Science.gov

Sample records for expanding laser plasmas

  1. Waves and Fine Structure in Expanding Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Collette, Andrew; Gekelman, Walter

    2009-11-01

    The behavior of expanding dense plasmas has long been a topic of interest in space plasma research, particularly in the case of expansion within a magnetized background. Previous laser-plasma experiments at the UCLA Large Plasma Device have observed the creation of strong (δBB > 50%) diamagnetic cavities, along with large-scale wave activity and hints of fine-scale structure. A new series of experiments conducted recently at the LaPD performs direct measurement of the fields inside the expanding plasma via a novel 2D probe drive system. This system combines small-scale (0.5mm-1mm) magnetic and electric field probes with high-accuracy vacuum ceramic motors, to allow measurement of the plasma volume over a 2000-point grid at 1mm resolution. The data reveal both coherent high-amplitude waves associated with the formation of these magnetic features, and complicated small-scale structure in both the magnetic field and floating potential. In addition, we will present correlation techniques using multiple independent B and E field probes. This reveals behavior of turbulent, non-phase-locked phenomena. Both the case of a single expanding plasma and two colliding plasmas were studied.

  2. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Boundary instability of an erosion laser plasma expanding into a background gas

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Kanevskiĭ, M. F.; Sebrant, A. Yu

    1993-12-01

    The stability of the contact region in the system consisting of an erosion plasma and a gas has been determined experimentally under conditions such that the length of the applied laser pulse is longer than the rise time of the instability, and the expansion of the erosion plume is accompanied by breakdown of the background gas. The evolution of perturbations of the plasma front following the introduction of initial perturbations with a fixed spatial period has been studied. It is possible to model the injection of plasma bunches into a low-pressure gas by studying the dynamics of the vaporization at moderate laser-light intensities, characteristic of technological applications.

  3. Laser Induced Fluorescence Studies of Electrostatic Double Layers in an Expanding Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Carr, Jerry, Jr.

    We report the first evidence of a laboratory double layer (DL) collapsing in the presence of an instability studied by Chakraborty Thakur et al. 1 with the use of time resolved laser induced fluorescence (LIF) studies. Higher time resolution studies then provided the first statistically validated proof of the correlation between the ion acoustic instability and a DL. Time-frequency analysis in the form of time resolved cross power spectra and continuous wavelet transforms were used to provide insight into beam formation. The implications of this work is that in the creation of strong DLs in expanding plasmas for plasma propulsion or other applications may be self-limited through instability growth. Over the past decade, experimental and theoretical studies have demonstrated the formation of stable, electrostatic, current-free double layers (CFDLs) in plasmas with a strong density gradient; typically a result of a divergent magnetic field. In this work, we present evidence for the formation of multiple double layers within a single divergent magnetic field structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are observed through laser induced fluorescence measurements of the ion velocity distribution function. The formation of the multiple double layer structure is a strong function of the neutral gas pressure in the experiment. The similarity of the accelerated ion populations observed in these laboratory experiments to ion populations observed in reconnection outflow regions in the magnetosphere and in numerical simulations is also described. If ion energization during magnetic reconnection also results solely from acceleration in electric fields, these observations imply a prediction that the ion heating, i.e., the broadening of ion velocity distribution functions, reported in magnetic reconnection experiments is more accurately described by a superposition of differently accelerated ion populations. Therefore, the ion

  4. Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma

    SciTech Connect

    Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.; Hüller, S.; Pesme, D.; Labaune, Ch.; Bandulet, H.

    2014-03-15

    The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incident laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.

  5. Detailed Hydrodynamic and X-Ray Spectroscopic Analysis of a Laser-Produced Rapidly-Expanding Aluminum Plasma

    SciTech Connect

    Chambers, D M; Glenzer, S H; Hawreliak, J; Wolfrum, E; Gouveia, A; Lee, R W; Marjoribanks, R S; Renner, O; Sondhauss, P; Topping, S; Young, P E; Pinto, P A; Wark, J S

    2001-04-03

    We present a detailed analysis of K-shell emission from laser-produced rapidly-expanding aluminum plasmas. This work forms part of a series of experiments performed at the Vulcan laser facility of the Rutherford Appleton Laboratory, UK. 1-D planar expansion was obtained by over-illuminating Al-microdot targets supported on CH plastic foils. The small size of the Al-plasma ensured high spatial and frequency resolution of the spectra, obtained with a single crystal spectrometer, two vertical dispersion variant double crystal spectrometers, and a vertical dispersion variant Johann Spectrometer. The hydrodynamic properties of the plasma were measured independently by spatially and temporally resolved Thomson scattering, utilizing a 4{omega} probe beam. This enabled sub- and super- critical densities to be probed relative to the 1{omega} heater beams. The deduced plasma hydrodynamic conditions are compared with those generated from the 1-D hydro-code Medusa, and the significant differences found in the electron temperature discussed. Synthetic spectra generated from the detailed term collisional radiative non-LTE atomic physics code Fly are compared with the experimental spectra for the measured hydrodynamic parameters, and for those taken from Medusa. Excellent agreement is only found for both the H- and He-like Al series when careful account is taken of the temporal evolution of the electron temperature.

  6. Simulating Time-Dependent Energy Transfer Between Crossed Laser Beams in an Expanding Plasma

    SciTech Connect

    Hittinger, J F; Dorr, M R; Berger, R L; Williams, E A

    2004-10-11

    A coupled mode system is derived to investigate a three-wave parametric instability leading to energy transfer between co-propagating laser beams crossing in a plasma flow. The model includes beams of finite width refracting in a prescribed transverse plasma flow with spatial and temporal gradients in velocity and density. The resulting paraxial light equations are discretized spatially with a Crank-Nicholson-type scheme, and these algebraic constraints are nonlinearly coupled with ordinary differential equations in time that describe the ion acoustic response. The entire nonlinear differential-algebraic system is solved using an adaptive, backward-differencing method coupled with Newton's method. A numerical study is conducted in two dimensions that compares the intensity gain of the fully time-dependent coupled mode system with the gain computed under the further assumption of a strongly-damped ion acoustic response. The results demonstrate a time-dependent gain suppression when the beam diameter is commensurate with the velocity gradient scale length. The gain suppression is shown to depend on time-dependent beam refraction and is interpreted as a time-dependent frequency shift.

  7. Effect of tapered magnetic field on expanding laser-produced plasma for heavy-ion inertial fusion

    SciTech Connect

    Kanesue, Takeshi; Ikeda, Shunsuke

    2016-12-20

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentally obtained results, the performance of a scaled laser ion source for HIF was estimated.

  8. Effect of tapered magnetic field on expanding laser-produced plasma for heavy-ion inertial fusion

    DOE PAGES

    Kanesue, Takeshi; Ikeda, Shunsuke

    2016-12-20

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less

  9. Rayleigh scattering of a Gaussian laser beam from expanding clusters

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2009-12-15

    Rayleigh scattering of an intense laser with Gaussian temporal and radial profiles from clustered gases is examined. The laser quickly converts the clusters into plasma balls with electron cloud of each ball executing large excursions about the ion sphere. The laser also heats the electrons. As the clusters expand under hydrodynamic pressure, plasma frequency of the cluster electrons omega{sub pe} decreases. The temporal rate of decrease in omega{sub pe} is maximum on laser axis and falls off with r. As the electron density of a cluster approaches plasma resonance, omega{sub pe}=omegasq root(3) (where omega is the frequency of the laser) the oscillatory electron cloud of the cluster produces resonantly enhanced Rayleigh scattering. This resonant enhancement first occurs in clusters on laser axis and afterward in farther clusters. The diffraction divergence of the laser limits the length of the cluster plasma, hence the Rayleigh scattering.

  10. Measurements of an expanding surface flashover plasma

    SciTech Connect

    Harris, J. R.

    2014-05-21

    A better understanding of vacuum surface flashover and the plasma produced by it is of importance for electron and ion sources, as well as advanced accelerators and other vacuum electronic devices. This article describes time-of-flight and biased-probe measurements made on the expanding plasma generated from a vacuum surface flashover discharge. The plasma expanded at velocities of 1.2–6.5 cm/μs, and had typical densities of 10{sup 10}–10{sup 12} cm{sup −3}. The expansion velocity of the plasma leading edge often exhibited a sharp increase at distances of about 50 mm from the discharge site. Comparison with biased-probe data suggests that, under most conditions, the plasma leading edge was dominated by negative ions, with the apparent increase in velocity being due to fast H{sup −} overtaking slower, heavier ions. In some cases, biased-probe data also showed abrupt discontinuities in the plasma energy distribution co-located with large changes in the intercepted plasma current, suggesting the presence of a shock in the leading edge of the expanding plasma.

