NASA Technical Reports Server (NTRS)
1981-01-01
The objective of the study was to generate the system design of a performance-optimized, advanced LOX/hydrogen expander cycle space engine. The engine requirements are summarized, and the development and operational experience with the expander cycle RL10 engine were reviewed. The engine development program is outlined.
Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2008-01-01
A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.
Orbit transfer vehicle engine study, phase A extension. Volume 2A: Study results
NASA Technical Reports Server (NTRS)
1980-01-01
Engine trade studies and systems analyses leading to a baseline engine selection for advanced expander cycle engine are discussed with emphasis on: (1) performance optimization of advanced expander cycle engines in the 10 to 20K pound thrust range; (2) selection of a recommended advanced expander engine configuration based on maximized performance and minimized mission risk, and definition of the components for this configuration; (3) characterization of the low thrust adaptation requirements and performance for the staged combustion engine; (4) generation of a suggested safety and reliability approach for OTV engines independent of engine cycle; (5) definition of program risk relationships between expander and staged combustion cycle engines; and (6) development of schedules and costs for the DDT&E, production, and operation phases of the 10K pound thrust expander engine program.
Orbital Transfer Vehicle (OTV) engine study. Phase A: Extension
NASA Technical Reports Server (NTRS)
Sobin, A. J.
1980-01-01
The current Phase A-Extension of the OTV engine study program aims to provide additional expander and staged combustion cycle data that will lead to design definition of the OTV engine. The proposed program effort seeks to optimize the expander cycle engine concept (consistent with identified OTV engine requirements), investigate the feasibility of kitting the staged combustion cycle engine to provide extended thrust operation, and conduct in-depth analysis of development risk, crew safety, and reliability for both cycles. Additional tasks address the costing of a 10/K thrust expander cycle engine and support of OTV systems study contractors.
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Orbit transfer vehicle advanced expander cycle engine point design study. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Diem, H. G.
1980-01-01
The design characteristics of the baseline engine configuration of the advanced expander cycle engine are described. Several aspects of engine optimization are considered which directly impact the design of the baseline thrust chamber. Four major areas of the power cycle optimization are emphasized: main turbine arrangement; cycle engine source; high pressure pump design; and boost pump drive.
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1979-01-01
The performance optimization of expander cycle engines at vacuum thrust levels of 10K, 15K, and 20K lb is discussed. The optimization is conducted for a maximum engine length with an extendible nozzle in the retracted position of 60 inches and an engine mixture ratio of 6.0:1. The thrust chamber geometry and cycle analyses are documented. In addition, the sensitivity of a recommended baseline expander cycle to component performance variations is determined and chilldown/start propellant consumptions are estimated.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Riccardi, D. P.; Mitchell, J. C.
1993-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mitchell, J. C.
1991-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Orbit transfer vehicle engine study, phase A, extension 1: Volume 2: Study results
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1981-01-01
Because of the advantage of the Advanced Expander Cycle Engine brought out in initial studies, further design optimization and comparative analyses were undertaken. The major results and conclusion derived are summarized. The primary areas covered are (1) thrust chamber geometry optimization, (2) expander cycle optimization, (3) alternate low thrust capability, (4) safety and reliability, (5) development risk comparison, and (6) cost comparisons. All of the results obtained were used to baseline the initial design concept for the OTV Advanced Expander Cycle Engine Point Design Study.
Basic Study on Engine with Scroll Compressor and Expander
NASA Astrophysics Data System (ADS)
Morishita, Etsuo; Kitora, Yoshihisa; Nishida, Mitsuhiro
Scroll compressors are becoming popular in air conditioning and refrigeration. This is primarily due to their higher efficiency and low noise/vibration characteristics. The scroll principle can be applied also to the steam expander and the Brayton cycle engine,as shown in the past literature. The Otto cycle spark-ignition engine with a scroll compressor and expander is studied in this report. The principle and basic structure of the scroll engine are explained,and the engine characteristic are calculated based on the idealized cycles and processes. A prototype model has been proposed and constructed. The rotary type engine has always had a problem with sealing. The scroll engine might overcome this shortcoming with its much lower rubbing speed compared to its previous counterparts,and is therefore worth investigating.
Orbit transfer vehicle engine study. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
1980-01-01
The orbit transfer vehicle (OTV) engine study provided parametric performance, engine programmatic, and cost data on the complete propulsive spectrum that is available for a variety of high energy, space maneuvering missions. Candidate OTV engines from the near term RL 10 (and its derivatives) to advanced high performance expander and staged combustion cycle engines were examined. The RL 10/RL 10 derivative performance, cost and schedule data were updated and provisions defined which would be necessary to accommodate extended low thrust operation. Parametric performance, weight, envelope, and cost data were generated for advanced expander and staged combustion OTV engine concepts. A prepoint design study was conducted to optimize thrust chamber geometry and cooling, engine cycle variations, and controls for an advanced expander engine. Operation at low thrust was defined for the advanced expander engine and the feasibility and design impact of kitting was investigated. An analysis of crew safety and mission reliability was conducted for both the staged combustion and advanced expander OTV engine candidates.
Variable mixture ratio performance through nitrogen augmentation
NASA Technical Reports Server (NTRS)
Beichel, R.; Obrien, C. J.; Bair, E. K.
1988-01-01
High/variable mixture ratio O2/H2 candidate engine cycles are examined for earth-to-orbit vehicle application. Engine performance and power balance information are presented for the candidate cycles relative to chamber pressure, bulk density, and mixture ratio. Included in the cycle screening are concepts where a third fluid (liquid nitrogen) is used to achieve a variable mixture ratio over the trajectory from liftoff to earth orbit. The third fluid cycles offer a very low risk, fully reusable, low operation cost alternative to high/variable mixture ratio bipropellant cycles. Variable mixture ratio engines with extendible nozzle are slightly lower performing than a single mixture ratio engine (MR = 7:1) with extendible nozzle. Dual expander engines (MR = 7:1) have slightly better performance than the single mixture ratio engine. Dual fuel dual expander engines offer a 16 percent improvement over the single mixture ratio engine.
Evaluation of undeveloped rocket engine cycle applications to advanced transportation
NASA Technical Reports Server (NTRS)
1990-01-01
Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.
Orbit Transfer Vehicle (OTV) engine phase A study
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1978-01-01
Requirements for the orbit transfer vehicle engine were examined. Engine performance/weight sensitivities, the effect of a service life of 300 start/shutdown cycles between overalls on the maximum engine operating pressure, and the sensitivity of the engine design point (i.e., thrust chamber pressure and nozzle area ratio) to the performance requirements specified are among the factors studied. Preliminary engine systems analyses were conducted on the stage combustion, expander, and gas generator engine cycles. Hydrogen and oxygen pump discharge pressure requirements are shown for various engine cycles. Performance of the engine cycles is compared.
NASA Technical Reports Server (NTRS)
1981-01-01
The engine operating characteristics were examined. Inlet pressure effects, tank pressurization effects, steady-state specific impulse, and the steady-state cycle were studied. The propellant flow schematic and operating sequence are presented. Engine hardware drawings are included.
Organic Rankine cycle - review and research directions in engine applications
NASA Astrophysics Data System (ADS)
Panesar, Angad
2017-11-01
Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.
Orbit Transfer Vehicle (OTV) engine phase A study, extension 1. Volume 3: Study cost estimates
NASA Technical Reports Server (NTRS)
Christensen, K. L.
1980-01-01
Program cost and planning data based on 1980 technology and shown in 1979 dollars for a 20K lb Thrust Staged Combustion Cycle Engine are presented. These data were compared with those for the Advanced Expander Cycle Engine at 10K lb and 20K lb thrust levels.
Summary of Recent Hybrid Torpedo Powerplant Studies
2007-12-01
engine (such as the one used in SCEPS), a generic open-cycle expander engine that operates on a mixture of combustion products, a Brayton cycle engine ...difficult to produce an efficient engine that operates at a high backpressure . This particular value was chosen because it was used in a study of various... Effect of Design High Speed .........................................................................13 Figure 4: Hybrid vs. Conventional Torpedo Range
Development of LM10-MIRA LOX/LNG expander cycle demonstrator engine
NASA Astrophysics Data System (ADS)
Rudnykh, Mikhail; Carapellese, Stefano; Liuzzi, Daniele; Arione, Luigi; Caggiano, Giuseppe; Bellomi, Paolo; D'Aversa, Emanuela; Pellegrini, Rocco; Lobov, S. D.; Gurtovoy, A. A.; Rachuk, V. S.
2016-09-01
This article contains results of joint works by Konstruktorskoe Buro Khimavtomatiki (KBKhA, Russia) and AVIO Company (Italy) on creation of the LM10-MIRA liquid-propellant rocket demonstrator engine for the third stage of the upgraded "Vega" launcher.Scientific and research activities conducted by KBKhA and AVIO in 2007-2014 in the frame of the LYRA Program, funded by the Italian Space Agency, with ELV as Prime contractor, and under dedicated ASI-Roscosmos inter-agencies agreement, were aimed at development and testing of a 7.5 t thrust expander cycle demonstrator engine propelled by oxygen and liquid natural gas (further referred to as LNG).
Design and Analysis of a Turbopump for a Conceptual Expander Cycle Upper-Stage Engine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Rothermel, Jeffry; Griffin, Lisa W.; Thornton, Randall J.; Forbes, John C.; Skelly, Stephen E.; Huber, Frank W.
2006-01-01
As part of the development of technologies for rocket engines that will power spacecraft to the Moon and Mars, a program was initiated to develop a conceptual upper stage engine with wide flow range capability. The resulting expander cycle engine design employs a radial turbine to allow higher pump speeds and efficiencies. In this paper, the design and analysis of the pump section of the engine are discussed. One-dimensional meanline analyses and three-dimensional unsteady computational fluid dynamics simulations were performed for the pump stage. Configurations with both vaneless and vaned diffusers were investigated. Both the meanline analysis and computational predictions show that the pump will meet the performance objectives. Additional details describing the development of a water flow facility test are also presented.
Genome scale engineering techniques for metabolic engineering.
Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T
2015-11-01
Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Test Results of the RS-44 Integrated Component Evaluator Liquid Oxygen/Hydrogen Rocket Engine
NASA Technical Reports Server (NTRS)
Sutton, R. F.; Lariviere, B. W.
1993-01-01
An advanced LOX/LH2 expander cycle rocket engine, producing 15,000 lbf thrust for Orbital Transfer Vehicle missions, was tested to determine ignition, transition, and main stage characteristics. Detail design and fabrication of the pump fed RS44 integrated component evaluator (ICE) was accomplished using company discretionary resources and was tested under this contracted effort. Successful demonstrations were completed to about the 50 percent fuel turbopump power level (87,000 RPM), but during this last test, a high pressure fuel turbopump (HPFTP) bearing failed curtailing the test program. No other hardware were affected by the HPFTP premature shutdown. The ICE operations matched well with the predicted start transient simulations. The tests demonstrated the feasibility of a high performance advanced expander cycle engine. All engine components operated nominally, except for the HPFTP, during the engine hot-fire tests. A failure investigation was completed using company discretionary resources.
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1980-01-01
Engine control techniques were established and new technology requirements were identified. The designs of the components and engine were prepared in sufficient depth to calculate engine and component weights and envelopes, turbopump efficiencies and recirculation leakage rates, and engine performance. Engine design assumptions are presented along with the structural design criteria.
Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study, volume 2
NASA Technical Reports Server (NTRS)
1981-01-01
The engine requirements are emphasized and include: high specific impulse within a restricted installed length constraint, long life, multiple starts, different thrust levels, and man-rated reliability. The engine operating characteristics and the major component analytical design are summarized.
Nuclear Engine System Simulation (NESS) version 2.0
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.
Engine system assessment study using Martian propellants
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis; Jacobs, Mark; Scheil, Christine; Collins, John
1992-01-01
A top-level feasibility study was conducted that identified and characterized promising chemical propulsion system designs which use two or more of the following propellant combinations: LOX/H2, LOX/CH4, and LOX/CO. The engine systems examined emphasized the usage of common subsystem/component hardware where possible. In support of this study, numerous mission scenarios were characterized that used various combinations of Earth, lunar, and Mars propellants to establish engine system requirements to assess the promising engine system design concept examined, and to determine overall exploration leverage of such systems compared to state-of-the-art cryogenic (LOX/H2) propulsion systems. Initially in the study, critical propulsion system technologies were assessed. Candidate expander and gas generator cycle LOX/H2/CO, LOX/H2/CH4, and LOX/CO/CH4 engine system designs were parametrically evaluated. From this evaluation baseline, tripropellant Mars Transfer Vehicle (MTV) LOX cooled and bipropellant Lunar Excursion Vehicle (LEV) and Mars Excursion Vehicle (MEV) engine systems were identified. Representative tankage designs for a MTV were also investigated. Re-evaluation of the missions using the baseline engine design showed that in general the slightly lower performance, smaller, lower weight gas generator cycle-based engines required less overall mission Mars and in situ propellant production (ISPP) infrastructure support compared to the larger, heavier, higher performing expander cycle engine systems.
NASA Astrophysics Data System (ADS)
Bulman, M. J.; Culver, D. W.; McIlwain, M. C.; Rochow, Richard; D'Yakov, E. K.; Smetannikov, V. P.
1993-06-01
The paper describes the Nuclear Thermal Energy (NTRE) engine, developed by taking advantage of mature fuel technology developed in the former Soviet Union, thus shortening the development schedule of this engine for moon and Mars explorations. The near-term NTRE engine has a number of features that provide safety, mission performance, cost, and risk benefits. These include: (1) high-temperature long-life CIS fuel, (2) high-pressure recuperated expander cycle, (3) assured restart, (4) long-life cooled nozzle with thin inner wall, (5) long-life turbopumps, (6) heat radiation and electrical power generation, and (7) component integration synergy. Diagrams of the reactor core, the recuperated bottoming cycle flow schematic, and the recuperated bottoming cycle engine schematic are presented.
NASA Technical Reports Server (NTRS)
Wingenback, W.; Carter, J., Jr.
1979-01-01
A conceptual design of a 3600 rpm reciprocation expander was developed for maximum thermal input power of 80 kW. The conceptual design covered two engine configurations; a single cylinder design for simple cycle operation and a two cylinder design for reheat cycle operation. The reheat expander contains a high pressure cylinder and a low pressure cylinder with steam being reheated to the initial inlet temperature after expansion in the high pressure cylinder. Power generation is accomplished with a three-phase induction motor coupled directly to the expander and connected electrically to the public utility power grid. The expander, generator, water pump and control system weigh 297 kg and are dish mounted. The steam condenser, water tank and accessory pumps are ground based. Maximum heat engine efficiency is 33 percent: maximum power conversion efficiency is 30 percent. Total cost is $3,307 or $138 per kW of maximum output power.
Space Transportation Engine Program (STEP), phase B
NASA Technical Reports Server (NTRS)
1990-01-01
The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.
Numerical investigation of two- and three-dimensional heat transfer in expander cycle engines
NASA Technical Reports Server (NTRS)
Burch, Robert L.; Cheung, Fan-Bill
1993-01-01
The concept of using tube canting for enhancing the hot-side convective heat transfer in a cross-stream tubular rocket combustion chamber is evaluated using a CFD technique in this study. The heat transfer at the combustor wall is determined from the flow field generated by a modified version of the PARC Navier-Stokes Code, using the actual dimensions, fluid properties, and design parameters of a split-expander demonstrator cycle engine. The effects of artificial dissipation on convergence and solution accuracy are investigated. Heat transfer results predicted by the code are presented. The use of CFD in heat transfer calculations is critically examined to demonstrate the care needed in the use of artificial dissipation for good convergence and accurate solutions.
Development Status of the CECE Cryogenic Deep Throttling Demonstrator Engine
NASA Technical Reports Server (NTRS)
2008-01-01
As one of the first technology development programs awarded by NASA under the U.S. Space Exploration Policy (USSEP), the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA's Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RLI0, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Two series of demonstrator engine tests, the first in April-May 2006 and the second in March-April 2007, have demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. Both test series have explored a combustion instability ("chug") environment at low throttled power levels. These tests have provided an early demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future CECE Demonstrator engine tests.
Gas-Generator Augmented Expander Cycle Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2011-01-01
An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.
Multidimensional computer simulation of Stirling cycle engines
NASA Technical Reports Server (NTRS)
Hall, C. A.; Porsching, T. A.; Medley, J.; Tew, R. C.
1990-01-01
The computer code ALGAE (algorithms for the gas equations) treats incompressible, thermally expandable, or locally compressible flows in complicated two-dimensional flow regions. The solution method, finite differencing schemes, and basic modeling of the field equations in ALGAE are applicable to engineering design settings of the type found in Stirling cycle engines. The use of ALGAE to model multiple components of the space power research engine (SPRE) is reported. Videotape computer simulations of the transient behavior of the working gas (helium) in the heater-regenerator-cooler complex of the SPRE demonstrate the usefulness of such a program in providing information on thermal and hydraulic phenomena in multiple component sections of the SPRE.
Design of an Oxygen Turbopump for a Dual Expander Cycle Rocket Engine
2008-03-01
Scharrer, Tellier , and Hibbs mentioned several applications where this bearing design choice benefits the overall engine performance, specifically in...Hydrostatic Bearings, AIAA-92-3401. 27 Scharrer, J.K., Tellier , J.G., and Hibbs, R.I., Start Transient Testing of an Annular Hydrostatic Bearing in Liquid
Linear aerospike engine. [for reusable single-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Kirby, F. M.; Martinez, A.
1977-01-01
A description is presented of a dual-fuel modular split-combustor linear aerospike engine concept. The considered engine represents an approach to an integrated engine for a reusable single-stage-to-orbit (SSTO) vehicle. The engine burns two fuels (hydrogen and a hydrocarbon) with oxygen in separate combustors. Combustion gases expand on a linear aerospike nozzle. An engine preliminary design is discussed. Attention is given to the evaluation process for selecting the optimum number of modules or divisions of the engine, aspects of cooling and power cycle balance, and details of engine operation.
Software engineering from a Langley perspective
NASA Technical Reports Server (NTRS)
Voigt, Susan
1994-01-01
A brief introduction to software engineering is presented. The talk is divided into four sections beginning with the question 'What is software engineering', followed by a brief history of the progression of software engineering at the Langley Research Center in the context of an expanding computing environment. Several basic concepts and terms are introduced, including software development life cycles and maturity levels. Finally, comments are offered on what software engineering means for the Langley Research Center and where to find more information on the subject.
Design and Evaluation of Dual-Expander Aerospike Nozzle Upper Stage Engine
2014-09-18
Nozzle , taken from Martin [2] . . . . . 19 2.3 Typical Liquid Rocket Engine Cycles from Huzel and Huang[3], credit J. Hall[4] 21 2.4 Liquid Rocket Engine...giving the maximum thrust. For steady, supersonic flow (no separation from the nozzle ) the exit pressure is constant for a given engine plus nozzle ...performance independent of a rocket’s nozzle . Assuming one-dimensional, steady, and isentropic flow of a perfect gas gives the definition for characteristic
Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Swami Nathan
Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach tomore » reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.« less
Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design
NASA Technical Reports Server (NTRS)
Harmon, T. J.; Roschak, E.
1993-01-01
A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.
Engine Cycle Analysis for a Particle Bed Reactor Nuclear Rocket
1991-03-01
0 DTIC USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL ZZb. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL Lt Timothy J . Lawrence 805-275...Cycle with 2000 MW PBR and Uncooled Nozzle J : Output for Bleed Cycle with 2000 MW PBR and Cooled Nozzle K: Output for Expander Cycle with 2000 MW PBR L...Mars with carbon dioxide, the primary component of the Martian atmosphere. Carbon dioxide would delivera smaller ! j , but its use would eliminate the
Advanced engine study for mixed-mode orbit-transfer vehicles
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1978-01-01
Engine design, performance, weight and envelope data were established for three mixed-mode orbit-transfer vehicle engine candidates. Engine concepts evaluated are the tripropellant, dual-expander and plug cluster. Oxygen, RP-1 and hydrogen are the propellants considered for use in these engines. Theoretical performance and propellant properties were established for bipropellant and tripropellant mixes of these propellants. RP-1, hydrogen and oxygen were evaluated as coolants and the maximum attainable chamber pressures were determined for each engine concept within the constraints of the propellant properties and the low cycle thermal fatigue (300 cycles) requirement. The baseline engine design and component operating characteristics are determined at a thrust level of 88,964N (20,000 lbs) and a thrust split of 0.5. The parametric data is generated over ranges of thrust and thrust split of 66.7 to 400kN (15 to 90 klb) and 0.4 to 0.8, respectively.
Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles
NASA Astrophysics Data System (ADS)
Manski, Detlef; Martin, James A.
1988-07-01
Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.
Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Manski, Detlef; Martin, James A.
1988-01-01
Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.
Reverse Brayton Cycle with Bladeless Turbo Compressor for Automotive Environmental Cooling
NASA Technical Reports Server (NTRS)
Ganapathi, Gani B. (Inventor); Cepeda-Rizo, Juan (Inventor)
2016-01-01
An automotive cabin cooling system uses a bladeless turbocompressor driven by automobile engine exhaust to compress incoming ambient air. The compressed air is directed to an intercooler where it is cooled and then to another bladeless turbine used as an expander where the air cools as it expands and is directed to the cabin interior. Excess energy may be captured by an alternator couple to the expander turbine. The system employs no chemical refrigerant and may be further modified to include another intercooler on the output of the expander turbine to isolate the cooled cabin environment.
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.
2010-01-01
As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop technology and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Three series of demonstrator engine tests, the first in April-May 2006, the second in March-April 2007 and the third in November-December 2008, have demonstrated up to 13:1 throttling (104% to 8% thrust range) of the hydrogen/oxygen expander cycle engine. The first two test series explored a propellant feed system instability ("chug") environment at low throttled power levels. Lessons learned from these two tests were successfully applied to the third test series, resulting in stable operation throughout the 13:1 throttling range. The first three tests have provided an early demonstration of an enabling cryogenic propulsion concept, accumulating over 5,000 seconds of hot fire time over 27 hot fire tests, and have provided invaluable system-level technology data toward design and development risk mitigation for the NASA Altair and future lander propulsion system applications. This paper describes the results obtained from the highly successful third test series as well as the test objectives and early results obtained from a fourth test series conducted over March-May 2010
NASA Technical Reports Server (NTRS)
Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.
1980-01-01
Technological requirements and forecasts of rocket engine parameters and launch vehicles for future Earth to geosynchronous orbit transportation systems are presented. The parametric performance, weight, and envelope data for the LOX/CH4, fuel cooled, staged combustion cycle and the hydrogen cooled, expander bleed cycle engine concepts are discussed. The costing methodology and ground rules used to develop the engine study are summarized. The weight estimating methodology for winged launched vehicles is described and summary data, used to evaluate and compare weight data for dedicated and integrated O2/H2 subsystems for the SSTO, HLLV and POTV are presented. Detail weights, comparisons, and weight scaling equations are provided.
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.; Jones, Scott M.
1991-01-01
This analysis and this computer code apply to full, split, and dual expander cycles. Heat regeneration from the turbine exhaust to the pump exhaust is allowed. The combustion process is modeled as one of chemical equilibrium in an infinite-area or a finite-area combustor. Gas composition in the nozzle may be either equilibrium or frozen during expansion. This report, which serves as a users guide for the computer code, describes the system, the analysis methodology, and the program input and output. Sample calculations are included to show effects of key variables such as nozzle area ratio and oxidizer-to-fuel mass ratio.
Malone-brayton cycle engine/heat pump
NASA Astrophysics Data System (ADS)
Gilmour, Thomas A.
1994-07-01
A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.
CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.
2007-01-01
As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.
Developments in the Tools and Methodologies of Synthetic Biology
Kelwick, Richard; MacDonald, James T.; Webb, Alexander J.; Freemont, Paul
2014-01-01
Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a “body of knowledge” from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community. PMID:25505788
NASA Technical Reports Server (NTRS)
1980-01-01
Detailed computer models of the engine were developed to predict both the steady state and transient operation of the engine system. Mechanical design layout drawings were prepared for the following components: thrust chamber and nozzle; extendible nozzle actuating mechanism and seal; LOX turbopump and boost pump; hydrogen turbopump and boost pump; and the propellant control valves. The necessary heat transfer, stress, fluid flow, dynamic, and performance analyses were performed to support the mechanical design.
