range.

  1. Cold atmospheric plasma as a potential tool for multiple myeloma treatment

    PubMed Central

    Cui, Qingjie; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Yang, Yanjie; Feng, Miaojuan; Liang, Rong; Chen, Hailan; Ye, Kai; Kong, Michael G.

    2018-01-01

    Multiple myeloma (MM) is a fatal and incurable hematological malignancy thus new therapy need to be developed. Cold atmospheric plasma, a new technology that could generate various active species, could efficiently induce various tumor cells apoptosis. More details about the interaction of plasma and tumor cells need to be addressed before the application of gas plasma in clinical cancer treatment. In this study, we demonstrate that He+O2 plasma could efficiently induce myeloma cell apoptosis through the activation of CD95 and downstream caspase cascades. Extracellular and intracellular reactive oxygen species (ROS) accumulation is essential for CD95-mediated cell apoptosis in response to plasma treatment. Furthermore, p53 is shown to be a key transcription factor in activating CD95 and caspase cascades. More importantly, we demonstrate that CD95 expression is higher in tumor cells than in normal cells in both MM cell lines and MM clinical samples, which suggests that CD95 could be a favorable target for plasma treatment as it could selectively inactivate myeloma tumor cells. Our results illustrate the molecular details of plasma induced myeloma cell apoptosis and it shows that gas plasma could be a potential tool for myeloma therapy in the future. PMID:29719586

  2. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Patient Version

    Cancer.gov

    Plasma cell neoplasms occur when abnormal plasma cells or myeloma cells form tumors in the bones or soft tissues of the body. Multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are different types of plasma cell neoplasms. Find out about risk factors, symptoms, diagnostic tests, prognosis, and treatment for these diseases.

  3. Plasma Cell Neoplasms (Including Multiple Myeloma)—Patient Version

    Cancer.gov

    Plasma cell neoplasms occur when abnormal plasma cells form cancerous tumors. When there is only one tumor, the disease is called a plasmacytoma. When there are multiple tumors, it is called multiple myeloma. Start here to find information on plasma cell neoplasms treatment, research, and statistics.

  4. Duodenal L cell density correlates with features of metabolic syndrome and plasma metabolites.

    PubMed

    van Baar, Annieke C G; Prodan, Andrei; Wahlgren, Camilla D; Poulsen, Steen S; Knop, Filip K; Groen, Albert K; Bergman, Jacques J; Nieuwdorp, Max; Levin, Evgeni

    2018-05-01

    Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS) and fasting plasma metabolites. We aimed to identify fasting plasma metabolites that associate with duodenal L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin resistance. In this cross-sectional study, we evaluated L, K and delta cell density in duodenal biopsies from treatment-naïve males with MetS using machine-learning methodology. We identified specific clinical biomarkers and plasma metabolites associated with L cell and delta cell density. L cell density was associated with increased plasma metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated with clinical features of MetS. Our results indicate a link between duodenal L cells, plasma metabolites and clinical characteristics of MetS. We conclude that duodenal L cells associate with plasma metabolites that have been implicated in human glucose metabolism homeostasis. Disentangling the causal relation between L cells and these metabolites might help to improve the (small intestinal-driven) pathophysiology behind insulin resistance in human obesity. © 2018 The authors.

  5. Self-absorption characteristics of measured laser-induced plasma line shapes

    NASA Astrophysics Data System (ADS)

    Parigger, C. G.; Surmick, D. M.; Gautam, G.

    2017-02-01

    The determination of electron density and temperature is reported from line-of-sight measurements of laser-induced plasma. Experiments are conducted in standard ambient temperature and pressure air and in a cell containing ultra-high-pure hydrogen slightly above atmospheric pressure. Spectra of the hydrogen Balmer series lines can be measured in laboratory air due to residual moisture following optical breakdown generated with 13 to 14 nanosecond, pulsed Nd:YAG laser radiation. Comparisons with spectra obtained in hydrogen gas yields Abel-inverted line shape appearances that indicate occurrence of self-absorption. The electron density and temperature distributions along the line of sight show near-spherical rings, expanding at or near the speed of sound in the hydrogen gas experiments. The temperatures in the hydrogen studies are obtained using Balmer series alpha, beta, gamma profiles. Over and above the application of empirical formulae to derive the electron density from hydrogen alpha width and shift, and from hydrogen beta width and peak-separation, so-called escape factors and the use of a doubling mirror are discussed.

  6. Deriving an explicit hepatic clearance equation accounting for plasma protein binding and hepatocellular uptake.

    PubMed

    Yoon, Miyoung; Clewell, Harvey J; Andersen, Melvin E

    2013-02-01

    High throughput in vitro biochemical and cell-based assays have the promise to provide more mechanism-based assessments of the adverse effects of large numbers of chemicals. One of the most challenging hurdles for interpreting in vitro toxicity findings is the need for reverse dosimetry tools that estimate the exposures that will give concentrations in vivo similar to the active concentrations in vitro. Recent experience using IVIVE approaches to estimate in vivo pharmacokinetics (Wetmore et al., 2012) identified the need to develop a hepatic clearance equation that explicitly accounted for a broader set of protein binding and membrane transport processes and did not depend on a well-mixed description of the liver compartment. Here we derive an explicit steady-state hepatic clearance equation that includes these factors. In addition to the derivation, we provide simple computer code to calculate steady-state extraction for any combination of blood flow, membrane transport processes and plasma protein-chemical binding rates. This expanded equation provides a tool to estimate hepatic clearance for a more diverse array of compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Fully-human Heavy-chain-only Anti-B-cell Maturation Antigen (BCMA) Chimeric Antigen Receptors (CARs) | NCI Technology Transfer Center | TTC

    Cancer.gov

    Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.

  8. Live-cell imaging of ER-PM contact architecture by a novel TIRFM approach reveals extension of junctions in response to store-operated Ca2+-entry.

    PubMed

    Poteser, Michael; Leitinger, Gerd; Pritz, Elisabeth; Platzer, Dieter; Frischauf, Irene; Romanin, Christoph; Groschner, Klaus

    2016-10-19

    Nanometer-spaced appositions between endoplasmic reticulum and plasma membrane (ER-PM junctions) stabilized by membrane-joining protein complexes are critically involved in cellular Ca 2+ -handling and lipid trafficking. ER-PM junctional architecture and plasticity associated with inter-membrane communication are as yet barely understood. Here, we introduce a method to precisely characterize ER-PM junction morphology and dynamics with high temporal resolution and minimal disturbance of junctional intermembrane communication. We show that expression of soluble cytosolic fluorophores in combination with TIRFM enables to delineate ER and PM distance in the range of 10-150 nm. Live-cell imaging of sub-plasmalemmal structures in RBL-2H3 mast cells by this method, designated as fluorescence density mapping (FDM), revealed profound dynamics of ER-PM contact sites in response to store-depletion. We report the existence of a Ca 2+ -dependent process that expands the junctional ER to enlarge its contact surface with the PM, thereby promoting and stabilizing STIM1-Orai1 competent ER-PM junctions.

  9. A hybrid of B and T lymphoblastic cell line could potentially substitute dendritic cells to efficiently expand out Her-2/neu-specific cytotoxic T lymphocytes from advanced breast cancer patients in vitro.

    PubMed

    Chen, Sheng; Gu, Feifei; Li, Kang; Zhang, Kai; Liu, Yangyang; Liang, Jinyan; Gao, Wei; Wu, Gang; Liu, Li

    2017-02-28

    Adoptive transfer of cytotoxic T lymphocytes (CTLs) holds promises to cure cancer. However, this treatment is hindered by lacking a robust way to specifically expand out CTLs. Here, we developed a hybrid of B lymphoblastic cell line and T lymphoblastic cell line (T2 cells) as a substitute of dendritic cells, together with irradiated autologous peripheral blood mononuclear cell (PBMC) as feeder cells and rhIL-2, to activate and expand Her-2/neu-specific CD8 + T cells from human epidermal growth factor receptor 2 (Her-2/neu) and human leukocyte antigen (HLA)-A2 double positive advanced breast cancer patients in vitro. These Her-2/neu-loaded T2 cells reproducibly activated and expanded out Her-2/neu-specific CD8 + T cells to 10 7 in 8 weeks. Furthermore, these Her-2/neu-specific CD8 + T cells had good sensitivity of recognition and killing Her-2/neu-overexpressed breast cancer cell line SK.BR.3. This technique gives us another insight on how to rapidly obtain sufficient CTLs for adoptive cancer immunotherapy.

  10. A GEIL flow cytometry consensus proposal for quantification of plasma cells: application to differential diagnosis between MGUS and myeloma.

    PubMed

    Frébet, Elise; Abraham, Julie; Geneviève, Franck; Lepelley, Pascale; Daliphard, Sylvie; Bardet, Valérie; Amsellem, Sophie; Guy, Julien; Mullier, Francois; Durrieu, Francoise; Venon, Marie-Dominique; Leleu, Xavier; Jaccard, Arnaud; Faucher, Jean-Luc; Béné, Marie C; Feuillard, Jean

    2011-05-01

    Flow cytometry is the sole available technique for quantification of tumor plasma-cells in plasma-cell disorders, but so far, no consensus technique has been proposed. Here, we report on a standardized, simple, robust five color flow cytometry protocol developed to characterize and quantify bone marrow tumor plasma-cells, validated in a multicenter manner. CD36 was used to exclude red blood cell debris and erythroblasts, CD38 and CD138 to detect plasma-cells, immunoglobulin light chains, CD45, CD56, CD19, and CD117 + CD34 to simultaneously characterize abnormal plasma-cells and quantify bone marrow precursors. This approach was applied in nine centers to 229 cases, including 25 controls. Tumor plasma-cells were detected in 96.8% of cases, all exhibiting an immunoglobulin peak over 1g/L. Calculation of a plasma-cells/precursors (PC/P) ratio allowed quantification of the plasma-cell burden independently from bone marrow hemodilution. The PC/P ratio yielded the best results in terms of sensitivity (81%) and specificity (84%) for differential diagnosis between MGUS and myeloma, when compared with other criteria. Combination of both the PC/P ratio and percentage of abnormal plasma-cells allowed the best differential diagnosis, but these criteria were discordant in 25% cases. Indirect calculation of CD19 negative PC/R ratio gave the best results in terms of sensitivity (87%). This standardized multiparameter flow cytometric approach allows for the detection and quantification of bone marrow tumor plasma-cell infiltration in nearly all cases of MGUS and myeloma, independently of debris and hemodilution. This approach may also prove useful for the detection of minimal residual disease. Copyright © 2010 International Clinical Cytometry Society.

  11. Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem

    NASA Astrophysics Data System (ADS)

    Lai, Tianwei; Fu, Bao; Chen, Shuangtao; Zhang, Qiyong; Hou, Yu

    2017-02-01

    The EAST superconducting tokamak, an advanced steady-state plasma physics experimental device, has been built at the Institute of Plasma Physics, Chinese Academy of Sciences. All the toroidal field magnets and poloidal field magnets, made of NbTi/Cu cable-in-conduit conductor, are cooled with forced flow supercritical helium at 3.8 K. The cryogenic system of EAST consists of a 2 kW/4 K helium refrigerator and a helium distribution system for the cooling of coils, structures, thermal shields, bus-lines, etc. The high-speed turbo-expander is an important refrigerating component of the EAST cryogenic system. In the turbo-expander, the axial supporting technology is critical for the smooth operation of the rotor bearing system. In this paper, hydrostatic thrust bearings are designed based on the axial load of the turbo-expander. Thereafter, a computational fluid dynamics-based numerical model of the aerostatic thrust bearing is set up to evaluate the bearing performance. Tilting effect on the pressure distribution and bearing load is analyzed for the thrust bearing. Bearing load and stiffness are compared with different static supply pressures. The net force from the thrust bearings can be calculated for different combinations of bearing clearance and supply pressure.

  12. Plasma cell cheilitis, successfully treated with topical 0.03% tacrolimus ointment.

    PubMed

    Jin, Seon Pil; Cho, Kwang Hyun; Huh, Chang Hun

    2010-05-01

    Plasma cell cheilitis is a rare, idiopathic mucosal condition. The treatment of plasma cell cheilitis is often disappointing. It is often resistant to various topical treatments. We present a 65-year-old woman who had a painful, eroded area on her lower lip, which responded poorly to various topical treatments. A biopsy revealed a band-like infiltration composed mainly of plasma cells in the dermis. She was diagnosed as having plasma cell cheilitis, and was successfully treated with 0.03% topical tacrolimus ointment.

  13. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse.

    PubMed

    Bang, W

    2015-07-01

    Energetic deuterium ions from large deuterium clusters (>10nm diameter) irradiated by an intense laser pulse (>10(16)W/cm(2)) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We present an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10-keV deuterium fusion plasma for 10ns.

  14. A plasma-based biomatrix mixed with endothelial progenitor cells and keratinocytes promotes matrix formation, angiogenesis, and reepithelialization in full-thickness wounds.

    PubMed

    Vermeulen, Pieter; Dickens, Stijn; Degezelle, Karlien; Van den Berge, Stefaan; Hendrickx, Benoit; Vranckx, Jan Jeroen

    2009-07-01

    In search of an autologous vascularized skin substitute, we treated full-thickness wounds (FTWs) with autologous platelet-rich plasma gel (APG) in which we embedded endothelial progenitor cells (EPCs) and basal cell keratinocytes (KCs). We cultivated autologous KCs in low-serum conditions and expanded autologous EPCs from venous blood. FTWs (n = 55) were created on the backs of four pigs, covered with wound chambers, and randomly assigned to the following treatments: (1) APG, (2) APG + KCs, (3) APG + EPCs, (4) APG + KCs + EPCs, and (5) saline. All wounds were biopsied to measure neovascularization (lectin Bandeiraea Simplicifolia-1 (BS-1), alpha smooth muscle actin [alphaSMA], and membrane type 1 matrix metalloproteinase (MT1-MMP)), matrix deposition (fibronectin, collagen type I/III, and alphavbeta3), and reepithelialization. Wound fluids were analyzed for protein expression. All APG-treated wounds showed more vascular structures (p < 0.001), and the addition of EPCs further improved neovascularization, as confirmed by higher lectin, alphaSMA, and MT1-MMP. APG groups had higher collagen I/III (p < 0.05), alphavbeta3, and fibronectin content (p < 0.001), and they exhibited higher concentrations of platelet-derived growth factor subunit bb, basic fibroblast growth factor, hepatocyte growth factor, insulin growth factor-1, transforming growth factor-beta1 and -beta3, matrix metalloproteinase-1 and -z9, and tissue-inhibiting matrix metalloproteinase-1 and -2. Applying APG + KCs resulted in the highest reepithelialization rates (p < 0.001). No differences were found for wound contraction by planimetry. In this porcine FTW model, APG acts as a supportive biomatrix that, along with the embedded cells, improves extracellular matrix organization, promotes angiogenesis, and accelerates reepithelialization.

  15. Evaluation of the Efficacy of the Plasma Pencil Against Cancer Cells

    NASA Astrophysics Data System (ADS)

    Mohades, Soheila; Barekzi, Nazir; Razavi, Hamid; Laroussi, Mounir

    2014-10-01

    The plasma pencil generates low temperature and atmospheric pressure plasma. To generate the plasma, high voltage pulses with short width (from nanosecond to microsecond) are applied to a noble gas. The working gas can be helium, argon or a mixture of these with air or oxygen. Generating plasma with helium provides a tolerable temperature for biological cells and tissues. Diagnostic measurements on the plasma plume has revealed the presence of active agents such as reactive oxygen species (ROS) and nitrogen reactive species (RNS), which are known to have biological implications. Recently, low temperature plasma has drawn attention to its potential in cancer therapy. In our lab, the plasma pencil has been used to treat leukemia, prostate and epithelial cancer cells. The cancer cell line used here is the SCaBER (ATCC®HTB3™) cell line originating from a human bladder cancer. The results indicate that specific species induce the molecular mechanisms associated with cell death. The death of cells after plasma treatment will be studied using assays, such as DNA laddering and Caspase-3 activation, to elucidate the mechanism of the apoptotic or necrotic pathways.

  16. Universal attractor in a highly occupied non-Abelian plasma

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Schlichting, S.; Venugopalan, R.

    2014-06-01

    We study the thermalization process in highly occupied non-Abelian plasmas at weak coupling. The nonequilibrium dynamics of such systems is classical in nature and can be simulated with real-time lattice gauge theory techniques. We provide a detailed discussion of this framework and elaborate on the results reported in J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Phys. Rev. D 89, 074011 (2014), 10.1103/PhysRevD.89.074011 along with novel findings. We demonstrate the emergence of universal attractor solutions, which govern the nonequilibrium evolution on large time scales both for nonexpanding and expanding non-Abelian plasmas. The turbulent attractor for a nonexpanding plasma drives the system close to thermal equilibrium on a time scale t ˜Q-1αs-7/4. The attractor solution for an expanding non-Abelian plasma leads to a strongly interacting albeit highly anisotropic system at the transition to the low-occupancy or quantum regime. This evolution in the classical regime is, within the uncertainties of our simulations, consistent with the "bottom up" thermalization scenario [R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys. Lett. B 502, 51 (2001), 10.1016/S0370-2693(01)00191-5]. While the focus of this paper is to understand the nonequilibrium dynamics in weak coupling asymptotics, we also discuss the relevance of our results for larger couplings in the early time dynamics of heavy ion collision experiments.

  17. Filling the Gaps to Solve the Extensin Puzzle.

    PubMed

    Marzol, Eliana; Borassi, Cecilia; Bringas, Mauro; Sede, Ana; Rodríguez Garcia, Diana Rosa; Capece, Luciana; Estevez, Jose M

    2018-05-07

    Extensins (EXTs) are highly repetitive plant O-glycoproteins that require several post-translational modifications (PTMs) to become functional in plant cell walls. First, they are hydroxylated on contiguous proline residues; then they are O-glycosylated on hydroxyproline and serine. After secretion into the apoplast, O-glycosylated EXTs form a tridimensional network organized by inter- and intra-Tyr linkages. Recent studies have made significant progress in the identification of the enzymatic machinery required to process EXTs, which includes prolyl 4-hydroxylases, glycosyltransferases, papain-type cysteine endopeptidases, and peroxidases. EXTs are abundant in plant tissues and are particularly important in rapidly expanding root hairs and pollen tubes, which grow in a polar manner. Small changes in EXT PTMs affect fast-growing cells, although the molecular mechanisms underlying this regulation are unknown. In this review, we highlight recent advances in our understanding of EXT modifications throughout the secretory pathway, EXT assembly in cell walls, and possible sensing mechanisms involving the Catharanthus roseus cell surface sensor receptor-like kinases located at the interface between the apoplast and the cytoplasmic side of the plasma membrane. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.

  18. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans

    PubMed Central

    Chou, Meng-Yun; Fogelstrand, Linda; Hartvigsen, Karsten; Hansen, Lotte F.; Woelkers, Douglas; Shaw, Peter X.; Choi, Jeomil; Perkmann, Thomas; Bäckhed, Fredrik; Miller, Yury I.; Hörkkö, Sohvi; Corr, Maripat; Witztum, Joseph L.; Binder, Christoph J.

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis. PMID:19363291

  19. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOEpatents

    Cross, Jon B.; Cremers, David A.

    1988-01-01

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  20. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOEpatents

    Cross, J.B.; Cremers, D.A.

    1986-01-10

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  1. A simple spectral model of the dynamics of the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Singhal, R. P.; Whitten, R. C.

    1987-01-01

    A two-dimensional model of the ionosphere of Venus has been constructed by expanding pertinent quantities in Legendre polynomials. The model is simplified by including only a single ion species, O(+). Horizontal plasma flow velocity and plasma density have been calculated as a coupled system. The calculated plasma flow velocity is found to be in good agreement with observations and the results of earlier studies. Solar zenith angle dependence of plasma density, particularly on the nightside, shows some features which differ from results of earlier studies and observed values. Effects of raising or lowering the ionopause height and changing the nightside neutral atmosphere have been discussed.

  2. Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foord, M E; Heeter, R F; Chung, H

    The charge state distributions of Fe, Na and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate the ionization parameter {zeta} in the plasma reaches values {zeta} = 20-25 erg cm s{sup -1} under near steady-state conditions. A curve-of-growth analysis, which includes the effects of velocity gradients in a one-dimensional expanding plasma, fits the observed line opacities. Absorption lines are tabulated in the wavelength region 8-17 {angstrom}. Initial comparisons with a number of astrophysical x-ray photoionization models show reasonable agreement.

  3. Development of plasma-on-chip: Plasma treatment for individual cells cultured in media

    NASA Astrophysics Data System (ADS)

    Kumagai, Shinya; Chang, Chun-Yao; Jeong, Jonghyeon; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru

    2016-01-01

    A device consisting of Si microwells and microplasma sources has been fabricated for plasma treatment of individual cells cultured in media. We named the device plasma-on-chip. The microwells have through-holes at the bottom where gas-liquid interfaces form when they are filled with media containing biological samples. The microplasma sources, which supply reactive species, are located on the back of each microwell. Through the gas-liquid interface, the reactive species are supplied to the cells. Chlorella cells were used to demonstrate the feasibility of the device and after three minutes of plasma treatment, the fluorescence intensity of Chlorella cells appeared to be decreased. Optical emission spectroscopy identified O and OH radicals in the plasma, which can affect the cells. In the analysis of biological samples such as human cells or tissues, this device raises the possibility of revealing the mechanisms of plasma medicine in more detail.

  4. Multiple Myeloma

    MedlinePlus

    ... a type of white blood cell called a plasma cell. Plasma cells help you fight infections by making antibodies ... Doctors know that myeloma begins with one abnormal plasma cell in your bone marrow — the soft, blood- ...

  5. Induction of Immunogenic Cell Death with Non-Thermal Plasma for Cancer Immunotherapy

    NASA Astrophysics Data System (ADS)

    Lin, Abraham G.