  11. Mestastable State Population in Laser Induced Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, V. H. S.; Kyriakides, C.; Ward, W. K.

    2006-01-01

    Laser induced plasma has been used as a source of neutrals and ions in the study of astrophysical plasmas. The purity of state of this source is essential in the determination of collision parameters such as the charge transfer rate coefficients between ions and neutrals. We will show that the temperature of the laser induced plasma is a rapidly decreasing function of time. The temperature is initially high but cools off rapidly through collisions with the expanding plasma electrons as the plasma recombines and streams into the vacuum. This rapid expansion of the plasma, similar to a supersonic jet, drastically lowers the internal energy of the neutrals and ions.

  12. Electron Cooling in a Magnetically Expanding Plasma.

    PubMed

    Little, J M; Choueiri, E Y

    2016-11-25

    Electron cooling in a magnetically expanding plasma, which is a fundamental process for plasma flow and detachment in magnetic nozzles, is experimentally investigated using a radio frequency plasma source and magnetic nozzle (MN). Probe measurements of the plasma density, potential, and electron temperature along the center line of the MN indicate that the expansion follows a polytropic law with exponent γ_{e}=1.15±0.03. This value contradicts isothermal electron expansion, γ_{e}=1, which is commonly assumed in MN models. The axial variation of the measured quantities can be described by a simple quasi-1D fluid model with classical electron thermal conduction, for which it has been previously shown that a value of γ_{e}≈1.19 is expected in the weakly collisional limit. A new criterion, derived from the model, ensures efficient ion acceleration when a critical value for the ratio of convected to conducted power is exceeded.

  13. Short wavelength striations on expanding plasma clouds

    SciTech Connect

    Winske, D.; Gary, S.P.

    1989-01-01

    The growth and evolution of short wavelength (plasma expanding across an ambient magnetic field have been actively studied in recent years, both by means of experiments in the laboratory as well as in space and through numerical simulations. We review the relevant observations and simulations results, discuss the instability mechanism and related linear theory, and describe recent work to bring experiments and theory into better agreement. 30 refs., 6 figs.

  14. Expanded mode lasers for telecommunications applications

    NASA Astrophysics Data System (ADS)

    Lealman, Ian F.

    This thesis describes the development of a long wavelength (1.55 μm) expanded mode semiconductor laser. The increased spot size of the laser improves both the coupling efficiency to cleaved fibre and fibre alignment tolerances and reduces packaging cost. In this type of device the strength of the waveguide is gradually reduced towards the front facet allowing the mode to adiabatically expand so that the laser mode is better matched in size to that of a cleaved fibre. This can be achieved by either reducing the refractive index of the guide or reducing the amount of material in the core. The structure chosen was a buried heterostructure laser that utilised a twin guide consisting of an upper higher refractive index guide (the active region of the laser) above a weak passive guide. The width of the active region was reduced along part of the device allowing the mode to expand into the weak underlying guide. The guide structure was optimised using a variable grid finite difference mode solver, and the taper length calculated by an approximation to Love's method. Detailed results are presented for the measured light-current characteristic, farfield and coupling loss to cleaved fibre. These coupling losses were compared to the calculated data thus allowing the waveguide design to be optimised. Several iterations in the design of the device were undertaken, with the aim of reducing the coupling loss to cleaved single mode fibre without significantly compromising the laser performance. The final device design had extremely low coupling losses as low as 1.2 dB to cleaved fibre. Finally, the positive impact this device had on passive alignment using a silicon motherboard is examined, and the application this technology to a range of other optoelectronic components is discussed.

  15. Measuring the Plasma Density of a Ferroelectric Plasma Source in an Expanding Plasma

    SciTech Connect

    A. Dunaevsky; N.J. Fisch

    2003-10-02

    The initial density and electron temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements in an expanding plasma. The method exploits negative charging of the floating probe capacitance by fast flows before the expanding plasma reaches the probe. The temporal profiles of the plasma density can be obtained from the voltage traces of the discharge of the charged probe capacitance by the ion current from the expanding plasma. The temporal profiles of the plasma density, at two different distances from the surface of the ferroelectric plasma source, could be further fitted by using the density profiles for the expanding plasma. This gives the initial values of the plasma density and electron temperature at the surface. The method could be useful for any pulsed discharge, which is accompanied by considerable electromagnetic noise, if the initial plasma parameters might be deduced from measurements in expanding plasma.

  16. Short wavelength striations on expanding plasma clouds

    NASA Technical Reports Server (NTRS)

    Winske, D.; Gary, S. P.

    1990-01-01

    The present evaluation of current understanding of the growth and evolution of less-than-1 ion gyroradius 'flute modes' on a plasma as it expands across and ambient magnetic field notes that the mechanism by which the instability is generated, and its approximate linear theory (encompassing nonlocal, finite-beta, and collisional effects), have reached a satisfactory degree of development. AMPTE Ba releases have been the bases of most of the observational studies. Substantial progress is also noted in the development of a nonlinear mode-coupling theory which can resolve remaining differences between theory and observation.

  17. Two-dimensional flow characteristic of a hot expanding plasma

    NASA Astrophysics Data System (ADS)

    Gabriel, O.; Colsters, P. G. J.; Schram, D. C.; Engeln, R.

    2008-02-01

    A hot argon plasma expansion into a low-pressure background is investigated by means of laser induced fluorescence on argon metastables. The result is a complete two-dimensional flow field of the expanding system that covers the area reaching from the nozzle of the plasma source to the shock front of the expansion. This flow field includes information on atom velocities, densities and temperatures. It consists of two different components: a fast, cool supersonically expanding one and a slow, hot component resulting from invasion of the background gas. This invading component is first present at the outside of the barrel shock and gradually invades the expansion towards the center axis. The supersonic component, dominating the first part of the expansion, shows all characteristics of rarefied hot gas flows: acceleration to twice the sonic velocity of the source, adiabatic cooling and a parallel temperature remaining higher than the perpendicular one. However, the invading component is much slower, but also hotter due to collisions in the expanding flow, and is already present before the shock front. The total flow of argon atoms is also described by computer simulations. The result shows the same behavior as the measured flow. The importance of the invading component for radical production is also demonstrated by LIF measurements on atomic oxygen that is produced from background O2 inside the expanding system.

  18. Laser Spectroscopy of Plasmas.

    DTIC Science & Technology

    1987-03-15

    AD-F161 00? LASER SPECTROSCOPY OF PLASMASMU CALIFORNIA NIY 1/1 BEKEEY J N DAILY 15 MAR 6? AFOSit-TR-6?-9?44 AFOSi-OS-0E? UNL SIFIF Z F//G2/9 M 22.5...TITLE (Inluded Secuity Clusifeation) 61102F 2308 I A3 Laser Spectroscopy of Plasmas ____________ % 12. PERSONAL AUTHOR(hI John W. Daily 13.. TYPE OF...Con Eanue on everse if neceuary and idenety by bioc* numInboen During the past year, work was initiated to develop novel advanced laser spectroscopy

  19. Development of flute modes on expanding plasma clouds

    SciTech Connect

    Winske, D.

    1989-09-01

    Structuring that results from plasma streaming at sub-Alfvenic speeds across an external magnetic field is considered. Previously, it has been proposed the lower hybrid drift instability enhanced by the deceleration of the plasma by the field produces the flute modes observed on the surface of expanding laser produced plasmas and the AMPTE magnetotail releases (Eos (Trans) /bold 63/, 843 (1982)). An appropriate dispersion equation to describe the properties of the unstable waves has been derived and particle simulations carried out to show the growth and evolution of the instability. The salient features of this earlier work are reviewed here, and then additions and refinements to the theory and simulations are described. In particular, the scaling of the wave properties with the ratio of the ion gyroradius to the magnetic confinement radius is discussed and the nonlinear evolution of the instability is investigated more thoroughly. The consequences of these results, both for the laser experiments and for AMPTE, are also considered. To this end, a comparison of the linear and nonlinear properties of the waves observed in the simulations with those seen in the experiments is carried out. While there is considerable discrepancy between the observed and predicted wavelengths of the modes, the effects considered here are in the direction of reducing the disagreement.

  20. Plasma ignition for laser propulsion

    NASA Technical Reports Server (NTRS)

    Askew, R. F.

