Science.gov

Sample records for expanding laser plasmas

  1. Waves and Fine Structure in Expanding Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Collette, Andrew; Gekelman, Walter

    2009-11-01

    The behavior of expanding dense plasmas has long been a topic of interest in space plasma research, particularly in the case of expansion within a magnetized background. Previous laser-plasma experiments at the UCLA Large Plasma Device have observed the creation of strong (δBB > 50%) diamagnetic cavities, along with large-scale wave activity and hints of fine-scale structure. A new series of experiments conducted recently at the LaPD performs direct measurement of the fields inside the expanding plasma via a novel 2D probe drive system. This system combines small-scale (0.5mm-1mm) magnetic and electric field probes with high-accuracy vacuum ceramic motors, to allow measurement of the plasma volume over a 2000-point grid at 1mm resolution. The data reveal both coherent high-amplitude waves associated with the formation of these magnetic features, and complicated small-scale structure in both the magnetic field and floating potential. In addition, we will present correlation techniques using multiple independent B and E field probes. This reveals behavior of turbulent, non-phase-locked phenomena. Both the case of a single expanding plasma and two colliding plasmas were studied.

  2. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Boundary instability of an erosion laser plasma expanding into a background gas

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Kanevskiĭ, M. F.; Sebrant, A. Yu

    1993-12-01

    The stability of the contact region in the system consisting of an erosion plasma and a gas has been determined experimentally under conditions such that the length of the applied laser pulse is longer than the rise time of the instability, and the expansion of the erosion plume is accompanied by breakdown of the background gas. The evolution of perturbations of the plasma front following the introduction of initial perturbations with a fixed spatial period has been studied. It is possible to model the injection of plasma bunches into a low-pressure gas by studying the dynamics of the vaporization at moderate laser-light intensities, characteristic of technological applications.

  3. Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma

    SciTech Connect

    Lescoute, E.; Hallo, L.; Chimier, B.; Tikhonchuk, V. T.; Hebert, D.; Chevalier, J.-M.; Etchessahar, B.; Combis, P.

    2008-06-15

    Interaction of a laser beam with a target may generate a high velocity expanding plasma plume, solid debris, and liquid nano- and microparticles. They can be produced from plasma recombination, vapor condensation or by a direct expulsion of the heated liquid phase. Two distinct sizes of particles are observed depending on the temperature achieved in the plasma plume: Micrometer-size fragments for temperatures lower than the critical temperature, and nanometer-size particles for higher temperatures. The paper presents experimental observations of fragments and nanoparticles in plasma plumes created from gold targets. These results are compared with theoretical models of vapor condensation and microparticle formation.

  4. Time evolution of a laser-generated silver plasma expanding in a background gas

    NASA Astrophysics Data System (ADS)

    Neri, F.; Ossi, P. M.; Trusso, S.

    2010-10-01

    The expansion dynamics of a laser-generated silver plasma were investigated by means of a fast imaging technique. Spots of the plasma expanding in the presence of an inert gas (Ar) atmosphere were acquired by means of a gateable intensified charge coupled device. The position of the moving front edge of the plasma at different background gas pressures were obtained from images acquired at different time delays with respect to the arrival of the laser pulse. The time evolution of plasma expansion was studied in the framework of available phenomenological models: drag, shock wave and diffusion models. A two-step mixed-propagation model based on a modification of the drag and the diffusion models provides the initial (free expansion-like) and the late (diffusion-like) expansion stages when proper input parameters are taken into account.

  5. Ion energy spectrum of expanding laser-plasma with limited mass

    SciTech Connect

    Murakami, M.; Kang, Y.-G.; Nishihara, K.; Fujioka, S.; Nishimura, H.

    2005-06-15

    A simple analytical model is presented for hydrodynamic expansion of laser-produced plasma with a limited mass, which expands quasi-isothermally during laser irradiation and quasiadiabatically after turning off the laser. During the isothermal expansion, the masses undergo entire disintegration under a relatively long laser pulse, while the ions are being kept accelerated. This physical picture significantly contrasts with that described by the orthodox self-similar solution for a semi-infinite planar rarefaction wave. The two successive expansions, i.e., isothermal expansion followed by adiabatic expansion, are described, respectively, by different self-similar solutions, which are found to be connected smoothly with each other in time and space. The ion energy spectrum obtained by the model reproduces well experimental results obtained under different geometrical conditions. The maximum ion kinetic energy is also estimated in terms of the laser and target parameters.

  6. Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces

    NASA Astrophysics Data System (ADS)

    Yeates, P.; Kennedy, E. T.

    2010-11-01

    Laser plasma plumes were generated in aluminum rectangular cavities of fixed depth (6 mm) and varying height (2.0, 1.5, and 1.0 mm). Space and time resolved visible emission spectroscopy, gated intensified visible imaging, and Langmuir probe diagnostics were utilized to diagnose the evolution of the confined plasma plumes in comparison to freely expanding plasma plume generated from ablation of a planar target. The constrained plasma behavior displayed a multiphase history. Early stage interactions (t <100 ns) resulted in enhanced continuum and line emission, shockwave formation and plasma plume rebound. Later phase, long duration plasma-surface interactions (t >160 ns) resulted in sustained "decay," i.e., a rapid termination of continuum emission, in concert with decreases in peak electron density (Ne) and plasma temperature (T). This later phase originates from loss mechanisms which bleed the plasma plume of thermal energy and charged particles. These loss mechanisms increase in magnitude as the duration of the plasma-surface interaction increases. The transition from enhancement phase, originating from hydrodynamic containment, and plasma-surface collisions, to decay phase is described and occurs for each cavity at a different point in the space time history.

  7. Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2010-11-15

    Laser plasma plumes were generated in aluminum rectangular cavities of fixed depth (6 mm) and varying height (2.0, 1.5, and 1.0 mm). Space and time resolved visible emission spectroscopy, gated intensified visible imaging, and Langmuir probe diagnostics were utilized to diagnose the evolution of the confined plasma plumes in comparison to freely expanding plasma plume generated from ablation of a planar target. The constrained plasma behavior displayed a multiphase history. Early stage interactions (t<100 ns) resulted in enhanced continuum and line emission, shockwave formation and plasma plume rebound. Later phase, long duration plasma-surface interactions (t>160 ns) resulted in sustained 'decay', i.e., a rapid termination of continuum emission, in concert with decreases in peak electron density (N{sub e}) and plasma temperature (T). This later phase originates from loss mechanisms which bleed the plasma plume of thermal energy and charged particles. These loss mechanisms increase in magnitude as the duration of the plasma-surface interaction increases. The transition from enhancement phase, originating from hydrodynamic containment, and plasma-surface collisions, to decay phase is described and occurs for each cavity at a different point in the space time history.

  8. K-shell spectroscopy of an independently diagnosed uniaxially expanding laser-produced aluminum plasma

    NASA Astrophysics Data System (ADS)

    Chambers, D. M.; Pinto, P. A.; Hawreliak, J.; Al'Miev, I. R.; Gouveia, A.; Sondhauss, P.; Wolfrum, E.; Wark, J. S.; Glenzer, S. H.; Lee, R. W.; Young, P. E.; Renner, O.; Marjoribanks, R. S.; Topping, S.

    2002-08-01

    We present detailed spectroscopic analysis of the primary K-shell emission lines from a uniaxially expanding laser-produced hydrogenic and heliumlike aluminum plasma. The spectroscopic measurements are found to be consistent with time-dependent hydrodynamic properties of the plasma, measured using Thomson scattering and shadowgraphy. The K-shell population kinetics code FLY with the measured hydrodynamic parameters is used to generate spectra that are compared to the experimental spectra. Excellent agreement is found between the measured and calculated spectra for a variety of experimental target widths employed to produce plasmas with different optical depths. The peak emission from the hydrogenic Lyman series is determined to be from a temporal and spatial region where the hydrodynamic parameters are essentially constant. This allows a single steady-state solution of FLY to be used to deduce the electron temperature and density, from the measured line ratios and linewidths, for comparison with the Thomson and shadowgraphy data. These measurements are found to agree well with time-dependent calculations, and provide further validation for the FLY calculations of the ionization and excitation balance for a K-shell aluminum plasma. We also discuss the possible application of this data as a benchmark for hydrodynamic simulations and ionization/excitation balance calculations.

  9. Laser Induced Fluorescence Studies of Electrostatic Double Layers in an Expanding Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Carr, Jerry, Jr.

    We report the first evidence of a laboratory double layer (DL) collapsing in the presence of an instability studied by Chakraborty Thakur et al. 1 with the use of time resolved laser induced fluorescence (LIF) studies. Higher time resolution studies then provided the first statistically validated proof of the correlation between the ion acoustic instability and a DL. Time-frequency analysis in the form of time resolved cross power spectra and continuous wavelet transforms were used to provide insight into beam formation. The implications of this work is that in the creation of strong DLs in expanding plasmas for plasma propulsion or other applications may be self-limited through instability growth. Over the past decade, experimental and theoretical studies have demonstrated the formation of stable, electrostatic, current-free double layers (CFDLs) in plasmas with a strong density gradient; typically a result of a divergent magnetic field. In this work, we present evidence for the formation of multiple double layers within a single divergent magnetic field structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are observed through laser induced fluorescence measurements of the ion velocity distribution function. The formation of the multiple double layer structure is a strong function of the neutral gas pressure in the experiment. The similarity of the accelerated ion populations observed in these laboratory experiments to ion populations observed in reconnection outflow regions in the magnetosphere and in numerical simulations is also described. If ion energization during magnetic reconnection also results solely from acceleration in electric fields, these observations imply a prediction that the ion heating, i.e., the broadening of ion velocity distribution functions, reported in magnetic reconnection experiments is more accurately described by a superposition of differently accelerated ion populations. Therefore, the ion

  10. Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma

    SciTech Connect

    Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.; Hüller, S.; Pesme, D.; Labaune, Ch.; Bandulet, H.

    2014-03-15

    The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incident laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.

  11. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of amplified spontaneous radiation in an expanding laser plasma allowing for refraction

    NASA Astrophysics Data System (ADS)

    Gulov, A. V.; Derzhiev, V. I.; Zhidkov, A. G.; Terskikh, A. O.; Yakovlenko, Sergei I.

    1990-06-01

    Calculations are made of the divergence of amplified spontaneous radiation in a laser plasma allowing for refraction by free electrons. An analysis is made of the divergence of the radiation generated due to a 3p→3s' transition in neon-like ions. Calculations are made of the divergence of the radiation due to the 4→3 transition in the O VIII ion allowing for refraction during expansion of a Formvar plasma.

  12. Detailed Hydrodynamic and X-Ray Spectroscopic Analysis of a Laser-Produced Rapidly-Expanding Aluminum Plasma

    SciTech Connect

    Chambers, D M; Glenzer, S H; Hawreliak, J; Wolfrum, E; Gouveia, A; Lee, R W; Marjoribanks, R S; Renner, O; Sondhauss, P; Topping, S; Young, P E; Pinto, P A; Wark, J S

    2001-04-03

    We present a detailed analysis of K-shell emission from laser-produced rapidly-expanding aluminum plasmas. This work forms part of a series of experiments performed at the Vulcan laser facility of the Rutherford Appleton Laboratory, UK. 1-D planar expansion was obtained by over-illuminating Al-microdot targets supported on CH plastic foils. The small size of the Al-plasma ensured high spatial and frequency resolution of the spectra, obtained with a single crystal spectrometer, two vertical dispersion variant double crystal spectrometers, and a vertical dispersion variant Johann Spectrometer. The hydrodynamic properties of the plasma were measured independently by spatially and temporally resolved Thomson scattering, utilizing a 4{omega} probe beam. This enabled sub- and super- critical densities to be probed relative to the 1{omega} heater beams. The deduced plasma hydrodynamic conditions are compared with those generated from the 1-D hydro-code Medusa, and the significant differences found in the electron temperature discussed. Synthetic spectra generated from the detailed term collisional radiative non-LTE atomic physics code Fly are compared with the experimental spectra for the measured hydrodynamic parameters, and for those taken from Medusa. Excellent agreement is only found for both the H- and He-like Al series when careful account is taken of the temporal evolution of the electron temperature.

  13. Simulating Time-Dependent Energy Transfer Between Crossed Laser Beams in an Expanding Plasma

    SciTech Connect

    Hittinger, J F; Dorr, M R; Berger, R L; Williams, E A

    2004-10-11

    A coupled mode system is derived to investigate a three-wave parametric instability leading to energy transfer between co-propagating laser beams crossing in a plasma flow. The model includes beams of finite width refracting in a prescribed transverse plasma flow with spatial and temporal gradients in velocity and density. The resulting paraxial light equations are discretized spatially with a Crank-Nicholson-type scheme, and these algebraic constraints are nonlinearly coupled with ordinary differential equations in time that describe the ion acoustic response. The entire nonlinear differential-algebraic system is solved using an adaptive, backward-differencing method coupled with Newton's method. A numerical study is conducted in two dimensions that compares the intensity gain of the fully time-dependent coupled mode system with the gain computed under the further assumption of a strongly-damped ion acoustic response. The results demonstrate a time-dependent gain suppression when the beam diameter is commensurate with the velocity gradient scale length. The gain suppression is shown to depend on time-dependent beam refraction and is interpreted as a time-dependent frequency shift.

  14. Effect of tapered magnetic field on expanding laser-produced plasma for heavy-ion inertial fusion

    DOE PAGES

    Kanesue, Takeshi; Ikeda, Shunsuke

    2016-12-20

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less

  15. Effect of tapered magnetic field on expanding laser-produced plasma for heavy-ion inertial fusion

    SciTech Connect

    Kanesue, Takeshi; Ikeda, Shunsuke

    2016-12-20

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentally obtained results, the performance of a scaled laser ion source for HIF was estimated.

  16. EFFECTS OF LASER RADIATION ON MATTER: Calculation of the gain of a C VI laser plasma expanding as a cylinder and a cylindrical layer

    NASA Astrophysics Data System (ADS)

    Gulov, A. V.; Derzhiev, V. I.; Zhidkov, A. G.; Pritula, A. G.; Chekmezov, A. N.; Yakovlenko, Sergei I.

    1990-08-01

    Calculations are reported of the gain due to the 3-2 transition in the C VI ion in an expanding plasma cylinder or a cylindrical layer. Under the conditions in the experiments at the Rutherford Appleton Laboratory (Chilton, England) amplification was observed as a result of evaporation of a fairly thin (~ 0.1 μm) cylindrical layer. A peak of the gain was reached in a relatively short time (~ 0.1 ns).

  17. Rayleigh scattering of a Gaussian laser beam from expanding clusters

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2009-12-15

    Rayleigh scattering of an intense laser with Gaussian temporal and radial profiles from clustered gases is examined. The laser quickly converts the clusters into plasma balls with electron cloud of each ball executing large excursions about the ion sphere. The laser also heats the electrons. As the clusters expand under hydrodynamic pressure, plasma frequency of the cluster electrons omega{sub pe} decreases. The temporal rate of decrease in omega{sub pe} is maximum on laser axis and falls off with r. As the electron density of a cluster approaches plasma resonance, omega{sub pe}=omegasq root(3) (where omega is the frequency of the laser) the oscillatory electron cloud of the cluster produces resonantly enhanced Rayleigh scattering. This resonant enhancement first occurs in clusters on laser axis and afterward in farther clusters. The diffraction divergence of the laser limits the length of the cluster plasma, hence the Rayleigh scattering.

  18. Measurements of an expanding surface flashover plasma

    SciTech Connect

    Harris, J. R.

    2014-05-21

    A better understanding of vacuum surface flashover and the plasma produced by it is of importance for electron and ion sources, as well as advanced accelerators and other vacuum electronic devices. This article describes time-of-flight and biased-probe measurements made on the expanding plasma generated from a vacuum surface flashover discharge. The plasma expanded at velocities of 1.2–6.5 cm/μs, and had typical densities of 10{sup 10}–10{sup 12} cm{sup −3}. The expansion velocity of the plasma leading edge often exhibited a sharp increase at distances of about 50 mm from the discharge site. Comparison with biased-probe data suggests that, under most conditions, the plasma leading edge was dominated by negative ions, with the apparent increase in velocity being due to fast H{sup −} overtaking slower, heavier ions. In some cases, biased-probe data also showed abrupt discontinuities in the plasma energy distribution co-located with large changes in the intercepted plasma current, suggesting the presence of a shock in the leading edge of the expanding plasma.

  19. Mestastable State Population in Laser Induced Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, V. H. S.; Kyriakides, C.; Ward, W. K.

    2006-01-01

    Laser induced plasma has been used as a source of neutrals and ions in the study of astrophysical plasmas. The purity of state of this source is essential in the determination of collision parameters such as the charge transfer rate coefficients between ions and neutrals. We will show that the temperature of the laser induced plasma is a rapidly decreasing function of time. The temperature is initially high but cools off rapidly through collisions with the expanding plasma electrons as the plasma recombines and streams into the vacuum. This rapid expansion of the plasma, similar to a supersonic jet, drastically lowers the internal energy of the neutrals and ions.

  20. Electron Cooling in a Magnetically Expanding Plasma.

    PubMed

    Little, J M; Choueiri, E Y

    2016-11-25

    Electron cooling in a magnetically expanding plasma, which is a fundamental process for plasma flow and detachment in magnetic nozzles, is experimentally investigated using a radio frequency plasma source and magnetic nozzle (MN). Probe measurements of the plasma density, potential, and electron temperature along the center line of the MN indicate that the expansion follows a polytropic law with exponent γ_{e}=1.15±0.03. This value contradicts isothermal electron expansion, γ_{e}=1, which is commonly assumed in MN models. The axial variation of the measured quantities can be described by a simple quasi-1D fluid model with classical electron thermal conduction, for which it has been previously shown that a value of γ_{e}≈1.19 is expected in the weakly collisional limit. A new criterion, derived from the model, ensures efficient ion acceleration when a critical value for the ratio of convected to conducted power is exceeded.

  1. Measurement of Debye length in laser-produced plasma.

    NASA Technical Reports Server (NTRS)

    Ehler, W.

    1973-01-01

    The Debye length of an expanded plasma created by placing an evacuated chamber with an entrance slit in the path of a freely expanding laser produced plasma was measured, using the slab geometry. An independent measurement of electron density together with the observed value for the Debye length also provided a means for evaluating the plasma electron temperature. This temperature has applications in ascertaining plasma conductivity and magnetic field necessary for confinement of the laser produced plasma. Also, the temperature obtained would be useful in analyzing electron-ion recombination rates in the expanded plasma and the dynamics of the cooling process of the plasma expansion.

  2. Short wavelength striations on expanding plasma clouds

    SciTech Connect

    Winske, D.; Gary, S.P.

    1989-01-01

    The growth and evolution of short wavelength (plasma expanding across an ambient magnetic field have been actively studied in recent years, both by means of experiments in the laboratory as well as in space and through numerical simulations. We review the relevant observations and simulations results, discuss the instability mechanism and related linear theory, and describe recent work to bring experiments and theory into better agreement. 30 refs., 6 figs.

  3. Expanded mode lasers for telecommunications applications

    NASA Astrophysics Data System (ADS)

    Lealman, Ian F.

    This thesis describes the development of a long wavelength (1.55 μm) expanded mode semiconductor laser. The increased spot size of the laser improves both the coupling efficiency to cleaved fibre and fibre alignment tolerances and reduces packaging cost. In this type of device the strength of the waveguide is gradually reduced towards the front facet allowing the mode to adiabatically expand so that the laser mode is better matched in size to that of a cleaved fibre. This can be achieved by either reducing the refractive index of the guide or reducing the amount of material in the core. The structure chosen was a buried heterostructure laser that utilised a twin guide consisting of an upper higher refractive index guide (the active region of the laser) above a weak passive guide. The width of the active region was reduced along part of the device allowing the mode to expand into the weak underlying guide. The guide structure was optimised using a variable grid finite difference mode solver, and the taper length calculated by an approximation to Love's method. Detailed results are presented for the measured light-current characteristic, farfield and coupling loss to cleaved fibre. These coupling losses were compared to the calculated data thus allowing the waveguide design to be optimised. Several iterations in the design of the device were undertaken, with the aim of reducing the coupling loss to cleaved single mode fibre without significantly compromising the laser performance. The final device design had extremely low coupling losses as low as 1.2 dB to cleaved fibre. Finally, the positive impact this device had on passive alignment using a silicon motherboard is examined, and the application this technology to a range of other optoelectronic components is discussed.

  4. Measuring the Plasma Density of a Ferroelectric Plasma Source in an Expanding Plasma

    SciTech Connect

    A. Dunaevsky; N.J. Fisch

    2003-10-02

    The initial density and electron temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements in an expanding plasma. The method exploits negative charging of the floating probe capacitance by fast flows before the expanding plasma reaches the probe. The temporal profiles of the plasma density can be obtained from the voltage traces of the discharge of the charged probe capacitance by the ion current from the expanding plasma. The temporal profiles of the plasma density, at two different distances from the surface of the ferroelectric plasma source, could be further fitted by using the density profiles for the expanding plasma. This gives the initial values of the plasma density and electron temperature at the surface. The method could be useful for any pulsed discharge, which is accompanied by considerable electromagnetic noise, if the initial plasma parameters might be deduced from measurements in expanding plasma.

  5. Short wavelength striations on expanding plasma clouds

    NASA Technical Reports Server (NTRS)

    Winske, D.; Gary, S. P.

    1990-01-01

    The present evaluation of current understanding of the growth and evolution of less-than-1 ion gyroradius 'flute modes' on a plasma as it expands across and ambient magnetic field notes that the mechanism by which the instability is generated, and its approximate linear theory (encompassing nonlocal, finite-beta, and collisional effects), have reached a satisfactory degree of development. AMPTE Ba releases have been the bases of most of the observational studies. Substantial progress is also noted in the development of a nonlinear mode-coupling theory which can resolve remaining differences between theory and observation.

  6. Laser Plasma Material Interactions

    SciTech Connect

    Schaaf, Peter; Carpene, Ettore

    2004-12-01

    Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

  7. Two-dimensional flow characteristic of a hot expanding plasma

    NASA Astrophysics Data System (ADS)

    Gabriel, O.; Colsters, P. G. J.; Schram, D. C.; Engeln, R.

    2008-02-01

    A hot argon plasma expansion into a low-pressure background is investigated by means of laser induced fluorescence on argon metastables. The result is a complete two-dimensional flow field of the expanding system that covers the area reaching from the nozzle of the plasma source to the shock front of the expansion. This flow field includes information on atom velocities, densities and temperatures. It consists of two different components: a fast, cool supersonically expanding one and a slow, hot component resulting from invasion of the background gas. This invading component is first present at the outside of the barrel shock and gradually invades the expansion towards the center axis. The supersonic component, dominating the first part of the expansion, shows all characteristics of rarefied hot gas flows: acceleration to twice the sonic velocity of the source, adiabatic cooling and a parallel temperature remaining higher than the perpendicular one. However, the invading component is much slower, but also hotter due to collisions in the expanding flow, and is already present before the shock front. The total flow of argon atoms is also described by computer simulations. The result shows the same behavior as the measured flow. The importance of the invading component for radical production is also demonstrated by LIF measurements on atomic oxygen that is produced from background O2 inside the expanding system.

  8. Interpenetration and stagnation in colliding laser plasmas

    SciTech Connect

    Al-Shboul, K. F.; Harilal, S. S. Hassan, S. M.; Hassanein, A.; Costello, J. T.; Yabuuchi, T.; Tanaka, K. A.; Hirooka, Y.

    2014-01-15

    We have investigated plasma stagnation and interaction effects in colliding laser-produced plasmas. For generating colliding plasmas, two split laser beams were line-focused onto a hemi-circular target and the seed plasmas so produced were allowed to expand in mutually orthogonal directions. This experimental setup forced the expanding seed plasmas to come to a focus at the center of the chamber. The interpenetration and stagnation of plasmas of candidate fusion wall materials, viz., carbon and tungsten, and other materials, viz., aluminum, and molybdenum were investigated in this study. Fast-gated imaging, Faraday cup ion analysis, and optical emission spectroscopy were used for diagnosing seed and colliding plasma plumes. Our results show that high-Z target (W, Mo) plasma ions interpenetrate each other, while low-Z (C, Al) plasmas stagnate at the collision plane. For carbon seed plasmas, an intense stagnation was observed resulting in longer plasma lifetime; in addition, the stagnation layer was found to be rich with C{sub 2} dimers.

  9. Development of flute modes on expanding plasma clouds

    SciTech Connect

    Winske, D.

    1989-09-01

    Structuring that results from plasma streaming at sub-Alfvenic speeds across an external magnetic field is considered. Previously, it has been proposed the lower hybrid drift instability enhanced by the deceleration of the plasma by the field produces the flute modes observed on the surface of expanding laser produced plasmas and the AMPTE magnetotail releases (Eos (Trans) /bold 63/, 843 (1982)). An appropriate dispersion equation to describe the properties of the unstable waves has been derived and particle simulations carried out to show the growth and evolution of the instability. The salient features of this earlier work are reviewed here, and then additions and refinements to the theory and simulations are described. In particular, the scaling of the wave properties with the ratio of the ion gyroradius to the magnetic confinement radius is discussed and the nonlinear evolution of the instability is investigated more thoroughly. The consequences of these results, both for the laser experiments and for AMPTE, are also considered. To this end, a comparison of the linear and nonlinear properties of the waves observed in the simulations with those seen in the experiments is carried out. While there is considerable discrepancy between the observed and predicted wavelengths of the modes, the effects considered here are in the direction of reducing the disagreement.

  10. Studies of intense-laser plasma instabilities

    NASA Astrophysics Data System (ADS)

    Láska, L.; Krása, J.; Badziak, J.; Jungwirth, K.; Krouský, E.; Margarone, D.; Parys, P.; Pfeifer, M.; Rohlena, K.; Rosiński, M.; Ryć, L.; Skála, J.; Torrisi, L.; Ullschmied, J.; Velyhan, A.; Wołowski, J.

    2013-05-01

    The PALS high power iodine laser system in Prague (λ = 1.315 μm) was used to study non-linear processes in a laser-produced plasma at intense laser beam interactions with planar targets. The focus setting allows to alter the non-linear interaction of the main laser pulse with the ablated plasma produced by the front edge of a nanosecond laser pulse (300 ps FWHM). The arisen non-linear effects significantly influence the behavior of electrons, which accelerate fully striped or highly charged fast ions. Variations in time of the expanding plasma, recorded at the target surface by the use of Kentech low-magnification soft X-ray streak camera on ˜2 ns time scale, are presented and discussed. Narrowing, arching and even splitting of expansion paths in the target-normal space-time diagram are shown. These phenomena are ascribed to the magnetic field, self-generated at high laser intensities, which may become strong enough to cause pinching of the expanding plasma.

  11. Plasma ignition for laser propulsion

    NASA Technical Reports Server (NTRS)

    Askew, R. F.

    1982-01-01

    For a specific optical system a pulsed carbon dioxide laser having an energy output of up to 15 joules was used to initiate a plasma in air at one atmosphere pressure. The spatial and temporal development of the plasma were measured using a multiframe image converter camera. In addition the time dependent velocity of the laser supported plasma front which moves opposite to the direction of the laser pulse was measured in order to characterize the type of wavefront developed. Reliable and reproducible spark initiation was achieved. The lifetime of the highly dense plasma at the initial focal spot was determined to be less than 100 nanoseconds. The plasma front propagates toward the laser at a variable speed ranging from zero to 1.6 x 1,000,000 m/sec. The plasma front propagates for a total distance of approximately five centimeters for the energy and laser pulse shape employed.

  12. Isotopic enhancement in laser-produced plasmas

    SciTech Connect

    Gupta, P.D.; Bhatnagar, R.; Bhawalkar, D.D.

    1980-06-01

    This paper reports the investigations carried out on isotopic enrichment in boron oxide plasma produced by a Nd : glass laser giving 20 MW in 30 nsec (FWHM). Energy distributions of various ions in the plasma expanding in vacuum were obtained with an electrostatic ion analyzer. Energies corresponding to peaks of distribution for /sub 10/B/sup +/ and /sub 11/B/sup +/ were found to be different by the ratio of their masses, consistent with hydrodynamic expansion of plasma. An anomalously high ratio of /sub 10/B/sup +/ to /sub 11/B/sup +/ ions as compared to their natural abundance was observed.

  13. Hydrogen atom in a laser-plasma

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde J.; Sun, Guo-Hua; Liman, Muhammed S.; Oyewumi, K. J.; Dong, Shi-Hai

    2016-11-01

    We scrutinize the behaviour of the eigenvalues of a hydrogen atom in a quantum plasma as it interacts with an electric field directed along θ  =  π and is exposed to linearly polarized intense laser field radiation. We refer to the interaction of the plasma with the laser light as laser-plasma. Using the Kramers-Henneberger (KH) unitary transformation, which is the semiclassical counterpart of the Block-Nordsieck transformation in the quantized field formalism, the squared vector potential that appears in the equation of motion is eliminated and the resultant equation is expressed in the KH frame. Within this frame, the resulting potential and the corresponding wavefunction have been expanded in Fourier series, and using Ehlotzky’s approximation we obtain a laser-dressed potential to simulate an intense laser field. By fitting the exponential-cosine-screened Coulomb potential into the laser-dressed potential, and then expanding it in Taylor series up to O≤ft({{r}4},α 09\\right) , we obtain the eigensolution (eigenvalues and wavefunction) of the hydrogen atom in laser-plasma encircled by an electric field, within the framework of perturbation theory formalism. Our numerical results show that for a weak external electric field and a very large Debye screening parameter length, the system is strongly repulsive, in contrast with the case for a strong external electric field and a small Debye screening parameter length, when the system is very attractive. This work has potential applications in the areas of atomic and molecular processes in external fields, including interactions with strong fields and short pulses.

  14. Effects of laser polarization in the expansion of plasma waveguides

    NASA Astrophysics Data System (ADS)

    Lemos, N.; Grismayer, T.; Cardoso, L.; Geada, J.; Figueira, G.; Dias, J. M.

    2013-10-01

    We experimentally demonstrate that a column of hydrogen plasma generated by an ultra-short (sub-picosecond), moderate intensity (˜1015-16 W.cm-2) laser, radially expands at a higher velocity when using a circularly polarized laser beam instead of a linearly polarized beam. Interferometry shows that after 1 ns there is a clear shock structure formed, that can be approximated to a cylindrical blast wave. The shock velocity was measured for plasmas created with linearly and circularly polarized laser beams, indicating an approximately 20% higher velocity for plasmas generated with a circularly polarized laser beam, thus implying a higher plasma electron temperature. The heating mechanism was determined to be the Above Threshold Ionization effect. The calculated electrum energy spectrum for a circularly polarized laser beam was broader when compared to the one generated by a linearly polarized laser beam, leading to a higher plasma temperature.

  15. Blast Wave Formation by Laser-Sustained Nonequilibrium Plasma in the Laser-Driven In-Tube Accelerator Operation

    SciTech Connect

    Ogino, Yousuke; Ohnishi, Naofumi; Sawada, Keisuke; Sasoh, Akihiro

    2006-05-02

    Understanding the dynamics of laser-produced plasma is essentially important for increasing available thrust force in a gas-driven laser propulsion system such as laser-driven in-tube accelerator. A computer code is developed to explore the formation of expanding nonequilibrium plasma produced by laser irradiation. Various properties of the blast wave driven by the nonequilibrium plasma are examined. It is found that the blast wave propagation is substantially affected by radiative cooling effect for lower density case.

  16. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Implantation of high-energy ions produced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Volkov, Roman V.; Golishnikov, D. M.; Gordienko, Vyacheslav M.; Savel'ev, Andrei B.; Chernysh, V. S.

    2005-01-01

    Germanium ions of an expanding plasma were implanted in a silicon collector. The plasma was produced by a femtosecond laser pulse with an intensity of ~1015 W cm-2 at the surface of the solid-state target. A technique was proposed for determining the energy characteristics of the ion component of the laser plasma from the density profile of the ions implanted in the substrate.

  17. Tunable Infrared Lasers: Preparing for Expanded use in Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Killinger, D. K.

    1994-01-01

    The literature on the use of tunable infrared lasers, for atmospheric trace gas detection and monitoring is about 25 years of age. However, this field, whith its myriad of potential application areas, has always been driven by the available laser technology. As new or improved laser devices become available, with characteristics which lend themselves to operation in compact, nearly autonomous instruments, their application to atmospheric science and environmental measurements expands.

  18. Laser plasma diagnostics of dense plasmas

    SciTech Connect

    Glendinning, S.G.; Amendt, P.; Budil, K.S.; Hammel, B.A.; Kalantar, D.H.; Key, M.H.; Landen, O.L.; Remington, B.A.; Desenne, D.E.

    1995-07-12

    The authors describe several experiments on Nova that use laser-produced plasmas to generate x-rays capable of backlighting dense, cold plasmas (p {approximately} 1--3 gm/cm{sup 3}, kT {approximately} 5--10 eV, and areal density {rho}{ell}{approximately} 0.01--0.05 g/cm{sup 2}). The x-rays used vary over a wide range of h{nu}, from 80 eV (X-ray laser) to 9 keV. This allows probing of plasmas relevant to many hydrodynamic experiments. Typical diagnostics are 100 ps pinhole framing cameras for a long pulse backlighter and a time-integrated CCD camera for a short pulse backlighter.

  19. Laser Assisted Plasma Arc Welding

    SciTech Connect

    FUERSCHBACH,PHILLIP W.

    1999-10-05

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  20. Thomson scattering from laser plasmas

    SciTech Connect

    Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A

    1999-01-12

    Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.

  1. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  2. Laser-plasma-based linear collider using hollow plasma channels

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2016-03-03

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  3. Resonant laser plasma channel undulator

    NASA Astrophysics Data System (ADS)

    Lei, Bifeng; Wang, Jingwei; Kharin, Vasily; Rykovanov, Sergey

    2016-10-01

    Laser-plasma based undulators/wigglers attract a lot of attention because of their potential for the next generation of compact ( cm scales) radiation sources. The undulator wavelength of plasma-based devices can theoretically reach 1 mm or less while keeping the undulator strength on the order of unity - values so far unachievable by conventional magnetic undulators. Recently, a novel type of the plasma channel undulator/wiggler (PIGGLER) based on the wakefields generated in a parabolic plasma channel by a laser pulse undergoing centroid oscillations was proposed. It was demonstrated analytically and with the help of numerical simulations that narrow-bandwidth, flexible polarization and bright UV-soft X-ray source can be obtained for the case when the laser pulse centroid oscillation frequency, proportional to the Rayleigh length of the laser pulse, is tuned to be much larger than the betatron frequency. In the current contribution, the case of the resonance, when the laser pulse centroid oscillation frequency is equal to the betatron frequency is discussed. It is shown that significant photon yield enhancement can be. Both linear and nonlinear regimes are studied. Helmholtz Institute Jena, Germany.

  4. Laser-Plasma Interactions in Exploding Wires

    DTIC Science & Technology

    1975-07-01

    the optical properties of the laser interaction with this plasma; (3) the scaling of laser heating with laser pulse shape, pulse width (10 to 80 nano...EXPLODING WIRES INITIATION AND LASER HEATING OF EXPLODING WIRE PLASMAS REFERENCES DISTRIBUTION Page 3 5 12 24 41 42 1/2 r mmmmmm «beüsaBamtaän...INTRODUCTION Heating a preformed plasma with a laser has been of interest because ef basic physics and a wide variety of applications. Some previous

  5. Laser-produced annular plasmas

    SciTech Connect

    Veloso, F.; Chuaqui, H.; Aliaga-Rossel, R.; Favre, M.; Mitchell, I. H.; Wyndham, E.

    2006-06-15

    A new technique is presented for the formation of annular plasmas on a metal surface with a high-power laser using a combination of axicon and converging lenses. The annular plasma formed on a titanium target in a chamber of hydrogen gas was investigated using schlieren imaging and Mach Zehnder interferometry. Expansion of the plasma was shown to be anisotropic with velocities of {approx}10{sup 3}-10{sup 4} m/s. Electron densities of 10{sup 18} cm{sup -3} were measured with radial profiles that confirm the presence of a hollow structure. The interferometric observations also show the presence of an inward shock wave traveling to the center of the annular plasma, which compresses the background neutrals, reaching a density around 18 times initial gas density, at 95 ns after the initial annular plasma is produced.

  6. Laser Plasma Microthruster Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Luke, James R.; Phipps, Claude R.

    2003-05-01

    The micro laser plasma thruster (μLPT) is a sub-kilogram thruster that is capable of meeting the Air Force requirements for the Attitude Control System on a 100-kg class small satellite. The μLPT uses one or more 4W diode lasers to ablate a solid fuel, producing a jet of hot gas or plasma which creates thrust with a high thrust/power ratio. A pre-prototype continuous thrust experiment has been constructed and tested. The continuous thrust experiment uses a 505 mm long continuous loop fuel tape, which consists of a black laser-absorbing fuel material on a transparent plastic substrate. When the laser is operated continuously, the exhaust plume and thrust vector are steered in the direction of the tape motion. Thrust steering can be avoided by pulsing the laser. A torsion pendulum thrust stand has been constructed and calibrated. Many fuel materials and substrates have been tested. Best performance from a non-energetic fuel material was obtained with black polyvinyl chloride (PVC), which produced an average of 70 μN thrust and coupling coefficient (Cm) of 190 μN/W. A proprietary energetic material was also tested, in which the laser initiates a non-propagating detonation. This material produced 500 μN of thrust.

  7. Excimer laser induced plasma for aluminum alloys surface carburizing

    NASA Astrophysics Data System (ADS)

    Fariaut, F.; Boulmer-Leborgne, C.; Le Menn, E.; Sauvage, T.; Andreazza-Vignolle, C.; Andreazza, P.; Langlade, C.

    2002-01-01

    Currently, while light alloys are useful for automotive industries, their weak wear behavior is a limiting factor. The excimer laser carburizing process reported here has been developed to enhance the mechanical and chemical properties of aluminum alloys. An excimer laser beam is focused onto the alloy surface in a cell containing 1 bar methane or/and propylene gas. A vapor plasma expands from the surface, the induced shock wave dissociates and ionizes the ambient gas. Carbon atoms diffuse into the plasma in contact with the irradiated surface. An aluminum carbide layer is created by carbon diffusion in the surface liquid layer during the recombination phase of the plasma.

  8. Collisional coupling in counterstreaming laser-produced plasmas

    NASA Technical Reports Server (NTRS)

    Koopman, D. W.; Goforth, R. R.

    1974-01-01

    The collisional processes which transfer momentum between counterstreaming plasmas are reviewed and applied to the example of a laser-produced plasma expanding into a partially ionized background. Experimental measurements of the dependence of the ion flow field on collisional momentum transfer demonstrate the validity of the simplified treatment of collision processes which have been adopted. A numerical model which simulates the laser-plasma interaction with the background confirms the importance of collisions in previous experimental studies of momentum coupling, and provides some insight into the distinction between collisional and collisionless flow regimes.

  9. Absorption of resonance laser radiation in ultracold plasma

    NASA Astrophysics Data System (ADS)

    Shaparev, N. Ya

    2017-08-01

    The absorption of resonance laser radiation in an expanding ultracold plasma is considered. Initially the optical thickness τ0 of the medium decreases due to correlation heating of the ions; the subsequent lowering of τ0 is due to the variation of radial ion velocities. The expanding optically thick medium is shown to become transparent when the ratio between the particle expansion velocity at the sphere boundary and the thermal velocity exceeds the optical thickness τ0.

  10. Magnetic plasma confinement for laser ion source.

    PubMed

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.

  11. Collimation of laser-produced plasmas using axial magnetic field

    SciTech Connect

    Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.; Endo, Akira; Mocek, Tomas; Hassanein, A.

    2015-06-01

    We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presence of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.

  12. Quasi-steady laser oscillation in the recombining hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Hara, T.; Kodera, K.; Hamagaki, M.; Dote, T.; Matsunaga, K.; Inutake, M.

    1980-10-01

    A quasi-steady laser oscillation at 1.88 microns has been observed in a pure hydrogen plasma. The high density plasma produced by a high power quasi-steady MPD arc-jet operating at 8.1 kA of the discharge current and 0.1 g/s of hydrogen flow is cooled by expanding itself into the vacuum chamber. Experimental results confirm that some population inversions occur as a consequence of recombination and subsequent electron thermalization.

  13. Dielectric properties in microwave remote plasma sustained in argon: Expanding plasma conditions

    SciTech Connect

    Jauberteau, J. L.; Jauberteau, I.

    2012-11-15

    This work is devoted to the study of the relative permittivity in argon expanding plasma produced below a microwave discharge sustained in a quartz tube and working at 2.45 GHz. We discuss results and explain the microwave propagation within the reactor, outside the quartz tube. It is shown that at low pressures (133 Pa) and at powers ranging from 100 W to 400 W, the wave frequency remains lower than the plasma frequency anywhere in the expanding plasma. Under these conditions, the real part of the relative permittivity is negative and the wave is reflected. Surprisingly, in these conditions, the plasma is produced inside and outside the quartz tube, below the wave launcher. This effect can be explained considering a surface wave propagating at the surface of the quartz tube then into the reactor, on the external surface of the expanding plasma below the quartz tube.

  14. EFFECT OF LASER LIGHT ON LASER PLASMAS: Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskiĭ, Yu M.; Moiseev, V. N.; Rovinskiĭ, R. E.; Tsenina, I. S.

    1993-01-01

    The dynamic and optical characteristics of the laser plasma produced during the application of a CO2 laser pulse to a target have been studied as a function of the ambient air pressure. The changes in the surface roughness of the sample after bombardment were studied as a function of the air pressure. It is concluded from the results that a transition from an air plasma to an erosion plasma occurs at a residual air pressure on the order of 1 torr. The experiment data support the existing picture of the process by which a plasma is produced near the surface of a target in air by laser pulses.

  15. Effect of plasma expander viscosity on the cell free layer.

    PubMed

    Hightower, C Makena; Yalcin, Ozlem; Vázquez, Beatriz Y Salazar; Johnson, Paul C; Intaglietta, Marcos

    2011-01-01

    The effect of low and high viscosity hemodilution with plasma expanders on the extent of the cell free layer (CFL) width was analyzed in the microcirculation of the exteriorized cremaster muscle preparation of Sprague-Dawley male rats. Anesthetized animals were subjected to 40% hemodilution by blood volume, using 5% human serum albumin (HSA) or 6% Hetastarch (hydroxyethyl starch 670 kDa). Arterioles (n=5 for each treatment) were investigated. Mean arterial pressure, heart rate, vessel flow velocity and CFL width were measured at baseline and 5, 20 and 40 min post-exchange transfusion. Blood and plasma viscosity was determined from terminal blood collections. CFL width and pseudoshear rate, diameter and flow, normalized to baseline, were significantly elevated at all post-exchange assessments. Peripheral vascular resistance decreased. The increase of the CFL width was greater with HSA by comparison with Hetastarch hemodilution (p<0.05). Hetastarch blood and plasma viscosities increased significantly compared to those of HSA (p<0.05). This study shows that CFL widths are influenced by plasma expander viscosity, a phenomenon proportional to the increase in molecular weight of the colloids in solution.

  16. Generation and Diagnostics of Microwave Discharge Expanding Nitrogen Plasma

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Yoshida, Kazuyuki; Nezu, Atsushi; Matsuura, Haruaki; Akatsuka, Hiroshi

    2008-10-01

    We examine a microwave discharge expanding nitrogen plasma on its vibrational and rotational temperatures (Tv, Tr) by using optical emission spectroscopy (OES), and on its electron density and temperature by using a double probe. In the present study, we generated microwave discharge plasma in a cylindrical quartz tube (26 mm i.d.) and the plasma flowed and expanded rapidly into a rarefied gas wind tunnel with its pressure 2.6x10-3 torr. The microwave output power was set at 300 W. The gas flow rate was set at 300 ml/min. In OES measurement, we measured the band spectra of 1stPS and 2ndPS. We compare the experimentally measured spectrum with the calculate one to determine Tv and Tr of the generated plasma. Electron temperature did not reduce monotonically, which is due to complicated energy relaxation process contributed by metastables or vibrational levels. Intensity of 2ndPS decreased more rapidly than that of 1stPS, which is considered to be mainly due to the lowering of Te. We found different way of variation in Tv of 1stPS and that of 2ndPS.