Operability engineering in the Deep Space Network
NASA Technical Reports Server (NTRS)
Wilkinson, Belinda
1993-01-01
Many operability problems exist at the three Deep Space Communications Complexes (DSCC's) of the Deep Space Network (DSN). Four years ago, the position of DSN Operability Engineer was created to provide the opportunity for someone to take a system-level approach to solving these problems. Since that time, a process has been developed for personnel and development engineers and for enforcing user interface standards in software designed for the DSCC's. Plans are for the participation of operations personnel in the product life-cycle to expand in the future.
NASA Technical Reports Server (NTRS)
Hertzberg, A.; Decher, R.; Mattick, A. T.; Lau, C. V.
1978-01-01
High temperature heat engines designed to make maximum use of the thermodynamic potential of concentrated solar radiation are described. Plasmas between 2000 K and 4000 K can be achieved by volumetric absorption of radiation in alkali metal vapors, leading to thermal efficiencies up to 75% for terrestrial solar power plants and up to 50% for space power plants. Two machines capable of expanding hot plasmas using practical technology are discussed. A binary Rankine cycle uses fluid mechanical energy transfer in a device known as the 'Comprex' or 'energy exchanger.' The second machine utilizes magnetohydrodynamics in a Brayton cycle for space applications. Absorption of solar energy and plasma radiation losses are investigated for a solar superheater using potassium vapor.
Advanced Expander Test Bed Program. Preliminary Design Review Report
1991-05-01
Engines & Space Propulsion P.O. Box 109600 West Palm Beach. Florida 33410-9600 May 1991 T :. ’ 3 J i, Prepared for: Lewis Research Center ! Under...IINTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . I 11 SUMMARY...................................................... 3 A. Design Approach... 3 B. Operating Cycles............................................... 4 C. Oxygen Turbopump
Orbital transfer vehicle engine technology: Baffled injector design, fabrication, and verification
NASA Technical Reports Server (NTRS)
Schneider, J. A.
1991-01-01
New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. Supporting tasks for the design of a dual expander cycle engine thrust chamber design are documented. The purpose of the studies was to research the materials used in the thrust chamber design, the supporting fabrication methods necessary to complete the design, and the modification of the injector element for optimum injector/chamber compatibility.
NASA Orbit Transfer Rocket Engine Technology Program
NASA Technical Reports Server (NTRS)
1984-01-01
The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.
Tubular copper thrust chamber design study
NASA Technical Reports Server (NTRS)
Masters, A. I.; Galler, D. E.
1992-01-01
The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.
Stirling engine design manual, 2nd edition
NASA Technical Reports Server (NTRS)
Martini, W. R.
1983-01-01
This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.
NASA Technical Reports Server (NTRS)
Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.
1993-01-01
A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.
A candidate architecture for monitoring and control in chemical transfer propulsion systems
NASA Technical Reports Server (NTRS)
Binder, Michael P.; Millis, Marc G.
1990-01-01
To support the exploration of space, a reusable space-based rocket engine must be developed. This engine must sustain superior operability and man-rated levels of reliability over several missions with limited maintenance or inspection between flights. To meet these requirements, an expander cycle engine incorporating a highly capable control and health monitoring system is planned. Alternatives for the functional organization and the implementation architecture of the engine's monitoring and control system are discussed. On the basis of this discussion, a decentralized architecture is favored. The trade-offs between several implementation options are outlined and future work is proposed.
Orbit transfer rocket engine technology program
NASA Technical Reports Server (NTRS)
Gustafson, N. B.; Harmon, T. J.
1993-01-01
An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and main stage operation.
Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Technology Project Status
NASA Technical Reports Server (NTRS)
Gromski, Jason; Majamaki, Annik; Chianese, Silvio; Weinstock, Vladimir; Kim, Tony S.
2010-01-01
NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of future lander missions. To meet lander requirements, several technical challenges need to be overcome, one of which is the ability for the descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202 engine. The TR202 is a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two series of pintle injector testing. The first series of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at discrete points throughout the designed 10:1 throttle range. The second series was conducted with calorimeter chambers and demonstrated injector performance at discrete points throughout the throttle range as well as chamber heat flow adequate to power an expander cycle design across the throttle range. This paper provides an overview of the TR202 program, describing the different phases and key milestones. It describes how test data was correlated to the engine conceptual design. The test data obtained has created a valuable database for deep throttling cryogenic pintle technology, a technology that is readily scalable in thrust level.
Software metrics: Software quality metrics for distributed systems. [reliability engineering
NASA Technical Reports Server (NTRS)
Post, J. V.
1981-01-01
Software quality metrics was extended to cover distributed computer systems. Emphasis is placed on studying embedded computer systems and on viewing them within a system life cycle. The hierarchy of quality factors, criteria, and metrics was maintained. New software quality factors were added, including survivability, expandability, and evolvability.
Optimal Power and Efficiency of Quantum Thermoacoustic Micro-cycle Working in 1D Harmonic Trap
NASA Astrophysics Data System (ADS)
E, Qing; Wu, Feng; Yin, Yong; Liu, XiaoWei
2017-10-01
Thermoacoustic engines (including heat engines and refrigerators) are energy conversion devices without moving part. They have great potential in aviation, new energy utilization, power technology, refrigerating and cryogenics. The thermoacoustic parcels, which compose the working fluid of a thermoacoustic engine, oscillate within the sound channel with a temperature gradient. The thermodynamic foundation of a thermoacoustic engine is the thermoacoustic micro-cycle (TAMC). In this paper, the theory of quantum mechanics is applied to the study of the actual thermoacoustic micro-cycle for the first time. A quantum mechanics model of the TAMC working in a 1D harmonic trap, which is named as a quantum thermoacoustic micro-cycle (QTAMC), is established. The QTAMC is composed of two constant force processes connected by two straight line processes. Analytic expressions of the power output and the efficiency for QTAMC have been derived. The effects of the trap width and the temperature amplitude on the power output and the thermal efficiency have been discussed. Some optimal characteristic curves of power output versus efficiency are plotted, and then the optimization region of QTAMC is given in this paper. The results obtained here not only enrich the thermoacoustic theory but also expand the application of quantum thermodynamics.
Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering
Si, Tong; Xiao, Han; Zhao, Huimin
2014-01-01
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192
Steam bottoming cycle for an adiabatic diesel engine
NASA Technical Reports Server (NTRS)
Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.
1984-01-01
Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.
NASA Technical Reports Server (NTRS)
Barnett, Greg; Turpin, Jason; Nettles, Mindy
2015-01-01
This task is to hot-fire test an existing Space Launch Mission (SLM) injector that is applicable for all expander cycle engines being considered for the exploration upper stage. The work leverages investment made in FY 2013 that was used to additively manufacture three injectors (fig. 1) all by different vendors..
Fluid design studies of integrated modular engine system
NASA Technical Reports Server (NTRS)
Frankenfield, Bruce; Carek, Jerry
1993-01-01
A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.
Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine
NASA Technical Reports Server (NTRS)
Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.
2016-01-01
The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.
Rapid prototyping of microbial cell factories via genome-scale engineering.
Si, Tong; Xiao, Han; Zhao, Huimin
2015-11-15
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.
Reliability studies of Integrated Modular Engine system designs
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1993-01-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of integrated modular engine system designs
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1993-01-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of integrated modular engine system designs
NASA Astrophysics Data System (ADS)
Hardy, Terry L.; Rapp, Douglas C.
1993-06-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of Integrated Modular Engine system designs
NASA Astrophysics Data System (ADS)
Hardy, Terry L.; Rapp, Douglas C.
1993-06-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
NASA Technical Reports Server (NTRS)
Kubo, I.
1987-01-01
Bottoming cycle concepts for heavy duty transport engine applications were studied. In particular, the following tasks were performed: (1) conceptual design and cost data development for Stirling systems; (2) life-cycle cost evaluation of three bottoming systems - organic Rankine, steam Rankine, and Stirling cycles; and (3) assessment of future directions in waste heat utilization research. Variables considered for the second task were initial capital investments, fuel savings, depreciation tax benefits, salvage values, and service/maintenance costs. The study shows that none of the three bottoming systems studied are even marginally attractive. Manufacturing costs have to be reduced by at least 65%. As a new approach, an integrated Rankine/Diesel system was proposed. It utilizes one of the diesel cylinders as an expander and capitalizes on the in-cylinder heat energy. The concept eliminates the need for the power transmission device and a sophisticated control system, and reduces the size of the exhaust evaporator. Results of an economic evaluation indicate that the system has the potential to become an attractive package for end users.
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.
2010-01-01
As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future lander descent main engines.
A transient model of the RL10A-3-3A rocket engine
NASA Technical Reports Server (NTRS)
Binder, Michael P.
1995-01-01
RL10A-3-3A rocket engines have served as the main propulsion system for Centaur upper stage vehicles since the early 1980's. This hydrogen/oxygen expander cycle engine continues to play a major role in the American launch industry. The Space Propulsion Technology Division at the NASA Lewis Research Center has created a computer model of the RL10 engine, based on detailed component analyses and available test data. This RL10 engine model can predict the performance of the engine over a wide range of operating conditions. The model may also be used to predict the effects of any proposed design changes and anticipated failure scenarios. In this paper, the results of the component analyses are discussed. Simulation results from the new system model are compared with engine test and flight data, including the start and shut-down transient characteristics.
Relationships between Sensory Stimuli and Autonomic Regulation During Real and Virtual Exercises.
Kiryu, Tohru; Iijima, Atsuhiko; Bando, Takehiko
2005-01-01
For expanding application of virtual reality, such as rehabilitation engineering, concerns of cybersicknes should be cleared. We have investigated changes in autonomic regulations under real cycling and virtual mountain biking video with the first-person viewpoint. The results showed that the dominant sensory stimuli affected autonomic regulation with different process. The different process will lead to the hints for preventing cybersickness.
ESCORT: A Pratt & Whitney nuclear thermal propulsion and power system for manned mars missions
NASA Astrophysics Data System (ADS)
Feller, Gerald J.; Joyner, Russell
1999-01-01
The purpose of this paper is to describe the conceptual design of an upgrade to the Pratt & Whitney ESCORT nuclear thermal rocket engine. The ESCORT is a bimodal engine capable of supporting a wide range of vehicle propulsive and electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In propulsive mode, the reactor is used to heat hot hydrogen to approximately 2700 K which is expanded through a converging/diverging nozzle to generate thrust. Heat pickup in the nozzle and the radial beryllium reflectors is used to drive the turbomachinery in the ESCORT expander cycle. In electrical mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. This closed loop system has the additional function of a decay heat removal system after the propulsive mode operation is discontinued. The original ESCORT design was capable of delivering 4448.2 N (1000 lbf) of thrust at a vacuum impulse level of approximately 900 s. Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential manned Mars missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. This is met assuming three engines capable of each delivering 66723 N (15000 lbf) of vacuum thrust and 25 kWe of electrical power. The individual engine requirements were developed assuming three out of three engine reliability for propulsion and two out of three engine reliability for spacecraft electrical power. The approximate target vacuum impulse is 925 s. The Pratt & Whitney ESCORT concept was upgraded to meet these requirements. The hexagonal prismatic fuel elements were modified to address the uprated power requirements while maintaining the peak fuel temperature below the 2880 K limit for W-UO2 CERMET fuels. A system integrated performance methodology was developed to assess the sensitivity to weight, thrust and impulse to the DRM requirements. Propellant tanks, shielding, and Brayton cycle power conversion unit requirements were included in this evaluation.
Integrated control and health management. Orbit transfer rocket engine technology program
NASA Technical Reports Server (NTRS)
Holzmann, Wilfried A.; Hayden, Warren R.
1988-01-01
To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods.
A study of power cycles using supercritical carbon dioxide as the working fluid
NASA Astrophysics Data System (ADS)
Schroder, Andrew Urban
A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.
Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort
NASA Technical Reports Server (NTRS)
Ensworth, Clint B., III; McKissock, David B.
1998-01-01
NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.
Engineering in complex systems.
Bujara, Matthias; Panke, Sven
2010-10-01
The implementation of the engineering design cycle of measure, model, manipulate would drastically enhance the success rate of biotechnological designs. Recent progress for the three elements suggests that the scope of the traditional engineering paradigm in biotechnology is expanding. Substantial advances were made in dynamic in vivo analysis of metabolism, which is essential for the accurate prediction of metabolic pathway behavior. Novel methods that require variable degrees of system knowledge facilitate metabolic system manipulation. The combinatorial testing of pre-characterized parts is particularly promising, because it can profit from automation and limits the search space. Finally, conceptual advances in orthogonalizing cells should enhance the reliability of engineering designs in the future. Coupled to improved in silico models of metabolism, these advances should allow a more rational design of metabolic systems. Copyright © 2010 Elsevier Ltd. All rights reserved.
Demonstration of a Non-Toxic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Turpin, Alicia A.; Veith, Eric M.
2007-01-01
T:hree non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE's were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing.
Demonstration of a Non-Toxic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Veith, Eric M.; Turpin, Alicia A.
2006-01-01
Three non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration s (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE s were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, R.
1992-01-01
This book covers issues ranging from global climate changes to biocontrol of plant diseases. Many of its contributions stress how new technologies in areas such as molecular biology and environmental engineering expand understanding and applications of basic concepts in environmental microbiology. Articles in the book are in three basic subject areas: effects of environmental contamination on the role of microbes in geochemical cycling of the major elements, pathogens in the environment, and microbial activities in environmental management.
Penders, Bart; Nelis, Annemiek P
2011-12-01
We expand upon the notion of the "credibility cycle" through a study of credibility engineering by the food industry. Research and development (R&D) as well as marketing contribute to the credibility of the food company Unilever and its claims. Innovation encompasses the development, marketing, and sales of products. These are directed towards three distinct audiences: scientific peers, regulators, and consumers. R&D uses scientific articles to create credit for itself amongst peers and regulators. These articles are used to support health claims on products. However, R&D, regulation, and marketing are not separate realms. A single strategy of credibility engineering connects health claims to a specific public through linking that public to a health issue and a food product.
Predicted performance of an integrated modular engine system
NASA Technical Reports Server (NTRS)
Binder, Michael; Felder, James L.
1993-01-01
Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.
Modeling syngas-fired gas turbine engines with two dilutants
NASA Astrophysics Data System (ADS)
Hawk, Mitchell E.
2011-12-01
Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.
Advanced Control Considerations for Turbofan Engine Design
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy
2016-01-01
This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.
Cell-free synthetic biology for in vitro prototype engineering.
Moore, Simon J; MacDonald, James T; Freemont, Paul S
2017-06-15
Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).
Cell-free synthetic biology for in vitro prototype engineering
Moore, Simon J.; MacDonald, James T.
2017-01-01
Cell-free transcription–translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. PMID:28620040
NASA Technical Reports Server (NTRS)
Gunn, Stanley
1991-01-01
The needs of the designer of a solid core nuclear rocket engine are discussed. Some of the topics covered include: (1) a flight thrust module/feed system module assembly; (2) a nuclear thermal rocket (NTR), expander cycle, dual T/P; (3) turbopump operating conditions; (4) typical system parameters; (5) growth capability composite fuel elements; (6) a NTR radiation cooled nozzle extension; (7) a NFS-3B Feed System; and (8) a NTR Integrated Pneumatic-Fluidics Control System.
Nitrogen expander cycles for large capacity liquefaction of natural gas
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung
2014-01-01
Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.
Expanding the chemical palate of cells by combining systems biology and metabolic engineering.
Curran, Kathleen A; Alper, Hal S
2012-07-01
The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.
Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Project Status
NASA Technical Reports Server (NTRS)
Gromski, J.; Majamaki, A. N.; Chianese, S. G.; Weinstock, V. D.; Kim, T.
2010-01-01
NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of the Exploration Initiative, with a particular focus on the needs of the Altair Project. To meet Altair requirements, several technical challenges need to be overcome, one of which is the ability for the lunar descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202, a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two phases of pintle injector testing. The first phase of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at several power levels across the designed 10:1 throttle range. The second phase of testing was performed on a calorimeter chamber and demonstrated injector performance at various power levels (75%, 50%, 25%, 10%, and 7.5%) across the throttle range as well as chamber heat flux to show that the engine can close an expander cycle design across the throttle range. This paper provides an overview of the TR202 program. It describes the different phases of the program with the key milestones of each phase. It then shows when those milestones were met. Next, it describes how the test data was used to update the conceptual design and how the test data has created a database for deep throttling cryogenic pintle technology that is readily scaleable and can be used to again update the design once the Altair program's requirements are firm. The final section of the paper describes the path forward, which includes demonstrating continuously throttling with an actuator and pursuing a path towards integrated engine sea-level test-bed testing.
Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander
NASA Astrophysics Data System (ADS)
Demuth, O. J.
1984-06-01
The velocity pump reaction turbine (VPRT) was evaluated as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360(F) geothermal resource, 60 F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120 F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.77, with plant geofluid effectiveness values ranging as high as 9.5 watt hr-lbm geofluid for the 360 F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.
Expanding Applications of SERS through Versatile Nanomaterials Engineering (Postprint)
2017-06-22
AFRL-RX-WP-JA-2017-0341 EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) M. Fernanda...AND SUBTITLE EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-2-5518 5b...Expanding applications of SERS through versatile nanomaterials engineering M. Fernanda Cardinal, Emma Vander Ende, Ryan A. Hackler, Michael O. McAnally
Fatigue and durability of Nitinol stents.
Pelton, A R; Schroeder, V; Mitchell, M R; Gong, Xiao-Yan; Barney, M; Robertson, S W
2008-04-01
Nitinol self-expanding stents are effective in treating peripheral artery disease, including the superficial femoral, carotid, and renal arteries. However, fracture occurrences of up to 50% have been reported in some stents after one year. These stent fractures are likely due to in vivo cyclic displacements. As such, the cyclic fatigue and durability properties of Nitinol-based endovascular stents are discussed in terms of an engineering-based experimental testing program. In this paper, the combined effects of cardiac pulsatile fatigue and stent-vessel oversizing are evaluated for application to both stents and stent subcomponents. In particular, displacement-controlled fatigue tests were performed on stent-like specimens processed from Nitinol microtubing. Fatigue data were collected with combinations of simulated oversizing conditions and pulsatile cycles that were identified by computer modeling of the stent that mimic in vivo deformation conditions. These data are analyzed with non-linear finite element computations and are illustrated with strain-life and strain-based constant-life diagrams. The utility of this approach is demonstrated in conjunction with 10 million cycle pulsatile fatigue tests of Cordis SMART Control((R)) Nitinol self-expanding stents to calculate fatigue safety factors and thereby predict in vivo fatigue resistance. These results demonstrate the non-linear constant fatigue-life response of Nitinol stents, whereby, contrary to conventional engineering materials, the fatigue life of Nitinol is observed to increase with increasing mean strain.
Orbit transfer rocket engine technology program enhanced heat transfer combustor technology
NASA Technical Reports Server (NTRS)
Brown, William S.
1991-01-01
In order to increase the performance of a high performance, advanced expander-cycle engine combustor, higher chamber pressures are required. In order to increase chamber pressure, more heat energy is required to be transferred to the combustor coolant circuit fluid which drives the turbomachinery. This requirement was fulfilled by increasing the area exposed to the hot-gas by using combustor ribs. A previous technology task conducted 2-d hot air and cold flow tests to determine an optimum rib height and configuration. In task C.5 a combustor calorimeter was fabricated with the optimum rib configuration, 0.040 in. high ribs, in order to determine their enhancing capability. A secondary objective was to determine the effects of mixture ratio changers on the enhancement during hot-fire testing. The program used the Rocketdyne Integrated Component Evaluator (ICE) reconfigured into a thrust chamber only mode. The test results were extrapolated to give a projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 Klb nominal thrust level. The hot-gas wall ribs resulted in a 58 percent increase in heat transfer. When projected to a full size 15K combustor, it becomes a 46 percent increase. The results of those tests, a comparison with previous 2-d results, the effects of mixture ratio and combustion gas flow on the ribs and the potential ramifications for expander cycle combustors are detailed.
Bennett, Charles L [Livermore, CA
2009-10-20
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
Recent Advances in LOX / LH2 Propulsion System for Reusable Vehicle Testing
NASA Astrophysics Data System (ADS)
Tokudome, Shinichiro; Naruo, Yoshihiro; Yagishita, Tsuyoshi; Nonaka, Satoshi; Shida, Maki; Mori, Hatsuo; Nakamura, Takeshi
The third-generation vehicle RVT#3 equipped with a pressure-fed engine, which had upgraded in terms of durability enhancement and a LH2 tank of composite material, successfully performed in repeated flight operation tests; and the vehicle reached its maximum flying altitude of 42m in October 2003. The next step for demonstrating entire sequence of full-scale operation is to put a turbopump-fed system into propulsion system. From a result of primary system analysis, we decided to build an expander-cycle engine by diverting a pair of turbopumps, which had built for another research program, to the present study. A combustion chamber with long cylindrical portion adapted to the engine cycle was also newly made. Two captive firing tests have been conducted with two different thrust control methods, following the component tests of combustor and turbopumps separately conducted. A considerable technical issues recognized in the tests were the robustness enhancement of shaft seal design, the adjustment of shaft stiffness, and start-up operation adapted to the specific engine system. Experimental study of GOX/GH2 RCS thrusters have also been started as a part of a conceptual study of the integration of the propulsion system associated with simplification and reliability improvement of the vehicle system.
Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N
2006-07-01
With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.
Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Swami
2015-10-01
Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.
Advanced Automotive Diesel Assessment Program, executive summary
NASA Technical Reports Server (NTRS)
1983-01-01
The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).
The next generation rocket engines
NASA Astrophysics Data System (ADS)
Beichel, Rudi; O'Brien, Charles J.; Taylor, James P.
This paper examines propulsion system technologies for earth-to-orbit vehicles, and describes several propulsion system concepts which could support the recommendations of the Commission for Space Development for the year 2000. The hallmark of that system must and will be reliability. Reliability will be obtained through a very structured design approach, coupled with a rational, cost effective, development and qualification program. To improve the next generation space transportation propulsion systems we need to select the very best of alternative power and performance cycles and engine physical concepts with a rigid requirement to achieve a robust, dependable, affordable propulsion system. For example, engine concepts using either propellants or non-propellant fluids for cooling and/or power drive offer the potential to provide smooth, controlled engine starts, low turbine temperatures, etc. as required for long life turbomachinery. Concepts examined are LOX/LH 2, |LOX/LH 2 + hydrocarbon, and LOX/LH 2 + hydrocarbon + Al dual expander engines, separate LOX/LH 2 and LOX/hydrocarbon engines, and variable mixture ratio engines. A fully reusable propulsion system that is perceived to be very low risk and low in operation cost is described.
Engineering Pseudomonas stutzeri as a biogeochemical biosensor
NASA Astrophysics Data System (ADS)
Boynton, L.; Cheng, H. Y.; Del Valle, I.; Masiello, C. A.; Silberg, J. J.
2016-12-01
Biogeochemical cycles are being drastically altered as a result of anthropogenic activities, such as the burning of fossil fuels and the industrial production of ammonia. We know microbes play a major part in these cycles, but the extent of their biogeochemical roles remains largely uncharacterized due to inadequacies with culturing and measurement. While metagenomics and other -omics methods offer ways to reconstruct microbial communities, these approaches can only give an indication of the functional roles of microbes in a community. These -omics approaches are rapidly being expanded to the point of outpacing our knowledge of functional genes, which highlights an inherent need for analytical methods that non-invasively monitor Earth's processes in real time. Here we aim to exploit synthetic biology methods in order to engineer a ubiquitous denitrifying microbe, Pseudomonas stutzeri that can act as a biosensor in soil and marine environments. By using an easily cultivated microbe that is also common in many environments, we hope to develop a tool that allows us to zoom in on specific aspects of the nitrogen cycle. In order to monitor processes occurring at the genetic level in environments that cannot be resolved with fluorescence-based methods, such as soils, we have developed a system that instead relies on gas production by engineered microbial biosensors. P. stutzeri has been successfully engineered to release a gas, methyl bromide, which can continuously and non-invasively be measured by GC-MS. Similar to using Green Fluorescent Protein, GFP, in the biological sciences, the gene controlling gas production can be linked to those involved in denitrification, thereby creating a quantifiable gas signal that is correlated with microbial activity in the soil. Synthetically engineered microbial biosensors could reveal key aspects of metabolism in soil systems and offer a tool for characterizing the scope and degree of microbial impact on major biogeochemical cycles.