    Even with the recent advancements in cancer immunotherapy, treatments are still associated with debilitating side effects and unacceptable fail rates. Induction of immunogenic cell death (ICD) in tumors is a promising approach to cancer treatment that may overcome these deficiencies. Cells undergoing ICD pathways enhance the interactions between cancerous cells and immune cells of the patient, resulting in the generation of anti-cancer immunity. The goal of this therapy relies on the engagement and reestablishment of the patient's natural immune processes to target and eliminate cancerous cells systemically. The main objective of this research was to determine if non-thermal plasma could be used to elicit immunogenic cancer cell death for cancer immunotherapy. My hypothesis was that plasma induces immunogenic cancer cell death through oxidative stress pathways, followed by development of a specific anti-tumor immune response. This was tested by investigating the interactions between plasma and multiple cancerous cells in vitro and validating anti-tumor immune responses in vivo. Following plasma treatment, two surrogate ICD markers, secreted adenosine triphosphate (ATP) and surface exposed calreticulin (ecto-CRT), were emitted from all three cancerous cell lines tested: A549 lung carcinoma cell line, CNE-1 radiation-resistant nasopharyngeal cell line and CT26 colorectal cancer cell line. When these cells were co-cultured with macrophages, cells of the innate immune system, the tumoricidal activity of macrophages was enhanced, thus demonstrating the immunostimulatory activity of cells undergoing ICD. The underlying mechanisms of plasma-induced ICD were also evaluated. When plasma is generated, four major components are produced: electromagnetic fields, ultraviolet radiation, and charged and neutral reactive species. Of these, we determined that plasma-generated charged and short-lived reactive oxygen species (ROS) were the major effectors of ICD. Following plasma treatment, ROS immediately increased. When chemical attenuators of ROS were used, intracellular ROS was abrogated and emission of ICD markers were attenuated. This strongly suggests that plasma-induced ICD is associated with increased intracellular ROS. The gold-standard approach to evaluating whether a stimulus can elicit genuine ICD relies on a vaccination assay. CT26 colorectal cancer cells were treated at ICD-inducing regimes of plasma and injected into syngeneic Balb/c mice. One week later, mice were challenged with live CT26 cancer cells. Tumor progression was moderated in animals immunized with plasma-treated CT26 cells. Altogether, these provide strong evidence that plasma regimes can be adapted for a new application: ICD induction. Next, a study was conducted to test the potential of plasma to induce ICD in tumors in animals. Plasma treatment of subcutaneous tumors in mice elicited the emission of ecto-CRT and high mobility group box 1 (HMGB1), another marker of ICD, in the tumor and also recruited CD11c+ and CD45+ immune cells locally. This was followed by development of cancer-specific splenic T cells, indicating that a systemic anti-tumor response was elicited from localized plasma treatment of the tumor. Overall, this work demonstrates the development of non-thermal plasma as a novel method of inducing immunogenic cell death for cancer immunotherapy. The obtained results further our understanding of plasma-cellular interaction mechanisms and highlight the potential for clinical translation.

  6. Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Laroussi, M.; Kong, M. G.; Morfill, G.; Stolz, W.

    2012-05-01

    Foreword R. Satava and R. J. Barker; Part I. Introduction to Non-equilibrium Plasma, Cell Biology, and Contamination: 1. Introduction M. Laroussi; 2. Fundamentals of non-equilibrium plasmas M. Kushner and M. Kong; 3. Non-equilibrium plasma sources M. Laroussi and M. Kong; 4. Basic cell biology L. Greene and G. Shama; 5. Contamination G. Shama and B. Ahlfeld; Part II. Plasma Biology and Plasma Medicine: 6. Common healthcare challenges G. Isbary and W. Stolz; 7. Plasma decontamination of surfaces M. Kong and M. Laroussi; 8. Plasma decontamination of gases and liquids A. Fridman; 9. Plasma-cell interaction: prokaryotes M. Laroussi and M. Kong; 10. Plasma-cell interaction: eukaryotes G. Isbary, G. Morfill and W. Stolz; 11. Plasma based wound healing G. Isbary, G. Morfill and W. Stolz; 12. Plasma ablation, surgery, and dental applications K. Stalder, J. Woloszko, S. Kalghatgi, G. McCombs, M. Darby and M. Laroussi; Index.

  7. Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma

    PubMed Central

    Ryu, Young-Hyo; Kim, Yong-Hee; Lee, Jin-Young; Shim, Gun-Bo; Uhm, Han-Sup; Park, Gyungsoon; Choi, Eun Ha

    2013-01-01

    Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose) were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH.) produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment) can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media. PMID:23799081

  8. Evaluation of IgG4+ Plasma Cell Infiltration in Patients with Systemic Plasmacytosis and Other Plasma Cell-infiltrating Skin Diseases.

    PubMed

    Takeoka, Shintaro; Kamata, Masahiro; Hau, Carren Sy; Tateishi, Mihoko; Fukaya, Saki; Hayashi, Kotaro; Fukuyasu, Atsuko; Tanaka, Takamitsu; Ishikawa, Takeko; Ohnishi, Takamitsu; Sasajima, Yuko; Watanabe, Shinichi; Tada, Yayoi

    2018-04-27

    Systemic plasmacytosis is a rare skin disorder characterized by marked infiltration of plasma cells in the dermis. IgG4-related disease is pathologically characterized by lymphoplasmacytic infiltration rich in IgG4+ plasma cells, storiform fibrosis, and obliterative phlebitis, accompanied by elevated levels of serum IgG4. Reports of cases of systemic plasmacytosis with abundant infiltration of IgG4+ plasma cells has led to discussion about the relationship between systemic plasmacytosis and IgG4-related disease. This study examined IgG4+/IgG+ plasma cell ratios in 4 patients with systemic plasmacytosis and 12 patients with other skin diseases that show marked infiltration of plasma cells. Furthermore, we examined whether these cases met one of the pathological diagnostic criteria for IgG4-related disease (i.e. IgG4+/IgG plasma cells ratio of over 40%). Only one out of 4 patients with systemic plasmacytosis met the criterion. These results suggest that systemic plasmacytosis and IgG4-related disease are distinct diseases.

  9. Plasma ignition and tuning in different cells of a 1.3 GHz nine-cell superconducting radio frequency cavity: Proof of principle

    NASA Astrophysics Data System (ADS)

    Tyagi, P. V.; Moss, Andrew; Goudket, Philippe; Pattalwar, Shrikant; Herbert, Joe; Valizadeh, Reza; McIntosh, Peter

    2018-06-01

    Field emission is one of the critical issues in the superconducting radio frequency (SRF) cavities and can degrade their accelerating gradient during operation. The contamination present at top surface of the SRF cavity is one of the foremost reasons for field emission. Plasma based surface processing can be a viable option to eliminate such surface contaminants and enhance performance of the SRF cavity especially for in-situ applications. These days, 1.3 GHz nine-cell SRF cavity has become baseline standard for many particle accelerators, it is of interest to develop plasma cleaning technique for such SRF cavities. In the development of the plasma processing technique for SRF cavities, the most challenging task is to ignite and tune the plasma in different cells of the SRF cavity. At Daresbury laboratory, UK, we have successfully achieved plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity. The plasma ignition in different cells of the cavity was accomplished at room temperature towards room temperature plasma cleaning of the SRF cavity surface. Here, we report the successful demonstration of the plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity.

  10. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma.

    PubMed

    Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian

    2016-01-01

    In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  11. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress

    PubMed Central

    Lin, Abraham; Truong, Billy; Patel, Sohil; Kaushik, Nagendra; Choi, Eun Ha; Fridman, Gregory; Fridman, Alexander; Miller, Vandana

    2017-01-01

    A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. PMID:28467380

  12. [Application of digital pathology tools. An unusual case of non-Hodgkin lymphoma].

    PubMed

    Meyer, A-S K; Dallenbach, F E; Lienert, G; Möller, P; Lennerz, J K

    2012-11-01

    Currently, lymphoma diagnosis is based on a combination of morphology, immunophenotyping, and molecular testing. Using the example of an unusual case of malignant non-Hodgkin lymphoma, we show that improved visualization using digital pathology contributes to the convergence of these complementary diagnostic modalities. A 45-year-old woman presented with skin rash and cervical lymphadenopathy. Histological workup of an excised lymph node showed loss of normal architecture with diffuse infiltration and increased mitotic activity. Immunohistochemistry for CD3/CD5 showed atypical arrangement and infiltration of a T-cell population that dominated over regionally dense, MUM1-positive plasmacellular infiltrates. Expanded CD21/CD23-positive meshworks of follicular dendritic cells were present within and between regressed follicles and the T-cell infiltrate; staining for CD56 and cyclin-D1 was negative. Quantification of Ki-67 staining within the T-, B- and plasmacellular compartments was achieved by digital image conversion, overlay and subsequent quantification algorithms that revealed proliferation within more than 60% of T-cells, over 50% of plasma cells and only 20% of B-cells. Clonality analysis by PCR revealed monoclonal rearrangement for both T-cell receptor gamma chains and immunoglobulin heavy chains. Taken together, we present an unusual combination of an angioimmunoblastic T-cell lymphoma (AITL) and simultaneous plasmacellular lymphoma. This report demonstrates how application of modern tools of digital pathology can visually integrate unusual morphological and molecular findings.

  13. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lu, R.; Xian, Y.; Gan, L.; Lu, X.; Yang, X.

    2015-12-01

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-кB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  14. T Follicular Helper Cell-Germinal Center B Cell Interaction Strength Regulates Entry into Plasma Cell or Recycling Germinal Center Cell Fate.

    PubMed

    Ise, Wataru; Fujii, Kentaro; Shiroguchi, Katsuyuki; Ito, Ayako; Kometani, Kohei; Takeda, Kiyoshi; Kawakami, Eiryo; Yamashita, Kazuo; Suzuki, Kazuhiro; Okada, Takaharu; Kurosaki, Tomohiro

    2018-04-17

    Higher- or lower-affinity germinal center (GC) B cells are directed either to plasma cell or GC recycling, respectively; however, how commitment to the plasma cell fate takes place is unclear. We found that a population of light zone (LZ) GC cells, Bcl6 lo CD69 hi expressing a transcription factor IRF4 and higher-affinity B cell receptors (BCRs) or Bcl6 hi CD69 hi with lower-affinity BCRs, favored the plasma cell or recycling GC cell fate, respectively. Mechanistically, CD40 acted as a dose-dependent regulator for Bcl6 lo CD69 hi cell formation. Furthermore, we found that expression of intercellular adhesion molecule 1 (ICAM-1) and signaling lymphocytic activation molecule (SLAM) in Bcl6 lo CD69 hi cells was higher than in Bcl6 hi CD69 hi cells, thereby affording more stable T follicular helper (Tfh)-GC B cell contacts. These data support a model whereby commitment to the plasma cell begins in the GC and suggest that stability of Tfh-GC B cell contacts is key for plasma cell-prone GC cell formation. Copyright © 2018. Published by Elsevier Inc.

  15. Kinetic electron model for plasma thruster plumes

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Mauriño, Javier; Ahedo, Eduardo

    2018-03-01

    A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.

  16. Lagrangian methods in nonlinear plasma wave interaction

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1980-01-01

    Analysis of nonlinear plasma wave interactions is usually very complicated, and simplifying mathematical approaches are highly desirable. The application of averaged-Lagrangian methods offers a considerable reduction in effort, with improved insight into synchronism and conservation (Manley-Rowe) relations. This chapter indicates how suitable Lagrangian densities have been defined, expanded, and manipulated to describe nonlinear wave-wave and wave-particle interactions in the microscopic, macroscopic and cold plasma models. Recently, further simplifications have been introduced by the use of techniques derived from Lie algebra. These and likely future developments are reviewed briefly.

  17. Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.

  18. A simple and sensitive method for determining plasma cell isotype and monoclonality in bone marrow using flowcytometry.

    PubMed

    van Zaanen, H C; Vet, R J; de Jong, C M; von dem Borne, A E; van Oers, M H

    1995-09-01

    In this paper we describe a new, rapid and sensitive method to determine plasma cell isotype and clonality in bone marrow using flowcytometry. With the use of a new fixation and permeabilization reagent (Permeafix), which preserves cell structure and morphology, and a monoclonal antibody (Mab) specific for plasma cells (B-B4), it has become possible to specifically select plasma cells and to determine the cytoplasmatic immunoglobulins by flowcytometry. Thirty successive bone marrow aspirates from multiple myeloma patients and patients with MGUS were studied as well as 10 bone marrow samples from patients with reactive plasmacytosis. Each sample was analysed both by immunofluorescence on cytospin smears and FACS analysis. There were no discrepancies between plasma cell isotype as determined by FACS and cytospin. Moreover, FACS analysis was shown to allow detection of very low numbers of plasma cells and to determine whether these plasma cells are mono- or polyclonal. Possible applications are discussed.

  19. How Does Plasma Activated Media Treatment Differ From Direct Cold Plasma Treatment.

    PubMed

    Attri, Pankaj; Park, Ji Hoon; Ali, Anser; Choi, Eun Ha

    2018-04-06

    The aim of the paper is to investigate the optimum condition for generation of plasma activated media (PAM), where it can deactivate the cancer cells while minimum damage for normal cells. Over past few years, cold atmospheric plasma-activated media (PAM) have shown its promising application in plasma medicine for treatment of cancer. PAM has a tremendous ability for selective anti-cancer capacity in vitro and in vivo. We have analyzed the radicals in air using the optical emission spectroscopy and in culture media using chemical analysis. Further, we have tested the toxicity of PAM using MTT assay. We observed that more cancer cell death is for the Ar plasma followed by the Ar-N2 plasma, and the least cell death was observed for the Ar-O2 plasma at all treatment times both by direct treatment and through PAM treatment. The concentration of the RNS species is high for Ar-N2 plasma in gas as well as inside the culture media compared to that for pure Ar plasma. However, the difference is significantly less between the Ar plasma treatments and the Ar-N2 plasma treatments, showing that ROS is the main factor contributing to cell death. Among all three feeding gas plasmas the best system is Ar-O2 plasma for direct treatments towards the cancer cells. In addition, the best system for PAM preparation is Ar-N2 at low time treatments (1 min and 2 min) because it has no effect on normal cells, but kills the cancer cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. u-PAR expression in cancer associated fibroblast: new acquisitions in multiple myeloma progression.

    PubMed

    Ciavarella, S; Laurenzana, A; De Summa, S; Pilato, B; Chillà, A; Lacalamita, R; Minoia, C; Margheri, F; Iacobazzi, A; Rana, A; Merchionne, F; Fibbi, G; Del Rosso, M; Guarini, A; Tommasi, S; Serratì, S

    2017-03-24

    Multiple Myeloma (MM) is a B-cell malignancy in which clonal plasma cells progressively expand within the bone marrow (BM) as effect of complex interactions with extracellular matrix and a number of microenvironmental cells. Among these, cancer-associated fibroblasts (CAF) mediate crucial reciprocal signals with MM cells and are associated to aggressive disease and poor prognosis. A large body of evidence emphasizes the role of the urokinase plasminogen activator (u-PA) and its receptor u-PAR in potentiating the invasion capacity of tumor plasma cells, but little is known about their role in the biology of MM CAF. In this study, we investigated the u-PA/u-PAR axis in MM-associated fibroblasts and explore additional mechanisms of tumor/stroma interplay in MM progression. CAF were purified from total BM stromal fraction of 64 patients including monoclonal gammopathy of undetermined significance, asymptomatic and symptomatic MM, as well as MM in post-treatment remission. Flow cytometry, Real Time PCR and immunofluorescence were performed to investigate the u-PA/u-PAR system in relation to the level of activation of CAF at different stages of the disease. Moreover, proliferation and invasion assays coupled with silencing experiments were used to prove, at functional level, the function of u-PAR in CAF. We found higher activation level, along with increased expression of pro-invasive molecules, including u-PA, u-PAR and metalloproteinases, in CAF from patients with symptomatic MM compared to the others stages of the disease. Consistently, CAF from active MM as well as U266 cell line under the influence of medium conditioned by active MM CAF, display higher proliferative rate and invasion potential, which were significantly restrained by u-PAR gene expression inhibition. Our data suggest that the stimulation of u-PA/u-PAR system contributes to the activated phenotype and function of CAF during MM progression, providing a biological rationale for future targeted therapies against MM.

  1. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    PubMed Central

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2−), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  2. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  3. Electromagnetic Effices from Impacts on Spacecraft

    NASA Astrophysics Data System (ADS)

    Close, Sigrid

    2018-04-01

    Hypervelocity micro particles, including meteoroids and space debris with masses < 1 ng, routinely impact spacecraft and create dense plasma that expands at the isothermal sound speed. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma and show that impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (> 20 km/s) impacts that produced a fully ionized plasma.

  4. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, N.; Cardoso, L.; Geada, J.

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less

  5. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    DOE PAGES

    Lemos, N.; Cardoso, L.; Geada, J.; ...

    2018-02-16

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less

  6. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  7. Can microcarrier-expanded chondrocytes synthesize cartilaginous tissue in vitro?

    PubMed

    Surrao, Denver C; Khan, Aasma A; McGregor, Aaron J; Amsden, Brian G; Waldman, Stephen D

    2011-08-01

    Tissue engineering is a promising approach for articular cartilage repair; however, it is challenging to produce adequate amounts of tissue in vitro from the limited number of cells that can be extracted from an individual. Relatively few cell expansion methods exist without the problems of de-differentiation and/or loss of potency. Recently, however, several studies have noted the benefits of three-dimensional (3D) over monolayer expansion, but the ability of 3D expanded chondrocytes to synthesize cartilaginous tissue constructs has not been demonstrated. Thus, the purpose of this study was to compare the properties of engineered cartilage constructs from expanded cells (monolayer and 3D microcarriers) to those developed from primary chondrocytes. Isolated bovine chondrocytes were grown for 3 weeks in either monolayer (T-Flasks) or 3D microcarrier (Cytodex 3) expansion culture. Expanded and isolated primary cells were then seeded in high density culture on Millicell™ filters for 4 weeks to evaluate the ability to synthesize cartilaginous tissue. While microcarrier expansion was twice as effective as monolayer expansion (microcarrier: 110-fold increase, monolayer: 52-fold increase), the expanded cells (monolayer and 3D microcarrier) were not effectively able to synthesize cartilaginous tissue in vitro. Tissues developed from primary cells were substantially thicker and accumulated significantly more extracellular matrix (proteoglycan content: 156%-292% increase; collagen content: 70%-191% increase). These results were attributed to phenotypic changes experienced during the expansion phase. Monolayer expanded chondrocytes lost their native morphology within 1 week, whereas microcarrier-expanded cells were spreading by 3 weeks of expansion. While the use of 3D microcarriers can lead to large cellular yields, preservation of chondrogenic phenotype during expansion is required in order to synthesize cartilaginous tissue.

  8. Human Platelet Lysate as a Xeno Free Alternative of Fetal Bovine Serum for the In Vitro Expansion of Human Mesenchymal Stromal Cells.

    PubMed

    Mohammadi, Saeed; Nikbakht, Mohsen; Malek Mohammadi, Ashraf; Zahed Panah, Mahdi; Ostadali, Mohammad Reza; Nasiri, Hajar; Ghavamzadeh, Ardeshir

    2016-07-01

    Mesenchymal stromal cells (MSCs) are employed in various different clinical settings in order to modulate immune response. Human autologous and allogeneic supplements including platelet derivatives such as platelet lysate (PL), platelet-released factors (PRF) and serum are assessed in clinical studies to replace fetal bovine serum (FBS). The immunosuppressive activity and multi-potential characteristic of MSCs appear to be maintained when the cells are expanded in platelet derivatives. Platelet-rich plasma was collected from umbrical cord blood (UCB). Platelet-derived growth factors obtained by freeze and thaw methods. CD62P expression was determined by flow cytometry. The concentration of PDGF-BB and PDGF-AB was detemined by ELISA. We tested the ability of a different concentration of PL-supplemented medium to support the ex vivo expansion of Wharton's jelly derived MSCs. We also investigated the biological/functional properties of expanded MSCs in presence of different concentration of PL. The conventional karyotyping was performed in order to study the chromosomal stability. The gene expression of Collagen I and II aggrecan and SOX-9 in the presence of different concentrations of PL was evaluated by Real-time PCR. We observed 5% and 10% PL, causing greater effects on proliferation of MSCs .These cells exhibited typical morphology, immunophenotype and differentiation capacity. The genetic stability of these derivative cells from Wharton's jelly was demonstrated by a normal karyotype. Furthermore, the results of Real-time PCR analysis showed that the expression of chondrocyte specific genes was higher in MSCs in the presence of 5% and 10% PL, compared with FBS supplement. We demonstrated that PL could be used as an alternative safe source of growth factors for expansion of MSCs and also maintained similar growing potential and phenotype without any effect on chromosomal stability.

  9. Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis.

    PubMed

    Uhel, Fabrice; Azzaoui, Imane; Grégoire, Murielle; Pangault, Céline; Dulong, Joelle; Tadié, Jean-Marc; Gacouin, Arnaud; Camus, Christophe; Cynober, Luc; Fest, Thierry; Le Tulzo, Yves; Roussel, Mikael; Tarte, Karin

    2017-08-01

    Sepsis induces a sustained immune dysfunction responsible for poor outcome and nosocomial infections. Myeloid-derived suppressor cells (MDSCs) described in cancer and inflammatory processes may be involved in sepsis-induced immune suppression, but their clinical impact remains poorly defined. To clarify phenotype, suppressive activity, origin, and clinical impact of MDSCs in patients with sepsis. Peripheral blood transcriptomic analysis was performed on 29 patients with sepsis and 15 healthy donors. A second cohort of 94 consecutive patients with sepsis, 11 severity-matched intensive care patients, and 67 healthy donors was prospectively enrolled for flow cytometry and functional experiments. Genes involved in MDSC suppressive functions, including S100A12, S100A9, MMP8, and ARG1, were up-regulated in the peripheral blood of patients with sepsis. CD14 pos HLA-DR low/neg monocytic (M)-MDSCs were expanded in intensive care unit patients with and without sepsis and CD14 neg CD15 pos low-density granulocytes/granulocytic (G)-MDSCs were more specifically expanded in patients with sepsis (P < 0.001). Plasma levels of MDSC mediators S100A8/A9, S100A12, and arginase 1 were significantly increased. In vitro, CD14 pos - and CD15 pos -cell depletion increased T-cell proliferation in patients with sepsis. G-MDSCs, made of immature and mature granulocytes expressing high levels of degranulation markers, were specifically responsible for arginase 1 activity. High initial levels of G-MDSCs, arginase 1, and S100A12 but not M-MDSCs were associated with subsequent occurrence of nosocomial infections. M-MDSCs and G-MDSCs strongly contribute to T-cell dysfunction in patients with sepsis. More specifically, G-MDSCs producing arginase 1 are associated with a higher incidence of nosocomial infections and seem to be major actors of sepsis-induced immune suppression.