  17. Analysis of processes participating during intense iodine-laser-beam interactions with laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Láska, L.; Badziak, J.; Jungwirth, K.; Kálal, M.; Krása, J.; Krouský, E.; Kubeš, P.; Margarone, D.; Parys, P.; Pfeifer, M.; Rohlena, K.; Rosiński, M.; Ryć, L.; Skála, J.; Torrisi, L.; Ullschmied, J.; Velyhan, A.; Wolowski, J.

    2010-10-01

    The high-power iodine laser PALS was used to generate highly charged Ta ions and to study non-linear processes in laser-produced plasma. Longitudinal structures of the expanding plasma, obtained by using an X-ray streak camera on a time scale ∼ 2 ns, are presented. Various bright spots (moon-like, half-moon-like), expansion-path curvature and even their splitting were recorded. These phenomena are ascribed to the effect of the magnetic field that is self-generated at high laser intensities.

  18. Expanding plasma structure and its evolution toward long wavelengths

    SciTech Connect

    Sgro, A. G.; Peter Gary, S.; Lemons, D. S.

    1989-09-01

    The expansion of a plasma slab across an initially uniform magnetic field is simulated by the use of a two-dimensional electromagnetic hybrid (particle ions, fluid electrons of nonzero mass) computer code. The expanding plasma develops magnetic-field-aligned structure on time scales faster than an ion gyroperiod. Through the full duration of the /ital m//sub /ital i////ital m//sub /ital e// =100 simulation, the structure wavelength is well predicted by the wavelength at maximum growth rate from the linear Vlasov theory of the lower hybrid drift instability modified by deceleration. At /ital m//sub /ital i////ital m//sub /ital e// =400, the late time structure wavelength is about 1.5 times the early time value. At /ital m//sub /ital i////ital m//sub /ital e// =1836, the structure wavelength at early times is close to that corresponding to the maximum growth rate of linear theory, while at later times the structure wavelength becomes about twice as long as its early time value. These three results suggest that the ratio of the late time wavelength to the early time value gradually increases with /ital m//sub /ital i////ital m//sub /ital e//. Extrapolation of this scaling to larger /ital m//sub /ital i////ital m//sub /ital e// values is consistent with structure wavelengths observed in an expanding aluminum plasma experiment (J. Appl. Phys. J. /bold 20/, 157 (1981)), as well as the observed wavelength in the expanding barium plasma of the AMPTE magnetotail experiment (J. Geophys. Res. /bold 92/, 5777 (1987)).

  19. Modeling of Plasma Irregularities in Expanding Ionospheric Dust Clouds

    NASA Astrophysics Data System (ADS)

    Fu, H.; Scales, W.; Mahmoudian, A.; Bordikar, M. R.

    2009-12-01

    Natural dust layers occur in the earth’s mesosphere (50km-85km). Plasma irregularities are associated with these natural dust layers that produce radar echoes. Recently, an Ionospheric sounding rocket experiment was performed to investigate the plasma irregularities in upper atmospheric dust layers. The Charged Aerosol Release Experiment (CARE) uses a rocket payload injection of particles in the ionosphere to determine the mechanisms for enhanced radar scatter from plasma irregularities embedded in artificial dusty plasma in space. A 2-D hybrid computational model is described that may be used to study a variety of irregularities in dusty space plasmas which may lead to radar echoes. In this model, the dust and ions are both treated with Particle-In-Cell method while the dust charge varies with time based on the standard dust Orbit Motion Limited charging model. A stochastic model is adopted to remove particle ions due to the dust charging process. Electrons are treated with a fluid model including the parallel dynamics of magnetic fields. Fourier spectral methods with a predictor-corrector time advance are used to solve it. This numerical model will be used to investigate the electrodynamics and several possible plasma irregularity generation mechanisms after the creation of an artificial dust layer. The first is the dust ion-acoustic instability due to the drift of dust relative to the plasma. The instability saturates by trapping some ions. The effects of dust radius and dust drift velocity on plasma irregularities will be analyzed further. Also, a shear- driven instability in expanding dusty clouds is investigated.

  20. Laser diagnostics for plasma turbulence

    NASA Astrophysics Data System (ADS)

    The purpose of this effort is to further develop the multiple-beam laser scattering diagnostic for tokamak plasmas. Present laser scattering diagnostics have very poor spatial resolution. Yet good spatial resolution is necessary if adequate comparison of theory and experiment is to occur. The proposed multiple beam scattering diagnostic promises a spatial resolution of approximately 10 cm at a fluctuation wave number of 5 cm(exp -1) when the angular envelope of the beams is 0.1 radians. A larger angular envelope would further improve the spatial resolution. This kind of spatial resolution is impossible with current laser scattering diagnostics. Enclosed are two items. These items constitute the major results of this study. Appendix A is a draft of a paper being prepared for submission to the journal on the review of scientific instruments. This paper consists of three sections. Section 1 compares the proposed diagnostic to conventional laser scattering diagnostics and argues for the need of increased spatial resolution. Section 2 presents a thorough rendering of the conceptual basis of the proposed multiple beam diagnostic. Section 3 presents an optical design suitable for use on the TEXT upgrade tokamak. Appendix B is a schematic of a proposed proof-of-principle bench-top experiment of the multiple beam scattering diagnostic. It is designed to demonstrate the concept thoroughly at a greatly reduced cost. An actual multiple beam CO2 laser scattering experiment on a controlled laboratory plasma would be a good follow-up before attempting construction of the diagnostic on a major tokamak.

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spectral and temporal characteristics of a laser plasma

    NASA Astrophysics Data System (ADS)

    Lipchak, A. I.; Solomonov, V. I.; Tel'nov, V. A.; Osipov, V. V.

    1995-04-01

    An experimental investigation was made of the spectral and temporal characteristics of a laser plasma formed by the interaction of a CO2 laser pulse with a target in atmospheric air. The results obtained indicate that the main role in the process of filling the excited states in a laser plasma is played by a recombination cascade and that both atoms and molecules of the atmospheric gases are excited. The result also show that a laser plasma can be used in spectroscopic analysis of multicomponent samples. The solution of the thermophysical problem of heating of a target by laser radiation supports the existing ideas on the process of formation of a plasma near the target surface in air.

  2. Dynamics of a plasma expanding into a uniform magnetic field

    SciTech Connect

    Gisler, G.; Lemons, D.S. )

    1989-08-01

    A heuristic model of an energetic plasma expanding into an initially uniform magnetic field is presented. In this model the plasma is cylindrically shaped, perfectly diamagnetic, and allowed to expand freely in the direction of the magnetic field. It results in a time evolution of the cylindrical radius described by Airy functions and parameterized by the plasma {beta}. For instance, the maximum extent of the radius scales as {beta}{sup 1/3} while the maximum radial deceleration scales as {beta}{sup {minus}1/3}. Time evolution and scaling are compared both with other models and with two-dimensional electromagnetic particle simulations. A spherically symmetric model is also found to agree well with the simulations and results in simpler expressions for the maximum radius and maximum radial deceleration. The larger deceleration obtained in these models, as compared with models that ignore the axial expansion, would shift toward longer wavelengths the peak growth of the instability thought to be responsible for the field-aligned structures seen in the Active Magnetospheric Particle Tracer Explorers (AMPTE) magnetotail releases. {copyright} American Geophysical Union 1989

  3. Online plasma diagnostics of a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Kai, Gao; Nasr, A. M. Hafz; Song, Li; Mohammad, Mirzaie; Guangyu, Li; Quratul, Ain

    2017-01-01

    In this study, we report a laser interferometry experiment for the online-diagnosing of a laser-produced plasma. The laser pulses generating the plasma are ultra-fast (30 femtoseconds), ultra-intense (tens of Terawatt) and are focused on a helium gas jet to generate relativistic electron beams via the laser wakefield acceleration (LWFA) mechanism. A probe laser beam (λ = 800 nm) which is split-off the main beam is used to cross the plasma at the time of arrival of the main pulse, allowing online plasma density diagnostics. The interferometer setup is based on the NoMarski method in which we used a Fresnel bi-prism where the probe beam interferes with itself after crossing the plasma medium. A high-dynamic range CCD camera is used to record the interference patterns. Based upon the Abel inversion technique, we obtained a 3D density distribution of the plasma density.

  4. Plane and hemispherical potential structures in magnetically expanding plasmas

    SciTech Connect

    Takahashi, Kazunori; Igarashi, Yuichi; Fujiwara, Tamiya

    2010-07-26

    Two-dimensional potential structures are measured for different gas pressure in expanding argon plasma using permanent magnets, where the magnetic field is about 100 G in the source and several gauss in the diffusion chamber. The plane potential drop is observed near the source exit for 0.35 mTorr, while the potential structure becomes hemispherical when increasing up to 1 mTorr; the hemispherical structure results in the radial divergence of the ion beam. It is found that the trajectories of the accelerated ions and the electrons overcoming the potential drop are dominated by the potential structure and magnetic-field lines, respectively.

  5. Bulk viscosity of anisotropically expanding hot QCD plasma

    SciTech Connect

    Chandra, Vinod

    2011-11-01

    The bulk viscosity, {zeta} and its ratio with the shear viscosity, {zeta}/{eta} have been studied in an anisotropically expanding pure glue plasma in the presence of turbulent color fields. It has been shown that the anisotropy in the momentum distribution function of gluons, which has been determined from a linearized transport equation eventually leads to the bulk viscosity. For the isotropic (equilibrium) state, a recently proposed quasiparticle model of pure SU(3) lattice QCD equation of state has been employed where the interactions are encoded in the effective fugacity. It has been argued that the interactions present in the equation of state, significantly contribute to the bulk viscosity. Its ratio with the shear viscosity is significant even at 1.5T{sub c}. Thus, one needs to take in account the effects of the bulk viscosity while studying the hydrodynamic expansion of quark-gluon plasma in the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  6. Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

  7. Observation of Population Inversions in a Freely Expanding Pure Hydrogen Plasma

    NASA Astrophysics Data System (ADS)

    Hara, Tamio; Kodera, Kunihiko; Hamagaki, Manabu; Matsunaga, Kouzi; Inutake, Masaaki; Dote, Toshihiko

    1980-07-01

    The possibility of a hydrogen plasmadynamic recombination laser is experimentally investigated. A high density plasma produced by a high-power quasi-steady MPD arc-jet is cooled by expanding itself into the vacuum chamber. Experimental results confirm that large population inversions between i{=}4--3 and i{=}5--3 levels exist over 12-22 cm downstream of the anode. A comparison is made between experimental data and calculated results based on the collisionalradiative model on populations of hydrogen levels.

  8. Expanding plasmas from anti de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Camilo, Giancarlo

    2016-12-01

    We introduce a new foliation of AdS_5 black holes such that the conformal boundary takes the form of a 4-dimensional FLRW spacetime with scale factor a( t). The foliation employs Eddington-Finkelstein-like coordinates and is applicable to a large class of AdS black holes, supported by matter fields or not, considerably extending previous efforts in the literature. We argue that the holographic dual picture of a CFT plasma on a FLRW background provides an interesting prototype to study the nonequilibrium dynamics of expanding plasmas and use holographic renormalization to extract the renormalized energy-momentum tensor of the dual plasma. We illustrate the procedure for three black holes of interest, namely AdS-Schwarzschild, AdS-Gauss-Bonnet, and AdS-Reissner-Nordström. For the latter, as a by-product, we show that the nonequilibrium dynamics of a CFT plasma subject to a quench in the chemical potential (i.e., a time-dependent chemical potential) resembles a cosmological evolution with the scale factor a( t) being inversely related to the quench profile μ (t).

  9. Self-effect in expanding electron beam plasma

    SciTech Connect

    Garcia, M

    1999-05-07

    An analytical model of plasma flow from a metal plate hit by an intense, pulsed, electron beam aims to bridge the gap between radiation-hydrodynamics simulations and experiments, and to quantify the self-effect of the electron beam penetrating the flow. Does the flow disrupt the tight focus of the initial electron bunch, or later pulses in a train? This work aims to model the spatial distribution of plasma speed, density, degree of ionization, and magnetization to inquire. The initial solid density, several eV plasma expands to 1 cm and 10{sup {minus}4} relative density by 2 {micro}s, beyond which numerical simulations are imprecise. Yet, a Faraday cup detector at the ETA-II facility is at 25 cm from the target and observes the flow after 50 {micro}s. The model helps bridge this gap. The expansion of the target plasma into vacuum is so rapid that the ionized portion of the flow departs from local thermodynamic equilibrium. When the temperature (in eV) in a parcel of fluid drops below V{sub i} x [(2{gamma} - 2)/(5{gamma} + 17)], where V{sub i} is the ionization potential of the target metal (7.8 eV for tantalum), and {gamma} is the ratio of specific heats (5/3 for atoms), then the fractional ionization and electron temperature in that parcel remain fixed during subsequent expansion. The freezing temperature as defined here is V{sub i}/19. The balance between the self-pinching force and the space charge repulsion of an electron beam changes on penetrating a flow: (i) the target plasma cancels the space-charge field, (ii) internal eddy currents arise to counter the magnetization of relativistic electrons, and (iii) electron beam heating alters the flow magnetization by changing the plasma density gradient and the magnitude of the conductivity.

  10. Laser-Plasma Interactions in High-Energy Density Plasmas

    SciTech Connect

    Constantin, C G; Baldis, H A; Schneider, M B; Hinkel, D E; Langdon, A B; Seka, W; Bahr, R; Depierreaux, S

    2005-08-24

    Laser-plasma interactions (LPI) have been studied experimentally in high-temperature, high-energy density plasmas. The studies have been performed using the Omega laser at the Laboratory for Laser Energetics (LLE), Rochester, NY. Up to 10 TW of power was incident upon reduced-scale hohlraums, distributed in three laser beam cones. The hot hohlraums fill quickly with plasma. Late in the laser pulse, most of the laser energy is deposited at the laser entrance hole, where most of the LPI takes place. Due to the high electron temperature, the stimulated Raman scattering (SRS) spectrum extends well beyond {omega}{sub 0}/2, due to the Bohm-Gross shift. This high-temperature, high-energy density regime provides a unique opportunity to study LPI beyond inertial confinement fusion (ICF) conditions.

  11. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  12. Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskii, Iu. M.; Moiseev, V. N.; Rovinskii, R. E.; Tsenina, I. S.

    1993-01-01

    The ambient-pressure dependences of the dynamic and optical characteristics of a laser plasma generated by CO2-laser irradiation of an obstacle are investigated experimentally. The change of the sample's surface roughness after irradiation is investigated as a function of air pressure. It is concluded that the transition from the air plasma to the erosion plasma takes place at an air pressure of about 1 mm Hg. The results confirm the existing theory of plasma formation near the surface of an obstacle under the CO2-laser pulse effect in air.

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Percolation upon expansion of nanosecond-pulse-produced laser plasma into a gas

    NASA Astrophysics Data System (ADS)

    Kask, Nikolai E.; Michurin, Sergei V.; Fedorov, Gennadii M.

    2005-01-01

    Spectral studies of a plasma expanding into the ambient gas upon ablation of various targets by nanosecond laser pulses of moderate intensities are performed. It is found that the dependences of the intensities of spectral lines on the pressure of the buffer gas and the target composition have a threshold character typical of percolation. It is ascertained that a three-dimensional percolation occurs in plasma, and its threshold is determined by the atomic density of the metal component contained in the target. It is shown that percolation clusters, existing at temperatures higher than the boiling temperature of the target material, affect the plasma absorption ability, temperature, and spectral continuum of plasma emission.

  14. Detailed plasma potential measurements in a radio-frequency expanding plasma obtained from various electrostatic probes

    SciTech Connect

    Lafleur, T.; Charles, C.; Boswell, R. W.

    2009-04-15

    On-axis plasma potential measurements have been made with an emissive probe in a low pressure (0.044 Pa) rf expanding plasma containing an ion beam. The beam is detected with a retarding field energy analyzer (RFEA), and is seen to disappear at high pressure (0.39 Pa). The emissive probe measurements are in very good agreement with corresponding measurements made with two separate RFEAs, and the results indicate that the floating potential of the strongly emitting probe gives an accurate measure of the plasma potential under the present conditions.

  15. Plasma heating effects during laser welding

    NASA Astrophysics Data System (ADS)

    Lewis, G. K.; Dixon, R. D.

    Laser welding is a relatively low heat input process used in joining precisely machined components with minimum distortion and heat affects to surrounding material. The CO2 (10.6 (MU)m) and Nd-YAG (1.06 (MU)m) lasers are the primary lasers used for welding in industry today. Average powers range up to 20 kW for CO2 and 400 W for Nd-YAG with pulse lengths of milliseconds to continuous wave. Control of the process depends on an understanding of the laser-plasma-material interaction and characterization of the laser beam being used. Inherent plasma formation above the material surface and subsequent modulation of the incident laser radiation directly affect the energy transfer to the target material. The temporal and spatial characteristics of the laser beam affect the available power density incident on the target, which is important in achieving repeatability in the process. Other factors such as surface texture, surface contaminants, surface chemistry, and welding environment affect plasma formation which determines the weld penetration. This work involves studies of the laser-plasma-material interaction process and particularly the effect of the plasma on the coupling of laser energy to a material during welding. A pulsed Nd-YAG laser was used with maximum average power of 400 W.

  16. Double Layers in Expanding Plasmas and Their Relevance to the Auroral Plasma Processes

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Six, N. Frank (Technical Monitor)

    2002-01-01

    When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (i) the rarefaction shocks, (ii) the discontinuities in the potential distributions, and (iii) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains two electron populations, the temporal evolution of the potential and the plasma. distribution generates evolving multiple double layers with an extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature.

  17. High-energy laser plasma diagnostic system

    NASA Astrophysics Data System (ADS)

    Zhao, Mingjun M.; Aye, Tin M.; Fruehauf, Norbert; Savant, Gajendra D.; Erwin, Daniel A.; Smoot, Brayton E.; Loose, Richard W.

    2000-07-01

    This paper describes the development of a non-contact diagnosis system for analyzing the plasma density profile, temperature profile, and ionic species of a high energy laser-generated plasma. The system was developed by Physical Optics Corporation in cooperation with the U.S. Army Space and Missile Defense Command, High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico. The non- contact diagnostic system consists of three subsystems: an optical fiber-based interferometer, a plasma spectrometer, and a genetic algorithm-based fringe-image processor. In the interferometer subsystem, the transmitter and the receiver are each packaged as a compact module. A narrow notch filter rejects strong plasma light, passing only the laser probing beam, which carries the plasma density information. The plasma spectrum signal is collected by an optical fiber head, which is connected to a compact spectrometer. Real- time genetic algorithm-based data processing/display permits instantaneous analysis of the plasma characteristics. The research effort included design and fabrication of a vacuum chamber, and high-energy laser plasma generation. Compactness, real-time operation, and ease of use make the laser plasma diagnosis system well suited for dual use applications such as diagnosis of electric arc and other industrial plasmas.

  18. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    NASA Astrophysics Data System (ADS)

    Tong, Huifeng; Yuan, Hong; Tang, Zhiping

    2013-01-01

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  19. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    SciTech Connect

    Tong Huifeng; Yuan Hong; Tang Zhiping

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  20. Laser Guiding for GeV Laser-Plasma Accelerators

    SciTech Connect

    Leemans, Wim; Esarey, Eric; Geddes, Cameron; Schroeder, C.B.; Toth, Csaba

    2005-06-06

    Guiding of relativistically intense laser beams in preformed plasma channels is discussed for development of GeV-class laser accelerators. Experiments using a channel guided laser wakefield accelerator (LWFA) at LBNL have demonstrated that near mono-energetic 100 MeV-class electron beams can be produced with a 10 TW laser system. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, is the key to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short term prospects for intense radiation sources based on laser-driven plasma accelerators.

  1. Progress of Laser-Driven Plasma Accelerators

    SciTech Connect

    Nakajima, Kazuhisa

    2007-07-11

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  2. Plasma Diagnostics of a Capillary Plasma Channel for Laser Guiding

    SciTech Connect

    Terauchi, Hiromitsu; Higashiguchi, Takeshi; Yugami, Noboru; Bobrova, Nadezhda A.

    2010-11-04

    We demonstrated the production of an optical waveguide in a capillary discharge-produced plasma using a cylindrical capillary. Plasma parameters of its waveguide were characterized by use of both a Normarski laser interferometer and a hydrogen plasma line spectrum. A space-averaged maximum temperature of 3.3 eV with electron densities of the order of 10{sup 17} cm{sup -3} was observed at a discharge time of 150 ns and a maximum discharge current of 200 A. An ultrashort, intense laser pulse was guided by use of this plasma channel.

  3. Metal surface nitriding by laser induced plasma

    NASA Astrophysics Data System (ADS)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  4. Visualization of expanding warm dense gold and diamond heated uniformly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Santiago Cordoba, M. A.; Hamilton, C. E.; Fernández, J. C.

    2015-11-01

    With a laser-generated beam of quasi-monoenergetic ions, a solid density target can be heated uniformly and isochorically. On the LANL Trident laser facility, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils. We visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperatures of these heated samples from the measured expansion speeds of gold and diamond into vacuum. These temperatures are in good agreement with the expected temperatures calculated using the total deposited energy into the cold targets and SESAME equation-of-state tables at solid densities. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics. *This work is sponsored by the LANL LDRD Program.

  5. Laser induced plasma expansion and existence of local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Skočić, Miloš; Bukvić, Srdjan

    2016-11-01

    In this paper we present a simple model of the laser induced plasma (LIP) expansion in a low pressure surrounding atmosphere. The model is based on assumption that expansion process is dominantly governed by kinematics of the heavy particles. The model is accompanied with a simple, yet effective, Monte-Carlo simulation. Results of the simulation are compared with spectroscopic measurements of the laser induced copper plasma expanding in low pressure (200 Pa) hydrogen atmosphere. We found that characteristic expansion time of the LIP is proportional to the linear dimension of the initial volume heated up by the laser. For sufficiently large initial volume copper plasma remains in local thermodynamic equilibrium on the submicrosecond-microsecond scale. It is shown that diagnostics based on the spectral lines of the hydrogen atmosphere is not suitable for characterization of the core of the copper plasma. We have demonstrated importance of radially resolved spectroscopic measurements as a key step for correct diagnostics and understanding of laser induced plasma.

  6. Heating dynamics and extreme ultraviolet radiation emission of laser-produced Sn plasmas

    SciTech Connect

    Yuspeh, S.; Sequoia, K. L.; Tao, Y.; Tillack, M. S.; Burdt, R. A.; Najmabadi, F.

    2010-06-28

    The impact of 1.064 mum laser absorption depth on the heating and in-band (2% bandwidth) 13.5 nm extreme ultraviolet emissions in Sn plasmas is investigated experimentally and numerically. In-band emission lasting longer than the laser pulse and separation between the laser absorption and in-band emission region are observed. Maximum efficiency is achieved by additional heating of the core of the plasma to allow the optimal temperature to expand to a lower and more optically thin density. This leads to higher temperature plasma that emits less in-band light as compared to CO{sub 2} produced plasma sources for the same application.

  7. Reducing wall plasma expansion with gold foam irradiated by laser

    SciTech Connect

    Zhang, Lu; Ding, Yongkun Jiang, Shaoen Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping

    2015-11-15

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.

  8. On the use of shockwave models in laser produced plasma expansion

    NASA Astrophysics Data System (ADS)

    de Posada, E.; Arronte, M. A.; Ponce, L.; Rodríguez, E.; Flores, T.; Lunney, J. G.

    2011-01-01

    Interaction of medium to high peak power laser pulses with solid materials produces a plasma that expands supersonically. Expansions of such plasmas have been studied and several models have been proposed to describe it. This work presents a study of the expansion of laser produced plasmas in both vacuum and gas environment by using Langmuir probe and photography. It compares some of the most used models to identify that which better describes the expansion process. In vacuum, such process is properly described by the Anisimov model. However when expanding in a background gas it is found that the Sedov-Taylor model fits properly the position of generated shockwave but overestimates both kinetic energy and pressure of the expanding plasma. Such problem is solved by using a modification of the Freiwald-Axford model. Finally it is demonstrated that after the plasma stopping distance the plasma inters in a diffusive regime.

  9. Simulation of Laser Interaction with Ablative Plasma and ydrodynamic of Laser Supported Plasma(LSP)

    NASA Astrophysics Data System (ADS)

    Huifeng, Tong; Zhiping, Tang

    2011-06-01

    A general Godunov finite difference schemes-WENO(Weighted Essentially Non-Oscillatory) Schemes which have fifth-order accuracy was used to make a numerical calculation for 2-dimensional axis symmetrical laser-supported plasma flow field under laser ablated solid target. The models of the calculation of ionization degree of plasma and the interaction between laser beam and plasma and the simplified eos(equation of state) of plasma were considered in the simulation. The plasma field parameters during and after laser duration variation with time are also obtained. The simulation results show that the laser beam power was strong absorbed by plasma of target surface, and the velocity of LSD(Laser Supported Detonation) wave is half of ideal LSD value which derived from C-J detonation theory.

  10. Study of laser-created laboratory plasma jets with soft x-ray laser interferometry

    NASA Astrophysics Data System (ADS)

    Grava, Jonathan; Purvis, Michael; Filevich, Jorge; Marconi, Mario; Rocca, Jorge; Dunn, James; Moon, Stephen; Shlyaptsev, Vyacheslav

    2008-04-01

    Jet-like plasma structures were generated by irradiating V-shaped Al targets at I=1x10^12 W/cm^2 with 0.8 J Ti:Sa laser pulses of 120 ps duration. A narrow plasma plume was observed to expand from the bottom of the cavity with Mach number ˜ 5. The plasma jet evolution was studied using soft x-ray laser interferometry (λ= 46.9 nm), allowing electron density measurements of the 1-mm plasma that exceeded 1x10^20 cm-3. Late in the evolution the jet expands laterally and develops sidelobes as it interacts with additional material expanding from the walls. The measurements were compared with 2-D simulations from the code HYDRA to gain understanding of the mechanisms that form the narrow plasma jet, including the role of radiation cooling. Measurements of similar jets generated by irradiating targets of different Z are under way Work sponsored by NNSA-SSAA DOE Grant # DE-FG52-060NA26152 and the U.S. DOE LLNL through ILSA contract No. W-7405-Eng-48.

  11. Physics of Laser-driven plasma-based acceleration

    SciTech Connect

    Esarey, Eric; Schroeder, Carl B.

    2003-06-30

    The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

  12. Laboratory experiments on Alfvén waves caused by rapidly expanding plasmas and their relationship to space phenomena

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; van Zeeland, M.; Vincena, S.; Pribyl, P.

    2003-07-01

    There are many situations which naturally occur in space (coronal mass ejections, supernovas) or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma that can support Alfvén waves. The Large Plasma Device (LAPD) at UCLA is a machine in which Alfvén wave propagation in homogeneous and inhomogeneous plasmas has been studied. A new class of experiments which involve the expansion of a dense (initially nlaser-produced/nbackground ≫ 1) laser-produced plasma into an ambient highly magnetized plasma capable of supporting Alfvén waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The laser beam impacts a solid target such that the initial plasma burst is directed across the ambient magnetic field. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. The magnetic fields of the waves are measured with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are acquired at over 10,000 spatial locations and as a function of time. Measurements are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The shear wave generation mechanism is due to field-aligned return currents, which replace fast electrons escaping the initial blast.

  13. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of a plasma jet of multiply charged ions in the interaction of a laser plasma with an external pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Dyakin, V. M.; Pikuz, T. A.; Skobelev, I. Yu; Faenov, A. Ya; Wolowski, J.; Karpinski, L.; Kasperczuk, A.; Pisarczyk, T.

    1994-12-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. Images were formed by spectral lines and the soft x-ray spectrum range of the plasma jet was obtained with a large-aperture spectrograph containing a mica crystal bent to form a spherical surface with a radius of R = 10 cm. A tenfold increase in the density of the He-like Mg XI plasma, compared with a freely expanding plasma, was observed at a distance of 5 mm from the target.

  14. Laser-Plasma Interactions in High-Energy-Density Plasmas

    SciTech Connect

    Baldis, H

    2006-10-17

    High temperature hohlraums (HTH) are designed to reach high radiation temperatures by coupling a maximum amount of laser energy into a small target in a short time. These 400-800 {micro}m diameter gold cylinders rapidly fill with hot plasma during irradiation with multiple beams in 1ns laser pulses. The high-Z plasmas are dense, (electron density, n{sub e}/n{sub c} {approx} 0.1-0.4), hot (electron temperature, T{sub e} {approx} 10keV) and are bathed in a high-temperature radiation field (radiation temperature, T{sub rad} {approx} 300eV). Here n{sub c}, the critical density, equals 9 x 10{sup 21}/cm{sup 3}. The laser beams heating this plasma are intense ({approx} 10{sup 15} - 10{sup 17} W/cm{sup 2}). The coupling of the laser to the plasma is a rich regime for Laser-Plasma Interaction (LPI) physics. The LPI mechanisms in this study include beam deflection and forward scattering. In order to understand the LPI mechanisms, the plasma parameters must be known. An L-band spectrometer is used to measure the and electron temperature. A ride-along experiment is to develop the x-radiation emitted by the thin back wall of the half-hohlraum into a thermal radiation source.

  15. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  16. Plasma generated during underwater pulsed laser processing

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt

    2017-09-01

    The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

  17. Double Layers in Expanding Plasmas and Their Relevance to the Auroral Plasma Processes

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George

    2003-01-01

    When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [Bezzerides et al., 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [Barakat and Schunk, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [Ergun et al., 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an ,extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two

  18. Laser-produced plasmas in medicine

    SciTech Connect

    Gitomer, S.J. ); Jones, R.D. . Applied Theoretical Physics Div.)

    1991-12-01

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photodynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper the authors examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation), and in cardiology and vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented, along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.

  19. Laser-produced plasmas in medicine

    SciTech Connect

    Gitomer, S.J.; Jones, R.D.

    1990-01-01

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper, we examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included. 63 refs.

  20. Spectroscopic characterization of laser ablation brass plasma

    NASA Astrophysics Data System (ADS)

    Shaikh, Nek M.; Hafeez, Sarwat; Kalyar, M. A.; Ali, R.; Baig, M. A.

    2008-11-01

    We present optical emission studies of the laser ablation brass plasma generated by the fundamental, second, and third harmonics of a neodymium doped yttrium aluminum garnet laser. The spectra predominantly reveal the spectral lines of the neutral and singly ionized copper and zinc. The excitation temperatures are determined by the Boltzmann plot method, whereas the electron number densities have been extracted from the Stark broadened line profiles. The spatial variations in the spectral line intensities and the plasma parameters at 1000, 500, and 100 mbar air pressures have been evaluated. Besides, the effect of the ambient gases (He, Ne, and Ar), the laser irradiance, and the laser wavelengths on the plasma parameters have been investigated.

  1. Laser-produced plasmas in medicine

    NASA Astrophysics Data System (ADS)

    Gitomer, S. J.; Jones, R. D.

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. Those areas of laser medicine are examined in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. Examples are examined for the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.

  2. Laser-produced plasmas in medicine

    NASA Astrophysics Data System (ADS)

    Gitomer, Steven J.; Jones, Roger D.

    1990-06-01

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper, we examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g. lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g. kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g. laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.

  3. Laser plasma interactions in fused silica cavities

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Mao, Samuel S.; Yoo, Jong H.; Greif, Ralph; Russo, Richard E.

    2003-06-24

    The effect of laser energy on formation of a plasma inside a cavity was investigated. The temperature and electron number density of laser-induced plasmas in a fused silica cavity were determined using spectroscopic methods, and compared with laser ablation on a flat surface. Plasma temperature and electron number density during laser ablation in a cavity with aspect ratio of 4 increased faster with irradiance after the laser irradiance reached a threshold of 5 GW/cm{sup 2}. The threshold irradiance of particulate ejection was lower for laser ablation in a cavity compared with on a flat surface; the greater the cavity aspect ratio, the lower the threshold irradiance. The ionization of silicon becomes saturated and the crater depths were increased approximately by an order of magnitude after the irradiance reached the threshold. Phase explosion was discussed to explain the large change of both plasma characteristics and mass removal when irradiance increased beyond a threshold value. Self-focusing of the laser beam was discussed to be responsible for the decrease of the threshold in cavities.

  4. Laser-pulse compression using magnetized plasmas

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-28

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longermore » durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.« less

  5. Staging of laser-plasma accelerators

    DOE PAGES

    Steinke, S.; van Tilborg, J.; Benedetti, C.; ...

    2016-05-02

    We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller thanmore » the transverse wake size at the entrance of the second stage. Furthermore, this permitted electron beam trapping, verified by a 100 MeV energy gain.« less

  6. Staging of laser-plasma accelerators

    SciTech Connect

    Steinke, S. Tilborg, J. van; Benedetti, C.; Geddes, C. G. R.; Gonsalves, A. J.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Daniels, J.; Swanson, K. K.; Shaw, B. H.; Leemans, W. P.

    2016-05-15

    We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller than the transverse wake size at the entrance of the second stage. This permitted electron beam trapping, verified by a 100 MeV energy gain.

  7. Staging of laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Steinke, S.; van Tilborg, J.; Benedetti, C.; Geddes, C. G. R.; Daniels, J.; Swanson, K. K.; Gonsalves, A. J.; Nakamura, K.; Shaw, B. H.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2016-05-01

    We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller than the transverse wake size at the entrance of the second stage. This permitted electron beam trapping, verified by a 100 MeV energy gain.

  8. Enhanced laser beam coupling to a plasma

    DOEpatents

    Steiger, Arno D.; Woods, Cornelius H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

  9. Staging of laser-plasma accelerators

    SciTech Connect

    Steinke, S.; van Tilborg, J.; Benedetti, C.; Geddes, C. G. R.; Daniels, J.; Swanson, K. K.; Gonsalves, A. J.; Nakamura, K.; Shaw, B. H.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2016-05-02

    We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller than the transverse wake size at the entrance of the second stage. Furthermore, this permitted electron beam trapping, verified by a 100 MeV energy gain.

  10. Laser-pulse compression using magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-01

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longer durations. In addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.

  11. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  12. Charged Particle Acceleration by Lasers in Plasmas

    SciTech Connect

    Liu, C. S.; Tripathi, V. K.

    2007-07-11

    Several physical processes of laser electron acceleration in plasmas are revisited. A laser beam can drive plasma waves which in turn can accelerate resonant electrons. If these plasma waves can reach amplitude limited only by wave breaking alone, then the corresponding accelerating gradient in the plasma wave is of the order of electron rest mass energy per plasma skin depth, typically about GEV per centimeter. This is several orders of magnitudes higher than the conventional RF field gradient, giving rise to the possibility of compact accelerators needed for high energy physics research as well as medical and other applications. The chirped short pulse laser, with intensity exceeding the threshold for relativistic self focusing, can generate ion bubble in its wake by expelling electrons. The electrons at the bubble boundary, surge toward the stagnation point and pile up there. As the pile acquires a critical size, these electrons are injected into the bubble and accelerated by the combined fields of ion space charge and the plasma wave to Gev in energy. Most remarkably these electrons are bunched in phase space while being accelerated to high energy, resulting in near mono-energetic electron beam of high beam quality, with narrow energy spread. We review also other processes related to laser electron acceleration, such as acceleration in plasma wave assisted by ponderomotive force and betatron acceleration.

  13. Evolution of laser pulse shape in a parabolic plasma channel

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Gupta, D. N.; Suk, H.

    2017-01-01

    During high-intensity laser propagation in a plasma, the group velocity of a laser pulse is subjected to change with the laser intensity due to alteration in refractive index associated with the variation of the nonlinear plasma density. The pulse front sharpened while the back of the pulse broadened due to difference in the group velocity at different parts of the laser pulse. Thus the distortion in the shape of the laser pulse is expected. We present 2D particle-in-cell simulations demonstrating the controlling the shape distortion of a Gaussian laser pulse using a parabolic plasma channel. We show the results of the intensity distribution of laser pulse in a plasma with and without a plasma channel. It has been observed that the plasma channel helps in controlling the laser pulse shape distortion. The understanding of evolution of laser pulse shape may be crucial while applying the parabolic plasma channel for guiding the laser pulse in plasma based accelerators.

  14. Current new applications of laser plasmas

    SciTech Connect

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs.

  15. Soft x-ray laser interferometry of colliding plasmas

    NASA Astrophysics Data System (ADS)

    Purvis, Mike; Dunn, James; Shlyaptsev, V. N.

    2005-10-01

    We report results of an experiment designed to study the evolution of dense colliding plasmas created by irradiating a semi-cylindrical target geometry. The measurements were conducted using a 46.9 nm wavelength capillary discharge laser probe and a robust high throughput Mach-Zehnder interferometer based on diffraction gratings. The colliding plasmas were created irradiating a Cu target with a 800 nm wavelength laser pulse of 120 ps duration and ˜ 1J energy. The plasmas are seen to expand off the target surface and collide in a focal region creating a concentrated plasma with densities reaching 1 x 10^20 cm-3. Plasmas with various degrees of collisionality can be studied by tailoring the irradiation conditions and selecting the target material. Results obtained using an Al target are compared with those of the Cu plasmas and model simulations. Work sponsored by the NNSA-SSAA program through DOE Grant # DE-FG03-02NA00062 and U.S. DOE by the U. of California LLNL through the ILSA, contract No. W-7405-Eng-48.

  16. Collisionless Plasma Astrophysics Simulation Experiments using Lasers

    SciTech Connect

    Woolsey, N. C.; Ash, A. D.; Courtois, C.; Gregory, C. D.; Hall, I. M.; Howe, J.; Dendy, R. O.

    2006-04-07

    Laboratory experiment is an attractive method of exploring the plasma physics that may occur in solar and astrophysical shocks. An experiment enables repeated and detailed measurements of a plasma as the input conditions are adjusted. To form a scaled experiment of an astrophysical shock a plasma physics model of the shock is required, and the important dimensionless parameters identified and reproduced in the laboratory. A laboratory simulation of a young supernova remnant is described. The experiment uses the interaction of two millimetre-sized counter-streaming laser-produced plasmas placed in a strong transverse magnetic field to achieve this scaling. The collision-free dynamics of the two plasmas and their interaction are studied with and without the magnetic field through spatially and temporally resolved optical measurements. Laboratory astroplasma physics experiments using high-energy, high-power laser technology enables us to reproduce in the laboratory the conditions of temperature and pressure that are met in extreme stellar environments.

  17. Laser-plasma interactions in large gas-filled hohlraums

    SciTech Connect

    Turner, R.E.; Powers, L.V.; Berger, R.L.

    1996-06-01

    Indirect-drive targets planned for the National Ignition Facility (NIF) laser consist of spherical fuel capsules enclosed in cylindrical Au hohlraums. Laser beams, arranged in cylindrical rings, heat the inside of the Au wall to produce x rays that in turn heat and implode the capsule to produce fusion conditions in the fuel. Detailed calculations show that adequate implosion symmetry can be maintained by filling the hohlraum interior with low-density, low-Z gases. The plasma produced from the heated gas provides sufficient pressure to keep the radiating Au surface from expanding excessively. As the laser heats this gas, the gas becomes a relatively uniform plasma with small gradients in velocity and density. Such long-scale-length plasmas can be ideal mediums for stimulated Brillouin Scattering (SBS). SBS can reflect a large fraction of the incident laser light before it is absorbed by the hohlraum; therefore, it is undesirable in an inertial confinement fusion target. To examine the importance of SBS in NIF targets, the authors used Nova to measure SBS from hohlraums with plasma conditions similar to those predicted for high-gain NIF targets. The plasmas differ from the more familiar exploding foil or solid targets as follows: they are hot (3 keV); they have high electron densities (n{sub e}=10{sup 21}cm{sup {minus}3}); and they are nearly stationary, confined within an Au cylinder, and uniform over large distances (>2 mm). These hohlraums have <3% peak SBS backscatter for an interaction beam with intensities of 1-4 x 10{sup 15} W/cm{sup 2}, a laser wavelength of 0.351{micro}m, f/4 or f/8 focusing optics, and a variety of beam smoothing implementations. Based on these conditions the authors conclude that SBS does not appear to be a problem for NIF targets.

  18. Laser-produced aluminum plasma expansion inside a plastic plasma envelope

    SciTech Connect

    Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Renner, O.; Rohlena, K.; Gus'kov, S. Yu.; Demchenko, N. N.; Ullschmied, J.; Krousky, E.; Pfeifer, M.; Skala, J.

    2012-09-15

    Previous experimental results demonstrated that the plasma pressure decreases with the growing atomic number of the target material. In this context, a question arose if the Al plasma outflow could be collimated using the plastic plasma as a compressor. To solve this problem, an experiment using a plastic target with an Al cylindrical insert was performed. The focal spot diameter substantially larger than that of the insert ensured simultaneous heating both target materials. This experiment proved that a production of Al plasma jets collimated by an action of outer plastic plasma is feasible [Kasperczuk et al., Laser Part. Beams 30, 1 (2012)]. The results of investigations presented here provide additional information on distributions of electron temperature in the outflowing plasma and time and space characteristics of ion emission, both registered at bare and constrained-flow Al targets. The experiment was carried out at the Prague asterix laser system iodine laser facility. The laser provided a 250 ps (full width at half maximum) pulse with the energy of 130 J at the third harmonic frequency ({lambda}{sub 3} = 0.438 {mu}m). A plastic target with an Al cylindrical insert of 400 {mu}m in diameter as well as a bare Al target (for comparison) was used. The focal spot diameter ({Phi}{sub L}) 1200 {mu}m ensured the lateral pressure effect of the plastic plasma strong enough to guarantee the effective Al plasma compression. The electron temperature measurements have shown that such Al plasma compression is accompanied by the increase of its temperature, dominance of which starts at distance of 0.5 mm from the target surface. Measurements of ion emission characteristics confirm the earlier numerical simulation prediction that in these conditions the plasma expansion geometry is closer to planar. The constrained Al plasma jet is very narrow and its axial velocity is considerably larger than the velocity of freely expanding Al plasma stream. It means that the plastic

  19. Experiments on laser-produced plasmas and laser plasma- wall interactions

    NASA Astrophysics Data System (ADS)

    Wang, Quan

    2001-06-01

    The study of the interaction of laser-produced plasmas with a secondary wall has both practical and theoretical significance. The laser-produced plasmas are sources of highly-charged ions, fast electrons, as well as continuum and monochromatic x-ray radiation. Intense x-ray radiation also results when a nanosecond laser-produced plasma collides with a secondary wall positioned close to the target. The study of this interaction is essential to understand the laser-produced plasma expansion, shock wave formation, recombination, collisional excitation and many other transition processes. The laser plasma-wall interaction experiment has been carried out with laser pulses with vastly different time scales. In nanosecond experiment, the plasma-wall interaction was studied with varying target-wall distance. We conclude that the isothermal plasma expansion followed by the shock wave formation near the wall surface contributes to the intense x-ray radiation. We also have done some preliminary research in the femtosecond regime. We claim that the shock wave formation that plays an important role in nanosecond experiment does not play the same role in femtosecond one. We suggest that a femtosecond laser-produced plasma could be an efficient fast electron and monochromatic x- ray source. We also provide some suggestions and predictions for further investigations.

  20. Laser Plasma Instability Experiments with KrF Lasers

    DTIC Science & Technology

    2007-01-01

    L. Phillips, A. J. Schmitt, J. D. Sethain, R . K. McCrory, W. Seka, C. Verdon, J. P. Knauer, B. B. Afeyan, H. T . Powell, Physics of Plasmas, 5, 5...Physics of Plasmas. 8 R . Betti, K. Anderson, J. Knauer, T . J. B. Collins, R . L. McCrory, R . W. McKenty, S. Skupsky, Physics of Plasmas, 12, 4, 042703...2005). 9 W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, Boulder, 1988). 10 J. M. McMahon, R . P. Burns, T . H. DeRieux, R

  1. Laser-driven Acceleration in Clustered Plasmas

    SciTech Connect

    Gao, X.; Wang, X.; Shim, B.; Downer, M. C.

    2009-01-22

    We propose a new approach to avoid dephasing limitation of laser wakefield acceleration by manipulating the group velocity of the driving pulse using clustered plasmas. We demonstrated the control of phase velocity in clustered plasmas by third harmonic generation and frequency domain interferometry experiments. The results agree with a numerical model. Based on this model, the group velocity of the driving pulse in clustered plasmas was calculated and the result shows the group velocity can approach the speed of light c in clustered plasmas.

  2. Trends in laser-plasma-instability experiments for laser fusion

    SciTech Connect

    Drake, R.P. Lawrence Livermore National Lab., CA )

    1991-06-06

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with {approx}1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs.