An efficient nonlinear Feshbach engine
NASA Astrophysics Data System (ADS)
Li, Jing; Fogarty, Thomás; Campbell, Steve; Chen, Xi; Busch, Thomas
2018-01-01
We investigate a thermodynamic cycle using a Bose-Einstein condensate (BEC) with nonlinear interactions as the working medium. Exploiting Feshbach resonances to change the interaction strength of the BEC allows us to produce work by expanding and compressing the gas. To ensure a large power output from this engine these strokes must be performed on a short timescale, however such non-adiabatic strokes can create irreversible work which degrades the engine’s efficiency. To combat this, we design a shortcut to adiabaticity which can achieve an adiabatic-like evolution within a finite time, therefore significantly reducing the out-of-equilibrium excitations in the BEC. We investigate the effect of the shortcut to adiabaticity on the efficiency and power output of the engine and show that the tunable nonlinearity strength, modulated by Feshbach resonances, serves as a useful tool to enhance the system’s performance.
Screw expander for light duty diesel engines
NASA Technical Reports Server (NTRS)
1983-01-01
Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.
NASA Technical Reports Server (NTRS)
Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.
1991-01-01
An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.
Advanced propulsion engine assessment based on a cermet reactor
NASA Technical Reports Server (NTRS)
Parsley, Randy C.
1993-01-01
A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.
Overview of the Turbine Based Combined Cycle Discipline
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Walker, James F.; Pittman, James L.
2009-01-01
The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode-transition constraints imposed by the turbine and the ramjet/scramjet flow paths (imposed variable geometry requirements), (3) turbine engine transients (and associated time scales) during transition, (4) high-altitude turbine engine re-light, and (5) the operating constraints of a Mach 3-7 combustor (specific to the TBCC). The model will be tested in several test phases to develop a unique TBCC database to assess and validate design and analysis tools and address operability, integration, and interaction issues for this class of advanced propulsion systems. The test article and all support equipment is complete and available at the facility. The test article installation and facility build-up in preparation for the inlet performance and operability characterization is near completion and testing is planned to commence in FY11.
Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders
NASA Astrophysics Data System (ADS)
Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan
2011-06-01
Large-scale helium liquefaction systems, being energy-intensive, demand judicious selection of process parameters. An effective tool for design and analysis of thermodynamic cycles for these systems is exergy analysis, which is used to study the behavior of a helium liquefaction system based on modified Claude cycle. Parametric evaluation using process simulator Aspen HYSYS® helps to identify the effects of cycle pressure ratio and expander flow fraction on the exergetic efficiency of the liquefaction cycle. The study computes the distribution of losses at different refrigeration stages of the cycle and helps in selecting optimum cycle pressures, operating temperature levels of expanders and mass flow rates through them. Results from the analysis may help evolving guidelines for designing appropriate thermodynamic cycles for practical helium liquefaction systems.
NASA Technical Reports Server (NTRS)
Hirshorn, Steven R.
2017-01-01
Historically, most successful NASA projects have depended on effectively blending project management, systems engineering, and technical expertise among NASA, contractors, and third parties. Underlying these successes are a variety of agreements (e.g., contract, memorandum of understanding, grant, cooperative agreement) between NASA organizations or between NASA and other Government agencies, Government organizations, companies, universities, research laboratories, and so on. To simplify the discussions, the term "contract" is used to encompass these agreements. This section focuses on the NASA systems engineering activities pertinent to awarding a contract, managing contract performance, and completing a contract. In particular, NASA systems engineering interfaces to the procurement process are covered, since the NASA engineering technical team plays a key role in the development and evaluation of contract documentation. Contractors and third parties perform activities that supplement (or substitute for) the NASA project technical team accomplishment of the NASA common systems engineering technical process activities and requirements outlined in this guide. Since contractors might be involved in any part of the systems engineering life cycle, the NASA project technical team needs to know how to prepare for, allocate or perform, and implement surveillance of technical activities that are allocated to contractors.
Orbital transfer rocket engine technology: Advanced engine study
NASA Technical Reports Server (NTRS)
Hayden, Warren R.
1992-01-01
An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.
Evaluation of Proposed Rocket Engines for Earth-to-Orbit Vehicles
NASA Technical Reports Server (NTRS)
Martin, James A.; Kramer, Richard D.
1990-01-01
The objective is to evaluate recently analyzed rocket engines for advanced Earth-to-orbit vehicles. The engines evaluated are full-flow staged combustion engines and split expander engines, both at mixture ratios at 6 and above with oxygen and hydrogen propellants. The vehicles considered are single-stage and two-stage fully reusable vehicles and the Space Shuttle with liquid rocket boosters. The results indicate that the split expander engine at a mixture ratio of about 7 is competitive with the full-flow staged combustion engine for all three vehicle concepts. A key factor in this result is the capability to increase the chamber pressure for the split expander as the mixture ratio is increased from 6 to 7.
Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1984-01-01
A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.
Study of LH2-fueled topping cycle engine for aircraft propulsion
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1983-01-01
An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.
CFD Analysis of Turbo Expander for Cryogenic Refrigeration and Liquefaction Cycles
NASA Astrophysics Data System (ADS)
Verma, Rahul; Sam, Ashish Alex; Ghosh, Parthasarathi
Computational Fluid Dynamics analysis has emerged as a necessary tool for designing of turbomachinery. It helps to understand the various sources of inefficiency through investigation of flow physics of the turbine. In this paper, 3D turbulent flow analysis of a cryogenic turboexpander for small scale air separation was performed using Ansys CFX®. The turboexpander has been designed following assumptions based on meanlineblade generation procedure provided in open literature and good engineering judgement. Through analysis of flow field, modifications and further analysis required to evolve a more robust design procedure, have been suggested.
40 CFR 90.410 - Engine test cycle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 90.410 Section 90... Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and II engines and 2-mode test cycle for Class I-A, III, IV, and V engines when testing spark-ignition engines...
Predictive modeling and reducing cyclic variability in autoignition engines
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-08-30
Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.
Expanded Guidance for NASA Systems Engineering. Volume 1: Systems Engineering Practices
NASA Technical Reports Server (NTRS)
Hirshorn, Steven R.
2016-01-01
This document is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the expanded guidance is to increase awareness and consistency across the Agency and advance the practice of SE. This guidance provides perspectives relevant to NASA and data particular to NASA. This expanded guidance should be used as a companion for implementing NPR 7123.1, Systems Engineering Processes and Requirements, the Rev 2 version of SP-6105, and the Center-specific handbooks and directives developed for implementing systems engineering at NASA. It provides a companion reference book for the various systems engineering-related training being offered under NASA's auspices.
Topping cycle for coal-fueled electric power plants using the ceramic helical expander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, B.; Landingham, R.; Mohr, P.
Ceramic helical expanders are advocated as the work output element in a 2500/sup 0/F direct coal-fired Brayton topping cycle for central power station application. When combined with a standard steam electric power plant cycle, such a cycle could result in an overall thermal conversion efficiency in excess of 50 percent. The performance, coal tolerance, and system-development-time advantages of the ceramic helical expander approach are enumerated. A perspective on the choice of design and materials is provided. A preliminary consideration of physical properties, economic questions, and service experience has led us to a preference for the silicon nitride and silicon carbidemore » family of materials. A program to confirm the performance and coal tolerance aspects of a ceramic helical expander system is planned.« less
7 CFR 2902.25 - 2-Cycle engine oils.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... procurement preference for qualifying biobased 2-cycle engine oils. By that date, Federal agencies that have...
Study of a LH2-fueled topping cycle engine for aircraft propulsion
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1983-01-01
An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine. Previously announced in STAR as N83-34942
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larry Zirker; James Francfort
2004-02-01
This Oil Bypass Filter Technology Evaluation quarterly report (October-December 2003) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 324,091 test miles. Thismore » represents an avoidance of 27 oil changes, which equate to 952 quarts (238 gallons) of new oil not conserved and therefore, 952 quarts of waste oil not generated. To validate the extended oil-drain intervals, an oil-analysis regime is used to evaluate the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. The test fleet has been expanded to include six Chevrolet Tahoe sport utility vehicles with gasoline engines.« less
NASA Astrophysics Data System (ADS)
Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio
2015-11-01
Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.
Women Engineering Faculty: Expanding the Pipeline
ERIC Educational Resources Information Center
Greni, Nadene Deiterman
2006-01-01
The purpose for this case study was to explore the features of undergraduate engineering departmental and college support that influenced the persistence of women students. Women engineering faculty members were among the participants at three Land Grant universities in the Midwest. The data revealed the theme, Expanding the Pipeline, and…
40 CFR 86.1333-2010 - Transient test cycle generation.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...
40 CFR 86.1333-2010 - Transient test cycle generation.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...
40 CFR 86.1333-2010 - Transient test cycle generation.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...
The 7.5K lbf thrust engine preliminary design for Orbit Transfer Vehicle
NASA Technical Reports Server (NTRS)
Hayden, Warren R.; Sabiers, Ralph; Schneider, Judy
1994-01-01
This document summarizes the preliminary design of the Aerojet version of the Orbit Transfer Vehicle main engine. The concept of a 7500 lbf thrust LO2/GH2 engine using the dual expander cycle for optimum efficiency is validated through power balance and thermal calculations. The engine is capable of 10:1 throttling from a nominal 2000 psia to a 200 psia chamber pressure. Reservations are detailed on the feasibility of a tank head start, but the design incorporates low speed turbopumps to mitigate the problem. The mechanically separate high speed turbopumps use hydrostatic bearings to meet engine life requirements, and operate at sub-critical speed for better throttling ability. All components were successfully packaged in the restricted envelope set by the clearances for the extendible/retractable nozzle. Gimbal design uses an innovative primary and engine out gimbal system to meet the +/- 20 deg gimbal requirement. The hydrogen regenerator and LOX/GH2 heat exchanger uses the Aerojet platelet structures approach for a highly compact component design. The extendible/retractable nozzle assembly uses an electric motor driven jack-screw design and a one segment carbon-carbon or silicide coated columbium nozzle with an area ratio, when extended, of 1430:1. A reliability analysis and risk assessment concludes the report.
Highly efficient 6-stroke engine cycle with water injection
Szybist, James P; Conklin, James C
2012-10-23
A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.
40 CFR 89.410 - Engine test cycle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 89.410 Section 89... Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...) through (a)(4) of this section. These cycles shall be used to test engines on a dynamometer. (1) The 8...
40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles
Code of Federal Regulations, 2011 CFR
2011-07-01
... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...(seconds) Engine speed Torque(percent) 1, 2 1a Steady-state 53 Engine governed 100. 1b Transition 20 Engine...
Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica.
Markham, Kelly A; Alper, Hal S
2018-06-04
The oleaginous yeast Yarrowia lipolytica is quickly emerging as the most popular non-conventional (i.e., non-model organism) yeast in the bioproduction field. With a high propensity for flux through tricarboxylic acid (TCA) cycle intermediates and biological precursors such as acetyl-CoA and malonyl-CoA, this host is especially well suited to meet our industrial chemical production needs. Recent progress in synthetic biology tool development has greatly enhanced our ability to rewire this organism, with advances in genetic component design, CRISPR technologies, and modular cloning strategies. In this review we investigate recent developments in metabolic engineering and describe how the new tools being developed help to realize the full industrial potential of this host. Finally, we conclude with our vision of the developments that will be necessary to enhance future engineering efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.
The design analysis of a rechargeable lithium cell for space applications
NASA Technical Reports Server (NTRS)
Subba Rao, S.; Shen, D. H.; Yen, S. P. S.; Somoano, R. B.
1986-01-01
Ambient temperature rechargeable lithium batteries are needed by NASA for advanced space power applications for future missions. Specific energies of not less than 100 Wh/kg and long cycle life are critical performance goals. A design analysis of a 35 Ah Li-TiS2 cell was carried out using literature and experimental data to identify key design parameters governing specific energy. It is found that high specific energies are achievable in prismatic cells, especially with the use of advanced hardware materials. There is a serious need for a greatly expanded engineering database in order to enable more quantitative design analysis.
Monopropellant hydrazine resistojet: Flight application design
NASA Technical Reports Server (NTRS)
Kurch, C. K.
1973-01-01
The design, development, and testing of an engineering model nominal 20-millipound thrust monopropellant hydrazine resistojet program is directed toward the advanced development of an electrothermal hydrazine thruster (EHT). The EHT decomposes hydrazine thermally and expands the decomposition products through a nozzle to provide the impulse necessary to fulfill spacecraft propulsive requirements. The thruster is capable of operation at pulse widths from 0.050 second to steady state and delivers specific impulse values up to about 230 seconds depending on the duty cycle. The program is comprised of six tasks including analyses, the generation of specifications and other documentation, design, fabrication and test, data correlation, and recommendations for the design of flight units.
Concept definition study of small Brayton cycle engines for dispersed solar electric power systems
NASA Technical Reports Server (NTRS)
Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.
1980-01-01
Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.
Mathematical modeling and characteristic analysis for over-under turbine based combined cycle engine
NASA Astrophysics Data System (ADS)
Ma, Jingxue; Chang, Juntao; Ma, Jicheng; Bao, Wen; Yu, Daren
2018-07-01
The turbine based combined cycle engine has become the most promising hypersonic airbreathing propulsion system for its superiority of ground self-starting, wide flight envelop and reusability. The simulation model of the turbine based combined cycle engine plays an important role in the research of performance analysis and control system design. In this paper, a turbine based combined cycle engine mathematical model is built on the Simulink platform, including a dual-channel air intake system, a turbojet engine and a ramjet. It should be noted that the model of the air intake system is built based on computational fluid dynamics calculation, which provides valuable raw data for modeling of the turbine based combined cycle engine. The aerodynamic characteristics of turbine based combined cycle engine in turbojet mode, ramjet mode and mode transition process are studied by the mathematical model, and the influence of dominant variables on performance and safety of the turbine based combined cycle engine is analyzed. According to the stability requirement of thrust output and the safety in the working process of turbine based combined cycle engine, a control law is proposed that could guarantee the steady output of thrust by controlling the control variables of the turbine based combined cycle engine in the whole working process.
NASA Technical Reports Server (NTRS)
Sallee, G. P.; Martin, R. L.
1980-01-01
The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airplane acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/JT9D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the most cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…
Evolution of engine cycles for STOVL propulsion concepts
NASA Technical Reports Server (NTRS)
Bucknell, R. L.; Frazier, R. H.; Giulianetti, D. J.
1990-01-01
Short Take-off, Vertical Landing (STOVL) demonstrator concepts using a common ATF engine core are discussed. These concepts include a separate fan and core flow engine cycle, mixed flow STOVL cycles, separate flow cycles convertible to mixed flow, and reaction control system engine air bleed. STOVL propulsion controls are discussed.
7 CFR 3201.25 - 2-Cycle engine oils.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...
7 CFR 3201.25 - 2-Cycle engine oils.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...
7 CFR 3201.25 - 2-Cycle engine oils.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...
HEAVY-DUTY TRUCK TEST CYCLES: COMBINING DRIVEABILITY WITH REALISTIC ENGINE EXERCISE
Heavy-duty engine certification testing uses a cycle that is scaled to the capabilities of each engine. As such, every engine should be equally challenged by the cycle's power demands. It would seem that a chassis cycle, similarly scaled to the capabilities of each vehicle, could...
Comparison of geothermal power conversion cycles
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1976-01-01
Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash stages; binary, in which heat is transferred from the brine to an organic turbine cycle; flash binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.
Small Engine Component Technology (SECT) study
NASA Technical Reports Server (NTRS)
Larkin, T. R.
1986-01-01
The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...
40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment... HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in...
40 CFR 89.410 - Engine test cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...
40 CFR 89.410 - Engine test cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...
40 CFR 89.410 - Engine test cycle.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...
Mei, Viung C.; Chen, Fang C.
1997-01-01
A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.
Mei, V.C.; Chen, F.C.
1997-04-22
A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.
Kinesin expands and stabilizes the GDP-microtubule lattice
NASA Astrophysics Data System (ADS)
Peet, Daniel R.; Burroughs, Nigel J.; Cross, Robert A.
2018-05-01
Kinesin-1 is a nanoscale molecular motor that walks towards the fast-growing (plus) ends of microtubules, hauling molecular cargo to specific reaction sites in cells. Kinesin-driven transport is central to the self-organization of eukaryotic cells and shows great promise as a tool for nano-engineering1. Recent work hints that kinesin may also play a role in modulating the stability of its microtubule track, both in vitro2,3 and in vivo4, but the results are conflicting5-7 and the mechanisms are unclear. Here, we report a new dimension to the kinesin-microtubule interaction, whereby strong-binding state (adenosine triphosphate (ATP)-bound and apo) kinesin-1 motor domains inhibit the shrinkage of guanosine diphosphate (GDP) microtubules by up to two orders of magnitude and expand their lattice spacing by 1.6%. Our data reveal an unexpected mechanism by which the mechanochemical cycles of kinesin and tubulin interlock, and so allow motile kinesins to influence the structure, stability and mechanics of their microtubule track.
Turbopump options for nuclear thermal rockets
NASA Astrophysics Data System (ADS)
Bissell, W. R.; Gunn, S. V.
1992-07-01
Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range.
Advanced supersonic propulsion system technology study, phase 2
NASA Technical Reports Server (NTRS)
Allan, R. D.
1975-01-01
Variable cycle engines were identified, based on the mixed-flow low-bypass-ratio augmented turbofan cycle, which has shown excellent range capability in the AST airplane. The best mixed-flow augmented turbofan engine was selected based on range in the AST Baseline Airplane. Selected variable cycle engine features were added to this best conventional baseline engine, and the Dual-Cycle VCE and Double-Bypass VCE were defined. The conventional mixed-flow turbofan and the Double-Bypass VCE were on the subjects of engine preliminary design studies to determine mechanical feasibility, confirm weight and dimensional estimates, and identify the necessary technology considered not yet available. Critical engine components were studied and incorporated into the variable cycle engine design.
Johnson, Derek; Heltzel, Robert; Nix, Andrew; Barrow, Rebekah
2017-03-01
With the advent of unconventional natural gas resources, new research focuses on the efficiency and emissions of the prime movers powering these fleets. These prime movers also play important roles in emissions inventories for this sector. Industry seeks to reduce operating costs by decreasing the required fuel demands of these high horsepower engines but conducting in-field or full-scale research on new technologies is cost prohibitive. As such, this research completed extensive in-use data collection efforts for the engines powering over-the-road trucks, drilling engines, and hydraulic stimulation pump engines. These engine activity data were processed in order to make representative test cycles using a Markov Chain, Monte Carlo (MCMC) simulation method. Such cycles can be applied under controlled environments on scaled engines for future research. In addition to MCMC, genetic algorithms were used to improve the overall performance values for the test cycles and smoothing was applied to ensure regression criteria were met during implementation on a test engine and dynamometer. The variations in cycle and in-use statistics are presented along with comparisons to conventional test cycles used for emissions compliance. Development of representative, engine dynamometer test cycles, from in-use activity data, is crucial in understanding fuel efficiency and emissions for engine operating modes that are different from cycles mandated by the Code of Federal Regulations. Representative cycles were created for the prime movers of unconventional well development-over-the-road (OTR) trucks and drilling and hydraulic fracturing engines. The representative cycles are implemented on scaled engines to reduce fuel consumption during research and development of new technologies in controlled laboratory environments.
The History and Promise of Combined Cycle Engines for Access to Space Applications
NASA Technical Reports Server (NTRS)
Clark, Casie
2010-01-01
For the summer of 2010, I have been working in the Aerodynamics and Propulsion Branch at NASA Dryden Flight Research Center studying combined-cycle engines, a high speed propulsion concept. Combined cycle engines integrate multiple propulsion systems into a single engine capable of running in multiple modes. These different modes allow the engine to be extremely versatile and efficient in varied flight conditions. The two most common types of combined cycle engines are Rocket-Based Combined Cycle (RBCC) and Turbine Based Combined Cycle (TBCC). The RBCC essentially combines a rocket and ramjet engine, while the TBCC integrates a turbojet and ramjet1. These two engines are able to switch between different propulsion modes to achieve maximum performance. Extensive conceptual and ground test studies of RBCC engines have been undertaken; however, an RBCC engine has never, to my knowledge, been demonstrated in flight. RBCC engines are of particular interest because they could potentially power a reusable launch vehicle (RLV) into space. The TBCC has been flight tested and shown to be effective at reaching supersonic speeds, most notably in the SR-71 Blackbird2.
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1980-01-01
The feasibility and design impact of a requirement for the advanced expander cycle engine to be adaptable to extended low thrust operation of approximately 1K to 2K lb is assessed. It is determined that the orbit transfer vehicle point design engine can be reduced in thrust with minor injector modifications from 15K to 1K without significantly affecting combustion performance efficiency or injector face/chamber wall thermal compatibility. Likewise, high frequency transverse mode combustion instability is not expected to be detrimentally affected. Primarily, the operational limitations consist of feed system chugging instabilities and potential coupling of the injector response with the chamber longitudinal mode resonances under certain operating conditions. The recommended injector modification for low thrust operation is a change in the oxidizer injector element orifice size. Analyses also indicate that chamber coolant flow stability may be a concern below 2K 1bF operation and oxidizer pump stability could be a problem below a 2K thrust level although a recirculation flow could alleviate the problem.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1993-01-01
The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.
Rotary internal combustion engine with integrated supercharged fuel-air induction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southard, A.A.
This patent describes an improved method of operating a rotary internal combustion engine of the type wherein a multicusped rotor rotatable upon a rotatable eccentric rotates within a cavity bounded by a wall of lobed trochoidal configuration. The rotor cusps have sealing engagement separating and defining operating chambers in the cavity about the rotor between adjacent pairs of cusps. Such chambers are angularly spaced about and orbit the center of the cavity as the rotor rotates while each chamber alternately expands and contracts in volume. The method comprises cylindrically operating each chamber through a sequence of six phases that aremore » synchronized with three successive increases and decreases in the volume of such chamber, with the first four phases being an internal combustion engine power cycle comprising an air intake phase, a compression phase, a combustion phase and an exhaust phase. The fifth phase comprises inducting air into the chamber, and the sixth phase comprises compressing the inducted air in such chamber and passing such inducted and compressed air through an elongated transfer zone.« less
7 CFR 2902.25 - 2-Cycle engine oils.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as a...
40 CFR 90.410 - Engine test cycle.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and II...
40 CFR 90.410 - Engine test cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and II...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... cycles 6,700 flight 80A3 or Pratt & Whitney engines. flight cycles \\1\\. flight cycles or \\2\\. cycles or...-200 airplanes with GE CF6- 18,000 total 19,500 total 250 flight cycles 5,800 flight 80C2 engines... flight cycles 6,700 flight Pratt & Whitney JT9D engines. flight cycles \\1\\. flight cycles or \\2\\. cycles...
Dynamic estimator for determining operating conditions in an internal combustion engine
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-01-05
Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.
Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann
2011-06-01
From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-gravemore » foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.« less
The Transformative Experience in Engineering Education
NASA Astrophysics Data System (ADS)
Goodman, Katherine Ann
This research evaluates the usefulness of transformative experience (TE) in engineering education. With TE, students 1) apply ideas from coursework to everyday experiences without prompting (motivated use); 2) see everyday situations through the lens of course content (expanded perception); and 3) value course content in new ways because it enriches everyday affective experience (affective value). In a three-part study, we examine how engineering educators can promote student progress toward TE and reliably measure that progress. For the first study, we select a mechanical engineering technical elective, Flow Visualization, that had evidence of promoting expanded perception of fluid physics. Through student surveys and interviews, we compare this elective to the required Fluid Mechanics course. We found student interest in fluids fell into four categories: complexity, application, ubiquity, and aesthetics. Fluid Mechanics promotes interest from application, while Flow Visualization promotes interest based in ubiquity and aesthetics. Coding for expanded perception, we found it associated with students' engineering identity, rather than a specific course. In our second study, we replicate atypical teaching methods from Flow Visualization in a new design course: Aesthetics of Design. Coding of surveys and interviews reveals that open-ended assignments and supportive teams lead to increased ownership of projects, which fuels risk-taking, and produces increased confidence as an engineer. The third study seeks to establish parallels between expanded perception and measurable perceptual expertise. Our visual expertise experiment uses fluid flow images with both novices and experts (students who had passed fluid mechanics). After training, subjects sort images into laminar and turbulent categories. The results demonstrate that novices learned to sort the flow stimuli in ways similar to subjects in prior perceptual expertise studies. In contrast, the experts' significantly better results suggest they are accessing conceptual fluids knowledge to perform this new, visual task. The ability to map concepts onto visual information is likely a necessary step toward expanded perception. Our findings suggest that open-ended aesthetic experiences with engineering content unexpectedly support engineering identity development, and that visual tasks could be developed to measure conceptual understanding, promoting expanded perception. Overall, we find TE a productive theoretical framework for engineering education research.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-state duty cycles, including ramped-modal testing? 1048.505 Section 1048.505 Protection of Environment... SPARK-IGNITION ENGINES Test Procedures § 1048.505 How do I test engines using steady-state duty cycles... some cases, we allow you to choose the appropriate steady-state duty cycle for an engine. In these...