  10. Human Platelet Lysate as a Xeno Free Alternative of Fetal Bovine Serum for the In Vitro Expansion of Human Mesenchymal Stromal Cells

    PubMed Central

    Mohammadi, Saeed; Nikbakht, Mohsen; Malek Mohammadi, Ashraf; Zahed Panah, Mahdi; Ostadali, Mohammad Reza; Nasiri, Hajar; Ghavamzadeh, Ardeshir

    2016-01-01

    Background: Mesenchymal stromal cells (MSCs) are employed in various different clinical settings in order to modulate immune response. Human autologous and allogeneic supplements including platelet derivatives such as platelet lysate (PL), platelet-released factors (PRF) and serum are assessed in clinical studies to replace fetal bovine serum (FBS). The immunosuppressive activity and multi-potential characteristic of MSCs appear to be maintained when the cells are expanded in platelet derivatives. Materials and Methods: Platelet-rich plasma was collected from umbrical cord blood (UCB). Platelet-derived growth factors obtained by freeze and thaw methods. CD62P expression was determined by flow cytometry. The concentration of PDGF-BB and PDGF-AB was detemined by ELISA. We tested the ability of a different concentration of PL-supplemented medium to support the ex vivo expansion of Wharton's jelly derived MSCs. We also investigated the biological/functional properties of expanded MSCs in presence of different concentration of PL. The conventional karyotyping was performed in order to study the chromosomal stability. The gene expression of Collagen I and II aggrecan and SOX-9 in the presence of different concentrations of PL was evaluated by Real-time PCR. Results: We observed 5% and 10% PL, causing greater effects on proliferation of MSCs .These cells exhibited typical morphology, immunophenotype and differentiation capacity. The genetic stability of these derivative cells from Wharton's jelly was demonstrated by a normal karyotype. Furthermore, the results of Real-time PCR analysis showed that the expression of chondrocyte specific genes was higher in MSCs in the presence of 5% and 10% PL, compared with FBS supplement. Conclusions: We demonstrated that PL could be used as an alternative safe source of growth factors for expansion of MSCs and also maintained similar growing potential and phenotype without any effect on chromosomal stability. PMID:27489592

  11. Fabrication method for cores of structural sandwich materials including star shaped core cells

    DOEpatents

    Christensen, Richard M.

    1997-01-01

    A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded.

  12. Materials characterization and histological analysis of explanted polypropylene, PTFE, and PET hernia meshes from an individual patient

    PubMed Central

    Wood, A. J.; Cozad, M. J.; Grant, D. A.; Ostdiek, A. M.; Bachman, S. L.

    2014-01-01

    During its tenure in vivo, synthetic mesh materials are exposed to foreign body responses, which can alter physicochemical properties of the material. Three different synthetic meshes comprised of polypropylene, expanded polytetrafluoroethylene (ePTFE), and polyethylene terephthalate (PET) materials were explanted from a single patient providing an opportunity to compare physicochemical changes between three different mesh materials in the same host. Results from infrared spectroscopy demonstrated significant oxidation in polypropylene mesh while ePTFE and PET showed slight chemical changes that may be caused by adherent scar tissue. Differential scanning calorimetry results showed a significant decrease in the heat of enthalpy and melt temperature in the polypropylene mesh while the ePTFE and PET showed little change. The presence of giant cells and plasma cells surrounding the ePTFE and PET were indicative of an active foreign body response. Scanning electron micrographs and photo micrographs displayed tissue entrapment and distortion of all three mesh materials. PMID:23371769

  13. The effect of nonylphenol on gene expression in Atlantic salmon smolts

    USGS Publications Warehouse

    Robertson, Laura S.; McCormick, Stephen D.

    2012-01-01

    The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na+/K+-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers.

  14. Significant increase in IgG4+ plasma cells in gastric biopsy specimens from patients with pernicious anaemia.

    PubMed

    Bedeir, Ahmed S; Lash, Richard H; Lash, Jonathan G; Ray, Mukunda B

    2010-11-01

    To investigate the presence of IgG4+ plasma cells in gastric mucosal biopsy samples from patients with atrophic gastritis (AG) and a history of pernicious anaemia (PA) (AG+PA+). Gastric mucosal biopsy specimens from 46 patients with AG+PA+ were investigated. As controls, we evaluated specimens from patients with AG but no history of PA (AG+ PA-) (n=25), normal histology (n=25), mild chronic inactive gastritis (MCIG) (n=25) or Helicobacter pylori gastritis (HP) (n=25). IgG4+ plasma cells were detected by two immunohistochemical methods: (1) using a monoclonal antibody, the average of the three most cellular high-power fields was counted in areas with the highest density of IgG4+ plasma cells; (2) using a dual-chromagen stain for both IgG4 and CD138 (plasma cell marker), the number of IgG4+ cells per 200 CD138+ plasma cells was counted. The latter was used to ensure that the number of IgG4+ cells was not simply related to the degree of inflammation (density of plasma cells). Identical results were obtained with the two staining methods. Increased numbers of IgG4+ plasma cells were present in 37% of patients with AG+PA+, but in none with AG+PA-, MCIG, HP or normal gastric biopsy results (100% specific, p=0.0001). IgG4+ plasma cells may play a role in the pathogenesis of PA and may be a useful marker for its diagnosis.

  15. Expanded CAG/CTG Repeat DNA Induces a Checkpoint Response That Impacts Cell Proliferation in Saccharomyces cerevisiae

    PubMed Central

    Sundararajan, Rangapriya; Freudenreich, Catherine H.

    2011-01-01

    Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275

  16. Adaptive plasma for cancer therapy: physics, mechanism and applications

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2017-10-01

    One of the most promising applications of cold atmospheric plasma (CAP) is the cancer therapy. The uniqueness of plasma is in its ability to change composition in situ. Plasma self-organization could lead to formation of coherent plasma structures. These coherent structures tend to modulate plasma chemistry and composition, including reactive species, the electric field and charged particles. Formation of coherent plasma structures allows the plasma to adapt to external boundary conditions, such as different cells types and their contextual tissues. In this talk we will explore possibilities and opportunities that the adaptive plasma therapeutic system might offer. We shall define such an adaptive system as a plasma device that is able to adjust the plasma composition to obtain optimal desirable outcomes through its interaction with cells and tissues. The efficacy of cold plasma in a pre-clinical model of various cancer types such as lung, bladder, breast, head, neck, brain and skin has been demonstrated. Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells. Recently mechanism of plasma selectivity based on aquaporin hypothesis has been proposed. Aquaporins (AQPs) are the confirmed membrane channels of H2O2 and other large molecules. We have demonstrated that the anti-cancer capacity of plasma could be inhibited by silencing the expression of AQPs. Additional possible cell feedback mechanism was recently discovered. It is associated with production of reactive species during direct CAP treatment by cancer cells. Selective production of hydrogen peroxide by different cells can lead to adaptation of chemistry at the plasma-cell interface based on the cellular input. In particular we have found that the discharge voltage is an important factor affecting the ratio of reactive oxygen species to reactive nitrogen species in the gas phase and this correlates well with effect of hydrogen peroxide production by cells. This work was supported by a National Science Foundation, Grant No. 1465061.

  17. Disruption of Ankyrin B and Caveolin-1 Interaction Sites Alters Na+,K+-ATPase Membrane Diffusion.

    PubMed

    Junghans, Cornelia; Vukojević, Vladana; Tavraz, Neslihan N; Maksimov, Eugene G; Zuschratter, Werner; Schmitt, Franz-Josef; Friedrich, Thomas

    2017-11-21

    The Na + ,K + -ATPase is a plasma membrane ion transporter of high physiological importance for ion homeostasis and cellular excitability in electrically active tissues. Mutations in the genes coding for Na + ,K + -ATPase α-subunit isoforms lead to severe human pathologies including Familial Hemiplegic Migraine type 2, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia Parkinsonism, or epilepsy. Many of the reported mutations lead to change- or loss-of-function effects, whereas others do not alter the functional properties, but lead to, e.g., reduced protein stability, reduced protein expression, or defective plasma membrane targeting. Na + ,K + -ATPase frequently assembles with other membrane transporters or cellular matrix proteins in specialized plasma membrane microdomains, but the effects of these interactions on targeting or protein mobility are elusive so far. Mutation of established interaction motifs of the Na + ,K + -ATPase with ankyrin B and caveolin-1 are expected to result in changes in plasma membrane targeting, changes of the localization pattern, and of the diffusion behavior of the enzyme. We studied the consequences of mutations in these binding sites by monitoring diffusion of eGFP-labeled Na + ,K + -ATPase constructs in the plasma membrane of HEK293T cells by fluorescence correlation spectroscopy as well as fluorescence recovery after photobleaching or photoswitching, and observed significant differences compared to the wild-type enzyme, with synergistic effects for combinations of interaction site mutations. These measurements expand the possibilities to study the consequences of Na + ,K + -ATPase mutations and provide information about the interaction of Na + ,K + -ATPase α-isoforms with cellular matrix proteins, the cytoskeleton, or other membrane protein complexes. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Sensitive typing of reverse ABO blood groups with a waveguide-mode sensor.

    PubMed

    Uno, Shigeyuki; Tanaka, Torahiko; Ashiba, Hiroki; Fujimaki, Makoto; Tanaka, Mutsuo; Hatta, Yoshihiro; Takei, Masami; Awazu, Koichi; Makishima, Makoto

    2018-07-01

    Portable, on-site blood typing methods will help provide life-saving blood transfusions to patients during an emergency or natural calamity, such as significant earthquakes. We have previously developed waveguide-mode (WM) sensors for forward ABO and Rh(D) blood typing and detection of antibodies against hepatitis B virus and hepatitis C virus. In this study, we evaluated a WM-sensor for reverse ABO blood typing. Since reverse ABO blood typing is a method for detection of antibodies against type A and type B oligosaccharide antigens on the surface of red blood cells (RBCs), we fixed a synthetic type A or type B trisaccharide antigen on the sensor chip of the WM sensor. We obtained significant changes in the reflectance spectra from a WM sensor on type A antigen with type B plasma and type O plasma and on type B antigen with type A plasma and type O plasma, and no spectrum changes on type A antigen or type B antigen with type AB plasma. Signal enhancement with the addition of a peroxidase reaction failed to increase the sensitivity for detection on oligosaccharide chips. By utilizing hemagglutination detection using regent type A and type B RBCs, we successfully determined reverse ABO blood groups with higher sensitivity compared to a method using oligosaccharide antigens. Thus, functionality of a portable device utilizing a WM sensor can be expanded to include reverse ABO blood typing and, in combination with forward ABO typing and antivirus antibody detection, may be useful for on-site blood testing in emergency settings. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Comparative Effects of Platelet-Rich Plasma, Platelet Lysate, and Fetal Calf Serum on Mesenchymal Stem Cells.

    PubMed

    Lykov, A P; Bondarenko, N A; Surovtseva, M A; Kim, I I; Poveshchenko, O V; Pokushalov, E A; Konenkov, V I

    2017-10-01

    We studied the effects of human platelet-rich plasma and platelet lysate on proliferation, migration, and colony-forming properties of rat mesenchymal stem cells. Platelet-rich plasma and platelet lysate stimulated the proliferation, migration, and colony formation of mesenchymal stem cells. A real-time study showed that platelet-rich plasma produces the most potent stimulatory effect, while both platelet-rich plasma and platelet lysate stimulated migration of cells.

  20. Applications of optical manipulation in plant biology

    NASA Astrophysics Data System (ADS)

    Buer, Charles S.

    Measuring small forces in biology is important for determining basic physiological parameters of a cell. The plant cell wall provides a primary defense and presents a barrier to research. Magnitudes of small forces are impossible to measure with mechanical transducers, glass needles, atomic force microscopy, or micropipet-based force transduction due to the cell wall. Therefore, a noninvasive method of breaching the plant cell wall to access the symplastic region of the cell is required. Laser light provides sub-micrometer positioning, particle manipulation without mechanical contact, and piconewton force determination. Consequently, the extension of laser microsurgery to expand an experimental tool for plant biology encompassed the overall objective. A protocol was developed for precisely inserting microscopic objects into the periplasmic region of plant callus cells using laser microsurgery. Ginkgo biloba and Agrobacterium rhizogenes were used as the model system for developing the optical tweezers and scalpel techniques. Better than 95% survival was achieved after plasmolyzing G. biloba cells, ablating a 2-4 μm hole through the cell wall using a pulsed UV laser beam, trapping and manipulating bacteria into the periplasmic region, and deplasmolyzing the cells. Optical trapping experiments implied a difference existed between the bacteria models. Determining the optical trapping efficiency of Agrobacterium rhizogenes and A. tumefaciens strains indicated the A. rhizogenes strain, ATCC 11325, was significantly less efficiently trapped than strains A4 and ATCC 15834 and the A. tumefaciens strain LBA4404. Differences were also found in capsule generation, growth media viscosity, and transmission electron microscopy negative staining implying that a difference in surface structure exists. Calcofluor fluorescence suggests the difference involves an exopolysaccharide. Callus cell plasmolysis revealed Hechtian strands interconnecting the plasma membrane and the cell wall. The spring tension of these strands was measured in normal and cold-hardened G. biloba and N. tabacum callus cells. There was little change in flexibility between the groups of cultured cells in either species studied. Microspheres were attached to Hechtian strands in normal cultured Nicotiana tabacum and the cells were deplasmolyzed and replasmolyzed to determine the fate of Hechtian strands. The microspheres either moved to the plasma membrane and adhered or moved to the cell wall and adhered. The attached microspheres occasionally moved independently on the same strand. Inserted microspheres provided a visual probe to follow physiological events within a plant cell.

  1. Physics and medical applications of cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2013-09-01

    Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Varieties of novel plasma diagnostic techniques were applied in a quest to understand physics of cold plasmas. In particular it was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m3. We have demonstrated the efficacy of cold plasma in a pre-clinical model of various cancer types (lung, bladder, breast, head, neck, brain and skin). Both in-vitro andin-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasmainduces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at ~24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed.

  2. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  3. Observations of field-aligned currents, waves, and electric fields at substorm onset

    NASA Technical Reports Server (NTRS)

    Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.

    1986-01-01

    Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.

  4. Numerical Model of the Plasma Sheath Generated by the Plasma Source Instrument Aboard the Polar Satellite

    NASA Technical Reports Server (NTRS)

    Leung, Wing C.; Singh, Nagendra; Moore, Thomas E.; Craven, Paul D.

    2000-01-01

    The plasma sheath generated by the operation of the Plasma Source Instrument (PSI) aboard the POLAR satellite is studied by using a 3-dimensional Particle-In-Cell (PIC) code. When the satellite passes through the region of low density plasma, the satellite charges to positive potentials as high as 4050Volts due to the photoelectrons emission. In such a case, ambient core ions cannot accurately be measured or detected. The goal of the onboard PSI is to reduce the floating potential of the satellite to a sufficiently low value so that the ions in the polar wind become detectable. When the PSI is operated, an ion-rich Xenon plasma is ejected from the satellite, such that the floating potential of the satellite is reduced and is maintained at about 2Volts. Accordingly, in our 3-dimensional PIC simulation, we considered that the potential of the satellite is 2Volts as a fixed bias. Considering the relatively high density of the Xenon plasma in the sheath (approx. 10 - 10(exp 3)/cc), the ambient plasma of low density (less than 1/cc) is neglected. In the simulations, the electric fields and plasma dynamics are calculated self-consistently. We found that an "Apple" shape positive potential sheath forms surrounding the satellite. In the region near the PSI emission, a high positive potential hill develops. Near the Thermal Ion Detection Experiment (TIDE) detector away from the PSI, the potentials are sufficiently low for the ambient polar wind ions to reach it. In the simulations, it takes about a hundred electron gyroperiods for the sheath to reach a quasi-steady state. This time is approximately the time taken by the heavy Xe(+) ions to expand up to about one average Larmor radius of electrons from the satellite surface. Using the steady state sheath, we performed trajectory calculations to characterize the detector response to a highly supersonic polar wind flow. The detected ions' velocity distribution shows significant deviations from a shifted Maxwellian in the ambient polar wind population. The deviations are caused by the effects of electric fields on the ions' motion as they traverse the sheath.

  5. [Detection of antigen structures in blood cells in various prepared plasma transfusions].

    PubMed

    Barz, D

    1994-01-01

    We investigated the content of antigen-bearing cells and cell fragments in Fresh Frozen Plasma (FFP) from blood centers, in Octaplas (virus-inactivated fresh plasma produced with the solvent/detergent technique by the Octapharma Company) and in MB-plasma (virus-inactivated fresh plasma after photodynamic treatment with methylen blue coming from the German Red Cross in Springe, Lower Saxony). With the aid of an immunoassay (MAIPA-test) these plasmas were tested regarding Rhesus-D-antigen, HLA-class-I- and HLA-class-II-antigens, platelet specific antigens HPA-1a/HPA-1b and granulocyte specific antigens NA1/NA2. In Octaplas (n = 10) we did not find cells or cell fragments and no antigen-bearing blood cell structures. In FFP (n = 28) there were platelet specific antigens in 27 cases (96.4%) and HLA-class-I-antigens in 4 cases (14.3%). In MB-plasma (n = 14) we found platelet specific antigens in all cases, HLA-class-I-antigens in 4 cases (18.6%), HLA-class-II-antigens and granulocyte specific antigens in 1 case (7.1%) and Rhesus-D-antigen in 3 cases (21.4%). Plasma derived from whole blood showed lower levels of cells and antigens than plasma which was produced with the aid of the cell separator.

  6. EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs.

    PubMed

    Ebert, Allison D; Shelley, Brandon C; Hurley, Amanda M; Onorati, Marco; Castiglioni, Valentina; Patitucci, Teresa N; Svendsen, Soshana P; Mattis, Virginia B; McGivern, Jered V; Schwab, Andrew J; Sareen, Dhruv; Kim, Ho Won; Cattaneo, Elena; Svendsen, Clive N

    2013-05-01

    We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be expanded for long periods using a chopping method that maintained cell-cell contact. Early passage EZ spheres rapidly down-regulated OCT4 and up-regulated SOX2 and nestin expression. They retained the potential to form neural rosettes and consistently differentiated into a range of central and peripheral neural lineages. Thus, they represent a very early neural stem cell with greater differentiation flexibility than other previously described methods. As such, they will be useful for the rapidly expanding field of neurological development and disease modeling, high-content screening, and regenerative therapies based on pluripotent stem cell technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells.

    PubMed

    Kadekar, Darshana; Rangole, Sonal; Kale, Vaijayanti; Limaye, Lalita

    2016-01-01

    The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS). Conditioned medium from mesenchymal stem cells (MSCs-CM) has been shown to alleviate the oxidative stress during wound healing, Alzheimer's disease and ischemic disease. This premise prompted us to investigate the influence of MSCs-CM during cryopreservation of expanded UCB cells. CM-was collected from cord/placental MSCs(C-MSCs-CM, P-MSC-CM). UCB CD34+cells were expanded as suspension cultures in serum free medium containing cytokines for 10 days. Cells were frozen with/without C-MSCs-CM and or P-MSCs-CM in the conventional freezing medium containing 20%FCS +10%DMSO using a programmable freezer and stored in liquid nitrogen. Upon revival, cells frozen with MSCs-CM were found to be superior to cells frozen in conventional medium in terms of viability, CD34+content and clonogenecity. Priming of revived cells for 48 hrs with MSCs-CM further improved their transplantation ability, as compared to those cultured without MSCs-CM. P-MSCs-CM radically reduced the oxidative stress in cryopreserved cells, resulting in better post thaw functionality of CD34+ cells than with C-MSCs-CM. The observed cryoprotective effect of MSCs-CM was primarily due to anti-oxidative and anti-apoptotic properties of the MSCs-CM and not because of the exosomes secreted by them. Our data suggest that MSCs-CM can serve as a valuable additive to the freezing or the priming medium for expanded UCB cells, which would increase their clinical applicability.

  8. The relation between doses or post-plasma time points and apoptosis of leukemia cells induced by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Haixia; Xue, Zhixiao; Yin, Huijuan; Niu, Qing; Chen, Hongli

    2015-12-01

    The dielectric barrier discharge (DBD) plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS), gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.

  9. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, W.

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  10. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE PAGES

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  11. Fibronectin in cell adhesion and migration via N-glycosylation

    PubMed Central

    Hsiao, Cheng-Te; Cheng, Hung-Wei; Huang, Chi-Ming; Li, Hao-Ru; Ou, Meng-Hsin; Huang, Jie-Rong; Khoo, Kay-Hooi; Yu, Helen Wenshin; Chen, Yin-Quan; Wang, Yang-Kao; Chiou, Arthur; Kuo, Jean-Cheng

    2017-01-01

    Directed cell migration is an important step in effective wound healing and requires the dynamic control of the formation of cell-extracellular matrix interactions. Plasma fibronectin is an extracellular matrix glycoprotein present in blood plasma that plays crucial roles in modulating cellular adhesion and migration and thereby helping to mediate all steps of wound healing. In order to seek safe sources of plasma fibronectin for its practical use in wound dressing, we isolated fibronectin from human (homo) and porcine plasma and demonstrated that both have a similar ability as a suitable substrate for the stimulation of cell adhesion and for directing cell migration. In addition, we also defined the N-glycosylation sites and N-glycans present on homo and porcine plasma fibronectin. These N-glycosylation modifications of the plasma fibronectin synergistically support the integrin-mediated signals to bring about mediating cellular adhesion and directed cell migration. This study not only determines the important function of N-glycans in both homo and porcine plasma fibronectin-mediated cell adhesion and directed cell migration, but also reveals the potential applications of porcine plasma fibronectin if it was applied as a material for clinical wound healing and tissue repair. PMID:29050309

  12. Blast-Absorbing Bag

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B.