  3. Spectroscopic Studies of Laser Produced Plasma Metasurfaces

    NASA Astrophysics Data System (ADS)

    Colon Quinones, Roberto; Underwood, Thomas; Cappelli, Mark

    2016-10-01

    In this presentation, we describe the spatial and temporal plasma characteristics of the dense plasma kernels that are used to construct a laser produced plasma metasurface (PM) that is intended to serve as a tunable THz reflector. The PM is an n x n array of plasmas generated by focusing the light from a 2 J/p Q-switched Nd:YAG laser through a multi-lens array (MLA) and into a gas of varying pressure. A gated CCD camera coupled to a high-resolution spectrometer is used to obtain chord-averaged H α broadening data for the cross section of a single plasma element at the lens focal point. The data is then Abel inverted to derive the radial plasma density distribution. Measurements are repeated for a range of pressures, laser energies, and lens f-number, with a time resolution of 100 ns and a gate width of 20 ns. Results are presented for the variation of plasma density and size over these different conditions. Work supported by the Air Force Office of Scientific Research (AFOSR). R. Colon Quinones and T. Underwood acknowledge the support of the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  4. Plasma spectroscopy using optical vortex laser

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Toda, Yasunori; Czarnetzki, Uwe; Shikano, Yutaka

    2014-10-01

    Laser spectroscopy is a useful tool for nonintrusive plasma diagnostics; it can provide many important quantities in a plasma such as temperature, density, and flow velocity of ions and neutrals from the spectrum obtained by scanning the frequency of narrow bandwidth laser. Obtainable information is, however, limited in principle to the direction parallel to the laser path. The aim of this study is to introduce a Laguerre-Gaussian beam, which is called as optical vortex, in place of a widely used Hermite-Gaussian beam. One of the remarkable properties of the Laguerre-Gaussian beam is that it carries an angular momentum in contrast to the Hermite-Gaussian beam. It follows that particles in the laser beam feel the Doppler effect even in the transverse direction of the laser path. Therefore it is expected that the limitation imposed by the laser path can be overcome by using an optical vortex laser. The concept of optical vortex spectroscopy, the development of the laser system, and some preliminary results of a proof-of-principle experiment will be presented. This work is performed with the support and under the auspices of NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI Grant Number 25287152.

  5. Adventures in Laser Produced Plasma Research

    SciTech Connect

    Key, M

    2006-01-13

    In the UK the study of laser produced plasmas and their applications began in the universities and evolved to a current system where the research is mainly carried out at the Rutherford Appleton Laboratory Central Laser Facility ( CLF) which is provided to support the universities. My own research work has been closely tied to this evolution and in this review I describe the history with particular reference to my participation in it.

  6. Plasma plume dynamics in magnetically assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Haverkamp, J. D.; Bourham, M. A.; Du, S.; Narayan, J.

    2009-01-01

    The expansion of a laser produced plasma perpendicular to a magnetic field is studied with a quadruple Langmuir probe and a B-dot probe. In regions where the kinetic beta is less than one, we find plume deceleration and weak displacement of the magnetic field. As the plume expands into regions of weak magnetic field, plume deceleration stops and the displacement of the magnetic field is large. The diffusion time of the magnetic field lines was consistent with anomalously large resistivity driven by the presence of an instability. Electron temperatures are larger than in the field-free case due to Ohmic heating mediated by the anomalously large resistivity.

  7. Laser-Produced Plasmas and Radiation Sources.

    DTIC Science & Technology

    1980-01-31

    Vlases, H. Rutkowski, A. Hertzberg, A. Hoffman, L. Steinhauer, J. Dawson, D.R. Cohn, W. Halverson, B. Lax, J.D. Daugherty, J.E. Eninger , E.R. Pugh, T.K...Meeting, Albuquerque (October 1974). J.D. Daugherty, J.E. Eninger , D.R. Cohn, and W. Halverson, "Scaling of Laser Heated Plasmas Confined in Long Solenoids...Cohn, H.E. Eninger , W. Halverson, and D.J. Rose, "Stress, Dissipation, and Neutronics Constraints on ’fagnets for Laser-Solenoid Reactors," APS Plasma

  8. Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes

    SciTech Connect

    Geddes, C.G.R.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Mullowney, P.; Paul, K.; Cary, J.R.; Leemans, W.P.

    2010-06-01

    Laser-plasma collider designs point to staging of multiple accelerator stages at the 10 GeV level, which are to be developed on the upcoming BELLA laser, while Thomson Gamma source designs use GeV stages, both requiring efficiency and low emittance. Design and scaling of stages operating in the quasi-linear regime to address these needs are presented using simulations in the VORPAL framework. In addition to allowing symmetric acceleration of electrons and positrons, which is important for colliders, this regime has the property that the plasma wakefield is proportional to the transverse gradient of the laser intensity profile. We demonstrate use of higher order laser modes to tailor the laser pulse and hence the transverse focusing forces in the plasma. In particular, we show that by using higher order laser modes, we can reduce the focusing fields and hence increase the matched electron beam radius, which is important to increased charge and efficiency, while keeping the low bunch emittance required for applications.

  9. Concerted manipulation of laser plasma dynamics with two laser pulses

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Sommer, D.; Schnürer, M.

    2017-05-01

    In this article we present experimental results from a counter-propagating two laser pulse experiment at high intensity and using ultrathin gold and plastic foil targets. We applied one laser pulse as a pre-pulse with an intensity of up to 1x1018 W/cm2. By this method we manipulated the pre-plasma of the foil target with which the stronger laser pulse with an intensity of 6x1019W/cm2 interacts. This alters significantly subsequent processes from the laser plasma interaction which we show the ion acceleration and high harmonic generation. On the one hand, the maximum kinetic ion energy and the maximum charge state for gold ions decline due to the pre-heating of the target in the time range of few ps, on the other hand the number of accelerated ions is increased. For the same parameter range we detected a significant raise of the high harmonic emission. Moreover, we present first experimental observations, that when the second laser pulse is applied as a counter-propagating post-pulse the energy distribution of accelerated carbon ions is charge selective altered. Our findings indicate that using this method a parametric optimization can be achieved, which promises new insights about the concurrent processes of the laser plasma dynamics.

  10. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  11. Soft-X-Ray Laser Interferometry of a Dense Plasma using a Lloyd mirror.

    NASA Astrophysics Data System (ADS)

    Moreno, C. H.; Marconi, M. C.; Kanizay, K.; Rocca, J. J.

    1998-11-01

    X-Ray lasers can significantly expand the maximum plasma size and electron densities accessible to laser interferometry. Recently, a soft-x-ray laser pumped by the NOVA laser at LLNL was used in combination with a Mach-Zehnder interferometer to study large-scale laser-created plasmas(L.B. Da Silva et al), Phys. Rev. Lett. 74, 3991, (1995). The recent demonstration of saturated discharge-pumped soft x-ray laser(J.J. Rocca et al), Phys. Rev. Lett. 77, 1476, (1996) opened the possibility of conducting soft x-ray laser interferometry of dense plasmas with a table-top laser. The subsequent measurement of the spatial coherence of this laser(M. Marconi et al), Phys. Rev. Lett., 79, 2799, (1997) gave additional support to this possibility. In this communication we report the first demonstration of soft x-ray plasma interferometry experiment performed with a table-top laser. A capillary discharge-pumped 46.9 nm laser was used in combination with a Lloyd mirror to perform time resolved interferometry in a pinch discharge. Analysis of the interferograms allowed to quantify the spatial distribution of the electron density in the region adjacent to the cathode. This work was supported by DOE grant DE-FG03-98DP00208. We also acknowledge the support of NSF for the development of the laser.

  12. Laboratory Plasma Astrophysics Research with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki; Kato, Tsunehiko; Kuramitsu, Yasuhiro; Sakawa, Yuichi

    2008-12-01

    Large scale laser facilities mainly constructed for fusion research can be used to produce high-energy-density plasmas like the interior of stars and planets. They can be also used to reproduce the extreme phenomena of explosion and high Mach number flow in mimic scale in laboratory. With advanced diagnostic technique, we can study the physics of plasma phenomena expected to control a variety of phenomena in Universe. The subjects studied so far are reviewed, for example, in [1], [2]. The project to promote the laboratory astrophysics with Gekko XII laser facility has been initiated from April 1st this year as a project of our institute. It consists of four sub-projects. They are 1. Physics of collisionless shock and particle acceleration, 2. Physics of Non LTE (local thermodynamic equilibrium) photo-ionized plasma, 3. Physics of planets and meteor impact, 4. Development of superconducting Terahertz device. I will briefly explain what the laser astrophysics means and introduce what are the targets of our project. Regarding the first sub-project, we have carried out hydrodynamic and PIC simulation to design the experiments with intense laser. We clarified the physical mechanism of generation of the magnetic field in non-magnetized plasma and the collsionless shock formation caused by the ion orbit modifications by the magnetic fields generated as the result of plasma instability. Note from Publisher: This article contains the abstract only.

  13. Preliminary characterization of a laser-generated plasma sheet

    DOE PAGES

    Keiter, P. A.; Malamud, G.; Trantham, M.; ...

    2014-12-10

    We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments, which are aimed at studying similar physics as that found in the hot spot region of cataclysmicmore » variables. Krauland et al created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. As a result, they can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.« less

  14. Preliminary characterization of a laser-generated plasma sheet

    SciTech Connect

    Keiter, P. A.; Malamud, G.; Trantham, M.; Fein, J.; Davis, J.; Klein, S. R.; Drake, R. P.

    2014-12-10

    We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments, which are aimed at studying similar physics as that found in the hot spot region of cataclysmic variables. Krauland et al created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. As a result, they can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.

  15. Coupling between electron plasma waves in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Everett, M. J.; Lal, A.; Clayton, C. E.; Mori, W. B.; Joshi, C.; Johnston, T. W.

    1996-05-01

    A Lagrangian fluid model (cold plasma, fixed ions) is developed for analyzing the coupling between electron plasma waves. This model shows that a small wave number electron plasma wave (ω2,k2) will strongly affect a large wave number electron plasma wave (ω1,k1), transferring its energy into daughter waves or sidebands at (ω1+nω2,k1+nk2) in the lab frame. The accuracy of the model is checked via particle-in-cell simulations, which confirm that the energy in the mode at (ω1,k1) can be completely transferred to the sidebands at (ω1+nω2,k1+nk2) by the presence of the electron plasma mode at (ω2,k2). Conclusive experimental evidence for the generation of daughter waves via this coupling is then presented using time- and wave number-resolved spectra of the light from a probe laser coherently Thomson scattered by the electron plasma waves generated by the interaction of a two-frequency CO2 laser with a plasma.

  16. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  17. Combined impact features for laser plasma generation

    NASA Astrophysics Data System (ADS)

    Loktionov, E.; Protasov, Yu; Telekh, V.

    2017-05-01

    Laser-induced plasma has been considered for multiple applications by the moment, and its characteristics strongly depend on laser radiation parameters. Reaching demanded values for the latter might be rather costly, but, in certain cases, similar or even better results could be reached in case of additional impact (optical, electric, magnetic, corpuscular, mechanical etc.). Combined impact effects are mainly based on target properties or interaction mechanism change, and found to decrease plasma generation thresholds by orders of magnitude, improve energy efficiency significantly, and also broaden the range of plasma parameters. Application area, efficiency and optimal regimes for laser plasma generation at such combined impact have been considered. Analysis based on published data and own experiments was performed for both target material and induced plasma flows. Criterial parameters have been suggested to characterize both combined impact and response to it. The data on plasma generation thresholds, controlled parameters, working media supply systems and recovery rate of droplets are very important for technology setups, including those for material modification.

  18. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Microwave generation in an optical breakdown plasma created by modulated laser radiation

    NASA Astrophysics Data System (ADS)

    Antipov, A. A.; Grasyuk, Arkadii Z.; Losev, Leonid L.; Soskov, V. I.

    1990-06-01

    It was established that when laser radiation, intensity modulated at a frequency of 2.2 GHz, interacted with an optical breakdown plasma which it had created, a microwave component appeared in the thermal emf of the plasma. The amplitude of the microwave thermal emf reached 0.7 V for a laser radiation intensity of 6 GW/cm2. Laser radiation with λL = 1.06 μm was converted to the microwave range with λmω = 13 cm in the optical breakdown plasma. A microwave signal power of ~ 0.5 W was obtained from a laser power of ~ 5 MW.

  19. Production of plasmas by long-wavelength lasers

    DOEpatents

    Dawson, J.M.

    1973-10-01

    A long-wavelength laser system for heating low-density plasma to high temperatures is described. In one embodiment, means are provided for repeatedly receiving and transmitting long-wavelength laser light in successive stages to form a laser-light beam path that repeatedly intersects with the equilibrium axis of a magnetically confined toroidal plasma column for interacting the laser light with the plasma for providing controlled thermonuclear fusion. Embodiments for heating specific linear plasmas are also provided. (Official Gazette)

  20. A study of ion acceleration, asymmetric optical pumping and low frequency waves in two expanding helicon plasmas

    NASA Astrophysics Data System (ADS)

    Sun, Xuan

    This work concerns measurements of parallel ion flow, optical pumping, and low frequency waves in expanding plasmas generated by two different helicon plasma sources. The measurements confirm numerical predictions of the formation of a current-free double layer in a region of diverging magnetic field. With laser-induced fluorescence (LIF), the double layer structure in both helicon plasma sources was investigated through measurements of the bulk parallel ion flow speed. Both double layers have a total potential drop of 3-4 kTe and length scales smaller than ion-neutral mean-free-path. A stronger double layer, with a potential drop of ˜ 6kTe , was created in a uniform magnetic field region with a plasma limiting aperture plate. During the investigations of ion acceleration in expanding plasmas, a new phenomenon, asymmetrical optical pumping (AOP) due to the acceleration of ions in magnetic field gradient, was observed. The signature of AOP is a difference in the LIF emission amplitude from a pair of Zeeman-split ion states. A model that reproduces the dependence of the AOP on magnetic-field and ion-velocity gradients is described. With magnetic fluctuation probes, low frequency, transverse, electromagnetic waves were also identified in the expanding helicon plasma. The wave is localized to the vicinity of the maximum plasma density gradient and appears only at low neutral pressure. Based on the scaling of the wave frequency and amplitude with magnetic field strength, the wave was identified as the resistive drift Alfven wave.

  1. Ion Emission and Expansion in Laser-Produced Tin Plasma

    NASA Astrophysics Data System (ADS)

    Burdt, Russell Allen

    2011-12-01

    Laser produced Sn plasma, in its role as an efficient extreme ultraviolet (EUV) x-ray source, is being studied extensively in support of next generation manufacturing of integrated circuits by nanolithography. The ability to diagnose and manipulate the properties of ions emitted from the laser produced plasma (LPP) must be achieved in order for the technology to meet stringent performance requirements. Here we study the emission and expansion of ions from Sn LPP, in parameter space relevant to the EUV x-ray source application. Several particle and radiation plasma diagnostics, in addition to analytical and numerical analysis, are all used to elucidate the complex relationships between the target properties, irradiation conditions, and resultant plasma and ion properties. Two specific laser systems of current interest to the application, at wavelengths of 1.064mum and 10.6mum, are both utilized, which allows for direct comparisons of the effects of laser wavelength on ion properties. Details of the available experimental apparatus, including the Nd:YAG and CO2 laser systems, are discussed first. Following, the design and realization of a custom charged particle plasma diagnostic, hereafter referred to as the ion probe, is described. The successful development of the ion probe enabled measurements of the energy distribution for each charge state of each ion species in expanding plasma, which is a new diagnostic capability. Measurements of mass ablation from Sn plasma produced by a 1.064mum laser are discussed next, specifically the scaling of mass ablation rate with laser intensity. These measurements are useful in the design of mass-limited targets, and also are used to infer mechanisms of laser energy absorption and heat conduction within the plasma. In addition to the ion probe, an EUV spectrometer and a calibrated EUV calorimeter were both utilized as diagnostics to measure the mass ablation rate by complementary methods. Laser intensity was scanned from 3x1011W

  2. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  3. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2009-01-22

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma-based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma-based collider is presented.

  4. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2008-08-01

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma based collider is presented.

  5. Laser beat frequency heating of a rippled density plasma

    NASA Astrophysics Data System (ADS)

    Vijay, A.; Tripathi, V. K.

    2016-09-01

    Two collinear laser beams propagating through a rippled density plasma, with their frequency difference close to plasma frequency, resonantly excite a large amplitude plasma wave. The density ripple of suitable wavenumber slows down the plasma wave very significantly, leading to strong electron heating via the Landau damping of the plasma wave. An analytical framework of the process is developed and the electron temperature scaling with plasma density, laser power and laser frequency have been obtained. Its relevance to recent experiments on intense short pulse laser plasma interaction has been discussed.

  6. Laser-driven electron acceleration in an inhomogeneous plasma channel

    SciTech Connect

    Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui

    2015-12-15

    We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.

  7. Non Equilbrium Vibrational Kinetics in Expanding Plasma Flows

    SciTech Connect

    Colonna, Gianpiero

    2008-12-31

    The supersonic expansion of a plasma is a system of interest for aerospace applications, ranging from propulsion to hypersonic wind tunnels. Under these conditions the plasma shows significant departures from chemical and thermal equilibrium, similarly to post-discharge conditions. The multitemperature description is not adequate because the internal level distributions show tails overpopulated with respect to a Boltzmann distribution. The state-to-state approach has to be used, including the interaction with free electrons which follow non-maxwellian distributions.

  8. Numerical Analysis of Magnetic Thrust Chamber System for Laser Fusion Rocket Considering the Creation Process of Laser-Produced Plasma

    NASA Astrophysics Data System (ADS)

    Maeno, Akihiro; Kajimura, Yoshihiro; Sunahara, Atsushi; Yamamoto, Naoji; Yasunaga, Masato; Hinaga, Tomoyuki; Hanaya, Tomonari; Fujioka, Shinsuke; Johzaki, Tomoyuki; Mori, Yoshitaka; Nakashima, Hideki

    The plasma behavior in a magnetic thrust chamber system for a laser fusion rocket is numerically simulated using a three-dimensional (3D) hybrid particle-in-cell (PIC) code and a one-dimensional (1D) radiation hydrodynamic code. The magnetic thrust chamber and an applied magnetic field with a suitable geometry generate an impulse from the interaction between the diamagnetic current in the laser-produced plasma and the magnetic field generated by a magnetic coil. A 1D radiation hydrodynamics code is used to compute the hydrodynamic evolution of a radiating plasma heated by laser beams or external radiation sources. By combining this code and a 3D hybrid PIC code, a series of numerical simulations are performed to investigate high-energy laser injection onto a fuel target and the ablated plasma behavior of the system. A thrust energy of 0.37 J and an impulse bit of 31.6 μNs are obtained for an incident laser energy of 4.0 J. This impulse bit could mostly be generated by interactions between a slowly expanding plasma (expansion velocity of ~20 km/s) and a magnetic field. To optimize this system, it is important to reduce the expansion velocity of the laser-produced plasma.

  9. Parametric instabilities in large nonuniform laser plasmas

    SciTech Connect

    Baldis, H.A.; Montgomery, D.S.; Moody, J.D.; Estabrook, K.G.; Berger, R.L.; Kruer, W.L.; Labaune, C.; Batha, S.H.

    1992-09-01

    The study of parametric instabilities in laser plasmas is of vital importance for inertial confinement fusion (ICF). The long scale-length plasma encountered in the corona of an ICF target provides ideal conditions for the growth of instabilities such as stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), and filamentation. These instabilities can have detrimental effects in ICF and their characterization and understanding is of importance. Scattering instabilities are driven through a feedback loop by which the beating between the electromagnetic EM fields of the laser and the scattered light matches the frequency of a local longitudinal mode of the plasma. Any process which interferes with the coherence of this mechanism can substantially alter the behavior of the instability. Of particular interest is the study of laser beam smoothing techniques on parametric instabilities. These techniques are used to improve irradiation uniformity which can suppress hydrodynamic instabilities. Laser beam smoothing techniques have the potential to control the scattering level from parametric instabilities since they provide not only a smoother laser intensity distribution, but also reduced coherence. Beam smoothing techniques that affect the growth of parametric instabilities include spatial smoothing and temporal smoothing by laser bandwidth. Spatial smoothing modifies the phase fronts and temporal distribution of intensities in the focal volume. The transverse intensity spectrum is shifted towards higher spatial wavenumber and can significantly limit the growth of filamentation. Temporal smoothing reduces the coherence time and consequently limits the growth time. Laser bandwidth is required for most smoothing techniques, and can have an independent effect on the instabilities as well.

  10. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    SciTech Connect

    Kajimura, Y.; Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H.

    2008-12-31

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction ({alpha}) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease {alpha} value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  11. Laser ignition of plasma off aluminum surfaces

    NASA Astrophysics Data System (ADS)

    Weyl, G.; Pirri, A.; Root, R.

    1980-07-01

    The prompt initiation of a plasma above metal surfaces irradiated by a CO2 laser pulse in the intensities range one million to one billion W per sq cm is modelled. The initiation mechanism is assumed to be the vaporization of flakes or surface defects that are thermally insulated from the bulk surface, followed by laser induced breakdown in the vapor. The fluid dynamics of the expansion in an air background is modelled in the 1 dimensional and 3 dimensional regimes. Breakdown of the vapor due to inverse bremsstrahlung absorption of the laser radiation is calculated specifically for aluminum by use of a Boltzmann code. Results are presented in the form of a map of breakdown time versus incident laser flux and compared with available experimental data.

  12. Ion beam control in laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2016-03-01

    By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.

  13. Laser-produced plasma source system development

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor V.; Brandt, David C.; Bykanov, Alexander N.; Ershov, Alexander I.; Partlo, William N.; Myers, David W.; Böwering, Norbert R.; Vaschenko, Georgiy O.; Khodykin, Oleh V.; Hoffman, Jerzy R.; Vargas L., Ernesto; Simmons, Rodney D.; Chavez, Juan A.; Chrobak, Christopher P.

    2007-03-01

    This paper describes the development of laser produced plasma (LPP) technology as an EUV source for advanced scanner lithography applications in high volume manufacturing. EUV lithography is expected to succeed 193 nm immersion technology for critical layer patterning below 32 nm beginning with beta generation scanners in 2009. This paper describes the development status of subsystems most critical to the performance to meet joint scanner manufacturer requirements and semiconductor industry standards for reliability and economic targets for cost of ownership. The intensity and power of the drive laser are critical parameters in the development of extreme ultraviolet LPP lithography sources. The conversion efficiency (CE) of laser light into EUV light is strongly dependent on the intensity of the laser energy on the target material at the point of interaction. The total EUV light generated then scales directly with the total incident laser power. The progress on the development of a short pulse, high power CO2 laser for EUV applications is reported. The lifetime of the collector mirror is a critical parameter in the development of extreme ultra-violet LPP lithography sources. The deposition of target materials and contaminants, as well as sputtering of the collector multilayer coating and implantation of incident particles can reduce the reflectivity of the mirror substantially over the exposure time even though debris mitigation schemes are being employed. The results of measurements of high energy ions generated by a short-pulse CO2 laser on a laser-produced plasma EUV light source with Sn target are presented. Droplet generation is a key element of the LPP source being developed at Cymer for EUV lithography applications. The main purpose of this device is to deliver small quantities of liquid target material as droplets to the laser focus. The EUV light in such configuration is obtained as a result of creating a highly ionized plasma from the material of the

  14. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    SciTech Connect

    Purohit, Gunjan Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-05-15

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.

  15. Ion and X-ray techniques used for study of laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Wolowski, J.; Parys, P.; Rosinski, M.; Ryć, L.; Woryna, E.

    2015-04-01

    This review article describes apparatus for ion and X-ray diagnostics, which were used in experimental studies of laser-produced plasmas performed by the IPPLM's team in collaboration with other researchers at IPPLM and PALS Research Centre in Prague (the Czech Republic). The investigations of expanding laser-produced plasma properties in dependence on laser beam parameters were done by means of ion diagnostics devices: ion collectors (ICs), cylindrical ion energy analyzer (IEA) and the mass spectrograph of the Thomson type. At IPPLM, different types of detectors have been developed for measurement of X-ray emission. Properties of laser-produced beams of ions and X-ray radiation were analysed in the cooperative experiments performed with the use of a high-energy iodine laser PALS at the PALS Research Centre ASCR in the Czech Republic and the low-energy repetitive laser at IPPLM.

  16. Propagation of chirped laser pulses in a plasma channel

    SciTech Connect

    Jha, Pallavi; Malviya, Amita; Upadhyay, Ajay K.

    2009-06-15

    Propagation of an initially chirped, Gaussian laser pulse in a preformed parabolic plasma channel is analyzed. A variational technique is used to obtain equations describing the evolution of the phase shift and laser spot size. The effect of initial chirp on the laser pulse length and intensity of a matched laser beam propagating in a plasma channel has been analyzed. The effective pulse length and chirp parameter of the laser pulse due to its interaction with plasma have been obtained and graphically depicted. The resultant variation in laser frequency across the laser pulse is discussed.

  17. Double-layer ion acceleration triggered by ion magnetization in expanding radiofrequency plasma sources

    SciTech Connect

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod W.; Fujiwara, Tamiya

    2010-10-04

    Ion energy distribution functions downstream of the source exit in magnetically expanding low-pressure plasmas are experimentally investigated for four source tube diameters ranging from about 5 to 15 cm. The magnetic-field threshold corresponding to a transition from a simple expanding plasma to a double layer-containing plasma is observed to increase with a decrease in the source tube diameter. The results demonstrate that for the four geometries, the double layer and the accelerated ion beam form when the ion Larmour radius in the source becomes smaller than the source tube radius, i.e., when the ions become magnetized in the source tube.

  18. Laser-plasma interactions for fast ignition

    NASA Astrophysics Data System (ADS)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-05-01

    In the electron-driven fast-ignition (FI) approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser-plasma interactions (LPI) relevant to FI. Increases in computational and modelling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modelling approaches and configurations are addressed, providing an overview of the modelling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale FI problem.

  19. Influence of expanding and contracting magnetic field configurations on detached plasma formation in a linear plasma device

    NASA Astrophysics Data System (ADS)

    Hayashi, Y.; Ohno, N.; Kajita, S.; Tanaka, H.

    2017-06-01

    We investigated the effects of magnetic field structure on detached plasma formation by simulating magnetically expanding and contracting plasma in a linear plasma device. The present study helps to characterize the geometries of a conventional poloidal divertor and advanced divertors, e.g., super-X divertor. The total ion particle flux measured with a large-diameter target plate dramatically changed under the detached plasma condition compared to that in attached plasma. Under the detached plasma condition, the magnetically expanding plasma clearly exhibited a significant influence on the degradation of detached plasma formation. Further, the magnetically contracting plasma slightly enhanced the electron-ion recombination (EIR) processes. By changing the magnetic field structure from contraction to expansion, the electron density (ne) decreased and the electron temperature (Te) increased upstream from the recombination front, leading to the degradation of the EIR processes. The effect of the decrease in parallel flow velocity under the magnetically contracting plasma on the plasma detachment was not observed because the driven flow due to pressure gradient compensated the effect.

  20. Kinetic Approach for Laser-Induced Plasmas

    SciTech Connect

    Omar, Banaz; Rethfeld, Baerbel

    2008-10-22

    Non-equilibrium distribution functions of electron gas and phonon gas excited with ultrashort intense laser pulses are calculated for laser-induced plasmas occurring in solids. The excitation during femtosecond irradiation and the subsequent thermalization of the free electrons, as well as the dynamics of phonons are described by kinetic equations. The microscopic collision processes, such as absorption by inverse bremsstrahlung, electron-electron collisions, and electron-phonon interactions are considered by complete Boltzmann collision integrals. We apply our kinetic approach for gold by taking s-band electron into account and compare it with the case of excitation of d-band electrons.

  1. Laser plasma in a magnetic field

    SciTech Connect

    Kondo,K.; Kanesue, T.; Tamura, J.; Dabrowski, R.; Okamura, M.

    2009-09-20

    Laser Ion Source (LIS) is a candidate among various heavy ion sources. A high density plasma produced by Nd:YAG laser with drift velocity realizes high current and high charge state ion beams. In order to obtain higher charged particle ions, we had test experiments of LIS with a magnetic field by which a connement effect can make higher charged beams. We measured total current by Faraday Cup (FC) and analyzed charge distribution by Electrostatic Ion Analyzer (EIA). It is shown that the ion beam charge state is higher by a permanent magnet.

  2. Kinetic Approach for Laser-Induced Plasmas

    NASA Astrophysics Data System (ADS)

    Omar, Banaz; Rethfeld, Bärbel

    2008-10-01

    Non-equilibrium distribution functions of electron gas and phonon gas excited with ultrashort intense laser pulses are calculated for laser-induced plasmas occurring in solids. The excitation during femtosecond irradiation and the subsequent thermalization of the free electrons, as well as the dynamics of phonons are described by kinetic equations. The microscopic collision processes, such as absorption by inverse bremsstrahlung, electron-electron collisions, and electron-phonon interactions are considered by complete Boltzmann collision integrals. We apply our kinetic approach for gold by taking s-band electron into account and compare it with the case of excitation of d-band electrons.

  3. Landau damping of a driven plasma wave from laser pulses

    SciTech Connect

    Bu Zhigang; Ji Peiyong

    2012-01-15

    The interaction between a laser pulse and a driven plasma wave with a phase velocity approaching the speed of light is studied, and our investigation is focused on the Gaussian laser pulse. It is demonstrated that when the resonance condition between the plasma wave and the laser pulse is satisfied, the Landau damping phenomenon of the plasma wave originated from the laser pulse will emerge. The dispersion relations for the plasma waves in resonance and non-resonance regions are obtained. It is proved that the Landau damping rate for a driven plasma wave is {gamma}>0 in the resonance region, so the laser pulse can produce an inverse damping effect, namely Landau growth effect, which leads an instability for the plasma wave. The Landau growth means that the energy is transmitted from the laser pulse to the plasma wave, which could be an effective process for enhancing the plasma wave.

  4. Electromagnetically Induced Guiding of Counter-propagating Lasers in Plasmas

    SciTech Connect

    First Author = G. Shvets; A. Pukhov

    1998-05-01

    The interaction of counter-propagating laser pulses in a plasma is considered. When the frequencies of the two lasers are close, nonlinear modification of the refraction index results in the mutual focusing of the two beams. A short (of order the plasma period) laser pulse can also be nonlinearly focused by a long counter-propagating beam which extends over the entire guiding length. This phenomenon of electromagnetically induced guiding can be utilized in laser-driven plasma accelerators.

  5. Magnetic-Field Generation and Amplification in an Expanding Plasma

    NASA Astrophysics Data System (ADS)

    Schoeffler, K. M.; Loureiro, N. F.; Fonseca, R. A.; Silva, L. O.

    2014-05-01

    Particle-in-cell simulations are used to investigate the formation of magnetic fields B in plasmas with perpendicular electron density and temperature gradients. For system sizes L comparable to the ion skin depth di, it is shown that B˜di/L, consistent with the Biermann battery effect. However, for large L/di, it is found that the Weibel instability (due to electron temperature anisotropy) supersedes the Biermann battery as the main producer of B. The Weibel-produced fields saturate at a finite amplitude (plasma β≈100), independent of L. The magnetic energy spectra below the electron Larmor radius scale are well fitted by the power law with slope -16/3, as predicted by Schekochihin et al. [Astrophys. J. Suppl. Ser. 182, 310 (2009)].

  6. Experimental Demonstration of Collisionless Particle Acceleration Mechanisms and Entrainment of Ambient Plasma Ions by a Rapidly Expanding Diamagnetic Cavity.

    NASA Astrophysics Data System (ADS)

    Bonde, J.; Vincena, S. T.; Gekelman, W. N.

    2015-12-01

    The collisionless coupling of an expanding diamagnetic cavity to a magnetized, ambient plasma is studied in a laboratory environment using a laser-produced plasma (LPP). The seed LPP rapidly expands with velocities up to the background Alfvén speed, vexp ≤ vA. The boundary layer of the expansion is characterized with in situ diagnostics as a cylindrical version of the Ferraro-Rosenbluth current sheath. Maintenance of quasi-neutrality in this sheath forms an electric field opposing the cross-field expansion which simultaneously drives the electron current that forms the diamagnetic cavity, decelerates the LPP ions to stagnation, and accelerates ambient ions inward. The field topology across the background magnetic field is identical to that described by Bernhardt, et al. [1] for the AMPTE magnetotail barium releases. The boundary along the magnetic field, however, is shown to contain an electric field with E·B ≠ 0, which is absent in simple fluid models of diamagnetic cavities. The electric fields at this boundary help explain previous observations in the experiment of the ejection of suprathermal electrons and return currents that generated whistler- and Alfvén-wave radiation in the ambient plasma. Magnetic loops and an emissive probe measure the magnetic field and electrostatic potential along 3 dimensions while a laser-induced fluorescence scheme measures the cross-field flow of the ambient argon ions as they penetrate the diamagnetic cavity. Particle orbit solvers employing the measured fields corroborate the flow diagnostic and predict strong outflows of ambient ions with higher charge to mass ratios after diamagnetic cavity collapse. This experiment was conducted in the Large Plasma Device at the Basic Plasma Science Facility and funded by grants from the US Department of Energy and the National Science Foundation. [1] P.A. Bernhardt, R.A. Roussel-Dupre, M.B. Pongratz, J. Geophys. Res. 92, 57777 (1987).

  7. Laser-heated emissive plasma probe

    SciTech Connect

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-08-15

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  8. Expanding the plasmonic response of bimetallic nanoparticles by laser seeding

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Rodríguez, C. E.; Afonso, C. N.

    2016-03-01

    This work explores a cost-effective route to enhance the tuning range of the optical response of metal nanostructures on substrates beyond the ranges that are achievable through the nanostructure dimensions, composition or dewetting processes. The new route (laser seeding) uses single nanosecond laser pulses to induce dewetting in regions of a metal layer deposited on a glass substrate followed by the deposition of a second metal layer, both layers being deposited by pulsed laser deposition. In order to show the possibilities of this new route, we have chosen that the two metals were different, namely Ag and Au. The comparison of the optical response of these regions to those that were laser irradiated after deposition of the second metal layer shows that while nanoalloyed nanoparticles (NPs) are formed in the latter case, the NPs produced in the former case have a heterogeneous structure. The interface between the two metals is either sharp or a narrow region where they have mixed depending on the laser fluence used. While the nanoalloyed NPs exhibit a single, narrow surface plasmon resonance (SPR), the heterogeneous NPs show broader SPRs that peak in the near infrared and depending on conditions exhibit even two clear SPRs. The laser seeding approach in the conditions used in this work allows for the expansion of the tuning range of the color to the blue-green region, i.e. beyond the region that can be achieved through nanoalloyed NPs (yellow-red region). In addition, the results presented foresee the laser seeding route as a means to produce round and almost isolated NPs in an enhanced range of diameters.

  9. PLASMA EXPANDER AND BLOOD STORAGE EFFECTS ON CAPILLARY PERFUSION IN TRANSFUSION FOLLOWING HEMORRHAGE

    PubMed Central

    Hightower, C. Makena; Salazar Vázquez, Beatriz Y.; Cabrales, Pedro; Tsai, Amy G.; Acharya, Seetharama A.; Intaglietta, Marcos

    2014-01-01

    BACKGROUND Treating hemorrhage with blood transfusions in subjects previously hemodiluted with different colloidal plasma expanders, using fresh autologous blood or 2-weeks stored blood, allows identifying the interaction between type of plasma expander and differences in blood storage. STUDY DESIGN AND METHODS Studies used the hamster window chamber model. Fresh autologous plasma, 130 kDa starch based plasma expander (HES), or 4% polyethylene glycol conjugated albumin (PEG-Alb) were used for 20% of blood volume hemodilution. Hemodilution was followed by a 55% by blood volume 40 min hemorrhagic shock period, treated with transfusion of fresh or 2-weeks stored blood. Outcome was evaluated one hour post blood transfusion in terms of microvascular and systemic parameters. RESULTS Results were principally dependent on the type of colloidal solution used during hemodilution, 4% PEG-Alb yielding the best microvascular recovery evaluated in terms of the functional capillary density. This result was consistent whether fresh blood or stored blood was used in treating the subsequent shock period. Fresh blood results were significantly better in systemic and microvascular terms relative to stored blood. HES and fresh plasma hemodilution yielded less favorable results, a difference that was enhanced when fresh vs. stored blood were compared in their efficacy of correcting the subsequent hemorrhage. CONCLUSION The type of plasma expander used for hemodilution influences the short term outcome of subsequent volume resuscitation using blood transfusion; 4% PEG-Alb providing the most favorable outcome by comparison to HES or fresh plasma. PMID:22554380

  10. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    NASA Astrophysics Data System (ADS)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  11. A Novel Source of Mesoscopic Particles for Laser Plasma Studies

    DTIC Science & Technology

    2015-12-16

    fast ions from the plasma. Over the last decade laser plasma acceleration has made rapid strides in terms of providing high brightness,4,5 tunable...in Solid Targets with Wavelength-Scale Spheres. Phys. Rev. Lett. 98, 045001 (2007). 13Henig, A. et al. Laser -Driven Shock Acceleration of Ion Beams ...ABSTRACT Intense laser produced plasma are known for generating high dense - high temperatures plasma that is a source for electron, ion acceleration and

  12. Control of laser-ablation plasma potential with external electrodes

    SciTech Connect

    Isono, Fumika Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2015-08-15

    The potential of a laser-ablation plasma was controlled stably up to +2 kV by using external ring electrodes. A stable electron sheath was formed between the plasma and the external electrodes by placing the ring electrodes away from the boundary of the drifting plasma. The plasma kept the potential for a few μs regardless of the flux change of the ablation plasma. We also found that the plasma potential changed with the expansion angle of the plasma from the target. By changing the distance between the plasma boundary and the external electrodes, we succeeded in controlling the potential of laser-ablation plasma.

  13. Tunable Plasma-Wave Laser Amplifier

    NASA Astrophysics Data System (ADS)

    Bromage, J.; Haberberger, D.; Davies, A.; Bucht, S.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2016-10-01

    Raman amplification is a process by which a long energetic pump pulse transfers its energy to a counter-propagating short seed pulse through a resonant electron plasma wave. Since its conception, theory and simulations have shown exciting results with up to tens of percent of energy transfer from the pump to the seed pulse. However, experiments have yet to surpass transfer efficiencies of a few percent. A review of past literature shows that largely chirped pump pulses and finite temperature wave breaking could have been the two most detrimental effects. A Raman amplification platform is being developed at the Laboratory for Laser Energetics where a combination of a high-intensity tunable seed laser with sophisticated plasma diagnostics (dynamic Thomson scattering) will make it possible to find the optimal parameter space for high-energy transfer. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Formation of Expanded Austenite on a Cold-Sprayed AISI 316L Coating by Low-Temperature Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Adachi, Shinichiro; Ueda, Nobuhiro

    2015-12-01

    Low-temperature plasma nitriding at temperatures below 450 °C is commonly applied to austenitic stainless steels to enhance wear resistance, while maintaining corrosion resistance, by forming expanded austenite (known as the S-phase). In this work, low-temperature plasma nitriding of cold-sprayed AISI 316L coatings was examined. A cold-spray technique was developed to produce metal coatings with less oxidation. However, the cold-sprayed AISI 316L coating obtained by use of nitrogen gas as propellant contained many interconnected pores and cracks, and was, consequently, unsuitable as an anticorrosive coating. Therefore, laser post-treatment was used to modify the coating and increase its density to similar to that of bulk steel. The anticorrosive performance of this coating on a carbon steel substrate in NaCl solution was substantially improved. Subsequent low-temperature plasma nitriding enhanced the wear resistance by two orders of magnitude. It is concluded that cold-sprayed AISI 316L coatings treated by laser post-treatment and subsequent low-temperature plasma nitriding could be used as protective coatings under severe wear and corrosion conditions.

  15. Excitation of nuclear isomers by X rays from laser plasma

    SciTech Connect

    Andreev, Aleksandr A; Karpeshin, F; Trzhaskovskaya, M B; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V

    2010-06-23

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer {sup 93}Mo upon irradiation of a niobium {sup 93}Nb target by {approx}50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma. (interaction of laser radiation with matter. laser plasma)

  16. Laser-induced breakdown spectroscopy expands into industrial applications

    NASA Astrophysics Data System (ADS)

    Noll, Reinhard; Fricke-Begemann, Cord; Brunk, Markus; Connemann, Sven; Meinhardt, Christoph; Scharun, Michael; Sturm, Volker; Makowe, Joachim; Gehlen, Christoph

    This paper presents R&D activities in the field of laser-induced breakdown spectroscopy for industrial applications and shows novel LIBS systems running in routine operation for inline process control tasks. Starting with a comparison of the typical characteristics of LIBS with XRF and spark-discharge optical emission spectrometry, the principal structure of LIBS machines embedded for inline process monitoring will be presented. A systematic requirement analysis for LIBS systems following Ishikawa's scheme was worked out. Stability issues are studied for laser sources and Paschen-Runge spectrometers as key components for industrial LIBS systems. Examples of industrial applications range from handheld LIBS systems using a fiber laser source, via a set of LIBS machines for inline process control tasks, such as scrap analysis, coal analysis, liquid slag analysis and finally monitoring of drill dust.

  17. New laser technology expands the range of holographic NDT

    SciTech Connect

    Ambroseo, J.; Peterson, P. )

    1994-05-01

    Holographic nondestructive testing and shearography are interferometric, optical methods used to detect flaws during stress testing. This process can be used to test a diverse cross-section of items, such as airplane jet engines, turbine rings, electronic circuit boards, and truck/aircraft tires. As with any interferometric technique, both methods require a coherent light source (laser) with appropriate characteristics. Until very recently, visible wavelength gas lasers have been the source of choice for these applications. In this article the authors examine the impact of a new breed of diode pumped solid state (DPSS) lasers that offers high power visible output, true portability, and a high level of stability and coherence. The major benefits of this novel technology for holography and shearography are improvements in resolution, accuracy, convenience, and utility, combined with low overall operating costs.

  18. Enhancement of KSTAR plasma control for expanding operational space

    NASA Astrophysics Data System (ADS)

    Hahn, Sang-Hee; Jeon, Y. M.; Han, H.; Ahn, H. S.; Kim, J.; Kim, Y. J.; Joung, M.; Woo, M. H.; Mueller, D.; Eidietis, N. W.; Lanctot, M.; Humphreys, D. A.; Hyatt, A. W.; Welander, A. S.; Walker, M. L.; Kolemen, E.; Park, Y. S.; Sabbagh, S. A.

    2015-11-01

    In order to expand the operational space with stationary high performances, new approaches on the magnetic control design are necessary. A few examples on recent achievements at KSTAr are presented here: The Introduction of the in-vessel radial control (IRC) provides a fundamental change on baseline axisymmetric magnetic controls. Analysis on dedicated simulations/experiments for the vertical stabilization control margin gave an insight for improvement of the vertical position control. In order to enhance flexibility on the non-axisymmetric 3D field physics studies, the KSTAR RMP coil systems have been upgraded in 2015 provide more variety on the available 3D field profile. Integration of real-time heating device control enabled more elaborate kinetic controls since 2013. Real-time TM suppression is introduced as an example of the integrated control, which will be linked to stability control in the high-beta regime relevant to ITER success.

  19. High amplitude waves in the expanding solar wind plasma

    NASA Technical Reports Server (NTRS)

    Schmidt, J. M.; Velli, M.; Grappin, R.

    1995-01-01

    We simulated the 1-D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacoustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. In our simulations, fast and slow magnetoacoustic waves seem to have a level in the density-fluctuations which is too high when we compare with the observations. Furthermore, the evolution of energies for slow magnetoacoustic waves differs strongly from the evolution of fluctuation energies in situ.

  20. Interaction of laser radiation with plasma under the MG external magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; Sawada, H.; Sentoku, Y.

    2016-10-01

    Strong magnetic fields play an important role in many physical processes relevant to astrophysical events and fusion research. Laser produced plasma in the MG external magnetic field was studied at the 1 MA pulsed power generator coupled with the laser operated in ns and ps regimes. Rod loads and coils under 1 MA current were used to produce a magnetic field of 2-3 MG. In one type of experiments, a 0.8 ns laser pulse was focused on the load surface with intensity of 3x1015 W/cm2. Laser diagnostics showed that the laser produced plasma expands in the transversal magnetic field and forms a thin plasma disc with a typical diameter of 3-7 mm and thickness of 0.2-0.4 mm. A magnetosonic-type wave was observed in the plasma disc and on the surface of the rod load. The plasma disc expands radially across the magnetic field with a velocity of the order of the magnetosonic velocity. Physical mechanisms involved in the formation of the plasma disc may be relevant to the generation of plasma loops in sun flares. Other experiments, with a 0.4 ps laser pulse were carried for investigation of the isochoric heating of plasma with fast electrons confined by the strong magnetic field. The laser beam was focused by the parabola mirror on a solid target in the magnetic field of the coil. Work was supported by the DOE Grant DE-SC0008824 and DOE/NNSA UNR Grant DE-FC52-06NA27616.