    1982-01-01

    For a specific optical system a pulsed carbon dioxide laser having an energy output of up to 15 joules was used to initiate a plasma in air at one atmosphere pressure. The spatial and temporal development of the plasma were measured using a multiframe image converter camera. In addition the time dependent velocity of the laser supported plasma front which moves opposite to the direction of the laser pulse was measured in order to characterize the type of wavefront developed. Reliable and reproducible spark initiation was achieved. The lifetime of the highly dense plasma at the initial focal spot was determined to be less than 100 nanoseconds. The plasma front propagates toward the laser at a variable speed ranging from zero to 1.6 x 1,000,000 m/sec. The plasma front propagates for a total distance of approximately five centimeters for the energy and laser pulse shape employed.

  1. Hydrogen atom in a laser-plasma

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde J.; Sun, Guo-Hua; Liman, Muhammed S.; Oyewumi, K. J.; Dong, Shi-Hai

    2016-11-01

    We scrutinize the behaviour of the eigenvalues of a hydrogen atom in a quantum plasma as it interacts with an electric field directed along θ  =  π and is exposed to linearly polarized intense laser field radiation. We refer to the interaction of the plasma with the laser light as laser-plasma. Using the Kramers-Henneberger (KH) unitary transformation, which is the semiclassical counterpart of the Block-Nordsieck transformation in the quantized field formalism, the squared vector potential that appears in the equation of motion is eliminated and the resultant equation is expressed in the KH frame. Within this frame, the resulting potential and the corresponding wavefunction have been expanded in Fourier series, and using Ehlotzky’s approximation we obtain a laser-dressed potential to simulate an intense laser field. By fitting the exponential-cosine-screened Coulomb potential into the laser-dressed potential, and then expanding it in Taylor series up to O≤ft({{r}4},α 09\\right) , we obtain the eigensolution (eigenvalues and wavefunction) of the hydrogen atom in laser-plasma encircled by an electric field, within the framework of perturbation theory formalism. Our numerical results show that for a weak external electric field and a very large Debye screening parameter length, the system is strongly repulsive, in contrast with the case for a strong external electric field and a small Debye screening parameter length, when the system is very attractive. This work has potential applications in the areas of atomic and molecular processes in external fields, including interactions with strong fields and short pulses.

  2. Effects of laser polarization in the expansion of plasma waveguides

    NASA Astrophysics Data System (ADS)

    Lemos, N.; Grismayer, T.; Cardoso, L.; Geada, J.; Figueira, G.; Dias, J. M.

    2013-10-01

    We experimentally demonstrate that a column of hydrogen plasma generated by an ultra-short (sub-picosecond), moderate intensity (˜1015-16 W.cm-2) laser, radially expands at a higher velocity when using a circularly polarized laser beam instead of a linearly polarized beam. Interferometry shows that after 1 ns there is a clear shock structure formed, that can be approximated to a cylindrical blast wave. The shock velocity was measured for plasmas created with linearly and circularly polarized laser beams, indicating an approximately 20% higher velocity for plasmas generated with a circularly polarized laser beam, thus implying a higher plasma electron temperature. The heating mechanism was determined to be the Above Threshold Ionization effect. The calculated electrum energy spectrum for a circularly polarized laser beam was broader when compared to the one generated by a linearly polarized laser beam, leading to a higher plasma temperature.

  3. Tunable Infrared Lasers: Preparing for Expanded use in Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Killinger, D. K.

    1994-01-01

    The literature on the use of tunable infrared lasers, for atmospheric trace gas detection and monitoring is about 25 years of age. However, this field, whith its myriad of potential application areas, has always been driven by the available laser technology. As new or improved laser devices become available, with characteristics which lend themselves to operation in compact, nearly autonomous instruments, their application to atmospheric science and environmental measurements expands.

  4. Blast Wave Formation by Laser-Sustained Nonequilibrium Plasma in the Laser-Driven In-Tube Accelerator Operation

    SciTech Connect

    Ogino, Yousuke; Ohnishi, Naofumi; Sawada, Keisuke; Sasoh, Akihiro

    2006-05-02

    Understanding the dynamics of laser-produced plasma is essentially important for increasing available thrust force in a gas-driven laser propulsion system such as laser-driven in-tube accelerator. A computer code is developed to explore the formation of expanding nonequilibrium plasma produced by laser irradiation. Various properties of the blast wave driven by the nonequilibrium plasma are examined. It is found that the blast wave propagation is substantially affected by radiative cooling effect for lower density case.

  5. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Implantation of high-energy ions produced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Volkov, Roman V.; Golishnikov, D. M.; Gordienko, Vyacheslav M.; Savel'ev, Andrei B.; Chernysh, V. S.

    2005-01-01

    Germanium ions of an expanding plasma were implanted in a silicon collector. The plasma was produced by a femtosecond laser pulse with an intensity of ~1015 W cm-2 at the surface of the solid-state target. A technique was proposed for determining the energy characteristics of the ion component of the laser plasma from the density profile of the ions implanted in the substrate.

  6. Laser plasma diagnostics of dense plasmas

    SciTech Connect

    Glendinning, S.G.; Amendt, P.; Budil, K.S.; Hammel, B.A.; Kalantar, D.H.; Key, M.H.; Landen, O.L.; Remington, B.A.; Desenne, D.E.

    1995-07-12

    The authors describe several experiments on Nova that use laser-produced plasmas to generate x-rays capable of backlighting dense, cold plasmas (p {approximately} 1--3 gm/cm{sup 3}, kT {approximately} 5--10 eV, and areal density {rho}{ell}{approximately} 0.01--0.05 g/cm{sup 2}). The x-rays used vary over a wide range of h{nu}, from 80 eV (X-ray laser) to 9 keV. This allows probing of plasmas relevant to many hydrodynamic experiments. Typical diagnostics are 100 ps pinhole framing cameras for a long pulse backlighter and a time-integrated CCD camera for a short pulse backlighter.

  7. Thomson scattering from laser plasmas

    SciTech Connect

    Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A

    1999-01-12

    Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.

  8. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  9. Resonant laser plasma channel undulator

    NASA Astrophysics Data System (ADS)

    Lei, Bifeng; Wang, Jingwei; Kharin, Vasily; Rykovanov, Sergey

    2016-10-01

    Laser-plasma based undulators/wigglers attract a lot of attention because of their potential for the next generation of compact ( cm scales) radiation sources. The undulator wavelength of plasma-based devices can theoretically reach 1 mm or less while keeping the undulator strength on the order of unity - values so far unachievable by conventional magnetic undulators. Recently, a novel type of the plasma channel undulator/wiggler (PIGGLER) based on the wakefields generated in a parabolic plasma channel by a laser pulse undergoing centroid oscillations was proposed. It was demonstrated analytically and with the help of numerical simulations that narrow-bandwidth, flexible polarization and bright UV-soft X-ray source can be obtained for the case when the laser pulse centroid oscillation frequency, proportional to the Rayleigh length of the laser pulse, is tuned to be much larger than the betatron frequency. In the current contribution, the case of the resonance, when the laser pulse centroid oscillation frequency is equal to the betatron frequency is discussed. It is shown that significant photon yield enhancement can be. Both linear and nonlinear regimes are studied. Helmholtz Institute Jena, Germany.

  10. Laser-produced annular plasmas

    SciTech Connect

    Veloso, F.; Chuaqui, H.; Aliaga-Rossel, R.; Favre, M.; Mitchell, I. H.; Wyndham, E.

    2006-06-15

    A new technique is presented for the formation of annular plasmas on a metal surface with a high-power laser using a combination of axicon and converging lenses. The annular plasma formed on a titanium target in a chamber of hydrogen gas was investigated using schlieren imaging and Mach Zehnder interferometry. Expansion of the plasma was shown to be anisotropic with velocities of {approx}10{sup 3}-10{sup 4} m/s. Electron densities of 10{sup 18} cm{sup -3} were measured with radial profiles that confirm the presence of a hollow structure. The interferometric observations also show the presence of an inward shock wave traveling to the center of the annular plasma, which compresses the background neutrals, reaching a density around 18 times initial gas density, at 95 ns after the initial annular plasma is produced.

  11. Excimer laser induced plasma for aluminum alloys surface carburizing

    NASA Astrophysics Data System (ADS)

    Fariaut, F.; Boulmer-Leborgne, C.; Le Menn, E.; Sauvage, T.; Andreazza-Vignolle, C.; Andreazza, P.; Langlade, C.

    2002-01-01

    Currently, while light alloys are useful for automotive industries, their weak wear behavior is a limiting factor. The excimer laser carburizing process reported here has been developed to enhance the mechanical and chemical properties of aluminum alloys. An excimer laser beam is focused onto the alloy surface in a cell containing 1 bar methane or/and propylene gas. A vapor plasma expands from the surface, the induced shock wave dissociates and ionizes the ambient gas. Carbon atoms diffuse into the plasma in contact with the irradiated surface. An aluminum carbide layer is created by carbon diffusion in the surface liquid layer during the recombination phase of the plasma.