    1992-01-01

    Proposed expandable bag contains debris from explosion. Permanently surrounds vessel or devices prone to explosive disintegration or slipped around small bomb. Finned cells shaped like outward-opening cups. Cells built up from overlapped sheets of fabric and stitched together to form expandable polyhedral bag. Cells pentagonal, triangular or square.

  13. Kinetic interpretation of resonance phenomena in low pressure capacitively coupled radio frequency plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilczek, Sebastian; Trieschmann, Jan; Eremin, Denis

    Low pressure capacitive radio frequency (RF) plasmas are often described by equivalent circuit models based on fluid approaches that predict the self-excitation of resonances, e.g., high frequency oscillations of the total current in asymmetric discharges, but do not provide a kinetic interpretation of these effects. In fact, they leave important questions open: How is current continuity ensured in the presence of energetic electron beams generated by the expanding sheaths that lead to a local enhancement of the conduction current propagating through the bulk? How do the beam electrons interact with cold bulk electrons? What is the kinetic origin of resonancemore » phenomena? Based on kinetic simulations, we find that the energetic beam electrons interact with cold bulk electrons (modulated on a timescale of the inverse local electron plasma frequency) via a time dependent electric field outside the sheaths. This electric field is caused by the electron beam itself, which leaves behind a positive space charge, that attracts cold bulk electrons towards the expanding sheath. The resulting displacement current ensures current continuity by locally compensating the enhancement of the conduction current. The backflow of cold electrons and their interaction with the nonlinear plasma sheath cause the generation of multiple electron beams during one phase of sheath expansion and contribute to a strongly non-sinusoidal RF current. These kinetic mechanisms are the basis for a fundamental understanding of the electron power absorption dynamics and resonance phenomena in such plasmas, which are found to occur in discharges of different symmetries including perfectly symmetric plasmas.« less

  14. Numerical solution for linear cyclotron and diocotron modes in a nonneutral plasma column

    NASA Astrophysics Data System (ADS)

    Walsh, Daniel; Dubin, Daniel H. E.

    2014-10-01

    This poster presents numerical methods for solution of the linearized Vlasov-Poisson (LVP) equation applied to a cylindrical single-species plasma in a uniform magnetic field. The code is used to study z-independent cyclotron and diocotron modes of these plasmas, including kinetic effects. We transform to polar coordinates in both position and velocity space and Fourier expand in both polar angles (i.e. the cyclotron gyro angle and θ). In one approach, we then discretize in the remaining variables r and v (where v is the magnitude of the perpendicular velocity). However, using centered differences the method is unstable to unphysical eigenmodes with rapid variation on the scale of the grid. We remedy this problem by averaging particular terms in the discretized LVP operator over neighboring gridpoints. We also present a stable Galerkin method that expands the r and v dependence in basis functions. We compare the numerical results from both methods to exact analytic results for various modes. Supported by NSF/DOE Partnership Grants PHY-0903877 and DE-SC0002451.

  15. Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Ho; Kwon, Seyeoul; Bahn, Jae Hoon; Lee, Keunho; Jun, Seung Ik; Rack, Philip D.; Baek, Seung Joon

    2010-06-01

    The effect that the gas content and plasma power of atmospheric, nonthermal plasma has on the invasion activity in colorectal cancer cells has been studied. Helium and helium plus oxygen plasmas were induced through a nozzle and operated with an ac power of less than 10 kV which exhibited a length of 2.5 cm and a diameter of 3-4 mm in ambient air. Treatment of cancer cells with the plasma jet resulted in a decrease in cell migration/invasion with higher plasma intensity and the addition of oxygen to the He flow gas.

  16. Clinically granulomatous cheilitis with plasma cells

    PubMed Central

    Sarkar, Somenath; Ghosh, Sarmistha; Sengupta, Dipayan

    2016-01-01

    Plasma cell cheilitis, also known as plasma cell orificial mucositis is a benign inflammatory condition clinically characterized by erythematous plaque on lips that may be ulcerated. Histopathologically it is characterized by dense plasma cell infiltrates in a band-like pattern in dermis, which corresponds to Zoon's plasma cell balanitis. On the other hand, granulomatous cheilitis, as a part of orofacial granulomatosis, manifests as sudden diffuse or nodular swelling involving lip and cheek. Initial swelling is soft to firm, but with recurrent episodes swelling gradually become firm rubbery in consistency. We hereby report a case of cheilitis in a 52-year-old man with diffuse swelling involving lower lip, which clinically resembles granulomatous cheilitis, but histopathological examination showed diffuse infiltrate of plasma cells predominantly in upper and mid-dermis. PMID:27057489

  17. Adjuvant-specific regulation of long-term antibody responses by ZBTB20

    PubMed Central

    Wang, Yinan

    2014-01-01

    The duration of antibody production by long-lived plasma cells varies with the type of immunization, but the basis for these differences is unknown. We demonstrate that plasma cells formed in response to the same immunogen engage distinct survival programs depending on the adjuvant. After alum-adjuvanted immunization, antigen-specific bone marrow plasma cells deficient in the transcription factor ZBTB20 failed to accumulate over time, leading to a progressive loss of antibody production relative to wild-type controls. Fetal liver reconstitution experiments demonstrated that the requirement for ZBTB20 was B cell intrinsic. No defects were observed in germinal center numbers, affinity maturation, or plasma cell formation or proliferation in ZBTB20-deficient chimeras. However, ZBTB20-deficient plasma cells expressed reduced levels of MCL1 relative to wild-type controls, and transgenic expression of BCL2 increased serum antibody titers. These data indicate a role for ZBTB20 in promoting survival in plasma cells. Strikingly, adjuvants that activate TLR2 and TLR4 restored long-term antibody production in ZBTB20-deficient chimeras through the induction of compensatory survival programs in plasma cells. Thus, distinct lifespans are imprinted in plasma cells as they are formed, depending on the primary activation conditions. The durability of vaccines may accordingly be improved through the selection of appropriate adjuvants. PMID:24711582

  18. The growth and differentiation of transitional epithelium in vitro.

    PubMed

    Chlapowski, F J; Haynes, L

    1979-12-01

    The development of rat transitional epithelial cells grown on conventional non-permeable surfaces was compared with development on permeable collagen supports. On glass or plastic surfaces, cells grew as expanding nomolayer sheets. Once confluent, growth continued with a bilayer being formed in most areas and apical cells being continuously sloughed off. Although most cells were interconnected by desmosomes, and junctional complexes were formed, no other indications of differentiation were observed. After 2-3 wk of growth, division stopped and cel death ensued. In contrast, single-cell suspensions plated on collagen-coated nylon disks reassociated into multicellular islands and commenced growth. Mitoses were confined to the basal cells in contact with the permeable substrate. The islands developed into epithelial trilayers, tapering to monolayers along spreading edges. Once the islands were confluent, stratification was completed and appeared similar to that observed in vivo. Germinal cells formed a basal lamina, and the upper layer was composed of large, flattened cells with an unusually thick asymmetrical plasma membrane on the apical surface. Electron microscopic and radioactive tracers demonstrated "leaky" zonulae occludentes with a restricted permeability to small molecules. The movement of urea was retarded in comparison to water. Unlike the slow turnover of adult epithelium in vivo, maturation and sloughing of apical cells were measurable. Transfer of cells could be effected and growth maintained for up to 4 mo. These results may indicate the necessity of a nutrient-permeable growth surface for the polarized differentiation of adult transitional epithelium.

  19. The growth and differentiation of transitional epithelium in vitro

    PubMed Central

    1979-01-01

    The development of rat transitional epithelial cells grown on conventional non-permeable surfaces was compared with development on permeable collagen supports. On glass or plastic surfaces, cells grew as expanding nomolayer sheets. Once confluent, growth continued with a bilayer being formed in most areas and apical cells being continuously sloughed off. Although most cells were interconnected by desmosomes, and junctional complexes were formed, no other indications of differentiation were observed. After 2-3 wk of growth, division stopped and cel death ensued. In contrast, single-cell suspensions plated on collagen-coated nylon disks reassociated into multicellular islands and commenced growth. Mitoses were confined to the basal cells in contact with the permeable substrate. The islands developed into epithelial trilayers, tapering to monolayers along spreading edges. Once the islands were confluent, stratification was completed and appeared similar to that observed in vivo. Germinal cells formed a basal lamina, and the upper layer was composed of large, flattened cells with an unusually thick asymmetrical plasma membrane on the apical surface. Electron microscopic and radioactive tracers demonstrated "leaky" zonulae occludentes with a restricted permeability to small molecules. The movement of urea was retarded in comparison to water. Unlike the slow turnover of adult epithelium in vivo, maturation and sloughing of apical cells were measurable. Transfer of cells could be effected and growth maintained for up to 4 mo. These results may indicate the necessity of a nutrient-permeable growth surface for the polarized differentiation of adult transitional epithelium. PMID:574872

  20. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Treatment of oral cancer cells with nonthermal atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Yurkovich, James; Han, Xu; Coffey, Benjamin; Klas, Matej; Ptasinska, Sylwia

    2012-10-01

    Non-thermal atmospheric pressure plasmas are specialized types of plasma that are proposed as a new agent to induce death in cancer cells. The experimental phase of this study will test the application of such plasma to SCC-25 oral cancer cells to determine if it is possible to induce apoptosis or necrosis. Different sources are used on the cells to find a configuration which kills cancer cells but has no effect on normal cells. The sources have been developed based on the dielectric barrier discharge between two external electrodes surrounding a dielectric tube; such a configuration has been shown to induce breaks in DNA strands. Each configuration is characterized using an optical emission spectrophotometer and iCCD camera to determine the optimal conditions for inducing cell death. The cells are incubated after irradiation with plasma, and cell death is determined using microscopy imaging to identify antibody interaction within the cells. These studies are important for better understanding of plasma species interactions with cancer cells and mechanisms of DNA damage and at latter stage they will be useful for the development of advanced cancer therapy.

  2. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    NASA Astrophysics Data System (ADS)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells in 3D collagen matrix indicates a therapeutic potential that warrants further research.

  3. Molecular IgV(H) analysis demonstrates highly somatic mutated B cells in synovialitis of osteoarthritis: a degenerative disease is associated with a specific, not locally generated immune response.

    PubMed

    Krenn, V; Hensel, F; Kim, H J; Souto Carneiro, M M; Starostik, P; Ristow, G; König, A; Vollmers, H P; Müller-Hermelink, H K

    1999-11-01

    In osteoarthritis (OA), the synovial tissue exhibits a nonfollicular inflammatory infiltration with a characteristic arrangement of lymphocytes and plasma cells. These arrangements are either small perivascular aggregates with plasma cells surrounding the lymphocytes or small groups of plasma cells, located in the vicinity of small blood vessels. These patterns suggest that B lymphocytes directly differentiate into plasma cells. To understand the B-cell response in OA, we analyzed the V(H) genes from B cells of synovial tissue of nine OA patients (average age, 71.5+/-10.5 years; six female and three male). V(H) gene repertoires were determined from RNA prepared from tissue cryosections and from DNA of single isolated B lymphocytes and plasma cells. The inflammatory infiltrate was analyzed immunohistochemically by detecting CD20, Ki-M4 (follicular dendritic cells), CD4, IgG, IgM, IgA, Ki-67, and by simultaneous demonstration of the plasma-cell-specific antigen CD138 (syndecan-1) and factor VIII. The molecular data demonstrate B cells with a high number of somatic mutations (average, 16.5 to 19.8), and high ratios of replacement to silent mutations in the small lymphocytic/plasmacellular aggregates of OA. In the tissue cryosections, the values of the sigmaR/sigmaS at the complementarity determining regions were 5.3 and 2.0 in the framework regions. For both the isolated B lymphocytes and plasma cells, the value of this ratio in the complementarity determining regions was 3.5. In the framework regions, the values of this ratio were 2.0 for the isolated B cells and 1.8 for the plasma cells. B lymphocytes and plasma cells exhibited a distribution not described thus far. Two patterns of B-cell distribution could be observed: (a) Centrally located CD20+ B and CD4+ and CD8+ T lymphocytes were surrounded directly by IgG (predominantly) or IgA and IgM plasma cells. No proliferating Ki-67-positive cells and no follicular dendritic cells (germinal centers) could be detected in the aggregates; (b) Plasma cells (predominantly IgG) were located directly near endothelial cells of small blood vessels. The finding of highly mutated V(H) genes in B lymphocytes and the characteristic arrangement of B lymphocytes and plasma cells suggests that B cells, which participate in OA synovialitis, have undergone germinal center reaction at different sites. This may explain the low inflammatory infiltration without germinal centers in OA, which is a feature of this primarily degenerative joint disease.

  4. Measurement of Atmospheric Pressure Air Plasma via Pulsed Electron Beam and Sustaining Electric Field

    DTIC Science & Technology

    2007-08-29

    cell plasma code ( MAGIC ) and an air-chemistry code are used to quantify beam propagation through an electron-beam transmission window into air and the...to generate and maintain plasma in air on the timescale of 1 ms. 15. SUBJECT TERMS Air Chemistry, Air Plasma, MAGIC Modeling, Plasma, Power, Test-Cell...Microwave diagnostics quantify electron number density and optical diagnostics quantify ozone production. A particle in cell plasma code ( MAGIC ) and an

  5. Modification of Expanded NK Cells with Chimeric Antigen Receptor mRNA for Adoptive Cellular Therapy.

    PubMed

    Chu, Yaya; Flower, Allyson; Cairo, Mitchell S

    2016-01-01

    NK cells are bone marrow-derived cytotoxic lymphocytes that play a major role in the rejection of tumors and cells infected by viruses. The regulation of NK activation vs inhibition is regulated by the expression of a variety of NK receptors (NKRs) and specific NKRs' ligands expressed on their targets. However, factors limiting NK therapy include small numbers of active NK cells in unexpanded peripheral blood and lack of specific tumor targeting. Chimeric antigen receptors (CAR) usually include a single-chain Fv variable fragment from a monoclonal antibody, a transmembrane hinge region, and a signaling domain such as CD28, CD3-zeta, 4-1BB (CD137), or 2B4 (CD244) endodimers. Redirecting NK cells with a CAR will circumvent the limitations of the lack of NK targeting specificity. This chapter focuses on the methods to expand human NK cells from peripheral blood by co-culturing with feeder cells and to modify the expanded NK cells efficiently with the in vitro transcribed CAR mRNA by electroporation and to test the functionality of the CAR-modified expanded NK cells for use in adoptive cellular immunotherapy.

  6. Fabrication method for cores of structural sandwich materials including star shaped core cells

    DOEpatents

    Christensen, R.M.

    1997-07-15

    A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells is disclosed. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded. 3 figs.

  7. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    NASA Astrophysics Data System (ADS)

    Mohades, Soheila

    Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer treatment. Plasma, the fourth state of matter, is composed of electrons, ions, reactive molecules (radicals and non-radicals), excited species, radiation, and heat. A sufficient dose (time) of plasma exposure can induce death in cancer cells. The plasma pencil is employed to study the anti-tumor properties of this treatment on epithelial cells. The plasma pencil has been previously used for the inactivation of bacteria, destroying amyloid fibrils, and the killing of various cancer cells. Bladder cancer is the 9th leading cause of cancer. In this dissertation, human urinary bladder tissue with the squamous cell carcinoma disease (SCaBER cells) is treated with LTP utilizing two different approaches: direct plasma exposure and Plasma Activated Media (PAM) as an advancement to the treatment. PAM is produced by exposing a liquid cell culture medium to the plasma pencil. Direct LTP treatment of cancer cells indicates a dose-dependent killing effect at post-treatment times. Similarly, PAM treatment shows an anti-cancer effect by inducing substantial cell death. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the biomedical effects of LTP treatment. This study demonstrates the capability of the plasma pencil to transport ROS/RNS into cell culture media leading to their activation. The effectiveness of PAM against SCaBER cells is the highest when it is used immediately after preparation. It is found that the killing effect of PAM decreases gradually over time, depending on the dose of plasma exposure. Hydrogen peroxide is known as one of the most stable and impactful ROS in biological systems. Measurements show that the plasma pencil generates a significant amount of hydrogen peroxide in PAM. Interestingly, the concentration of hydrogen peroxide in PAM decreases gradually over time, which correlates well with the decrease of PAM effectiveness with storage time. While the effects of PAM treatment on cancerous epithelial cell lines have been studied, much less is known about the interaction of PAM with normal epithelial cells. Effects of PAM on non-cancerous Madin-Darby Canine kidney (MDCK) epithelial cells indicates that MDCK cells are much more robust than SCaBER cells against PAM treatment. The dose of PAM, which causes a widespread death in SCaBER cells, does not significantly impact viability and morphology of MDCK cells. Time-lapse imaging of normal cells shows that PAM treatment inhibits cell proliferation and random migration. In addition, immunofluorescence staining shows that PAM treatment causes a significant reduction in the nuclear localization of proliferation marker, Ki-67, without any damage to the morphological properties of cells including adhesions and cytoskeleton function. This dissertation clearly demonstrates the capability of PAM treatment in inducing death in cancerous cells that can be important for cancer therapy. Hydrogen peroxide is identified as an important ROS responsible for the anti-tumor properties of PAM, although much additional work remains to comprehensively understand all the involved ROS/RNS and their role in PAM treatment.

  8. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    PubMed

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  9. Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death

    NASA Astrophysics Data System (ADS)

    Wang, Yuyang; Cheng, Cheng; Gao, Peng; Li, Shaopeng; Shen, Jie; Lan, Yan; Yu, Yongqiang; Chu, Paul K.

    2017-02-01

    An atmospheric-pressure air plasma is employed to treat C6 glioma cells in vitro. To elucidate on the mechanism causing cell death and role of reactive species (RS) in the medium produced by the plasma, the concentration of the long-lived RS such as hydrogen peroxide, nitrate, and ozone in the plasma-treated liquid (phosphate-buffered saline solution) is measured. When vitamin C is added to the medium as a ROS quencher, the viability of C6 glioma cells after the plasma treatment is different from that without vitamin C. The results demonstrate that reactive oxygen species (ROS) such as H2O2, and O3 constitute the main factors for inactivation of C6 glioma cells and the reactive nitrogen species (RNS) may only play an auxiliary role in cell death.

  10. [HIV encephalopathy due to drug resistance despite 2-year suppression of HIV viremia by cART].

    PubMed

    Sekiya, Hiroaki; Kawamoto, Michi; Togo, Masaya; Yoshimura, Hajime; Imai, Yukihiro; Kohara, Nobuo

    2014-01-01

    A 57-year-old man presented with subacute progression of cognitive impairment (MMSE 22/30). He had been diagnosed as AIDS two years before and taking atazanavir, abacavir, and lamivudine. HIV RNA of plasma had been negative. On admission, HIV RNA was 4,700 copy/ml and 5,200 copy/ml in plasma and in cerebrospinal fluid respectively, suggesting treatment failure of cART. The brain magnetic resonance imaging showed high intensity areas in the white matter of the both frontal lobes and brain stem. The drug-resistance test revealed the resistance of lamivudine and abacavir. We introduced the CNS penetration effectiveness (CPE) score to evaluate the drug penetration of HIV drugs. As the former regimen had low points (7 points), we optimized the regimen to raltegravir, zidovudine, and darunavir/ritonavir (scoring 10 points). His cognitive function improved as normal (MMSE 30/30) in 2 weeks and HIV-RNA became undetectable both in plasma and CSF in a month. In spite of the cognitive improvement, the white matter hyperintensity expanded. To rule out malignant lymphoma or glioblastoma, the brain biopsy was performed from the right frontal lobe. It revealed microglial hyperplasia and diffuse perivascular infiltration by CD8+/CD4-lymphocytes. No malignant cells were found and the polymerase chain reaction analyses excluded other viruses. Considering the drug penetration to the central nervous system is important for treating HIV encephalopathy.

  11. Effect of Atmospheric Plasma Treatment to Titanium Surface on Initial Osteoblast-Like Cell Spreading. .

    PubMed

    Kim, In-Hye; Son, Jun-Sik; Kwon, Tae-Yub; Kim, Kyo-Han

    2015-01-01

    Plasma treatments are becoming a popular method for modifying the characteristics of a range of substrate surfaces. Atmospheric pressure plasma is cost-efficient, safe and simple compared to high-pressure plasma. This study examined the effects of atmospheric pressure plasma to a titanium (Ti) surface on osteoblast-like cell (osteoblast) spreading and cellular networks. The characteristics of the Ti surface before and after the atmospheric plasma treatment were analyzed by X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and an optical 3D profiling system. The morphology of osteoblasts attached to the Ti surfaces was observed by SEM and confocal laser scanning microscopy. The atmospheric pressure plasma made the Ti surfaces more hydrophilic. The osteoblasts that adhered to the untreated surface were round and spherical, whereas the cells covered a larger surface area on the plasma-treated surface. The plasma-treated Ti surface showed enhanced cell spreading and migration with more developed cellular networks. In conclusion, an atmospheric plasma treatment is a potential surface modifying method that can enhance the initial the cell affinity at the early stages in vitro.

  12. Additive endoscopic resection may be sufficient for patients with a positive lateral margin after endoscopic resection of early gastric cancer.