Dietrich, Markus; Jahn, Christoph; Lanzerath, Peter; Moos, Ralf
2015-09-02
Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions.
NASA Technical Reports Server (NTRS)
Hansen, Jeff L.
2000-01-01
A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.
NASA Technical Reports Server (NTRS)
Hoffman, S.; Varholic, M. C.
1983-01-01
NASA-SCAR (AST) program was initiated in 1972 at the direct request of the Executive Office of the White House and Congress following termination of the U.S. SST program. The purpose of SCR was to conduct a focused research and technology program on those technology programs which contributed to the SST termination and, also, to provide an expanded data base for future civil and military supersonic transport aircraft. Funding for the Supersonic Cruise Research (SCR) Program was initiated in fiscal year 1973 and terminated in fiscal year 1981. The program was implemented through contracts and grants with industry, universities, and by in-house investigations at the NASA/OAST centers. The studies included system studies and five disciplines: propulsion, stratospheric emissions impact, materials and structures, aerodynamic performance, and stability and control. The NASA/Lewis Variable-Cycle Engine (VCE) Component Program was initiated in 1976 to augment the SCR program in the area of propulsion. After about 2 years, the title was changed to VCE Technology program. The total number of contractors and grantees on record at the AST office in 1982 was 101 for SCR and 4 for VCE. This paper presents a compilation of all the contracts and grants as well as the funding summaries for both programs.
The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation
NASA Astrophysics Data System (ADS)
Zheng, Dianfeng
2016-11-01
Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)
Dietrich, Markus; Jahn, Christoph; Lanzerath, Peter; Moos, Ralf
2015-01-01
Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions. PMID:26340629
A New, Highly Improved Two-Cycle Engine
NASA Technical Reports Server (NTRS)
Wiesen, Bernard
2008-01-01
The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.
Wave Engine Topping Cycle Assessment
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping constraints. Positive and negative aspects of wave engine topping in gas turbine engines are identified.
Life-Cycle Assessment of a Distributed-Scale Thermochemical Bioenergy Conversion System
Hongmei Gu; Richard Bergman
2016-01-01
Expanding bioenergy production from woody biomass has the potential to decrease net greenhouse gas (GHG) emissions and improve the energy security of the United States. Science-based and internationally accepted life-cycle assessment (LCA) is an effective tool for policy makers to make scientifically informed decisions on expanding renewable energy production from...
ERIC Educational Resources Information Center
Ragland, Rachel
2016-01-01
Course curriculum design using a research-teaching connection and reflective teaching is presented. The research-teaching connection is expanded to a three stage research-teaching-research cycle and reflection is expanded to include both faculty and students. Traditional disciplinary educational research was used to inform the design of the…
Life-Cycle Inventory Analysis of Bioproducts from a Modular Advanced Biomass Pyrolysis System
Richard Bergman; Hongmei Gu
2014-01-01
Expanding bioenergy production has the potential to reduce net greenhouse gas (GHG) emissions and improve energy security. Science-based assessments of new bioenergy technologies are essential tools for policy makers dealing with expanding renewable energy production. Using life cycle inventory (LCI) analysis, this study evaluated a 200-kWe...
Research on Correlation between Vehicle Cycle and Engine Cycle in Heavy-duty commercial vehicle
NASA Astrophysics Data System (ADS)
lin, Chen; Zhong, Wang; Shuai, Liu
2017-12-01
In order to study the correlation between vehicle cycle and engine cycle in heavy commercial vehicles, the conversion model of vehicle cycle to engine cycle is constructed based on the vehicle power system theory and shift strategy, which considers the verification on diesel truck. The results show that the model has high rationality and reliability in engine operation. In the acceleration process of high speed, the difference of model gear selection leads to the actual deviation. Compared with the drum test, the engine speed distribution obtained by the model deviates to right, which fits to the lower grade. The grade selection has high influence on the model.
Small Engine Repair Course Outline.
ERIC Educational Resources Information Center
DeClouet, Fred
Small engines as referred to here are engines used on lawn mowers, chain saws, power plants, outboards, and cycles. It does not include engines used on automobiles. The course outlined is intended to show how small two-cycle and four-cycle gas engines are constructed, how they operate, what goes wrong, and how to service and repair them. It is…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
...; Special Conditions No. 23-259-SC] Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle..., air cooled, diesel cycle engine that uses turbine (jet) fuel. The Model No. J182T, which is a... engine airplane with a cantilever high wing, with the SMA SR305- 230E-C1 diesel cycle engine and...
Parallel Multi-cycle LES of an Optical Pent-roof DISI Engine Under Motored Operating Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dam, Noah; Sjöberg, Magnus; Zeng, Wei
The use of Large-eddy Simulations (LES) has increased due to their ability to resolve the turbulent fluctuations of engine flows and capture the resulting cycle-to-cycle variability. One drawback of LES, however, is the requirement to run multiple engine cycles to obtain the necessary cycle statistics for full validation. The standard method to obtain the cycles by running a single simulation through many engine cycles sequentially can take a long time to complete. Recently, a new strategy has been proposed by our research group to reduce the amount of time necessary to simulate the many engine cycles by running individual enginemore » cycle simulations in parallel. With modern large computing systems this has the potential to reduce the amount of time necessary for a full set of simulated engine cycles to finish by up to an order of magnitude. In this paper, the Parallel Perturbation Methodology (PPM) is used to simulate up to 35 engine cycles of an optically accessible, pent-roof Directinjection Spark-ignition (DISI) engine at two different motored engine operating conditions, one throttled and one un-throttled. Comparisons are made against corresponding sequential-cycle simulations to verify the similarity of results using either methodology. Mean results from the PPM approach are very similar to sequential-cycle results with less than 0.5% difference in pressure and a magnitude structure index (MSI) of 0.95. Differences in cycle-to-cycle variability (CCV) predictions are larger, but close to the statistical uncertainty in the measurement for the number of cycles simulated. PPM LES results were also compared against experimental data. Mean quantities such as pressure or mean velocities were typically matched to within 5- 10%. Pressure CCVs were under-predicted, mostly due to the lack of any perturbations in the pressure boundary conditions between cycles. Velocity CCVs for the simulations had the same average magnitude as experiments, but the experimental data showed greater spatial variation in the root-mean-square (RMS). Conversely, circular standard deviation results showed greater repeatability of the flow directionality and swirl vortex positioning than the simulations.« less
More bang for your buck: super-adiabatic quantum engines.
del Campo, A; Goold, J; Paternostro, M
2014-08-28
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle.
More bang for your buck: Super-adiabatic quantum engines
Campo, A. del; Goold, J.; Paternostro, M.
2014-01-01
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle. PMID:25163421
A Primer on Alternative Transportation Fuels
2010-09-01
cycles used are the Otto Cycle (gasoline engines), the Diesel Cycle, and the Brayton Cycle (gas and steam turbines). These cycles are usually...can be achieved. This leads to diesel engines usually being about 30% more efficient than gasoline engines. The ideal Brayton cycle operates between...wetted area of the vessel. For analytical simplicity we will use a formula for A developed by David Taylor : 2 1)(6.2 LA Δ
Code of Federal Regulations, 2014 CFR
2014-07-01
...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79 Section 86.336-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...
PARALLEL PERTURBATION MODEL FOR CYCLE TO CYCLE VARIABILITY PPM4CCV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin Mohammed; Som, Sibendu
This code consists of a Fortran 90 implementation of the parallel perturbation model to compute cyclic variability in spark ignition (SI) engines. Cycle-to-cycle variability (CCV) is known to be detrimental to SI engine operation resulting in partial burn and knock, and result in an overall reduction in the reliability of the engine. Numerical prediction of cycle-to-cycle variability (CCV) in SI engines is extremely challenging for two key reasons: (i) high-fidelity methods such as large eddy simulation (LES) are required to accurately capture the in-cylinder turbulent flow field, and (ii) CCV is experienced over long timescales and hence the simulations needmore » to be performed for hundreds of consecutive cycles. In the new technique, the strategy is to perform multiple parallel simulations, each of which encompasses 2-3 cycles, by effectively perturbing the simulation parameters such as the initial and boundary conditions. The PPM4CCV code is a pre-processing code and can be coupled with any engine CFD code. PPM4CCV was coupled with Converge CFD code and a 10-time speedup was demonstrated over the conventional multi-cycle LES in predicting the CCV for a motored engine. Recently, the model is also being applied to fired engines including port fuel injected (PFI) and direct injection spark ignition engines and the preliminary results are very encouraging.« less
77 FR 67263 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
... flight cycles. US Airways stated that the engine inlet cowl inspection should follow Airbus Mandatory... months after the engine air intake cowl has accumulated 5,000 total flight cycles. (2) For any engine air... the same airplane has accumulated 5,000 flight cycles or less since the engine air intake cowl was...
40 CFR 86.1332-90 - Engine mapping procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... maximum mapping speed per the following methodologies. (Note paragraph (d)(1) below.) (1) Otto-cycle engines. (i) For ungoverned engines using the transient operating cycle set forth in paragraph (f)(1) of...
77 FR 73557 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... turboshaft engines. This proposed AD was prompted by a finding that the engine's tachometer unit cycle... tachometer's unit cycle counting feature. This proposed AD would also require ground-run functional checks... accuracy of the engine's tachometer cycle counting feature. We are proposing this AD to prevent uncontained...
Corrosion/Erosion Behavior of Silicon Nitride and Silicon Carbide Ceramics - Gas Turbine Experience
1979-04-01
C-0138. As part of a program to utilize ceramics in helical expander Brayton cycle turbomachines for coal-fired topping cycles, Myers el a1.7 have...Meyers et al., Reference 7). 7. MEYERS, B., LANDINGHAM, R., MOHR, P., and TAYLOR , K. An Adiabatic Coal-Fired 1350 C Expander in Proceedings: Workshop on
NASA Technical Reports Server (NTRS)
Howlett, R. A.
1975-01-01
A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine test cycle. 86....335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in.... Cycle No. Mode No. Mode Observed torque (percent of maximum observed) Time in mode-seconds Cumulative...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
NASA Astrophysics Data System (ADS)
Moghimi, Mahdi; Khosravian, Mohammadreza
2018-01-01
In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.
NASA Astrophysics Data System (ADS)
Moghimi, Mahdi; Khosravian, Mohammadreza
2018-06-01
In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.
Numerical investigation of over expanded flow behavior in a single expansion ramp nozzle
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mahmood; Pourabidi, Reza; Goshtasbi-Rad, Ebrahim
2018-05-01
The single expansion ramp nozzle is severely over-expanded when the vehicle is at low speed, which hinders its ability to provide optimal configurations for combined cycle engines. The over-expansion leads to flow separation as a result of shock wave/boundary-layer interaction. Flow separation, and the presence of shocks themselves, result in a performance loss in the single expansion ramp nozzle, leading to reduced thrust and increased pressure losses. In the present work, the unsteady two dimensional compressible flow in an over expanded single expansion ramp nozzle has been investigated using finite volume code. To achieve this purpose, the Reynolds stress turbulence model and full multigrid initialization, in addition to the Smirnov's method for examining the errors accumulation, have been employed and the results are compared with available experimental data. The results show that the numerical code is capable of predicting the experimental data with high accuracy. Afterward, the effect of discontinuity jump in wall temperature as well as the length of straight ramp on flow behavior have been studied. It is concluded that variations in wall temperature and length of straight ramp change the shock wave boundary layer interaction, shock structure, shock strength as well as the distance between Lambda shocks.
NASA Technical Reports Server (NTRS)
Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.
1995-01-01
Computing architectures are being assembled that extend concurrent engineering practices by providing more efficient execution and collaboration on distributed, heterogeneous computing networks. Built on the successes of initial architectures, requirements for a next-generation design computing infrastructure can be developed. These requirements concentrate on those needed by a designer in decision-making processes from product conception to recycling and can be categorized in two areas: design process and design information management. A designer both designs and executes design processes throughout design time to achieve better product and process capabilities while expanding fewer resources. In order to accomplish this, information, or more appropriately design knowledge, needs to be adequately managed during product and process decomposition as well as recomposition. A foundation has been laid that captures these requirements in a design architecture called DREAMS (Developing Robust Engineering Analysis Models and Specifications). In addition, a computing infrastructure, called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment), is being developed that satisfies design requirements defined in DREAMS and incorporates enabling computational technologies.
Synthetic biology devices for in vitro and in vivo diagnostics.
Slomovic, Shimyn; Pardee, Keith; Collins, James J
2015-11-24
There is a growing need to enhance our capabilities in medical and environmental diagnostics. Synthetic biologists have begun to focus their biomolecular engineering approaches toward this goal, offering promising results that could lead to the development of new classes of inexpensive, rapidly deployable diagnostics. Many conventional diagnostics rely on antibody-based platforms that, although exquisitely sensitive, are slow and costly to generate and cannot readily confront rapidly emerging pathogens or be applied to orphan diseases. Synthetic biology, with its rational and short design-to-production cycles, has the potential to overcome many of these limitations. Synthetic biology devices, such as engineered gene circuits, bring new capabilities to molecular diagnostics, expanding the molecular detection palette, creating dynamic sensors, and untethering reactions from laboratory equipment. The field is also beginning to move toward in vivo diagnostics, which could provide near real-time surveillance of multiple pathological conditions. Here, we describe current efforts in synthetic biology, focusing on the translation of promising technologies into pragmatic diagnostic tools and platforms.
Synthetic biology devices for in vitro and in vivo diagnostics
Slomovic, Shimyn; Pardee, Keith; Collins, James J.
2015-01-01
There is a growing need to enhance our capabilities in medical and environmental diagnostics. Synthetic biologists have begun to focus their biomolecular engineering approaches toward this goal, offering promising results that could lead to the development of new classes of inexpensive, rapidly deployable diagnostics. Many conventional diagnostics rely on antibody-based platforms that, although exquisitely sensitive, are slow and costly to generate and cannot readily confront rapidly emerging pathogens or be applied to orphan diseases. Synthetic biology, with its rational and short design-to-production cycles, has the potential to overcome many of these limitations. Synthetic biology devices, such as engineered gene circuits, bring new capabilities to molecular diagnostics, expanding the molecular detection palette, creating dynamic sensors, and untethering reactions from laboratory equipment. The field is also beginning to move toward in vivo diagnostics, which could provide near real-time surveillance of multiple pathological conditions. Here, we describe current efforts in synthetic biology, focusing on the translation of promising technologies into pragmatic diagnostic tools and platforms. PMID:26598662
Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program
NASA Technical Reports Server (NTRS)
Smith, Amanda D.; Majumdar, Alok K.
2017-01-01
This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.
Linnaeus' restless system: translation as textual engineering in eighteenth-century botany.
Dietz, Bettina
2016-04-01
In this essay, translations of Linnaeus' Systema naturae into various European languages will be placed into the context of successively expanded editions of Linnaeus' writings. The ambition and intention of most translators was not only to make the Systema naturae accessible for practical botanical use by a wider readership, but also to supplement and correct it, and thus to shape it. By recruiting more users, translations made a significant contribution to keeping the Systema up to date and thus maintaining its practical value for decades. The need to incorporate countless additions and corrections into an existing text, to document their provenance, to identify inconsistencies, and to refer to relevant observations, descriptions, and illustrations in the botanical literature all helped to develop and refine techniques of textual montage. This form of textual engineering, becoming increasingly complex with each translation cycle, shaped the external appearance of new editions of the Systema, and reflected the modular architecture of a botanical system designed for expansion.
Advanced supersonic propulsion study, phases 3 and 4. [variable cycle engines
NASA Technical Reports Server (NTRS)
Allan, R. D.; Joy, W.
1977-01-01
An evaluation of various advanced propulsion concepts for supersonic cruise aircraft resulted in the identification of the double-bypass variable cycle engine as the most promising concept. This engine design utilizes special variable geometry components and an annular exhaust nozzle to provide high take-off thrust and low jet noise. The engine also provides good performance at both supersonic cruise and subsonic cruise. Emission characteristics are excellent. The advanced technology double-bypass variable cycle engine offers an improvement in aircraft range performance relative to earlier supersonic jet engine designs and yet at a lower level of engine noise. Research and technology programs required in certain design areas for this engine concept to realize its potential benefits include refined parametric analysis of selected variable cycle engines, screening of additional unconventional concepts, and engine preliminary design studies. Required critical technology programs are summarized.
Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, J. P.; Confer, K.
2012-09-11
Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization broughtmore » a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.« less
Detonation Jet Engine. Part 1--Thermodynamic Cycle
ERIC Educational Resources Information Center
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…
NASA Astrophysics Data System (ADS)
Gaponenko, A. M.; Kagramanova, A. A.
2017-11-01
The opportunity of application of Stirling engine with non-conventional and renewable sources of energy. The advantage of such use. The resulting expression for the thermal efficiency of the Stirling engine. It is shown that the work per cycle is proportional to the quantity of matter, and hence the pressure of the working fluid, the temperature difference and, to a lesser extent, depends on the expansion coefficient; efficiency of ideal Stirling cycle coincides with the efficiency of an ideal engine working on the Carnot cycle, which distinguishes a Stirling cycle from the cycles of Otto and Diesel underlying engine. It has been established that the four input parameters, the only parameter which can be easily changed during operation, and which effectively affects the operation of the engine is the phase difference. Dependence of work per cycle of the phase difference, called the phase characteristic, visually illustrates mode of operation of Stirling engine. The mathematical model of the cycle of Schmidt and the analysis of operation of Stirling engine in the approach of Schmidt with the aid of numerical analysis. To conduct numerical experiments designed program feature in the language MathLab. The results of numerical experiments are illustrated by graphical charts.
NASA Technical Reports Server (NTRS)
Wiesen, Bernard (Inventor)
2008-01-01
This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.
Rare Earth Element Recovery from Low-Grade Feedstocks Using Engineered E. coli
NASA Astrophysics Data System (ADS)
Brewer, A. W.; Park, D.; Jiao, Y.
2017-12-01
Rare earth elements (REEs) are critical materials for emerging science and technology industries, especially in the field of clean energy. However, their supply is potentially at risk due to political and economic concerns. The exploitation of new, low-grade REE sources in the United States, such as geothermal brines and mine tailings, may help to mitigate that supply risk. To purify and concentrate REEs from these sources, we have developed a biosorption approach using engineered E. coli cells that express a lanthanide binding tag on the cell surface. This tag has a high selectivity for REEs that enhances the native cell wall adsorption properties; the terbium adsorption capacity was increased approximately 2-fold, and the REE surface affinity was increased compared to all non-REE metals except copper. This biosorption method offers advantages over conventional REE extraction methods as it is inexpensive, environmentally friendly, and effective with low-grade feedstocks. In order to expand this method to an industrial scale, the cells must be contained in a durable material that permits the cell surfaces to function in a variety of bioreactor systems and to be reused through multiple adsorption and desorption cycles. Polyethylene glycol diacrylate (PEGDA) beads, with diameters from 200-400 um, can be impregnated with high concentrations of cells, and show promise in the selective adsorption of REEs from solution. In the future, the application of the adsorptive qualities of these engineered cells may be expanded to include other valuable metals, such as indium and gallium, to further develop the economic potential of this approach. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-736022.
40 CFR 204.55-2 - Requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... parameters): (A) Engine type. (1) Gasoline—two stroke cycle (2) Gasoline—four stroke cycle (3) Diesel—two stroke cycle (4) Diesel—four stroke cycle (5) Rotary—Wankel (6) Turbine (7) Other (B) Engine manufacturer...
40 CFR 204.55-2 - Requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... use more parameters): (A) Engine type. (1) Gasoline—two stroke cycle (2) Gasoline—four stroke cycle (3) Diesel—two stroke cycle (4) Diesel—four stroke cycle (5) Rotary—Wankel (6) Turbine (7) Other (B) Engine...
40 CFR 204.55-2 - Requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... use more parameters): (A) Engine type. (1) Gasoline—two stroke cycle (2) Gasoline—four stroke cycle (3) Diesel—two stroke cycle (4) Diesel—four stroke cycle (5) Rotary—Wankel (6) Turbine (7) Other (B) Engine...
Increasing the volumetric efficiency of Diesel engines by intake pipes
NASA Technical Reports Server (NTRS)
List, Hans
1933-01-01
Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.
Study, optimization, and design of a laser heat engine. [for satellite applications
NASA Technical Reports Server (NTRS)
Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.
1978-01-01
Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.
Recent advances and versatility of MAGE towards industrial applications.
Singh, Vijai; Braddick, Darren
2015-12-01
The genome engineering toolkit has expanded significantly in recent years, allowing us to study the functions of genes in cellular networks and assist in over-production of proteins, drugs, chemicals and biofuels. Multiplex automated genome engineering (MAGE) has been recently developed and gained more scientific interest towards strain engineering. MAGE is a simple, rapid and efficient tool for manipulating genes simultaneously in multiple loci, assigning genetic codes and integrating non-natural amino acids. MAGE can be further expanded towards the engineering of fast, robust and over-producing strains for chemicals, drugs and biofuels at industrial scales.
Intermediate-sized natural gas fueled carbonate fuel cell power plants
NASA Astrophysics Data System (ADS)
Sudhoff, Frederick A.; Fleming, Donald K.
1994-04-01
This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.
Quantum-Carnot engine for particle confined to cubic potential
NASA Astrophysics Data System (ADS)
Sutantyo, Trengginas Eka P.; Belfaqih, Idrus H.; Prayitno, T. B.
2015-09-01
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
Life prediction modeling based on cyclic damage accumulation
NASA Technical Reports Server (NTRS)
Nelson, Richard S.
1988-01-01
A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, where initiation was defined as a 0.030 inch surface length crack. A principal engineering feature of the CDA method is the minimum data base required for implementation. Model constants can be evaluated through a few simple specimen tests such as monotonic loading and rapic cycle fatigue. The method was expanded to account for the effects on creep-fatigue life of complex loadings such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. A significant data base was generated on the behavior of the cast nickel-base superalloy B1900+Hf, including hundreds of specimen tests under such loading conditions. This information is being used to refine and extend the CDA life prediction model, which is now nearing completion. The model is also being verified using additional specimen tests on wrought INCO 718, and the final version of the model is expected to be adaptable to most any high-temperature alloy. The model is currently available in the form of equations and related constants. A proposed contract addition will make the model available in the near future in the form of a computer code to potential users.
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and...
Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle
NASA Technical Reports Server (NTRS)
Weinstein, Leonard
2004-01-01
A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the power needed for cooling and thereby further contributing to efficiency. An electrical resistance air preheater might be needed to ensure autoignition at startup and during a short warmup period. Because of the autoignition, the engine could operate without either spark plugs or glow plugs. Ethanol burns relatively cleanly and has been used as a motor fuel since the invention of internal-combustion engines. However, the energy content of ethanol per unit weight of ethanol is less than that of Diesel fuel or gasoline, and ethanol has a higher heat of vaporization. Because the Miller cycle offers an efficiency close to that of the Diesel cycle, burning ethanol in a Miller-cycle engine gives about as much usable output energy per unit volume of fuel as does burning gasoline in a conventional gasoline automotive engine. Because of the combination of preheating, running lean, and the use of ethyl alcohol, the proposed engine would generate less power per unit volume than does a conventional automotive gasoline engine. Consequently, for a given power level, the main body of the proposed engine would be bulkier. However, because little or no exhaust cleanup would be needed, the increase in bulk of the engine could be partially offset by the decrease in bulk of the exhaust system. The regenerative preheating also greatly reduces the external engine cooling requirement, and would translate to reduced engine bulk. It may even be possible to accomplish the remaining cooling of the engine by use of air only, eliminating the bulk and power consumption of a water cooling system. The combination of a Miller-cycle engine with regenerative air preheating, ethyl alcohol fuel, and hybrid operation could result in an automotive engine system that satisfies the need for a low pollution, high efficiency, and simple engine with a totally renewable fuel.