  1. Isolation and physicochemical characterization of Assam Bora rice starch for use as a plasma volume expander.

    PubMed

    Ahmad, Mohammad Zaki; Bhattacharya, Ashokanshu

    2010-04-01

    Water soluble polysaccharides are most effective oncotic agents which are used for treatment of intravascular volume deficiency. Nowadays, they are used as basic material for plasma volume expander. Plasma volume expander based on starch has lower tendency to remain in any major organ of body in comparison to other plasma volume expander. Branched component of starch amylopectin is very similar in structure to glycogen, the reserve polysaccharides of animal; for all this reason starch is compatible with body tissues. Physicochemical properties of raw starch and amylopectin, isolated from Assam Bora rice were characterized for use as plasma volume expander. Characterization involves the determination of ash value, weight average molecular mass, viscosity and resistance towards enzymatic (amylase) hydrolysis. Amylose content was almost negligible. The X-ray diffraction pattern of Assam Bora rice starch was typically A type. High degree of crystallinity of Assam Bora rice starch reflects its resistance towards enzymatic hydrolysis which is of therapeutic advantage for using it as a plasma volume expander.

  2. Laser mode control using leaky plasma channels

    NASA Astrophysics Data System (ADS)

    Djordjević, B. Z.; Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2017-03-01

    The evolution and propagation of a non-Gaussian laser pulse in matched parabolic channels as well as leaky channels are investigated. It has previously been shown for a Gaussian pulse that matched guiding can be achieved using such channels. In the low power regime, analytical work demonstrates that, for multi-mode pulses, there is significant transverse beating. The interaction between different modes may have an adverse effect on the laser pulse as it propagates through the primary channel, in which plasma wakefield acceleration of the electron beam is to occur, and this effect can be shown in numerical simulations of high-power laser-plasma interactions. To improve guiding of the pulse, we propose using leaky channels. Higher order mode content is minimized through the leaky channel, while the fundamental mode remains well-guided. In addition to numerical simulations, it can be qualitatively shown, through the Wentzel-Kramers-Brillouin (WKB) method and the Source Dependent Expansion (SDE) analysis, that in finite channels, higher order modes either leak out or transfer energy to the fundamental. In conclusion, an idealized plasma filter based on leaky channels is found to filter out the higher order modes and leave a near-Gaussian profile before the pulse enters the primary channel.

  3. Laser plasma as an effective ion source

    NASA Astrophysics Data System (ADS)

    Masek, Karel; Krasa, Josef; Laska, Leos; Pfeifer, Miroslav; Rohlena, Karel; Kralikova, Bozena; Skala, Jiri; Woryna, Eugeniusz; Farny, J.; Parys, Piotr; Wolowski, Jerzy; Mraz, W.; Haseroth, H.; Sharkov, B.; Korschinek, G.

    1998-09-01

    Ions in different charge state and with different energy distribution are generated in the process of interaction of intense laser radiation with solid targets. Multiply charged ions of medium- and high-Z elements (Al, Co, Ni, Cu, Sn, Ta, W, Pt, Au, Pb, Bi), produced by photodissociation iodine laser system PERUN ((lambda) equals 1.315 micrometer, EL approximately 40 J, (tau) approximately 500 ps) are reported. Corpuscular diagnostics based on time-of-flight method (ion collectors and a cylindrical electrostatic ion energy analyzer) as well as Thomson parabola spectrometer were used in the experiments. The ions in maximum charge state up to about 55+ and with energies of several MeV were registered at a distance of about 2 m from the plasma plume. Measured ion current densities higher than 10 mA/cm2 in about 1 m from the target demonstrate the performance of laser ion source. A theoretical interpretation of ion spectra is attempted.

  4. Carbon Multicharged Ion Generation from Laser Plasma

    NASA Astrophysics Data System (ADS)

    Balki, Oguzhan; Elsayed-Ali, Hani E.

    2014-10-01

    Multicharged ions (MCI) have potential uses in different areas such as microelectronics and medical physics. Carbon MCI therapy for cancer treatment is considered due to its localized energy delivery to hard-to-reach tumors at a minimal damage to surrounding tissues. We use a Q-switched Nd:YAG laser with 40 ns pulse width operated at 1064 nm to ablate a graphite target in ultrahigh vacuum. A time-of-flight energy analyzer followed by a Faraday cup is used to characterize the carbon MCI extracted from the laser plasma. The MCI charge state and energy distribution are obtained. With increase in the laser fluence, the ion charge states and ion energy are increased. Carbon MCI up to C+6 are observed along with carbon clusters. When an acceleration voltage is applied between the carbon target and a grounded mesh, ion extraction is observed to increase with the applied voltage. National Science Foundation.

  5. Summary Report of Working Group 6: Laser-Plasma Acceleration

    SciTech Connect

    Leemans, Wim P.; Downer, Michael; Siders, Craig

    2006-07-01

    A summary is given of presentations and discussions in theLaser-Plasma Acceleration Working Group at the 2006 Advanced AcceleratorConcepts Workshop. Presentation highlights include: widespreadobservation of quasi-monoenergetic electrons; good agreement betweenmeasured and simulated beam properties; the first demonstration oflaser-plasma acceleration up to 1 GeV; single-shot visualization of laserwakefield structure; new methods for measuring<100 fs electronbunches; and new methods for "machining" laser-plasma acceleratorstructures. Discussion of future direction includes: developing a roadmapfor laser-plasma acceleration beyond 1 GeV; a debate over injection andguiding; benchmarking simulations with improved wake diagnostics;petawatt laser technology for future laser-plasmaaccelerators.

  6. Hybrid Laser Wakefield and Direct Laser Plasma Accelerator in the Plasma Bubble Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Khudik, Vladimir; Pukhov, Alexander; Shvets, Gennady

    2015-11-01

    The concept of hybrid laser wakefield and direct laser plasma accelerator in plasma bubble regime was recently proposed. The advantage of this approach is two-fold: (a) electrons' energy gains from the laser and from the wake add up, and (b) dephasing is slowed down. Using 2D VLPL simulations, we will demonstrate that two conditions must be met by the electrons injected into the hybrid accelerator: (1) strong spatial overlap with the laser field, and (2) large initial transverse energy. The firstcondition is met by employing two laser pulses: one to produce a plasma bubble, and the second time-delayed pulse to interact with the injected electrons. We will show that there are two approaches to meeting the second condition: self-injection using an engineered density bump and ionization-injection. The criteria for direct laser acceleration of ionization-injected electrons will be discussed. Combinations of laser pulses with different wavelengths will also be considered. This work is supported by the US DOE grant DE-SC0007889 and the AFOSR grant FA9550-14-1-0045.

  7. Variable xy-UV beam expander for high-power laser beam shaping

    NASA Astrophysics Data System (ADS)

    Nadorff, Georg; DeWitt, Frank; Lindau, Sten

    2012-10-01

    A five element zoomable anamorphic beam expander is designed and fabricated for a laser illumination system used in the manufacture of patterned micro-circuit substrates. The beam expander is the front end of a Gaussian to top-hat beam shaping illuminator. The tightly toleranced optical system downstream of the beam expander should not be readjusted with changes to the input beam. The job of the beam expander is to maintain, independent of the input beam, a constant diffraction limited output beam size as well as a specific waist location. A high power quasi-CW laser at 355 nm is employed for high throughput. The specifications of the laser allow for a range of x,y-beam diameters (ellipticity), x,y-waist locations (astigmatism), and x,y-divergence. As the laser's frequency tripling crystal is exposed to high fluence over time, the beam parameters will change. At some point the laser is exchanged for a new one, and a new set of beam parameters is presented to the beam expander. Movable cylindrical lenses enable the independent adjustment of x- and y-beam parameters. The mounting cells are motorized to enable adjustments remotely. We present the optical design approach using Gaussian beam ray tracing and discuss the mechanical implementation.

  8. High amplitude waves in the expanding solar wind plasma

    SciTech Connect

    Schmidt, J. M.; Velli, M.; Grappin, R.

    1996-07-20

    We simulated the 1 D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. It is the generation of sound due to ponderomotive forces of the Alfven wave which we can detect in the latter case. For slow magnetoacustic waves we find a kind of oscillation of the character of the wave between a sound wave and an Alfven wave. This is the more, the slow magnetoacustic wave is close to a sound wave in the beginning. On the other hand, fast magnetoacustic waves are much more dissipated than the other wave-types and their general behaviour is close to the Alfven. The normalized cross-helicity {sigma}{sub c} is close to one for Alfven-waves and this quantity is decreasing slightly when density-fluctuations are generated. {sigma}{sub c} decreases significantly when the waves are close to perpendicular propagation. Then, the waves are close to quasi-static structures.

  9. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Excitation of nuclear isomers by X rays from laser plasma

    NASA Astrophysics Data System (ADS)

    Andreev, Aleksandr A.; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V.; Karpeshin, F.; Trzhaskovskaya, M. B.

    2010-06-01

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer 93Mo upon irradiation of a niobium 93Nb target by ~50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma.

  10. Structure of an exploding laser-produced plasma

    SciTech Connect

    Collette, A.; Gekelman, W.

    2011-05-15

    Currents and instabilities associated with an expanding dense plasma embedded in a magnetized background plasma are investigated by direct volumetric probe measurements of the magnetic field and floating potential. A diamagnetic cavity is formed and found to collapse rapidly compared to the expected magnetic diffusion time. The three-dimensional current density within the expanding plasma includes currents along the background magnetic field, in addition to the diamagnetic current. Correlation measurements reveal that flutelike structures at the plasma surface translate with the expanding plasma across the magnetic field and extend into the current system that sustains the diamagnetic cavity, possibly contributing to its collapse.

  11. Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas

    SciTech Connect

    Harilal, Sivanandan S.; Brumfield, Brian E.; Cannon, Bret D.; Phillips, Mark C.

    2016-02-16

    Laser ablation is used in a variety of applications albeit formation mechanisms of molecules and nanoclusters are not well understood. We investigated the formation mechanisms of AlO molecules during complex interactions between an Al laser plume expanding into ambient air at atmospheric pressure levels. To produce the plasma a high-purity Al target was ablated using 1064 nm, 6 ns laser pulses. Our results show that the plasma chemistry leading to the formation of AlO is mediated by shock waves. During the early times of plasma expansion, the generated shock waves at the plume edges act as a barrier for the combustion process and the molecular formation is prevalent after the shockwave collapse. The temporally and spatially resolved contour mapping of Al and AlO highlight the formation routes and persistence of species in the plasma and its relation to plume hydrodynamics.

  12. Infusion of plasma expanders may lead to unexpected results in urinary protein assays.

    PubMed

    de Keijzer, M H; Klasen, I S; Branten, A J; Hordijk, W; Wetzels, J F

    1999-04-01

    Overt proteinuria was detected in the urine of a potential kidney donor, ultimately leading to the refusal of the kidneys for transplantation purposes. Histological examination of the kidneys did not reveal any abnormalities. Searching for substances that could have interfered with the urinary total protein assay, the role of infused, modified gelatin plasma expanders was investigated. We therefore measured the concentration of protein before and after the addition of various artificial plasma expanders to urine. Only when Biuret reagent or Pyrogallol Red dye were used did we find elevated concentrations of protein. Other methods, including the turbidimetric assays, did not detect additional amounts of protein in the spiked urine. We conclude that the infusion of modified gelatin solutions may cause apparent proteinuria. This effect is not observed with starch-based plasma expanders. Clinical chemists and clinicians should be aware of this phenomenon and possibly repeat the analysis with a different technique.

  13. Resonance Absorption of Laser Light by Warm and Cold Plasmas.

    DTIC Science & Technology

    1981-03-01

    34 Ponderomotive Force................38 Hot Electron Energy ................40 Validity bf Assumptions..............41 V. Conclusions...Indicated by Arrows) for the Warm and Cold Plasma Models ..... ................ 31 7 Cold Plasma: Fraction of Laser Energy Resonantly Absorbed as a...Function of Incident Angle .. ............ 35 8 Warm Plasma: Fraction of Laser Energy Resonantly Absorbed as a Function of Incident Angle (T = 637 ev and

  14. Expanded laser communications demonstrations with OICETS and ground stations

    NASA Astrophysics Data System (ADS)

    Takayama, Yoshihisa; Toyoshima, Morio; Shoji, Yozo; Koyama, Yoshisada; Kunimori, Hiroo; Sakaue, Minoru; Yamakawa, Shiro; Tashima, Yoshiyuki; Kura, Nobuhiro

    2010-02-01

    The restarted OICETS-ground laser communications experiments are introduced. The events are sequentially summarized from the launch of OICETS to the end-of-life, where the reopened experiments started from October 2008. In the period, the satellite-ground laser communications campaign with the four optical ground stations of DLR, ESA, JPL and NICT are conducted from April 2009 to September 2009. The open pointing characteristics of OICETS measured in those trials show that the performance remains almost the same as before in 2006. The average rate of the link establishments through the whole period is about 0.6 due to the weather conditions. The viewable periods of OICETS from the four ground stations are analyzed as an example. The result indicates that the satellite could be accessible once an hour from at least one of the four ground stations, which implies a possibility of a LEO satellite-ground quasi-continuous connection.

  15. Electron Diamagnetic Effect on Axial Force in an Expanding Plasma: Experiments and Theory

    SciTech Connect

    Takahashi, Kazunori; Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod W.

    2011-12-02

    The axial force imparted from a magnetically expanding current-free plasma is directly measured for three different experimental configurations and compared with a two-dimensional fluid theory. The force component solely resulting from the expanding field is directly measured and identified as an axial force produced by the azimuthal current due to an electron diamagnetic drift and the radial component of the magnetic field. The experimentally measured forces are well described by the theory.

  16. Electron diamagnetic effect on axial force in an expanding plasma: experiments and theory.

    PubMed

    Takahashi, Kazunori; Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod W

    2011-12-02

    The axial force imparted from a magnetically expanding current-free plasma is directly measured for three different experimental configurations and compared with a two-dimensional fluid theory. The force component solely resulting from the expanding field is directly measured and identified as an axial force produced by the azimuthal current due to an electron diamagnetic drift and the radial component of the magnetic field. The experimentally measured forces are well described by the theory. © 2011 American Physical Society

  17. Laser Initiation and Radiofrequency Sustainment of Seeded Air Plasmas

    DTIC Science & Technology

    2006-04-01

    Air 11 Plasmas at High Pressure A. Plasma System and Method of Operation 11 i.) Excimer laser and optic system 11 ii.) Gas flow system and plasma...mTorr of the seed gas is mixed with air, nitrogen, argon or helium at 760 Torr, the laser-produced density is in the range of 1-3 x 1013/cc and plasma...Plasmas at High Pressure A. Plasma System and Method of Operation i.) Excimer laser and optic system A schematic of the experimental setup is shown in

  18. Plasma volume expanders: use in medicine and detecting misuse in sports.

    PubMed

    Simoni, Ruth E; Scalco, Fernanda B; de Oliveira, Maria Lucia C; Aquino Neto, Francisco R

    2011-01-01

    Plasma volume expanders comprise a heterogeneous group of substances used in medicine that are intravenously administered in cases of great blood loss owing to surgery or medical emergency. These substances, however, can also be used to artificially enhance performance of healthy athletes in sport activities, and to mask the presence of others substances. These practices are considered doping, and are therefore prohibited by the International Olympic Committee and the World Antidoping Agency. Consequently, drug testing procedures are essential. The present work provides an overview of plasma volume expanders, assembling pertinent data such as chemical characteristics, physiological aspects, adverse effects, doping and analytical detection methods, which are currently dispersed in the literature.

  19. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Temporal and thermodynamic characteristics of plasma formation

    NASA Astrophysics Data System (ADS)

    Ignatavichyus, M. V.; Kazakyavichyus, É.; Orshevski, G.; Danyunas, V.

    1991-11-01

    An investigation was made of plasma formation accompanying the interaction with aluminum, iron, and VK-6 alloy targets of nanosecond radiation from a YAG:Nd3+ laser (Emax = 50 mJ, τ = 3-8 ns). The duration of the plasma formation process depended weakly on the laser radiation parameters [the power density was varied in the range 1-3 GW/cm2, the pulse rise time in the range 2-8 ns, or the rate of rise of the power density in the range (1-8) × 108 W · cm - 2 · ns -1]. A study was made of the establishment of a local thermodynamic equilibrium in a plasma jet excited by radiation from nanosecond and picosecond (E = 30 mJ, τ = 40 ps) lasers. The maximum of the luminescence from an aluminum plasma excited by picosecond laser radiation was found to correspond to a local thermodynamic equilibrium. A local thermodynamic equilibrium could be absent in the case of excitation by nanosecond laser radiation.

  20. Dynamics of Converging Laser-Created Plasmas in Semi-Cylindrical Cavities Studied using Soft X-Ray Laser Interferometry

    SciTech Connect

    Purvis, M A; Grava, J; Filevich, J; Marconi, M; Dunn, J; Moon, S J; Shlyaptsev, V N; Jankowska, E; Rocca, J J

    2007-09-19

    The evolution of dense aluminum and carbon plasmas produced by laser irradiation of 500 {micro}m diameter semi-cylindrical targets was studied using soft x-ray laser interferometry. Plasmas created heating the cavity walls with 120 picosecond duration optical laser pulses of {approx} 1 x 10{sup 12} W cm{sup -2} peak intensity were observed to expand and converge on axis to form a localized high density plasma region. Electron density maps were measured using a 46.9 nm wavelength tabletop capillary discharge soft x-ray laser probe in combination with an amplitude division interferometer based on diffraction gratings. The measurements show that the plasma density on axis exceeds 1 x 10{sup 20} cm{sup -3}. The electron density profiles are compared with simulations conducted using the hydrodynamic code HYDRA, which show that the abrupt density increase near the axis is dominantly caused by the convergence of plasma generated at the bottom of the groove during laser irradiation.

  1. The absorption and radiation of a tungsten plasma plume during nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Moscicki, T.; Hoffman, J.; Chrzanowska, J.

    2015-10-01

    In this paper, the effect of absorption of the laser beam and subsequent radiation on the dynamics of a tungsten plasma plume during pulsed laser ablation is analyzed. Different laser wavelengths are taken into consideration. The absorption and emission coefficients of tungsten plasma in a pressure range of 0.1-100 MPa and temperature up to 70 000 K are presented. The shielding effects due to the absorption and radiation of plasma may have an impact on the course of ablation. The numerical model that describes the tungsten target heating and the formation of the plasma and its expansion were made for 355 nm and 1064 nm wavelengths of a Nd:YAG laser. The laser beam with a Gaussian profile was focused to a spot size of 0.055 mm2 with a power density of 1 × 109 W/cm2 (10 ns full width half maximum pulse duration). The plasma expands into air at ambient pressure of 1 mPa. The use of the shorter wavelength causes faster heating of the target, thus the higher ablation rate. The consequences of a higher ablation rate are slower expansion and smaller dimensions of the plasma plume. The higher plasma temperature in the case of 1064 nm is due to the lower density and lower plasma radiation. In the initial phase of propagation of the plasma plume, when both the temperature and pressure are very high, the dominant radiation is emission due to photo-recombination. However, for a 1064 nm laser wavelength after 100 ns of plasma expansion, the radiation of the spectral lines is up to 46.5% of the total plasma radiation and should not be neglected.

  2. The absorption and radiation of a tungsten plasma plume during nanosecond laser ablation

    SciTech Connect

    Moscicki, T. Hoffman, J.; Chrzanowska, J.

    2015-10-15

    In this paper, the effect of absorption of the laser beam and subsequent radiation on the dynamics of a tungsten plasma plume during pulsed laser ablation is analyzed. Different laser wavelengths are taken into consideration. The absorption and emission coefficients of tungsten plasma in a pressure range of 0.1–100 MPa and temperature up to 70 000 K are presented. The shielding effects due to the absorption and radiation of plasma may have an impact on the course of ablation. The numerical model that describes the tungsten target heating and the formation of the plasma and its expansion were made for 355 nm and 1064 nm wavelengths of a Nd:YAG laser. The laser beam with a Gaussian profile was focused to a spot size of 0.055 mm{sup 2} with a power density of 1 × 10{sup 9 }W/cm{sup 2} (10 ns full width half maximum pulse duration). The plasma expands into air at ambient pressure of 1 mPa. The use of the shorter wavelength causes faster heating of the target, thus the higher ablation rate. The consequences of a higher ablation rate are slower expansion and smaller dimensions of the plasma plume. The higher plasma temperature in the case of 1064 nm is due to the lower density and lower plasma radiation. In the initial phase of propagation of the plasma plume, when both the temperature and pressure are very high, the dominant radiation is emission due to photo-recombination. However, for a 1064 nm laser wavelength after 100 ns of plasma expansion, the radiation of the spectral lines is up to 46.5% of the total plasma radiation and should not be neglected.

  3. Plasma flow and electron losses in the expander divertor of FRC

    NASA Astrophysics Data System (ADS)

    Yushmanov, P.; Barnes, D.; Dettrick, S.; Gupta, S.; Ryutov, D.; Krasheninnikov, S.; Necas, A.; Putvinski, S.

    2014-10-01

    Expander divertor is planned to be used in the design of next generation FRC device. The main goal of magnetic field expansion is to decrease heat load on the target plates and slow down heat losses through electron channel. A comprehensive study of expander divertor physics is initiated in Tri Alpha. It started with revision of pre-sheath electrostatic potential formation in the expander using both analytic and numerical means. An adaptation of 3D code KSOL has been developed to analyze electron physics and electrostatic potential formation. Initial results are presented. The key issue of the study is the analysis of the interaction of plasma with neutrals. Presence of neutrals affects expander physics in several ways. First of all, charge exchange and ionization modify pattern of ion flow in the expander magnetic field. That changes plasma density profile and affects formation of pre-sheath electrostatic potential. Second, ionization (as well as secondary electron emission) creates population of cold electrons in the expander which flow into confinement vessel and enhance out-flux of hot electrons. Distribution of neutrals is calculated in realistic geometry of expander divertor and effect on electron losses is evaluated.

  4. Design of laser beam expander in underwater high-repetition-rate range-gated imaging system

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Zhang, Xiaohui

    2015-10-01

    Active underwater imaging systems, using an artificial light source for underwater target illumination, have preferable practical value in military and civil domain. Back-scattering of water impacts imaging system performance by reducing image contrast, and this is especially bad when the light source is close to the camera. Range-gated technique can effectively rejecting the back-scattering of water and improve the range of underwater target detection, while it can only collect image at certain distance for every laser impulse. High-repetition-rate green laser is a better light source in underwater range-gated imaging system. It has smaller pulse energy, while it can improve the imaging result. In order to illuminate the proper area underwater according to the different distance between the laser source and targets, there must be a magnifying-ratio variable beam expander to adjust the divergent angle of the laser. Challenges associated with magnifying-ratio computation and designing of beam expander are difficult to overcome due to the obvious refraction and forward-scattering of water. An efficiency computing method is presented to obtain the magnifying-ratio of beam expander. The illuminating area of laser beam can be computed according to the refraction index and beam spread function (BSF) which has already considered forward-scattering process. The magnifying-ratio range of beam expander should be 0.925~3.09 in order to obtain about φ1m illuminating area when the distance between laser and target is 10~40m. A magnifying-ratio variable beam expander is designed according to computation. Underwater experiments show that this beam expander plays an effective role on illuminating in underwater high-repetition-rate range-rated Imaging system.

  5. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    SciTech Connect

    Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

    2010-05-17

    Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

  6. Measurements of laser-induced plasma temperature field in deep penetration laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Genyu; Zhang, Mingjun; Zhao, Zhi; Zhang, Yi; Li, Shichun

    2013-02-01

    Laser-induced plasma in deep penetration laser welding is located inside or outside the keyhole, namely, keyhole plasma or plasma plume, respectively. The emergence of laser-induced plasma in laser welding reveals important information of the welding technological process. Generally, electron temperature and electron density are two important characteristic parameters of plasma. In this paper, spectroscopic measurements of electron temperature and electron density of the keyhole plasma and plasma plume in deep penetration laser welding conditions were carried out. To receive spectra from several points separately and simultaneously, an Optical Multi-channel Analyser (OMA) was developed. On the assumption that the plasma was in local thermal equilibrium, the temperature was calculated with the spectral relative intensity method. The spectra collected were processed with Abel inversion method to obtain the temperature fields of keyhole plasma and plasma plume.

  7. The effect of laser-produced plasma expansion on the ion population

    NASA Astrophysics Data System (ADS)

    Krása, J.; Láska, L.; Rohlena, K.; Pfeifer, M.; Skála, J.; Králiková, B.; Straka, P.; Woryna, E.; Wolowski, J.

    1999-10-01

    Changes in the ion population during the expansion of Ag, Cu, Pb, and Ta laser-produced plasmas in vacuum were simultaneously measured with two coaxial ion collectors between 82 and 187 cm from a target. The plasma was produced with an iodine laser delivering a power density up to ˜1015W/cm2 onto the target. It was experimentally proved that the charge Q of expanding ions and the corresponding ion current density j are really decreasing with the distance L as Q∝L-2 and j∝L-3, respectively. It implies that the "freezing" of charge states dominates in that interval of L.

  8. Development of High-Density Plasma Photonic Crystals Using High-Power Lasers

    NASA Astrophysics Data System (ADS)

    Colon Quinones, Roberto; Wang, Benjamin; Lucca Fabris, Andrea; Cappelli, Mark

    2015-09-01

    A plasma photonic crystal (PPC) is an array of plasma structures that interacts with electromagnetic (EM) waves in ways not possible with natural materials. 2D PPCs can be used for generating a band gap, which is a range of wave frequencies in which no waves are transmitted through the structure. Such gap forms when an EM wave travels through a 2D PPC with spacing equal to half the wavelength of the wave and plasma frequency (ωp) on the order of the frequency of the wave. Until recently, research on PPCs has been limited to ωp < 30 GHz, which is equivalent to a plasma density of ne <1013 cm-3 . Over the last year, PPCs of ne >1015 cm-3 have been generated at Stanford through the use of high-power lasers. The PPCs are generated by expanding the laser beam from a Q-switched Nd:YAG laser through a Galilean beam expander and subsequently focusing the beam through an optical micro-lens array. The intense photoionization of air that occurs at the focus of the individual lenses leads to the formation of a 2D array of very dense plasma spots. Photomultiplier measurements show a plasma lifetime of ~150 ns during which the plasma array functions as a PPC, representing a first step towards advancing the field forward into the low THz regime. Sponsored by the AFOSR MURI and DoD NDSEG.

  9. PLASMA WAKE EXCITATION BY LASERS OR PARTICLE BEAMS

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; Benedetti, Carlo; Toth, Csaba; Geddes, Cameron; Leemans, Wim

    2011-04-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed. Plasma-based accelerators have attracted considerable attention owing to the ultrahigh field gradients sustainable in a plasma wave, enabling compact accelerators. These relativistic plasma waves are excited by displacing electrons in a neutral plasma. Two basic mechanisms for excitation of plasma waves are actively being researched: (i) excitation by the nonlinear ponderomotive force (radiation pressure) of an intense laser or (ii) excitation by the space-charge force of a dense charged particle beam. There has been significant recent experimental success using lasers and particle beam drivers for plasma acceleration. In particular, for laser-plasma accelerators (LPAs), the demonstration at LBNL in 2006 of high-quality, 1 GeV electron beams produced in approximately 3 cm plasma using a 40 TW laser. In 2007, for beam-driven plasma accelerators, or plasma-wakefield accelerators (PWFAs), the energy doubling over a meter to 42 GeV of a fraction of beam electrons on the tail of an electron beam by the plasma wave excited by the head was demonstrated at SLAC. These experimental successes have resulted in further interest in the development of plasma-based acceleration as a basis for a linear collider, and preliminary collider designs using laser drivers and beam drivers are being developed. The different physical mechanisms of plasma wave excitation, as well as the typical characteristics of the drivers, have implications for accelerator design. In the following, we identify the similarities and differences between wave excitation by lasers and particle beams. The field structure of the plasma wave driven by lasers or particle beams is discussed, as well as the

  10. Mode-expanded semiconductor laser with tapered-rib adiabatic-following fiber coupler

    SciTech Connect

    Vawter, G.A.; Smith, R.E.; Hou, H.; Wendt, J.R.

    1996-12-01

    Expanded-mode semiconductor lasers are of great interest due to the benefits of reduced far-field divergence and improved coupling efficiency to optical fiber. The authors present a new diode laser using a Tapered-Rib Adiabatic-Following Fiber Coupler (TRAFFiC) to achieve 2D mode expansion without epitaxial regrowth or sharply-defined tips on tapered waveguides. The expanded mode size would allow 0.25 to 1 dB coupling loss to standard telecommunications fiber making smaller-core specialty fibers unnecessary, increasing misalignment tolerance, and eliminating the need for coupling optics.

  11. Paraxial properties of three-element zoom systems for laser beam expanders.

    PubMed

    Mikš, Antonín; Novák, Pavel

    2014-09-08

    Our work is focused on the problem of theoretical analysis of paraxial properties of the three-element zoom optical system for laser beam expanders. Equations that enable to calculate mutual axial distances between individual elements of the system based on the axial position of the beam waist of the input Gaussian beam and the desired magnification of the system are derived. Finally, the derived equations are applied on an example of calculation of paraxial parameters of the three-element zoom system for the laser beam expander.

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Investigation of laser plasma expansion in an ambient gas by high-speed photography

    NASA Astrophysics Data System (ADS)

    Anan'in, O. B.; Bykovskiĭ, Yu A.; Eremin, Yu V.; Stupitskiĭ, E. L.; Novikov, I. K.; Frolov, S. P.

    1991-07-01

    A method was developed for investigating the behavior of a laser plasma in vacuum and in an ambient gas by high-speed photography. Photographs were obtained of laser plasma expansion in an ambient gas at various pressures. A hydrodynamic instability of the laser plasma front was observed during expansion in an ambient gas. The experimental results were analyzed theoretically.

  13. Instabilities observed at the bubble edge of a laser produced plasma during its expansion in an ambient tenuous plasma

    NASA Astrophysics Data System (ADS)

    Lee, Bo Ram; Clark, S. E.; Hoffmann, D. H. H.; Niemann, C.

    2014-10-01

    The Raptor kJ class 1053 nm Nd:Glass laser in the Phoenix laser laboratory at University of California, Los Angeles, is used to ablate a dense debris plasma from a graphite or plastic target embedded in a tenuous, uniform, and quiescent ambient magnetized plasma in the Large Plasma Device (LAPD) which provides a peak plasma density of ni ~ 1013 cm-3. Its background magnetic field can vary between 200 and 1200 G. Debris ions from laser produced plasma expand out conically with super-Alfvénic speed (MA ~ 2) and expel the background magnetic field and ambient ions to form a diamagnetic bubble. The debris plasma interacts with the ambient plasma and the magnetic field and acts as a piston which can create collisionless shocks. Flute-type instabilities, which are probably large Larmor radius Rayleigh Taylor instabilities or lower hybrid drift instabilities, are developed at the bubble edge and also observed in the experiment. The amplitude and wavelength dependence of the instabilities, which might be a strong function of debris to ambient mass to charge ratio, is studied and the experimental results are compared to the two dimensional hybrid simulations. the Deutsche Forschungsgemeinschaft in the framework of the Excellence Initiative Darmstadt Graduate School of Energy Science and Engineering (GSC1070).

  14. Advanced Laser and RF Plasma Sources and Diagnostics

    DTIC Science & Technology

    2013-03-01

    June 2011. 3. R. Giar and J. Scharer, “Focused Excimer Laser Initiated, RF Sustained High Pressure Air Plasmas.” Journal of Applied Physics 110...AFRL-OSR-VA-TR-2013-0063 Advanced Laser and RF Plasma Sources and Diagnostics John Scharer University of Wisconsin March...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Laser and RF Plasma Sources and Diagnostics 5b. GRANT NUMBER F A9550-09-l-0357 5c. PROGRAM ELEMENT

  15. Plasma dynamics of laser produced plasma plumes propagating in an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Favre, Mario; Ruiz, Marcelo; Wyndham, Edmund; Veloso, Felipe; Bhuyan, Heman

    2015-11-01

    We have performed experimental studies of the effect of static axial magnetic fields on the plasma dynamics of laser produced carbon and titanium plasmas. The laser plasmas are produced in vacuum, with a Nd:YAG laser, 3.5 ns, 340 mJ at 1.06 4 μm, operating at 10 Hz, and propagate in static magnetic fields of maximum value ~0.2 T. Laser plasma features are characterized using 50 ns time resolved plasma imaging, time and space resolved visible spectroscopy and Faraday cup measurements. The presence of the magnetic field is found to affect plasma dynamics, plasma emission and plasma ions energy spectrum. Based on these measurements, a detailed analysis of the confinement effects of the magnetic field on the laser plasma will be presented. Funded by project FONDECYT 1141119 and CONICYT PIA No. ACT1108.

  16. Laser diagnostics of plasma assisted combustion

    NASA Astrophysics Data System (ADS)

    Rao, Xing

    In this study, a microwave re-entrant cavity discharge system and a direct current (DC) plasmatron are used to investigate flame enhancement and nitric oxide (NO) formation using laser and optical diagnostics. The uniqueness of this study lies in the direct coupling concept, a novel highly efficient strategy used here for the first time. To investigate combustion dynamics of direct microwave coupled combustion, an atmospheric high-Q re-entrant cavity applicator is used to couple microwave (2.45 GHz) electromagnetic energy directly into the reaction zone of a premixed laminar methane-oxygen flame using a compact torch. When microwave energy increases, a transition from electric field enhancement to microwave plasma discharge is observed. At 6 to 10 Watts, ionization and eventually break-down occurs. 2-D laser induced fluorescence (LIF) imaging of hydroxyl radicals (OH) and carbon monoxide (CO) is conducted in the reaction zone over this transition, as well as spectrally resolved flame emission measurements. These measurements serve to monitor excited state species and derive rotational temperatures using OH chemiluminescence for a range of equivalence ratios (both rich and lean) and total flow rates. Combustion dynamics is also investigated for plasma enhanced methane-air flames in premixed and nonpremixed configurations using a transient arc DC plasmatron. Results for OH and CO PLIF also indicate the differences in stability mechanism, and energy consumption for premixed and nonpremixed modes. It is shown that both configurations are significantly influenced by in-situ fuel reforming at higher plasma powers. Parametric studies are conducted in a plasma assisted methane/air premixed flame for quantitative NO production using a DC plasmatron with PLIF imaging. Quantitative measurements of NO are reported as a function of gas flow rate (20 to 50 SCFH), plasma power (100 to 900 mA, 150 to 750 W) and equivalence ratio (0.7 to 1.3). NO PLIF images and single point NO

  17. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Formation of a coupled state in a laser plume

    NASA Astrophysics Data System (ADS)

    Kask, Nikolai E.; Michurin, Sergei V.; Fedorov, Gennadii M.; Chopornyak, D. B.

    2005-04-01

    The results of experimental investigation of a low-temperature plasma produced by laser irradiation at the surface of metal targets are reported. The optical characteristics and the plasma pressure in the laser plume are found to exhibit a threshold behaviour under vaporised-material density variation. The results are interpreted using the model of a coupled plasma state with limitation of plasma expansion.

  18. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  19. Physics considerations for laser-plasma linear colliders

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  20. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  1. Excitation and Control of Plasma Wakefields by Multiple Laser Pulses

    NASA Astrophysics Data System (ADS)

    Cowley, J.; Thornton, C.; Arran, C.; Shalloo, R. J.; Corner, L.; Cheung, G.; Gregory, C. D.; Mangles, S. P. D.; Matlis, N. H.; Symes, D. R.; Walczak, R.; Hooker, S. M.

    2017-07-01

    We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that a plasma wave can be damped by an out-of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multikilohertz repetition rates.

  2. Enhancement of terahertz wave generation from laser induced plasma

    SciTech Connect

    Xie Xu; Xu Jingzhou; Dai Jianming; Zhang, X.-C.

    2007-04-02

    It is well known that air plasma induced by ultrashort laser pulses emits broadband terahertz waves. The authors report the study of terahertz wave generation from the laser induced plasma where there is a preexisting plasma background. When a laser beam from a Ti:sapphire amplifier is used to generate a terahertz wave, enhancement of the generation is observed if there is another laser beam creating a plasma background. The enhancement of the terahertz wave amplitude lasts hundreds of picoseconds after the preionized background is created, with a maximum enhancement up to 250% observed.

  3. Collaborative Research: Instability and transport of laser beam in plasma

    SciTech Connect

    Rose, Harvey Arnold; Lushnikov, Pavel

    2014-11-18

    Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.

  4. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  5. Staging laser plasma accelerators for increased beam energy

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  6. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  7. Explosion of relativistic electron vortices in laser plasmas

    NASA Astrophysics Data System (ADS)

    Lezhnin, Kirill; Kamenets, Fedor; Esirkepov, Timur; Bulanov, Sergei; Gu, Yanjun; Weber, Stefan; Korn, Georg

    2016-10-01

    The interaction of high intensity laser radiation with underdense plasma may lead to the formation of electron vortices. Though being quasistationary on an electron timescales, these structures tend to expand on a proton timescale due to Coloumb repulsion of ions. Using a simple analytical model of a stationary vortex as initial condition, 2D PIC simulations are performed. A number of effects are observed such as vortex boundary field intensification, multistream instabilities at the vortex boundary, and bending of the vortex boundary with the subsequent transformation into smaller electron vortices. This work was supported by the ELI Project No. CZ.02.1.01/0.0/0.0/15 008/0000162. We also would like to acknowledge the support from Russian Foundation for Basic Research (Grant No. 15-02-03063).

  8. Terahertz acoustics in hot dense laser plasmas.

    PubMed

    Adak, Amitava; Robinson, A P L; Singh, Prashant Kumar; Chatterjee, Gourab; Lad, Amit D; Pasley, John; Kumar, G Ravindra

    2015-03-20

    We present a hitherto unobserved facet of hydrodynamics, namely the generation of an ultrahigh frequency acoustic disturbance in the terahertz frequency range, whose origins are purely hydrodynamic in nature. The disturbance is caused by differential flow velocities down a density gradient in a plasma created by a 30 fs, 800 nm high-intensity laser (∼5×10(16)  W/cm(2)). The picosecond scale observations enable us to capture these high frequency oscillations (1.9±0.6  THz) which are generated as a consequence of the rapid heating of the medium by the laser. Adoption of two complementary techniques, namely pump-probe reflectometry and pump-probe Doppler spectrometry provides unambiguous identification of this terahertz acoustic disturbance. Hydrodynamic simulations well reproduce the observations, offering insight into this process.

  9. Quasilinear Theory of Laser-Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Neil, Alastair John

    The interaction of a high intensity laser beam with a plasma is generally susceptible to the filamentation instability due to nonuniformities in the laser profile. In ponderomotive filamentation high intensity spots in the beam expell plasma by ponderomotive force, lowering the local density, causing even more light to be focused into the already high intensity region. The result--the beam is broken up into a filamentary structure. Several optical smoothing techniques have been proposed to eliminate this problem. In the Random Phase Plates (RPS) approach, the beam is split into a very fine scale, time-stationary interference pattern. The irregularities in this pattern are small enough that thermal diffusion is then responsible for smoothing the illumination. In the Induced Spatial Incoherence (ISI) approach the beam is broken up into a larger scale but non-time-stationary interference pattern. In this dissertation we propose that the photons in an ISI beam resonantly interact with the sound waves in the wake of the beam. Such a resonant interaction induces diffusion in the velocity space of the photons. The diffusion will tend to spread the distribution of photons, thus if the diffusion time is much shorter than the e-folding time of the filamentation instability, the instability will be suppressed. Using a wave-kinetic description of laser-plasma interactions we have applied quasilinear theory to model the resonant interaction of the photons in an ISI beam with the beam's wake field. We have derived an analytic expression for the transverse diffusion coefficient. The quasilinear hypothesis was tested numerically and shown to yield an underestimate of the diffusion rate. By comparing the quasilinear diffusion rate, gamma_ {D}, with the maximum growth rate for the ponderomotive filamentation of a uniform beam, gamma_{f_{max}} , we have derived a worst case criterion for stability against ponderomotive filamentation: { gamma_{f_{max}} over gamma_ D} ~ .5 { ~ f^5/~ D

  10. Subpicosecond laser-produced plasma dynamics

    NASA Astrophysics Data System (ADS)

    Audebert, Patrick; Fallies, F.; Geindre, Jean-Paul; Delettrez, J.; Rousse, Antoine; Gauthier, Jean-Claude J.

    1994-02-01

    To simulate the interaction of high laser intensity with solid targets, we have used the 1D code FILM in which the collisional plasma absorption is calculated by solving the linear electromagnetic field for p and s polarization. For p-polarized light the collision frequency is adjusted so that the field in the critical region of the plasma never exceeds the maximum field allowed by the wave breaking limit. Energy transport by thermal conduction is described with the help of the delocalized heat flux theory. The ponderomotive force resulting from the huge filed is taken into account. The calculated temperatures and ion densities are used as an input to a time-dependent atomic physics code. Non-stationary ionization dynamics is demonstrated.

  11. Relativistic mirrors in laser plasmas (analytical methods)

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.

    2016-10-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.

  12. Railgun system using a laser-induced plasma armature

    SciTech Connect

    Onozuka, M.; Oda, Y.; Azuma, K.

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. {copyright} {ital 1996 American Institute of Physics.}

  13. Resonant optical characteristics of an ultracold laser plasma

    SciTech Connect

    Kosarev, N I; Shaparev, N Ya

    2009-12-31

    We report a computer simulation study of light absorption, scattering and emission at 397 nm in an ultracold calcium ion plasma under resonant excitation. The results point to spectral asymmetry of light scattering, nonlinear absorption, and emission in the plasma. An approach is proposed for ultracold plasma diagnostics using resonant optical characteristics. (laser plasma)

  14. Correlated-intensity velocimeter for arbitrary reflector for laser-produced plasma experiments

    SciTech Connect

    Wang Zhehui; Luo Shengnian; Barnes, Cris W.; Briggs, Matthew E.; Paisley, Dennis L.; Paul, Stephen F.

    2006-10-15

    A laser-based technique, called correlated-intensity velocimeter for arbitrary reflector (CIVAR), is described for velocity measurement of reflecting surfaces in real time. Velocity versus time is an important measurement in laser-produced high-energy density plasma experiments because the motion of the surface depends on both the equation of the state of the surface material and laser-produced plasma. The physics and working principle of CIVAR are the same as those of a previous concept that resolves Doppler shift of plasma light emission using a pair of narrow passband interference filters. One unique feature of CIVAR is that a reflected laser beam is used instead of plasma emission. Therefore, CIVAR is applicable to both emitting and nonemitting reflecting surfaces. Other advantages of CIVAR include its simplicity, lower cost, and unambiguous data analysis that can be fully automated. The design of a single-point CIVAR is described in detail with emphasis on laser wavelength selection and signal-to-noise ratio. The single-point CIVAR system can be expanded into a multiple-point system straightforwardly. It is possible to use CIVAR concept to construct a two-dimensional imaging system for a nonuniform velocity field of a large reflecting surface; such a velocity imaging system may have applications beyond laser-produced plasma experiments, for example, in shock compression of condensed matter.

  15. Laser plasma plume structure and dynamics in the ambient air: The early stage of expansion

    SciTech Connect

    Cirisan, M.; Jouvard, J. M.; Lavisse, L.; Hallo, L.; Oltra, R.