    PubMed

    Kim, Hae Won; Kim, Jie-Hyun; Park, Jun Chul; Jeon, Mi Young; Lee, Yong Chan; Lee, Sang Kil; Shin, Sung Kwan; Chung, Hyun Soo; Noh, Sung Hoon; Kim, Jong Won; Choi, Seung Ho; Park, Jae Jun; Youn, Young Hoon; Park, Hyojin

    2017-11-01

    No well-established treatment strategies exist for lateral margin positivity (LM+) alone after endoscopic resection (ER) of early gastric cancer (EGC). Thus, we aimed to clarify a treatment strategy for non-curative resection (non-CR) with LM+ alone after ER in EGC. Among 2065 patients with EGC treated by ER, 76 (3.6%) with only LM+ after non-CR of EGC were reviewed retrospectively. Of these, 28 underwent gastrectomy, 25 underwent argon plasma coagulation (APC), and 23 underwent repeat ER (re-ER). We analyzed the clinicopathologic characteristics of all patients and compared those who underwent additive surgery, APC, or re-ER. Of the 76 patients, 28 (36.8%) fulfilled the absolute criteria and 48 (63.2%) the expanded criteria for ER. Among the latter patients, the proportion undergoing additive surgery was 75.0%, higher than that of patients in the former group (P = .014). Residual cancer cells were observed in 70.6% of patients after additive surgery or re-ER. Residual cancer cells were observed significantly more often in patients with undifferentiated-type than in those with differentiated-type EGC (P = .02). However, no lymph node metastasis was observed in any patient after additive surgery. Our results suggest that endoscopic treatment may be a sufficient additive therapy for patients with LM+ alone after ER, irrespective of whether the absolute or expanded ER criteria are used. However, as complete ablation of remnant cells cannot be guaranteed, re-ER is a better additive treatment than APC. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  13. COASTING ARC ION SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1957-09-10

    An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.

  14. Absorption of laser plasma in competition with oscillation currents for a terahertz spectrum.

    PubMed

    Li, Xiaolu; Bai, Ya; Li, Na; Liu, Peng

    2018-01-01

    We generate terahertz radiation in a supersonic jet of nitrogen molecules pumped by intense two-color laser pulses. The tuning of terahertz spectra from blue shift to red shift is observed by increasing laser power and stagnation pressure, and the red shift range is enlarged with the increased stagnation pressure. Our simulation reveals that the plasma absorption of the oscillation currents and expanded plasma column owing to increased laser intensity and gas number density are crucial factors in the recurrence of the red shift of terahertz spectra. The findings disclose the microscopic mechanism of terahertz radiation and present a controlling knob for the manipulation of a broadband terahertz spectrum from laser plasma.

  15. Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis.

    PubMed

    Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A

    2013-03-07

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na(+)/Ca(2+) exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na(+)/K(+) pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.

  16. Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    PubMed Central

    Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A

    2013-01-01

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis. PMID:23470534

  17. Cold Atmosphere Plasma in Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2012-10-01

    Plasma is an ionized gas that is typically generated in high-temperature laboratory conditions. Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Areas of potential application of cold atmospheric plasmas (CAP) include dentistry, drug delivery, dermatology, cosmetics, wound healing, cellular modifications, and cancer treatment. Various diagnostic tools have been developed for characterization of CAP including intensified charge-coupled device cameras, optical emission spectroscopy and electrical measurements of the discharge propertied. Recently a new method for temporally resolved measurements of absolute values of plasma density in the plasma column of small-size atmospheric plasma jet utilizing Rayleigh microwave scattering was proposed [1,2]. In this talk we overview state of the art of CAP diagnostics and understanding of the mechanism of plasma action of biological objects. The efficacy of cold plasma in a pre-clinical model of various cancer types (long, bladder, and skin) was recently demonstrated [3]. Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. For instance a strong selective effect was observed; the resulting 60--70% of lung cancer cells were detached from the plate in the zone treated with plasma, whereas no detachment was observed in the treated zone for the normal lung cells under the same treatment conditions. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasma induces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at about 24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed. [4pt] [1] Shashurin A., Shneider M.N., Dogariu A., Miles R.B. and Keidar M. Appl. Phys. Lett. (2010) 96, 171502.[0pt] [2] Shashurin A., Shneider M.N., Keidar M. Plasma Sources Sci. Technol. 21 (2012) 034006.[0pt] [3]. M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta , R. Ravi, R. Guerrero-Preston, B. Trink, British Journal of Cancer, 105, 1295-1301, 2011

  18. Apoptotic effects on cultured cells of atmospheric-pressure plasma produced using various gases

    NASA Astrophysics Data System (ADS)

    Tominami, Kanako; Kanetaka, Hiroyasu; Kudo, Tada-aki; Sasaki, Shota; Kaneko, Toshiro

    2016-01-01

    This study investigated the effects of low-temperature atmospheric-pressure plasma on various cells such as rat fibroblastic Rat-1 cell line, rat neuroblastoma-like PC12 cell line, and rat macrophage-like NR8383 cell line. The plasma was irradiated directly to a culture medium containing plated cells for 0-20 s. The applied voltage, excitation frequency, and argon or helium gas flow were, respectively, 3-6 kV, 10 kHz, and 3 L/min. Cell viability and apoptotic activity were evaluated using annexin-V/propidium iodide staining. Results showed that the low-temperature atmospheric-pressure plasma irradiation promoted cell death in a discharge-voltage-dependent and irradiation-time-dependent manner. Furthermore, different effects are produced depending on the cell type. Moreover, entirely different mechanisms might be responsible for the induction of apoptosis in cells by helium and argon plasma.

  19. Affinity of antigen encounter and other early B-cell signals determine B-cell fate

    PubMed Central

    Benson, Micah J; Erickson, Loren D; Gleeson, Michael W; Noelle, Randolph J

    2010-01-01

    Three possible effector fates await the naïve follicular B cell following antigen stimulation in thymus-dependent reactions. Short-lived plasma cells produce an initial burst of germline-encoded protective antibodies, and long-lived plasma cells and memory B cells arise from the germinal center and function to enhance and sustain the humoral immune response. The inherent B-cell receptor affinity of naïve follicular B cells and the contribution of other early B-cell signals pre-determines the pattern of transcription factor expression and the differentiation path taken by these cells. High initial B-cell receptor affinity shunts naïve follicular B-cell clones towards the short-lived plasma cell fate, whereas modest-affinity clones are skewed towards a plasma cell fate and low-affinity clones are recruited into the germinal center and are selected for both long-lived plasma cells and memory B cell pathways. In the germinal center reaction, increased levels of the transcription factor interferon regulatory factor-4 drive the molecular program that dictates differentiation into the long-lived plasma cell phenotype but has no impact on the memory B cell compartment. We hypothesize that graded interferon regulatory factor-4 levels driven by signals to B cells, including B-cell receptor signal strength, are responsible for this branch point in the B-cell terminal differentiation pathway. PMID:17433651

  20. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells.

    PubMed

    Schneider, Christin; Arndt, Stephanie; Zimmermann, Julia L; Li, Yangfang; Karrer, Sigrid; Bosserhoff, Anja-Katrin

    2018-06-01

    Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death, and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.

  1. Modulation of innate and adaptive cellular immunity relevant to HIV-1 vaccine design by seminal plasma.

    PubMed

    Selva, Kevin J; Kent, Stephen J; Parsons, Matthew S

    2017-01-28

    Mucosal exposure to HIV-1 infection generally occurs in the presence of semen. Immunomodulation by seminal plasma is well described in the reproductive biology literature. Little is known, however, about the impact of seminal plasma on innate and adaptive anti-HIV-1 cellular immunity. The study investigated the effects of seminal plasma on immune responses considered important for prophylactic HIV-1 vaccine development, namely innate and adaptive cellular immunity mediated by natural killer (NK) cells and T cells, respectively. The ability of seminal plasma to modulate direct, antibody-dependent and cytokine-stimulated NK cell activation was assessed utilizing intracellular cytokine staining. Direct and antibody-dependent cellular cytotoxicity was assessed using lactate dehydrogenase release assays. The effects of seminal plasma on T-cell activation upon stimulation with staphylococcus enterotoxin B or HIV-1 Gag peptides were assessed by intracellular cytokine staining. The impact of seminal plasma on redirected cytolysis mediated by T cells was measured using lactate dehydrogenase release assays. Both direct and antibody-dependent NK cell activation were dramatically impaired by the presence of either HIV-1-uninfected or HIV-1-infected seminal plasma in a dose-dependent manner. Additionally, seminal plasma suppressed both direct and antibody-dependent NK cell-mediated cytolysis, including anti-HIV-1 antibody-dependent cytolysis of gp120-pulsed CEM.NKr-CCR5 cells. Finally, seminal plasma attenuated both HIV-1 Gag-specific and staphylococcus enterotoxin B-induced CTL activation. Semen contains potent immunosuppressors of both NK cell and CD8 T-cell-mediated anti-HIV-1 immune responses. This could impede attempts to provide vaccine-induced immunity to HIV-1.

  2. Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells.

    PubMed

    Xu, Dehui; Xu, Yujing; Ning, Ning; Cui, Qingjie; Liu, Zhijie; Wang, Xiaohua; Liu, Dingxin; Chen, Hailan; Kong, Michael G

    2018-01-01

    Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment.

  3. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth.

    PubMed

    Hsu, Po-Kai; Tsay, Yi-Fang

    2013-10-01

    This study of the Arabidopsis (Arabidopsis thaliana) nitrate transporters NRT1.11 and NRT1.12 reveals how the interplay between xylem and phloem transport of nitrate ensures optimal nitrate distribution in leaves for plant growth. Functional analysis in Xenopus laevis oocytes showed that both NRT1.11 and NRT1.12 are low-affinity nitrate transporters. Quantitative reverse transcription-polymerase chain reaction and immunoblot analysis showed higher expression of these two genes in larger expanded leaves. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.11 and NRT1.12 are plasma membrane transporters expressed in the companion cells of the major vein. In nrt1.11 nrt1.12 double mutants, more root-fed (15)NO3(-) was translocated to mature and larger expanded leaves but less to the youngest tissues, suggesting that NRT1.11 and NRT1.12 are required for transferring root-derived nitrate into phloem in the major veins of mature and larger expanded leaves for redistributing to the youngest tissues. Distinct from the wild type, nrt1.11 nrt1.12 double mutants show no increase of plant growth at high nitrate supply. These data suggested that NRT1.11 and NRT1.12 are involved in xylem-to-phloem transfer for redistributing nitrate into developing leaves, and such nitrate redistribution is a critical step for optimal plant growth enhanced by increasing external nitrate.

  4. Quantitative analysis of cell-free Epstein-Barr virus DNA in the plasma of patients with peripheral T-cell and NK-cell lymphomas and peripheral T-cell proliferative diseases.

    PubMed

    Suwiwat, Supaporn; Pradutkanchana, Jintana; Ishida, Takafumi; Mitarnun, Winyou

    2007-12-01

    The level of circulating EBV DNA is a prognostic marker in patients with some EBV-associated malignant diseases. To investigate the presence and nature of Epstein-Barr virus (EBV) DNA in the plasma and to evaluate the correlation of plasma concentrations of EBV DNA with the EBV genomic status in peripheral blood T-cells and neoplastic cells and with the clinical outcome of patients with peripheral T-cell and NK-cell lymphomas (PTCL) and peripheral T-cell proliferative diseases (PTPD). EBV DNA in the plasma of 45 patients and 45 controls was measured using real-time PCR. The presence of the EBV genome in the isolated peripheral blood lymphocytes (CD3+ and CD3- cells) was analysed by PCR. Detection of EBV-encoded early RNA (EBER) in corresponding tumor tissues was carried out using in situ hybridization. DNase I digestion was applied to plasma samples to detect naked EBV DNA. Cell-free EBV DNA was detected in 32/38 (84%) of PTCL patients and 5/7 (71%) of PTPD patients, but not in the controls. Patients with EBV genome in peripheral blood CD3+ cells and EBV genome (EBER) in the tumor cells, compared to those without these findings, had significantly higher plasma EBV DNA levels. The majority of circulating EBV DNA molecules was naked form. The plasma EBV DNA levels were not related to survival. The concentration of EBV DNA in the plasma was not a prognostic marker in PTCL and PTPD patients.

  5. Effects of ADAM10 and ADAM17 Inhibitors on Natural Killer Cell Expansion and Antibody-dependent Cellular Cytotoxicity Against Breast Cancer Cells In Vitro.

    PubMed

    Pham, Dang-Huan; Kim, Ju-Sun; Kim, Sang-Ki; Shin, Dong-Jun; Uong, Nguyen-Thanh-Tung; Hyun, Hoon; Yoon, Mee Sun; Kang, Sin Jae; Ryu, Young Jae; Cho, Jin Seong; Yoon, Jung Han; Lee, Ji Shin; Cho, Duck; Lee, Soo-Hyeon; Park, Min Ho

    2017-10-01

    The inhibition of a disintegrin and metalloproteinase (ADAM) has the potential to become a novel approach for natural killer (NK) cell-based cancer immunotherapy. Thus, the aim of this study was to investigate the influence of ADAM10 and ADAM17 inhibitors on expanded NK cell to enhance antibody-dependent cellular cytotoxicity (ADCC) in breast cancer cell lines. NK cells were expanded in medium supplemented with an ADAM10 or ADAM17 inhibitor to prevent the shedding of soluble CD16/FcγRIII. The expression level of CD16 and production of interferon-gamma (IFN-γ) was detected by flow cytometry using specific antibodies. ADCC activity of expanded NK cells was estimated in trastuzumab treated breast cancer cell lines such as MCF-7, MDA-MB-231, SKBR3, and BT-474 cells. The ADAM17 inhibitor increased the purity of expanded NK cells to 90% after 14 days at 5 and 10 μM in vitro (p=0.043). However, the expansion rate of NK cells was decreased at 10 μM of the ADAM 17 inhibitor (p=0.043). Inhibition of ADAM10 suppressed the expansion of NK cells, although the NK purity was increased at 1 μM of the inhibitor. The expression of CD16 was significantly increased at 1 and 5 μM of the ADAM17 inhibitor (p=0.046, 0.028, respectively) during the culturing period. Inhibition of ADAM10 reduced the expression of CD16 on NK cells. The cytotoxic activity of the ADAM17 inhibitor treated NK cells against MCF-7 (p=0.039) and BT-474 (p=0.027) cells was significantly elevated. The ADCC activity of NK cells treated with 5 μM of ADAM17 inhibitor was significantly increased against SKBR-3 and BT-474 (p=0.027). Inhibition of ADAM17 increased the production of IFN-γ in expanded NK cells. The inhibition of ADAM17 enhanced the purity of expanded NK cells and the ADCC activity of these cells against trastuzumab treated breast cancer cell lines. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Human platelet lysate successfully promotes proliferation and subsequent chondrogenic differentiation of adipose-derived stem cells: a comparison with articular chondrocytes.

    PubMed

    Hildner, F; Eder, M J; Hofer, K; Aberl, J; Redl, H; van Griensven, M; Gabriel, C; Peterbauer-Scherb, A

    2015-07-01

    Fetal calf serum (FCS) bears a potential risk for carrying diseases and eliciting immune reactions. Nevertheless, it still represents the gold standard as medium supplement in cell culture. In the present study, human platelet lysate (PL) was tested as an alternative to FCS for the expansion and subsequent chondrogenic differentiation of human adipose-derived stem cells (ASCs). ASCs were expanded with 10% FCS (group F) or 5% PL (group P). Subsequently, three-dimensional (3D) micromass pellets were created and cultured for 5 weeks in chondrogenic differentiation medium. Additionally, the de- and redifferentiation potential of human articular chondrocytes (HACs) was evaluated and compared to ASCs. Both HACs and ASCs cultured with PL showed strongly enhanced proliferation rates. Redifferentiation of HACs was possible for cells expanded up to 3.3 population doublings (PD). At this stage, PL-expanded HACs demonstrated better redifferentiation potential than FCS-expanded cells. ASCs could also be differentiated following extended passaging. Glycosaminoglycan (GAG) quantification and qRT-PCR of 10 cartilage related markers demonstrated a tendency for increased chondrogenic differentiation of PL-expanded ASCs compared to cells expanded with FCS. Histologically, collagen type II but also collagen type X was mainly present in group P. The present study demonstrates that PL strongly induces proliferation of ASCs, while the chondrogenic differentiation potential is retained. HACs also showed enhanced proliferation and even better redifferentiation when previously expanded with PL. This suggests that PL is superior to FCS as a supplement for the expansion of ASCs and HACs, particularly with regard to chondrogenic (re)differentiation. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.

    2014-03-15

    The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incidentmore » laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.« less

  8. Theory of Dust Voids in Plasmas

    NASA Technical Reports Server (NTRS)

    Goree, J.; Morfill, G. E.; Tsytovich, V. N.; Vladimirov, S. V.

    1999-01-01

    Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M = 1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.

  9. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    PubMed

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  10. Comparison of Uncultured Marrow Mononuclear Cells and Culture-Expanded Mesenchymal Stem Cells in 3D Collagen-Chitosan Microbeads for Orthopedic Tissue Engineering

    PubMed Central

    Wise, Joel K.; Alford, Andrea I.; Goldstein, Steven A.

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25×106 cells/mL, containing an estimated 5×104 MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2×105 cells/mL) were added to a 65–35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead-based approach to culturing and delivering cells for tissue regeneration, and suggests that fresh BMMC may be an alternative to using culture-expanded MSC for bone tissue engineering. PMID:23879621

  11. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering.

    PubMed

    Wise, Joel K; Alford, Andrea I; Goldstein, Steven A; Stegemann, Jan P

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25 × 10(6) cells/mL, containing an estimated 5 × 10(4) MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2 × 10(5) cells/mL) were added to a 65-35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead-based approach to culturing and delivering cells for tissue regeneration, and suggests that fresh BMMC may be an alternative to using culture-expanded MSC for bone tissue engineering.

  12. Treatment of prostate cancer cell lines and primary cells using low temperature plasma

    NASA Astrophysics Data System (ADS)

    O'Connell, Deborah; Hirst, Adam; Frame, Fiona F.; Maitland, Norman J.

    2014-10-01

    The mechanisms of cell death after plasma treatment of both benign and cancerous prostate epithelial cells are investigated. Prostate cancer tissue was obtained with patient consent from targeted needle core biopsies following radical prostatectomy. Primary cells were cultured from cancer tissue and plated onto a chamber slide at a density of 10,000 cells per well in 200 microliter of stem cell media (SCM). The treated sample was previously identified as Gleason grade 7 cancer through tissue histo-pathology. A dielectric barrier discharge (DBD) jet configuration, with helium as a carrier gas, and 0.3% O2 admixture was used for treating the cells. Reactive oxygen and nitrogen species (RONS) produced by the plasma are believed to be the main mediators of the plasma-cell interaction and response. We found the concentration of reactive oxygen species (ROS) induced inside the cells increased with plasma exposure. Exposure to the plasma for >3 minutes showed high levels of DNA damage compared to untreated and hydrogen peroxide controls. Cell viability and cellular recovery are also investigated and will be presented. All findings were common to both cell lines, suggesting the potential of LTP therapy for both benign and malignant disease.

  13. Nonthermal-plasma-mediated animal cell death

    NASA Astrophysics Data System (ADS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  14. RanGAP1 is a continuous marker of the Arabidopsis cell division plane

    PubMed Central

    Xu, Xianfeng Morgan; Zhao, Qiao; Rodrigo-Peiris, Thushani; Brkljacic, Jelena; He, Chao Sylvia; Müller, Sabine; Meier, Iris

    2008-01-01

    In higher plants, the plane of cell division is faithfully predicted by the preprophase band (PPB). The PPB, a cortical ring of microtubules and F-actin, disassembles upon nuclear-envelope breakdown. During cytokinesis, the expanding cell plate fuses with the plasma membrane at the cortical division site, the site of the former PPB. The nature of the “molecular memory” that is left behind by the PPB and is proposed to guide the cell plate to the cortical division site is unknown. RanGAP is the GTPase activating protein of the small GTPase Ran, which provides spatial information for nucleocytoplasmic transport and various mitotic processes in animals. Here, we show that, in dividing root cells, Arabidopsis RanGAP1 concentrates at the PPB and remains associated with the cortical division site during mitosis and cytokinesis, requiring its N-terminal targeting domain. In a fass/ton2 mutant, which affects PPB formation, RanGAP1 recruitment to the PPB site is lost, while its PPB retention is microtubule-independent. RanGAP1 persistence at the cortical division site, but not its initial accumulation at the PPB requires the 2 cytokinesis-regulating kinesins POK1 and POK2. Depletion of RanGAP by inducible RNAi leads to oblique cell walls and cell-wall stubs in root cell files, consistent with cytokinesis defects. We propose that Arabidopsis RanGAP, a continuous positive protein marker of the plant division plane, has a role in spatial signaling during plant cell division. PMID:19011093

  15. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings.

    PubMed

    Shen, Yang; Wang, Guixue; Chen, Liang; Li, Hao; Yu, Ping; Bai, Mengjun; Zhang, Qin; Lee, James; Yu, Qingsong

    2009-11-01

    Plasma nanocoated films with trimethylsilane-oxygen monomers showed outstanding biocompatibility in our previous studies. In this study, endothelialization on biomedical nitinol alloy surfaces was systematically investigated. Our study focuses on elucidating the effects of surface micropatternings with micropores and microgrooves combined with plasma nanocoating. Plasma nanocoatings with controlled thickness between 40 and 50 nm were deposited onto micropatterned nitinol surface in a direct current plasma reactor. Bovine aortic endothelial cells were cultured in vitro on these nitinol samples for 1, 3 and 5 days. It was found that rougher surfaces could enhance cell adhesion compared with the smoother surfaces; the surfaces patterned with micropores showed much more endothelialization than microgrooved surface after a 3 days culture. The cell culture results also showed that plasma nanocoatings significantly further increased cell proliferation and cell adhesion on the micropatterned nitinol surfaces, as compared with non-plasma nanocoated surface of nitinol samples. The surface micropatternings combined with plasma nanocoatings could improve the cell adhesion and accelerate surface endothelialization after implantation of intravascular stents, which is expected to reduce in-stent restenosis.

  16. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  17. Altered Antioxidant System Stimulates Dielectric Barrier Discharge Plasma-Induced Cell Death for Solid Tumor Cell Treatment

    PubMed Central

    Park, Daehoon; Choi, Eun H.