Advanced automotive diesel engine system study
NASA Technical Reports Server (NTRS)
1983-01-01
A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty..., exhaust emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i...
Easy method of matching fighter engine to airframe for use in aircraft engine design courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattingly, J.D.
1989-01-01
The proper match of the engine(s) to the airframe affects both aircraft size and life cycle cost. A fast and straightforward method is developed and used for the matching of fighter engine(s) to airframes during conceptual design. A thrust-lapse equation is developed for the dual-spool, mixed-flow, afterburning turbofan type of engine based on the installation losses of 'Aircraft Engine Design' and the performance predictions of the cycle analysis programs ONX and OFFX. Using system performance requirements, the effects of aircraft thrust-to-weight, wing loading, and engine cycle on takeoff weight are analyzed and example design course results presented. 5 refs.
Performance and durability testing of parabolic trough receivers
NASA Astrophysics Data System (ADS)
Lei, Dongqiang; Fu, Xuqiang; Zhao, Dongming; Yuan, Guofeng; Wang, Zhifeng; Guo, Minghuan
2017-06-01
The paper describes the key performance and durability testing facilities of the parabolic trough receiver developed by Institute of Electrical Engineering, Chinese Academy of Sciences. The indoor heat loss test can be applied at 4-7 different temperature levels within 200-550 on receivers. The optical efficiency test bench consists of 12 metal halide lamps as the solar simulator and a 5 m length half-elliptical cylinder reflector with flat end reflectors. 3 ultra-precision temperature sensors are used in receiver each end to get the temperature difference. The residual gas analysis test bench is applied to analyze and predict the vacuum lifetime of the receiver. It can test the variations of composition and partial pressure of residual gases with temperature and time in the receiver annulus space by a high sensitivity quadrupole mass spectrometer gas analyzer. A coating accelerated ageing test bench, which is also used to test the thermal cycle, has been developed. This test bench uses the absorber tube of the recevier as the resistance heater to heat up the whole receiver. The coating lifetime can be predicted by the Arrhenius parameters. For the cycling test, the compressed air is used to directly cool the inner surface of the absorber tube. The thermal cycling test is performed with temperature cycles from 150 °C to 450 °C for 160 cycles. The maximum thermal cycling frequency is 8 cycles per day. The mechanical fatigue test bench is used to test the bellows and the glass-to-metal seals durability at the same time. Both bellows are expanded and compressed to 6.5 mm in turn with 10,000 cycles. A new rotating test bench was also developed to test the thermal efficiency of the receiver.
Fuel governor for controlled autoignition engines
Jade, Shyam; Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li
2016-06-28
Methods and systems for controlling combustion performance of an engine are provided. A desired fuel quantity for a first combustion cycle is determined. One or more engine actuator settings are identified that would be required during a subsequent combustion cycle to cause the engine to approach a target combustion phasing. If the identified actuator settings are within a defined acceptable operating range, the desired fuel quantity is injected during the first combustion cycle. If not, an attenuated fuel quantity is determined and the attenuated fuel quantity is injected during the first combustion cycle.
Variable cycle engines for advanced supersonic transports
NASA Technical Reports Server (NTRS)
Howlett, R. A.; Kozlowski, H.
1975-01-01
Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.
Exergy analysis of biomass organic Rankine cycle for power generation
NASA Astrophysics Data System (ADS)
Nur, T. B.; Sunoto
2018-02-01
The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.
40 CFR Table 6 to Subpart IIIi of... - Optional 3-Mode Test Cycle for Stationary Fire Pump Engines
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Optional 3-Mode Test Cycle for.... IIII, Table 6 Table 6 to Subpart IIII of Part 60—Optional 3-Mode Test Cycle for Stationary Fire Pump Engines [As stated in § 60.4210(g), manufacturers of fire pump engines may use the following test cycle...
Expanding the metabolic engineering toolbox with directed evolution.
Abatemarco, Joseph; Hill, Andrew; Alper, Hal S
2013-12-01
Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Low-Cost O2/H2 Engines for the SSTO Application
NASA Technical Reports Server (NTRS)
Goracke, B. David; Levack, Daniel J. H.; Nixon, Robert F.
1994-01-01
The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.
Small Engine Repair. Two-Stroke and Four-Stroke Cycle.
ERIC Educational Resources Information Center
Hires, Bill; And Others
This curriculum guide is intended to assist persons teaching a course in repairing two- and four-stroke cycle small engines. Addressed in the individual units of instruction are the following topics: safety, tools, fasteners, and measurement techniques; basic small engine theory (engine identification and inspection, basic engine principles and…
40 CFR 91.410 - Engine test cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 91.410 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.410 Engine... in dynamometer operation tests of marine engines. (b) During each non-idle mode the specified speed...
Code of Federal Regulations, 2013 CFR
2013-07-01
... all diesel-cycle engine families within the same primary service class is allowed. (ii) Urban buses... averaging set from all other heavy-duty engines. Averaging and trading between diesel cycle bus engine... heavy-duty engines, the equivalent mileage is 6.3 miles. For diesel heavy-duty engines, the equivalent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... all diesel-cycle engine families within the same primary service class is allowed. (ii) Urban buses... averaging set from all other heavy-duty engines. Averaging and trading between diesel cycle bus engine... heavy-duty engines, the equivalent mileage is 6.3 miles. For diesel heavy-duty engines, the equivalent...
Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt
2002-08-20
High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.
Some single-piston closed-cycle machines and Peter Tailer's thermal lag engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, C.D.
1993-01-01
Peter Tailer has devised, built, and operated a beautifully simple engine with a closed working gas cycle, external heating, and only a single piston. The aim of this paper is to cast some light on the possible modes of operation for his machine. The methods develops to analyze certain aspects of Stirling cycle engines, and especially the thermodynamic losses incurred in systems that are neither perfectly isothermal nor perfectly adiabatic, can be applied to Tailer's system. The results identify two idealized cycles fr such machines; relate those cycles to a single piston, ported cylinder machine proposed earlier; and offer amore » possible explanation for the success of the thermal lag engine.« less
40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...
40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...
40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...
40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...
40 CFR 86.1335-90 - Cool-down procedure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cold cycle exhaust emission test may begin after a cool-down only when the engine oil and water... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1335-90 Cool-down procedure. (a) This cool-down procedure applies to Otto-cycle and diesel engines...
40 CFR 86.1335-90 - Cool-down procedure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... cold cycle exhaust emission test may begin after a cool-down only when the engine oil and water... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1335-90 Cool-down procedure. (a) This cool-down procedure applies to Otto-cycle and diesel engines...
40 CFR 86.1335-90 - Cool-down procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cold cycle exhaust emission test may begin after a cool-down only when the engine oil and water... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1335-90 Cool-down procedure. (a) This cool-down procedure applies to Otto-cycle and diesel engines...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... Standards; California Heavy-Duty On-Highway Otto-Cycle Engines and Incomplete Vehicle Regulations; Notice of... California's Heavy-Duty On-Highway Otto-Cycle Engines and Incomplete Vehicle Regulations. SUMMARY: The... its heavy-duty Otto-cycle engines and incomplete vehicle regulations for the 2004, 2005 through 2007...
VR/LE engine with a variable R/L during a single cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rychter, T.J.; Teodorczyk, A.
1985-01-01
A new concept of an engine, called a Variable R/L Engine (VR/LE) is presented. The main feature of the engine is the continuous change of the crank-radius to connecting-rod-length ratio (R/L) during the single engine cycle. The variations of the phase angle result in changes of all the engine stroke lengths and also-they are causing the changes of the thermodynamic cycle of the engine. Therefore the phase angle variations make it possible to regulate continuously the compression ratio and the displacement volume of the engine within the range which depends on the engine mechanism geometry. The presented concept can bemore » applied to all the types of the IC piston engines, independently of their size and operation principle.« less
40 CFR 86.1333-90 - Transient test cycle generation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Transient test cycle generation. 86...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1333-90 Transient test cycle generation. (a) The heavy-duty transient engine cycles for Otto...
24 CFR 3285.502 - Expanding rooms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Features § 3285.502 Expanding rooms. The support and anchoring systems for expanding rooms must be installed in accordance with designs provided by the home manufacturer or prepared by a registered professional engineer or registered architect, in...
NASA Astrophysics Data System (ADS)
Wang, Jianhui; Ma, Yongli; He, Jizhou
2015-07-01
Based on quantum thermodynamic processes, we make a quantum-mechanical (QM) extension of the typical heat engine cycles, such as the Carnot, Brayton, Otto, Diesel cycles, etc., with no introduction of the concept of temperature. When these QM engine cycles are implemented by an ideal gas confined in an arbitrary power-law trap, a relation between the quantum adiabatic exponent and trap exponent is found. The differences and similarities between the efficiency of a given QM engine cycle and its classical counterpart are revealed and discussed.
Positive displacement compounding of a heavy duty diesel engine
NASA Technical Reports Server (NTRS)
Sekar, R.; Kamo, R.
1983-01-01
A helical screw type positive displacement (PD) compressor and expander was considered as an alternative to the turbocharger and the power turbine in the Cummins advanced turbocompound engine. The Institute of Gas Technology (IGT) completed the design, layout, and performance prediction of the PD machines. The results indicate that a screw compressor-expander system is feasible up to at least 750 HP, dry operation of the rotors is feasible, cost and producibility are uncertain, and the system will yield about 4% improvement in brake specific fuel consumption (BSFC) over the advanced turbocompound engine.
Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project
NASA Technical Reports Server (NTRS)
Colantonio, Ron
2011-01-01
Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena
40 CFR 86.1501 - Scope; applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...
40 CFR 86.1519 - CVS calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...
40 CFR 86.1514 - Analytical gases.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...
Stirling cycle engine and refrigeration systems
NASA Technical Reports Server (NTRS)
Higa, W. H. (Inventor)
1976-01-01
A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.
NASA Technical Reports Server (NTRS)
Wheeler, D. B.
1977-01-01
The feasibility of modifying the space shuttle main engine (SSME) for dual mode operation was investigated. Various high power cycle engine configurations derived from the SSME were configurations that will allow sequential burning of LOX/hydrocarbon and LOX/hydrogen were studied in order to identify concepts that make maximum use of SSME hardware and best satisfy the dual mode booster engine system application. Engine cycles were formulated for LOX/RP-1, LOX/CH4, and LOX/C3H8 propellants. Flow rates and operating cycles were established and the adaptability of the major components of the SSME was evaluated.
40 CFR 86.1514 - Analytical gases.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1519 - CVS calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1542 - Information required.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1501 - Scope; applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1513 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
Vapor cycle energy system for implantable circulatory assist devices. Final summary May--Oct 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watelet, R.P.; Ruggles, A.E.; Hagen, K.G.
1977-03-01
The report describes the development status of a heart assist system driven by a nuclear-fueled, electronically controlled vapor cycle engine termed the tidal regenerator engine (TRE). The TRE pressurization is controlled by a torque motor coupled to a displacer. The electrical power for the sensor, electronic logic and actuator is provided by thermoelectric modules interposed between the engine superheater and boiler. The TRE is direct-coupled to an assist blood pump which also acts as a blood-cooled heat exchanger, pressure-volume trasformer and sensor for the electronic logic. Engine cycle efficiency in excess of 14% has been demonstrated routinely. Overall system efficiencymore » on 33 watts of over 9% has been demonstrated (implied 13% engine cycle efficiency). A binary version of this engine in the annular configuration is now being tested. The preliminary tests demonstrated 10% cycle efficiency on the first buildup which ran well and started easily.« less
Thermonuclear inverse magnetic pumping power cycle for stellarator reactor
Ho, Darwin D.; Kulsrud, Russell M.
1991-01-01
The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.
40 CFR 86.1527 - Idle test procedure; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
40 CFR 86.1505 - Introduction; structure of subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
40 CFR 86.1540 - Idle exhaust sample analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
40 CFR 86.1526 - Calibration of other equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
CRISPR-enabled tools for engineering microbial genomes and phenotypes.
Tarasava, Katia; Oh, Eun Joong; Eckert, Carrie A; Gill, Ryan T
2018-06-19
In recent years CRISPR-Cas technologies have revolutionized microbial engineering approaches. Genome editing and non-editing applications of various CRISPR-Cas systems have expanded the throughput and scale of engineering efforts, as well as opened up new avenues for manipulating genomes of non-model organisms. As we expand the range of organisms used for biotechnological applications, we need to develop better, more versatile tools for manipulation of these systems. Here we summarize the current advances in microbial gene editing using CRISPR-Cas based tools, and highlight state-of-the-art methods for high-throughput, efficient genome-scale engineering in model organisms Escherichia coli and Saccharomyces cerevisiae. We also review non-editing CRISPR-Cas applications available for gene expression manipulation, epigenetic remodeling, RNA editing, labeling and synthetic gene circuit design. Finally, we point out the areas of research that need further development in order to expand the range of applications and increase the utility of these new methods. This article is protected by copyright. All rights reserved.
Gill, Aman S; Lee, Angela; McGuire, Krista L
2017-08-15
New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered. Copyright © 2017 American Society for Microbiology.
Lee, Angela; McGuire, Krista L.
2017-01-01
ABSTRACT New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation (cbbL-R [cbbL gene, red-like subunit] and apsA), nitrogen cycling (noxZ and amoA), and contaminant degradation (bphA); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered. PMID:28576763
Some single-piston closed-cycle machines and Peter Tailer`s thermal lag engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, C.D.
1993-06-01
Peter Tailer has devised, built, and operated a beautifully simple engine with a closed working gas cycle, external heating, and only a single piston. The aim of this paper is to cast some light on the possible modes of operation for his machine. The methods develops to analyze certain aspects of Stirling cycle engines, and especially the thermodynamic losses incurred in systems that are neither perfectly isothermal nor perfectly adiabatic, can be applied to Tailer`s system. The results identify two idealized cycles fr such machines; relate those cycles to a single piston, ported cylinder machine proposed earlier; and offer amore » possible explanation for the success of the thermal lag engine.« less
40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...
Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.
2016-01-01
A new engine cycle analysis tool, called Pycycle, was built using the OpenMDAO framework. Pycycle provides analytic derivatives allowing for an efficient use of gradient-based optimization methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 1065.610 - Duty cycle generation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Duty cycle generation. 1065.610... CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.610 Duty cycle generation. This section describes how to generate duty cycles that are specific to your engine, based on the...
40 CFR 86.1503 - Abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1503...
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1502...
Streamlined bioreactor-based production of human cartilage tissues.
Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D
2016-05-27
Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.
Analysis and simulation of the I C engine Otto cycle using the second law of thermodynamics
NASA Astrophysics Data System (ADS)
Abdel-Rahim, Y. M.
The present investigation is an application of the second law of thermodynamics to the spark ignition engine cycle. A comprehensive thermodynamic analysis of the air standard cycle is conducted using the first and second laws of thermodynamics, the ideal gas equation of state and the perfect gas properties for air. The study investigates the effect of the cycle parameters on the cycle performance reflected by the first and second law efficiencies, the heat added, the work done, the available energy added as well as the history of the internal, available and unavailable energies along the cycle. The study shows that the second law efficiency is a function of the compression ratio, the initial temperature, the maximum temperature as well as the dead state temperature. A non-dimensional comprehensive thermodynamic simulation model for the actual Otto cycle is developed to study the effects of the design and operating parameters of the cycle on the cycle performance. The analysis takes into account engine geometry, mixture strength, heat transfer, piston motion, engine speed, mechanical friction, spark advance and combustion duration.
Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, Edward L.; Rothschild, William J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
Some heat engine cycles in which liquids can work.
Allen, P C; Paulson, D N; Wheatley, J C
1981-01-01
Liquids can work in heat engine cycles that employ regeneration. Four such cycles are discussed: Stirling, Malone, Stirling-Malone, and Brayton. Both regeneration and the role of the second thermodynamic medium are treated, and the principles are verified by quantitative measurements with propylene in a Stirling-Malone cycle.
Some heat engine cycles in which liquids can work
Allen, P. C.; Paulson, D. N.; Wheatley, J. C.
1981-01-01
Liquids can work in heat engine cycles that employ regeneration. Four such cycles are discussed: Stirling, Malone, Stirling-Malone, and Brayton. Both regeneration and the role of the second thermodynamic medium are treated, and the principles are verified by quantitative measurements with propylene in a Stirling-Malone cycle. PMID:16592952
40 CFR 86.1522 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 91.410 - Engine test cycle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 91.410 Section 91.410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... test cycle. (a) The 5-mode cycle specified in Table 2 in appendix A to this subpart shall be followed...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Duty cycles. 94.105 Section 94.105... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.105 Duty cycles. (a) Overview. For....8(e), engines shall be tested using the appropriate duty cycles described in this section. (b...
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...
40 CFR 86.1524 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1540 - Idle exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1530 - Test sequence; general requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1526 - Calibration of other equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1527 - Idle test procedure; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1511 - Exhaust gas analysis system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1505 - Introduction; structure of subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
Engineering Technical Review Planning Briefing
NASA Technical Reports Server (NTRS)
Gardner, Terrie
2012-01-01
The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.
The University of Mississippi Geoinformatics Center (UMGC)
NASA Technical Reports Server (NTRS)
Easson, Gregory L.
2003-01-01
The overarching goal of the University of Mississippi Geoinformatics Center (UMGC) is to promote application of geospatial information technologies through technology education, research support, and infrastructure development. During the initial two- year phase of operation the UMGC has successfully met those goals and is uniquely positioned to continue operation and further expand the UMGC into additional academic programs. At the end of the first funding cycle, the goals of the UMGC have been and are being met through research and educational activities in the original four participating programs; Biology, Computer and Information Science, Geology and Geological Engineering, and Sociology and Anthropology, with the School of Business joining the UMGC in early 2001. Each of these departments is supporting graduate students conducting research, has created combination teaching and research laboratories, and supported faculty during the summer months.
Model-based verification and validation of the SMAP uplink processes
NASA Astrophysics Data System (ADS)
Khan, M. O.; Dubos, G. F.; Tirona, J.; Standley, S.
Model-Based Systems Engineering (MBSE) is being used increasingly within the spacecraft design community because of its benefits when compared to document-based approaches. As the complexity of projects expands dramatically with continually increasing computational power and technology infusion, the time and effort needed for verification and validation (V& V) increases geometrically. Using simulation to perform design validation with system-level models earlier in the life cycle stands to bridge the gap between design of the system (based on system-level requirements) and verifying those requirements/validating the system as a whole. This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V& V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process. Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based development efforts.
Nuclear Aircraft Feasibility Study. Volume 1
1975-03-01
Cycle 6-36 6.2.2 Helium Mass Flow 6-42 6.2.3 Fan Pressure Ratio 6-42 6.2.4 Regenerative Cycle Application 6-43 6.2.5 Brayton Cycle...6-8 Engine Systems Summary 6-9 T-S Diagram of Ideal Brayton Cycle 6-13 T-S Diagram of Brayton Cycle for Turbofan Engine 6-15 Comparison of... Brayton Closed Cycle Thermodynamic Analysis 6-50 6.2.8-1 Indirect Cycle Gas Circulation System 6-53 6.2.8-2 Gas Turbine Generator — Pump Cycle
The central equipment pool, an opportunity for improved technology management.
Gentles, W M
2000-01-01
A model for a central equipment pool managed by a clinical engineering department has been presented. The advantages to patient care and to the clinical engineering department are many. The distribution of portable technology that has been traditionally managed by the materials management function is a logical match to the expanding role of clinical engineering departments in technology management. Accurate asset management tools have allowed us to provide reliable measures of infusion pump utilization, permitting us to predict future needs as programs expand. Thus we are more actively involved in strategic technology planning. The central equipment pool is an excellent opportunity for the clinical engineering department to increase its technology management activities.
Advanced oxygen-hydrocarbon rocket engine study
NASA Technical Reports Server (NTRS)
Obrien, C. J.; Salkeld, R.
1980-01-01
The advantages and disadvantages, system performance and operating limits, engine parametric data, and technology requirements for candidate high pressure LO2/Hydrocarbon engine systems are summarized. These summaries of parametric analysis and design provide a consistent engine system data base. Power balance data were generated for the eleven engine cycles. Engine cycle rating parameters were established and the desired condition and the effect of the parameter on the engine and/or vehicle are described.
Rotary Stirling-Cycle Engine And Generator
NASA Technical Reports Server (NTRS)
Chandler, Joseph A.
1990-01-01
Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.
NASA Astrophysics Data System (ADS)
Shieh, Lih-Yir; Kan, Hung-Chih
2014-04-01
We demonstrate that plotting the P-V diagram of an ideal gas Carnot cycle on a logarithmic scale results in a more intuitive approach for deriving the final form of the efficiency equation. The same approach also facilitates the derivation of the efficiency of other thermodynamic engines that employ adiabatic ideal gas processes, such as the Brayton cycle, the Otto cycle, and the Diesel engine. We finally demonstrate that logarithmic plots of isothermal and adiabatic processes help with visualization in approximating an arbitrary process in terms of an infinite number of Carnot cycles.
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
The causes of unstable engine idle speed and their solutions
NASA Astrophysics Data System (ADS)
Yang, Fan
2018-06-01
There are many types of engines. The most commonly used engine for automobiles is the internal combustion engine. Internal combustion engines use a four-stroke combustion cycle to convert gasoline into motion. The four-stroke approach, also known as the "Ototo cycle," commemorates Nicklaus Otto, who invented it in 1867. The working cycle of a four-stroke engine consists of four piston strokes, ie, intake stroke, compression stroke, power stroke, and exhaust stroke. This article focuses on the cause of the instability of the four-stroke engine and its solution. There are many reasons for the instability of the engine, so this article will be divided into four areas: intake system, fuel system, ignition system and mechanical structure. Based on the above reasons, the corresponding solution is proposed.
Engine design considerations for 2nd generation supersonic transports
NASA Technical Reports Server (NTRS)
Howlett, R. A.
1975-01-01
The environmental and economic goals projected for advanced supersonic transports will require revolutionary improvements in propulsion systems. Variable cycle engine concepts that incorporate unique components and advanced technologies show promise in meeting these goals. Pratt & Whitney Aircraft is conducting conceptual design studies of variable cycle engine concepts under NASA sponsorship. This paper reviews some of the design considerations for these engine concepts. Emphasis is placed on jet noise abatement, reduction of emissions, performance improvements, installation considerations, hot-section characteristics and control system requirements. Two representative variable cycle engine concepts that incorporate these basic design considerations are described.
Engineering the shape and structure of materials by fractal cut.
Cho, Yigil; Shin, Joong-Ho; Costa, Avelino; Kim, Tae Ann; Kunin, Valentin; Li, Ju; Lee, Su Yeon; Yang, Shu; Han, Heung Nam; Choi, In-Suk; Srolovitz, David J
2014-12-09
In this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications.
Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study
ERIC Educational Resources Information Center
Valtorta, Clara G.; Berland, Leema K.
2015-01-01
Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…
Low-thrust chemical rocket engine study
NASA Technical Reports Server (NTRS)
Shoji, J. M.
1981-01-01
An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.
NASA Technical Reports Server (NTRS)
Latham, Tom
1991-01-01
The nuclear light bulb engine is a closed cycle concept. The nuclear light bulb concept provides containment by keeping the nuclear fuel fluid mechanically suspended in a cylindrical geometry. Thermal heat passes through an internally cooled, fused-silica, transparent wall and heats hydrogen propellant. The seeded hydrogen propellant absorbs radiant energy and is expanded through a nozzle. Internal moderation was used in the configuration which resulted in a reduced critical density requirement. This result was supported by criticality experiments. A reference engine was designed that had seven cells and was sized to fit in what was then predicted to be the shuttle bay mass and volume limitations. There were studies done of nozzle throat cooling schemes to remove the radiant heat. Elements of the nuclear light bulb program included closed loop critical assembly tests done at Los Alamos with UF6 confined by argon buffer gas. It was shown that the fuel region could be seeded with constituents that would block UV radiation from the uranium plasma. A combination of calculations and experiments showed that internal moderation produced a critical mass reduction. Other aspects of the research are presented.