  12. Magnetic plasma confinement for laser ion source.

    PubMed

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.

  13. Dielectric properties in microwave remote plasma sustained in argon: Expanding plasma conditions

    SciTech Connect

    Jauberteau, J. L.; Jauberteau, I.

    2012-11-15

    This work is devoted to the study of the relative permittivity in argon expanding plasma produced below a microwave discharge sustained in a quartz tube and working at 2.45 GHz. We discuss results and explain the microwave propagation within the reactor, outside the quartz tube. It is shown that at low pressures (133 Pa) and at powers ranging from 100 W to 400 W, the wave frequency remains lower than the plasma frequency anywhere in the expanding plasma. Under these conditions, the real part of the relative permittivity is negative and the wave is reflected. Surprisingly, in these conditions, the plasma is produced inside and outside the quartz tube, below the wave launcher. This effect can be explained considering a surface wave propagating at the surface of the quartz tube then into the reactor, on the external surface of the expanding plasma below the quartz tube.

  14. Generation and Diagnostics of Microwave Discharge Expanding Nitrogen Plasma

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Yoshida, Kazuyuki; Nezu, Atsushi; Matsuura, Haruaki; Akatsuka, Hiroshi

    2008-10-01

    We examine a microwave discharge expanding nitrogen plasma on its vibrational and rotational temperatures (Tv, Tr) by using optical emission spectroscopy (OES), and on its electron density and temperature by using a double probe. In the present study, we generated microwave discharge plasma in a cylindrical quartz tube (26 mm i.d.) and the plasma flowed and expanded rapidly into a rarefied gas wind tunnel with its pressure 2.6x10-3 torr. The microwave output power was set at 300 W. The gas flow rate was set at 300 ml/min. In OES measurement, we measured the band spectra of 1stPS and 2ndPS. We compare the experimentally measured spectrum with the calculate one to determine Tv and Tr of the generated plasma. Electron temperature did not reduce monotonically, which is due to complicated energy relaxation process contributed by metastables or vibrational levels. Intensity of 2ndPS decreased more rapidly than that of 1stPS, which is considered to be mainly due to the lowering of Te. We found different way of variation in Tv of 1stPS and that of 2ndPS.

  15. Effect of plasma expander viscosity on the cell free layer.

    PubMed

    Hightower, C Makena; Yalcin, Ozlem; Vázquez, Beatriz Y Salazar; Johnson, Paul C; Intaglietta, Marcos

    2011-01-01

    The effect of low and high viscosity hemodilution with plasma expanders on the extent of the cell free layer (CFL) width was analyzed in the microcirculation of the exteriorized cremaster muscle preparation of Sprague-Dawley male rats. Anesthetized animals were subjected to 40% hemodilution by blood volume, using 5% human serum albumin (HSA) or 6% Hetastarch (hydroxyethyl starch 670 kDa). Arterioles (n=5 for each treatment) were investigated. Mean arterial pressure, heart rate, vessel flow velocity and CFL width were measured at baseline and 5, 20 and 40 min post-exchange transfusion. Blood and plasma viscosity was determined from terminal blood collections. CFL width and pseudoshear rate, diameter and flow, normalized to baseline, were significantly elevated at all post-exchange assessments. Peripheral vascular resistance decreased. The increase of the CFL width was greater with HSA by comparison with Hetastarch hemodilution (p<0.05). Hetastarch blood and plasma viscosities increased significantly compared to those of HSA (p<0.05). This study shows that CFL widths are influenced by plasma expander viscosity, a phenomenon proportional to the increase in molecular weight of the colloids in solution.

  16. Collimation of laser-produced plasmas using axial magnetic field

    SciTech Connect

    Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.; Endo, Akira; Mocek, Tomas; Hassanein, A.

    2015-06-01

    We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presence of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.

  17. Expanding plasma structure and its evolution toward long wavelengths

    SciTech Connect

    Sgro, A. G.; Peter Gary, S.; Lemons, D. S.

    1989-09-01

    The expansion of a plasma slab across an initially uniform magnetic field is simulated by the use of a two-dimensional electromagnetic hybrid (particle ions, fluid electrons of nonzero mass) computer code. The expanding plasma develops magnetic-field-aligned structure on time scales faster than an ion gyroperiod. Through the full duration of the /ital m//sub /ital i////ital m//sub /ital e// =100 simulation, the structure wavelength is well predicted by the wavelength at maximum growth rate from the linear Vlasov theory of the lower hybrid drift instability modified by deceleration. At /ital m//sub /ital i////ital m//sub /ital e// =400, the late time structure wavelength is about 1.5 times the early time value. At /ital m//sub /ital i////ital m//sub /ital e// =1836, the structure wavelength at early times is close to that corresponding to the maximum growth rate of linear theory, while at later times the structure wavelength becomes about twice as long as its early time value. These three results suggest that the ratio of the late time wavelength to the early time value gradually increases with /ital m//sub /ital i////ital m//sub /ital e//. Extrapolation of this scaling to larger /ital m//sub /ital i////ital m//sub /ital e// values is consistent with structure wavelengths observed in an expanding aluminum plasma experiment (J. Appl. Phys. J. /bold 20/, 157 (1981)), as well as the observed wavelength in the expanding barium plasma of the AMPTE magnetotail experiment (J. Geophys. Res. /bold 92/, 5777 (1987)).

  18. Dynamics of a plasma expanding into a uniform magnetic field

    SciTech Connect

    Gisler, G.; Lemons, D.S. )

    1989-08-01

    A heuristic model of an energetic plasma expanding into an initially uniform magnetic field is presented. In this model the plasma is cylindrically shaped, perfectly diamagnetic, and allowed to expand freely in the direction of the magnetic field. It results in a time evolution of the cylindrical radius described by Airy functions and parameterized by the plasma {beta}. For instance, the maximum extent of the radius scales as {beta}{sup 1/3} while the maximum radial deceleration scales as {beta}{sup {minus}1/3}. Time evolution and scaling are compared both with other models and with two-dimensional electromagnetic particle simulations. A spherically symmetric model is also found to agree well with the simulations and results in simpler expressions for the maximum radius and maximum radial deceleration. The larger deceleration obtained in these models, as compared with models that ignore the axial expansion, would shift toward longer wavelengths the peak growth of the instability thought to be responsible for the field-aligned structures seen in the Active Magnetospheric Particle Tracer Explorers (AMPTE) magnetotail releases. {copyright} American Geophysical Union 1989

  19. EFFECT OF LASER LIGHT ON LASER PLASMAS: Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskiĭ, Yu M.; Moiseev, V. N.; Rovinskiĭ, R. E.; Tsenina, I. S.

    1993-01-01

    The dynamic and optical characteristics of the laser plasma produced during the application of a CO2 laser pulse to a target have been studied as a function of the ambient air pressure. The changes in the surface roughness of the sample after bombardment were studied as a function of the air pressure. It is concluded from the results that a transition from an air plasma to an erosion plasma occurs at a residual air pressure on the order of 1 torr. The experiment data support the existing picture of the process by which a plasma is produced near the surface of a target in air by laser pulses.

  20. Plane and hemispherical potential structures in magnetically expanding plasmas

    SciTech Connect

    Takahashi, Kazunori; Igarashi, Yuichi; Fujiwara, Tamiya

    2010-07-26

    Two-dimensional potential structures are measured for different gas pressure in expanding argon plasma using permanent magnets, where the magnetic field is about 100 G in the source and several gauss in the diffusion chamber. The plane potential drop is observed near the source exit for 0.35 mTorr, while the potential structure becomes hemispherical when increasing up to 1 mTorr; the hemispherical structure results in the radial divergence of the ion beam. It is found that the trajectories of the accelerated ions and the electrons overcoming the potential drop are dominated by the potential structure and magnetic-field lines, respectively.