    2011-05-15

    Laser ablation plasma plume expanding into the ambient atmosphere may be an efficient way to produce nanoparticles. From that reason it would be interesting to study the properties of these laser induced plasmas formed under conditions that are known to be favorable for nanoparticles production. In general, plume behavior can be described as a two-stage process: a 'violent' plume expansion due to the absorption of the laser beam energy (during the laser pulse) followed by a fast adiabatic expansion in the ambient gas (after the end of the laser pulse). Plasma plume may last a few microseconds and may have densities 10{sup -6} times lower than the solid densities at temperatures close to the ambient temperature. Expansion of the plasma plume induced by the impact of a nanosecond laser beam ({lambda} 1064 nm) on the surface of metallic samples in the open air has been investigated by means of fast photography. Spatio-temporal evolution of the plume at the early stage of its expansion (first 330 ns) has been recorded. Structure and dynamics of the plasma plume have been investigated and compared to numerical simulations obtained with a hydro-code, as well as some scaling laws. In addition, measurements using different sample materials (Al, Fe, and Ti) have been performed in order to analyze the influence of target material on plume expansion.

  16. A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation

    SciTech Connect

    Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

    2012-05-01

    Langmuir probes (LP) are used extensively to characterize plasma environments produced by radio frequency, pulsed plasma thrusters, and laser ablation. We discuss here the development of a LP diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{micro}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  17. Plasma detector for TEA CO2 laser pulse measurement

    NASA Astrophysics Data System (ADS)

    Ichikawa, Y.; Yamanaka, M.; Mitsuishi, A.; Fujita, S.; Yamanaka, T.; Yamanaka, C.; Tsunawaki, Y.; Iwasaki, T.; Takai, M.

    1983-10-01

    Laser-pulse evolution can be detected by measuring the emf generated by fast electrons in a laser-produced plasma when the laser radiation is focused onto a solid metal target in a vacuum. Using this phenomenon a 'plasma detector' is constructed, and its characteristics for the TEA CO2 laser radiation of intensity 10 to the 9th to 10 to the 10th W/sq cm are investigated experimentally. The plasma detector operates at room temperature and is strong against laser damages. For the evacuated plasma detector down to 0.1 torr, a maximum output voltage of 90 V and a rise time shorter than 1 ns are observed. The plasma detector, therefore, can be used as a power monitor for laser pulses and as a trigger voltage source.

  18. Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces

    NASA Astrophysics Data System (ADS)

    Han, Jinghua; Luo, Li; Zhang, Yubo; Hu, Ruifeng; Feng, Guoying

    2016-09-01

    Particles can be removed from a silicon surface by means of irradiation and a laser plasma shock wave. The particles and silicon are heated by the irradiation and they will expand differently due to their different expansion coefficients, making the particles easier to be removed. Laser plasma can ionize and even vaporize particles more significantly than an incident laser and, therefore, it can remove the particles more efficiently. The laser plasma shock wave plays a dominant role in removing particles, which is attributed to its strong burst force. The pressure of the laser plasma shock wave is determined by the laser pulse energy and the gap between the focus of laser and substrate surface. In order to obtain the working conditions for particle removal, the removal mechanism, as well as the temporal and spatial characteristics of velocity, propagation distance and pressure of shock wave have been researched. On the basis of our results, the conditions for nano-particle removal are achieved. Project supported by the National Natural Science Foundation of China (Grant No. 11574221).

  19. Mitigating Laser-Plasma Instabilities in Hohlraum Laser-Plasmas Using Magnetic Insulation

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Simakov, A.; Albright, B. J.; Yin, L.; Davies, J. R.; Fiksel, G.; Froula, D. H.; Betti, R.

    2012-10-01

    Controlling laser-plasma instabilities in hohlraum plasmas is important for achieving high-gain inertial fusion using indirect drive. Experiments at the National Ignition Facility (NIF) suggest that coronal electron temperatures in NIF hohlraums may be cooler than initially thought due to efficient thermal conduction from the under dense low-Z plasma to the dense high-Z hohlraum wall [1]. This leads to weaker Landau damping and stronger growth of parametric instabilities. For NIF laser-plasma conditions, it is shown that a 10-T external magnetic field may substantially reduce cross-field transport and may increase plasma temperatures, thus increasing linear Landau damping and mitigating parametric instabilities. Additional benefits may be realized since the hot electrons will be strongly magnetized and may be prevented from reaching the capsule or hohlraum walls. We will present calculations and simulations supporting this concept, and describe experimental plans to test the concept using gas-filled hohlraums at the Omega Laser Facility.[4pt] [1] M.D. Rosen et al., High Eng. Dens. Phys. 7, 180 (2011).

  20. Free-electron lasers driven by laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Isono, F.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2017-03-01

    Laser-plasma accelerators (LPAs) have the potential to drive compact free-electron lasers (FELs). Even with LPA energy spreads typically at the percent level, the e-beam brightness can be excellent, due to the low normalized emittance (<0.5 µm) and high peak current (multi-kA) resulting from the ultra-short e-beam duration (few fs). It is critical, however, that in order to mitigate the effect of percent-level energy spread, one has to actively manipulate the phase-space distribution of the e-beam. We provide an overview of the methods proposed by the various LPA FEL research groups. At the BELLA Center at LBNL, we are pursuing the use of a chicane for longitudinal e-beam decompression (therefore greatly reducing the slice energy spread), in combination with short-scale-length e-beam transportation with an active plasma lens and a strong-focusing 4-m-long undulator. We present ELEGANT & GENESIS simulations on the transport and FEL gain, showing strong enhancement in output power over the incoherent background, and present estimates of the 3D gain length for deviations from the expected e-beam properties (varying e-beam lengths and emittances). To highlight the role of collective effects, we also present ELEGANT & GENESIS simulation results.

  1. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    SciTech Connect

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Polyanskiy, M. N.; Skaritka, J.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Lu, W.; Cook, N.; Ting, A.; Chen, Y-H

    2016-01-20

    Here we discuss how expanding the scope of relativistic plasma research to wavelengths longer than λ/≈0.8₋1.1μm covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ=9₋11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One for example is shock-wave ion acceleration from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR laser BESTIA will open new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of Laser Wake Field Accelerator (LWFA) studies into unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100-TW CO2 laser beam will be capable to efficiently generate plasma “bubbles” thousand times bigger in volume compared to a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate study of external seeding and staging of LWFA.

  2. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    DOE PAGES

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; ...

    2016-01-20

    Here we discuss how expanding the scope of relativistic plasma research to wavelengths longer than λ/≈0.8₋1.1μm covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ=9₋11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecularmore » gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One for example is shock-wave ion acceleration from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR laser BESTIA will open new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of Laser Wake Field Accelerator (LWFA) studies into unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100-TW CO2 laser beam will be capable to efficiently generate plasma “bubbles” thousand times bigger in volume compared to a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate study of external seeding and staging of LWFA.« less

  3. Formation of electron energy spectra during magnetic reconnection in laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Lu, Quanming; Huang, Can; Dong, Quanli; Wang, Huanyu; Fan, Feibin; Sheng, Zhengming; Wang, Shui; Zhang, Jie

    2017-10-01

    Energetic electron spectra formed during magnetic reconnection between two laser-produced plasma bubbles are investigated by the use of two-dimensional particle-in-cell simulations. It is found that the evolution of such an interaction between the two plasma bubbles can be separated into two distinct stages: squeezing and reconnection stages. In the squeezing stage, when the two plasma bubbles expand quickly and collide with each other, the magnetic field in the inflow region is greatly enhanced. In the second stage, a thin current sheet is formed between the two plasma bubbles, and then, magnetic reconnection occurs therein. During the squeezing stage, electrons are heated in the perpendicular direction by betatron acceleration due to the enhancement of the magnetic field around the plasma bubbles. Meanwhile, non-thermal electrons are generated by the Fermi mechanism when these electrons bounce between the two plasma bubbles approaching quickly and get accelerated mainly by the convective electric field associated with the plasma bubbles. During the reconnection stage, electrons get further accelerated mainly by the reconnection electric field in the vicinity of the X line. When the expanding speed of the plasma bubbles is sufficiently large, the formed electron energy spectra have a kappa distribution, where the lower energy part satisfies a Maxwellian function and the higher energy part is a power-law distribution. Moreover, the increase in the expanding speed will result in the hardening of formed power-law spectra in both the squeezing and reconnection stages.

  4. Laser Plasma Coupling for High Temperature Hohlraums

    SciTech Connect

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  5. Simulations of Relativistic Laser-Plasma Interactions

    SciTech Connect

    Nikolic, Lj.; Skoric, M.M.; Ishiguro, S.

    2004-12-01

    To investigate the growth of instabilities in an underdense plasma, a number of simulations was carried out using the one-dimensional electromagnetic (EM) relativistic particle-in-cell code. A new type of Raman-like scattering was identified in a subcritical regime, which is overdense for standard SRS. This novel instability is a parametric decay of the relativistic EM wave into a scattered light and an electron-acoustic ({omega} < {omega}p) electrostatic wave. In the linear stage, resonant matchings are well satisfied, while the scattered Stokes wave is always driven near critical. During nonlinear saturation, due to rapid growth and strong localization of the Stokes wave, narrow intense EM soliton-like structures with down-shifted laser light trapped inside are formed; eventually, to be irradiated through the plasma-vacuum interface in the form of intense low-frequency EM bursts. This behavior alters the distribution of laser energy between transmission, scattering losses and generation of energetic electrons.

  6. Role of laser photoablative therapy and expandable metal stents in colorectal carcinoma

    NASA Astrophysics Data System (ADS)

    Chennupati, Raja S.; Trowers, Eugene A.

    2000-05-01

    Metallic stents are effective in relieving colorectal obstruction in more than 80% of cases. Self expanding metallic stents allow for decompression of the proximal colon and preoperative bowel cleansing. Hence, emergent surgery for large bowel obstruction with its associated high morbidity and mortality might be avoided. Endoscopic laser photoablation and stent placement may successfully palliate inoperable colorectal cancer patients by maintaining luminal patency and avoiding the need for a colostomy. Major complications associated with metallic stents include pressure necrosis, perforation, bleeding and migration. The effectiveness of expandable metallic stents in obstructive colorectal carcinoma is critically reviewed. The authors present a concise review of the effectiveness of endoscopic laser photoablation and expandable metal stent placement.

  7. Experiments with laser driven plasma jets

    NASA Astrophysics Data System (ADS)

    Nicolai, Philippe

    2008-04-01

    Laboratory studies can address issues relevant to astrophysics^1 and in some cases improve our understanding of the physical processes that occur in astrophysical objects. So issues related to the jet propagation and collimation over considerable distance and their interactions with surrounding media have begun to be addressed these last years. Laboratory plasmas and astrophysical objects have different length, time and density scales. However, the typical velocities are the same, of a few hundred km/s and the similarity criteria^2 can be applied to scale the laboratory jets to astrophysical conditions. In this presentation, we use a method of jet formation^3 which allows to launch a very fast jet having a velocity around 400 km/s by using a relatively small laser energy, of the order of 100 J. The jet has a Mach number greater than 10, a length of a few mm, and a radius of a few tenths of mm. The interaction of these jets with a gas puff has been recently studied in an experiment carried out at the PALS laser facility. Varying gas pressure and composition, we show that the nature of interaction zone changes from a quasi adiabatic outflow to a strongly radiatively cooling jet. The use of various diagnostics, allows to relate the x-ray emission to the density map of the interaction zone. Already observed in astrophysical objets for strongly different time and space scales, these structures are interpreted in our laboratory experiment by using a semi-analytical model and 2D radiation hydrodynamic simulations. [1] B. Remington et al, Rev. Mod. Phys. 78, 755 (2007) [2] D. Ryutov et al, Phys . Plasmas 8, 1804 (2001) [3] Ph. Nicolai et al, Phys. Plasmas 13, 062701 (2007)

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Composition and dynamics of an erosion plasma produced by microsecond laser pulses

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Sebrant, A. Yu; Stepanova, M. A.

    1995-08-01

    The ion and energy compositions were determined and the dynamics was studied of an erosion plume formed by microsecond CO2 laser pulses incident on a graphite target. The ionic emission lines were used to find the electron density and temperature of the plasma on the target surface. The temperature of the plasma source did not change throughout the line emission time (4 μs). At the plasma recombination stage the lines of the C II, C III, and C IV ions were accompanied by bands of the C2 molecule near the target surface and also near the surface of an substrate when a plasma flow interacted with it. Ways were found for controlling the plume expansion anisotropy and for producing plasma flows with controlled parameters by selection of the conditions during formation of a quasisteady erosion plasma flow.

  9. Ultrafast small-angle x-ray scattering from laser-produced plasmas using an x-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Roedel, Christian; Pelka, Alexander; Kluge, Thomas; Roedel, Melanie; Cowan, Thomas; Kemp, Andreas; Fletcher, Luke; Schumaker, Will; Goede, Sebastian; Galtier, Eric; Lee, Hae Ja; Glenzer, Siegfried; SLAC/Uni JEna Team; HZDR Team; LLNL Team; SLAC Team

    2016-10-01

    Small-angle x-ray scattering (SAXS) using ultrashort x-ray pulses from free electron lasers has the potential to resolve transient phenomena in dense laser-produced plasmas with nanometer spatial and femtosecond temporal resolution. As a proof-of-principle experiment, we demonstrated ultrafast SAXS from a laser-irradiated wire target using the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS). A 5 µm Al wire was irradiated with a high-intensity laser pulse (up to 200 mJ, 50 fs) leading to a rapidly expanding laser plasma. X-ray pulses from the free-electron laser (60 fs, 5.5 keV) probe the laser produced plasma 80 ps after the interaction. The SAXS data reveals that an indentation of the dense plasma is initiated due to plasma expansion. The measurements will be discussed using two-dimensional particle-in-cell simulations of the laser plasma interaction. This work was supported by the Volkswagen Foundation and DOE Office of Science, Fusion Energy Science under FWP 100182.

  10. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    SciTech Connect

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.

  11. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE PAGES

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  12. Simulations for Plasma and Laser Acceleration

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Lehe, RéMi

    Computer simulations have had a profound impact on the design and understanding of past and present plasma acceleration experiments, and will be a key component for turning plasma accelerators from a promising technology into a mainstream scientific tool. In this article, we present an overview of the numerical techniques used with the most popular approaches to model plasma-based accelerators: electromagnetic particle-in-cell, quasistatic and ponderomotive guiding center. The material that is presented is intended to serve as an introduction to the basics of those approaches, and to advances (some of them very recent) that have pushed the state of the art, such as the optimal Lorentz-boosted frame, advanced laser envelope solvers and the elimination of numerical Cherenkov instability. The particle-in-cell method, which has broader interest and is more standardized, is presented in more depth. Additional topics that are cross-cutting, such as azimuthal Fourier decomposition or filtering, are also discussed, as well as potential challenges and remedies in the initialization of simulations and output of data. Examples of simulations using the techniques that are presented have been l out of this article for conciseness, and because simulation results are best understood when presented together, and contrasted with theoretical and/or experimental results, as in other articles of this volume.

  13. Simulations for Plasma and Laser Acceleration

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Lehe, Rémi

    Computer simulations have had a profound impact on the design and understanding of past and present plasma acceleration experiments, and will be a key component for turning plasma accelerators from a promising technology into a mainstream scientific tool. In this article, we present an overview of the numerical techniques used with the most popular approaches to model plasma-based accelerators: electromagnetic particle-in-cell, quasistatic and ponderomotive guiding center. The material that is presented is intended to serve as an introduction to the basics of those approaches, and to advances (some of them very recent) that have pushed the state of the art, such as the optimal Lorentz-boosted frame, advanced laser envelope solvers and the elimination of numerical Cherenkov instability. The particle-in-cell method, which has broader interest and is more standardized, is presented in more depth. Additional topics that are cross-cutting, such as azimuthal Fourier decomposition or filtering, are also discussed, as well as potential challenges and remedies in the initialization of simulations and output of data. Examples of simulations using the techniques that are presented have been left out of this article for conciseness, and because simulation results are best understood when presented together, and contrasted with theoretical and/or experimental results, as in other articles of this volume.

  14. Laser Guiding and Wakefield Excitation in Plasma Channels.

    NASA Astrophysics Data System (ADS)

    Volfbeyn, Paul

    1998-11-01

    Laser driven plasma waves have been experimentally shown to sustain electric field gradients in excess of 10 GV/m. (For a review see E. Esarey et al., IEEE Trans. Plasma Sci. PS-24), 252 (1996). Laser diffraction limits the distance over which the high gradients are excited, thus placing a severe limit on the energy gain achievable in a laser plasma accelerating stage. To overcome the limitation on the acceleration distance due to laser beam diffraction, plasma channel guiding has been proposed in which, plasma channels with density minimum on axis can serve as optical guides. An overview is given of various techniques for plasma channel creation, relying on hydrodynamic shock expansion in laser heated plasmas (C.G. Durfee III and H. M. Milchberg, Phys. Rev. Lett., vol. 71, pp. 2409, (1993).) and capillary discharges. ( Y. Ehrlich, et al. Phys. Rev. Lett., vol.77, (no.20), p.4186-9 (1996).) Details of the dual laser pulse Ignitor - Heater scheme (P. Volfbeyn and W. P. Leemans, Phys. Rev. Lett., to be submitted.) will be presented, which allows creation of plasma channels in low atomic number gases, such as hydrogen. The current status of experiments on characterization of the plasma channel density profile and guiding of high intensity laser pulses will then be reviewed. These measurements are important since the density profile of plasma channels defines the modes of plasma oscillations and, therefore both the transverse (focusing) and longitudinal (accelerating) properties of the wake modes. Results of theoretical calculations of the wake modes for various plasma channel density profiles are presented, and their significance for the laser-plasma accelerator design is discussed.

  15. Comparative study on interactions between laser and arc plasma during laser-GTA welding and laser-GMA welding

    NASA Astrophysics Data System (ADS)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa

    2016-10-01

    This paper describes an investigation on differences in interactions between laser and arc plasma during laser-gas tungsten arc (LT) welding and laser-gas metal arc (LM) welding. The characteristics of LT heat source and LM heat source, such as plasma behavior, heat penetration ability and spectral information were comparably studied. Based on the plasma discharge theory, the interactions during plasma discharge were modeled and analyzed. Results show that in both LT and LM welding, coupling discharge between the laser keyhole plasma and arc happens, which strongly enhance the arc. But, the enhancing effect in LT welding is much more sensitive than that in LM welding when parameters are adjusted.

  16. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-09-09

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity (<10{sup 14}Wcm{sup -2}) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  17. Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas.

    PubMed

    Harilal, Sivanandan S; Brumfield, Brian E; Cannon, Bret D; Phillips, Mark C

    2016-02-16

    Although it is relatively straightforward to measure the ionic, atomic, molecular, and particle emission features from laser ablation plumes, the associated kinetic and thermodynamic development leading to molecular and nanocluster formation remain one of the most important topics of analytical chemistry and material science. Very little is known, for instance, about the evolutionary paths of molecular and nanocluster formation and its relation to laser plume hydrodynamics. This is, to a large extent; due to the complexity of numerous physical processes that coexist in a transient laser-plasma system. Here, we report the formation mechanisms of molecules during complex interactions of a laser-produced plasma plume expanding from a high purity aluminum metal target into ambient air. It is found that the plume hydrodynamics plays a great role in redefining the plasma thermodynamics and molecular formation. Early in the plasma expansion, the generated shock wave at the plume edge acts as a barrier for the combustion process and molecular formation is prevalent after the shock wave collapse. The temporally and spatially resolved contour mapping of atoms and molecules in laser ablation plumes highlight the formation routes and persistence of species in the plasma and their relation to plume hydrodynamics.

  18. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Polyanskiy, M. N.; Skaritka, J.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Lu, W.; Cook, N.; Ting, A.; Chen, Y.-H.

    2016-03-01

    Expanding the scope of relativistic plasma research to wavelengths longer than the λ/≈   0.8-1.1 μm range covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ  =   9-11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One example is shock-wave ion acceleration (SWA) from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at an energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR BESTIA will open up new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of laser wakefield accelerator (LWFA) studies into the unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100 TW CO2 laser beam will be capable of efficiently generating plasma ‘bubbles’ a thousand times greater in volume compared with a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate the study of external seeding and staging of LWFAs.

  19. Multifocal terahertz radiation by intense lasers in rippled plasma

    NASA Astrophysics Data System (ADS)

    Gill, Reenu; Singh, Divya; Malik, Hitendra K.

    2017-06-01

    This paper presents a theoretical model for the generation of terahertz radiation by cosh-Gaussian laser beams of high intensity, which are capable of creating relativistic-ponderomotive nonlinearity. We find the components of the terahertz radiation for the relativistic laser plasma interaction, i.e. beating of the two lasers of same amplitude and different frequency in under dense plasma. We plot the electric field profile of the emitted radiation under the effect of lasers index. By creating a dip in peak of the incident lasers' fields, we can achieve multifocal terahertz radiation.

  20. Application of delrin in laser plasma micro-propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Gao, H.; Gao, L.; Xing, J.; Fan, Z. J.

    2013-09-01

    The interaction between polymer of Delrin with nano-second pulse laser is investigated in laser plasma micro-propulsion. The coupling coefficient and specific impulse are measured respectively. The coupling coefficient about 42 dyne/W and specific impulse up to 646 s have been obtained. Moreover, the surface images after ablation have been observed. It is found that Delrin has less debris on ablation surface. This indicates that Delrin is a potential polymer material in laser plasma propulsion.

  1. Plasma lasers (a strong source of coherent radiation in astrophysics)

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1981-01-01

    The generation of electromagnetic radiation from the free energy available in electron streams is discussed. The fundamental principles involved in a particular class of coherent plasma radiation sources, i.e., plasma lasers, are reviewed, focusing on three wave coupling, nonlinear parametric instabilities, and negative energy waves. The simplest case of plasma lasers, that of an unmagnetized plasma containing a finite level of density fluctuations and electrons streaming with respect to the ions, is dealt with. A much more complicated application of plasma lasers to the case of auroral kilometric radiation is then examined. The concept of free electron lasers, including the role of relativistic scattering, is elucidated. Important problems involving the escape of the excited radiation from its generation region, effects due to plasma shielding and nonlinear limits, are brought out.

  2. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    DOE PAGES

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; ...

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less

  3. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    SciTech Connect

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle; Schollmeier, Marius; Scoglietti, Daniel; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher; Vesey, Roger A.; Porter, John L.

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. We determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.

  4. Electron-ion recombination in laser-produced plasmas using optical interferometry

    NASA Astrophysics Data System (ADS)

    Heilmann, Nathan; Peatross, Justin; Bergeson, Scott

    2011-10-01

    We are developing methods to measure electron-ion recombination in laser-produced plasmas. A high intensity fs laser pulse is focused into a gas jet and forms a plasma. A weaker probe beam first passes through a slightly mis-aligned Michelson interferometer and is also focused into the plasma. The probe ``beam'' is actually two temporally coincident but spatially offset laser beams. One of the laser beams passes through the plasma and the other does not. These beams expand and produce interference fringes in the far field, similar to a Young's double slit experiment. The spatial position of these fringes depends on the differential phase shift in the two probe beams. This differential shift is due to the electron density in the plasma, which is probed by only one beam. By measuring the fringe shift as a function of time after the plasma is formed, we should be able to measure the time-evolving electron density. At sufficiently high densities, three-body recombination will become important. In that regime, the measured recombination rate can be used to determine the electron temperature.

  5. Direct design of laser-beam shapers, zoom-beam expanders, and combinations thereof

    NASA Astrophysics Data System (ADS)

    Duerr, Fabian; Thienpont, Hugo

    2016-10-01

    Laser sources have become indispensable for industrial materials processing applications like surface treatment, cutting or welding to name a few examples. Many of these applications pose different requirements on the delivered laser irradiance distribution. Some applications might not only favor a specific irradiance distribution (e.g. a at-top) but can additionally benefit from time-varying distributions. We present an overview of a recently developed design approach that allows direct calculation of virtually any refractive or reflective laser beam shaping system. The derived analytic solution is fully described by few initial parameters and does allow an increasingly accurate calculation of all optical surfaces. Unlike other existing direct design methods for laser beam shaping, there is almost no limitation in the number of surfaces that can be calculated with this approach. This is of particular importance for optical designs of dynamic systems such as variable optical beam expanders that require four (or more) optical surfaces. Besides conventional static beam shapers, we present direct designs of zoom beam expanders, and as a novelty, a class of dynamic systems that shape and expand the input beam simultaneously. Such dynamic zoom beam shapers consist of a minimal number of optical elements and provide a much more compact solution, yet achieving excellent overall optical performance throughout the full range of zoom positions.

  6. Spectroscopic diagnostics of plasma during laser processing of aluminium

    NASA Astrophysics Data System (ADS)

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  7. Filamentation of a relativistic short pulse laser in a plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Tripathi, V. K.; Sawhney, B. K.

    2006-06-01

    An intense short pulse laser propagating through a plasma undergoes filamentation instability under the combined effects of relativistic mass variation and ponderomotive force-induced electron density depression. These two nonlinearities superimpose each other. In a tenuous plasma, the filament size scales as {\\sim}( c / \\omega _p\\; a_0 ) \\sqrt 2 \\gamma _0^{1/2} , where ω p is the plasma frequency, a0 is the normalized laser amplitude and γ 0 is the relativistic gamma factor.

  8. Fast photography of plasma formed by laser ablation of aluminum

    NASA Astrophysics Data System (ADS)

    Nedanovska, E.; Ivkovic, M.

    2008-07-01

    In this paper we present results of the temporal and spatial analysis of laser induced plasma performed by use of ICCD fast photography. The plasma is formed by excimer laser ablation of aluminum target in vacuum, air or different pressures of argon and helium. It is shown how the plasma luminous intensity and duration depends on gas pressure. The obtained time dependence of wave propagation distance is also compared with predictions given by the blast wave and drag-force theory also.

  9. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  10. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  11. Ion probe detection of clusters in a remotely expanding thermal plasma

    NASA Astrophysics Data System (ADS)

    Petcu, M. C.; Sarkar, A.; Bronneberg, A. C.; Creatore, M.; van de Sanden, M. C. M.

    2010-12-01

    The investigation of a remote depositing Ar/NH3/SiH4-fed expanding thermal plasma by means of an ion probe, under high SiH4 flow rate ( \\Phi_{SiH_4} >1\\,sccs ) conditions, is reported here. Given the expanding nature of the plasma in the downstream region, a Gaussian-like ion flux radial profile is observed. A peculiar local off-axis ion peak for high \\Phi_{SiH_4} is also observed nearby. A hypothesis for this phenomenon is proposed, on the basis of the plasma chemistry occurring in the downstream region. The local depletion of electrons, being withdrawn by silicon-containing clusters formed at the boundaries between the plasma beam and the background gas, is responsible for the local enhancement of the ion flux. This hypothesis is corroborated by further studies aiming to evaluate the effects of thermophoretic and electrostatic forces on the above-mentioned clusters. The presented work suggests the application of the capacitive probe technique for cluster detection in specific plasma chemistries.

  12. Laser-driven plasma photonic crystals for high-power lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  13. Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-06-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  14. Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Hutchinson, Robert W.; McLachlin, Katherine M.; Riquelme, Paloma; Haarer, Jan; Broichhausen, Christiane; Ritter, Uwe; Geissler, Edward K.; Hutchinson, James A.

    2015-01-01

    ABSTRACT New analytical techniques for multiparametric characterisation of individual cells are likely to reveal important information about the heterogeneity of immunological responses at the single-cell level. In this proof-of-principle study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to the problem of concurrently detecting 24 lineage and activation markers expressed by human leucocytes. This approach was sufficiently sensitive and specific to identify subpopulations of isolated T, B, and natural killer cells. Leucocyte subsets were also accurately detected within unfractionated peripheral blood mononuclear cells preparations. Accordingly, we judge LA-ICP-MS to be a suitable method for assessing expression of multiple tissue antigens in solid-phase biological specimens, such as tissue sections, cytospins, or cells grown on slides. These results augur well for future development of LA-ICP-MS–based bioimaging instruments for general users. PMID:27500232

  15. Microwave interferometry of laser induced air plasmas formed by short laser pulses

    SciTech Connect

    Jungwirth, Patrick W.

    1993-08-01

    Applications for the interaction of laser induced plasmas with electromagnetic probes requires time varying complex conductivity data for specific laser/electromagnetic probe geometries. Applications for this data include plasma switching (Q switching) and the study of ionization fronts. The plasmas were created in laboratory air by 100 ps laser pulses at a wavelength of 1 μm. A long focal length lens focused the laser pulse into WR90 (X band) rectangular waveguide. Two different laser beam/electromagnetic probe geometries were investigated. For the longitudinal geometry, the laser pulse and the microwave counterpropagated inside the waveguide. For the transverse geometry, the laser created a plasma ``post`` inside the waveguide. The effects of the laser beam deliberately hitting the waveguide were also investigated. Each geometry exhibits its own characteristics. This research project focused on the longitudinal geometry. Since the laser beam intensity varies inside the waveguide, the charge distribution inside the waveguide also varies. A 10 GHz CW microwave probe traveled through the laser induced plasma. From the magnitude and phase of the microwave probe, a spatially integrated complex conductivity was calculated. No measurements of the temporal or spatial variation of the laser induced plasma were made. For the ``plasma post,`` the electron density is more uniform.

  16. High power monolithically integrated diode laser, preamplifier, and coherent beam expander

    NASA Astrophysics Data System (ADS)

    O'Brien, S.; Mehuys, D.; Welch, D. F.; Parke, R.; Scifres, D.

    1992-11-01

    An integrated coherent beam expander utilizing a transverse leaky mode waveguide has been integrated with a single mode distributed Bragg reflector laser and a preamplifier producing powers in excess of 70 mW CW in a single spectral and spatial mode across an aperture over 100 microns wide. The far-field pattern in the direction parallel to the plane of the p-n junction, consists of one main lobe 0.45 deg wide, indicating that the beam is coherent over the full emitting aperture. The expanded beam is suitable as an injection source for an integrated broad area amplifier.

  17. Transition from single to multiple axial potential structure in expanding helicon plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Chattopadhyay, P. K.; Ghosh, J.; Pal, R.; Bora, D.

    2017-02-01

    Transition from single to multiple axial potential structure (MAPS) formation is reported in expanding helicon plasma. This transition is created by forming a cusp magnetic field at the downstream after the expansion throat. Two distinct potential drops are separated by a uniform axial potential zone. Non-uniform axial density distribution exists in expanding helicon systems. A cusp-like field nourishes both the axial density gradients sufficient enough for the formation of these two distinct potential drops. It is also shown that both single and multiple axial potential structures are observed only when both geometric and magnetic expansions closely coincide with each other. Coexistence of these two expansions at the same location enhances plasma expansion which facilitates deviation from Boltzmann distribution and violates quasi-neutrality locally.

  18. Modulation instability of laser pulse in magnetized plasma

    SciTech Connect

    Jha, Pallavi; Kumar, Punit; Raj, Gaurav; Upadhyaya, Ajay K.

    2005-12-15

    Modulation instability of a laser pulse propagating through transversely magnetized underdense plasma is studied. It is observed that interaction of laser radiation with plasma in the presence of uniform magnetic field results in an additional perturbed transverse plasma current density along with the relativistic and ponderomotive nonlinear current densities, thus affecting the modulational interaction. In the plane wave limit it is observed that modulational interaction is more stable for magnetized plasma as compared to the unmagnetized case. The analysis shows that there is a significant reduction in the growth rate of modulation instability over a given range of unstable wave numbers due to magnetization of plasma.

  19. Laser plasma influence on the space-time structure of powerful laser radiation

    NASA Astrophysics Data System (ADS)

    Ananyin, O. B.; Bogdanov, G. S.; Vovchenko, E. D.; Gerasimov, I. A.; Kuznetsov, A. P.; Melekhov, A. P.

    2016-01-01

    This paper deals with the influence of laser plasma on the structure of the radiation field of a powerful Nd-glass laser with pulse energy up to 30 J and with the diameter of the output beam 45 mm. Laser plasma is generated by focusing the laser radiation on a low-density target such as nylon mesh and teflon or mylar films. Temporal profile of the laser pulse with a total duration of 25 ns consists of a several short pulse train. Duration of each pulse is about 2 ns. Notable smoothing of spatially non-uniform radiation structure was observed in the middle of the laser pulse.

  20. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    SciTech Connect

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  1. Efficacy of laser photoablative therapy and expandable metal stents for esophageal carcinoma

    NASA Astrophysics Data System (ADS)

    Balachandar, Gowra; Trowers, Eugene A.

    2000-05-01

    Malignant dysphagia is a serious condition in which 70% of patients die within one year, regardless of the treatment received. It provokes a rapid deterioration of a patient's physical condition and a significant worsening of quality of life. The surgical treatment of dysphagia is frequently complicated with technical difficulties, and often the tumors cannot be excised because of extensive invasion into adjacent structures. Furthermore, many patients are considered inoperable due to advanced age, associated diseases and malnutrition. Laser photoablative therapy coupled with expandable metal stents restores luminal patency in more than 80% of patients allowing them to eat liquids and soft foods. The efficacy of laser photoablative therapy and expandable metal stents for the palliation esophageal carcinoma will be critically reviewed.

  2. Plasma Jet Interaction with Thomson Scattering Probe Laser

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  3. An experimental study of laser supported hydrogen plasmas

    NASA Technical Reports Server (NTRS)

    Vanzandt, D. M.; Mccay, T. D.; Eskridge, R. H.

    1984-01-01

    The rudiments of a rocket thruster which receives its enthalpy from an energy source which is remotely beamed from a laser is described. An experimental study now partially complete is discussed which will eventually provide a detailed understanding of the physics for assessing the feasibility of using hydrogen plasmas for accepting and converting this energy to enthalpy. A plasma ignition scheme which uses a pulsed CO2 laser has been developed and the properties of the ignition spark documented, including breakdown intensities in hydrogen. A complete diagnostic system capable of determining plasma temperature and the plasma absorptivity for subsequent steady state absorption of a high power CO2 laser beam are developed and demonstrative use is discussed for the preliminary case study, a two atmosphere laser supported argon plasma.

  4. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    SciTech Connect

    Wu, Jian; Wei, Wenfu; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag model was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.

  5. Dynamics of laser-ablated carbon plasma: formation of C2 and CN

    SciTech Connect

    Kushwaha, Archana; Thareja, R. K

    2008-11-01

    We report time-resolved imaging of a laser-ablated carbon plasma plume to investigate the expansion dynamics of C2 and CN in an ambient atmosphere of nitrogen gas at various pressures. An attempt is made to locate C2 and CN species in the carbon plasma plume and correlate them with the results of spectroscopic observations. The ablated C2 and CN species decelerate due to collisions with nitrogen gas and are localized in the slower part ({approx}300 ns) of the expanding plume. Further expansion (<700 ns) of the plasma reveals the concentration of C2 species on the periphery of the plume, whereas CN dominates at the core of the plume. However, at times greater than 700 ns, the collisions and recombination processes dominate in the plume and C2 expands slower than CN. The plume dynamics is studied in terms of shock-wave and drag models.

  6. Two-temperature modeling of laser sustained hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Mertogul, Ayhan E.; Krier, Herman

    1994-10-01

    A kinetic nonequilibrium model of laser sustained hydrogen plasmas has been formulated and solved for the prediction of steady-state energy transport processes. This model is the first of its kind and includes a discretized beam ray-trace with a variable index of refraction based upon plasma electron number density for a 10.6-micron CO2 laser input. Model results for fraction of incident laser power absorbed, and fraction of incident laser power retained by the hydrogen gas have compared favorably with experimental results. The model has been used to provide predictions of laser sustained plasma (LSP) performance well outside the realm of experiments to incident powers as high as 700 kW. At the gas pressures studied, minimal kinetic nonequilibrium was observed in LSP core regions, even for 700-kW laser power.

  7. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Mechanism of high-energy electron production in a laser plasma

    NASA Astrophysics Data System (ADS)

    Belyaev, V. S.

    2004-01-01

    A mechanism of high-energy electron production in the interaction of high-intensity short laser pulses with a solid target is proposed and analysed. The theoretical dependences of fast-electron kinetic energy on the parameters of laser radiation and target material are given. The effect of ionisation of the target material is considered. The generation of ultrastrong magnetic fields in the laser plasma is shown to play the key part in the formation, transfer, and acceleration of electron beams. This results in the production of vortex electric fields accelerating electrons. The theoretical dependences yield well-proved limits for the electron energy and are in good agreement with the results of experiments performed on high-intensity laser setups, including the results obtained with participation of the author.

  8. Measurement and Analysis of CN Violet System in Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Behery, Sultan A.; Parigger, Christian G.

    2014-03-01

    Pulsed, infrared Nd:YAG laser radiation is utilized to ablate material from carbon-containing samples in air. Time-resolved measurements of the micro-plasma show well-developed diatomic spectra of the CN violet system. Of Interest are interferences from the C2 Deslandres D'Azambuja system in the CN spectra, as previously noted in experiments with CO2 laser radiation focused into CO2 gas expanding into air. The recombination emission spectra from diatomic species, e.g., CN or C2, clearly indicate temperatures in excess of 6000 Kelvin. Studies of the CO2 TEA laser-induced micro-plasmas show these highly excited, high-temperature molecular transitions several tens of microseconds after plasma generation, mixed with signatures of Stark-broadened atomic lines. Spectroscopic fitting with accurate molecular line strengths of superposed emission spectra is of current interest, including study of the C2 Deslandres D'Azambuja system near the 4-4 band of the CN Δv = 0 sequence of the CN B2Σ+ --> X2Σ+ Violet System. In addition, discussed are physics phenomena associated with laser-induced optical breakdown. Laser-induced plasma applications include characterization of carbon and nitrogen containing materials.

  9. Laser-plasma booster for ion post acceleration

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Kawata, S.; Takahashi, K.; Izumiyama, T.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.; Li, Y. T.; Sheng, Z. M.; Klimo, O.; Limpouch, J.; Andreev, A. A.

    2013-11-01

    A remarkable ion energy increase is demonstrated for post acceleration by a laser-plasma booster. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when this intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase in the magnetic field, a longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. Our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by several tens of MeV.

  10. Modeling laser-plasma acceleration in the laboratory frame

    SciTech Connect

    2011-01-01

    A simulation of laser-plasma acceleration in the laboratory frame. Both the laser and the wakefield buckets must be resolved over the entire domain of the plasma, requiring many cells and many time steps. While researchers often use a simulation window that moves with the pulse, this reduces only the multitude of cells, not the multitude of time steps. For an artistic impression of how to solve the simulation by using the boosted-frame method, watch the video "Modeling laser-plasma acceleration in the wakefield frame."

  11. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  12. Observation of weakly and strongly diverging ion beams in a magnetically expanding plasma

    SciTech Connect

    Takahashi, K.; Fujiwara, T.

    2009-02-09

    The spatial distribution of an ion beam created in a magnetically expanding plasma using permanent magnets is experimentally investigated for 0.35 and 1 mTorr, where the magnetic-field strength is about 100 G in the plasma source and is decreasing into a few gauss in the diffusion chamber. The beam profile for 0.35 mTorr is weakly divergent. On the other hand, the strongly diverging beam is detected for 1 mTorr. The results are discussed from the viewpoint of the plasma-potential structures and imply the beam divergence caused by the radial electric fields in the ion acceleration region and the diffusion chamber.

  13. Ion acceleration in a solenoid-free plasma expanded by permanent magnets

    SciTech Connect

    Takahashi, K.; Oguni, K.; Yamada, H.; Fujiwara, T.

    2008-08-15

    Ion acceleration is achieved in a low-pressure solenoid-free plasma expanded by permanent magnet arrays. Although a permanent magnet normally forms cusp magnetic fields which prevents plasma diffusion and double layer formation, by employing double concentric arrays of permanent magnets, a constant field area, and a diverging magnetic field can be generated near the outlet of the plasma source. In the source, a rapid potential drop with 4 cm thickness from 50 V to 20 V is generated at the diverging field area for 0.35 mTorr and a supersonic ion beam accelerated through the potential drop is observed in the diffusion chamber. The beam energy can be increased up to over 40 eV with a decrease in gas pressure.

  14. Expansion of radiative cooling of the laser induced plasma

    SciTech Connect

    Wen, Sy-Bor; Mao, Xianglei; Liu, Chunyi; Greif, Ralph; Russo,Richard

    2006-05-05

    To study the expansion and cooling process of the laser induced plasma generated by nanosecond pulsed laser ablation, experiments have been conducted which measure the position of the external shockwaves and the temperature of the vapor plumes. The positions of external shockwaves were determined by a femtosecond laser time-resolved imaging system. Vapor plume temperature was determined from spectroscopic measurements of the plasma emission lines. A model which considers the mass, momentum, and energy conservation of the region affected by the laser energy was developed. It shows good agreement to the experimental data.

  15. Strongly-coupled plasmas formed from laser-heated solids

    PubMed Central

    Lyon, M.; Bergeson, S. D.; Hart, G.; Murillo, M. S.

    2015-01-01

    We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred. PMID:26503293

  16. Mid-infrared lasers for energy frontier plasma accelerators

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Polyanskiy, M. N.; Kimura, W. D.

    2016-09-01

    Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO2 lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the design of such a machine. The revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO2 laser technology.

  17. Mid-infrared lasers for energy frontier plasma accelerators

    DOE PAGES

    Pogorelsky, I. V.; Polyanskiy, M. N.; Kimura, W. D.

    2016-09-12

    Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO2 lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the design ofmore » such a machine. In conclusion, the revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO2 laser technology.« less

  18. Laser-plasma interactions relevant to Inertial Confinement Fusion

    SciTech Connect

    Wharton, K. B.

    1998-11-01

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a

  19. High-order harmonics from laser-irradiated plasma surfaces

    SciTech Connect

    Teubner, U.; Gibbon, P.

    2009-04-15

    The investigation of high-order harmonic generation (HHG) of femtosecond laser pulses by means of laser-produced plasmas is surveyed. This kind of harmonic generation is an alternative to the HHG in gases and shows significantly higher conversion efficiency. Furthermore, with plasma targets there is no limitation on applicable laser intensity and thus the generated harmonics can be much more intense. In principle, harmonic light may also be generated at relativistic laser intensity, in which case their harmonic intensities may even exceed that of the focused laser pulse by many orders of magnitude. This phenomenon presents new opportunities for applications such as nonlinear optics in the extreme ultraviolet region, photoelectron spectroscopy, and opacity measurements of high-density matter with high temporal and spatial resolution. On the other hand, HHG is strongly influenced by the laser-plasma interaction itself. In particular, recent results show a strong correlation with high-energy electrons generated during the interaction process. The harmonics are a promising tool for obtaining information not only on plasma parameters such as the local electron density, but also on the presence of large electric and magnetic fields, plasma waves, and the (electron) transport inside the target. This paper reviews the theoretical and experimental progress on HHG via laser-plasma interactions and discusses the prospects for applying HHG as a short-wavelength, coherent optical tool.

  20. Development And Optical Absorption Properties Of A Laser Induced Plasma During CO2-Laser Processing

    NASA Astrophysics Data System (ADS)

    Beyer, E.; Bakowsky, L.; Loosen, P.; Poprawe, R.; Herziger, G.

    1984-03-01

    Laser material processing is accompanied by a laser induced plasma in front of the target surface as soon as the laser radiation exceeds a certain critical intensity. For cw CO2-laser machining of metal targets the threshold for plasma onset is about 106 W/cm2. Critical condition for plasma generation at this intensity level is to reach evaporation temperature at the target's surface. At intensity levels exceeding 106 W/cm2 the laser light is interacting with the laser induced plasma and then the plasma in turn interacts with the target. The absorptivity is no longer constant, but increases with increasing intensity of the incident radiation, so that the total amount of power coupled to the target is increasing. This holds up to intensity levels of 2'10 Wicm2. Then the plasma begins to withdraw from the target surface, thus interrupting plasma-target interaction so that the laser power is no longer coupled into the target completely. The results of laser welding (welding depth) in the intensity level of 106 W/cm2 are governed by the product of incident intensity times focus radius, so that welding results are a measure to determine focus radius and laser intensity.

  1. Plasma formation in diode pumped alkali lasers sustained in Cs

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Kushner, Mark J.

    2016-11-01

    In diode pumped alkali lasers (DPALs), lasing action occurs on the resonant lines of alkali atoms following pumping by broadband semiconductor lasers. The goal is to convert the efficient but usually poor optical quality of inexpensive diode lasers into the high optical quality of atomic vapor lasers. Resonant excitation of alkali vapor leads to plasma formation through the excitation transfer from the 2P states to upper lying states, which then are photoionized by the pump and intracavity radiation. A first principles global model was developed to investigate the operation of the He/Cs DPAL system and the consequences of plasma formation on the efficiency of the laser. Over a range of pump powers, cell temperatures, excitation frequency, and mole fraction of the collision mixing agent (N2 or C2H6), we found that sufficient plasma formation can occur that the Cs vapor is depleted. Although N2 is not a favored collisional mixing agent due to large rates of quenching of the 2P states, we found a range of pump parameters where laser oscillation may occur. The poor performance of N2 buffered systems may be explained in part by plasma formation. We found that during the operation of the DPAL system with N2 as the collisional mixing agent, plasma formation is in excess of 1014-1015 cm-3, which can degrade laser output intensity by both depletion of the neutral vapor and electron collisional mixing of the laser levels.