    2014-01-01

    This study reports the experimental findings and plasma delivery approach developed at the Plasma Bioscience Research Center, Korea for the assessment of antitumor activity of dielectric barrier discharge (DBD) for cancer treatment. Detailed investigation of biological effects occurring after atmospheric pressure non-thermal (APNT) plasma application during in vitro experiments revealed the role of reactive oxygen species (ROS) in modulation of the antioxidant defense system, cellular metabolic activity, and apoptosis induction in cancer cells. To understand basic cellular mechanisms, we investigated the effects of APNT DBD plasma on antioxidant defense against oxidative stress in various malignant cells as well as normal cells. T98G glioblastoma, SNU80 thyroid carcinoma, KB oral carcinoma and a non-malignant HEK293 embryonic human cell lines were treated with APNT DBD plasma and cellular effects due to reactive oxygen species were observed. Plasma significantly decreased the metabolic viability and clonogenicity of T98G, SNU80, KB and HEK293 cell lines. Enhanced ROS in the cells led to death via alteration of total antioxidant activity, and NADP+/NADPH and GSH/GSSG ratios 24 hours (h) post plasma treatment. This effect was confirmed by annexin V-FITC and propidium iodide staining. These consequences suggested that the failure of antioxidant defense machinery, with compromised redox status, might have led to sensitization of the malignant cells. These findings suggest a promising approach for solid tumor therapy by delivering a lethal dose of APNT plasma to tumor cells while sparing normal healthy tissues. PMID:25068311

  18. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  19. Plasma density injection and flow during coaxial helicity injection in a tokamak

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.

    2018-02-01

    Whole device, resistive MHD simulations of spheromaks and tokamaks have used a large diffusion coefficient that maintains a nearly constant density throughout the device. In the present work, helicity and plasma are coinjected into a low-density plasma in a tokamak with a small diffusion coefficient. As in previous simulations [Hooper et al., Phys. Plasmas 20, 092510 (2013)], a flux bubble is formed, which expands to fill the tokamak volume. The injected plasma is non-uniform inside the bubble. The flow pattern is analyzed; when the simulation is not axisymmetric, an n = 1 mode on the surface of the bubble generates leakage of plasma into the low-density volume. Closed flux is generated following injection, as in experiments and previous simulations. The result provides a more detailed physics analysis of the injection, including density non-uniformities in the plasma that may affect its use as a startup plasma [Raman et al., Phys. Rev. Lett. 97, 175002 (2006)].

  20. BK Polyomavirus-Specific 9mer CD8 T Cell Responses Correlate With Clearance of BK Viremia in Kidney Transplant Recipients: First Report From the Swiss Transplant Cohort Study.

    PubMed

    Leboeuf, C; Wilk, S; Achermann, R; Binet, I; Golshayan, D; Hadaya, K; Hirzel, C; Hoffmann, M; Huynh-Do, U; Koller, M T; Manuel, O; Mueller, N J; Mueller, T F; Schaub, S; van Delden, C; Weissbach, F H; Hirsch, H H

    2017-10-01

    BK polyomavirus (BKPyV) causes premature kidney transplant (KT) failure in 1-15% of patients. Because antivirals are lacking, most programs screen for BKPyV-viremia and, if positive, reduce immunosuppression. To evaluate the relationship of viremia and BKPyV-specific immunity, we examined prospectively cryopreserved plasma and peripheral blood mononuclear cells at the time of transplantation (T0) and at 6 mo (T6) and 12 mo (T12) after transplant from 28 viremic KT patients and 68 nonviremic controls matched for the transplantation period. BKPyV IgG seroprevalence was comparable between cases (89.3%) and controls (91.2%; p = 0.8635), but cases had lower antibody levels (p = 0.022) at T0. Antibody levels increased at T6 and T12 but were not correlated with viremia clearance. BKPyV-specific T cell responses to pools of overlapping 15mers (15mer peptide pool [15mP]) or immunodominant CD8 9mers (9mer peptide pool [9mP]) from the early viral gene region were not different between cases and controls at T0; however, clearance of viremia was associated with stronger 9mP responses at T6 (p = 0.042) and T12 (p = 0.048), whereas 15mP responses were not informative (T6 p = 0.359; T12 p = 0.856). BKPyV-specific T cells could be expanded in vitro from all patients after transplant, permitting identification of 78 immunodominant 9mer epitopes including 50 new ones across different HLA class I. Thus, 9mP-responses may be a novel marker of reconstituting CD8 T cell function that warrants further study as a complement of plasma BKPyV loads for guiding immunosuppression reduction. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    PubMed

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  2. Inertial stratification of an expanding highly ionized multicomponent plasma bunch

    NASA Astrophysics Data System (ADS)

    Kozhenkova, O. A.; Motorin, A. A.; Stupitskii, E. L.

    2013-09-01

    The initial composition of a four-component plasma bunch of a high specific energy has been determined, as well as its characteristics during the process of expansion. It is shown that the interaction of particles under a high energy is of the Coulomb character and this interaction is unable to ensure the same velocity of components with different atomic masses right from the very beginning of bunch expansion, leading to their radical stratification.

  3. Small Surf

    NASA Image and Video Library

    2016-11-04

    A minor solar eruption triggered a crackling, white flash that sent an expanding wave of plasma below it over about six hours (Nov. 4, 2016). Some of the plasma also appeared to surge along a narrow path above the active region as well. Such occurrences are fairly common, but still interesting to watch up close. The images were taken in a wavelength of extreme ultraviolet light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21202

  4. Hemorheological alterations of red blood cells induced by non-thermal dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Kim, Jeongho; Kim, Jae Hyung; Chang, Boksoon; Choi, Eun Ha; Park, Hun-Kuk

    2016-11-01

    Atmospheric pressure non-thermal plasma has been introduced in various applications such as wound healing, sterilization of infected tissues, blood coagulation, delicate surgeries, and so on. The non-thermal plasma generates reactive oxygen species (ROS), including ozone. Various groups have reported that the produced ROS influence proliferation and differentiation of cells, as well as apoptosis and growth arrest of tumor cells. In this study, we investigated the effects of non-thermal plasma on rheological characteristics of red blood cells (RBC). We experimentally measured the extent of hemolysis, deformability, and aggregation of red blood cells (RBC) with respect to exposure times of non-thermal plasma. RBC morphology was also examined using field-emission scanning electron microscopy. The absorbance of hemoglobin released from the RBCs increased with increasing exposure time of the non-thermal plasma. Values of the elongation index and aggregation index were shown to decrease significantly with increasing plasma exposure times. Therefore, hemorheological properties of RBCs could be utilized to assess the performance of various non-thermal plasmas.

  5. Evaluation of the effects of a plasma activated medium on cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohades, S.; Laroussi, M., E-mail: mlarouss@odu.edu; Sears, J.

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma tomore » a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.« less

  6. Actin polymerization drives polar growth in Arabidopsis root hair cells.

    PubMed

    Vazquez, Luis Alfredo Bañuelos; Sanchez, Rosana; Hernandez-Barrera, Alejandra; Zepeda-Jazo, Isaac; Sánchez, Federico; Quinto, Carmen; Torres, Luis Cárdenas

    2014-01-01

    In plants, the actin cytoskeleton is a prime regulator of cell polarity, growth, and cytoplasmic streaming. Tip growth, as observed in root hairs, caulonema, and pollen tubes, is governed by many factors, including calcium gradients, exocytosis and endocytosis, reactive oxygen species, and the cytoskeleton. Several studies indicate that the polymerization of G-actin into F-actin also contributes to tip growth. The structure and function of F-actin within the apical dome is variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in the elongating apices of tip-growing cells suggests that this cytoskeletal array is tightly regulated. We recently reported that sublethal concentrations of fluorescently labeled cytochalasin could be used to visualize the distribution of microfilament plus ends using fluorescence microscopy, and found that the tip region of the growing root hair cells of a legume plant exhibits a clear response to the nodulation factors secreted by Rhizobium. (1) In this current work, we expanded our analysis using confocal microscopy and demonstrated the existence of highly dynamic fluorescent foci along Arabidopsis root hair cells. Furthermore, we show that the strongest fluorescence signal accumulates in the tip dome of the growing root hair and seems to be in close proximity to the apical plasma membrane. Based on these findings, we propose that actin polymerization within the dome of growing root hair cells regulates polar growth.

  7. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO 2 laser

    DOE PAGES

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; ...

    2016-01-20

    Here we discuss how expanding the scope of relativistic plasma research to wavelengths longer than λ/≈0.8₋1.1μm covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ=9₋11 μm CO 2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time tomore » molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One for example is shock-wave ion acceleration from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR laser BESTIA will open new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of Laser Wake Field Accelerator (LWFA) studies into unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100-TW CO2 laser beam will be capable to efficiently generate plasma “bubbles” thousand times bigger in volume compared to a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate study of external seeding and staging of LWFA.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Arman; DeCourcey, Joseph; Larbi, Nadia Ben

    Highlights: •Knock-down of syntaxin-4 in U266 plasma cells resulted in reduction of IgE secretion. •Knock-down of syntaxin-4 also leads to the accumulation of IgE in the cell. •Immuno-fluorescence staining shows co-localisation of IgE and syntaxin-4 in U266 cells. •Findings suggest a critical requirement for syntaxin-4 in IgE secretion from plasma cells. -- Abstract: The humoral immune system provides a crucial first defense against the invasion of microbial pathogens via the secretion of antigen specific immunoglobulins (Ig). The secretion of Ig is carried out by terminally differentiated B-lymphocytes called plasma cells. Despite the key role of plasma cells in the immunemore » response, the mechanisms by which they constitutively traffic large volumes of Ig out of the cell is poorly understood. The involvement of Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in the regulation of protein trafficking from cells has been well documented. Syntaxin-4, a member of the Qa SNARE syntaxin family has been implicated in fusion events at the plasma membrane in a number of cells in the immune system. In this work we show that knock-down of syntaxin-4 in the multiple myeloma U266 human plasma cell line results in a loss of IgE secretion and accumulation of IgE within the cells. Furthermore, we show that IgE co-localises with syntaxin-4 in U266 plasma cells suggesting direct involvement in secretion at the plasma membrane. This study demonstrates that syntaxin-4 plays a critical role in the secretion of IgE from plasma cells and sheds some light on the mechanisms by which these cells constitutively traffic vesicles to the surface for secretion. An understanding of this machinery may be beneficial in identifying potential therapeutic targets in multiple myeloma and autoimmune disease where over-production of Ig leads to severe pathology in patients.« less

  9. Plasma needle: treatment of living cells and tissues

    NASA Astrophysics Data System (ADS)

    Stoffels, Eva

    2003-10-01

    Non-thermal plasmas are capable of refined treatment of heat sensitive surfaces. Recently, many non-thermal sources working under atmospheric pressure have been constructed. Their main applications are various surface treatments: cleaning, etching, changing the wettability/adhesion, and bacterial decontamination. A new research at the Eindhoven University of Technology focuses on in vivo treatment by means of a novel non-thermal plasma source (the plasma needle). At present, a fundamental study has been undertaken to identify all possible responses of living objects exposed to the plasma. Plasma treatment does not lead to cell death (necrosis), which is a cause of inflammation. On the contrary, we observe various sophisticated reactions of mammalian cells, e.g. cell detachment (loss of cell contact) and programmed cell death (apoptosis). Moreover, under certain conditions the plasma is capable of killing bacteria, while eukaryotic cells remain unharmed. These findings may result in development of new techniques, like bacterial sterilization of infected (living) tissues or removal of cells without inflammatory response, and on a longer time scale to new methods in the health care. Possible applications include treatment of skin ailments, aiding wound healing and sterilization of dental cavities.

  10. Lectin-based food poisoning: a new mechanism of protein toxicity.

    PubMed

    Miyake, Katsuya; Tanaka, Toru; McNeil, Paul L

    2007-08-01

    Ingestion of the lectins present in certain improperly cooked vegetables can result in acute GI tract distress, but the mechanism of toxicity is unknown. In vivo, gut epithelial cells are constantly exposed to mechanical and other stresses and consequently individual cells frequently experience plasma membrane disruptions. Repair of these cell surface disruptions allows the wounded cell to survive: failure results in necrotic cell death. Plasma membrane repair is mediated, in part, by an exocytotic event that adds a patch of internal membrane to the defect site. Lectins are known to inhibit exocytosis. We therefore tested the novel hypothesis that lectin toxicity is due to an inhibitory effect on plasma membrane repair. Repair of plasma membrane disruptions and exocytosis of mucus was assessed after treatment of cultured cell models and excised segments of the GI tract with lectins. Plasma membrane disruptions were produced by focal irradiation of individual cells, using a microscope-based laser, or by mechanical abrasion of multiple cells, using a syringe needle. Repair was then assessed by monitoring the cytosolic penetration of dyes incapable of crossing the intact plasma membrane. We found that cell surface-bound lectins potently inhibited plasma membrane repair, and the exocytosis of mucus that normally accompanies the repair response. Lectins potently inhibit plasma membrane repair, and hence are toxic to wounded cells. This represents a novel form of protein-based toxicity, one that, we propose, is the basis of plant lectin food poisoning.

  11. Plasma cell gingivitis - A rare case related to Colocasia (arbi) leaves.

    PubMed

    Bali, Deepika; Gill, Sanjeet; Bali, Amit

    2012-09-01

    Plasma cell gingivitis is an uncommon inflammatory condition of uncertain etiology often flavoured chewing gum, spices, foods, candies, or dentifrices. The diagnosis of plasma cell gingivitis is based on comprehensive history taking, clinical examination, and appropriate diagnostic tests. Here we are presenting a rare case of plasma cell gingivitis caused by consumption of colocasia (arbi) leaves. Colocasia is a kind of vegetable, very commonly consumed in the regions of North India.

  12. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease.

    PubMed

    Canavan, James B; Scottà, Cristiano; Vossenkämper, Anna; Goldberg, Rimma; Elder, Matthew J; Shoval, Irit; Marks, Ellen; Stolarczyk, Emilie; Lo, Jonathan W; Powell, Nick; Fazekasova, Henrieta; Irving, Peter M; Sanderson, Jeremy D; Howard, Jane K; Yagel, Simcha; Afzali, Behdad; MacDonald, Thomas T; Hernandez-Fuentes, Maria P; Shpigel, Nahum Y; Lombardi, Giovanna; Lord, Graham M

    2016-04-01

    Thymus-derived regulatory T cells (Tregs) mediate dominant peripheral tolerance and treat experimental colitis. Tregs can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. Treg cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of Tregs expanded from Crohn's blood is unknown. The potential for adoptively transferred Tregs to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to Treg-mediated suppression in active CD. The capacity for expanded Tregs to home to gut and lymphoid tissue is unknown. To define the optimum population for Treg cell therapy in CD, CD4(+)CD25(+)CD127(lo)CD45RA(+) and CD4(+)CD25(+)CD127(lo)CD45RA(-) Treg subsets were isolated from patients' blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. Tregs can be expanded from the blood of patients with CD to potential target dose within 22-24 days. Expanded CD45RA(+) Tregs have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA(-) Tregs. CD45RA(+) Tregs highly express α4β7 integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA(+) Tregs also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA(+) Tregs. These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. CD4(+)CD25(+)CD127(lo)CD45RA(+) Tregs may be the most appropriate population from which to expand Tregs for autologous Treg therapy for CD, paving the way for future clinical trials. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease

    PubMed Central

    Canavan, James B; Scottà, Cristiano; Vossenkämper, Anna; Goldberg, Rimma; Elder, Matthew J; Shoval, Irit; Marks, Ellen; Stolarczyk, Emilie; Lo, Jonathan W; Powell, Nick; Fazekasova, Henrieta; Irving, Peter M; Sanderson, Jeremy D; Howard, Jane K; Yagel, Simcha; Afzali, Behdad; MacDonald, Thomas T; Hernandez-Fuentes, Maria P; Shpigel, Nahum Y; Lombardi, Giovanna; Lord, Graham M

    2016-01-01

    Background and aim Thymus-derived regulatory T cells (Tregs) mediate dominant peripheral tolerance and treat experimental colitis. Tregs can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. Treg cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of Tregs expanded from Crohn's blood is unknown. The potential for adoptively transferred Tregs to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to Treg-mediated suppression in active CD. The capacity for expanded Tregs to home to gut and lymphoid tissue is unknown. Methods To define the optimum population for Treg cell therapy in CD, CD4+CD25+CD127loCD45RA+ and CD4+CD25+CD127loCD45RA− Treg subsets were isolated from patients’ blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. Results Tregs can be expanded from the blood of patients with CD to potential target dose within 22–24 days. Expanded CD45RA+ Tregs have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA− Tregs. CD45RA+ Tregs highly express α4β7 integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA+ Tregs also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA+ Tregs. These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. Conclusions CD4+CD25+CD127loCD45RA+ Tregs may be the most appropriate population from which to expand Tregs for autologous Treg therapy for CD, paving the way for future clinical trials. PMID:25715355

  14. Demonstration of current drive by a rotating magnetic dipole field

    NASA Astrophysics Data System (ADS)

    Giersch, L.; Slough, J. T.; Winglee, R.

    2007-04-01

    Abstract.A dipole-like rotating magnetic field was produced by a pair of circular, orthogonal coils inside a metal vacuum chamber. When these coils were immersed in plasma, large currents were driven outside the coils: the currents in the plasma were generated and sustained by the rotating magnetic dipole (RMD) field. The peak RMD-driven current was at roughly two RMD coil radii, and this current (60 kA m-) was sufficient to reverse the ambient magnetic field (33 G). Plasma density, electron temperature, magnetic field and current probes indicated that plasma formed inside the coils, then expanded outward until the plasma reached equilibrium. This equilibrium configuration was adequately described by single-fluid magnetohydrodynamic equilibrium, wherein the cross product of the driven current and magnetic filed was approximately equal to the pressure gradient. The ratio of plasma pressure to magnetic field pressure, β, was locally greater than unity.

  15. A spectral Poisson solver for kinetic plasma simulation

    NASA Astrophysics Data System (ADS)

    Szeremley, Daniel; Obberath, Jens; Brinkmann, Ralf

    2011-10-01

    Plasma resonance spectroscopy is a well established plasma diagnostic method, realized in several designs. One of these designs is the multipole resonance probe (MRP). In its idealized - geometrically simplified - version it consists of two dielectrically shielded, hemispherical electrodes to which an RF signal is applied. A numerical tool is under development which is capable of simulating the dynamics of the plasma surrounding the MRP in electrostatic approximation. In this contribution we concentrate on the specialized Poisson solver for that tool. The plasma is represented by an ensemble of point charges. By expanding both the charge density and the potential into spherical harmonics, a largely analytical solution of the Poisson problem can be employed. For a practical implementation, the expansion must be appropriately truncated. With this spectral solver we are able to efficiently solve the Poisson equation in a kinetic plasma simulation without the need of introducing a spatial discretization.

  16. Characteristics of an under-expanded supersonic flow in arcjet plasmas

    NASA Astrophysics Data System (ADS)

    Namba, Shinichi; Shikama, Taiichi; Sasano, Wataru; Tamura, Naoki; Endo, Takuma

    2018-06-01

    A compact apparatus to produce arcjet plasma was fabricated to investigate supersonic flow dynamics. Periodic bright–dark emission structures were formed in the arcjets, depending on the plasma source and ambient gas pressures in the vacuum chamber. A directional Langmuir probe (DLP) and emission spectroscopy were employed to characterize plasma parameters such as the Mach number of plasma flows and clarify the mechanism for the generation of the emission pattern. In particular, in order to investigate the influence of the Mach number on probe size, we used two DLPs of different probe size. The results indicated that the arcjets could be classified into shock-free expansion and under-expansion, and the behavior of plasma flow could be described by compressible fluid dynamics. Comparison of the Langmuir probe results with emission and laser absorption spectroscopy showed that the small diameter probe was reliable to determine the Mach number, even for the supersonic jet.

  17. Autologous Peripheral Blood Stem Cell Transplant Followed by Donor Bone Marrow Transplant in Treating Patients With High-Risk Hodgkin Lymphoma, Non-Hodgkin Lymphoma, Multiple Myeloma, or Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2017-12-26

    B-Cell Prolymphocytic Leukemia; Hypodiploidy; Loss of Chromosome 17p; Plasma Cell Leukemia; Progression of Multiple Myeloma or Plasma Cell Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Childhood Non-Hodgkin Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Non-Hodgkin Lymphoma; Refractory Plasma Cell Myeloma; Refractory Small Lymphocytic Lymphoma; t(14;16); t(4;14); T-Cell Prolymphocytic Leukemia; Waldenstrom Macroglobulinemia

  18. α-1-Antitrypsin (AAT)–modified donor cells suppress GVHD but enhance the GVL effect: a role for mitochondrial bioenergetics

    PubMed Central

    Karoopongse, Ekapun; Lesnikova, Marina; Margineantu, Daciana; Welte, Tobias; Dinarello, Charles A.; Hockenbery, David; Janciauskiene, Sabina; Deeg, H. Joachim

    2014-01-01

    Hematopoietic cell transplantation is curative in many patients. However, graft-versus-host disease (GVHD), triggered by alloreactive donor cells, has remained a major complication. Here, we show an inverse correlation between plasma α-1-antitrypsin (AAT) levels in human donors and the development of acute GVHD in the recipients (n = 111; P = .0006). In murine models, treatment of transplant donors with human AAT resulted in an increase in interleukin-10 messenger RNA and CD8+CD11c+CD205+ major histocompatibility complex class II+ dendritic cells (DCs), and the prevention or attenuation of acute GVHD in the recipients. Ablation of DCs (in AAT-treated CD11c-DTR donors) decreased CD4+CD25+FoxP3+ regulatory T cells to one-third and abrogated the anti-GVHD effect. The graft-versus-leukemia (GVL) effect of donor cells (against A20 tumor cells) was maintained or even enhanced with AAT treatment of the donor, mediated by an expanded population of NK1.1+, CD49B+, CD122+, CD335+ NKG2D-expressing natural killer (NK) cells. Blockade of NKG2D significantly suppressed the GVL effect. Metabolic analysis showed a high glycolysis–high oxidative phosphorylation profile for NK1.1+ cells, CD4+CD25+FoxP3+ T cells, and CD11c+ DCs but not for effector T cells, suggesting a cell type–specific effect of AAT. Thus, via altered metabolism, AAT exerts effective GVHD protection while enhancing GVL effects. PMID:25224412

  19. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity.