  1. Bulk viscosity of anisotropically expanding hot QCD plasma

    SciTech Connect

    Chandra, Vinod

    2011-11-01

    The bulk viscosity, {zeta} and its ratio with the shear viscosity, {zeta}/{eta} have been studied in an anisotropically expanding pure glue plasma in the presence of turbulent color fields. It has been shown that the anisotropy in the momentum distribution function of gluons, which has been determined from a linearized transport equation eventually leads to the bulk viscosity. For the isotropic (equilibrium) state, a recently proposed quasiparticle model of pure SU(3) lattice QCD equation of state has been employed where the interactions are encoded in the effective fugacity. It has been argued that the interactions present in the equation of state, significantly contribute to the bulk viscosity. Its ratio with the shear viscosity is significant even at 1.5T{sub c}. Thus, one needs to take in account the effects of the bulk viscosity while studying the hydrodynamic expansion of quark-gluon plasma in the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  2. Expanding plasmas from anti de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Camilo, Giancarlo

    2016-12-01

    We introduce a new foliation of AdS_5 black holes such that the conformal boundary takes the form of a 4-dimensional FLRW spacetime with scale factor a( t). The foliation employs Eddington-Finkelstein-like coordinates and is applicable to a large class of AdS black holes, supported by matter fields or not, considerably extending previous efforts in the literature. We argue that the holographic dual picture of a CFT plasma on a FLRW background provides an interesting prototype to study the nonequilibrium dynamics of expanding plasmas and use holographic renormalization to extract the renormalized energy-momentum tensor of the dual plasma. We illustrate the procedure for three black holes of interest, namely AdS-Schwarzschild, AdS-Gauss-Bonnet, and AdS-Reissner-Nordström. For the latter, as a by-product, we show that the nonequilibrium dynamics of a CFT plasma subject to a quench in the chemical potential (i.e., a time-dependent chemical potential) resembles a cosmological evolution with the scale factor a( t) being inversely related to the quench profile μ (t).

  3. Self-effect in expanding electron beam plasma

    SciTech Connect

    Garcia, M

    1999-05-07

    An analytical model of plasma flow from a metal plate hit by an intense, pulsed, electron beam aims to bridge the gap between radiation-hydrodynamics simulations and experiments, and to quantify the self-effect of the electron beam penetrating the flow. Does the flow disrupt the tight focus of the initial electron bunch, or later pulses in a train? This work aims to model the spatial distribution of plasma speed, density, degree of ionization, and magnetization to inquire. The initial solid density, several eV plasma expands to 1 cm and 10{sup {minus}4} relative density by 2 {micro}s, beyond which numerical simulations are imprecise. Yet, a Faraday cup detector at the ETA-II facility is at 25 cm from the target and observes the flow after 50 {micro}s. The model helps bridge this gap. The expansion of the target plasma into vacuum is so rapid that the ionized portion of the flow departs from local thermodynamic equilibrium. When the temperature (in eV) in a parcel of fluid drops below V{sub i} x [(2{gamma} - 2)/(5{gamma} + 17)], where V{sub i} is the ionization potential of the target metal (7.8 eV for tantalum), and {gamma} is the ratio of specific heats (5/3 for atoms), then the fractional ionization and electron temperature in that parcel remain fixed during subsequent expansion. The freezing temperature as defined here is V{sub i}/19. The balance between the self-pinching force and the space charge repulsion of an electron beam changes on penetrating a flow: (i) the target plasma cancels the space-charge field, (ii) internal eddy currents arise to counter the magnetization of relativistic electrons, and (iii) electron beam heating alters the flow magnetization by changing the plasma density gradient and the magnitude of the conductivity.

  4. Online plasma diagnostics of a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Kai, Gao; Nasr, A. M. Hafz; Song, Li; Mohammad, Mirzaie; Guangyu, Li; Quratul, Ain

    2017-01-01

    In this study, we report a laser interferometry experiment for the online-diagnosing of a laser-produced plasma. The laser pulses generating the plasma are ultra-fast (30 femtoseconds), ultra-intense (tens of Terawatt) and are focused on a helium gas jet to generate relativistic electron beams via the laser wakefield acceleration (LWFA) mechanism. A probe laser beam (λ = 800 nm) which is split-off the main beam is used to cross the plasma at the time of arrival of the main pulse, allowing online plasma density diagnostics. The interferometer setup is based on the NoMarski method in which we used a Fresnel bi-prism where the probe beam interferes with itself after crossing the plasma medium. A high-dynamic range CCD camera is used to record the interference patterns. Based upon the Abel inversion technique, we obtained a 3D density distribution of the plasma density.

  5. Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

  6. Detailed plasma potential measurements in a radio-frequency expanding plasma obtained from various electrostatic probes

    SciTech Connect

    Lafleur, T.; Charles, C.; Boswell, R. W.

    2009-04-15

    On-axis plasma potential measurements have been made with an emissive probe in a low pressure (0.044 Pa) rf expanding plasma containing an ion beam. The beam is detected with a retarding field energy analyzer (RFEA), and is seen to disappear at high pressure (0.39 Pa). The emissive probe measurements are in very good agreement with corresponding measurements made with two separate RFEAs, and the results indicate that the floating potential of the strongly emitting probe gives an accurate measure of the plasma potential under the present conditions.

  7. Laser-Plasma Interactions in High-Energy Density Plasmas

    SciTech Connect

    Constantin, C G; Baldis, H A; Schneider, M B; Hinkel, D E; Langdon, A B; Seka, W; Bahr, R; Depierreaux, S

    2005-08-24

    Laser-plasma interactions (LPI) have been studied experimentally in high-temperature, high-energy density plasmas. The studies have been performed using the Omega laser at the Laboratory for Laser Energetics (LLE), Rochester, NY. Up to 10 TW of power was incident upon reduced-scale hohlraums, distributed in three laser beam cones. The hot hohlraums fill quickly with plasma. Late in the laser pulse, most of the laser energy is deposited at the laser entrance hole, where most of the LPI takes place. Due to the high electron temperature, the stimulated Raman scattering (SRS) spectrum extends well beyond {omega}{sub 0}/2, due to the Bohm-Gross shift. This high-temperature, high-energy density regime provides a unique opportunity to study LPI beyond inertial confinement fusion (ICF) conditions.

  8. Double Layers in Expanding Plasmas and Their Relevance to the Auroral Plasma Processes

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Six, N. Frank (Technical Monitor)

    2002-01-01

    When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (i) the rarefaction shocks, (ii) the discontinuities in the potential distributions, and (iii) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains two electron populations, the temporal evolution of the potential and the plasma. distribution generates evolving multiple double layers with an extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature.

  9. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  10. Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskii, Iu. M.; Moiseev, V. N.; Rovinskii, R. E.; Tsenina, I. S.

    1993-01-01

    The ambient-pressure dependences of the dynamic and optical characteristics of a laser plasma generated by CO2-laser irradiation of an obstacle are investigated experimentally. The change of the sample's surface roughness after irradiation is investigated as a function of air pressure. It is concluded that the transition from the air plasma to the erosion plasma takes place at an air pressure of about 1 mm Hg. The results confirm the existing theory of plasma formation near the surface of an obstacle under the CO2-laser pulse effect in air.

  11. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Percolation upon expansion of nanosecond-pulse-produced laser plasma into a gas

    NASA Astrophysics Data System (ADS)

    Kask, Nikolai E.; Michurin, Sergei V.; Fedorov, Gennadii M.

    2005-01-01

    Spectral studies of a plasma expanding into the ambient gas upon ablation of various targets by nanosecond laser pulses of moderate intensities are performed. It is found that the dependences of the intensities of spectral lines on the pressure of the buffer gas and the target composition have a threshold character typical of percolation. It is ascertained that a three-dimensional percolation occurs in plasma, and its threshold is determined by the atomic density of the metal component contained in the target. It is shown that percolation clusters, existing at temperatures higher than the boiling temperature of the target material, affect the plasma absorption ability, temperature, and spectral continuum of plasma emission.

  12. Plasma heating effects during laser welding

    NASA Astrophysics Data System (ADS)

    Lewis, G. K.; Dixon, R. D.

    Laser welding is a relatively low heat input process used in joining precisely machined components with minimum distortion and heat affects to surrounding material. The CO2 (10.6 (MU)m) and Nd-YAG (1.06 (MU)m) lasers are the primary lasers used for welding in industry today. Average powers range up to 20 kW for CO2 and 400 W for Nd-YAG with pulse lengths of milliseconds to continuous wave. Control of the process depends on an understanding of the laser-plasma-material interaction and characterization of the laser beam being used. Inherent plasma formation above the material surface and subsequent modulation of the incident laser radiation directly affect the energy transfer to the target material. The temporal and spatial characteristics of the laser beam affect the available power density incident on the target, which is important in achieving repeatability in the process. Other factors such as surface texture, surface contaminants, surface chemistry, and welding environment affect plasma formation which determines the weld penetration. This work involves studies of the laser-plasma-material interaction process and particularly the effect of the plasma on the coupling of laser energy to a material during welding. A pulsed Nd-YAG laser was used with maximum average power of 400 W.

  13. Visualization of expanding warm dense gold and diamond heated uniformly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Santiago Cordoba, M. A.; Hamilton, C. E.; Fernández, J. C.