Manufacturing and operational issues with lead-acid batteries
NASA Astrophysics Data System (ADS)
Rand, D. A. J.; Boden, D. P.; Lakshmi, C. S.; Nelson, R. F.; Prengaman, R. D.
An expert panel replies to questions on lead-acid technology and performance asked by delegates to the Ninth Asian Battery Conference. The subjects are as follows. Grid alloys: effects of calcium and tin levels on microstructure, corrosion, mechanical and electrochemical properties; effect of alloy-fabrication process on mechanical strength and corrosion resistance; low dross-make during casting of lead-calcium-tin alloys; future of book-mould casting; effect of increasing levels of silver; stability of continuously processed grids at high temperature. Negative-plate expanders: function of lignosulfonates and barium sulfate; benefits of pre-blended expanders; optimum expander formulations. Valve-regulated batteries: effect of oxygen cycle; optimum methods for float charging; charging and deep-cycle lifetimes; reliability testing.
Comparison of steady-state and transient CVS cycle emission of an automotive Stirling engine
NASA Technical Reports Server (NTRS)
Farrell, R. A.; Bolton, R. J.
1983-01-01
The Automotive Stirling Engine Development Program is to demonstrate a number of goals for a Stirling-powered vehicle. These goals are related to an achievement of specified maximum emission rates, a combined cycle fuel economy 30 percent better than a comparable internal-combustion engine-powered automobile, multifuel capability, competitive cost and reliability, and a meeting of Federal standards concerning noise and safety. The present investigation is concerned with efforts related to meeting the stringent emission goals. Attention is given to the initial development of a procedure for predicting transient CVS urban cycle gaseous emissions from steady-state engine data, taking into account the employment of the test data from the first-generation automotive Stirling engine. A large amount of steady-state data from three Mod I automotive Stirling engines were used to predict urban CVS cycle emissions for the Mod I Lerma vehicle.
Engineering Information Infrastructure for Product Lifecycle Managment
NASA Astrophysics Data System (ADS)
Kimura, Fumihiko
For proper management of total product life cycle, it is fundamentally important to systematize design and engineering information about product systems. For example, maintenance operation could be more efficiently performed, if appropriate parts design information is available at the maintenance site. Such information shall be available as an information infrastructure for various kinds of engineering operations, and it should be easily accessible during the whole product life cycle, such as transportation, marketing, usage, repair/upgrade, take-back and recycling/disposal. Different from the traditional engineering database, life cycle support information has several characteristic requirements, such as flexible extensibility, distributed architecture, multiple viewpoints, long-time archiving, and product usage information, etc. Basic approaches for managing engineering information infrastructure are investigated, and various information contents and associated life cycle applications are discussed.
Expanding and reprogramming the genetic code.
Chin, Jason W
2017-10-04
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
ERIC Educational Resources Information Center
Li, Jing; Zhang, Yu; Tsang, Mun; Li, Manli
2015-01-01
With the increasing attention to STEM (Science, Technology, Engineering, and Math), hands-on Curriculum Practical Training (CPT) has been expanding rapidly worldwide as a requirement of the undergraduate engineering education. In China, a typical CPT for undergraduate engineering students requires several weeks of hands-on training in the…
40 CFR Appendix II to Part 1048 - Large Spark-ignition (SI) Composite Transient Cycle
Code of Federal Regulations, 2010 CFR
2010-07-01
... Transient Cycle II Appendix II to Part 1048 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY.... 1048, App. II Appendix II to Part 1048—Large Spark-ignition (SI) Composite Transient Cycle The following table shows the transient duty-cycle for engines that are not constant-speed engines, as described...
78 FR 47235 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
... revenue flight cycles. These parts were then installed into engines and introduced into revenue service... cycle counts of those LLPs to account for the additional low cycle fatigue (LCF) life consumed during... Boeing 747-8 flight tests had consumed more cyclic life than they would have in revenue flight cycles...
40 CFR 86.1360-2007 - Supplemental emission test; test cycle and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Supplemental emission test; test cycle... ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1360-2007 Supplemental emission test; test cycle and procedures. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Further, for OBD monitors that run during engine-off conditions, the period of engine-off time following... drive cycle if the monitor has run and made one or more determinations during a drive cycle that the...) The monitor has run and made one or more determinations during a drive cycle that the malfunction is...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Further, for OBD monitors that run during engine-off conditions, the period of engine-off time following... drive cycle if the monitor has run and made one or more determinations during a drive cycle that the...) The monitor has run and made one or more determinations during a drive cycle that the malfunction is...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Further, for OBD monitors that run during engine-off conditions, the period of engine-off time following... drive cycle if the monitor has run and made one or more determinations during a drive cycle that the...) The monitor has run and made one or more determinations during a drive cycle that the malfunction is...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Further, for OBD monitors that run during engine-off conditions, the period of engine-off time following... drive cycle if the monitor has run and made one or more determinations during a drive cycle that the...) The monitor has run and made one or more determinations during a drive cycle that the malfunction is...
Kiselev, Iu M; Mordashev, V M; Osipov, A P; Shumakov, V I
1990-01-01
The authors review the thermodynamic bases and physiological limitations of the applicability of thermal engines for driving artificial heart ventricles. Show that the thermodynamic characteristics of Stirling and Brighton cycles do not make it possible to effectively use cycle-based engines in the artificial heart. A steam engine operating in accordance with the Rankine cycle may be regarded as an optimum type engine for that purpose. Demonstrate that according to the rules of physiology, use should be made of a separate driving of artificial heart ventricles by two independently operating steam engines. Provide the characteristics of the Soviet artificial heart "MIKRON" acceptable for implantation into the orthotopic position.
An RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine
NASA Technical Reports Server (NTRS)
Dinanno, L. R.; Dibella, F. A.; Koplow, M. D.
1983-01-01
A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air cooled condenser regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy duty transport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene and 40 mole percent hexafluorobenzene. The thermal stability of the RC-1 organic fluid was tested in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900 F.
Ye, Zhuolin; Hu, Yingying; He, Jizhou; Wang, Jianhui
2017-07-24
We study the performance of a cyclic heat engine which uses a small system with a finite number of ultracold atoms as its working substance and works between two heat reservoirs at constant temperatures T h and T c (
Summary of Results from Space Shuttle Main Engine Off-Nominal Testing
NASA Technical Reports Server (NTRS)
Horton, James F.; Megivern, Jeffrey M.; McNutt, Leslie M.
2011-01-01
This paper is a summary of Space Shuttle Main Engine (SSME) off-nominal testing that occurred during 2008 and 2009. During the last two years of planned SSME testing at Stennis Space Center, Pratt & Whitney Rocketdyne worked with their NASA MSFC customer to systematically identify, develop, assess, and implement challenging test objectives in order to expand the knowledge of one of the world s most reliable and highly tested large rocket engine. The objectives successfully investigated three main areas of interest expanding engine performance margins, demonstrating system operational capabilities, and establishing ground work for new rocket engine technology. The testing gave the Space Shuttle Program new options to safely fly out the flight manifest and provided Pratt & Whitney Rocketdyne and NASA new insight into the operational capabilities of the SSME, capabilities which can be used in assessing potential future applications of the RS-25 engine.
Performance Benefits for Wave Rotor-Topped Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Jones, Scott M.; Welch, Gerard E.
1996-01-01
The benefits of wave rotor-topping in turboshaft engines, subsonic high-bypass turbofan engines, auxiliary power units, and ground power units are evaluated. The thermodynamic cycle performance is modeled using a one-dimensional steady-state code; wave rotor performance is modeled using one-dimensional design/analysis codes. Design and off-design engine performance is calculated for baseline engines and wave rotor-topped engines, where the wave rotor acts as a high pressure spool. The wave rotor-enhanced engines are shown to have benefits in specific power and specific fuel flow over the baseline engines without increasing turbine inlet temperature. The off-design steady-state behavior of a wave rotor-topped engine is shown to be similar to a conventional engine. Mission studies are performed to quantify aircraft performance benefits for various wave rotor cycle and weight parameters. Gas turbine engine cycles most likely to benefit from wave rotor-topping are identified. Issues of practical integration and the corresponding technical challenges with various engine types are discussed.
The Problem of Ensuring Reliability of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Nozhnitsky, Yu A.
2018-01-01
Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...
An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency
NASA Astrophysics Data System (ADS)
Phillips, Dewanne Marie
Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.
Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module
NASA Technical Reports Server (NTRS)
Cordova, Brennan A.
2017-01-01
Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Vegetable Production System (Veggie). The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, daikon radishes are being grown in the system to test the capability and success of the system through a full growth cycle.
Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module
NASA Technical Reports Server (NTRS)
Cordova, Brennan A.
2017-01-01
Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Veggie growth system. The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, Daikon radishes were grown in the system to test the capability and success of the system through a full growth cycle.
NASA Astrophysics Data System (ADS)
An, Yongling; Fei, Huifang; Zeng, Guifang; Ci, Lijie; Xi, Baojuan; Xiong, Shenglin; Feng, Jinkui
2018-02-01
Design and synthesis of capable anode materials that can store the large size K+ is the key of development for potassium-ion batteries. The low-cost and commercial expanded graphite with large particles is a graphite-derived material with good conductivity and enlarged interlayer spaces to boost the potassium ion diffusion coefficient during charge/discharge process. Thus, we achieve excellent anode performance for potassium-ion batteries based on an expanded graphite. It can deliver a capacity of 263 mAh g-1 at the rate of 10 mA g-1 and the reversible capacity remains almost unchanged after 500 cycles at a high rate of 200 mA g-1 with a coulombic efficiency of around 100%. The potassium storage mechanism is investigated by the ex situ XRD technique. This excellent potassium storage performance will make the expanded graphite promising anode candidate for potassium ion batteries.
NASA Astrophysics Data System (ADS)
Troost, Karin
2010-10-01
Since the 1960's, the Pacific oyster Crassostrea gigas has been introduced for mariculture at several locations within NW Europe. The oyster established itself everywhere and expanded rapidly throughout the receiving ecosystems, forming extensive and dense reef structures. It became clear that the Pacific oyster induced major changes in NW European estuaries. This paper reviews the causes of the Pacific oyster's remarkably successful establishment and spread in The Netherlands and neighbouring countries, and includes a comprehensive review of consequences for the receiving communities. Ecosystem engineering by C. gigas and a relative lack of natural enemies in receiving ecosystems are identified as the most important characteristics facilitating the invader's successful establishment and expansion. The Pacific oyster's large filtration capacity and eco-engineering characteristics induced many changes in receiving ecosystems. Different estuaries are affected differently; in the Dutch Oosterschelde estuary expanding stocks saturate the carrying capacity whereas in the Wadden Sea no such problems exist. In general, the Pacific oyster seems to fit well within continental NW European estuarine ecosystems and there is no evidence that the invader outcompetes native bivalves. C. gigas induces changes in plankton composition, habitat heterogeneity and biodiversity, carrying capacity, food webs and parasite life cycles. The case of the Pacific oyster in NW European estuaries is only one example in an increasing series of biological invasions mediated by human activities. This case-study will contribute to further elucidating general mechanisms in marine invasions; invasions that sometimes appear a threat, but can also contribute to ecological complexity.
NASA Technical Reports Server (NTRS)
Stecklein, Jonette
2017-01-01
NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design to actual tele-operation of the robot in simulated Mars conditions mining and collecting simulated regolith. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team's score for the competition's grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.
Potential impacts of Brayton and Stirling cycle engines
NASA Astrophysics Data System (ADS)
Heft, R. C.
1980-11-01
Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.
Potential impacts of Brayton and Stirling cycle engines
NASA Technical Reports Server (NTRS)
Heft, R. C.
1980-01-01
Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.
Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.
2016-01-01
A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.
40 CFR 1039.510 - Which duty cycles do I use for transient testing?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Which duty cycles do I use for... ENGINES Test Procedures § 1039.510 Which duty cycles do I use for transient testing? (a) Measure emissions by testing the engine on a dynamometer with one of the following transient duty cycles to determine...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for an...
40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Duty Cycles for Propulsion Marine... Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The following duty cycle applies for discrete-mode testing: E4 Mode No. Enginespeed 1 Torque(percent) 2...
40 CFR Appendix II to Part 1054 - Duty Cycles for Laboratory Testing
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Duty Cycles for Laboratory Testing II.... 1054, App. II Appendix II to Part 1054—Duty Cycles for Laboratory Testing (a) Test handheld engines with the following steady-state duty cycle: G3 mode No. Engine speed a Torque(percent) b Weighting...
Integrating Engineering into an Urban Science Classroom
ERIC Educational Resources Information Center
Meyer, Helen
2017-01-01
This article presents a single case study of an experienced physical science teacher (Janet) integrating engineering practices into her urban science classroom over a two-year time frame. The article traces how Janet's understanding of the role engineering in her teaching expanded beyond engineering as an application of science and mathematics to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markle, S.P.
1994-05-01
A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSDmore » 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.« less
Denecke, Bernd; Horsch, Liska D; Radtke, Stefan; Fischer, Johannes C; Horn, Peter A; Giebel, Bernd
2015-11-01
One of the major challenges in tissue engineering is to supply larger three-dimensional (3D) bioengineered tissue transplants with sufficient amounts of nutrients and oxygen and to allow metabolite removal. Consequently, artificial vascularization strategies of such transplants are desired. One strategy focuses on endothelial cells capable of initiating new vessel formation, which are settled on scaffolds commonly used in tissue engineering. A bottleneck in this strategy is to obtain sufficient amounts of endothelial cells, as they can be harvested only in small quantities directly from human tissues. Thus, protocols are required to expand appropriate cells in sufficient amounts without interfering with their capability to settle on scaffold materials and to initiate vessel formation. Here, we analysed whether umbilical cord blood (CB)-derived endothelial colony-forming cells (ECFCs) fulfil these requirements. In a first set of experiments, we showed that marginally expanded ECFCs settle and survive on different scaffold biomaterials. Next, we improved ECFC culture conditions and developed a protocol for ECFC expansion compatible with 'Good Manufacturing Practice' (GMP) standards. We replaced animal sera with human platelet lysates and used a novel type of tissue-culture ware. ECFCs cultured under the new conditions revealed significantly lower apoptosis and increased proliferation rates. Simultaneously, their viability was increased. Since extensively expanded ECFCs could still settle on scaffold biomaterials and were able to form tubular structures in Matrigel assays, we conclude that these ex vivo-expanded ECFCs are a novel, very potent cell source for scaffold-based tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.
Code of Federal Regulations, 2010 CFR
2010-07-01
... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle heavy-duty... emissions from new 2005 and later model year Otto-cycle HDEs, except for Otto-cycle HDEs subject to the...
NASA Astrophysics Data System (ADS)
Varaksin, A. Yu.; Arbekov, A. N.; Inozemtsev, A. A.
2014-10-01
A schematic cycle is considered, and thermodynamic analysis is performed to substantiate the possibility of creating multipurpose industrial power plants, operating on a trigeneration cycle, based on production-type turbofan engines.
Preliminary evaluation of a compound cycle engine for shipboard gensets
NASA Technical Reports Server (NTRS)
Castor, J. G.; Wintucky, W. T.
1986-01-01
The results of a thermodynamic cycle (SFC) and weight analysis performed to establish engine configuration, size, weight and performance are reported. Baseline design configuration was a 2,000 hour MTBO Compound Cycle Engine (CCE) for a helicopter application. The CCE configuration was extrapolated out to a 10,000 MTBO for a shipboard genset application. The study showed that an advanced diesel engine design (CCE) could be substantially lighter and smaller (79% and 82% respectively) than todays contemporary genset diesel engine. Although the CCE was not optimized, it had about a 7% reduction in mission fuel consumption over today's genset diesels. The CCE is a turbocharged, power-compounded, high power density, low-compression ratio diesel engine. Major technology development areas are presented.
Simulation of a combined-cycle engine
NASA Technical Reports Server (NTRS)
Vangerpen, Jon
1991-01-01
A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.
NASA Astrophysics Data System (ADS)
Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.
2008-12-01
The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so that they can cover an even wider net of data sources. The goal is to develop the means to link together the upper level and lower level ontologies and to have these registered within the GEOSS Registry. Actual operational ontologies that would link to models or link to data collections containing input variables required by models would have to be nested underneath this top level ontology, analogous to the mapping that has been carried out among ontologies within GEON.
1998-01-01
On STS-89, three Mechanics of Granular Materials (MGM) test cells were subjected to five cycles of compression and relief (left) and three were subjected to shorter displacement cycles that simulate motion during an earthquake (right). In the compression/relief tests, the sand particles rearranged themselves and slightly re-expanded the column during relief. In the short displacement tests, the specimen's resistance to compression decreases, even though the displacement remains the same. The specimens were cycled up to 100 times or until the resistive force was less than 1% that of the previous cycle. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)
Graphs of Soil Mechanics Tests in Orbit
NASA Technical Reports Server (NTRS)
1998-01-01
On STS-89, three Mechanics of Granular Materials (MGM) test cells were subjected to five cycles of compression and relief (left) and three were subjected to shorter displacement cycles that simulate motion during an earthquake (right). In the compression/relief tests, the sand particles rearranged themselves and slightly re-expanded the column during relief. In the short displacement tests, the specimen's resistance to compression decreases, even though the displacement remains the same. The specimens were cycled up to 100 times or until the resistive force was less than 1% that of the previous cycle. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)
Low-order models of a single-screw expander for organic Rankine cycle applications
NASA Astrophysics Data System (ADS)
Ziviani, D.; Desideri, A.; Lemort, V.; De Paepe, M.; van den Broek, M.
2015-08-01
Screw-type volumetric expanders have been demonstrated to be a suitable technology for organic Rankine cycle (ORC) systems because of higher overall effectiveness and good part-load behaviour over other positive displacement machines. An 11 kWe single-screw expander (SSE) adapted from an air compressor has been tested in an ORC test-rig operating with R245fa as working fluid. A total of 60 steady-steady points have been obtained at four different rotational speeds of the expander in the range between 2000 rpm and 3300 rpm. The maximum electrical power output and overall isentropic effectiveness measured were 7.3 kW and 51.9%, respectively. In this paper, a comparison between two low-order models is proposed in terms of accuracy of the predictions, the robustness of the model and the computational time. The first model is the Pacejka equation-based model and the second is a semi-empirical model derived from a well-known scroll expander model and modified to include the geometric aspects of a single screw expander. The models have been calibrated with the available steady-state measurement points by identifying the proper parameters.
Advanced oxygen-hydrocarbon rocket engine study
NASA Technical Reports Server (NTRS)
Obrien, C. J.; Ewen, R. L.
1981-01-01
This study identifies and evaluates promising LO2/HC rocket engine cycles, produces a consistent and reliable data base for vehicle optimization and design studies, demonstrates the significance of propulsion system improvements, and selects the critical technology areas necessary to realize an improved surface to orbit transportation system. Parametric LO2/HC engine data were generated over a range of thrust levels from 890 to 6672 kN (200K to 1.5M 1bF) and chamber pressures from 6890 to 34500 kN (1000 to 5000 psia). Engine coolants included RP-1, refined RP-1, LCH4, LC3H8, LO2, and LH2. LO2/RP-1 G.G. cycles were found to be not acceptable for advanced engines. The highest performing LO2/RP-1 staged combustion engine cycle utilizes LO2 as the coolant and incorporates an oxidizer rich preburner. The highest performing cycle for LO2/LCH4 and LO2/LC3H8 utilizes fuel cooling and incorporates both fuel and oxidizer rich preburners. LO2/HC engine cycles permitting the use of a third fluid LH2 coolant and an LH2 rich gas generator provide higher performance at significantly lower pump discharge pressures. The LO2/HC dual throat engine, because of its high altitude performance, delivers the highest payload for the vehicle configuration that was investigated.
NASA Technical Reports Server (NTRS)
Riggins, David W.
2002-01-01
The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.
Compound cycle engine for helicopter application
NASA Technical Reports Server (NTRS)
Castor, Jere; Martin, John; Bradley, Curtiss
1987-01-01
The compound cycle engine (CCE) is a highly turbocharged, power-compounded, ultra-high-power-density, lightweight diesel engine. The turbomachinery is similar to a moderate-pressure-ratio, free-power-turbine gas turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military helicopter applications. Cycle thermodynamic specific fuel consumption (SFC) and engine weight analyses performed to establish general engine operating parameters and configurations are presented. An extensive performance and weight analysis based on a typical 2-hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a contemporary gas turbine engine. The CCE had a 31 percent lower-fuel consumption and resulted in a 16 percent reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb/hp-hr and installed wet weight is 0.43 lb/hp. The major technology development areas required for the CCE are identified and briefly discussed.
Compound cycle engine for helicopter application
NASA Technical Reports Server (NTRS)
Castor, Jere G.
1986-01-01
The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded, ultra-high power density, light-weight diesel engine. The turbomachinery is similar to a moderate pressure ratio, free power turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military light helicopter applications. This executive summary presents cycle thermodynamic (SFC) and engine weight analyses performed to establish general engine operating parameters and configuration. An extensive performance and weight analysis based on a typical two hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a T-800 class gas turbine engine. The CCE had a 31% lower-fuel consumption and resulted in a 16% reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb-HP-HR and installed wet weight is 0.43 lbs/HP. The major technology development areas required for the CCE are identified and briefly discussed.
Rocket Based Combined Cycle (RBCC) engine inlet
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
40 CFR 86.1313-2004 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...
Alternate Propulsion Subsystem Concepts Tripropellant Comparison Study
NASA Technical Reports Server (NTRS)
Levack, Daniel
1995-01-01
A study was conducted under MSFC contract NAS8-39210 to compare tripropellant and bipropellant engine configurations for the SSTO mission. The objective was to produce an 'apples-to-apples' comparison to isolate the effects of design implementation, designing company, year of design, or technologies included from the basic tripropellant/bipropellant comparison. Consequently, identical technologies were included (e.g., jet pumps) and the same design groundrules and practices were used. Engine power cycles were examined as were turbomachinery/preburner arrangements for each cycle. The bipropellant approach and two tripropellant approaches were separately optimized in terms of operating parameters: exit pressures, mixture ratios, thrust splits, etc. This briefing presents the results of the study including engine weights for both tripropellant and bipropellant engines; dry vehicle weight performance for a range of engine chamber pressures; discusses the basis for the results; examines vehicle performance due to engine cycles and the margin characteristics of various cycles; and identifies technologies with significant payoffs for this application.
NASA Technical Reports Server (NTRS)
Stecklein, Jonette
2017-01-01
NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design, through tele-operation of the robot collecting regolith in simulated Mars conditions, to disposal of the robot systems after the competition. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team’s score for the competition’s grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.
The effects of engine operating conditions on CCD chemistry and morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, S.W.; Moore, S.M.; Sabourin, E.T.
1996-10-01
The effects of engine driving cycle and engine coolant temperature on combustion chamber deposit (CCD) surface chemistry and morphology were assessed by the use of XPS and scanning electron micrographs. A 3.1L V6 test cell engine was used to generate a six test matrix that compared deposit surface chemistry and morphology under two distinctly different driving cycles, each cycle being evaluated at three separate engine coolant temperatures. Deposit material for each respective test was collected by removable combustion chamber sample probes that were subjected to XPS surface analysis and SEM evaluation. Discernible trends were observed in surface chemistry and depositmore » amounts with respect to changes in both driving cycle and coolant temperature. However, much more pronounced were deposit morphological changes recorded by SEM in different engine coolant temperature regimes for both of the utilized driving cycles. Deposit nodules formed in one temperature regime were seen to be typically much larger in size, highly irregular in shape, and appeared to be porous in structure. At a different operating temperature, the deposit nodules were observed to be extremely uniform and more tightly packed.« less
Pomerantseva, Irina; Bichara, David A.; Tseng, Alan; Cronce, Michael J.; Cervantes, Thomas M.; Kimura, Anya M.; Neville, Craig M.; Roscioli, Nick; Vacanti, Joseph P.; Randolph, Mark A.
2016-01-01
Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage maturation and prevented shrinkage and distortion. This is the first demonstration of a stable, ear-shaped elastic cartilage engineered from auricular chondrocytes that underwent clinical-scale expansion in an immunocompetent animal over an extended period of time. PMID:26529401
Carnot cycle at finite power: attainability of maximal efficiency.