    PubMed

    Shah, Nina; Martin-Antonio, Beatriz; Yang, Hong; Ku, Stephanie; Lee, Dean A; Cooper, Laurence J N; Decker, William K; Li, Sufang; Robinson, Simon N; Sekine, Takuya; Parmar, Simrit; Gribben, John; Wang, Michael; Rezvani, Katy; Yvon, Eric; Najjar, Amer; Burks, Jared; Kaur, Indreshpal; Champlin, Richard E; Bollard, Catherine M; Shpall, Elizabeth J

    2013-01-01

    Natural killer (NK) cells are important mediators of anti-tumor immunity and are active against several hematologic malignancies, including multiple myeloma (MM). Umbilical cord blood (CB) is a promising source of allogeneic NK cells but large scale ex vivo expansion is required for generation of clinically relevant CB-derived NK (CB-NK) cell doses. Here we describe a novel strategy for expanding NK cells from cryopreserved CB units using artificial antigen presenting feeder cells (aAPC) in a gas permeable culture system. After 14 days, mean fold expansion of CB-NK cells was 1848-fold from fresh and 2389-fold from cryopreserved CB with >95% purity for NK cells (CD56(+)/CD3(-)) and less than 1% CD3(+) cells. Though surface expression of some cytotoxicity receptors was decreased, aAPC-expanded CB-NK cells exhibited a phenotype similar to CB-NK cells expanded with IL-2 alone with respect to various inhibitory receptors, NKG2C and CD94 and maintained strong expression of transcription factors Eomesodermin and T-bet. Furthermore, CB-NK cells formed functional immune synapses with and demonstrated cytotoxicity against various MM targets. Finally, aAPC-expanded CB-NK cells showed significant in vivo activity against MM in a xenogenic mouse model. Our findings introduce a clinically applicable strategy for the generation of highly functional CB-NK cells which can be used to eradicate MM.

  20. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase.

    PubMed

    Chen, Shaolin; Ehrhardt, David W; Somerville, Chris R

    2010-10-05

    The CESA1 component of cellulose synthase is phosphorylated at sites clustered in two hypervariable regions of the protein. Mutations of the phosphorylated residues to Ala (A) or Glu (E) alter anisotropic cell expansion and cellulose synthesis in rapidly expanding roots and hypocotyls. Expression of T166E, S686E, or S688E mutants of CESA1 fully rescued the temperature sensitive cesA1-1 allele (rsw1) at a restrictive temperature whereas mutations to A at these positions caused defects in anisotropic cell expansion. However, mutations to E at residues surrounding T166 (i.e., S162, T165, and S167) caused opposite effects. Live-cell imaging of fluorescently labeled CESA showed close correlations between tissue or cell morphology and patterns of bidirectional motility of CESA complexes in the plasma membrane. In the WT, CESA complexes moved at similar velocities in both directions along microtubule tracks. By contrast, the rate of movement of CESA particles was directionally asymmetric in mutant lines that exhibited abnormal tissue or cell expansion, and the asymmetry was removed upon depolymerizing microtubules with oryzalin. This suggests that phosphorylation of CESA differentially affects a polar interaction with microtubules that may regulate the length or quantity of a subset of cellulose microfibrils and that this, in turn, alters microfibril structure in the primary cell wall resulting in or contributing to the observed defect in anisotropic cell expansion.

  1. Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines.

    PubMed

    Bundscherer, Lena; Wende, Kristian; Ottmüller, Katja; Barton, Annemarie; Schmidt, Anke; Bekeschus, Sander; Hasse, Sybille; Weltmann, Klaus-Dieter; Masur, Kai; Lindequist, Ulrike

    2013-10-01

    In the field of wound healing research non-thermal plasma (NTP) increasingly draws attention. Next to its intensely studied antibacterial effects, some studies already showed stimulating effects on eukaryotic cells. This promises a unique potential in healing of chronic wounds, where effective therapies are urgently needed. Immune cells do play an important part in the process of wound healing and their reaction to NTP treatment has yet been rarely examined. Here, we studied the impact of NTP treatment using the kinpen on apoptotic and proliferative cell signaling pathways of two human immune cell lines, the CD4(+)T helper cell line Jurkat and the monocyte cell line THP-1. Depending on NTP treatment time the number of apoptotic cells increased in both investigated cell types according to a caspase 3 assay. Western blot analysis pointed out that plasma treatment activated pro-apoptotic signaling proteins like p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase 1 and 2 (JNK 1/2) in both cell types. Stronger signals were detected in Jurkat cells at comparable plasma treatment times. Intriguingly, exposure of Jurkat and THP-1 cells to plasma also activated the pro-proliferative signaling molecules extracellular signal-regulated kinase 1/2 (ERK 1/2) and MAPK/ERK kinase 1 and 2 (MEK 1/2). In contrast to Jurkat cells, the anti-apoptotic heat shock protein 27 (HSP27) was activated in THP-1 cells after plasma treatment, indicating a possible mechanism how THP-1 cells may reduce programmed cell death. In conclusion, several signaling cascades were activated in the examined immune cell lines after NTP treatment and in THP-1 monocytes a possible defense mechanism against plasma impacts could be revealed. Therefore, plasma might be a treatment option for wound healing. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Plasma Cell Neoplasms (Including Multiple Myeloma)—Health Professional Version

    Cancer.gov

    There are several types of plasma cell neoplasms, including monoclonal gammopathy of undetermined significance (MGUS), isolated plasmacytoma of the bone, extramedullary plasmacytoma, and multiple myeloma. Find evidence-based information on plasma cell neoplasms treatment, research, and statistics.

  3. The genetic network controlling plasma cell differentiation.

    PubMed

    Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D

    2011-10-01

    Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.

  4. Dynamic polarizability of tungsten atoms reconstructed from fast electrical explosion of fine wires in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.

    For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.

  5. Dynamic polarizability of tungsten atoms reconstructed from fast electrical explosion of fine wires in vacuum

    DOE PAGES

    Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.

    2016-10-12

    For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.

  6. Endothelial Cells Promote Expansion of Long‐Term Engrafting Marrow Hematopoietic Stem and Progenitor Cells in Primates

    PubMed Central

    Gori, Jennifer L.; Butler, Jason M.; Kunar, Balvir; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Norgaard, Zachary K.; Adair, Jennifer E.; Rafii, Shahin

    2016-01-01

    Abstract Successful expansion of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) would benefit many HSPC transplantation and gene therapy/editing applications. However, current expansion technologies have been limited by a loss of multipotency and self‐renewal properties ex vivo. We hypothesized that an ex vivo vascular niche would provide prohematopoietic signals to expand HSPCs while maintaining multipotency and self‐renewal. To test this hypothesis, BM autologous CD34+ cells were expanded in endothelial cell (EC) coculture and transplanted in nonhuman primates. CD34+C38− HSPCs cocultured with ECs expanded up to 17‐fold, with a significant increase in hematopoietic colony‐forming activity compared with cells cultured with cytokines alone (colony‐forming unit‐granulocyte‐erythroid‐macrophage‐monocyte; p < .005). BM CD34+ cells that were transduced with green fluorescent protein lentivirus vector and expanded on ECs engrafted long term with multilineage polyclonal reconstitution. Gene marking was observed in granulocytes, lymphocytes, platelets, and erythrocytes. Whole transcriptome analysis indicated that EC coculture altered the expression profile of 75 genes in the BM CD34+ cells without impeding the long‐term engraftment potential. These findings show that an ex vivo vascular niche is an effective platform for expansion of adult BM HSPCs. Stem Cells Translational Medicine 2017;6:864–876 PMID:28297579

  7. RNA-transfection of γ/δ T cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma.

    PubMed

    Harrer, Dennis C; Simon, Bianca; Fujii, Shin-Ichiro; Shimizu, Kanako; Uslu, Ugur; Schuler, Gerold; Gerer, Kerstin F; Hoyer, Stefanie; Dörrie, Jan; Schaft, Niels

    2017-08-17

    Adoptive T-cell therapy relying on conventional T cells transduced with T-cell receptors (TCRs) or chimeric antigen receptors (CARs) has caused substantial tumor regression in several clinical trials. However, genetically engineered T cells have been associated with serious side-effects due to off-target toxicities and massive cytokine release. To obviate these concerns, we established a protocol adaptable to GMP to expand and transiently transfect γ/δ T cells with mRNA. PBMC from healthy donors were stimulated using zoledronic-acid or OKT3 to expand γ/δ T cells and bulk T cells, respectively. Additionally, CD8 + T cells and γ/δ T cells were MACS-isolated from PBMC and expanded with OKT3. Next, these four populations were electroporated with RNA encoding a gp100/HLA-A2-specific TCR or a CAR specific for MCSP. Thereafter, receptor expression, antigen-specific cytokine secretion, specific cytotoxicity, and killing of the endogenous γ/δ T cell-target Daudi were analyzed. Using zoledronic-acid in average 6 million of γ/δ T cells with a purity of 85% were generated from one million PBMC. MACS-isolation and OKT3-mediated expansion of γ/δ T cells yielded approximately ten times less cells. OKT3-expanded and CD8 + MACS-isolated conventional T cells behaved correspondingly similar. All employed T cells were efficiently transfected with the TCR or the CAR. Upon respective stimulation, γ/δ T cells produced IFNγ and TNF, but little IL-2 and the zoledronic-acid expanded T cells exceeded MACS-γ/δ T cells in antigen-specific cytokine secretion. While the cytokine production of γ/δ T cells was in general lower than that of conventional T cells, specific cytotoxicity against melanoma cell lines was similar. In contrast to OKT3-expanded and MACS-CD8 + T cells, mock-electroporated γ/δ T cells also lysed tumor cells reflecting the γ/δ T cell-intrinsic anti-tumor activity. After transfection, γ/δ T cells were still able to kill MHC-deficient Daudi cells. We present a protocol adaptable to GMP for the expansion of γ/δ T cells and their subsequent RNA-transfection with tumor-specific TCRs or CARs. Given the transient receptor expression, the reduced cytokine release, and the equivalent cytotoxicity, these γ/δ T cells may represent a safer complementation to genetically engineered conventional T cells in the immunotherapy of melanoma (Exper Dermatol 26: 157, 2017, J Investig Dermatol 136: A173, 2016).

  8. Hypomorphic Temperature-Sensitive Alleles of NSDHL Cause CK Syndrome

    PubMed Central

    McLarren, Keith W.; Severson, Tesa M.; du Souich, Christèle; Stockton, David W.; Kratz, Lisa E.; Cunningham, David; Hendson, Glenda; Morin, Ryan D.; Wu, Diane; Paul, Jessica E.; An, Jianghong; Nelson, Tanya N.; Chou, Athena; DeBarber, Andrea E.; Merkens, Louise S.; Michaud, Jacques L.; Waters, Paula J.; Yin, Jingyi; McGillivray, Barbara; Demos, Michelle; Rouleau, Guy A.; Grzeschik, Karl-Heinz; Smith, Raffaella; Tarpey, Patrick S.; Shears, Debbie; Schwartz, Charles E.; Gecz, Jozef; Stratton, Michael R.; Arbour, Laura; Hurlburt, Jane; Van Allen, Margot I.; Herman, Gail E.; Zhao, Yongjun; Moore, Richard; Kelley, Richard I.; Jones, Steven J.M.; Steiner, Robert D.; Raymond, F. Lucy; Marra, Marco A.; Boerkoel, Cornelius F.

    2010-01-01

    CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development. PMID:21129721

  9. Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells

    PubMed Central

    Kadekar, Darshana; Rangole, Sonal; Kale, Vaijayanti; Limaye, Lalita

    2016-01-01

    Background The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS). Conditioned medium from mesenchymal stem cells (MSCs-CM) has been shown to alleviate the oxidative stress during wound healing, Alzheimer’s disease and ischemic disease. This premise prompted us to investigate the influence of MSCs-CM during cryopreservation of expanded UCB cells. Methodology/Principle findings CM-was collected from cord/placental MSCs(C-MSCs-CM, P-MSC-CM). UCB CD34+cells were expanded as suspension cultures in serum free medium containing cytokines for 10 days. Cells were frozen with/without C-MSCs-CM and or P-MSCs-CM in the conventional freezing medium containing 20%FCS +10%DMSO using a programmable freezer and stored in liquid nitrogen. Upon revival, cells frozen with MSCs-CM were found to be superior to cells frozen in conventional medium in terms of viability, CD34+content and clonogenecity. Priming of revived cells for 48 hrs with MSCs-CM further improved their transplantation ability, as compared to those cultured without MSCs-CM. P-MSCs-CM radically reduced the oxidative stress in cryopreserved cells, resulting in better post thaw functionality of CD34+ cells than with C-MSCs-CM. The observed cryoprotective effect of MSCs-CM was primarily due to anti-oxidative and anti-apoptotic properties of the MSCs-CM and not because of the exosomes secreted by them. Conclusions/Significance Our data suggest that MSCs-CM can serve as a valuable additive to the freezing or the priming medium for expanded UCB cells, which would increase their clinical applicability. PMID:27780236

  10. Plasma generated in culture medium induces damages of HeLa cells due to flow phenomena

    NASA Astrophysics Data System (ADS)

    Sato, Yusuke; Sato, Takehiko; Yoshino, Daisuke

    2018-03-01

    Plasma in a liquid has been anticipated as an effective tool for medical applications, however, few reports have described cellular responses to plasma generated in a liquid similar to biological fluids. Herein we report the effects of plasma generated in a culture medium on HeLa cells. The plasma in the culture medium produced not only heat, shock waves, and reactive chemical species but also a jet flow with sub millimeter-sized bubbles. Cells exposed to the plasma exhibited detachment, morphological changes, and changes in the actin cytoskeletal structure. The experimental results suggest that wall shear stress over 160 Pa was generated on the surface of the cells by the plasma. It is one of the main factors that cause those cellular responses. We believe that our findings would provide valuable insight into advancements in medical applications of plasma in a liquid.

  11. Plasma cell gingivitis - A rare case related to Colocasia (arbi) leaves

    PubMed Central

    Bali, Deepika; Gill, Sanjeet; Bali, Amit

    2012-01-01

    Plasma cell gingivitis is an uncommon inflammatory condition of uncertain etiology often flavoured chewing gum, spices, foods, candies, or dentifrices. The diagnosis of plasma cell gingivitis is based on comprehensive history taking, clinical examination, and appropriate diagnostic tests. Here we are presenting a rare case of plasma cell gingivitis caused by consumption of colocasia (arbi) leaves. Colocasia is a kind of vegetable, very commonly consumed in the regions of North India. PMID:23230358

  12. Comparing plasma and X-ray exposure and identifying vulnerable cell parts

    NASA Astrophysics Data System (ADS)

    Graham, Bill

    2012-10-01

    Here two issues in plasma medicine that are being addressed in a collaboration between the Centre of Plasma Physics and the School of Pharmacy at Queen's University Belfast and the Plasma Institute at York University UK will be discussed. Recent measurements of the interaction of plasmas created directly in DMEM cell medium and MDAMB-231, a human breast cancer cell line, showed evidence of reduced cell viability and of DNA damage. The same set of experiments were undertaken but with X-ray exposure. A correlation of the dependence on plasma exposure time and X-ray dose was observed which might point the way to dose definition in plasma medicine. We have also been working to identify the cell parts most vulnerable to plasma exposure. In this study a 10 kHz atmospheric pressure non-thermal plasma jet, operating in He/0.5%O2 and characterized to determine the behavior of many of the plasma species, was incident onto the surface of media containing either bacterial strains, in their planktonic and biofilm forms, or isolated bacterial plasmid DNA. The results of measurements to look for changes in plasmid structural conformation, rates of single and double strand breaks, the catalytic activity of certain bacterial enzymes, the peroxidation of lipid content of the bacterial cells, the leakage of ATP and Scanning Electron Microscope (SEM) images will be discussed.

  13. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application

    NASA Astrophysics Data System (ADS)

    Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam

    2016-07-01

    This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects.

  14. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application

    PubMed Central

    Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam

    2016-01-01

    This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects. PMID:27383714

  15. Paraneoplastic scleroderma-like tissue reactions in the setting of an underlying plasma cell dyscrasia: a report of 10 cases.

    PubMed

    Magro, Cynthia M; Iwenofu, Hans; Nuovo, Gerard J

    2013-07-01

    Systemic plasma cell dyscrasias have diverse manifestations in the skin and include an inflammatory paraneoplastic process. We encountered cases of scleroderma and eosinophilic fasciitis in the setting of an underlying plasma cell dyscrasia. Ten cases of scleroderma-like tissue reactions in the setting of an underlying plasma cell dyscrasia were encountered. The biopsies were stained for Transforming growth factor (Transforming growth factor) beta, IgG4, kappa, and lambda. Patients presented with a sclerodermoid reaction represented by eosinophilic fasciitis (5 cases), morphea (3 cases), and systemic scleroderma (2 cases). The mean age of presentation was 70 years with a striking female predominance (4:1). Acral accentuation was noted in 8 cases. In 6 of the cases, the cutaneous sclerosis antedated (4 cases) by weeks to 2 years or occurred concurrently (2 cases) with the initial diagnosis of the plasma cell. The biopsies showed changes typical of eosinophilic fasciitis and/or scleroderma. In 5 cases, light chain-restricted plasma cells were present on the biopsy. There was staining of the plasma cells for Transforming growth factor beta in 3 out of 5 cases tested. In any older patient presenting with a sudden onset of eosinophilic fasciitis or scleroderma especially with acral accentuation, investigations should be conducted in regards to an underlying plasma cell dyscrasia.

  16. Adoptive cell therapy using PD-1+ myeloma-reactive T cells eliminates established myeloma in mice.

    PubMed

    Jing, Weiqing; Gershan, Jill A; Blitzer, Grace C; Palen, Katie; Weber, James; McOlash, Laura; Riese, Matthew; Johnson, Bryon D

    2017-01-01

    Adoptive cellular therapy (ACT) with cancer antigen-reactive T cells following lymphodepletive pre-conditioning has emerged as a potentially curative therapy for patients with advanced cancers. However, identification and enrichment of appropriate T cell subsets for cancer eradication remains a major challenge for hematologic cancers. PD-1 + and PD-1 - T cell subsets from myeloma-bearing mice were sorted and analyzed for myeloma reactivity in vitro. In addition, the T cells were activated and expanded in culture and given to syngeneic myeloma-bearing mice as ACT. Myeloma-reactive T cells were enriched in the PD-1 + cell subset. Similar results were also observed in a mouse AML model. PD-1 + T cells from myeloma-bearing mice were found to be functional, they could be activated and expanded ex vivo, and they maintained their anti-myeloma reactivity after expansion. Adoptive transfer of ex vivo-expanded PD-1 + T cells together with a PD-L1 blocking antibody eliminated established myeloma in Rag-deficient mice. Both CD8 and CD4 T cell subsets were important for eradicating myeloma. Adoptively transferred PD-1 + T cells persisted in recipient mice and were able to mount an adaptive memory immune response. These results demonstrate that PD-1 is a biomarker for functional myeloma-specific T cells, and that activated and expanded PD-1 + T cells can be effective as ACT for myeloma. Furthermore, this strategy could be useful for treating other hematologic cancers.

  17. Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions

    NASA Astrophysics Data System (ADS)

    Barte, Ellie Floyd; Hara, Hiroyuki; Tamura, Toshiki; Gisuji, Takuya; Chen, When-Bo; Lokasani, Ragava; Hatano, Tadashi; Ejima, Takeo; Jiang, Weihua; Suzuki, Chihiro; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Higashiguchi, Takeshi; Limpouch, Jiří

    2018-05-01

    We have characterized the soft x-ray and extreme ultraviolet (XUV) emission of rhodium (Rh) plasmas produced using dual pulse irradiation by 150-ps or 6-ns pre-pulses, followed by a 150-ps main pulse. We have studied the emission enhancement dependence on the inter-pulse time separation and found it to be very significant for time separations less than 10 ns between the two laser pulses when using 6-ns pre-pulses. The behavior using a 150-ps pre-pulse was consistent with such plasmas displaying only weak self-absorption effects in the expanding plasma. The results demonstrate the advantage of using dual pulse irradiation to produce the brighter plasmas required for XUV applications.

  18. Studying the Generation Stage of a Plasma Jet in a Plasma Focus Discharge

    NASA Astrophysics Data System (ADS)

    Polukhin, S. N.; Gurei, A. E.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Kharrasov, A. M.

    2017-12-01

    A dense compact plasmoid generated at the pinch collapse stage is revealed in a plasma focus discharge by laser optical methods. The initial size of the plasmoid is 1 mm, its electron density is more than 2 × 1019 cm-3, and the plasmoid propagates along the axis from the anode at an average velocity of more than 107 cm/s. A shock wave is generated in the residual argon plasma during the motion of the bunch, its density decreases to 1018 cm-3 at a distance of 3 cm from its place of generation, and the plasmoid expands by 3-5 times and almost merges together with the leading edge of the shock wave.

  19. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    PubMed

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  20. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species

    PubMed Central

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm–2 had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm–2 plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization. PMID:21653568

  1. Phase imaging microscopy for the diagnostics of plasma-cell interaction

    NASA Astrophysics Data System (ADS)

    Ohene, Yolanda; Marinov, Ilya; de Laulanié, Lucie; Dupuy, Corinne; Wattelier, Benoit; Starikovskaia, Svetlana

    2015-06-01

    Phase images of biological specimens were obtained by the method of Quadriwave Lateral Shearing Interferometry (QWLSI). The QWLSI technique produces, at high resolution, phase images of the cells having been exposed to a plasma treatment and enables the quantitative analysis of the changes in the surface area of the cells over time. Morphological changes in the HTori normal thyroid cells were demonstrated using this method. There was a comparison of the cell behaviour between control cells, cells treated by plasma of a nanosecond dielectric barrier discharge, including cells pre-treated by catalase, and cells treated with an equivalent amount of H2O2. The major changes in the cell membrane morphology were observed at only 5 min after the plasma treatment. The primary role of reactive oxygen species (ROS) in this degradation is suggested. Deformation and condensation of the cell nucleus were observed 2-3 h after the treatment and are supposedly related to apoptosis induction. The coupling of the phase QWLSI with immunofluorescence imaging would give a deeper insight into the mechanisms of plasma induced cell death.