    2015-11-01

    With a laser-generated beam of quasi-monoenergetic ions, a solid density target can be heated uniformly and isochorically. On the LANL Trident laser facility, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils. We visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperatures of these heated samples from the measured expansion speeds of gold and diamond into vacuum. These temperatures are in good agreement with the expected temperatures calculated using the total deposited energy into the cold targets and SESAME equation-of-state tables at solid densities. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics. *This work is sponsored by the LANL LDRD Program.

  14. High-energy laser plasma diagnostic system

    NASA Astrophysics Data System (ADS)

    Zhao, Mingjun M.; Aye, Tin M.; Fruehauf, Norbert; Savant, Gajendra D.; Erwin, Daniel A.; Smoot, Brayton E.; Loose, Richard W.

    2000-07-01

    This paper describes the development of a non-contact diagnosis system for analyzing the plasma density profile, temperature profile, and ionic species of a high energy laser-generated plasma. The system was developed by Physical Optics Corporation in cooperation with the U.S. Army Space and Missile Defense Command, High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico. The non- contact diagnostic system consists of three subsystems: an optical fiber-based interferometer, a plasma spectrometer, and a genetic algorithm-based fringe-image processor. In the interferometer subsystem, the transmitter and the receiver are each packaged as a compact module. A narrow notch filter rejects strong plasma light, passing only the laser probing beam, which carries the plasma density information. The plasma spectrum signal is collected by an optical fiber head, which is connected to a compact spectrometer. Real- time genetic algorithm-based data processing/display permits instantaneous analysis of the plasma characteristics. The research effort included design and fabrication of a vacuum chamber, and high-energy laser plasma generation. Compactness, real-time operation, and ease of use make the laser plasma diagnosis system well suited for dual use applications such as diagnosis of electric arc and other industrial plasmas.

  15. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    SciTech Connect

    Tong Huifeng; Yuan Hong; Tang Zhiping

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  16. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    NASA Astrophysics Data System (ADS)

    Tong, Huifeng; Yuan, Hong; Tang, Zhiping

    2013-01-01

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  17. Laser Guiding for GeV Laser-Plasma Accelerators

    SciTech Connect

    Leemans, Wim; Esarey, Eric; Geddes, Cameron; Schroeder, C.B.; Toth, Csaba

    2005-06-06

    Guiding of relativistically intense laser beams in preformed plasma channels is discussed for development of GeV-class laser accelerators. Experiments using a channel guided laser wakefield accelerator (LWFA) at LBNL have demonstrated that near mono-energetic 100 MeV-class electron beams can be produced with a 10 TW laser system. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, is the key to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short term prospects for intense radiation sources based on laser-driven plasma accelerators.

  18. Progress of Laser-Driven Plasma Accelerators

    SciTech Connect

    Nakajima, Kazuhisa

    2007-07-11

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  19. Heating dynamics and extreme ultraviolet radiation emission of laser-produced Sn plasmas

    SciTech Connect

    Yuspeh, S.; Sequoia, K. L.; Tao, Y.; Tillack, M. S.; Burdt, R. A.; Najmabadi, F.

    2010-06-28

    The impact of 1.064 mum laser absorption depth on the heating and in-band (2% bandwidth) 13.5 nm extreme ultraviolet emissions in Sn plasmas is investigated experimentally and numerically. In-band emission lasting longer than the laser pulse and separation between the laser absorption and in-band emission region are observed. Maximum efficiency is achieved by additional heating of the core of the plasma to allow the optimal temperature to expand to a lower and more optically thin density. This leads to higher temperature plasma that emits less in-band light as compared to CO{sub 2} produced plasma sources for the same application.

  20. Laser induced plasma expansion and existence of local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Skočić, Miloš; Bukvić, Srdjan

    2016-11-01

    In this paper we present a simple model of the laser induced plasma (LIP) expansion in a low pressure surrounding atmosphere. The model is based on assumption that expansion process is dominantly governed by kinematics of the heavy particles. The model is accompanied with a simple, yet effective, Monte-Carlo simulation. Results of the simulation are compared with spectroscopic measurements of the laser induced copper plasma expanding in low pressure (200 Pa) hydrogen atmosphere. We found that characteristic expansion time of the LIP is proportional to the linear dimension of the initial volume heated up by the laser. For sufficiently large initial volume copper plasma remains in local thermodynamic equilibrium on the submicrosecond-microsecond scale. It is shown that diagnostics based on the spectral lines of the hydrogen atmosphere is not suitable for characterization of the core of the copper plasma. We have demonstrated importance of radially resolved spectroscopic measurements as a key step for correct diagnostics and understanding of laser induced plasma.

  1. On the use of shockwave models in laser produced plasma expansion

    NASA Astrophysics Data System (ADS)

    de Posada, E.; Arronte, M. A.; Ponce, L.; Rodríguez, E.; Flores, T.; Lunney, J. G.

    2011-01-01

    Interaction of medium to high peak power laser pulses with solid materials produces a plasma that expands supersonically. Expansions of such plasmas have been studied and several models have been proposed to describe it. This work presents a study of the expansion of laser produced plasmas in both vacuum and gas environment by using Langmuir probe and photography. It compares some of the most used models to identify that which better describes the expansion process. In vacuum, such process is properly described by the Anisimov model. However when expanding in a background gas it is found that the Sedov-Taylor model fits properly the position of generated shockwave but overestimates both kinetic energy and pressure of the expanding plasma. Such problem is solved by using a modification of the Freiwald-Axford model. Finally it is demonstrated that after the plasma stopping distance the plasma inters in a diffusive regime.

  2. Metal surface nitriding by laser induced plasma

    NASA Astrophysics Data System (ADS)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  3. Reducing wall plasma expansion with gold foam irradiated by laser

    SciTech Connect

    Zhang, Lu; Ding, Yongkun Jiang, Shaoen Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping

    2015-11-15

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.

  4. Simulation of Laser Interaction with Ablative Plasma and ydrodynamic of Laser Supported Plasma(LSP)

    NASA Astrophysics Data System (ADS)

    Huifeng, Tong; Zhiping, Tang

    2011-06-01

    A general Godunov finite difference schemes-WENO(Weighted Essentially Non-Oscillatory) Schemes which have fifth-order accuracy was used to make a numerical calculation for 2-dimensional axis symmetrical laser-supported plasma flow field under laser ablated solid target. The models of the calculation of ionization degree of plasma and the interaction between laser beam and plasma and the simplified eos(equation of state) of plasma were considered in the simulation. The plasma field parameters during and after laser duration variation with time are also obtained. The simulation results show that the laser beam power was strong absorbed by plasma of target surface, and the velocity of LSD(Laser Supported Detonation) wave is half of ideal LSD value which derived from C-J detonation theory.

  5. Double Layers in Expanding Plasmas and Their Relevance to the Auroral Plasma Processes

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George

    2003-01-01

    When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [Bezzerides et al., 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [Barakat and Schunk, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [Ergun et al., 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an ,extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two

  6. Physics of Laser-driven plasma-based acceleration

    SciTech Connect

    Esarey, Eric; Schroeder, Carl B.

    2003-06-30

    The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

  7. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  8. Laser-produced plasmas in medicine

    SciTech Connect

    Gitomer, S.J. ); Jones, R.D. . Applied Theoretical Physics Div.)

    1991-12-01

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photodynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper the authors examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation), and in cardiology and vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented, along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.

  9. Laser-produced plasmas in medicine

    NASA Astrophysics Data System (ADS)

    Gitomer, S. J.; Jones, R. D.

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. Those areas of laser medicine are examined in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. Examples are examined for the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.

  10. Laser-produced plasmas in medicine

    NASA Astrophysics Data System (ADS)

    Gitomer, Steven J.; Jones, Roger D.

    1990-06-01

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper, we examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g. lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g. kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g. laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.

  11. Spectroscopic characterization of laser ablation brass plasma

    NASA Astrophysics Data System (ADS)

    Shaikh, Nek M.; Hafeez, Sarwat; Kalyar, M. A.; Ali, R.; Baig, M. A.

    2008-11-01

    We present optical emission studies of the laser ablation brass plasma generated by the fundamental, second, and third harmonics of a neodymium doped yttrium aluminum garnet laser. The spectra predominantly reveal the spectral lines of the neutral and singly ionized copper and zinc. The excitation temperatures are determined by the Boltzmann plot method, whereas the electron number densities have been extracted from the Stark broadened line profiles. The spatial variations in the spectral line intensities and the plasma parameters at 1000, 500, and 100 mbar air pressures have been evaluated. Besides, the effect of the ambient gases (He, Ne, and Ar), the laser irradiance, and the laser wavelengths on the plasma parameters have been investigated.

  12. Laser-produced plasmas in medicine

    SciTech Connect

    Gitomer, S.J.; Jones, R.D.