Allahverdyan, Armen E; Hovhannisyan, Karen V; Melkikh, Alexey V; Gevorkian, Sasun G
2013-08-02
We want to understand whether and to what extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power. To this end we generalize the Carnot cycle so that it is not restricted to slow processes. We show that for realistic (i.e., not purposefully designed) engine-bath interactions, the work-optimal engine performing the generalized cycle close to the maximal efficiency has a long cycle time and hence vanishing power. This aspect is shown to relate to the theory of computational complexity. A physical manifestation of the same effect is Levinthal's paradox in the protein folding problem. The resolution of this paradox for realistic proteins allows to construct engines that can extract at a finite power 40% of the maximally possible work reaching 90% of the maximal efficiency. For purposefully designed engine-bath interactions, the Carnot efficiency is achievable at a large power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watelet, R.P.; Ruggles, A.E.; Hagen, K.G.
1976-05-01
The development status of a heart assist system driven by a nuclear fueled, electronically controlled vapor cycle engine termed the tidal regenerator engine (TRE) is described. The TRE pressurization is controlled by a torque motor coupled to a displacer. The electrical power for the sensor, electronic logic and actuator is provided by thermoelectric modules interposed between the engine superheater and boiler. The TRE is direct coupled to an assist blood pump which also acts as a blood-cooled heat exchanger, pressure-volume transformer and sensor for the electronic logic. Engine cycle efficiency in excess of 14% has been demonstrated routinely. Overall systemmore » efficiency on 33 watts of over 9% has been demonstrated. A binary version of this engine in the annular configuration is now being tested. The preliminary tests demonstrated 10% cycle efficiency on the first buildup which ran well and started easily.« less
Seal Technology Development for Advanced Component for Airbreathing Engines
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
2008-01-01
Key aspects of the design of sealing systems for On Rotor Combustion/Wave Rotor (ORC/WR) systems were addressed. ORC/WR systems generally fit within a broad class of pressure gain Constant Volume Combustors (CVCs) or Pulse Detonation Combustors (PDCs) which are currently being considered for use in many classes of turbine engines for dramatic efficiency improvement. Technology readiness level of this ORC/WR approaches are presently at 2.0. The results of detailed modeling of an ORC/WR system as applied to a regional jet engine application were shown to capture a high degree of pressure gain capabilities. The results of engine cycle analysis indicated the level of specific fuel consumption (SFC) benefits to be 17 percent. The potential losses in pressure gain due to leakage were found to be closely coupled to the wave processes at the rotor endpoints of the ORC/WR system. Extensive investigation into the sealing approaches is reported. Sensitivity studies show that SFC gains of 10 percent remain available even when pressure gain levels are highly penalized. This indicates ORC/WR systems to have a high degree of tolerance to rotor leakage effects but also emphasizes their importance. An engine demonstration of an ORC/WR system is seen as key to progressing the TRL of this technology. An industrial engine was judged to be a highly advantageous platform for demonstration of a first generation ORC/WR system. Prior to such a demonstration, the existing NASA pressure exchanger wave rotor rig was identified as an opportunity to apply both expanded analytical modeling capabilities developed within this program and to identify and fix identified leakage issues existing within this rig. Extensive leakage analysis of the rig was performed and a detailed design of additional sealing strategies for this rig was generated.
Variable Cycle Engine Technology Program Planning and Definition Study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Stern, A. M.
1978-01-01
The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.
Jet engine performance enhancement through use of a wave-rotor topping cycle
NASA Technical Reports Server (NTRS)
Wilson, Jack; Paxson, Daniel E.
1993-01-01
A simple model is used to calculate the thermal efficiency and specific power of simple jet engines and jet engines with a wave-rotor topping cycle. The performance of the wave rotor is based on measurements from a previous experiment. Applied to the case of an aircraft flying at Mach 0.8, the calculations show that an engine with a wave rotor topping cycle may have gains in thermal efficiency of approximately 1 to 2 percent and gains in specific power of approximately 10 to 16 percent over a simple jet engine with the same overall compression ratio. Even greater gains are possible if the wave rotor's performance can be improved.
NASA Technical Reports Server (NTRS)
Wheeler, D. B.
1978-01-01
Engine performance data, combustion gas thermodynamic properties, and turbine gas parameters were determined for various high power cycle engine configurations derived from the space shuttle main engine that will allow sequential burning of LOX/hydrocarbon and LOX/hydrogen fuels. Both stage combustion and gas generator pump power cycles were considered. Engine concepts were formulated for LOX/RP-1, LOX/CH4, and LOX/C3H8 propellants. Flowrates and operating conditions were established for this initial set of engine systems, and the adaptability of the major components of shuttle main engine was investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boden, Thomas A; Krassovski, Misha B; Yang, Bai
2013-01-01
The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the U.S. Department of Energy and international climate change science since 1982. Over this period, climate change science has expanded from research focusing on basic understanding of geochemical cycles, particularly the carbon cycle, to integrated research addressing climate change impacts, vulnerability, adaptation, and mitigation. Interests in climate change data and information worldwide have grown remarkably and, as a result, so have demands and expectations for CDIAC s data systems. To meet the growing demands, CDIAC s strategy has beenmore » to design flexible data systems using proven technologies blended with new, evolving technologies and standards. CDIAC development teams are multidisciplinary and include computer science and information technology expertise, but also scientific expertise necessary to address data quality and documentation issues and to identify data products and system capabilities needed by climate change scientists. CDIAC has learned there is rarely a single commercial tool or product readily available to satisfy long-term scientific data system requirements (i.e., one size does not fit all and the breadth and diversity of environmental data are often too complex for easy use with commercial products) and typically deploys a variety of tools and data products in an effort to provide credible data freely to users worldwide. Like many scientific data management applications, CDIAC s data systems are highly customized to satisfy specific scientific usage requirements (e.g., developing data products specific for model use) but are also designed to be flexible and interoperable to take advantage of new software engineering techniques, standards (e.g., metadata standards) and tools and to support future Earth system data efforts (e.g., ocean acidification). CDIAC has provided data management support for numerous long-term measurement projects crucial to climate change science. One current example is the AmeriFlux measurement network. AmeriFlux provides continuous measurements from forests, grasslands, wetlands, and croplands in North, Central, and South America and offers important insight about carbon cycling in terrestrial ecosystems. We share our approaches in satisfying the challenges of delivering AmeriFlux data worldwide to benefit others with similar challenges handling climate change data, further heighten awareness and use of an outstanding ecological data resource, and highlight expanded software engineering applications being used for climate change measurement data.« less
DOT National Transportation Integrated Search
2008-09-01
The Case Western Reserve University Department of Civil Engineering is in the process of expanding its teaching and research activities, Transportation Engineering as part of its initiative in the overall area of Infrastructure Performance and Reliab...
NASA Technical Reports Server (NTRS)
Gott, Charles; Galicki, Peter; Shores, David
1990-01-01
The Helmet Mounted Display system and Part Task Trainer are two projects currently underway that are closely related to the in-flight crew training concept. The first project is a training simulator and an engineering analysis tool. The simulator's unique helmet mounted display actually projects the wearer into the simulated environment of 3-D space. Miniature monitors are mounted in front of the wearers eyes. Partial Task Trainer is a kinematic simulator for the Shuttle Remote Manipulator System. The simulator consists of a high end graphics workstation with a high resolution color screen and a number of input peripherals that create a functional equivalent of the RMS control panel in the back of the Orbiter. It is being used in the training cycle for Shuttle crew members. Activities are underway to expand the capability of the Helmet Display System and the Partial Task Trainer.
Advanced blade tip seal system, volume 2
NASA Technical Reports Server (NTRS)
Zelahy, J. W.; Fairbanks, N. P.
1982-01-01
The results of the endurance and performance engine tests conducted on monocrystal/abrasive-tipped CF6-50 Stage 1 HPT blades fabricated in Task VII of MATE Project 3 are presented. Two engine tests are conducted. The endurance engine test is conducted for 1000 C cycles. The performance engine test is conducted on a variable cycle core engine. Posttest evaluation and analyses of the blades and shrouds included visual, dimensional, and destructive evaluations.
Information technology security system engineering methodology
NASA Technical Reports Server (NTRS)
Childs, D.
2003-01-01
A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.
Software engineering and the role of Ada: Executive seminar
NASA Technical Reports Server (NTRS)
Freedman, Glenn B.
1987-01-01
The objective was to introduce the basic terminology and concepts of software engineering and Ada. The life cycle model is reviewed. The application of the goals and principles of software engineering is applied. An introductory understanding of the features of the Ada language is gained. Topics addressed include: the software crises; the mandate of the Space Station Program; software life cycle model; software engineering; and Ada under the software engineering umbrella.
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.
Advanced General Aviation Turbine Engine (GATE) concepts
NASA Technical Reports Server (NTRS)
Lays, E. J.; Murray, G. L.
1979-01-01
Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains.
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.
A Comparative Propulsion System Analysis for the High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Haller, William J.; Senick, Paul F.; Jones, Scott M.; Seidel, Jonathan A.
2005-01-01
Six of the candidate propulsion systems for the High-Speed Civil Transport are the turbojet, turbine bypass engine, mixed flow turbofan, variable cycle engine, Flade engine, and the inverting flow valve engine. A comparison of these propulsion systems by NASA's Glenn Research Center, paralleling studies within the aircraft industry, is presented. This report describes the Glenn Aeropropulsion Analysis Office's contribution to the High-Speed Research Program's 1993 and 1994 propulsion system selections. A parametric investigation of each propulsion cycle's primary design variables is analytically performed. Performance, weight, and geometric data are calculated for each engine. The resulting engines are then evaluated on two airframer-derived supersonic commercial aircraft for a 5000 nautical mile, Mach 2.4 cruise design mission. The effects of takeoff noise, cruise emissions, and cycle design rules are examined.
The effect of noise constraints on engine cycle optimization for long-haul transports
NASA Technical Reports Server (NTRS)
Antl, R. J.
1973-01-01
Optimum engine cycles were determined for noise levels of 10, 15, and 20 EPNdB below current FAA regulations, using 200-passenger trijet aircraft flying over ranges from 5555 to 10,200 km at cruise speeds of Mach 0.90 and 0.98. The tests showed that the noise constraints imposed compromises on the optimum cycle with resulting economic penalties. The economic penalties, however, could be effectively offset by applying advanced engine technologies.
Vaughan, Adam; Bohac, Stanislav V
2015-10-01
Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. Copyright © 2015 Elsevier Ltd. All rights reserved.
New detonation concepts for propulsion and power generation
NASA Astrophysics Data System (ADS)
Braun, Eric M.
A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal efficiency prediction of a detonation wave based on the work and heat specified by process path diagrams and a control volume analysis. A combined first and second law analysis aids in understanding performance trends for different initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the flow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an orifice connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed fluidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected, the orifice diameter, and the plenum cavity pressure. Results indicate that the detonation wave pressure temporarily interrupts the fluidic valve supply, but the wave products can be quickly expelled by the fresh fuel supply to allow for refueling. The interruption time of the valve scales with injection and detonation wave pressure ratios as well as a characteristic time. The feasibility of using a detonation wave as a source for producing power in conjunction with a linear generator is considered. Such a facility can be constructed by placing a piston--spring system at the end of a pulsed detonation engine (PDE). Once the detonation wave reflects off the piston, oscillations of the system drive the linear generator. An experimental facility was developed to explore the interaction of a gaseous detonation wave with the piston. Experimental results were then used to develop a model for the interaction. Governing equations for two engine designs are developed and trends are established to indicate a feasible design space for future development.
Code of Federal Regulations, 2010 CFR
2010-07-01
... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty...-cycle medium-duty passenger vehicles (MDPVs) that are subject to regulation under subpart S of this part...
NASA Technical Reports Server (NTRS)
Civinskas, K. C.; Kraft, G. A.
1976-01-01
The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.
Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines
NASA Technical Reports Server (NTRS)
Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.
2002-01-01
This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.
Two-stroke-cycle engines for airplanes
NASA Technical Reports Server (NTRS)
Jalbert, J
1926-01-01
Now that the two-stroke-cycle engine has begun to make its appearance in automobiles, it is important to know what services we have a right to expect of it in aeronautics, what conditions must be met by engines of this type for use on airplanes and what has been accomplished.
Current Status of an Organic Rankine Cycle Engine Development Program
NASA Technical Reports Server (NTRS)
Barber, R. E.
1984-01-01
The steps taken to achieve improved bearing life in the organic Rankine cycle (ORC) engine being developed for use on solar parabolic dishes are presented. A summary of test results is given. Dynamic tests on the machine shaft and rotors of the ORC engine are also discussed.
Dual nozzle aerodynamic and cooling analysis study. [dual throat and dual expander nozzles
NASA Technical Reports Server (NTRS)
Meagher, G. M.
1980-01-01
Geometric, aerodynamic flow field, performance prediction, and heat transfer analyses are considered for two advanced chamber nozzle concepts applicable to Earth-to-orbit engine systems. Topics covered include improvements to the dual throat aerodynamic and performance prediction program; geometric and flow field analyses of the dual expander concept; heat transfer analysis of both concepts, and engineering analysis of data from the NASA/MSFC hot-fire testing of a dual throat thruster model thrust chamber assembly. Preliminary results obtained are presented in graphs.
Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.
2014-12-22
In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less
Methane Dual Expander Aerospike Nozzle Rocket Engine
2012-03-22
include O/F ratio, thrust, and engine geometry. After thousands of iterations over the design space , the selected MDEAN engine concept has 349 s of...35 Table 7: Fluid Property Table Supported Parameters...44 Table 8: Fluid Property Input Data Independent Variable Ranges. ................................. 46 Table 9
1997-02-01
through technology transfer centers for applied engineering training and consulting, and second, in assisting and expanding university technology...both the services and industry with an applied engineering program and the training for new engineers and researchers, (2) serve as an information
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1999-01-01
A technohistorical and forward-planning overview of U.S. developments in combined airbreathing/rocket propulsion for advanced aerospace vehicle applications is presented. Such system approaches fall into one of two categories: (1) Combination propulsion systems (separate, non-interacting engines installed), and (2) Combined-Cycle systems. The latter, and main subject, comprises a large family of closely integrated engine types, made up of both airbreathing and rocket derived subsystem hardware. A single vehicle-integrated, multimode engine results, one capable of operating efficiently over a very wide speed and altitude range, atmospherically and in space. While numerous combination propulsion systems have reached operational flight service, combined-cycle propulsion development, initiated ca. 1960, remains at the subscale ground-test engine level of development. However, going beyond combination systems, combined-cycle propulsion potentially offers a compelling set of new and unique capabilities. These capabilities are seen as enabling ones for the evolution of Spaceliner class aerospace transportation systems. The following combined-cycle hypersonic engine developments are reviewed: (1) RENE (rocket engine nozzle ejector), (2) Cryojet and LACE, (3) Ejector Ramjet and its derivatives, (4) the seminal NASA NAS7-377 study, (5) Air Force/Marquardt Hypersonic Ramjet, (6) Air Force/Lockheed-Marquardt Incremental Scramjet flight-test project, (7) NASA/Garrett Hypersonic Research Engine (HRE), (8) National Aero-Space Plane (NASP), (9) all past projects; and such current and planned efforts as (10) the NASA ASTP-ART RBCC project, (11) joint CIAM/NASA DNSCRAM flight test,(12) Hyper-X, (13) Trailblazer,( 14) W-Vehicle and (15) Spaceliner 100. Forward planning programmatic incentives, and the estimated timing for an operational Spaceliner powered by combined-cycle engines are discussed.
"It's Good to Have Wheels!" Perceptions of Cycling among Homeless Young People in Sydney, Australia
ERIC Educational Resources Information Center
Crawford, Belinda; Rissel, Chris; Yamazaki, Rowena; Franke, Elise; Amanatidis, Sue; Ravulo, Jioji; Bindon, Jenni; Torvaldsen, Siranda
2012-01-01
Participation in sporting or recreational programs can be unattainable for many disadvantaged young people. Encouraging regular cycling is an important public health strategy to increase participation in physical activity and expand personal transport options for marginalised youth. Perceptions and attitudes toward cycling were explored in eight…
Analysis of a rotating spool expander for Organic Rankine Cycle applications
NASA Astrophysics Data System (ADS)
Krishna, Abhinav
Increasing interest in recovering or utilizing low-grade heat for power generation has prompted a search for ways in which the power conversion process may be enhanced. Amongst the conversion systems, the Organic Rankine Cycle (ORC) has generated an enormous amount of interest amongst researchers and system designers. Nevertheless, component level technologies need to be developed and match the range of potential applications. In particular, technical challenges associated with scaling expansion machines (turbines) from utility scale to commercial scale have prevented widespread adoption of the technology. In this regard, this work focuses on a novel rotating spool expansion machine at the heart of an Organic Rankine Cycle. A comprehensive, deterministic simulation model of the rotating spool expander is developed. The comprehensive model includes a detailed geometry model of the spool expander and the suction valve mechanism. Sub-models for mass flow, leakage, heat transfer and friction within the expander are also developed. Apart from providing the ability to characterize the expander in a particular system, the model provides a valuable tool to study the impact of various design variables on the performance of the machine. The investigative approach also involved an experimental program to assess the performance of a working prototype. In general, the experimental data showed that the expander performance was sub-par, largely due to the mismatch of prevailing operating conditions and the expander design criteria. Operating challenges during the shakedown tests and subsequent sub-optimal design changes also detracted from performance. Nevertheless, the results of the experimental program were sufficient for a proof-of-concept assessment of the expander and for model validation over a wide range of operating conditions. The results of the validated model reveal several interesting details concerning the expander design and performance. For example, the match between the design expansion ratio and the system imposed pressure ratio has a large influence on the performance of the expander. Further exploration shows that from an operating perspective, under-expansion is preferable to over-expansion. The model is also able to provide insight on the dominant leakage paths in the expander and points to the fact that this is the primary loss mechanism in the current expander. Similar insights are obtained from assessing the sensitivity of various other design variables on expander performance. Based on the understanding provided by the sensitivity analysis, exercising the validated model showed that expander efficiencies on the order of 75% are imminently possible in an improved design. Therefore, with sufficient future development, adoption of the spool expander in ORC systems that span a 50 kW -- 200 kW range is broadly feasible.
40 CFR 86.1503 - Abbreviations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled...
NASA Technical Reports Server (NTRS)
Bailey, M. M.
1985-01-01
Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.
Water pulsejet research. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, P.R.; Brown, R.G.; Brown, J.P.
1979-04-01
The steam water pulsejet (SWPJ) - a modern derivative of the Piot-McHugh putt-putt toy boat - is discussed. Studies have revealed that, like its air-breathing relatives, one type of SWPJ is a type of wave engine. This report first reviews the background literature and then summarizes recent improvements in our understanding of the engine's operation. An appendix attempts to show the various physical processes of the wave engine version in a quantifiable way. At low temperatures, the ideal cycle efficiency of this version is almost identical with the Carnot limit, diverging above a ..delta..T approx. = 150/sup 0/F. Maximum idealmore » cycle efficiency occurs in the 500/sup 0/-600/sup 0/F range, and is 30%-40%. In addition to the two wave engines (simple wave engine, and a wave engine with a water trap), the boundary layer boiler was developed which may but need not involve wave effects and the Piot-cycle. In the latter engine, some water is flashed rapidly to steam in a separate (but connected) compartment and reaches high pressure before the water column (because of its inertia) has moved appreciably. Ideal efficiencies for this cycle can be of the order of 10%-20%. Although a great deal of knowledge was gained, the present program was unsuccessful in applying the newly discovered cycles to build reliable and efficient solar powered pumps.« less
Job Prospects for Civil Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1988-01-01
Discusses civil engineering employment opportunities; indicates that the field is shrinking. Presents national placement and enrollment statistics. Identifies building and construction materials, and public works as areas of current and expanding opportunities. (CW)
Liquid Rocket Engine Testing Overview
NASA Technical Reports Server (NTRS)
Rahman, Shamim
2005-01-01
Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.
Licurse, Mindy Y; Lalevic, Darco; Zafar, Hanna M; Schnall, Mitchell D; Cook, Tessa S
2017-04-01
An automated radiology recommendation-tracking engine for incidental focal masses in the liver, pancreas, kidneys, and adrenal glands was launched within our institution in July 2013. For 2 years, the majority of CT, MR, and US examination reports generated within our health system were mined by the engine. However, the need to expand the system beyond the initial four organs was soon identified. In July 2015, the second phase of the system was implemented and expanded to include additional anatomic structures in the abdomen and pelvis, as well as to provide non-radiology and non-imaging options for follow-up. The most frequent organs with incidental findings, outside of the original four, included the ovaries and the endometrium, which also correlated to the most frequently ordered imaging follow-up study of pelvic ultrasound and non-imaging follow-up study of endometrial biopsies, respectively. The second phase expansion has demonstrated new venues for augmenting and improving radiologist roles in optimal communication and management of incidental findings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Heavy-Duty Vehicles § 86.008-10 Emission standards for 2008 and later model year Otto-cycle heavy-duty...-10.”. (a)(1) Exhaust emissions from new 2008 and later model year Otto-cycle HDEs shall not exceed...
NASA Technical Reports Server (NTRS)
Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.
1977-01-01
The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.
Engineering Education's Contribution to the Space Program.
ERIC Educational Resources Information Center
Stever, H. Guyford
1988-01-01
States that an expanding future in space requires new technology. Stresses that from engineering education, space requires people with a fundamental knowledge of modern science instruments, all engineering sciences, an appreciation and capability for detail and systems design, and an understanding of costs and competitiveness, machines, materials,…
1995-01-01
through Army technology transfer centers for applied engineering training and consulting, and second in assisting and expanding university technology...industry with an applied engineering program and the training for new engineers and researchers, serve as an information resource for both the Army and
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA
2007-05-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.
2005-11-08
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2005-05-03
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2003-06-24
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Organic rankine cycle system for use with a reciprocating engine
Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.
2006-01-17
In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.
Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1995-01-01
As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.
Introduction of Life Cycle Assessment and Sustainability Concepts in Chemical Engineering Curricula
ERIC Educational Resources Information Center
Gallego-Schmid, Alejandro; Schmidt Rivera, Ximena C.; Stamford, Laurence
2018-01-01
Purpose: The implementation of life cycle assessment (LCA) and carbon footprinting represents an important professional and research opportunity for chemical engineers, but this is not broadly reflected in chemical engineering curricula worldwide. This paper aims to present the implementation of a coursework that is easy to apply, free of cost,…
40 CFR 86.334-79 - Test procedure overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...
40 CFR 86.334-79 - Test procedure overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...
40 CFR 86.334-79 - Test procedure overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...
40 CFR 86.334-79 - Test procedure overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2... to be conducted on an engine dynamometer. The exhaust gases generated during engine operation are... determination of the concentration of each pollutant, the fuel flow and the power output during each mode. The...
The potential of computer-aided process engineering (CAPE) tools to enable process engineers to improve the environmental performance of both their processes and across the life cycle (from cradle-to-grave) has long been proffered. However, this use of CAPE has not been fully ach...
Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Spray
2007-09-30
The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less
Two-stroke engine diagnostics and design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
This paper focuses on research and development efforts on two-stroke cycle engines for automotive applications. Partial contents include: Velocity Field Characteristics in Motored Two-Stroke Ported Engines; Flow Vector Measurements at the Scavenging Ports in a Fired Two-Stroke Engine; A Study on Exhaust Dynamic Effect of Two-Stroke Motorcycle Petrol Engine; Characterization of Ignition and Parametric Study of a Two-Stroke-Cycle Direct-Injected Gasoline Engine; LDV Measurements of Intake Port Flow in a Two-Stroke Engine with and without Combustion; Appraisal of Regenerative Blowers for Scavenging of Small 2T S.I. Powerplants; and Development Experience of a Poppet-Valved Two-Stroke Flagship Engine.
Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2012-01-01
The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program - the 25,000 lbf (25 klbf) "Pewee" engine is sufficient when used in a clustered engine arrangement. The "Copernicus" crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth object (NEO) and Mars orbital missions prior to a Mars landing mission. The paper also discusses NASA s current activities and future plans for NTP development that include system-level Technology Demonstrations - specifically ground testing a small, scalable NTR by 2020, with a flight test shortly thereafter.