  2. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: X-ray spectral diagnostics of plasmas heated by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bryunetkin, B. A.; Skobelev, I. Yu; Faenov, A. Ya; Khakhalin, S. Ya; Kalashnikov, M. P.; Nickles, P. V.; Schnürer, M.

    1993-06-01

    The properties of a magnesium plasma heated by picosecond laser pulses have been determined by x-ray spectral methods. Experiments were carried out at a laser power density ~ 1.5 · 1018 W/cm2. The x-ray spectra were detected by spectrographs with a plane CsAP crystal and a mica crystal bent into part of a spherical surface 10 cm in radius. The experimental data are compared with predictions of a calculation on the time-varying kinetics of multiply charged magnesium ions.

  3. Tuning of betatron radiation in laser-plasma accelerators via multimodal laser propagation through capillary waveguides

    NASA Astrophysics Data System (ADS)

    Curcio, A.; Giulietti, D.; Petrarca, M.

    2017-02-01

    The betatron radiation from laser-plasma accelerated electrons in dielectric capillary waveguides is investigated. The multimode laser propagation is responsible for a modulated plasma wakefield structure, which affects the electron transverse dynamics, therefore influencing the betatron radiation spectra. Such a phenomenon can be exploited to tune the energy spectrum of the betatron radiation by controlling the excitation of the capillary modes.

  4. Non-thermal ablation of expanded polytetrafluoroethylene with an intense femtosecond-pulse laser.

    PubMed

    Hashida, M; Mishima, H; Tokita, S; Sakabe, S

    2009-07-20

    Ablation of expanded polytetrafluoroethylene without disruption of the fine porous structure is demonstrated using an intense femtosecond-pulse laser. As a result of laser-matter interactions near ablation threshold fluence, high-energy ions are emitted, which cannot be produced by thermal dissociation of the molecules. The ion energy is produced by Coulomb explosion of the elements of (-CF(2)-CF(2)-)(n) and the energy spectra of the ions show contributions from the Coulomb explosions of the ions rather than those of thermal expansion to generate high-energy ions. The dependence of ion energy on the laser fluence of a 180-fs pulse, compared with that of a 400-ps pulse, also suggests that the high-energy ions are accelerated by Coulomb explosion.

  5. Laser-induced plasma emission: from atomic to molecular spectra

    NASA Astrophysics Data System (ADS)

    De Giacomo, Alessandro; Hermann, Jörg

    2017-05-01

    The aim of this paper is the description of the optical emission spectral features of the plasma produced by laser-matter interaction, from a fundamental point of view. The laser induced plasma emission spectra are discussed in connection with the basic mechanisms that take place in the plasma phase at different time delays from the laser pulse. The laser induced plasma being a dynamic system, the hierarchy of the elementary mechanisms changes continuously because the electron number density and the electron temperature decrease during the expansion. As a consequence of this, over the duration of the plasma’s persistence the prevailing emitting species changes from ions to atoms and from atoms to molecules. Both atomic and molecular emission spectroscopy are discussed, to convey a complete description of the temporal evolution of laser induced plasma. Current literature, as well as the traditional plasma theories, are presented and discussed in order to give to the reader a general idea of the potentialities and drawbacks of emission spectroscopy in the study of laser induced plasma and its various applications.

  6. Multistage coupling of independent laser-plasma accelerators.

    PubMed

    Steinke, S; van Tilborg, J; Benedetti, C; Geddes, C G R; Schroeder, C B; Daniels, J; Swanson, K K; Gonsalves, A J; Nakamura, K; Matlis, N H; Shaw, B H; Esarey, E; Leemans, W P

    2016-02-11

    Laser-plasma accelerators (LPAs) are capable of accelerating charged particles to very high energies in very compact structures. In theory, therefore, they offer advantages over conventional, large-scale particle accelerators. However, the energy gain in a single-stage LPA can be limited by laser diffraction, dephasing, electron-beam loading and laser-energy depletion. The problem of laser diffraction can be addressed by using laser-pulse guiding and preformed plasma waveguides to maintain the required laser intensity over distances of many Rayleigh lengths; dephasing can be mitigated by longitudinal tailoring of the plasma density; and beam loading can be controlled by proper shaping of the electron beam. To increase the beam energy further, it is necessary to tackle the problem of the depletion of laser energy, by sequencing the accelerator into stages, each powered by a separate laser pulse. Here, we present results from an experiment that demonstrates such staging. Two LPA stages were coupled over a short distance (as is needed to preserve the average acceleration gradient) by a plasma mirror. Stable electron beams from a first LPA were focused to a twenty-micrometre radius--by a discharge capillary-based active plasma lens--into a second LPA, such that the beams interacted with the wakefield excited by a separate laser. Staged acceleration by the wakefield of the second stage is detected via an energy gain of 100 megaelectronvolts for a subset of the electron beam. Changing the arrival time of the electron beam with respect to the second-stage laser pulse allowed us to reconstruct the temporal wakefield structure and to determine the plasma density. Our results indicate that the fundamental limitation to energy gain presented by laser depletion can be overcome by using staged acceleration, suggesting a way of reaching the electron energies required for collider applications.

  7. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Coulomb explosion of a laser plasma

    NASA Astrophysics Data System (ADS)

    Tkachev, Aleksei N.; Yakovlenko, Sergei I.

    1993-11-01

    The behavior of a plasma produced by multistep selective ionization of a vapor and subjected to an intense pulsed electric field has been studied. Electrons are quickly "sucked" out of such a plasma, and then there is a Coulomb explosion of the net charge.

  8. Improving the Capabilities of a Continuum Laser Plasma Interaction Code

    SciTech Connect

    Hittinger, J F; Dorr, M R

    2006-06-15

    The numerical simulation of plasmas is a critical tool for inertial confinement fusion (ICF). We have been working to improve the predictive capability of a continuum laser plasma interaction code pF3d, which couples a continuum hydrodynamic model of an unmagnetized plasma to paraxial wave equations modeling the laser light. Advanced numerical techniques such as local mesh refinement, multigrid, and multifluid Godunov methods have been adapted and applied to nonlinear heat conduction and to multifluid plasma models. We describe these algorithms and briefly demonstrate their capabilities.

  9. Dynamics of neutrals and ions in an ultrafast laser produced Zn plasma

    SciTech Connect

    Smijesh, N.; Rao, Kavya H.; Philip, Reji

    2015-03-15

    Optical time of flight dynamics of neutrals and ions in an ultrafast laser produced zinc plasma generated by irradiating a solid zinc target using 100 fs laser pulses is investigated. An acceleration of ions is observed which arises from internal Coulomb forces acting between charged species in the plasma. Some of the fast ions recombine with electrons in the plasma and generate fast neutrals. Plasma plume imaging performed at various ambient pressures indicates adiabatic expansion at lower pressures and plume front deceleration at higher pressures: at lower pressures the plume front-time (R-t) plot displays a linear expansion, shock wave model fits to the data at 5 Torr and at higher pressures the data fits better to the drag model. Furthermore, around an intermediate pressure of 10 Torr, the R-t plot fits to the shock wave model at earlier stages of plasma expansion, while it fits to the drag model at the later stages. These investigations provide relevant information on the acceleration of ions and neutrals in an expanding zinc plasma plume produced by ultrafast laser pulses.

  10. Diagnostics of recombining laser plasma parameters based on He-like ion resonance lines intensity ratios

    NASA Astrophysics Data System (ADS)

    Ryazantsev, S. N.; Skobelev, I. Yu; Faenov, A. Ya; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.

    2016-11-01

    While the plasma created by powerful laser expands from the target surface it becomes overcooled, i.e. recombining one. Improving of diagnostic methods applicable for such plasma is rather important problem in laboratory astrophysics nowadays because laser produced jets are fully scalable to young stellar objects. Such scaling is possible because of the plasma hydrodynamic equations invariance under some transformations. In this paper it is shown that relative intensities of the resonance transitions in He-like ions can be used to measure the parameters of recombining plasma. Intensity of the spectral lines corresponding to these transitions is sensitive to the density in the range of 1016-1020 cm-3 while the temperature ranges from 10 to 100 eV for ions with nuclear charge Zn ∼ 10. Calculations were carried out for F VIII ion and allowed to determine parameters of plasma jets created by nanosecond laser system ELFIE (Ecole Polytechnique, France) for astrophysical phenomenon modelling. Obtained dependencies are quite universal and can be used for any recombining plasma containing He-like fluorine ions.

  11. Transition of the BELLA PW laser system towards a collaborative research facility in laser plasma science

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Evans, Dave; Gonsalves, Anthony J.; Kirkpatrick, Mark; Magana, Art; Mannino, Greg; Mao, Hann-Shin; Nakamura, Kei; Riley, Joe R.; Steinke, Sven; Sipla, Tyler; Syversrud, Don; Ybarrolaza, Nathan; Leemans, Wim P.

    2017-03-01

    The advancement of Laser-Plasma Accelerators (LPA) requires systematic studies with ever increasing precision and reproducibility. A key component of such a research endeavor is a facility that provides reliable, well characterized laser sources, flexible target systems, and comprehensive diagnostics of the laser pulses, the interaction region, and the produced electron beams. The Berkeley Lab Laser Accelerator (BELLA), a PW laser facility, now routinely provides high quality focused laser pulses for high precision experiments. A description of the commissioning process, the layout of the laser systems, the major components of the laser and radiation protection systems, and a summary of early results are given. Further scientific plans and highlights of operational experience that serve as the basis for transition to a collaborative research facility in high-peak power laser-plasma interaction research are reviewed.

  12. Magnetically Controlled Plasma Waveguide For Laser Wakefield Acceleration

    SciTech Connect

    Froula, D H; Divol, L; Davis, P; Palastro, J; Michel, P; Leurent, V; Glenzer, S H; Pollock, B; Tynan, G

    2008-05-14

    An external magnetic field applied to a laser plasma is shown produce a plasma channel at densities relevant to creating GeV monoenergetic electrons through laser wakefield acceleration. Furthermore, the magnetic field also provides a pressure to help shape the channel to match the guiding conditions of an incident laser beam. Measured density channels suitable for guiding relativistic short-pulse laser beams are presented with a minimum density of 5 x 10{sup 17} cm{sup -3} which corresponds to a linear dephasing length of several centimeters suitable for multi-GeV electron acceleration. The experimental setup at the Jupiter Laser Facility, Lawrence Livermore National Laboratory, where a 1-ns, 150 J 1054 nm laser will produce a magnetically controlled channel to guide a < 75 fs, 10 J short-pulse laser beam through 5-cm of 5 x 10{sup 17} cm{sup -3} plasma is presented. Calculations presented show that electrons can be accelerated to 3 GeV with this system. Three-dimensional resistive magneto-hydrodynamic simulations are used to design the laser and plasma parameters and quasi-static kinetic simulations indicate that the channel will guide a 200 TW laser beam over 5-cm.

  13. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    SciTech Connect

    Lafleur, T.; Charles, C.; Boswell, R. W.; Takahashi, K.

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  14. Laser-induced plasma spectroscopy: principles, methods and applications

    SciTech Connect

    Lazic, Violeta; Colao, Francesco; Fantoni, Roberta; Spizzichino, Valeria; Jovicevic, Sonja

    2006-12-01

    Principles of the Laser Induced Plasma Spectroscopy and its advances are reported. Methods for obtaining quantitative analyses are described, together with discussion of some applications and the specific problems.

  15. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  16. Nonlinear absorption of short intense laser pulse in multispecies plasma

    SciTech Connect

    Kargarian, A.; Hajisharifi, K.; Mehdian, H.

    2016-08-15

    In the present paper, the detailed investigation concerning the effect of inclusion of heavy negative ions into the finite background plasma on the laser absorption has been carried out by employing particle-in-cell simulation method. For this purpose, in this configuration, the laser energy absorption relying on the nonlinear phenomena such as phase-mixing, wave-breaking, and scattering has been studied in the Raman-Brillouin regime. It is shown that the inclusion of heavy negative ions suppresses the scattering while increases the phase-mixing time. Moreover, it is illustrated that this inclusion can increase the laser absorption in finite plasma environment, after saturation. The obtained results are expected to be relevant to the experiments on the mass spectrometry with laser desorption techniques as well as on the laser-plasma interaction with application to particles acceleration.

  17. Relativistically strong CO{sub 2} laser driver for plasma-channeled particle acceleration

    SciTech Connect

    Pogorelsky, I.V.

    1995-12-31

    Long-wavelength, short-duration laser pulses are desirable for plasma wakefield particle acceleration and plasma waveguiding. The first picosecond terawatt CO{sub 2} laser is under development to test laser-driven electron acceleration schemes.

  18. The Precision Expandable Radar Calibration Sphere (PERCS) With Applications for Laser Imaging and Ranging

    NASA Astrophysics Data System (ADS)

    Bernhardt, P.; Nicholas, A.; Thomas, L.; Davis, M.; Hoberman, C.; Davis, M.

    The Naval Research Laboratory will provide an orbiting calibration sphere to be used with ground-based laser imaging telescopes and HF radio systems. The Precision Expandable Radar Calibration Sphere (PERCS) is a practical, reliable, high-performance HF calibration sphere and laser imaging target to orbit at about 600 km altitude. The sphere will be made of a spherical wire frame with aspect independent radar cross section in the 3 to 35 MHz frequency range. The necessary launch vehicle to place the PERCS in orbit will be provided by the Department of Defense Space Test Program. The expandable calibration target has a stowed diameter of 1 meter and a fully deployed diameter of 10.2 meters. A separate deployment mechanism is provided for the sphere. After deployment, the Precision Expandable Radar Calibration Sphere (PERCS) with 180 vertices will be in a high inclination orbit to scatter radio pulses from a number of ground systems, including (1) over-the-horizon (OTH) radars operated by the United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral region mapping; and (4) HF direction finding for Navy ships. With the PERCS satellite, the accuracy of HF radars can be periodically checked for range, elevation, and azimuth errors. In addition, each of the 360 vertices on the PERCS sphere will support an optical retro-reflector for operations with ground laser facilities used to track satellites. The ground laser systems will be used to measure the precise location of the sphere within one cm accuracy and will provide the spatial orientation of the sphere as well as the rotation rate. The Department of Defense facilities that can use the corner-cube reflectors on the PERCS include (1) the Air Force Maui Optical Site (AMOS), (2) the Starfire Optical Range (SOR), and (3) the NRL Optical Test Facility (OTF).

  19. Emission and afterglow properties of an expanding RF plasma with nonuniform neutral gas density

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2016-08-01

    We describe some notable aspects of the light emission and afterglow properties in pulsed, high-density ( 1018-1020 m-3 ) argon inductively coupled discharges initiated following fast gas injection. The plasma was created in a long, narrow discharge tube and then expanded downstream of the radiofrequency (RF) antenna into a large chamber. Fast camera images of the expanding plasma revealed a multi-phase time-dependent emission pattern that did not follow the ion density distribution. Dramatic differences in visible brightness were observed between discharges with and without an externally applied magnetic field. These phenomena were studied by tracking excited state populations using passive emission spectroscopy and are discussed in terms of the distinction between ionizing and recombining phase plasmas. Additionally, a method is presented for inferring the unknown neutral gas pressure in the discharge tube from the time-dependent visible and infrared emission measured by a simple photodiode placed near the antenna. In magnetized discharges created with fast gas injection, the downstream ion density rose by Δni˜1018 m-3 in the first ˜100 μs after the RF power was turned off. The conditions conducive to this afterglow density rise are investigated in detail, and the effect is tentatively attributed to pooling ionization.

  20. PIC Simulations of direct laser accelerated electron from underdense plasmas using the OMEGA EP Laser

    NASA Astrophysics Data System (ADS)

    Hussein, Amina; Batson, Thomas; Krushelnick, Karl; Willingale, Louise; Arefiev, Alex; Wang, Tao; Nilson, Phil; Froula, Dustin; Haberberger, Dan; Davies, Andrew; Theobald, Wolfgang; Williams, Jackson; Chen, Hui

    2016-10-01

    The OMEGA EP laser system is used to study channeling phenomena and direct laser acceleration (DLA) through an underdense plasma. The interaction of a ps laser pulse with a subcritical density CH plasma plume results in the expulsion of electron along the laser axis, forming a positively charged channel. Electrons confined within this channel are subject to the action of the laser field as well as the transverse electric field of the channel, resulting the DLA of these electrons and the formation of a high energy electron beam. We have performed 2D simulations of ultra-intense laser radiation with underdense plasma using the PIC code EPOCH to investigate electron densities and self-consistently generated electric fields, as well as electron trajectories. This work was supported by the National Laser Users' Facility (NLUF), DOE.

  1. Synchrotron radiation from a curved plasma channel laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Kaganovich, D.; Hafizi, B.; Chen, Y.-H.; Johnson, L. A.; Peñano, J. R.; Helle, M. H.; Mamonau, A. A.

    2017-03-01

    A laser pulse guided in a curved plasma channel can excite wakefields that steer electrons along an arched trajectory. As the electrons are accelerated along the curved channel, they emit synchrotron radiation. We present simple analytical models and simulations examining laser pulse guiding, wakefield generation, electron steering, and synchrotron emission in curved plasma channels. For experimentally realizable parameters, a ˜2 GeV electron emits 0.1 photons per cm with an average photon energy of multiple keV.

  2. Laser ablated zirconium plasma: A source of neutral zirconium

    SciTech Connect

    Yadav, Dheerendra; Thareja, Raj K.

    2010-10-15

    The authors report spectroscopic investigations of laser produced zirconium (Zr) plasma at moderate laser fluence. At low laser fluence the neutral zirconium species are observed to dominate over the higher species of zirconium. Laser induced fluorescence technique is used to study the velocity distribution of ground state neutral zirconium species. Two-dimensional time-resolved density distributions of ground state zirconium is mapped using planner laser induced fluorescence imaging and total ablated mass of neutral zirconium atoms is estimated. Temporal and spatial evolutions of electron density and temperature are discussed by measuring Stark broadened profile and ratio of intensity of emission lines, respectively.

  3. Measurement of acceleration in femtosecond laser-plasmas

    SciTech Connect

    Haessner, R.; Theobald, W.; Niedermeier, S.; Michelmann, K.; Feurer, T.; Schillinger, H.; Sauerbrey, R.

    1998-02-20

    Accelerations up to 4x10{sup 19} m/s{sup 2} are measured in femtosecond laser-produced plasmas at intensities of 10{sup 18} W/cm{sup 2} using the Frequency Resolved Optical Gating (FROG) technique. A high density plasma is formed by focusing an ultrashort unchirped laser pulse on a plane carbon target and part of the reflected pulse is eventually detected by a FROG autocorrelator. Radiation pressure and thermal pressure accelerate the plasma which causes a chirp in the reflected laser pulse. The retrieved phase and amplitude information reveal that the plasma motion is dominated by the large light pressure which pushes the plasma into the target. This is supported by theoretical estimates and by the results of independently measured time integrated spectra of the reflected pulse.

  4. Laser pulse evolution and electron acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Esarey, Eric

    2000-04-01

    Laser-driven plasma-based accelerators(For a review see, E. Esarey et al., IEEE Trans. Plasma Sci. 24, 252 (1996).) require the propagation of intense laser pulses over long distances in plasmas, the generation of large amplitude wakefields, and the injection and acceleration of electrons. This talk will discuss the nonlinear propagation of short laser pulses in plasmas, with or without channels. Non-paraxial effects will be analyzed and simulated, including finite pulse duration, finite group velocity, and dispersion(E. Esarey et al., Phys. Rev. Lett., submitted.). These effects on the evolution of the forward Raman and self-modulation instabilities, that lead the generation of wakefields, will be examined. Also discussed are methods for self-trapping and injecting electrons into the wakefield. Application to ongoing experiments at LBNL(W.P. Leemans et al., Phys. Plasma 5, 1615 (1998); in preparation.) will be discussed.

  5. Axial force imparted by a current-free magnetically expanding plasma

    SciTech Connect

    Takahashi, Kazunori; Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod W.

    2012-08-15

    The axial force imparted from a magnetically expanding, current-free, radiofrequency plasma is directly measured. For an argon gas flow rate of 25 sccm and an effective rf input power of {approx}800W, a maximum force of {approx}6mN is obtained; {approx}3mN of which is transmitted via the expanding magnetic field. The measured forces are reasonably compared with a simple fluid model associated with the measured electron pressure. The model suggests that the total force is the sum of an electron pressure inside the source and a Lorentz force due to the electron diamagnetic drift current and the applied radial magnetic field. It is shown that the Lorentz force is greatest near the magnetic nozzle surface where the radial pressure gradient is largest.

  6. A source to deliver mesoscopic particles for laser plasma studies.

    PubMed

    Gopal, R; Kumar, R; Anand, M; Kulkarni, A; Singh, D P; Krishnan, S R; Sharma, V; Krishnamurthy, M

    2017-02-01

    Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 10(16) W/cm(2).

  7. A source to deliver mesoscopic particles for laser plasma studies

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Kumar, R.; Anand, M.; Kulkarni, A.; Singh, D. P.; Krishnan, S. R.; Sharma, V.; Krishnamurthy, M.

    2017-02-01

    Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 1016 W/cm2.

  8. Fundamental Study of a Laser-Assisted Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Horisawa, Hideyuki; Kawakami, Masatoshi; Lin, Wun-Wei; Igari, Akira; Kimura, Itsuro

    2003-05-01

    In this study we propose a novel laser-assisted plasma thruster, in which plasma is induced through a laser beam irradiation onto a target, or a laser-assisted process, and accelerated by electrical means instead of a direct acceleration only by using a laser beam. Inducing the short-duration conductive plasma between electrodes with certain voltage, the short-duration switching or a discharge is achieved, in the laser-assisted thruster. Also, reductions of energy losses to electrodes, electrodes erosion, and an improvement of specific impulse through the intense current caused by the short duration discharge can be expected. Here, a fundamental study of newly developed two-dimensional laser-assisted pulsed-plasma thruster (PPT) and coaxial laser assisted PPT is conducted. A DC power supply (10 ~ 600 V) was used for the power source, and an Nd:YAG laser (wave length: 1.06μm, maximum pulse energy: 1.4J/pulse, pulse width: 10 nsec) was utilized. With this system, the peak current of about 500A with its duration of 3 μsec (FWHM) was observed in a typical case.

  9. [New methods and technologies expandable to the laser detection of biological and medical samples].

    PubMed

    Shi, Gui-zhen; Du, Hai; Ge, Liao-hai; Tian, Yu; Huang, Mao-cheng; Wang, Wen-yun

    2011-07-01

    The multicolour three-photon resonant photoionization spectra and high-time-resolved laser spectrum of UI were measured with a setup composed of a Nd:YAG-laser (532 nm, operated at 10 Hz)-pumped pulsed tunable dye laser system, a time-of-flight mass spectrometer, including micro-channel plate components, ns-oscilloscope, boxcar integrator, and so on. Creative inventions of this paper are for the first time by laser-induced quantum population of the graphic method, the causes for single-colour and two-colour three-photon resonant photoionization spectra peak were given in the three-colour three-photon resonant photoionization experiment; The question how to avoid producing single-colour and two-colour three-photon resonant photoionization spectra peak was solved, That is, how to solve the problem to avoid "false peaks", so that multicolour three-photon resonant photoionization purity was raised remarkably; On this basis, not only in close proximity to energy level position with just a difference 0.642 cm, the isotopes A and B of uranium, which are difficult to distinguish, were well resolved, but the two excited state lifetime values were obtained respectively. This technology is not limited to uranium spectrum, but more importantly, it's versatile. The new methods and technologies of basic research can be expanded to samples of biological and medical research fields with laser detecting and analysis.

  10. Novel concepts for laser-plasma-based acceleration of electrons using ultrahigh power laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Koo

    Analytical and numerical studies of plasma physics in ultra-intense plasma wave generation, electron injection, and wavebreaking are performed, which are relevant to the subject of plasma wake-field accelerators. A method for generating large-amplitude nonlinear plasma waves, which utilizes an optimized train of independently adjustable, intense laser pulses, is analyzed in one dimension both theoretically and numerically (using both Maxwell-fluid and particle-in-cell codes). Optimal pulse widths and interpulse spacings are computed for pulses with either square or finite-rise-time sine shapes. A resonant region of the plasma-wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. Resonant excitation is found to be superior for electron acceleration to either beatwave or single- pulse excitation because comparable plasma wave amplitudes may be generated at lower plasma densities, reducing electron-phase detuning, or at lower laser intensities, reducing laser-plasma instabilities. The idea of all-optical acceleration of electrons in the wakefield is also discussed. It is shown that the injection of background plasma electrons can be accomplished using the large ponderomotive force of an injection laser pulse in either collinear or transverse geometry with respect to the direction of pump propagation, thus removing the necessity of an expensive first-stage linac system for injection of electrons. Detailed nonlinear analysis of the trapping and acceleration of electrons inside the separatrix of the wakefield is formulated and compared with PIC (Particle- In-Cell) and fluid simulations. The three-dimensional wave-breaking of relativistic plasma waves driven by a ultrashort high-power lasers, is described within a framework of cold 2-D fluid theory. It is shown that the transverse nonlinearity of the plasma wave results in temporally increasing transverse plasma oscillation in the wake of the laser pulse, inevitably inducing wave

  11. Fe and Fe+2%Si targets as ion sources via UV laser ablation plasma

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Krása, J.; Láska, L.; Nassisi, V.; Velardi, L.

    2009-08-01

    In the last years the ion component of a laser-produced plasma has been considered and studied as an object to provide high-density ion sources, which can be applied in many fields such as laser-induced implantation. In this work a KrF laser beam of 108 W/cm2 irradiance was focused onto single-crystalline Fe and single-crystalline Fe with 2% of Si targets and the characteristics of both free expanding laser-produced plasmas were compared. The time-of-flight (TOF) method was applied to determine the ion charge yield at various laser fluences and the ion angular spread. The analyses of TOF spectra showed a synergetic effect of the silicon admixture in target material on the Fe ions production. Besides, this admixture was also responsible of the increasing of the plasma temperature which corresponds in turn to the increasing of the average kinetic energy of the particles as well as of the more collimated ion distribution.

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Optical spectroscopy of laser plasma in a deep crater

    NASA Astrophysics Data System (ADS)

    Kononenko, Taras V.; Walter, D.; Konov, Vitalii I.; Dausinger, F.

    2009-04-01

    The time dynamics of plasma-emission spectra is studied experimentally at different stages of the drilling of a steel plate by 100-fs and 5-ps laser pulses: from a shallow crater to a hole. The change in the time dependence of the plasma temperature caused by variations in the irradiated surface geometry is analysed. It is found that the time interval needed to reach a particular temperature (about 8000 K) drastically increases from 40-50 to 150-200 ns when a specific crater depth is achieved. The opposite tendency is observed as the crater depth grows further and a hole is produced. Strong self-absorption in a plasma plume inside a deep crater is experimentally confirmed which results in the appearance of line absorption against a continuous emission spectrum.

  13. Laser propagation and soliton generation in strongly magnetized plasmas

    SciTech Connect

    Feng, W.; Li, J. Q.; Kishimoto, Y.

    2016-03-15

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.

  14. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOEpatents

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  15. New oxygen plasma process rivals laser cutting methods

    SciTech Connect

    Fernicola, R.C. )

    1994-06-01

    For many years, oxygen plasma cutting has been looked upon as a desirable process for cutting steel but not practical in production because of very short consumable parts life. Recently, a number of technical advances in the oxygen plasma cutting process provides parts life several times that of older systems and cut quality approaching that of laser systems. This paper discusses these advances.

  16. Generation of quasistationary magnetic fields in a turbulent laser plasma

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.; Chokparova, G. A.

    1984-07-01

    A theory is derived for the generation of quasi-stationary magnetic fields in a laser plasma with well developed ion-acoustic turbulence. Qualitative changes are caused in the nature of the magnetic-field generation by an anomalous anisotropic transport in the turbulent plasma. The role played by turbulent diffusion and thermodiffusive transport in the magnetic-field saturation is discussed.

  17. Characterization of >100 T magnetic fields associated with relativistic Weibel instability in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Ruyer, Charles; Goede, Sebastian; Roedel, Christian; Gauthier, Maxence; Zeil, Karl; Schramm, Ulrich; Glenzer, Siegfried; Fiuza, Frederico

    2016-10-01

    Weibel-type instabilities can occur in weakly magnetized and anisotropic plasmas of relevance to a wide range of astrophysical and laboratory scenarios. It leads to the conversion of a significant fraction of the kinetic energy of the plasma into magnetic energy. We will present a detailed numerical study, using 2D and 3D PIC simulations of the Weibel instability in relativistic laser-solid interactions. In this case, the instability develops due to the counter-streaming of laser-heated electrons and the background return current. We show that the growth rate of the instability is maximized near the critical density region on the rear side of the expanded plasma, producing up to 400 MG magnetic fields for Hydrogen plasmas. We have found that this strong field can be directly probed by energetic protons accelerated in rear side of the plasma by Target Normal Sheath Acceleration (TNSA). This allows the experimental characterization of the instability from the analysis of the spatial modulation of the detected protons. Our numerical results are compared with recent laser experiments with Hydrogen jets and show good agreement with the proton modulations observed experimentally. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  18. Effect of ambient pressure on a femtosecond laser induced titanium plasma

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Chuansong; Gao, Xun; Lin, Jingquan; Man, Baoyuan; Sun, Yanna; Li, Feifei

    2016-11-01

    Femtosecond laser induced Ti plasma has been characterized as a function of pressure by means of femtosecond laser induced breakdown spectroscopy (fs-LIBS). Experiments were performed with a Ti: sapphire laser system (100 fs, 800 nm), in an air pressure from 10 Pa to 104 Pa. The time-resolved spectrum has been acquired and the spectral intensities of different plasma species have been investigated with a changing ambient pressure. The Ti atomic lines decay while the ionic ones grow with an increasing pressure. The enhancement of nitrogen ionic line has also been observed. The time of flight spectroscopy is adopted to measure the expanding velocity of the plasma plume. The increasing pressure slows the plasma expansion along both axial and radial directions. The electron density and temperature are measured by means of Boltzmann plot method and Stark width method, respectively. It is concluded that higher pressure will increase the energy absorption and retard the plasma expansion, leading to larger electron density and temperature.

  19. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    SciTech Connect

    Dong, Yunsong; Zhang, Lu; Yang, Jiamin; Shang, Wanli

    2013-12-15

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wave front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.

  20. Precision Mapping of Laser-Driven Magnetic Fields and Their Evolution in High-Energy-Density Plasmas

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Nilson, P.; Igumenshchev, I.; Haines, M. G.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2016-10-01

    The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50 μm) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4 x 1014 W/cm2. The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code DRACO when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included. The work provides significant insight into the generation and transport of Biermann fields in laser-produced plasmas, particularly those used in laser-driven magnetic reconnection and laboratory astrophysics experiments. deceased.

  1. Filamentation instability in two counter-streaming laser plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Dong, Quan-Li; Yuan, Da-Wei; Liu, Xun; Hua, Neng; Qiao, Zhan-Feng; Zhu, Bao-Qiang; Zhu, Jian-Qiang; Jiang, Bo-Bin; Du, Kai; Tang, Yong-Jian; Zhao, Gang; Yuan, Xiao-Hui; Sheng, Zheng-Ming; Zhang, Jie

    2016-12-01

    The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows, which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with 1ns-pulsed laser beams of total energy of 1.7 kJ in two laser spots. With characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074297, 11674146, and 11220101002) and the National Basic Research Program of China (Grant No. 2013CBA01500.

  2. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  3. Summary Report of Working Group 1: Laser-Plasma Acceleration

    SciTech Connect

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-06-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  4. Investigation of Plasma Processes in Electronic Transition Lasers

    DTIC Science & Technology

    1989-02-28

    linewidth of the injected dye " Peek aDw, Dt,or laser radiation: 0.2 cm - ’ (grating tuned) or 0.04 cm - PO (grating tuned + intracavity etalon of I...I I I I [ II!9• I R89-9271 62-1 I INVESTIGATION OF PLASMA PROCESSES IN ELECTRONIC TRANSITION LASERS 3 <Final Report February 28, 1989 Sponsored by...RESEARCH CENTER East "Ief ord, Connecticut 06106 I 04 I U i R89-927162-1 I Investigation Of Plasma Processes In Electronic Transition Lasers I I Final

  5. Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Nandan Gupta, Devki

    2016-11-01

    The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.

  6. Measurements of laser-hole boring into overdense plasmas using x-ray laser refractometry (invited)

    SciTech Connect

    Kodama, R.; Takahashi, K.; Tanaka, K.A.; Kato, Y.; Murai, K.; Weber, F.; Barbee, T.W.; DaSilva, L.B.

    1999-01-01

    We developed a 19.6 nm laser x-ray laser grid-image refractometer (XRL-GIR) to diagnose laser-hole boring into overdense plasmas. The XRL-GIR was optimized to measure two-dimensional electron density perturbation on a scale of a few tens of {mu}m in underdense plasmas. Electron density profiles of laser-produced plasmas were obtained for 10{sup 20}{endash}10{sup 22}thinspcm{sup {minus}3} with the XRL-GIR and for 10{sup 19}{endash}10{sup 20}thinspcm{sup {minus}3} from an ultraviolet interferometer, the profiles of which were compared with those from hydrodynamic simulation. By using this XRL-GIR, we directly observed laser channeling into overdense plasmas accompanied by a bow shock wave showing a Mach cone ascribed to supersonic propagation of the channel front. {copyright} {ital 1999 American Institute of Physics.}

  7. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    DOE PAGES

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; ...

    2017-05-16

    Dynamics of laser produced plasma in a strong magnetic field was studied here using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2–2.5 MG magnetic field was generated on the surface of a rod load 0.8–1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 1015 W cm-2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1–3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magnetic field takesmore » the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s-1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.« less

  8. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; Wiewior, P. P.; Hakel, P.; Sherrill, M. E.

    2017-08-01

    Dynamics of laser produced plasma in a strong magnetic field was studied using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2-2.5 MG magnetic field was generated on the surface of a rod load 0.8-1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 1015 W cm-2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1-3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magnetic field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s-1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.

  9. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during their early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of the surrounding ambient: photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of their creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with a pulse duration of 6 ns are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density, and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times, while space and time resolved spectroscopy is used for evaluating the emission features and for inferring plasma physical conditions at on- and off-axis positions. The structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using the computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms, and

  10. Plasma undulator based on laser excitation of wakefields in a plasma channel.

    PubMed

    Rykovanov, S G; Schroeder, C B; Esarey, E; Geddes, C G R; Leemans, W P

    2015-04-10

    An undulator is proposed based on the plasma wakefields excited by a laser pulse in a plasma channel. Generation of the undulator fields is achieved by inducing centroid oscillations of the laser pulse in the channel. The period of such an undulator is proportional to the Rayleigh length of the laser pulse and can be submillimeter, while preserving high undulator strength. The electron trajectories in the undulator are examined, expressions for the undulator strength are presented, and the spontaneous radiation is calculated. Multimode and multicolor laser pulses are considered for greater tunability of the undulator period and strength.

  11. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  12. Plasma expander viscosity effects on red cell-free layer thickness after moderate hemodilution.

    PubMed

    Yalcin, Ozlem; Wang, Qi; Johnson, Paul C; Palmer, Andre F; Cabrales, Pedro

    2011-01-01

    The objective of the study was to investigate the effects of plasma viscosity after hemodilution on the thickness of the erythrocyte cell free layer (CFL) and on the interface between the flowing column of erythrocytes and the vascular endothelium. The erythrocyte CFL thickness was measured in the rat cremaster muscle preparation. Plasma viscosity was modified in an isovolemic hemodilution, in which the systemic hematocrit (Hctsys) was lowered to 30%. The plasma expanders (PE) of similar nature and different viscosities were generated by glutaraldehyde polymerization of human serum albumin (HSA) at various molar ratios glutaraldehyde to HSA: (i) unpolymerized HSA; (ii) PolyHSA24:1, molar ratio = 24 and (iii) PolyHSA60:1, molar ratio = 60. The HSA viscosities determined at 200 s(-1) were 1.1, 4.2 and 6.0 dyn x cm(-2), respectively. CFL thickness, vessel diameter and blood flow velocity were measured, while volumetric flow, shear rate and stress were calculated. Hemodilution with PolyHSA60:1 increased plasma viscosity and the blood showed marked shear thinning behavior. CFL thickness decreased as plasma viscosity increased after hemodilution; thus the CFL thickness with HSA and PolyHSA24:1 increased compared to baseline. Conversely, the CFL thickness of PolyHSA60:1 was not different from baseline. Blood flow increased with both PolyHSA's compared to baseline. Wall shear rate and shear stress increased for PolyHSA60:1 compared to HSA and PolyHSA24:1, respectively. In conclusion, PE viscosity determined plasma viscosity after hemodilution and affected erythrocyte column hydrodynamics, changing the velocity profile, CFL thickness, and wall shear stress. This study relates the perfusion caused by PolyHSA60:1 to hemodynamic changes induced by the rheological properties of blood diluted with PolyHSA60:1.

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser plume spectroscopy. 1. Graphite target

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Solomonov, V. I.; Platonov, V. V.; Snigireva, O. A.; Ivanov, M. G.; Lisenkov, V. V.

    2005-05-01

    Spectral and kinetic characteristics of a plume formed in the vicinity of a graphite target exposed to radiation from a pulsed CO2 laser at 10.6 μm with a peak power of 9 kW (pulse energy 1.69 J, pulse duration 330 μs at the 0.1 level) in air are studied at room temperature. It is shown that the plume propagating at a right angle to the target surface and at an angle of 45° to the laser radiation is a nonequilibrium gas plasma flow at a temperature of the order of 10 kK; its shape and size are determined by the shape and power of the laser pulse. Emission of C+ ions and C2 molecules is excited in the plume. The temperature and emission are sustained by the energy of the exothermic reaction of association of carbon atoms and the vibrationally excited molecules formed in it.

  14. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  15. Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

    SciTech Connect

    Hutson, M. Shane; Ma Xiaoyan

    2007-10-12

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  16. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    SciTech Connect

    Wetering, F. M. J. H. van de; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-23

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10{sup −6}%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon–acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  17. Intense terahertz radiation from relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Liao, G. Q.; Li, Y. T.; Li, C.; Liu, H.; Zhang, Y. H.; Jiang, W. M.; Yuan, X. H.; Nilsen, J.; Ozaki, T.; Wang, W. M.; Sheng, Z. M.; Neely, D.; McKenna, P.; Zhang, J.

    2017-01-01

    The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This paper presents our measurements of intense THz radiation from relativistic laser-plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. The results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.

  18. Threshold conditions for laser-initiated plasma shutters

    NASA Astrophysics Data System (ADS)

    Czuchlewski, S. J.; Figueira, J. F.

    1981-03-01

    The characteristics of laser-initiated plasma shutters used for retropulse isolation in high-power CO2 laser-fusion systems are discussed. Initiation of the plasma breakdown is shown to depend on the fluence that is incident on the edge of the iris which is employed in these shutters. A relatively simple model for the ignition process has been verified for a range of pulse durations (0.7-60 ns) and iris diameters (100-800 microns). This model provides practical design criteria for sizing plasma isolators for a variety of applications.

  19. Visualization of jet development in laser-induced plasmas.

    PubMed

    Brieschenk, Stefan; O'Byrne, Sean; Kleine, Harald

    2013-03-01

    Laser-induced plasmas in gases are known to generate gaseous jets in the postplasma gas plume. The gaseous jet typically develops toward the laser source, and the experiments presented here show, for the first time to our knowledge, that, under certain conditions, these jets can develop in the opposite direction or may not form at all. The data suggest that this is related to the ratio between the energy absorbed in the plasma and the threshold breakdown energy, effectively leading to multiple plasma initiation sites in the focal waist.

  20. Research on radiation induced laser plasmas

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Rowe, M. J.; Carter, B. D.; Walters, R. A.; Cox, J. D.; Liang, R.; Roxey, T.; Zapata, L.

    1979-01-01

    The development of high power nuclear pumped lasers is discussed. The excitation mechanism of continuous wave (CW) HeNe nuclear pumped lasers is studied and a CO2 nuclear pumped laser is used to demonstrate the CW output in the order of watts. The assumption that high power densities are only achievable by volume fission fragment sources is used to identify laser gases which are compatible with UF6 by excited states lifetime measurements. The examination of Xe2, XeF, and KrF under nuclear irradiation to determine if they are good candidates for nuclear-pumped lasers is described.

  1. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  2. Plasma-based polarization modulator for high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Pukhov, Alexander

    2016-12-01

    Manipulation of laser pulses at high intensities is an important yet challenging issue. New types of plasma-based optical devices are promising alternatives to achieve this goal. Here we propose to modulate the polarization state of intense lasers based on oblique reflection from solid-plasma surfaces. A new analytical description is presented considering the plasma as an uniaxial medium that causes birefringence effect. Particle-in-cell simulation results numerically demonstrate that such a scheme can provide a tunable polarization control of the laser pulses even in the relativistic regime. The results are thus relevant for the design of compact, easy to use, and versatile polarization modulators for high-intensity laser pulses.

  3. Intense tera-hertz laser driven proton acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  4. Picosecond resolution soft x-ray laser plasma interferometry

    SciTech Connect

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  5. Characteristics of microwave plasma induced by lasers and sparks.

    PubMed

    Ikeda, Yuji; Tsuruoka, Ryoji

    2012-03-01

    Characteristics of the plasma light source of microwave (MW) plus laser-induced breakdown spectroscopy (LIBS) or spark-induced breakdown spectroscopy (SIBS) were studied. The plasma was initially generated by laser- or spark-induced breakdown as a plasma seed. A plasma volume was then grown and sustained by MWs in air. This MW plasma had a long lifetime, large volume, strong emission intensity, and high stability with time. These characteristics are suitable for applications in the molecular analysis of gases such as OH or N(2). Because the plasma properties did not depend on laser or spark plasma seeds, the resulting plasma was easily controllable by the input power and duration of the MWs. Therefore, a significant improvement was achieved in the spectral intensity and signal-to-noise ratio. For example, the peak intensity of the Pb spectra of LIBS increased 15 times, and that of SIBS increased 880 times without increases in their background noise. A MW-enhanced plasma light source could be used to make the total system smaller and cheaper than a conventional LIBS system, which would be useful for real-time and in situ analysis of gas molecules in, for example, food processing, medical applications, chemical exposure, and gas turbine or automobile air-to-fuel ratio and exhaust gas measurement.

  6. Plasma Turbulence and Kinetic Instabilities at Ion Scales in the Expanding Solar Wind

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Matteini, Lorenzo; Landi, Simone; Verdini, Andrea; Franci, Luca; Trávníček, Pavel M.

    2015-10-01

    The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heated in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.

  7. Pulsed lasers on plasmas produced by electron beams and discharges

    SciTech Connect

    Tarasenko, Viktor F; Yakovlenko, Sergei I

    2003-02-28

    The use of electron beams for pumping dense gases made it possible to obtain lasing on atomic and molecular transitions in different spectral ranges and to develop high-power pulsed lasers. N.G. Basov and coworkers made a substantial contribution to the formation and advancement of this field. A brief review of the research on efficient elevated-pressure active media and high-power pulsed lasers utilising plasmas produced both by an electron beam and an electron-beam-controlled discharge is presented. These are excimer and exciplex lasers, lasers utilising atomic transitions in xenon and neon, an Ar -N{sub 2} mixture laser, a molecular nitrogen ion laser, and a high-pressure CO{sub 2} laser. Data obtained in the investigation of the radiation of rare-gas halide complexes are given. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  8. Laser electron acceleration in the prepulse produced plasma corona

    NASA Astrophysics Data System (ADS)

    Andreev, N. E.; Povarnitsyn, M. E.; Pugachev, L. P.; Levashov, P. R.