    1990-01-01

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper, we examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included. 63 refs.

  13. Staging of laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Steinke, S.; van Tilborg, J.; Benedetti, C.; Geddes, C. G. R.; Daniels, J.; Swanson, K. K.; Gonsalves, A. J.; Nakamura, K.; Shaw, B. H.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2016-05-01

    We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller than the transverse wake size at the entrance of the second stage. This permitted electron beam trapping, verified by a 100 MeV energy gain.

  14. Enhanced laser beam coupling to a plasma

    DOEpatents

    Steiger, Arno D.; Woods, Cornelius H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

  15. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  16. Evolution of laser pulse shape in a parabolic plasma channel

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Gupta, D. N.; Suk, H.

    2017-01-01

    During high-intensity laser propagation in a plasma, the group velocity of a laser pulse is subjected to change with the laser intensity due to alteration in refractive index associated with the variation of the nonlinear plasma density. The pulse front sharpened while the back of the pulse broadened due to difference in the group velocity at different parts of the laser pulse. Thus the distortion in the shape of the laser pulse is expected. We present 2D particle-in-cell simulations demonstrating the controlling the shape distortion of a Gaussian laser pulse using a parabolic plasma channel. We show the results of the intensity distribution of laser pulse in a plasma with and without a plasma channel. It has been observed that the plasma channel helps in controlling the laser pulse shape distortion. The understanding of evolution of laser pulse shape may be crucial while applying the parabolic plasma channel for guiding the laser pulse in plasma based accelerators.

  17. Laser-plasma interactions in large gas-filled hohlraums

    SciTech Connect

    Turner, R.E.; Powers, L.V.; Berger, R.L.

    1996-06-01

    Indirect-drive targets planned for the National Ignition Facility (NIF) laser consist of spherical fuel capsules enclosed in cylindrical Au hohlraums. Laser beams, arranged in cylindrical rings, heat the inside of the Au wall to produce x rays that in turn heat and implode the capsule to produce fusion conditions in the fuel. Detailed calculations show that adequate implosion symmetry can be maintained by filling the hohlraum interior with low-density, low-Z gases. The plasma produced from the heated gas provides sufficient pressure to keep the radiating Au surface from expanding excessively. As the laser heats this gas, the gas becomes a relatively uniform plasma with small gradients in velocity and density. Such long-scale-length plasmas can be ideal mediums for stimulated Brillouin Scattering (SBS). SBS can reflect a large fraction of the incident laser light before it is absorbed by the hohlraum; therefore, it is undesirable in an inertial confinement fusion target. To examine the importance of SBS in NIF targets, the authors used Nova to measure SBS from hohlraums with plasma conditions similar to those predicted for high-gain NIF targets. The plasmas differ from the more familiar exploding foil or solid targets as follows: they are hot (3 keV); they have high electron densities (n{sub e}=10{sup 21}cm{sup {minus}3}); and they are nearly stationary, confined within an Au cylinder, and uniform over large distances (>2 mm). These hohlraums have <3% peak SBS backscatter for an interaction beam with intensities of 1-4 x 10{sup 15} W/cm{sup 2}, a laser wavelength of 0.351{micro}m, f/4 or f/8 focusing optics, and a variety of beam smoothing implementations. Based on these conditions the authors conclude that SBS does not appear to be a problem for NIF targets.

  18. Experiments on laser-produced plasmas and laser plasma- wall interactions

    NASA Astrophysics Data System (ADS)

    Wang, Quan

    2001-06-01

    The study of the interaction of laser-produced plasmas with a secondary wall has both practical and theoretical significance. The laser-produced plasmas are sources of highly-charged ions, fast electrons, as well as continuum and monochromatic x-ray radiation. Intense x-ray radiation also results when a nanosecond laser-produced plasma collides with a secondary wall positioned close to the target. The study of this interaction is essential to understand the laser-produced plasma expansion, shock wave formation, recombination, collisional excitation and many other transition processes. The laser plasma-wall interaction experiment has been carried out with laser pulses with vastly different time scales. In nanosecond experiment, the plasma-wall interaction was studied with varying target-wall distance. We conclude that the isothermal plasma expansion followed by the shock wave formation near the wall surface contributes to the intense x-ray radiation. We also have done some preliminary research in the femtosecond regime. We claim that the shock wave formation that plays an important role in nanosecond experiment does not play the same role in femtosecond one. We suggest that a femtosecond laser-produced plasma could be an efficient fast electron and monochromatic x- ray source. We also provide some suggestions and predictions for further investigations.

  19. Laser Plasma Instability Experiments with KrF Lasers

    DTIC Science & Technology

    2007-01-01

    L. Phillips, A. J. Schmitt, J. D. Sethain, R . K. McCrory, W. Seka, C. Verdon, J. P. Knauer, B. B. Afeyan, H. T . Powell, Physics of Plasmas, 5, 5...Physics of Plasmas. 8 R . Betti, K. Anderson, J. Knauer, T . J. B. Collins, R . L. McCrory, R . W. McKenty, S. Skupsky, Physics of Plasmas, 12, 4, 042703...2005). 9 W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, Boulder, 1988). 10 J. M. McMahon, R . P. Burns, T . H. DeRieux, R

  20. Laser-driven Acceleration in Clustered Plasmas

    SciTech Connect

    Gao, X.; Wang, X.; Shim, B.; Downer, M. C.

    2009-01-22

    We propose a new approach to avoid dephasing limitation of laser wakefield acceleration by manipulating the group velocity of the driving pulse using clustered plasmas. We demonstrated the control of phase velocity in clustered plasmas by third harmonic generation and frequency domain interferometry experiments. The results agree with a numerical model. Based on this model, the group velocity of the driving pulse in clustered plasmas was calculated and the result shows the group velocity can approach the speed of light c in clustered plasmas.

  1. Trends in laser-plasma-instability experiments for laser fusion

    SciTech Connect

    Drake, R.P. Lawrence Livermore National Lab., CA )

    1991-06-06

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with {approx}1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs.

  2. Magnetic Turbulence in colliding laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Collette, Andrew

    2006-10-01

    We describe a series of experiments, which involve the collision of two dense (initially, δnlpp/n0>>1) laser-produced plasmas (llp) within an ambient, highly magnetized (Rciplasma) capable of supporting Alfvén waves. Colliding plasmas can be used to study generation of magnetic turbulence and spontaneous generation of magnetic fields. The plasma column (He, Ne, 1-4 X10^12 cm^3) is 18 m long and 60 cm in diameter, 15 ms duration and pulsed at 1 Hz. Two carbon targets are struck by 1.5 J (10 ns,10 μ, 1 Hz) laser beams. The lpp's form diamagnetic bubbles in which a large percentage of the background magnetic field (600G Laser Plasma Diamagnetism in the presence of an ambient magnetized plasma, Phys. Plasmas, 11, 320 (2004)

  3. A study of ion acceleration, asymmetric optical pumping and low frequency waves in two expanding helicon plasmas

    NASA Astrophysics Data System (ADS)

    Sun, Xuan

    This work concerns measurements of parallel ion flow, optical pumping, and low frequency waves in expanding plasmas generated by two different helicon plasma sources. The measurements confirm numerical predictions of the formation of a current-free double layer in a region of diverging magnetic field. With laser-induced fluorescence (LIF), the double layer structure in both helicon plasma sources was investigated through measurements of the bulk parallel ion flow speed. Both double layers have a total potential drop of 3-4 kTe and length scales smaller than ion-neutral mean-free-path. A stronger double layer, with a potential drop of ˜ 6kTe , was created in a uniform magnetic field region with a plasma limiting aperture plate. During the investigations of ion acceleration in expanding plasmas, a new phenomenon, asymmetrical optical pumping (AOP) due to the acceleration of ions in magnetic field gradient, was observed. The signature of AOP is a difference in the LIF emission amplitude from a pair of Zeeman-split ion states. A model that reproduces the dependence of the AOP on magnetic-field and ion-velocity gradients is described. With magnetic fluctuation probes, low frequency, transverse, electromagnetic waves were also identified in the expanding helicon plasma. The wave is localized to the vicinity of the maximum plasma density gradient and appears only at low neutral pressure. Based on the scaling of the wave frequency and amplitude with magnetic field strength, the wave was identified as the resistive drift Alfven wave.

  4. Plasma plume dynamics in magnetically assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Haverkamp, J. D.; Bourham, M. A.; Du, S.; Narayan, J.