  2. Epstein–Barr virus and multiple sclerosis: potential opportunities for immunotherapy

    PubMed Central

    Pender, Michael P; Burrows, Scott R

    2014-01-01

    Multiple sclerosis (MS) is a common chronic inflammatory demyelinating disease of the central nervous system (CNS) causing progressive disability. Many observations implicate Epstein–Barr virus (EBV) in the pathogenesis of MS, namely universal EBV seropositivity, high anti-EBV antibody levels, alterations in EBV-specific CD8+ T-cell immunity, increased spontaneous EBV-induced transformation of peripheral blood B cells, increased shedding of EBV from saliva and accumulation of EBV-infected B cells and plasma cells in the brain. Several mechanisms have been postulated to explain the role of EBV in the development of MS including cross-reactivity between EBV and CNS antigens, bystander damage to the CNS by EBV-specific CD8+ T cells, activation of innate immunity by EBV-encoded small RNA molecules in the CNS, expression of αB-crystallin in EBV-infected B cells leading to a CD4+ T-cell response against oligodendrocyte-derived αB-crystallin and EBV infection of autoreactive B cells, which produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells in the CNS. The rapidly accumulating evidence for a pathogenic role of EBV in MS provides ground for optimism that it might be possible to prevent and cure MS by effectively controlling EBV infection through vaccination, antiviral drugs or treatment with EBV-specific cytotoxic CD8+ T cells. Adoptive immunotherapy with in vitro-expanded autologous EBV-specific CD8+ T cells directed against viral latent proteins was recently used to treat a patient with secondary progressive MS. Following the therapy, there was clinical improvement, decreased disease activity on magnetic resonance imaging and reduced intrathecal immunoglobulin production. PMID:25505955

  3. Enhancing Cold Atmospheric Plasma Treatment Efficiency for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoqian

    To improve efficiency and safety of anti-cancer therapies the researchers and clinicians alike are prompted to develop targeted combined therapies that especially minimize damage to healthy tissues while eradicating the body of cancerous tissues. Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that cold plasma induced cell death. In this study, we seek to integrate the medical application of CAP. We proposed and implemented 3 novel ideas to enhance efficacy and selectivity of cancer therapy. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. We determined a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of CAP, including output voltage, treatment time, and gas flow-rate. We varied the characteristics of the cold plasma in order to obtain different major species (such as O, OH, N2+, and N2 lines). "plasma dosage" D ~ Q * V * t. is defined, where D is the entire "plasma dosage"; Q is the flow rate of feeding gas; V is output voltage; t is treatment time. The proper CAP dosage caused 3-fold cell death in the U87 cells compared to the normal human astrocytes E6/E7 cells. We demonstrated there is a synergy between AuNPS and CAP in cancer therapy. Specifically, the concentration of AuNPs plays an important role on plasma therapy. At an optimal concentration, gold nanoparticles can significantly induce U87 cell death up to a 30% overall increase compared to the control group with the same plasma dosage but no AuNPs applied. The ROS intensity of the corresponding conditions has a reversed trend compared to cell viability. This matches with the theory that intracellular ROS accumulation results in oxidative stress, which further changes the intracellular pathways, causing damage to the proteins, lipids and DNA. Our results show that this synergy has great potential in improving the efficiency of cancer therapy and reducing harm to normal cells. Finally, we propose a novel idea to combine static magnetic field (SMF) with CAP as a tool for cancer therapy. The breast cancer cells MDA-MB-231 showed a significant decrease in viability after direct plasma treatment with SMF (compared to only plasma treatment). In addition, cancer cells treated by the CAP-SMF-activated media (indirect treatment) also showed viability decrease but slightly weaker than the direct plasma-MF treatment. When treated by plasma with MF, mouse wild type dermal fibroblasts (WTDF) show no difference from the plasma treatment, both directly and indirectly. By integrating the use of MF and CAP, we are able to discover their advantages that are yet to be utilized. Although plasma can selectively kill cancer cells, long time exposure can still damage the normal cells around the tumor. This prompts researchers to seek for novel ideas in the designing of plasma treatment. This study provides the idea of combining the proper dosage of cold atmospheric plasma, AuNPs and MF in order to achieve the enhanced killing effect on cancer cells.

  4. Phase I trial of adoptively transferred tumor-infiltrating lymphocyte immunotherapy following concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma

    PubMed Central

    Li, Jiang; Chen, Qiu-Yan; He, Jia; Li, Ze-Lei; Tang, Xiao-Feng; Chen, Shi-Ping; Xie, Chuan-Miao; Li, Yong-Qiang; Huang, Li-Xi; Ye, Shu-bio; Ke, Miao-La; Tang, Lin-Quan; Liu, Huai; Zhang, Lu; Guo, Shan-Shan; Xia, Jian-Chuan; Zhang, Xiao-Shi; Zheng, Li-Min; Guo, Xiang; Qian, Chao-Nan; Mai, Hai-Qiang; Zeng, Yi-Xin

    2015-01-01

    Adoptive cell therapy (ACT) for cancers using autologous tumor-infiltrating lymphocytes (TILs) can induce immune responses and antitumor activity in metastatic melanoma patients. Here, we aimed to assess the safety and antitumor activity of ACT using expanded TILs following concurrent chemoradiotherapy (CCRT) in patients with locoregionally advanced nasopharyngeal carcinoma (NPC). Twenty-three newly diagnosed, locoregionally advanced NPC patients were enrolled, of whom 20 received a single-dose of TIL infusion following CCRT. All treated patients were assessed for toxicity, survival and clinical and immunologic responses. Correlations between immunological responses and treatment effectiveness were further studied. Only mild adverse events (AEs), including Grade 3 neutropenia (1/23, 5%) consistent with immune-related causes, were observed. Nineteen of 20 patients exhibited an objective antitumor response, and 18 patients displayed disease-free survival longer than 12 mo after ACT. A measurable plasma Epstein–Barr virus (EBV) load was detected in 14 patients at diagnosis, but a measurable EBV load was not found in patients after one week of ACT, and the plasma EBV load remained undetectable in 17 patients at 6 mo after ACT. Expansion and persistence of T cells specific for EBV antigens in peripheral blood following TIL therapy were observed in 13 patients. The apparent positive correlation between tumor regression and the expansion of T cells specific for EBV was further investigated in four patients. This study shows that NPC patients can tolerate ACT with TILs following CCRT and that this treatment results in sustained antitumor activity and anti-EBV immune responses. A larger phase II trial is in progress. PMID:25949875

  5. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.

    PubMed

    Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V

    2016-06-01

    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. High levels of circulating triiodothyronine induce plasma cell differentiation.

    PubMed

    Bloise, Flavia Fonseca; Oliveira, Felipe Leite de; Nobrega, Alberto Félix; Vasconcellos, Rita; Cordeiro, Aline; Paiva, Luciana Souza de; Taub, Dennis D; Borojevic, Radovan; Pazos-Moura, Carmen Cabanelas; Mello-Coelho, Valéria de

    2014-03-01

    The effects of hyperthyroidism on B-cell physiology are still poorly known. In this study, we evaluated the influence of high-circulating levels of 3,5,3'-triiodothyronine (T3) on bone marrow, blood, and spleen B-cell subsets, more specifically on B-cell differentiation into plasma cells, in C57BL/6 mice receiving daily injections of T3 for 14 days. As analyzed by flow cytometry, T3-treated mice exhibited increased frequencies of pre-B and immature B-cells and decreased percentages of mature B-cells in the bone marrow, accompanied by an increased frequency of blood B-cells, splenic newly formed B-cells, and total CD19(+)B-cells. T3 administration also promoted an increase in the size and cellularity of the spleen as well as in the white pulp areas of the organ, as evidenced by histological analyses. In addition, a decreased frequency of splenic B220(+) cells correlating with an increased percentage of CD138(+) plasma cells was observed in the spleen and bone marrow of T3-treated mice. Using enzyme-linked immunospot assay, an increased number of splenic immunoglobulin-secreting B-cells from T3-treated mice was detected ex vivo. Similar results were observed in mice immunized with hen egg lysozyme and aluminum adjuvant alone or together with treatment with T3. In conclusion, we provide evidence that high-circulating levels of T3 stimulate plasma cytogenesis favoring an increase in plasma cells in the bone marrow, a long-lived plasma cell survival niche. These findings indicate that a stimulatory effect on plasma cell differentiation could occur in untreated patients with Graves' disease.

  7. CD21 -/low B cells: A Snapshot of a Unique B Cell Subset in Health and Disease.

    PubMed

    Thorarinsdottir, K; Camponeschi, A; Gjertsson, I; Mårtensson, I-L

    2015-09-01

    B cells represent one of the cellular components of the immune system that protects the individual from invading pathogens. In response to the invader, these cells differentiate into plasma cells and produce large amounts of antibodies that bind to and eliminate the pathogen. A hallmark of autoimmune diseases is the production of autoantibodies i.e. antibodies that recognize self. Those that are considered pathogenic can damage tissues and organs, either by direct binding or when deposited as immune complexes. For decades, B cells have been considered to play a major role in autoimmune diseases by antibody production. However, as pathogenic autoantibodies appear to derive mainly from T cell dependent responses, T cells have been the focus for many years. The successful treatment of patients with autoimmune diseases with either B cell depletion therapy (rituximab) or inhibition of B cell survival (belimumab), suggested that not only the autoantibodies but also other B cell features are important. This has caused a surge of interest in B cells and their biology resulting in the identification of various subsets e.g. regulatory B cells, several memory B cell subsets etc. Also, in other conditions such as chronic viral infections and primary immunodeficiency, several B cell subsets with unique characteristics have been identified. In this review, we will discuss one of these subsets, a subset that is expanded in conditions characterized by chronic immune stimulation. This B cell subset lacks, or expresses low, surface levels of the complement receptor 2 (CD21) and has therefore been termed CD21(-/low) B cells. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  8. Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics

    DTIC Science & Technology

    1987-10-01

    This program in low-energy x-ray physics and technology has expanded into a major program with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. This program addresses the development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development. The new laboratory includes five specially designed

  9. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    NASA Technical Reports Server (NTRS)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  10. Amlodipine induced plasma cell granuloma of the gingiva: A novel case report.

    PubMed

    Vishnudas, Bhandari; Sameer, Zope; Shriram, Bansode; Rekha, Kardile

    2014-07-01

    Drug-induced gingival overgrowth (DIGO) can be a serious concern for both patients and clinicians. DIGO is a well-documented side-effect of some pharmacologic agents, including, but not limited to, calcium channel blockers, phenytoin, and cyclosporine. Plasma cell granulomas (pseudotumors) are exceedingly rare, non-neoplastic, reactive tumor-like proliferation, primarily composed of plasma cells that manifest primarily in the lungs, but may occur in various anatomic locations. Intraoral plasma cell granulomas involving the lip, oral mucosa, tongue, and gingiva have been reported in the past. This is the first case report of amlodipine induced plasma cell granuloma of the gingiva in the medical literature presenting a 54 year-old female patient with hypertension, who received amlodipine (10 mg/day, single dose orally) for 2 years, sought medical attention because of developing maxillary anterior massive gingival overgrowth causing functional and esthetic problem, which was treated by excisional biopsy. Histologically, these lesions were composed of mature plasma cells, showing polyclonality for both lambda and kappa light chains and fibrovascular connective tissue stroma confirming a diagnosis of plasma cell granuloma. This case also highlights the need to biopsy for unusual lesions to rule out potential neoplasms.

  11. The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Kurita, Hirofumi; Oh, Jun-Seok; Ito, Masafumi; Mizuno, Akira; Hatta, Akimitsu; Cowin, Allison J.; Graves, David B.; Short, Robert D.

    2017-07-01

    There is a growing literature database that demonstrates the therapeutic potential of cold atmospheric plasma (herein referred to as plasma). Given the breadth of proposed applications (e.g. from teeth whitening to cancer therapy) and vast gamut of plasma devices being researched, it is timely to consider plasma interactions with specific components of the cell in more detail. Plasma can produce highly reactive oxygen and nitrogen species (RONS) such as the hydroxyl radical (OH•), peroxynitrite (ONOO-) and superoxide (\\text{O}2- ) that would readily modify essential biomolecules such as DNA. These modifications could in principle drive a wide range of biological processes. Against this possibility, the reported therapeutic action of plasmas are not underpinned by a particularly deep knowledge of the potential plasma-tissue, -cell or -biomolecule interactions. In this study, we aim to partly address this issue by developing simple models to study plasma interactions with DNA, in the form of DNA-strand breaks. This is carried out using synthetic models of tissue fluid, tissue and cells. We argue that this approach makes experimentation simpler, more cost-effective and faster than compared to working with real biological materials and cells. Herein, a helium plasma jet source was utilised for these experiments. We show that the plasma jet readily induced DNA-strand breaks in the tissue fluid model and in the cell model, surprisingly without any significant poration or rupture of the phospholipid membrane. In the plasma jet treatment of the tissue model, DNA-strand breaks were detected in the tissue mass after pro-longed treatment (on the time-scale of minutes) with no DNA-strand breaks being detected in the tissue fluid model underneath the tissue model. These data are discussed in the context of the therapeutic potential of plasma.

  12. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy.

    PubMed

    Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen

    2016-03-16

    Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.

  13. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4

    PubMed Central

    Ochiai, Kyoko; Maienschein-Cline, Mark; Simonetti, Giorgia; Chen, Jianjun; Rosenthal, Rebecca; Brink, Robert; Chong, Anita S.; Klein, Ulf; Dinner, Aaron R.; Singh, Harinder; Sciammas, Roger

    2013-01-01

    Summary The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 co-bound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of “kinetic control” in which signaling induced dynamics of IRF4 in activated B cells control their cell fate outcomes. PMID:23684984

  14. Antitumorigenic effect of atmospheric-pressure dielectric barrier discharge on human colorectal cancer cells via regulation of Sp1 transcription factor

    NASA Astrophysics Data System (ADS)

    Han, Duksun; Cho, Jin Hyoung; Lee, Ra Ham; Bang, Woong; Park, Kyungho; Kim, Minseok S.; Shim, Jung-Hyun; Chae, Jung-Il; Moon, Se Youn

    2017-02-01

    Human colorectal cancer cell lines (HT29 and HCT116) were exposed to dielectric barrier discharge (DBD) plasma at atmospheric pressure to investigate the anticancer capacity of the plasma. The dose- and time-dependent effects of DBDP on cell viability, regulation of transcription factor Sp1, cell-cycle analysis, and colony formation were investigated by means of MTS assay, DAPI staining, propidium iodide staining, annexin V-FITC staining, Western blot analysis, RT-PCR analysis, fluorescence microscopy, and anchorage-independent cell transformation assay. By increasing the duration of plasma dose times, significant reductions in the levels of both Sp1 protein and Sp1 mRNA were observed in both cell lines. Also, expression of negative regulators related to the cell cycle (such as p53, p21, and p27) was increased and of the positive regulator cyclin D1 was decreased, indicating that the plasma treatment led to apoptosis and cell-cycle arrest. In addition, the sizes and quantities of colony formation were significantly suppressed even though two cancer promoters, such as TPA and epidermal growth factor, accompanied the plasma treatment. Thus, plasma treatment inhibited cell viability and colony formation by suppressing Sp1, which induced apoptosis and cell-cycle arrest in these two human colorectal cancer cell lines.

  15. Brillouin Scattering of Picosecond Laser Pulses in Preformed, Short-Scale-Length Plasmas

    NASA Astrophysics Data System (ADS)

    Gaeris, A. C.; Fisher, Y.; Delettrez, J. A.; Meyerhofer, D. D.

    1996-11-01

    Brillouin scattering (BS) has been studied in short-scale-length, preformed plasmas. The backscattered and specularly reflected light resulting from the interaction of high-power picosecond pulses with preformed silicon plasmas has been measured. A first laser pulse forms a short-scale-length plasma -- without significant BS -- while a second delayed pulse interacts with an expanded, drifting underdense region of the plasma with density scale length (0 <= Ln <= 600 λ _L). The pulses are generated at λ L = 1054 nm, with intensities up to 10^16 W/cm^2. The backscattered light spectra, threshold intensities, and enhanced reflectivities have been determined for different plasma-density scale lengths and are compared to Liu, Rosenbluth, and White's(C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).) WKB treatment of stimulated Brillouin scattering in inhomogeneous drifting plasmas. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  16. Electron Temperature and Plasma Flow Measurements of NIF Hohlraum Plasmas

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brow, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Eder, D.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.; LLNL Collaboration; LLE Collaboration; GA Collaboration; SNL Collaboration

    2016-10-01

    Characterizing the plasma conditions inside NIF hohlraums, in particular mapping the plasma Te, is critical to gaining insight into mechanisms that affect energy coupling and transport in the hohlraum. The dot spectroscopy platform provides a temporal history of the localized Te and plasma flow inside a NIF hohlraum, by introducing a Mn-Co tracer dot, at strategic locations inside the hohlraum, that comes to equilibrium with the local plasma. K-shell X-ray spectroscopy of the tracer dot is recorded onto an absolutely calibrated X-ray streak spectrometer. Isoelectronic and interstage line ratios are used to infer localized Te through comparison with atomic physics calculations using SCRAM. Time resolved X-ray images are simultaneously taken of the expanding dot, providing plasma (ion) flow information. We present recent results provided by this platform and compare with simulations using HYDRA. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  17. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, E.R.; Edwards, D.

    1987-11-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of ({sup 14}C)-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluiditymore » in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells.« less

  18. Role of Ambient Gas Composition on Cold Physical Plasma-Elicited Cell Signaling in Keratinocytes.

    PubMed

    Schmidt, Anke; Bekeschus, Sander; Jablonowski, Helena; Barton, Annemarie; Weltmann, Klaus-Dieter; Wende, Kristian

    2017-06-06

    A particularly promising medical application of cold physical plasma is the support of wound healing. This is presumably achieved by modulating inflammation as well as skin cell signaling and migration. Plasma-derived reactive oxygen and nitrogen species (ROS/RNS) are assumed the central biologically active plasma components. We hypothesized that modulating the environmental plasma conditions from pure nitrogen (N 2 ) to pure oxygen (O 2 ) in an atmospheric pressure argon plasma jet (kINPen) will change type and concentration of ROS/RNS and effectively tune the behavior of human skin cells. To investigate this, HaCaT keratinocytes were studied in vitro with regard to cell metabolism, viability, growth, gene expression signature, and cytokine secretion. Flow cytometry demonstrated only slight effects on cytotoxicity. O 2 shielding provided stronger apoptotic effects trough caspase-3 activation compared to N 2 shielding. Gene array technology revealed induction of signaling and communication proteins such as immunomodulatory interleukin 6 as well as antioxidative and proproliferative molecules (HMOX1, VEGFA, HBEGF, CSF2, and MAPK) in response to different plasma shielding gas compositions. Cell response was correlated to reactive species: oxygen-shielding plasma induces a cell response more efficiently despite an apparent decrease of hydrogen peroxide (H 2 O 2 ), which was previously shown to be a major player in plasma-cell regulation, emphasizing the role of non-H 2 O 2 ROS like singlet oxygen. Our results suggest differential effects of ROS- and RNS-rich plasma, and may have a role in optimizing clinical plasma applications in chronic wounds. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Effect of Neoangiogenesis Using Micro-spot Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Tsutsui, Chihiro; Komachi, Toshifumi; Kishimoto, Takumi; Hirata, Takamichi; Mori, Akira

    2012-10-01

    Using an in vitro model, we investigated the effect of the atmospheric pressure plasma irradiation to NIH3T3 and porcine aortic endothelial cells. In the plasma exposure experiment using cell proliferation was inhibited in proportion to processing time. However, it was found that this inhibitory effect was suppressed by plasma irradiation and cells are rather on an increase trend. And, in comparison with the cell growth curve for the He gas flow group, the curve for the plasma irradiation group was shifted to the left. We investigated expression analysis in the subsequent experiment with focus on factors related to angiogenesis, it was found that the transient overexpression of VEGF are observed in 24 h from the plasma irradiation. This proliferative effect is likely related to several growth factor releases due to plasma-induced reactive ion/radical interaction.

  20. New Treatment Options for Osteosarcoma - Inactivation of Osteosarcoma Cells by Cold Atmospheric Plasma.

    PubMed

    Gümbel, Denis; Gelbrich, Nadine; Weiss, Martin; Napp, Matthias; Daeschlein, Georg; Sckell, Axel; Ender, Stephan A; Kramer, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B

    2016-11-01

    Cold atmospheric plasma has been shown to inhibit tumor cell growth and induce tumor cell death. The aim of the study was to investigate the effects of cold atmospheric plasma treatment on proliferation of human osteosarcoma cells and to characterize the underlying cellular mechanisms. Human osteosarcoma cells (U2-OS and MNNG/HOS) were treated with cold atmospheric plasma and seeded in culture plates. Cell proliferation, p53 and phospho-p53 protein expression and nuclear morphology were assessed. The treated human osteosarcoma cell lines exhibited attenuated proliferation rates by up to 66%. The cells revealed an induction of p53, as well as phospho-p53 expression, by 2.3-fold and 4.5-fold, respectively, compared to controls. 4',6-diamidino-2-phenylindole staining demonstrated apoptotic nuclear condensation following cold atmospheric plasma treatment. Cold atmospheric plasma treatment significantly attenuated cell proliferation in a preclinical in vitro osteosarcoma model. The resulting increase in p53 expression and phospho-activation in combination with characteristic nuclear changes indicate this was through induction of apoptosis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

Top