    2015-11-01

    The generation of hot electrons at grazing incidence of a subpicosecond relativistic-intense laser pulse onto the plane solid target is analyzed for the parameters of the petawatt class laser systems. We study the preplasma formation on the surface of solid Al target produced by the laser prepulses with different time structure. For modeling of the preplasma dynamics we use a wide-range two-temperature hydrodynamic model. As a result of simulations, the preplasma expansion under the action of the laser prepulse and the plasma density profiles for different contrast ratios of the nanosecond pedestal are found. These density profiles were used as the initial density distributions in 3-D PIC simulations of electron acceleration by the main P-polarized laser pulse. Results of modeling demonstrate the substantial increase of the characteristic energy and number of accelerated electrons for the grazing incidence of a subpicosecond intense laser pulse in comparison with the laser-target interaction at normal incidence.

  9. Optical spectroscopy of laser plasma in a deep crater

    SciTech Connect

    Kononenko, Taras V; Konov, Vitalii I; Walter, D; Dausinger, F

    2009-04-30

    The time dynamics of plasma-emission spectra is studied experimentally at different stages of the drilling of a steel plate by 100-fs and 5-ps laser pulses: from a shallow crater to a hole. The change in the time dependence of the plasma temperature caused by variations in the irradiated surface geometry is analysed. It is found that the time interval needed to reach a particular temperature (about 8000 K) drastically increases from 40-50 to 150-200 ns when a specific crater depth is achieved. The opposite tendency is observed as the crater depth grows further and a hole is produced. Strong self-absorption in a plasma plume inside a deep crater is experimentally confirmed which results in the appearance of line absorption against a continuous emission spectrum. (interaction of laser radiation with matter. laser plasma)

  10. Profiling compact toroid plasma density on CTIX with laser deflection

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel Joseph Erwin

    A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.

  11. Space-dependent characterization of laser-induced plasma plume during fiber laser welding

    NASA Astrophysics Data System (ADS)

    Xiao, Xianfeng; Song, Lijun; Xiao, Wenjia; Liu, Xingbo

    2016-12-01

    The role of a plasma plume in high power fiber laser welding is of considerable interest due to its influence on the energy transfer mechanism. In this study, the space-dependent plasma characteristics including spectrum intensity, plasma temperature and electron density were investigated using optical emission spectroscopy technique. The plasma temperature was calculated using the Boltzmann plot of atomic iron lines, whereas the electron density was determined from the Stark broadening of the Fe I line at 381.584 nm. Quantitative analysis of plasma characteristics with respect to the laser radiation was performed. The results show that the plasma radiation increases as the laser power increases during the partial penetration mode, and then decreases sharply after the initiation of full penetration. Both the plasma temperature and electron density increase with the increase of laser power until they reach steady state values after full penetration. Moreover, the hottest core of the plasma shifts toward the surface of the workpiece as the penetration depth increases, whereas the electron density is more evenly distributed above the surface of the workpiece. The results also indicate that the absorption and scattering of nanoparticles in the plasma plume is the main mechanism for laser power attenuation.

  12. Transient Plasma Photonic Crystals for High-Power Lasers.

    PubMed

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  13. Collision dynamics of laser produced carbon plasma plumes

    NASA Astrophysics Data System (ADS)

    Favre, M.; Ruiz, H. M.; Cortés, D.; Merello, F.; Bhuyan, H.; Veloso, F.; Wyndham, E.

    2016-05-01

    We present preliminary experimental observations of the collision processes between two orthogonal laser produced plasmas in a low pressure neutral gas background. A Nd:YAG laser, 340 mJ, 3.5 ns, at 1.06 μm, operating at 10 Hz, is used in the experiments. The main laser beam is divided in two beams by a 50% beam splitter, and then focused over two rotating graphite targets, with characteristic fluence 3.5 J/cm2. Experiments are conducted in a range from a base pressure of 0.3 mTorr, up to 50 mTorr argon. The dynamics of the laser plasmas is characterized by time resolved and time integrated optical emission spectroscopy (OES), with 20 ns and 10 ms time resolution, and 50 ns time resolved plasma imaging of visible plasma emission. Clear effects of the neutral gas background on the postcollision plasma dynamics are identified. The overall dynamics of the post-collision plasma is found to be consistent with high collisionality of the carbon plasma plumes, which results in full stagnation on collisioning.

  14. Plasma undulator excited by high-order mode lasers

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Rykovanov, Sergey

    2016-10-01

    A laser-created plasma undulator together with a laser-plasma accelerator makes it possible to construct an economical and extremely compact XFEL. However, the spectrum spread of the radiation from the current plasma undulators is too large for XFELs, because of the different values of strength parameters. The phase slippage between the electrons and the wakefield also limits the number of the electron oscillation cycles, thus reduces the performance of XFEL. Here we proposed a phase-locked plasma undulator created by high-order mode lasers. The modulating field is uniform along the transverse direction by choosing appropriate laser intensities of the modes, which enables all the electrons oscillate with the same strength parameter. The plasma density is tapered to lock the phase between the electrons and the wakefield, which signally increases the oscillation cycles. As a result, X-ray radiation with high brightness and narrow bandwidth is generated by injecting a high-energy electron beam into the novel plasma undulator. The beam loading limit indicates that the current of the electron beam could be hundreds of Ampere. These properties imply that such a plasma undulator may have great potential in compact XFELs. This work was supported by the Helmholtz Association (Young Investigator's Group No. VH-NG-1037).

  15. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    PubMed Central

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  16. Investigation of early plasma evolution induced by ultrashort laser pulses.

    PubMed

    Hu, Wenqian; Shin, Yung C; King, Galen B

    2012-07-02

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment(1-11). Early plasma evolution has been captured through pump-probe shadowgraphy(1-3) and interferometry(1,4-7). However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 10(14) W/cm(2). Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions(12). The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. (12) to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators.

  17. Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses

    SciTech Connect

    Lecz, Zs.; Andreev, A.

    2015-04-15

    The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter than the characteristic development time of the parasitic Weibel instability.

  18. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  19. Laser absorption and electron propagation in rippled plasma targets

    NASA Astrophysics Data System (ADS)

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2016-10-01

    Efficient absorption of laser energy and the collimated propagation of relativistic electron beams (generated by the laser target interaction) in plasma are two issues which are of significant importance for applications such as fast ignition scheme of inertial confinement fusion (ICF). It is shown with the help of 2-D Particle- In- Cell simulations that introducing density ripples transverse to the laser propagation direction enhances the efficiency of laser power absorption. Furthermore, the density ripples are also instrumental in suppressing the Weibel instability of the propagating electron beam (which is responsible for the divergence of the beam). A physical understanding of the two effects is also provided.

  20. Ion Acceleration in a Dipole Vortex in a Laser Plasma Corona

    SciTech Connect

    Bulanov, S.V.; Dylov, D.V.; Kamenets, F.F.; Sokolov, D.V.; Esirkepov, T.Zh.

    2005-05-15

    Particle-in-cell simulations show that the inhomogeneity scale of the plasma produced in the interaction of high-power laser radiation with gas targets is of fundamental importance for ion acceleration. In a plasma slab with sharp boundaries, the quasistatic magnetic field and the associated electron vortex structure produced by fast electron beams both expand along the slab boundary in a direction perpendicular to the plasma density gradient, forming an extended region with a quasistatic electric field, in which the ions are accelerated. In a plasma with a smooth density distribution, the dipole magnetic field can propagate toward the lower plasma density in the propagation direction of the laser pulse. In this case, the electron density in an electric current filament at the axis of the magnetic dipole decreases to values at which the charge quasineutrality condition fails to hold. In electric fields generated by this process, the ions are accelerated to energies substantially higher than those characteristic of plasma configurations with sharp boundaries.

  1. Spatial and temporal plasma evolutions of magnetic reconnection in laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Khasanah, N.; Peng, C. W.; Chen, C. H.; Huang, T. Y.; Bolouki, N.; Moritaka, T.; Hara, Y.; Shimogawara, H.; Sano, T.; Sakawa, Y.; Sato, Y.; Tomita, K.; Uchino, K.; Matsukiyo, S.; Shoji, Y.; Tomita, S.; Tomiya, S.; Yamazaki, R.; Koenig, M.; Kuramitsu, Y.

    2017-06-01

    Magnetic reconnection is experimentally investigated in laser produced plasmas. By irradiating a solid target with a high-power laser beam, a magnetic bubble is generated due to the Biermann effect. When two laser beams with finite focal spot displacements are utilized, two magnetic bubbles are generated, and the magnetic reconnection can take place. We measure the spatial and temporal plasma evolutions with optical diagnostics using framing camera. We observed the plasma jets, which are considered to be reconnection out flows. Spatial and temporal scales of the plasma jets are much larger than those of laser. The magnetic reconnection time has been estimated from the expansion velocity, which is consistent with the Sweet-Parker model.

  2. Effect of solenoidal magnetic field on drifting laser plasma

    SciTech Connect

    Takahashi, Kazumasa; Sekine, Megumi; Okamura, Masahiro; Cushing, Eric; Jandovitz, Peter

    2013-04-19

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  3. Effect of solenoidal magnetic field on drifting laser plasma

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  4. Staging and laser acceleration of ions in underdense plasma

    NASA Astrophysics Data System (ADS)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  5. Characterization of a laser plasma produced from a graphite target

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Guzmán, F.; Favre, M.; Hevia, S.; Correa, N.; Bhuyan, H.; Wynham, E. S.; Chuaqui, H.

    2014-05-01

    In order to improve the understanding of pulsed laser deposition (PLD) of diamondlike carbon (DLC) films, we have initiated a detailed study of the plasma dynamics of laser produced carbon plasmas. The carbon plasma is produced by focusing a Nd:YAG laser pulse, 380 mJ, 4 ns at 1.06 μm, onto a graphite target, at a background pressure of 0.3 mTorr. Time resolved optical emission spectroscopic (OES) observations of the carbon plasma plume are obtained, with time and space resolution, using a SpectraPro 275 spectrograph, with a 15 ns MCP gated OMA. Line emission from CII to CIV carbon ions is identified at different stages of the plasma evolution. Line intensity ratios of successive ionization stages, CIII/CIV, was used to estimate the electron temperature throughout the Saha-Boltzmann equation, under the assumption of local thermodynamic equilibrium (LTE), and Stark broadening of CII lines was used to obtain measurements of the electron density. Characteristic plasma parameters, short after plasma formation, are 3.0 eV and 2-1017 cm-3which after 60 ns of plasma expansion decay to 2.7 eV and 5·10 cm-3, respectively.

  6. [The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].

    PubMed

    Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao

    2016-01-01

    The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding.

  7. First Laser-Plasma Interaction and Hohlraum Experiments on NIF

    SciTech Connect

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; McDonald, J W; Niemann, C; Mackinnon, A J

    2005-06-17

    Recently the first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) designs. The effects of laser beam smoothing by spectral dispersion (SSD) and polarization smoothing (PS) on the beam propagation in long scale gas-filled pipes has been studied at plasma scales as found in indirect drive gas filled ignition hohlraum designs. The long scale gas-filled target experiments have shown propagation over 7 mm of dense plasma without filamentation and beam break up when using full laser smoothing. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment in analytical models and in LASNEX calculations has been proven for the first time. The comparison of these results with modeling will be discussed.

  8. Study of laser plasma interactions in the relativistic regime

    SciTech Connect

    Umstadter, D.

    1997-08-13

    We discuss the first experimental demonstration of electron acceleration by a laser wakefield over instances greater than a Rayleigh range (or the distance a laser normally propagates in vacuum). A self-modulated laser wakefield plasma wave is shown to have a field gradient that exceeds that of an RF linac by four orders of magnitude (E => 200 GV/m) and accelerates electrons with over 1-nC of charge per bunch in a beam with space-charge-limited emittance (1 mm-mrad). Above a laser power threshold, a plasma channel, created by the intense ultrashort laser pulse (I approx. 4 x1018 W/CM2, gamma = 1 micron, r = 400 fs), was found to increase the laser propagation distance, decrease the electron beam divergence, and increase the electron energy. The plasma wave, directly measured with coherent Thomson scattering is shown to damp-due to beam loading-in a duration of 1.5 ps or approx. 100 plasma periods. These results may have important implications for the proposed fast ignitor concept.

  9. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    SciTech Connect

    Ofman, Leon; Ozak, Nataly; Viñas, Adolfo F.

    2016-03-25

    Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  10. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    NASA Technical Reports Server (NTRS)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  11. Interaction of UV laser pulses with reactive dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.

  12. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    SciTech Connect

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-27

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  13. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-01

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  14. Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet.

    PubMed

    Li, Na; Bai, Ya; Miao, Tianshi; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2016-10-03

    Contribution of plasma oscillation to the broadband terahertz (THz) emission is revealed by interacting two-color (ω/2ω) laser pulses with a supersonic jet of nitrogen molecules. Temporal and spectral shifts of THz waves are observed as the plasma density varies. The former owes to the changing refractive index of the THz waves, and the latter correlates to the varying plasma frequency. Simulation of considering photocurrents, plasma oscillation and decaying plasma density explains the broadband THz spectrum and the varying THz spectrum. Plasma oscillation only contributes to THz waves at low plasma density owing to negligible plasma absorption. At the longer medium or higher density, the combining effects of plasma oscillation and absorption results in the observed low-frequency broadband THz spectra.

  15. Laser-electron Compton interaction in plasma channels

    SciTech Connect

    Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.

    1998-10-01

    A concept of high intensity femtosecond laser synchrotron source (LSS) is based on Compton backscattering of focused electron and laser beams. The short Rayleigh length of the focused laser beam limits the length of interaction to a few picoseconds. However, the technology of the high repetition rate high-average power picosecond lasers required for high put through LSS applications is not developed yet. Another problem associated with the picosecond laser pulses is undesirable nonlinear effects occurring when the laser photons are concentrated in a short time interval. To avoid the nonlinear Compton scattering, the laser beam has to be split, and the required hard radiation flux is accumulated over a number of consecutive interactions that complicates the LSS design. In order to relieve the technological constraints and achieve a practically feasible high-power laser synchrotron source, the authors propose to confine the laser-electron interaction region in the extended plasma channel. This approach permits to use nanosecond laser pulses instead of the picosecond pulses. That helps to avoid the nonlinear Compton scattering regime and allows to utilize already existing technology of the high-repetition rate TEA CO{sub 2} lasers operating at the atmospheric pressure. They demonstrate the advantages of the channeled LSS approach by the example of the prospective polarized positron source for Japan Linear Collider.

  16. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    SciTech Connect

    Ciocarlan, C.; Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-09-15

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup −3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

  17. The Lensing Effect of CO(2) Laser Plasma.

    PubMed

    Lotsch, H K; Davis, W C

    1970-12-01

    An unexpected phenomenon has been observed which triggered an investigation into the lensing effect of a CO(2) laser plasma. This effect, so far thought to be negligible in a conventional CO(2) laser of, for example, 2-m length, produces a focal length in the order of magnitude of - 20 m. In view of this experimental observation, the focal length of the plasma lens, as well as the stability condition for an optical resonator with a plasma lens within its plane concave mirror system, are determined and expressed in terms of plasma and resonator characteristics as well as of the electrical power dissipated in the plasma. The analysis reveals that the semiconfocal configuration is most adverse for a frequency-stabilized laser. The overall result of this investigation suggests that the optimum configuration of a conventional CO(2) laser for maximum output power is obtained when the negative focal power of the plasma lens precisely compensates for the positive focal power of the slightly curved mirror.

  18. Two-dimensional fluorescence spectroscopy of laser-produced plasmas

    SciTech Connect

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.

  19. Laser produced plasma soft x-ray generation

    SciTech Connect

    Cerjan, C.; Rosen, M.D.

    1991-05-20

    The efficiency of soft x-ray production from laser-irradiated plasmas is simulated for two different spectral regions. These two regions, 14{Angstrom} {plus minus} 15% and 130{Angstrom} {plus minus} 1%, were chosen for proximity mask or point-projection technological applications. Relatively large conversion efficiencies were obtained from irradiation of a stainless steel target using the conditions suggested by recent Hampshire Instruments' experiments for proximity masking. Pulse-width and laser frequency parameter studies were performed for point-projection applications which suggest that the conversion applications which suggest that the conversion efficiency is sensitive to pulse-width but not to laser frequency. One of the critical components of any x-ray lithographic scheme is of course the x-ray laser source. There are two primary contenders for a reliable, efficient source currently: synchrotron radiation and spectral emission from laser produced plasma. The dominant issue for laser-plasma emission is the conversion efficiency -- output in the intended operating spectral region relative the required incident laser energy. Simulations are described in the following for both high and low energy spectral regions which have been suggested by either the proximity masking or point-projection technology.

  20. Erosion resistant nozzles for laser plasma extreme ultraviolet (EUV) sources

    DOEpatents

    Kubiak, Glenn D.; Bernardez, II, Luis J.

    2000-01-04

    A gas nozzle having an increased resistance to erosion from energetic plasma particles generated by laser plasma sources. By reducing the area of the plasma-facing portion of the nozzle below a critical dimension and fabricating the nozzle from a material that has a high EUV transmission as well as a low sputtering coefficient such as Be, C, or Si, it has been shown that a significant reduction in reflectance loss of nearby optical components can be achieved even after exposing the nozzle to at least 10.sup.7 Xe plasma pulses.

  1. Expansion dynamics of laser produced plasma

    SciTech Connect

    Doggett, B.; Lunney, J. G.

    2011-05-01

    We consider the applicability of the isentropic, adiabatic gas dynamical model of plume expansion for laser ablation in vacuum. We show that the model can be applied to ionized plumes and estimate the upper electron temperature limit on the applicability of the isentropic approximation. The model predictions are compared with Langmuir ion probe measurements and deposition profiles obtained for excimer laser ablation of silver.

  2. Interaction of Ultraintense Laser Vortices with Plasma Mirrors

    NASA Astrophysics Data System (ADS)

    Denoeud, A.; Chopineau, L.; Leblanc, A.; Quéré, F.

    2017-01-01

    Laser beams carrying orbital angular momentum (OAM) have found major applications in a variety of scientific fields, and their potential for ultrahigh-intensity laser-matter interactions has since recently been considered theoretically. We present an experiment where such beams interact with plasma mirrors up to laser intensities such that the motion of electrons in the laser field is relativistic. By measuring the spatial intensity and phase profiles of the high-order harmonics generated in the reflected beam, we obtain evidence for the helical wavefronts of the high-intensity laser at focus, and study the conservation of OAM in highly nonlinear optical processes at extreme laser intensities. The physical effects determining the field mode content of the twisted harmonic beams are elucidated.

  3. Experimental and Theoretical Studies of Laser - Argon Plasmas for Application to Laser-Supported Rocket Propulsion.

    NASA Astrophysics Data System (ADS)

    Glumb, Ronald J.

    Laser propulsion is a revolutionary new form of rocket propulsion in which a remote high-power laser is used to heat hydrogen propellant to extremely high temperatures. This approach has important advantages over existing propulsion systems, and is being explored for use in advanced orbital transfer vehicles. The key problem encountered is how to efficiently convert the laser energy into the thermal energy of the propellant. At this time, high-temperature laser-sustained plasmas appear to be the most efficient conversion mechanism. A comprehensive study of argon laser-sustained plasmas has been conducted using the University's 110 kW CO(,2) laser facility. It has been found that the plasmas are stable phenomena which will adjust to variations in laser power or flow velocity. Calorimetric studies have shown that the plasma can absorb up to 80 percent of the incident laser energy in extremely short distances. The dependence of absorption on power, pressure, flow rate, and beam optics has been examined. The fraction of the laser energy retained by the gas as thermal energy has also been measured under a range of flow and power conditions; efficiencies as high as 40 percent have been demonstrated. A laser-induced fluorescence diagnostic system using atomic seedants has been developed to obtain more acurate efficiency measurements. A two-dimensional numerical model of the plasma has also been developed, which includes real argon properties and accurate absorption and emission coefficients. Excellent agreement with the experimental results has been demonstrated, specifically with regard to plasma size, peak temperatures, absorption fractions, minimum maintenance powers, blowout velocities, and conversion efficiencies. The model also predicts that efficiencies as high as 75 percent should be achievable at high f numbers, a prediction now being tested experimentally.

  4. The effect of laser wavelength on laser-induced carbon plasma

    SciTech Connect

    Moscicki, T.; Hoffman, J.; Szymanski, Z.

    2013-08-28

    The effect of laser wavelength on parameters of laser-ablated carbon plume is studied. A theoretical model is applied, which describes the target heating and formation of the plasma and its expansion, and calculations are made for the fundamental and third harmonic of a Nd:YAG laser. The calculated distributions of plasma temperature and electron density in the early phase of expansion show that plasma temperatures are higher in the case of 1064 nm but the electron densities are higher in the case of 355 nm, which is in agreement with experimental findings. It has been shown that while a higher plasma temperature in the case of 1064 nm is the result of stronger plasma absorption, the greater ablation rate in the case of 355 nm results in larger mass density of the ablated plume and hence, in higher electron densities. An additional consequence of a higher ablation rate is slower expansion and smaller dimensions of the plume.

  5. Invited article: Expanded and improved traceability of vibration measurements by laser interferometry.

    PubMed

    von Martens, Hans-Jürgen

    2013-12-01

    Traceability to the International System of Units has been established for vibration and shock measurements as specified in international document standards, recommendations, and regulations to ensure product quality, health, and safety. New and upgraded laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods in the ISO 16063 series of international document standards. In ISO 16063-11:1999, three interferometric methods are specified for the primary calibration of vibration transducers (reference standard accelerometers) in a frequency range from 1 Hz to 10 kHz. In order to specify the same (modified) methods for the calibration of laser vibrometers (ISO 16063-41:2011), their applicability in an expanded frequency range was investigated. Steady-state sinusoidal vibrations were generated by piezoelectric actuators at specific frequencies up to 347 kHz (acceleration amplitudes up to 376 km/s(2)). The displacement amplitude, adjusted by the special interferometric method of coincidence to 158.2 nm (quarter the wavelength of the He-Ne laser light), was measured by the standardized interferometric methods of fringe counting and sine-approximation. The deviations between the measurement results of the three interferometric methods applied simultaneously were smaller than 1%. The limits of measurement uncertainty specified in ISO 16063-11 between 1 Hz to 10 kHz were kept up to frequencies, which are orders of magnitude greater; the uncertainty limit 0.5% specified at the reference frequency 160 Hz was not exceeded at 160 kHz. The reported results were considered during the development of ISO 16063-41 by specifying the instrumentation and procedures for performing calibrations of rectilinear laser vibrometers in the frequency range typically between 0.4 Hz and 50 kHz--the interferometric methods may be applied within expanded frequency ranges using refined

  6. Invited Article: Expanded and improved traceability of vibration measurements by laser interferometry

    SciTech Connect

    Martens, Hans-Jürgen von

    2013-12-15

    Traceability to the International System of Units has been established for vibration and shock measurements as specified in international document standards, recommendations, and regulations to ensure product quality, health, and safety. New and upgraded laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods in the ISO 16063 series of international document standards. In ISO 16063-11:1999, three interferometric methods are specified for the primary calibration of vibration transducers (reference standard accelerometers) in a frequency range from 1 Hz to 10 kHz. In order to specify the same (modified) methods for the calibration of laser vibrometers (ISO 16063-41:2011), their applicability in an expanded frequency range was investigated. Steady-state sinusoidal vibrations were generated by piezoelectric actuators at specific frequencies up to 347 kHz (acceleration amplitudes up to 376 km/s{sup 2}). The displacement amplitude, adjusted by the special interferometric method of coincidence to 158.2 nm (quarter the wavelength of the He-Ne laser light), was measured by the standardized interferometric methods of fringe counting and sine-approximation. The deviations between the measurement results of the three interferometric methods applied simultaneously were smaller than 1 %. The limits of measurement uncertainty specified in ISO 16063-11 between 1 Hz to 10 kHz were kept up to frequencies, which are orders of magnitude greater; the uncertainty limit 0.5 % specified at the reference frequency 160 Hz was not exceeded at 160 kHz. The reported results were considered during the development of ISO 16063-41 by specifying the instrumentation and procedures for performing calibrations of rectilinear laser vibrometers in the frequency range typically between 0.4 Hz and 50 kHz—the interferometric methods may be applied within expanded frequency ranges using

  7. Ultra-relativistic laser-plasma interaction and beyond

    NASA Astrophysics Data System (ADS)

    Ping, Yuan

    2011-10-01

    Relativistic laser-plasma interaction (LPI) is of broad interest in modern physics, with applications ranging from particle acceleration, laboratory astrophysics, to fast ignition for inertial confinement fusion. LPI is a highly dynamic process, especially in the relativistic regime. The plasma conditions evolve rapidly upon intense laser irradiation, which modifies laser absorption and energy partition. This talk summarizes recent advances in understanding laser absorption and dynamics of ultra-relativistic LPI. It is found that the total absorption of laser pulses by solid targets is strongly enhanced in the ultra-relativistic regime, reaching a surprisingly high level of ~90% at intensities above 1020 W / cm2 . Both presence of preplasma and hole boring contribute to the high absorption. The dynamics of hole boring is studied with a novel single-shot time-resolved diagnostic based on Frequency Resolved Optical Gating (FROG). Time history of the Doppler shift in the reflected light indicates that ponderomotive steepening occurs rapidly and majority of the laser pulse interacts with a sharpened density profile. Two-dimensional (2D) Particle-In-Cell (PIC) simulation results agree well with measurements for short pulses (<5 ps), however discrepancy showing up after 5ps for longer pulses, indicating 3D effect starts to play a role. In case of high-contrast laser pulses interacting with solid targets, the preplasma is minimal and the delicate competition between plasma creation and ponderomotive pushing results in a snake-like structure in the reflected spectrum. Finally, the talk will briefly cover potential schemes utilizing LPI as an amplification process of laser pulses for next-generation laser systems, which could enable ``vacuum boiling'' laser intensities for future experiments. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  8. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Thresholds of surface plasma formation by the interaction of laser pulses with a metal

    NASA Astrophysics Data System (ADS)

    Borets-Pervak, I. Yu; Vorob'ev, V. S.

    1995-04-01

    An analysis is made of a model of the formation of a surface laser plasma which takes account of the heating and vaporisation of thermally insulated surface microdefects. This model is used in an interpretation of experiments in which such a plasma has been formed by irradiation of a titanium target with microsecond CO2 laser pulses. A comparison with the experimental breakdown intensities is used to calculate the average sizes of microdefects and their concentration: the results are in agreement with the published data. The dependence of the delay time of plasma formation on the total energy in a laser pulse is calculated.

  9. Visualization of plasma turbulence with laser-induced fluorescence (invited)

    SciTech Connect

    Levinton, Fred M.; Trintchouk, Fedor

    2001-01-01

    Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.

  10. Advanced targets, diagnostics and applications of laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  11. Plasma shape control by pulsed solenoid on laser ion source

    NASA Astrophysics Data System (ADS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  12. Plasma Electrode Pockels Cells for the Beamlet and NIF lasers

    SciTech Connect

    Rhodes, M.A.; Woods, B.; DeYoreo, J.; Atherton, J.

    1994-05-01

    We describe Plasma Electrode Pockels Cells (PEPC) for the Beamlet laser and the proposed National Ignition Facility (NIF) laser. These PEPCs, together with passive polarizers, function as large aperture (> 35 {times} 35 cm{sup 2}) optical switches enabling the design of high-energy (> 5 kJ), multipass laser amplifiers. In a PEPC, plasma discharges form on both sides of a thin (1 cm) electro-optic crystal (KDP). These plasma discharges produce highly conductive and transparent electrodes that facilitate rapid (< 100 ns) and uniform charging of the KDP up to the half-wave voltage (17 kV) and back to zero volts. We discuss the operating principles, design, and optical performance of the Beamlet PEPC and briefly discuss our plans to extend PEPC technology for the NIF.

  13. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    PubMed Central

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  14. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    NASA Astrophysics Data System (ADS)

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-02-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  15. Laser-plasma-based Space Radiation Reproduction in the Laboratory.

    PubMed

    Hidding, B; Karger, O; Königstein, T; Pretzler, G; Manahan, G G; McKenna, P; Gray, R; Wilson, R; Wiggins, S M; Welsh, G H; Beaton, A; Delinikolas, P; Jaroszynski, D A; Rosenzweig, J B; Karmakar, A; Ferlet-Cavrois, V; Costantino, A; Muschitiello, M; Daly, E

    2017-02-08

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  16. Plasma shape control by pulsed solenoid on laser ion source

    SciTech Connect

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.

  17. Electron temperature and density measurements of laser induced germanium plasma

    SciTech Connect

    Shakeel, Hira; Arshad, Saboohi; Haq, S. U. Nadeem, Ali

    2016-05-15

    The germanium plasma produced by the fundamental harmonics (1064 nm) of Nd:YAG laser in single and double pulse configurations have been studied spectroscopically. The plasma is characterized by measuring the electron temperature using the Boltzmann plot method for neutral and ionized species and electron number density as a function of laser irradiance, ambient pressure, and distance from the target surface. It is observed that the plasma parameters have an increasing trend with laser irradiance (9–33 GW/cm{sup 2}) and with ambient pressure (8–250 mbar). However, a decreasing trend is observed along the plume length up to 4.5 mm. The electron temperature and electron number density are also determined using a double pulse configuration, and their behavior at fixed energy ratio and different interpulse delays is discussed.

  18. Resonant self-focusing of laser light in a plasma

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Clayton, C. E.; Chen, F. F.

    1982-03-01

    Difficulties regarding an employment of lasers in inertia-confinement fusion projects are related to possibilities of an occurrence of undesirable parametric instabilities such as stimulated Brillouin scattering. The use of multiline lasers has been proposed to overcome these difficulties. Attention is given to a sequence of events in which optical mixing first excites a plasma wave, which is driven to larger amplitude by stimulated Raman scattering in the forward direction. The ponderomotive force of the plasma wave creates then a density depression, causing a deflection of the laser beam by refraction. It is pointed out that such a mechanism could alter the focusing of beams onto a small target. The effect is similar to ponderomotive self-focusing of light by a plasma. Aspects of resonant self-focusing are considered.

  19. Plasma shape control by pulsed solenoid on laser ion source

    DOE PAGES

    Sekine, M.; Ikeda, S.; Romanelli, M.; ...

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less

  20. Ion acceleration enhanced by additional neutralizing electrons in a magnetically expanding double layer plasma

    SciTech Connect

    Takahashi, Kazunori; Fujiwara, Tamiya

    2010-10-15

    Electrons neutralizing an ion beam are additionally supplied to a magnetically expanding double layer (DL) plasma from the downstream side of the DL. The rf power and the argon gas pressure are maintained at 200 W and 55 mPa, respectively, and the source magnetic field is varied in the range of about 70-550 G. It is observed that the ion beam energy corresponding to the DL potential drop increases up to 30 eV with an increase in the magnetic field when supplying the additional electrons, while it saturates at 20 eV for the case of the absence of the additional electrons. The supplied electrons are believed to be an energy source for the DL such that increasing the magnetic field is able to increase the potential drop beyond the limit found in the absence of the supplied electrons.

  1. First Results from Detailed Electric and Magnetic Field Measurements of the Interaction of a Laser-Produced and Ambient Plasma

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Hofer, L. R.; Heuer, P. V.; Constantin, C. G.; Bondarenko, A. S.; Everson, E. T.; Clark, S. E.; Gekelman, W.; Niemann, C.

    2015-11-01

    Utilizing high-repetition lasers combined with a high-repetition ambient plasma allows for detailed 3D scans of the interaction of the laser-produced and ambient plasmas. We present the first results from experiments combining a newly-commissioned high-repetition (1 Hz) laser with the 1 Hz ambient plasma of the Large Plasma Device (LAPD) at the University of California, Los Angeles. The laser (20 J, 14 ns) was focused on a cylindrical plastic target embedded in the ambient LAPD plasma, resulting in an ablated debris-plasma that expanded perpendicular to the background magnetic field. The debris-ambient plasma interaction was studied with 3-axis magnetic flux probes, mounted on a 3D motion drive for detailed, high-resolution planar scans both along and perpendicular to the background field. Measurements were also taken using filtered fast-gate (ns) imaging, emissive Langmuir probes, and emissive spectroscopy. The results show that the debris ions are de-energized inside the diamagnetic cavity, while the ambient ions are accelerated through laminar electric fields.

  2. DEVELOPMENT OF WATER JET PLASMA MIRROR FOR STAGING OF LASER PLASMA ACCELERATORS

    SciTech Connect

    Panasenko, Dmitriy; Gonsalves, Anthony J.; Leemans, Wim; Nakamura, Kei; Shu, Anthony; Toth, Csaba

    2009-05-04

    Staging Laser Plasma Accelerators (LPAs) is necessary in order to reach beam energies of 100 GeV and above. This requires incoupling of additional laser beams into accelerating stages. In order to maintain the high average accelerating gradient of a staged LPA, it is imperative to minimize the distance that is needed for laser incoupling. A plasma mirror is proposed as the final coupling optic reducing the coupling distance from tens of meters, using a conventional optic, to as small as a few cm. Both a planar water jet and a nitrocellulose foil are used as reflecting surfacesand characterized. A maximum reflectivity of 70percent was obtained using both surfaces.

  3. DEVELOPMENT OF WATER JET PLASMA MIRROR FOR STAGING OF LASER PLASMA ACCELERATORS

    SciTech Connect

    Panasenko, Dmitriy; Gonsalves, Anthony J.; Leemans, Wim; Nakamura, Kei; Shu, Anthony; Toth, Csaba

    2009-05-04

    Staging Laser Plasma Accelerators (LPAs) is necessary in order to reach beam energies of 100 GeV and above. This requires incoupling of additional laser beams into accelerating stages. In order to maintain the high average accelerating gradient of a staged LPA, it is imperative to minimize the distance that is needed for laser incoupling. A plasma mirror is proposed as the final coupling optic reducing the coupling distance from tens of meters, using a conventional optic, to as small as a few cm. Both a planar water jet and a nitrocellulose foil are used as reflecting surfacesand characterized. A maximum reflectivity of 70percent was obtained using both surfaces.

  4. Coherent acceleration by laser pulse echelons in periodic plasma structures

    NASA Astrophysics Data System (ADS)

    Pukhov, A.; Kostyukov, I.; Tückmantel, T.; Luu-Thanh, Ph.; Mourou, G.

    2014-05-01

    We consider a possibilty to use an echelon of mutually coherent laser pulses generated by the emerging CAN (Coherent Amplification Network) technology for direct particle acceleration in periodic plasma structures. We discuss resonant and free streaming configurations. The resonant plasma structures can trap energy of longer laser pulses but are limited to moderate laser intensities of about 1014 W/cm2 and are very sensitive to the structure quality. The free streaming configurations can survive laser intensities above 1018 W/cm2 for several tens of femtoseconds so that sustained accelerating rates well above TeV/m are feasible. In our full electromagnetic relativistic particle-in-cell (PIC) simulations we show a test electron bunch gaining up to 200 GeV over a distance of 10.2 cm only.

  5. Microengineering Laser Plasma Interactions at Relativistic Intensities.

    PubMed

    Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2016-02-26

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  6. Microengineering Laser Plasma Interactions at Relativistic Intensities

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Ji, L. L.; Audesirk, H.; George, K. M.; Snyder, J.; Krygier, A.; Poole, P.; Willis, C.; Daskalova, R.; Chowdhury, E.; Lewis, N. S.; Schumacher, D. W.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2016-02-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  7. Innovative Drug Injection via Laser Induced Plasma

    NASA Astrophysics Data System (ADS)

    Han, Tae-hee; Yoh, Jack J.

    2010-10-01

    A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of micro scale. The focused laser beam causes explosive bubble growth and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of the nozzle is 125 um and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  8. Picosecond X-ray Laser Interferometry for Probing Dense Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Dunn, James; Smith, Raymond F.; Filevich, Jorge; Rocca, Jorge J.; Moon, Stephen J.; Nilsen, Joseph; Shlyaptsev, Vyacheslav N.; Keenan, Roisin; Ng, Andrew; Hunter, James R.; Marconi, Mario. C.

    2003-10-01

    The development of compact, x-ray laser (XRL) sources has great potential to advance interferometric techniques to shorter wavelengths for probing dense, rapidly changing, laser-heated plasmas. The use of soft x-rays has many advantages over optical or UV wavelength probes including greatly reduced refraction and lower absorption within the plasma. Another advantage when coupled with a short probe pulse duration, is the achievement of sub-micron spatial resolution close to the target surface to make precise measurements in the highest density region with negligible plasma motion blurring. This makes x-ray laser interferometry a unique tool for studying high density plasmas giving new information about the underlying physical processes and allowing the study of new plasma regimes. We describe precision interferometric characterization experiments using the picosecond, 14.7 nm x-ray laser source generated on the Compact Multipulse Terawatt (COMET) laser facilty at LLNL together with the Mach-Zehnder type Diffraction Grating Interferometer (DGI) designed and built at Colorado State University. A review of the results from dense, mm-scale line focus plasma experiments will be described with detailed comparisons to 1-, 1.5- and 2-D hydrodynamic simulations. Ongoing experiments on smaller spot focus high intensity plasmas will be discussed.

  9. Diagnostics of Drift Velocities of Electrons in a Laser Plasma by Spectropolarimetry of the Plasma Emission

    SciTech Connect

    Petrashen', A.G.

    2005-07-15

    Expressions are obtained for the rate constants of the induction of ordering of angular momenta in an ensemble of ions formed as a result of trapping of electrons in a laser plasma. Dependences of the degree of polarization of plasma radiation on the drift energy of free electrons of the plasma are obtained. Drift energies of electrons at different distances from the target are determined on the basis of experimental data.

  10. Fundamental Study of Nuclear Pumped Laser Plasmas.

    DTIC Science & Technology

    1980-12-23

    rate of up to 2pps. The plasma cell/gas- handling system obtains base pressures of 5xlO 8 Torr prior to high purity gas fill. The plasma cell is...synchronization problems, etc.). Due to the exceptional reproducibility of e-beam characteristics, todate , only prefire has caused data rejection. IV. Recent

  11. Laser fields in dynamically ionized plasma structures for coherent acceleration

    NASA Astrophysics Data System (ADS)

    Luu-Thanh, Ph.; Tückmantel, T.; Pukhov, A.; Kostyukov, I.

    2015-10-01

    With the emergence of the CAN (Coherent Amplification Network) laser technology, a new scheme for direct particle acceleration in periodic plasma structures has been proposed. By using our full electromagnetic relativistic particle-in-cell (PIC) simulation code equipped with ionisation module, we simulate the laser fields dynamics in the periodic structures of different materials. We study how the dynamic ionization influences the field structure.

  12. Resonant four-wave mixing of laser radiation in plasmas

    SciTech Connect

    Lal, A.; Joshi, C. )

    1991-10-01

    Experimental evidence of resonant four-wave mixing of CO{sub 2} laser radiation in a plasma is presented for the first time to our knowledge. Comparison of the experiment with theory indicates that, while collisions lead to a narrow spectral width of the ion acoustic resonance, convection and detuning owing to laser heating limit the enhancement of the signal reflectivity to below the expected value.

  13. Plasma scale-length effects on electron energy spectra in high-irradiance laser plasmas

    NASA Astrophysics Data System (ADS)

    Culfa, O.; Tallents, G. J.; Rossall, A. K.; Wagenaars, E.; Ridgers, C. P.; Murphy, C. D.; Dance, R. J.; Gray, R. J.; McKenna, P.; Brown, C. D. R.; James, S. F.; Hoarty, D. J.; Booth, N.; Robinson, A. P. L.; Lancaster, K. L.; Pikuz, S. A.; Faenov, A. Ya.; Kampfer, T.; Schulze, K. S.; Uschmann, I.; Woolsey, N. C.

    2016-04-01

    An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (1020W cm-2 ) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 μ m ).

  14. Partially coherent radiation from lasers, undulators, and laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Iskander, Nasif; Wang, Nadine

    The coherence properties of several existing and proposed sources of soft X-rays are compared with emphasis on the LLNL Se laser. Average and peak values of spectral brightness and coherent power are calculated and plotted. Coherent power is plotted in units of watts for coherence lengths of 1 micron and 10 microns (two useful lengths of experiments) as well as 200 microns (to illustrate the natural long coherence length of the LLNL Se laser).

  15. Laser beam propagation through inertial confinement fusion hohlraum plasmas

    SciTech Connect

    Froula, D. H.; Divol, L.; Meezan, N. B.; Dixit, S.; Neumayer, P.; Moody, J. D.; Pollock, B. B.; Ross, J. S.; Suter, L.; Glenzer, S. H.

    2007-05-15

    A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (T{sub e}=3.5 keV), dense (n{sub e}=5x10{sup 20} cm{sup -3}), long-scale length (L{approx}2 mm) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than I<2x10{sup 15} W cm{sup -2}. The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows a stimulated Brillouin scattering threshold (R=10%) for a linear gain of 15; these high temperature, low density experiments produce plasma conditions comparable to those along the outer beams in ignition hohlraum designs. By increasing the gas fill density (n{sub e}=10{sup 21} cm{sup -3}) in these targets, the inner beam ignition hohlraum conditions are accessed. In this case, stimulated Raman scattering dominates the backscattering processes and we show that scattering is small for gains less than 20 which can be achieved through proper choice of the laser beam intensity.

  16. Laser amplifier based on Raman amplification in plasma (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vieux, Gregory; Cipiccia, Silvia; Lemos, Nuno R. C.; Ciocarlan, Cristian; Grant, Peter A.; Grant, David W.; Ersfeld, Bernhard; Hur, MinSup; Lepipas, Panagiotis; Manahan, Grace; Reboredo Gil, David; Subiel, Anna; Welsh, Gregor H.; Wiggins, S. Mark; Yoffe, Samuel R.; Farmer, John P.; Aniculaesei, Constantin; Brunetti, Enrico; Yang, Xue; Heathcote, Robert; Nersisyan, Gagik; Lewis, Ciaran L. S.; Pukhov, Alexander; Dias, João. Mendanha; Jaroszynski, Dino A.

    2017-05-01

    The increasing demand for high laser powers is placing huge demands on current laser technology. This is now reaching a limit, and to realise the existing new areas of research promised at high intensities, new cost-effective and technically feasible ways of scaling up the laser power will be required. Plasma-based laser amplifiers may represent the required breakthrough to reach powers of tens of petawatt to exawatt, because of the fundamental advantage that amplification and compression can be realised simultaneously in a plasma medium, which is also robust and resistant to damage, unlike conventional amplifying media. Raman amplification is a promising method, where a long pump pulse transfers energy to a lower frequency, short duration counter-propagating seed pulse through resonant excitation of a plasma wave that creates a transient plasma echelon that backscatters the pump into the probe. Here we present the results of an experimental campaign conducted at the Central Laser Facility. Pump pulses with energies up to 100 J have been used to amplify sub-nanojoule seed pulses to near-joule level. An unprecedented gain of eight orders of magnitude, with a gain coefficient of 180 cm-1 has been measured, which exceeds high-power solid-state amplifying media by orders of magnitude. High gain leads to strong competing amplification from noise, which reaches similar levels to the amplified seed. The observation of 640 Jsr-1 directly backscattered from noise, implies potential overall efficiencies greater than 10%.

  17. Guiding of laser beams in plasmas by electromagnetic cascade compression

    NASA Astrophysics Data System (ADS)

    Kalmykov, S.; Shvets, G.

    2006-10-01

    The near-resonant beatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few- femtosecond electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of sidebands red- and blue-shifted by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser phase, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. Thus, a train of high intensity radiation spikes with continually evolving longitudinal profile can be self- guided over several Rayleigh lengths in homogeneous plasma. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW show that achieving GeV energy is possible under realistic experimental conditions.

  18. Impact-Ionization Cooling in Laser-Induced Plasma Filaments

    SciTech Connect

    Filin, A.; Romanov, D. A.; Compton, R.; Levis, R. J.

    2009-04-17

    The ionization rates and subsequent electron dynamics for laser-induced plasma channels are measured for the noble gas series He, Ne, Ar, Kr, and Xe at 1.0 atm. The cw fluorescence emission increases superlinearly in the series from He to Xe in agreement with Ammosov-Delone-Krainov tunnel ionization calculations. The electron temperature after laser-induced plasma formation, measured by four-wave mixing, evolves from >20 eV to <1 eV kinetic energies with time constants ranging from 1 ns for He to 100 ps for Xe in agreement with an impact-ionization cooling model.