NASA Astrophysics Data System (ADS)
Zhang, Jianqiang; Wang, Zhenguo; Li, Qinglian
2017-09-01
The efficiency calculation and cycle optimization were carried out for the Synergistic Air-Breathing Rocket Engine (SABRE) with deeply precooled combined cycle. A component-level model was developed for the engine, and exergy efficiency analysis based on the model was carried out. The methods to improve cycle efficiency have been proposed. The results indicate cycle efficiency of SABRE is between 29.7% and 41.7% along the flight trajectory, and most of the wasted exergy is occupied by the unburned hydrogen in exit gas. Exergy loss exists in each engine component, and the sum losses of main combustion chamber(CC), pre-burner(PB), precooler(PC) and 3# heat exchanger(HX3) are greater than 71.3% of the total loss. Equivalence ratio is the main influencing factor of cycle, and it can be regulated by adjusting parameters of helium loop. Increase the maximum helium outlet temperature of PC by 50 K, the total assumption of hydrogen will be saved by 4.8%, and the cycle efficiency is advanced by 3% averagely in the trajectory. Helium recirculation scheme introduces a helium recirculation loop to increase local helium flow rate of PC. It turns out the total assumption of hydrogen will be saved by 9%, that's about 1740 kg, and the cycle efficiency is advanced by 5.6% averagely.
1974-12-01
urbofan engine performance. An AiKesearch Model TFE731 -2 Turbofan Engine was modified to incorporate production-type variable-geometry hardware...reliability was shown for the variable- geometry components. The TFE731 , modified to include variable geometry, proved to be an inexpensive...Atm at a Met Thrust of 3300 LBF 929 85 Variable-Cycle Engine TFE731 Exhaust-Nozzle Performance 948 86 Analytical Model Comparisons, Aerodynamic
A Recommended Framework for the Network-Centric Acquisition Process
2009-09-01
ISO /IEC 12207 , Systems and Software Engineering-Software Life-Cycle Processes ANSI/EIA 632, Processes for Engineering a System. There are...engineering [46]. Some of the process models presented in the DAG are: ISO /IEC 15288, Systems and Software Engineering-System Life-Cycle Processes...e.g., ISO , IA, Security, etc.). Vetting developers helps ensure that they are using industry best industry practices and maximize the IA compliance
A contact binary asteroid evolutionary cycle driven by BYORP & the classical Laplace plane
NASA Astrophysics Data System (ADS)
Rieger, Samantha; Scheeres, Daniel J.
2017-10-01
Several contact binaries have been observed to have high obliquities distributed around 90°. With this information, we explore the possibility of these high obliquities being a key characteristic that causes an evolutionary cycle of contact binary formation and separation.The contact binary cycle begins with a single asteroid that is spinning up due to the YORP effect. For the binary cycle we assume YORP will drive the obliquity to 90°. Eventually, the asteroid will reach a critical spin frequency that will cause the asteroid to fission into a binary. We assume that the mass-ratio, q, of the system is greater than 0.2. With a high q, the secondary will not escape/impact the primary but will evolve through tides into a stable circular double-synchronous orbit. The binary being synchronous will cause the forces from BYORP to have secular effects on the system. For this cycle, BYORP will need to expand the secondary away from the primary.As the system expands, we have found that the secondary will follow the classical Laplace plane. Therefore, the secondary’s orbit will increase in inclination with respect to the equator as the secondary’s orbit expands. The Laplace plane is a stable orbit to perturbations from J2 & Sun tides except for an instability region that exists for primaries with obliquities above 68.875° & a secondary orbital radius of 13.5-19.5 primary radii. Once BYORP expands the secondary into this instability region, the eccentricity of the secondary’s orbit will increase until the orbit intersects with the primary & causes an impact. This impact will create a contact binary with a new obliquity that will randomly range from 23°-150°. The cycle will begin again with YORP driving the contact binary to an obliquity of 90°.Our contribution will discuss the proposed contact binary cycle in more detail, including the mechanics of the system that drives the events given above. We will include investigations into how losing synchronous lock will disrupt the eccentricity growth in the Laplace plane instability region. We will also discuss the time scales of each event to help predict which part of the cycle we will most likely to be observing when discovering new contact binaries & binary systems.
Crank case scavenging of two-stroke-cycle engines
NASA Technical Reports Server (NTRS)
List, Hans
1929-01-01
This report presents the results of tests on two-stroke-cycle Diesel engines to determine the efficiency of the crank case scavenging pump. It was determined that efficiencies were between 95 and 100%.
The Role of the Strutjet Engine in New Global and Space Markets
NASA Technical Reports Server (NTRS)
Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.
1998-01-01
The Strutjet, discussed in previous IAF papers, was originally introduced as an enabling propulsion concept for single stage to orbit applications. Recent design considerations indicate that this systems also provides benefits supportive of other commercial non-space applications. This paper describes the technical progress of the Strutjet since 1997 together with a rationale why Rocket Based Combined Cycle Engines in general, and the Strutjet in particular, lend themselves uniquely to systems having the ability to expand current space and open new global 'rapid delivery' markets. During this decade, Strutjet technology has been evaluated in over 1000 tests. Its design maturity has been continuously improved and desired features, like simple variable geometry and low drag flowpath resulting in high performance, have been verified. In addition, data is now available which allows the designer, who is challenged to maximize system operability and economic feasibility, to choose between hydrogen or hydrocarbon fuels for a variety of application. The ability exists now to apply this propulsion system to various vehicles with a multitude of missions. In this paper, storable hydrocarbon and gaseous hydrogen Strutjet RBCC test data as accomplished to date and as planned for the future is presented, and the degree of required technology maturity achieved so far is assessed. Two vehicles, using cryogenic propane fuel Strutjet engines, and specifically designed for rapid point-to-point cargo delivery between Pacific rim locations are introduced, discussed, and compared.
Engineering Student to Technical Employee: Identifying Graduates' Needs in the Transition.
ERIC Educational Resources Information Center
Trainor, Michalene; Varma, Gale H.
1983-01-01
Surveyed 640 engineering students, 119 college placement counselors, and 305 employers to identify needs of engineering students making the transition to employment. Results showed the majority of respondents supported the expanding help of college career development and placement offices, although most thought employee orientation was an…
Capturing Cyclic Variability in EGR Dilute SI Combustion using Multi-Cycle RANS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarcelli, Riccardo; Sevik, James; Wallner, Thomas
Dilute combustion is an effective approach to increase the thermal efficiency of spark-ignition (SI) internal combustion engines (ICEs). However, high dilution levels typically result in large cycle-to-cycle variations (CCV) and poor combustion stability, therefore limiting the efficiency improvement. In order to extend the dilution tolerance of SI engines, advanced ignition systems are the subject of extensive research. When simulating the effect of the ignition characteristics on CCV, providing a numerical result matching the measured average in-cylinder pressure trace does not deliver useful information regarding combustion stability. Typically Large Eddy Simulations (LES) are performed to simulate cyclic engine variations, since Reynold-Averagedmore » Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS, the cyclic perturbations coming from different initial conditions at each cycle are not damped out even after many simulated cycles. As a result, multi-cycle RANS results feature cyclic variability. This allows evaluating the effect of advanced ignition sources on combustion stability but requires validation against the entire cycle-resolved experimental dataset. A single-cylinder GDI research engine is simulated using RANS and the numerical results for 20 consecutive engine cycles are evaluated for several operating conditions, including stoichiometric as well as EGR dilute operation. The effect of the ignition characteristics on CCV is also evaluated. Results show not only that multi-cycle RANS simulations can capture cyclic variability and deliver similar trends as the experimental data, but more importantly that RANS might be an effective, lower-cost alternative to LES for the evaluation of ignition strategies for combustion systems that operate close to the stability limit.« less
2010-08-19
highlight the benefits of regenerative braking . Parameters within the drive cycle may include vehicle speed, elevation/grade changes, road surface...assist to downsize the engine due to infinite maximum speed requirements • Drive cycle less suited to regenerative braking improvement compared to...will be cycle dependent. A high speed drive cycle may for example drive a focus on aerodynamic improvements, while high frequency of braking will
Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Yungster, Shaye
2002-01-01
This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.
Quantum thermodynamic cycles and quantum heat engines. II.
Quan, H T
2009-04-01
We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.
Two-stroke S.I. engine competitive to four-stroke engine in terms of the exhaust emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavletic, R.; Trenc, F.
1994-09-01
A model engine with disintegrated working cycle was built. Its operation is not autonomous; compression of the working air is performed separately outside the engine by the compressed-air line supply. Pre-compressed charge together with the injected fuel is introduced in the combustion chamber. The model engine makes possible to determine indicated performance characteristics and its emission capability. Effective measured engine characteristics are of course not comparable with those obtained by a practical engine. The model presented is a two-stroke cycle engine. Exhaust emission picture of the presented engine is comparable with the emission of a modern four-stroke engine. 2 refs.,more » 13 figs., 2 tabs.« less
Interactive-graphic flowpath plotting for turbine engines
NASA Technical Reports Server (NTRS)
Corban, R. R.
1981-01-01
An engine cycle program capable of simulating the design and off-design performance of arbitrary turbine engines, and a computer code which, when used in conjunction with the cycle code, can predict the weight of the engines are described. A graphics subroutine was added to the code to enable the engineer to visualize the designed engine with more clarity by producing an overall view of the designed engine for output on a graphics device using IBM-370 graphics subroutines. In addition, with the engine drawn on a graphics screen, the program allows for the interactive user to make changes to the inputs to the code for the engine to be redrawn and reweighed. These improvements allow better use of the code in conjunction with the engine program.
NASA Astrophysics Data System (ADS)
Marius Andrei, Mihalache; Gheorghe, Nagit; Gavril, Musca; Vasile, Merticaru, Jr.; Marius Ionut, Ripanu
2016-11-01
In the present study the authors propose a new algorithm for identifying the right loads that act upon a functional connecting rod during a full engine cycle. The loads are then divided into three categories depending on the results they produce, as static, semi-dynamic and dynamic ones Because an engine cycle extends up to 720°, the authors aim to identify a method of substitution of values that produce the same effect as a previous value of a considered angle did. In other words, the proposed method aims to pin point the critical values that produce an effect different as the one seen before during a full engine cycle. Only those values will then be considered as valid loads that act upon the connecting rod inside FEA analyses. This technique has been applied to each of the three categories mentioned above and did produced different critical values for each one of them. The whole study relies on a theoretical mechanical project which was developed in order to identify the right values that correspond to each degree of the entire engine cycle of a Daewoo Tico automobile.
A.A.D. engine noise evaluation
NASA Technical Reports Server (NTRS)
1983-01-01
A critique of the various characteristics of engine design influencing noise and attempts to indicator areas where attention is required to obtain noise acceptable engine for automobiles are discussed. It was concluded that the engine has a potential to be quiet beccause a ion rated speed is chosen. Problems with high gas pressure, the fuel injection pump, and the expander/compressor are discussed.
Variable-cycle engines for supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Willis, E.
1976-01-01
Progress and the current status of the Variable Cycle Engine (VCE) study are reviewed with emphasis placed on the impact of technology advancements and design specifications. A large variety of VCE concepts are also examined.
Engineering Changes in Product Design - A Review
NASA Astrophysics Data System (ADS)
Karthik, K.; Janardhan Reddy, K., Dr
2016-09-01
Changes are fundamental to product development. Engineering changes are unavoidable and can arise at any phase of the product life cycle. The consideration of market requirements, customer/user feedbacks, manufacturing constraints, design innovations etc., turning them into viable products can be accomplished when product change is managed properly. In the early design cycle, informal changes are accepted. However, changes become formal when its complexity and cost increases, and as product matures. To maximize the market shares, manufacturers have to effectively and efficiently manage engineering changes by means of Configuration Control. The paper gives a broad overview about ‘Engineering Change Management’ (ECM) through configuration management and its implications in product design. The aim is to give an idea and understanding about the engineering changes in product design scenario to the new researchers. This paper elaborates the significant aspect of managing the engineering changes and the importance of ECM in a product life cycle.
NASA Technical Reports Server (NTRS)
Whitlow, J. B., Jr.
1976-01-01
Sideline noise and takeoff field length were varied for two types of Mach 2.32 cruise airplane to determine their effect on engine cycle selection. One of these airplanes was the NASA/Langley-LTV arrow wing while the other was a Boeing modified delta-plus-tail derived from the earlier 2707-300 concept. Advanced variable cycle engines were considered. A more conventional advanced low bypass turbofan engine was used as a baseline for comparison. Appropriate exhaust nozzle modifications were assumed, where needed, to allow all engines to receive either an inherent co-annular or annular jet noise suppression benefit. All the VCE's out-performed the baseline engine by substantial margins in a design range comparison, regardless of airplane choice or takeoff restrictions. The choice among the three VCE's considered, however, depends on the field length, noise level, and airplane selected.
E3 Success Story - Transforming and Promoting Sustainable Manufacturing in Alabama
Alabama E3 is expanding to other manufacturing sectors and expanding its scope. Alabama E3 now includes a workforce training and education component and is also developing a new innovation engineering green module that focuses on improving sustainability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maytal, Ben-Zion; Pfotenhauer, John M.
2014-01-29
Solvay, Stirling and Gifford-McMahon types of cryocoolers employ an isentropic expander which is their elementary mechanism for temperature reduction (following the unified model of cryocoolers as described in a previous paper, Part A). Solvay and Stirling cryocoolers are driven by a larger temperature reduction than that of the Gifford-McMahon cycle, for a similar compression ratio. These cryocoolers are compared from the view of the unified model, in terms of the lowest attainable temperature, compression ratio, the size of the interchanger and the applied heat load.
1978-01-01
AD-A092 043 NAVAL AIR DEVELOPMENT CENTER WARMINSTER PA F/6 2/ I PROCEEDINGS OF 050 AIRCRAFT ENGINE DESIGN & LIFE CYCLE COST SEN--ETC (U NSI FE 1978 R...4 STANDAHAR, R R SHOREY. A PRESSMAN N PROCEEDINGS OFOSD AIRCRAFT ENGINE DESIGN & LIFE CYCLE COST SEMINAR HELD AT ,NAVAL AIR DEVELOPMENT CENTER f...RELIABILITY CAN BE MET. THIS INFORMATION WILL BE USED BY THE ACQUISITION ACTIVITY TO ESTABLISH THE PROPER DESIGN AND TEST REQUIREMENTS TO INSURE THAT THE
The Neurotoxic Potential of Engineered Nanomaterials
The expanding development and production of engineered nanomaterials (ENMs) have diverse and far-reaching potential benefits in consumer products, food, drugs, medical devices and for enhancing environmental cleanup and remediation. The knowledge of potential implications of ENMs...
Alloy design for aircraft engines
NASA Astrophysics Data System (ADS)
Pollock, Tresa M.
2016-08-01
Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.
Study on the variable cycle engine modeling techniques based on the component method
NASA Astrophysics Data System (ADS)
Zhang, Lihua; Xue, Hui; Bao, Yuhai; Li, Jijun; Yan, Lan
2016-01-01
Based on the structure platform of the gas turbine engine, the components of variable cycle engine were simulated by using the component method. The mathematical model of nonlinear equations correspondeing to each component of the gas turbine engine was established. Based on Matlab programming, the nonlinear equations were solved by using Newton-Raphson steady-state algorithm, and the performance of the components for engine was calculated. The numerical simulation results showed that the model bulit can describe the basic performance of the gas turbine engine, which verified the validity of the model.
Towards an Automated Full-Turbofan Engine Numerical Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.
2003-01-01
The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.
Micro-engineered first wall tungsten armor for high average power laser fusion energy systems
NASA Astrophysics Data System (ADS)
Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team
2005-12-01
The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential candidate FW armor materials.
Genetic incorporation of recycled unnatural amino acids.
Ko, Wooseok; Kim, Sanggil; Jo, Kyubong; Lee, Hyun Soo
2016-02-01
The genetic incorporation of unnatural amino acids (UAAs) into proteins has been a useful tool for protein engineering. However, most UAAs are expensive, and the method requires a high concentration of UAAs, which has been a drawback of the technology, especially for large-scale applications. To address this problem, a method to recycle cultured UAAs was developed. The method is based on recycling a culture medium containing the UAA, in which some of essential nutrients were resupplemented after each culture cycle, and induction of protein expression was controlled with glucose. Under optimal conditions, five UAAs were recycled for up to seven rounds of expression without a decrease in expression level, cell density, or incorporation fidelity. This method can generally be applied to other UAAs; therefore, it is useful for reducing the cost of UAAs for genetic incorporation and helpful for expanding the use of the technology to industrial applications.
Preliminary design of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft
NASA Technical Reports Server (NTRS)
Cox, Brian; Borchers, Paul; Gomer, Charlie; Henderson, Dean; Jacobs, Tavis; Lawson, Todd; Peterson, Eric; Ross, Tweed, III; Bellmard, Larry
1990-01-01
The preliminary design study of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter is presented. A brief historical survey of powered lift vehicles was presented, followed by a technology assessment of the latest supersonic STOVL engine cycles under consideration by industry and government in the U.S. and UK. A survey of operational fighter/attack aircraft and the modern battlefield scenario were completed to develop, respectively, the performance requirements and mission profiles for the study. Three configurations were initially investigated with the following engine cycles: a hybrid fan vectored thrust cycle, a lift+lift/cruise cycle, and a mixed flow vectored thrust cycle. The lift+lift/cruise aircraft configuration was selected for detailed design work which consisted of: (1) a material selection and structural layout, including engine removal considerations, (2) an aircraft systems layout, (3) a weapons integration model showing the internal weapons bay mechanism, (4) inlet and nozzle integration, (5) an aircraft suckdown prediction, (6) an aircraft stability and control analysis, including a takeoff, hover, and transition control analysis, (7) a performance and mission capability study, and (8) a life cycle cost analysis. A supersonic fighter aircraft with STOVL capability with the lift+lift/cruise engine cycle seems a viable option for the next generation fighter.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Friedlander, David; Kopasakis, George
2015-01-01
This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Friedlander, David; Kopasakis, George
2014-01-01
This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.
Expanding P450 catalytic reaction space through evolution and engineering
McIntosh, John A.; Farwell, Christopher C.; Arnold, Frances H.
2014-01-01
Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology’s reaction space. PMID:24658056
NASA Technical Reports Server (NTRS)
Ravenhall, R.; Salemme, C. T.
1977-01-01
A total of 38 quiet clean short haul experimental engine under the wing composite fan blades were manufactured for various component tests, process and tooling, checkout, and use in the QCSEE UTW engine. The component tests included frequency characterization, strain distribution, bench fatigue, platform static load, whirligig high cycle fatigue, whirligig low cycle fatigue, whirligig strain distribution, and whirligig over-speed. All tests were successfully completed. All blades planned for use in the engine were subjected to and passed a whirligig proof spin test.
A Language Translator for a Computer Aided Rapid Prototyping System.
1988-03-01
PROBLEM ................... S B. THE TRADITIONAL "WATERFALL LIFE CYCLE" .. ............... 14 C. RAPID PROTOTYPING...feature of everyday life for almost the entire industrialized world. Few governments or businesses function without the aid of computer systems. Com...engineering. B. TIE TRADITIONAL "WATERFALL LIFE CYCLE" I. Characteristics The traditional method of software engineering is the "waterfall life cycle
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy; Alexander, Reginald
1999-01-01
Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.
Number size distribution of particulate emissions of heavy-duty engines in real world test cycles
NASA Astrophysics Data System (ADS)
Lehmann, Urs; Mohr, Martin; Schweizer, Thomas; Rütter, Josef
Five in-service engines in heavy-duty trucks complying with Euro II emission standards were measured on a dynamic engine test bench at EMPA. The particulate matter (PM) emissions of these engines were investigated by number and mass measurements. The mass of the total PM was evaluated using the standard gravimetric measurement method, the total number concentration and the number size distribution were measured by a Condensation Particle Counter (lower particle size cut-off: 7 nm) and an Electrical Low Pressure Impactor (lower particle size: 32 nm), respectively. The transient test cycles used represent either driving behaviour on the road (real-world test cycles) or a type approval procedure. They are characterised by the cycle power, the average cycle power and by a parameter for the cycle dynamics. In addition, the particle number size distribution was determined at two steady-state operating modes of the engine using a Scanning Mobility Particle Sizer. For quality control, each measurement was repeated at least three times under controlled conditions. It was found that the number size distributions as well as the total number concentration of emitted particles could be measured with a good repeatability. Total number concentration was between 9×10 11 and 1×10 13 particles/s (3×10 13-7×10 14 p/kWh) and mass concentration was between 0.09 and 0.48 g/kWh. For all transient cycles, the number mean diameter of the distributions lay typically at about 120 nm for aerodynamic particle diameter and did not vary significantly. In general, the various particle measurement devices used reveal the same trends in particle emissions. We looked at the correlation between specific gravimetric mass emission (PM) and total particle number concentration. The correlation tends to be influenced more by the different engines than by the test cycles.
2011-10-01
Systems engineer- ing knowledge has also been documented through the standards bodies, most notably : • ISO /IEC/IEEE 15288, Systems Engineer- ing...System Life Cycle Processes, 2008 (see [10]). • ANSI/EIA 632, Processes for Engineering a System, (1998) • IEEE 1220, ISO /IEC 26702 Application...tion • United States Defense Acquisition Guidebook, Chapter 4, June 27, 2011 • IEEE/EIA 12207 , Software Life Cycle Processes, 2008 • United
Use of Dimples to Suppress Boundary Layer Separation on a Low Pressure Turbine Blade
2002-12-01
Brayton cycle for an ideal gas turbine engine.............................................. 11 Figure 5. T-S diagram for a non-ideal turbine stage...engine efficiency is well illustrated with a T-S diagram, where T is temperature and S is entropy. The ideal jet engine is represented with the Brayton ...the Brayton cycle represents an ideal engine, no losses are present, and entropy is not produced. Between station 3 and 4, fuel (energy) is added
Failure of engineering artifacts: a life cycle approach.
Del Frate, Luca
2013-09-01
Failure is a central notion both in ethics of engineering and in engineering practice. Engineers devote considerable resources to assure their products will not fail and considerable progress has been made in the development of tools and methods for understanding and avoiding failure. Engineering ethics, on the other hand, is concerned with the moral and social aspects related to the causes and consequences of technological failures. But what is meant by failure, and what does it mean that a failure has occurred? The subject of this paper is how engineers use and define this notion. Although a traditional definition of failure can be identified that is shared by a large part of the engineering community, the literature shows that engineers are willing to consider as failures also events and circumstance that are at odds with this traditional definition. These cases violate one or more of three assumptions made by the traditional approach to failure. An alternative approach, inspired by the notion of product life cycle, is proposed which dispenses with these assumptions. Besides being able to address the traditional cases of failure, it can deal successfully with the problematic cases. The adoption of a life cycle perspective allows the introduction of a clearer notion of failure and allows a classification of failure phenomena that takes into account the roles of stakeholders involved in the various stages of a product life cycle.
Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine
NASA Astrophysics Data System (ADS)
Spodniak, Miroslav; Klimko, Marek; Hocko, Marián; Žitek, Pavel
This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.
An Australian Study of Generic Competencies Required by Engineers
ERIC Educational Resources Information Center
Male, S. A.; Bush, M. B.; Chapman, E. S.
2011-01-01
Engineering curricula have expanded in recent decades. In addition to science and technical engineering, they now include several non-technical competencies. This is a trend reinforced by programme accreditation. The authors take the viewpoint that it is important to ensure that graduates have the competencies they will require for their work. The…
ERIC Educational Resources Information Center
Lundy-Wagner, Valerie C.; Veenstra, Cindy P.; Orr, Marisa K.; Ramirez, Nichole M.; Ohland, Matthew W.; Long, Russell A.
2014-01-01
Expanding access to engineering for underrepresented groups has by and large focused on ethnicity/race and gender, with little understanding of socioeconomic disadvantages. In this study, we use economic, human, and cultural capital theories to frame and then describe access to undergraduate engineering degree programs and bachelor's degrees.…
Howarth, Roy B.
1983-01-01
A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.
NASA Technical Reports Server (NTRS)
Pla, Frederic G. (Inventor); Renshaw, Anthony A. (Inventor); Rajiyah, Harindra (Inventor); Hedeen, Robert A. (Inventor)
1995-01-01
A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conklin, Jim; Szybist, James P
2010-01-01
A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion wasmore » used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy while not resulting in a decrease in power density.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...
Code of Federal Regulations, 2012 CFR
2012-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...
A simple performance calculation method for LH2/LOX engines with different power cycles
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1973-01-01
A simple method for the calculation of the specific impulse of an engine with a gas generator cycle is presented. The solution is obtained by a power balance between turbine and pump. Approximate equations for the performance of the combustion products of LH2/LOX are derived. Performance results are compared with solutions of different engine types.