  19. Angular-momentum evolution in laser-plasma accelerators.

    PubMed

    Thaury, C; Guillaume, E; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V

    2013-09-27

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

  20. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  1. Harmonic generation by circularly polarized laser beams propagating in plasma

    SciTech Connect

    Agrawal, Ekta; Hemlata,; Jha, Pallavi

    2015-04-15

    An analytical theory is developed for studying the phenomenon of generation of harmonics by the propagation of an obliquely incident, circularly polarized laser beam in homogeneous, underdense plasma. The amplitudes of second and third harmonic radiation as well as detuning distance have been obtained and their variation with the angle of incidence is analyzed. The amplitude of harmonic radiation increases with the angle of incidence while the detuning distance decreases, for a given plasma electron density. It is observed that the generated second and third harmonic radiation is linearly and elliptically polarized, respectively. The harmonic radiation vanishes at normal incidence of the circularly polarized laser beam.

  2. Generation of collisionless shock in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2015-08-01

    Collisionless shocks are ubiquitous in astrophysical environments and are tightly connected with magnetic-field amplification and particle acceleration. The fast progress in high-power laser technology is bringing the study of high Mach number shocks into the realm of laboratory plasmas, where in situ measurements can be made helping us understand the fundamental kinetic processes behind shocks. I will discuss the recent progress in laser-driven shock experiments at state-of-the-art facilities like NIF and Omega and how these results, together with ab initio massively parallel simulations, can impact our understanding of magnetic field amplification and particle acceleration in astrophysical plasmas.

  3. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.

    PubMed

    Schroeder, C B; Esarey, E

    2010-05-01

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  4. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric

    2010-06-30

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically-intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a non-relativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined, and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for non-relativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  5. Laser-driven plasma beat-wave propagation in a density-modulated plasma.

    PubMed

    Gupta, Devki Nandan; Nam, In Hyuk; Suk, Hyyong

    2011-11-01

    A laser-driven plasma beat wave, propagating through a plasma with a periodic density modulation, can generate two sideband plasma waves. One sideband moves with a smaller phase velocity than the pump plasma wave and the other propagates with a larger phase velocity. The plasma beat wave with a smaller phase velocity can accelerate modest-energy electrons to gain substantial energy and the electrons are further accelerated by the main plasma wave. The large phase velocity plasma wave can accelerate these electrons to higher energies. As a result, the electrons can attain high energies during the acceleration by the plasma waves in the presence of a periodic density modulation. The analytical results are compared with particle-in-cell simulations and are found to be in reasonable agreement.

  6. Persistence of uranium emission in laser-produced plasmas

    SciTech Connect

    LaHaye, N. L.; Harilal, S. S. Diwakar, P. K.; Hassanein, A.

    2014-04-28

    Detection of uranium and other nuclear materials is of the utmost importance for nuclear safeguards and security. Optical emission spectroscopy of laser-ablated U plasmas has been presented as a stand-off, portable analytical method that can yield accurate qualitative and quantitative elemental analysis of a variety of samples. In this study, optimal laser ablation and ambient conditions are explored, as well as the spatio-temporal evolution of the plasma for spectral analysis of excited U species in a glass matrix. Various Ar pressures were explored to investigate the role that plasma collisional effects and confinement have on spectral line emission enhancement and persistence. The plasma-ambient gas interaction was also investigated using spatially resolved spectra and optical time-of-flight measurements. The results indicate that ambient conditions play a very important role in spectral emission intensity as well as the persistence of excited neutral U emission lines, influencing the appropriate spectral acquisition conditions.

  7. Plasma lenses for ultrashort multi-petawatt laser pulses

    SciTech Connect

    Palastro, J. P.; Gordon, D.; Hafizi, B.; Johnson, L. A.; Peñano, J.; Hubbard, R. F.; Helle, M.; Kaganovich, D.

    2015-12-15

    An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here, we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ∼1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ∼10 PW.

  8. Spatial diagnostics of the laser induced lithium fluoride plasma

    SciTech Connect

    Baig, M. A.; Qamar, Aisha; Fareed, M. A.; Anwar-ul-Haq, M.; Ali, Raheel

    2012-06-15

    We present spatial characteristics of the lithium fluoride plasma generated by the fundamental and second harmonic of a Nd:YAG laser. The plume emission has been recorded spatially using five spectrometers covering the spectral region from 200 nm to 720 nm. The electron density is measured from the Stark broadened line profile of the line at 610.37 nm, whereas the plasma temperature has been determined using the Boltzmann plot method including all the observed spectral lines of lithium. Both the plasma parameters; electron density and plasma temperature decrease with the increase of the distance from the target surface. The thermal conduction towards the target, the radiative cooling of the plasma, and the conversion of thermal energy into kinetic energy are the main mechanisms responsible for the spatially decrease of the plasma parameters.

  9. Plasma lenses for ultrashort multi-petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Gordon, D.; Hafizi, B.; Johnson, L. A.; Peñano, J.; Hubbard, R. F.; Helle, M.; Kaganovich, D.

    2015-12-01

    An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here, we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ˜1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ˜10 PW.

  10. State-to-state modeling of ultrashort laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Morel, Vincent; Bultel, Arnaud; Schneider, Ioan; Grisolia, Christian

    2017-01-01

    The question of the Local Thermodynamic Equilibrium (LTE) of laser-induced plasmas is crucial regarding the Laser-Induced Breakdown Spectroscopy (LIBS) technique. The most relevant way to assess theoretically the possible departure from LTE is to develop state-to-state models of the chemical species involved. The present paper illustrates such an elaboration in the case of aluminum and tungsten. Based on this state-to-state approach, the two collisional-radiative models CoRaM-Al and CoRaM-W are elaborated. They include elementary processes under electron and heavy particle impact in thermal non-equilibrium, spontaneous emission, radiative recombination and thermal Bremsstrahlung. These models are applied to the case of ultrashort laser-induced plasmas expanding in an argon gas at different pressure, for which a relevant collisional-radiative model is also elaborated to predict the propagation of the shock wave. The laser conditions are close to those used for a typical LIBS analysis under ultrashort regime. At high argon pressure (105 Pa), the relaxation of the plasma takes place according to a rather low departure from LTE, as revealed by the thorough examination of the Boltzmann plots derived from the state-to-state models. This relaxation occurs at temperature higher for aluminum than for tungsten, but close to 10,000 K from 200 ns. Conversely, at low pressure (10 Pa), the extinction of the plasma is observed at ∼ 500 ns, just after a phase corresponding to significant departure from equilibrium. These results support the idea of the choice of short gate delays close to the laser pulse for the LIBS characterization of tungsten matrices in tokamak-like conditions.

  11. Laminar shocks in high power laser plasma interactions

    SciTech Connect

    Cairns, R. A.; Bingham, R.; Norreys, P.; Trines, R.

    2014-02-15

    We propose a theory to describe laminar ion sound structures in a collisionless plasma. Reflection of a small fraction of the upstream ions converts the well known ion acoustic soliton into a structure with a steep potential gradient upstream and with downstream oscillations. The theory provides a simple interpretation of results dating back more than forty years but, more importantly, is shown to provide an explanation for recent observations on laser produced plasmas relevant to inertial fusion and to ion acceleration.

  12. Laser produced plasma diagnostics by cavity ringdown spectroscopy and applications

    SciTech Connect

    Milosevic, S.

    2012-05-25

    Laser-produced plasmas have many applications for which detailed characterization of the plume is requested. Cavity ring-down spectroscopy is a versatile absorption method which provides data on the plume and its surroundings, with spatial and temporal resolution. The measured absorption line shapes contain information about angular and velocity distributions within the plume. In various plasmas we have observed molecules or metastable atoms which were not present in the emission spectra.

  13. Determination of Plasma Screening Effects for Thermonuclear Reactions in Laser-generated Plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Yuanbin; Pálffy, Adriana

    2017-03-01

    Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario here and calculate the reaction events for the astrophysically relevant reaction 13C(4He, n)16O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.

  14. Plasma treatment of expanded PTFE offers a way to a biofunctionalization of its surface

    NASA Astrophysics Data System (ADS)

    Baquey, Ch.; Palumbo, F.; Porte-Durrieu, M. C.; Legeay, G.; Tressaud, A.; d'Agostino, R.

    1999-05-01

    Biointegration is the ideal outcome which is expected for an artificial implant. That means that the phenomena which seats at the interface between the implant and the host tissues does not induce neither any deleterious effect, such as chronic inflammatory response, nor the formation of unusual tissues. Thus it is of paramount importance to design biomaterials, used for the fabrication of implants, with the best appropriate surface properties. At the same time these biomaterials must feature bulk properties which meet other requirements, especially mechanical properties, deriving from the intended function of the implant in which they are involved. As it is quite impossible to design biomaterials which fulfil at the same time both types of requirements, it is commonly agreed that the solution to this issue goes through the selection or the design of biomaterials with adequate bulk properties, and a further treatment of the surface which would improve the properties of the latter. In this respect ionizing radiations and plasma based treatments, offer a wide panel of possibilities; as an example we describe here how the surface of expanded poly(tetrafluoroethylene) samples can be activated using cold plasma, in order to open a way to chemical modifications of such a surface. Subsequently, Radio Frequency Glow Discharge (RFGD) containing oligopeptides, known for their role in mediating the adhesion of cells to the extracellular matrix, were bound to the modified surface, and the affinity of endothelial cells for the latter was investigated.

  15. Formulation and development of plasma volume expander using natural and modified starch from Solanum tuberosum.

    PubMed

    Thombre, Nilima A; Vishwakarma, Ajit V; Jadhav, Trupti S; Kshirsagar, Sanjay J

    2016-01-01

    To formulation and development of plasma volume expander (PVE) by using natural and modified starch from Solanum tuberosum. The function of blood circulation is to provide the needs of the body tissues and to maintain an appropriate environment in all tissue fluids of the body for the optimal survival and functions of the cells. Rapid restoration of the blood volume is necessary to decrease reduction in the amount of the blood. The PVEs are isotonic colloidal solutions, act by increasing the osmotic pressure of the intravascular compartment, which leads to the influx of the interstitial fluids through the capillary pore which, in turn, leads to the increase in the volume of the blood. Therefore, there is a need to discover the PVE with less side effects. The main aim of the present study is to use amylopectin as PVEs, fractionated from natural and modified starch obtained from S. tuberosum. The starch extracted from the normal grains and the tubers of potatoes was selected for the production of starch. Statistical analysis includes in vitro characterization that involves viscosity studies, plasma-product interaction, osmotic pressure detection, molecular weight-viscosity relationship, determination of weight average molecular weight, enzymatic interaction, and in vivo characterization such as toxicity studies and the effect of the products on the blood coagulation. The isolated starch and fractionated amylopectin were analyzed for the physicochemical characteristics. The amylopectin fractionated from isolated starch from grains and tubers of potatoes can be used as PVE, as per the outcome of the study.

  16. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  17. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  18. Absorption of laser radiation by femtosecond laser-induced plasma of air and its emission characteristics

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.

    2015-11-01

    The energy absorbed by femtosecond laser plasma has nonlinear dependence on incident laser energy. The threshold power for plasma formation is 5.2 GW. Emission of nitrogen molecule, nitrogen molecule ion, atomic oxygen (unresolved triplet O I 777 nm) and nitrogen (triplet N I 742.4, 744.3 and 746.8 nm) lines is detected. Molecular emission consists of second positive and firs negative systems of nitrogen. Time-resolved spectroscopy of plasmas shows short molecular line emission (up to 1 ns) and long atomic line emission (up to 150 ns).

  19. Influence of laser energy on the electron temperature of a laser-induced Mg plasma

    NASA Astrophysics Data System (ADS)

    Asamoah, Emmanuel; Hongbing, Yao

    2017-01-01

    The magnesium plasma induced by a 1064-nm Q-switched Nd:YAG laser in atmospheric air was investigated. The evolution of the plasma was studied by acquiring spectral images at different laser energies and delay times. We observed that the intensities of the spectral lines decrease with larger delay times. The electron temperature was determined using the Boltzmann plot method. At a delay time of 100 ns and laser energy of 350 mJ, the electron temperature attained their highest value at 10164 K and then decreases slowly up to 8833.6 K at 500 ns. We found that the electron temperature of the magnesium plasma increases rapidly with increasing laser energy.

  20. Interferometric studies of laser-created plasmas using compact soft x-ray lasers

    SciTech Connect

    Dunn, J; Nilsen, J; Moon, S; Keenan, R; Jankowska, E; Maconi, M C; Hammarsten, E C; Filevich, J; Hunter, J R; Smith, R F; Shlyaptsev, V; Rocca, J J

    2003-12-04

    We summarize results of several successful dense plasma diagnostics experiments realized by combining two different kinds of table-top soft x-ray lasers with an amplitude division interferometer based on diffraction grating beam splitters. In the first set of experiments this robust high throughput diffraction grating interferometer (DGI) was used with a 46.9 nm portable capillary discharge laser to study the dynamics of line focus and point focus laser-created plasmas. The measured electron density profiles, which differ significantly from those expected from a classical expansion, unveil important two-dimensional effects of the dynamics of these plasmas. A second DGI customized to operate in combination with a 14.7 nm Ni-like Pd transient gain laser was used to perform interferometry of line focus laser-created plasmas with picosecond time resolution. These measurements provide valuable new benchmarks for complex hydrodynamic codes and help bring new understanding of the dynamics of dense plasmas. The instrumentation and methodology we describe is scalable to significantly shorter wavelengths, and constitutes a promising scheme for extending interferometry to the study of very dense plasmas such as those investigated for inertial confinement fusion.

  1. Neutron Source from Laser Plasma Acceleration

    NASA Astrophysics Data System (ADS)

    Jiao, Xuejing; Shaw, Joseph; McCary, Eddie; Downer, Mike; Hegelich, Bjorn

    2016-10-01

    Laser driven electron beams and ion beams were utilized to produce neutron sources via different mechanism. On the Texas Petawatt laser, deuterized plastic, gold and DLC foil targets of varying thickness were shot with 150 J , 150 fs laser pulses at a peak intensity of 2 ×1021W /cm2 . Ions were accelerated by either target normal sheath acceleration or Breakout Afterburner acceleration. Neutrons were produced via the 9Be(d,n) and 9Be(p,n) reactions when accelerated ions impinged on a Beryllium converter as well as by deuteron breakup reactions. We observed 2 ×1010 neutron per shot in average, corresponding to 5 ×1018n /s . The efficiencies for different targets are comparable. In another experiment, 38fs , 0.3 J UT3 laser pulse interacted with mixed gas target. Electrons with energy 40MeV were produced via laser wakefield acceleration. Neutron flux of 2 ×106 per shot was generated through bremsstrahlung and subsequent photoneutron reactions on a Copper converter.

  2. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spatial distribution of laser radiation scattered in a plasma formed by optical breakdown of a gas

    NASA Astrophysics Data System (ADS)

    Bufetov, Igor'A.; Bufetova, G. A.; Fyodorov, V. B.

    1994-12-01

    Spatial distributions of laser radiation scattered by a laser spark were determined at different laser radiation wavelengths (λ = 1060, 530, 353, and 265 nm) and gas pressures (air at 10-760 Torr). An interference structure of the cone of the scattered radiation behind the spark was detected for the first time. The structure was attributed to interference of the radiation scattered in two or more self-focusing centres in the laser-spark plasma in air. The dependences of the maximum scattering angle on the gas pressure and on the laser radiation wavelength were determined experimentally.

  3. Paraxial properties of three-element zoom system for laser beam expanders based on tunable-focus lenses.

    PubMed

    Mikš, Antonín; Novák, Pavel

    2015-06-15

    The paper is focused on the problem of a theoretical analysis of paraxial imaging properties and initial optical design of the three-element zoom optical system for laser beam expanders using lenses with a tunable focal length. Equations which allow calculation of required optical powers of individual elements of the three-element zoom optical system for laser beam expander depending on the value of the axial position of the beam waist of the input Gaussian beam and the required magnification of the system are derived.

  4. Collisionless Interaction of a Magnetized Ambient Plasma and a Field-Parallel Laser Produced Plasma

    NASA Astrophysics Data System (ADS)

    Heuer, P. V.; Bondarenko, A. S.; Schaeffer, D. B.; Constantin, C. G.; Vincena, S.; Tripathi, S.; Gekelman, W.; Weidl, M.; Winske, D.; Niemann, C.

    2016-10-01

    We present measurements of the collisionless coupling between an exploding laser-produced plasma (LPP) and a large, magnetized ambient plasma. The LPP was created by focusing the Raptor laser (400 J, 40 ns) on a planar plastic target embedded in the ambient Large Plasma Device (LAPD) plasma at the University of California, Los Angeles. The resulting ablated material moved parallel to the background magnetic field, interacting with the ambient plasma along the full 17m length of the LAPD. The amplitude and polarization of waves driven by the interaction were measured by an array of 3-axis magnetic flux probes. Emissive doppler spectroscopy and a high temporal resolution monochrometer were used to observe the velocity and charge state distributions of both ambient and debris ions. Measurements are compared to hybrid simulations of quasi-parallel shocks.

  5. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    SciTech Connect

    Dergachev, A A; Kandidov, V P; Shlenov, S A; Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  6. Radiative heat transport instability in a laser produced inhomogeneous plasma

    SciTech Connect

    Bychenkov, V. Yu.; Rozmus, W.

    2015-08-15

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation emission and radiative heat transfer supports ion acoustic instability. A linear dispersion relation is derived, and instability is compared to the radiation cooling instability [R. G. Evans, Plasma Phys. Controlled Fusion 27, 751 (1985)]. Under conditions of indirect drive fusion experiments, the driving term for the instability is the radiative heat flux and, in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered. This instability may lead to plasma jet formation and anisotropic x-ray generation, thus affecting inertial confinement fusion related experiments.

  7. Stagnation and interpenetration of laser-created colliding plasmas

    SciTech Connect

    Pollaine, S.M.; Albritton, J.R.; Kauffman, R.; Keane, C.J. ); Berger, R.L.; Bosch, R.; Delameter, N.D.; Failor, B.H. )

    1990-11-05

    A KMS laser experiment collides Aluminum (A1) and Magnesium (Mg) plasmas. The measurements include electron density, time and space resolved Ly-alpha and He-alpha lines of Al and Mg, and x-ray images. These measurements were analyzed with a hydrodynamic code, LASNEX, and a special two-fluid code OFIS. The results strongly suggest that at early times, the Al interpenetrates the counterstreaming Mg and deposits in the dense Mg region. At late times, the Al plasma stagnates against the Mg plasma.

  8. Optical guiding of laser beam in nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Singh Gill, Tarsem

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi ( Phys. Plasmas, 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.}

  9. Shock Waves and Equations of State Related to Laser Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Eliezer, Shalom

    Equations of state (EOS) of are fundamental to numerous fields of science, such as astrophysics, geophysics, plasma physics, inertial confinement physics and more. Laser induced shock waves techniques enable the study of equations of states and related properties, expanding the thermodynamic range reached by conventional gas gun shock waves and static loading experiments. Two basic techniques are used in laser-induced shock wave research, direct drive and indirect drive. In direct drive, one or more beams irradiate the target. In the indirect drive, thermal x-rays generated in laser heated cavities create the shock wave. Most of the laser induced shock waves experiments in the last decade used the impedance matching. Both direct and indirect drive can be used to accelerate a small foil-flyer and collide it with the studied sample, creating a shock in the sample, similar to gas-gun accelerated plates experiments. These lectures describe the physics of laser induced shock waves and rarefaction waves. The different formulae of the ideal gas EOS are used in connection with shock waves and rarefaction waves. The critical problems in laser induced shock waves are pointed out and the shock wave stability is explained. A general description of the various thermodynamic EOS is given. In particular the Gruneisen EOS is derived fromEinstein and Debye models of the solid state of matter. Furthermore, the very useful phenomenological EOS, namely the linear relation between the shock wave velocity and the particle flow velocity, is analysed. This EOS is used to explain the ≈ 1 Gbar pressures in laser plasma induced shock waves. Last but not least, the shock wave jump conditions are derived in the presence of a magnetic field.

  10. Laser-plasma mirrors: from electron acceleration to harmonics generation

    NASA Astrophysics Data System (ADS)

    Thévenet, Maxence; Bocoum, Maïmouna; Faure, Jérôme; Leblanc, Adrien; Vincenti, Henri; Quéré, Fabien

    2016-10-01

    Accelerating electrons in the > 10 TV/m fields inside an ultrashort ultraintense laser pulse has been a long-standing goal in experimental physics, motivated by promising theoretical predictions. The biggest hurdle was to have electrons injected in the center of the laser pulse. Recent experimental and numerical results showed that this problem could be solved using a plasma mirror, i.e. an overdense plasma with a sharp (<laser wavelength) density gradient on its front side, leading to a 10 MeV 3 nC electron beam. Using particle-in-cell simulations, the ejection process was identified as a push-pull mechanism occuring at each laser period, resulting in a train of attosecond electron bunches injected in the reflected field. We present a study and a model of this process, and show the gradient characteristic length is the crucial parameter for this phenomenon. Finally, the electron ejection process was put into perspective with respect to the high harmonic generation mechanisms on plasma mirrors, giving new insights into the motion of the plasma mirror surface. funded by the European Research Council, Contract No. 306708, ERC Starting Grant FEMTOELEC.

  11. Subsurface plasma in beam of continuous CO2-laser

    NASA Astrophysics Data System (ADS)

    Danytsikov, Y. V.; Dymshakov, V. A.; Lebedev, F. V.; Pismennyy, V. D.; Ryazanov, A. V.

    1986-03-01

    Experiments performed at the Institute of Atomic Energy established the conditions for formation of subsurface plasma in substances by laser radiation and its characteristics. A quasi-continuous CO2 laser emitting square pulses of 0.1 to 1.0 ms duration and 1 to 10 kW power as well as a continuous CO2 laser served as radiation sources. Radiation was focused on spots 0.1 to 0.5 mm in diameter and maintained at levels ensuring constant power density during the interaction time, while the temperature of the target surface was measured continuously. Metals, graphite and dielectric materials were tested with laser action taking place in air N2 + O2 mixtures, Ar or He atmosphere under pressures of 0.01 to 1.0 atm. Data on radiation intensity thresholds for evaporation and plasma formation were obtained. On the basis of these thresholds, combined with data on energy balance and the temperature profile in plasma layers, a universal state diagram was constructed for subsurface plasma with nonquantified surface temperature and radiation intensity coordinates.

  12. Temporary spectral analysis of a laser plasma of mineral coal

    NASA Astrophysics Data System (ADS)

    Rebolledo, P.; Pacheco, P.; Sarmiento, R.; Cabanzo, R.; Mejía-Ospino, E.

    2013-11-01

    In this work we present results of the temporal spectral study of a plasma laser of mineral coal using the Laser-induced Breakdown Spectroscopy (LIBS) technique. The plasma was generated by focusing a laser beam of Nd:YAG laser emitting at 532 nm with energy per pulse of 35 mJ on coal target pellets. The plasma radiation was conducted by an optical fiber to the entrance slit of a spectrograph of 0.5 m, equipped with a 1200 and 2400 grooves/mm diffraction grating and an ICCD camera for registration with different delay times of the spectra in the spectral range from 250 nm to 900 nm. The temporal spectral analysis allowed the identification of the elements Al, Fe, Ca, Mg, K, and Si, and CN and C2 molecules present in natural coals. The characteristics of the spectral lines and bands were studied at different delay times obtaining the calculation of the evolution of electron temperature, electron density, and vibrational temperature of plasmas in the time. The delay times used were between 0.5 μs and 5 μs, calculating the electron temperature ranged between 5 000 K and 1 000 K.

  13. Stability of liquid-nitrogen-jet laser-plasma targets

    SciTech Connect

    Fogelqvist, E. Kördel, M.; Selin, M.; Hertz, H. M.

    2015-11-07

    Microscopic jets of cryogenic substances such as liquid nitrogen are important regenerative high-density targets for high-repetition rate, high-brightness laser-plasma soft x-ray sources. When operated in vacuum such liquid jets exhibit several non-classical instabilities that negatively influence the x-ray source's spatial and temporal stability, yield, and brightness, parameters that all are important for applications such as water-window microscopy. In the present paper, we investigate liquid-nitrogen jets with a flash-illumination imaging system that allows for a quantitative stability analysis with high spatial and temporal resolution. Direct and indirect consequences of evaporation are identified as the key reasons for the observed instabilities. Operating the jets in an approximately 100 mbar ambient atmosphere counteracts the effects of evaporation and produces highly stable liquid nitrogen jets. For operation in vacuum, which is necessary for the laser plasmas, we improve the stability by introducing an external radiative heating element. The method significantly extends the distance from the nozzle that can be used for liquid-jet laser plasmas, which is of importance for high-average-power applications. Finally, we show that laser-plasma operation with the heating-element-stabilized jet shows improved short-term and long-term temporal stability in its water-window x-ray emission.

  14. Ultrashort pulse laser microsurgery system with plasma luminescence feedback control

    SciTech Connect

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.

    1997-11-10

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  15. Plasma erosion rate diagnostics using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Turley, R. S.; Matossian, J. N.; Beattie, J. R.; Williamson, W. S.

    1992-01-01

    An optical technique for measuring the sputtering rate of a molybdenum surface immersed in a xenon plasma has been developed and demonstrated. This approach, which may be useful in real-time wear diagnostics for ion thrusters, relies on laser-induced fluorescence to determine the density of sputtered molybdenum atoms.

  16. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  17. Charge resolved electrostatic diagnostic of colliding copper laser plasma plumes

    SciTech Connect

    Yeates, P.; Fallon, C.; Kennedy, E. T.; Costello, J. T.

    2011-10-15

    The collision of two laser generated plasma plumes can result, under appropriate conditions, in the formation of a ''stagnation layer.'' The processes underlying this phenomenon are complex and time dependent. The majority of experiments over the last few decades have focused upon spectroscopic diagnostic of colliding plasmas. We have performed electrostatic diagnosis of multiply charged copper ions (Cu{sup +} to Cu{sup 5+}) generated via Q-switched pulsed laser ({lambda} = 1.06 {mu}m, {tau} = 6 ns, and E{sub L} = 52-525 mJ) generation of copper plasma plumes from a planar target. Time dependent current traces, charge yields, and kinetic energy (K{sub e}) distributions are obtained for single plasma plumes (S{sub p}) and colliding plasma plumes (C{sub p}). The charge yield from a C{sub p} relative to twice that from a S{sub p} is characterized by a charge yield ratio (CYR) parameter. Superior ion yields for all charge states occur for a discrete range of fluences (F) from colliding plasma plumes leading to a CYR parameter exceeding unity. The kinetic energy distributions from colliding plasma plumes display well defined energy compression via narrowing of the distributions for all fluences and charge states. The extent of this energy compression is charge dependent. Space charge forces within the stagnation layer and the resulting charge dependent acceleration of ions are proposed to account for the transfer of ion kinetic energy in favour of collisional ionization mechanisms.

  18. Saturation of Langmuir waves in laser-produced plasmas

    SciTech Connect

    Baker, K.L.

    1996-04-01

    This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.

  19. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Physics of the plasma corona in the problem of laser controlled thermonuclear fusion

    NASA Astrophysics Data System (ADS)

    Andreev, N. E.; Gorbunov, Leonid M.; Tikhonchuk, Vladimir T.

    1994-09-01

    A brief analysis is made of the most important nonlinear processes which result from the interaction of laser radiation with thermonuclear targets. lt is shown that problems in the physics of the plasma corona should be an essential part of any programme of research on laser controlled thermonuclear fusion. A list is given of the problems that have to be solved first before going to the next level of laser energies.

  20. Laser Absorption by Over-Critical Plasmas

    NASA Astrophysics Data System (ADS)

    May, J.; Tonge, J.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Mori, W. B.

    2015-11-01

    Absorption of high intensity laser light by matter has important applications to emerging sciences and technology, such as Fast Ignition ICF and ion acceleration. As such, understanding the underlying mechanisms of this absorption is key to developing these technologies. Critical features which distinguish the interaction of high intensity light - defined here as a laser field having a normalized vector potential greater than unity - are that the reaction of the material to the fields results in sharp high-density interfaces; and that the movement of the electrons is in general relativistic, both in a fluid and a thermal sense. The results of these features are that the absorption mechanisms are qualitatively distinct from those at lower intensities. We will review previous work, by our group and others, on the absorption mechanisms, and highlight current research. We will show that the standing wave structure of the reflected laser light is key to particle dynamics for normally incident lasers. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  1. Resonant enhancement for amplitude-modulated laser filament induced magnetic field in an inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Annou, R.; Tripathi, V. K.; Srivastava, M. P.

    1996-09-01

    The Tripathi-Liu [Phys. Plasmas 1, 990 (1994)] model of magnetic-field generation due to an amplitude-modulated laser in a plasma is revisited. At plasma resonance, where modulation frequency equals the plasma frequency, significant enhancement in the magnetic field is seen. The magnetic field is found to scale directly with laser intensity and plasma frequency, while scaling inversely with laser spot size.

  2. Experimental and theoretical investigation of the effect of laser parameters on laser ablation and laser-induced plasma formation

    NASA Astrophysics Data System (ADS)

    Stancalie, Andrei; Ciobanu, Savu-Sorin; Sporea, Dan

    2016-04-01

    We report results from a wide range of laser operating conditions, typical for laser induced breakdown spectroscopy (LIBS) and laser ablation (LA) experiments on copper metallic target, which form the basis of further systematically investigation of the effect of laser irradiance, pulse duration and wavelength, on the target, plume and plasma behavior, during and after laser-solid interaction. In the LA experiment, the laser beam was focused through a 25 cm focal length convergent lens on a plane copper target in air, at atmospheric pressure. The target was rotated in order to have fresh areas under laser irradiance. In the LIBS experiment, the Applied Photonics LIBS-6 instrument allowed modifying the laser irradiance at the sample surface by changing the pulse energy or the laser focusing distance. For the duration of the laser pulse, the power density at the surface of the target material exceeds 109 W/cm2 using only a compact laser device and simple focusing lenses. The plasma parameters were experimentally estimated from spectroscopic data generated by the plasma itself, namely by the line intensities and their ratio which reflect the relative population of neutral or ionic excited species in the plasma. The fitting of the Saha-Boltzmann plot to a straight line provides an apparent ionization temperature, whose value depends on the lines used in the plots. For the typical conditions of LA and LIBS, the temperature can be so high that Cu+ ions are formed. The first-order ionization of Cu (i.e., the ratio of Cu+/Cu0 ) is calculated.

  3. Imploding plasma x-ray laser research. Draft final report

    SciTech Connect

    Wong, S.; Koppel, L.; Burr, L.; Rodenburg, R.; Fortner, R.; Stewart, R.; Dietrich, D.; Egan, P.; Young, B.; Dukart, R.

    1984-09-01

    The population inversion mechanisms and gain estimates for the Ne-like Kr x-ray laser scheme are discussed. An experimental configuration has been developed which produces stable plasmas with conditions close to the optimum for lasing. By imploding a coaxial argon plasma on an inner krypton plasma (the puff-on-puff configuration), a quiescent krypton center plasma was produced with an electron temperature of about 600 eV and an electron density of about 10/sup 21/ cm/sup -3/. The center plasma was stable and linear, with little evidence of kink instabilities. Nozzle development work was also performed. X-ray measurements of electron temperature and density as well as XUV linewidths are presented. (LEW)

  4. Laser plasma ignition: status, perspectives, solutions

    NASA Astrophysics Data System (ADS)

    Wintner, E.; Kofler, H.; Srivastava, D. K.; Agarwal, A. K.

    2013-11-01

    Laser ignition can yield certain advantages compared to conventional sparkplug ignition. Among other already frequently discussed reasons due to: i) option for sequential or multipoint ignition which can contribute to more reliable ignition in direct injection engines; ii) ignition of leaner mixtures at higher compression being most relevant for gas engines. A satisfying solution to the above mentioned requirements is the longitudinally diode-pumped passively Q-switched Cr4+:YAG/Nd 3+:YAG laser capable of emitting ˜1-ns-pulses of at least 20 mJ . This type of solid-state laser (SSL) confectioned in an engine-compatible form can be called a laser sparkplug. Early versions of this concept comprised a high-power diode pump laser (quasi-cw power <500 W @ ˜500 μs duration) which were placed remote from the engine to avoid detrimental influences of temperature, vibrations, pollution etc. In this case only the SSL is exposed to the elevated temperature in the vicinity of the cylinder walls (<100°C). Recently, technical and cost-oriented considerations allow a change of concept from fiber-based remote pumping via edge emitter arrays to the use of newly developed so-called power VCSELs with two-dimensional stacking. Collimation to form a round pump beam thereby becomes much easier. Their temperature resistance allows lower-cost direct mounting although thereby a wavelength shift is induced. The Q-switched SSL in the sparkplug also faces temperature dependent phenomena like reduction of pulse energy and efficiency, a change of pulse timing and beam profile which will be discussed in the paper.

  5. Material measurement method based on femtosecond laser plasma shock wave

    NASA Astrophysics Data System (ADS)

    Zhong, Dong; Li, Zhongming

    2017-03-01

    The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.

  6. Laser plasma emission of small particles in different gas atmospheres

    NASA Astrophysics Data System (ADS)

    Andreev, Alexander A.; Ueda, Toshitsugu; Wakamatsu, Muneaki

    2002-06-01

    The problem of laser pulse interaction with small solid particles in a gas atmosphere when detecting its parameters is a serous one in industrial and environmental applications. Previous investigations have shown the possibility of using the laser induced breakdown method. This method is very sensitive, but for a particle size of less than 0.1 micrometers the damage threshold of the solid target is very close to the breakdown point of pure gas. At breakdown, a small volume of dense hot plasma emits radiation by which the size and material of particles can be detected. We used an analytical model, simulation code and experiments to analyze this radiation and found that the emitted intensity varied with laser, gas and particle parameters. The increased dependence of SSP plasma emission rate on initial particle volume permits this method to be used for measuring small particle size by using emitted line spectrum at the late time stage.

  7. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    DOE PAGES

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; ...

    2017-01-12

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less

  8. Extraction of metal ions from laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V.

    2005-10-01

    Experimental results concerning the extraction of Cu ions from laser-produced plasma are reported in this work. An XeCl excimer laser was used, providing a power density on the target surface of about 3.5 × 108 W/cm2. Laser wavelength and pulse duration were 308 nm and 20 ns, respectively. The experimental apparatus consisted substantially of a plasma generation chamber and a drift tube. An expansion chamber was mounted on the target stem inside the generation chamber. Its end together with a bored electrode connected to ground formed the acceleration gap, which was 1.3 cm large. A Faraday cup was used to reveal ions. The highest accelerating voltage applied to the extraction gap was 18 kV, resulting in extraction of an ion bunch of about 4.2 nC, with a peak current of 220 μA.

  9. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.; Kerbel, G. D.; Thomas, C. A.; Ralph, J. E.; Moody, J. D.; Schneider, M. B.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  10. Validating Laser-Induced Birefringence Theory with Plasma Interferometry

    SciTech Connect

    Chen, Cecilia

    2015-09-02

    Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variations of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.

  11. Frequency-Domain Tomography for Single-shot, Ultrafast Imaging of Evolving Laser-Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Downer, Michael

    2011-10-01

    Intense laser pulses propagating through plasma create plasma wakefields that often evolve significantly, e.g. by expanding and contracting. However, such dynamics are known in detail only through intensive simulations. Laboratory visualization of evolving plasma wakes in the ``bubble'' regime is important for optimizing and scaling laser-plasma accelerators. Recently snap-shots of quasi-static wakes were recorded using frequency-domain holography (FDH). To visualize the wake's evolution, we have generalized FDH to frequency-domain tomography (FDT), which uses multiple probes propagating at different angles with respect to the pump pulse. Each probe records a phase streak, imprinting a partial record of the evolution of pump-created structures. We then topographically reconstruct the full evolution from all phase streaks. To prove the concept, a prototype experiment visualizing nonlinear index evolution in glass is demonstrated. Four probes propagating at 0, 0.6, 2, 14 degrees to the index ``bubble'' are angularly and temporally multiplexed to a single spectrometer to achieve cost-effective FDT. From these four phase streaks, an FDT algorithm analogous to conventional CT yields a single-shot movie of the pump's self-focusing dynamics.

  12. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Low-threshold generation of harmonics and hard x radiation in a laser plasma. 1. Single-peak generation

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Derzhavin, S. I.; Kazakov, K. Kh

    1993-02-01

    A source of hard x radiation based on a laser plasma has been studied under conditions such that parametric instabilities are driven in the plasma at low intensities of the pump radiation (below 10 GW/cm2). A qualitative interpretation of the observed effects is offered.

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Kosareva, O. G.; Grigor'evskii, A. V.; Kandidov, V. P.

    2005-11-01

    The formation of plasma channels of a femtosecond laser pulse in the bulk of fused silica is studied by numerical simulation, and the advantages of using a conical lens (axicon) over conventional parabolic lenses are shown. It is found that the length of the plasma channel formed with the help of an axicon exceeds the length of the channel formed upon lens focusing.

  14. Powerful laser pulse absorption in partly homogenized foam plasma

    NASA Astrophysics Data System (ADS)

    Cipriani, M.; Gus'kov, S. Yu.; De Angelis, R.; Andreoli, P.; Consoli, F.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Rupasov, A. A.

    2016-03-01

    The internal volume structure of a porous medium of light elements determines unique features of the absorption mechanism of laser radiation; the characteristics of relaxation and transport processes in the produced plasma are affected as well. Porous materials with an average density larger than the critical density have a central role in enhancing the pressure produced during the ablation by the laser pulse; this pressure can exceed the one produced by target direct irradiation. The problem of the absorption of powerful laser radiation in a porous material is examined both analytically and numerically. The behavior of the medium during the process of pore filling in the heated region is described by a model of viscous homogenization. An expression describing the time and space dependence of the absorption coefficient of laser radiation is therefore obtained from the model. A numerical investigation of the absorption of a nanosecond laser pulse is performed within the present model. In the context of numerical calculations, porous media with an average density larger than the critical density of the laser-produced plasma are considered. Preliminary results about the inclusion of the developed absorption model into an hydrodynamic code are presented.

  15. Intense Laser Plasma Interactions on the Road to Fast Ignition

    NASA Astrophysics Data System (ADS)

    van Woerkom, Linn

    2007-11-01

    Successful Fast Ignition (FI) offers the prospect of reduced laser driver energy and greater energy gain, which enhances the possibilities for realistic Inertial Confinement Fusion (ICF) energy power plants. The interaction of high intensity laser pulses with hot dense plasma lies at the core of the FI concept. At the most basic level FI relies on converting high energy, high intensity laser light into a beam of electrons which must propagate for 10's to ˜100 microns and deposit their energy in the compressed fuel. Thus, the process may be divided into two critical processes: 1) the generation of energetic electrons from the laser-matter interaction, and 2) the transport of energetic electrons through hot dense plasma. Experiments to date have only explored part of the FI relevant parameter space concerning laser energy, intensity, pulse duration, and transport of MeV particles. With the approach of first light on OMEGA EP and then NIF ARC, the field is poised to make crucial measurements that will determine the requirements for full scale FI. This talk will present recent results from high intensity laser-cone interactions that help pave the way to the next generation of experiments.

  16. Mechanical properties and biocompatibility of plasma-nitrided laser-cut 316L cardiovascular stents.

    PubMed

    Arslan, Erdem; Iğdil, Mustafa C; Yazici, Hilal; Tamerler, Candan; Bermek, Hakan; Trabzon, Levent

    2008-05-01

    The effect of surface modification of laser-cut 316L cardiovascular stents by low-T plasma nitriding was evaluated in terms of mechanical properties and biocompatibility of the stents. The plasma nitriding was performed at 400, 450 or 500 degrees C using various ratios of nitrogen-hydrogen gas mixtures. The flexibility and radial strength were measured in crimped and expanded state of the stents, respectively. The mechanical properties could be adjusted and improved by plasma nitriding conducted at temperatures lower than 450 degrees C and/or nitrogen content less than 10% in the treatment gas. An osteoblast cell culture model system was utilized to investigate the effect of plasma nitriding of the stents on the biological response towards the stents, using biological criteria such as cell viability, alkaline phosphatase and nitric oxide production. In terms of cell viability and alkaline phosphatase production, the plasma nitriding procedure did not appear to negatively affect the biocompatibility of the 316L steel stents. However, in terms of nitric oxide production that was slightly increased in the presence of the plasma-nitrided stents, an indirect improvement in the biocompatibility could possibly be expected.

  17. Structured plasma waveguides and deep EUV generation enabled by intense laser-cluster interactions

    NASA Astrophysics Data System (ADS)

    Layer, Brian David

    Using the unique properties of the interaction between intense, short-pulse lasers and nanometer scale van-der-Waals bonded aggregates (or 'clusters'), modulated waveguides in hydrogen, argon and nitrogen plasmas were produced and extreme ultraviolet (EUV) light was generated in deeply ionized nitrogen plasmas. A jet of clusters behaves as an array of mass-limited, solid-density targets with the average density of a gas. Two highly versatile experimental techniques are demonstrated for making preformed plasma waveguides with periodic structure within a laser-ionized cluster jet. The propagation of ultra-intense femtosecond laser pulses with intensities up to 2 x1017 W/cm2 has been experimentally demonstrated in waveguides generated using both methods, limited by available laser energy. The first uses a 'ring grating' to impose radial intensity modulations on the channel-generating laser pulse, which leads to axial intensity modulations at the laser focus within the cluster jet target. This creates a waveguide with axial modulations in diameter with a period between 35 mum and 2 mm, determined by the choice of ring grating. The second method creates modulated waveguides by focusing a uniform laser pulse within a jet of clusters with ow that has been modulated by periodically spaced wire obstructions. These wires make sharp, stable voids as short as 50 mum with a period as small as 200 mum within waveguides of hydrogen, nitrogen, and argon plasma. The gaps persist as the plasma expands for the full lifetime of the waveguide. This technique is useful for quasi-phase matching applications where index-modulated guides are superior to diameter modulated guides. Simulations show that these 'slow wave' guiding structures could allow direct laser acceleration of electrons, achieving gradients of 80 MV/cm and 10 MV/cm for laser pulse powers of 1.9 TW and 30 GW, respectively. Results are also presented from experiments in which a nitrogen cluster jet from a cryogenically

  18. Atomic mass dependent electrostatic diagnostics of colliding laser plasma plumes

    SciTech Connect

    Yeates, P.; Fallon, C.; Kennedy, E. T.; Costello, J. T.

    2013-09-15

    The behaviours of colliding laser plasma plumes (C{sub p}) compared with single plasma plumes (S{sub p}) are investigated for 14 different atomic mass targets. A Faraday cup, situated at the end of a drift tube (L = 0.99 m), is employed to record the time-of-flight (TOF) current traces for all elements and both plume configurations, for a fixed laser intensity of I{sub p} = 4.2 × 10{sup 10} W cm{sup −2} (F = 0.25 kJ cm{sup −2}). The ratio of the peak current from the C{sub p} relative to twice that from the S{sub p} is designated as the peak current ratio while the ratio of the integrated charge yield from the C{sub p} relative to twice that from the S{sub p} is designated as the charge yield ratio. Variation of the position of the Faraday cup within the drift tube (L = 0.33, 0.55, and 0.99 m) in conjunction with a lower laser fluence (F = 0.14 kJ cm{sup −2}) facilitated direct comparison of the changing TOF traces from both plasma configurations for the five lightest elements studied (C, Al, Si, Ti, and Mn). The results are discussed in the frame of laser plasma hydrodynamic modelling to approximate the critical recombination distance L{sub CR}. The dynamics of colliding laser plasma plumes and the atomic mass dependence trends observed are presented and discussed.

  19. Laser Beam Propagation through Inertial Confinement Fusion Hohlraum Plasmas

    SciTech Connect

    Froula, D H; Divol, L; Meezan, N B; DIxit, S; Neumayer, P; Moody, J D; Pollock, B B; Ross, J S; Glenzer, S H

    2006-10-26

    A study of the relevant laser-plasma interaction processes has been performed in long-scale length plasmas that emulate the plasma conditions in indirect drive inertial confinement fusion targets. Experiments in this high-temperature (T{sub e} = 3.5 keV), dense (n{sub e} = 0.5 - 1 x 10{sup -3}) hohlraum plasma have demonstrated that blue 351-nm laser beams produce less than 1% total backscatter resulting in transmission greater than 90% for ignition relevant laser intensities (I < 2 x 10{sup 15} W cm{sup -2}). The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows that these results are relevant for the outer beams in ignition hohlraum experiments corresponding to a gain threshold for stimulated Brillouin scattering of 15. By increasing the gas fill density in these experiments further accesses inner beam ignition hohlraum conditions. In this case, stimulated Raman scattering dominates the backscattering processes. They show that scattering is small for gains smaller than 20, which can be achieved through proper choice of the laser beam intensity.

  20. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.