    2009-01-01

    The expansion of a laser produced plasma perpendicular to a magnetic field is studied with a quadruple Langmuir probe and a B-dot probe. In regions where the kinetic beta is less than one, we find plume deceleration and weak displacement of the magnetic field. As the plume expands into regions of weak magnetic field, plume deceleration stops and the displacement of the magnetic field is large. The diffusion time of the magnetic field lines was consistent with anomalously large resistivity driven by the presence of an instability. Electron temperatures are larger than in the field-free case due to Ohmic heating mediated by the anomalously large resistivity.

  5. Adventures in Laser Produced Plasma Research

    SciTech Connect

    Key, M

    2006-01-13

    In the UK the study of laser produced plasmas and their applications began in the universities and evolved to a current system where the research is mainly carried out at the Rutherford Appleton Laboratory Central Laser Facility ( CLF) which is provided to support the universities. My own research work has been closely tied to this evolution and in this review I describe the history with particular reference to my participation in it.

  6. Preliminary characterization of a laser-generated plasma sheet

    SciTech Connect

    Keiter, P. A.; Malamud, G.; Trantham, M.; Fein, J.; Davis, J.; Klein, S. R.; Drake, R. P.

    2014-12-10

    We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments, which are aimed at studying similar physics as that found in the hot spot region of cataclysmic variables. Krauland et al created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. As a result, they can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.

  7. Preliminary characterization of a laser-generated plasma sheet

    DOE PAGES

    Keiter, P. A.; Malamud, G.; Trantham, M.; ...

    2014-12-10

    We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments, which are aimed at studying similar physics as that found in the hot spot region of cataclysmicmore » variables. Krauland et al created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. As a result, they can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.« less

  8. Laser-Produced Plasmas and Radiation Sources.

    DTIC Science & Technology

    1980-01-31

    Vlases, H. Rutkowski, A. Hertzberg, A. Hoffman, L. Steinhauer, J. Dawson, D.R. Cohn, W. Halverson, B. Lax, J.D. Daugherty, J.E. Eninger , E.R. Pugh, T.K...Meeting, Albuquerque (October 1974). J.D. Daugherty, J.E. Eninger , D.R. Cohn, and W. Halverson, "Scaling of Laser Heated Plasmas Confined in Long Solenoids...Cohn, H.E. Eninger , W. Halverson, and D.J. Rose, "Stress, Dissipation, and Neutronics Constraints on ’fagnets for Laser-Solenoid Reactors," APS Plasma

  9. Non Equilbrium Vibrational Kinetics in Expanding Plasma Flows

    SciTech Connect

    Colonna, Gianpiero

    2008-12-31

    The supersonic expansion of a plasma is a system of interest for aerospace applications, ranging from propulsion to hypersonic wind tunnels. Under these conditions the plasma shows significant departures from chemical and thermal equilibrium, similarly to post-discharge conditions. The multitemperature description is not adequate because the internal level distributions show tails overpopulated with respect to a Boltzmann distribution. The state-to-state approach has to be used, including the interaction with free electrons which follow non-maxwellian distributions.

  10. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  11. Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes

    SciTech Connect

    Geddes, C.G.R.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Mullowney, P.; Paul, K.; Cary, J.R.; Leemans, W.P.

    2010-06-01

    Laser-plasma collider designs point to staging of multiple accelerator stages at the 10 GeV level, which are to be developed on the upcoming BELLA laser, while Thomson Gamma source designs use GeV stages, both requiring efficiency and low emittance. Design and scaling of stages operating in the quasi-linear regime to address these needs are presented using simulations in the VORPAL framework. In addition to allowing symmetric acceleration of electrons and positrons, which is important for colliders, this regime has the property that the plasma wakefield is proportional to the transverse gradient of the laser intensity profile. We demonstrate use of higher order laser modes to tailor the laser pulse and hence the transverse focusing forces in the plasma. In particular, we show that by using higher order laser modes, we can reduce the focusing fields and hence increase the matched electron beam radius, which is important to increased charge and efficiency, while keeping the low bunch emittance required for applications.

  12. Laboratory Plasma Astrophysics Research with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki; Kato, Tsunehiko; Kuramitsu, Yasuhiro; Sakawa, Yuichi

    2008-12-01

    Large scale laser facilities mainly constructed for fusion research can be used to produce high-energy-density plasmas like the interior of stars and planets. They can be also used to reproduce the extreme phenomena of explosion and high Mach number flow in mimic scale in laboratory. With advanced diagnostic technique, we can study the physics of plasma phenomena expected to control a variety of phenomena in Universe. The subjects studied so far are reviewed, for example, in [1], [2]. The project to promote the laboratory astrophysics with Gekko XII laser facility has been initiated from April 1st this year as a project of our institute. It consists of four sub-projects. They are 1. Physics of collisionless shock and particle acceleration, 2. Physics of Non LTE (local thermodynamic equilibrium) photo-ionized plasma, 3. Physics of planets and meteor impact, 4. Development of superconducting Terahertz device. I will briefly explain what the laser astrophysics means and introduce what are the targets of our project. Regarding the first sub-project, we have carried out hydrodynamic and PIC simulation to design the experiments with intense laser. We clarified the physical mechanism of generation of the magnetic field in non-magnetized plasma and the collsionless shock formation caused by the ion orbit modifications by the magnetic fields generated as the result of plasma instability. Note from Publisher: This article contains the abstract only.

  13. Coupling between electron plasma waves in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Everett, M. J.; Lal, A.; Clayton, C. E.; Mori, W. B.; Joshi, C.; Johnston, T. W.

    1996-05-01

    A Lagrangian fluid model (cold plasma, fixed ions) is developed for analyzing the coupling between electron plasma waves. This model shows that a small wave number electron plasma wave (ω2,k2) will strongly affect a large wave number electron plasma wave (ω1,k1), transferring its energy into daughter waves or sidebands at (ω1+nω2,k1+nk2) in the lab frame. The accuracy of the model is checked via particle-in-cell simulations, which confirm that the energy in the mode at (ω1,k1) can be completely transferred to the sidebands at (ω1+nω2,k1+nk2) by the presence of the electron plasma mode at (ω2,k2). Conclusive experimental evidence for the generation of daughter waves via this coupling is then presented using time- and wave number-resolved spectra of the light from a probe laser coherently Thomson scattered by the electron plasma waves generated by the interaction of a two-frequency CO2 laser with a plasma.

  14. Production of plasmas by long-wavelength lasers

    DOEpatents

    Dawson, J.M.

    1973-10-01

    A long-wavelength laser system for heating low-density plasma to high temperatures is described. In one embodiment, means are provided for repeatedly receiving and transmitting long-wavelength laser light in successive stages to form a laser-light beam path that repeatedly intersects with the equilibrium axis of a magnetically confined toroidal plasma column for interacting the laser light with the plasma for providing controlled thermonuclear fusion. Embodiments for heating specific linear plasmas are also provided. (Official Gazette)

  15. Ion Emission and Expansion in Laser-Produced Tin Plasma

    NASA Astrophysics Data System (ADS)

    Burdt, Russell Allen

    2011-12-01

    Laser produced Sn plasma, in its role as an efficient extreme ultraviolet (EUV) x-ray source, is being studied extensively in support of next generation manufacturing of integrated circuits by nanolithography. The ability to diagnose and manipulate the properties of ions emitted from the laser produced plasma (LPP) must be achieved in order for the technology to meet stringent performance requirements. Here we study the emission and expansion of ions from Sn LPP, in parameter space relevant to the EUV x-ray source application. Several particle and radiation plasma diagnostics, in addition to analytical and numerical analysis, are all used to elucidate the complex relationships between the target properties, irradiation conditions, and resultant plasma and ion properties. Two specific laser systems of current interest to the application, at wavelengths of 1.064mum and 10.6mum, are both utilized, which allows for direct comparisons of the effects of laser wavelength on ion properties. Details of the available experimental apparatus, including the Nd:YAG and CO2 laser systems, are discussed first. Following, the design and realization of a custom charged particle plasma diagnostic, hereafter referred to as the ion probe, is described. The successful development of the ion probe enabled measurements of the energy distribution for each charge state of each ion species in expanding plasma, which is a new diagnostic capability. Measurements of mass ablation from Sn plasma produced by a 1.064mum laser are discussed next, specifically the scaling of mass ablation rate with laser intensity. These measurements are useful in the design of mass-limited targets, and also are used to infer mechanisms of laser energy absorption and heat conduction within the plasma. In addition to the ion probe, an EUV spectrometer and a calibrated EUV calorimeter were both utilized as diagnostics to measure the mass ablation rate by complementary methods. Laser intensity was scanned from 3x1011W

  16. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2008-08-01

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma based collider is presented.

  17. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2009-01-22

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma-based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma-based collider is presented.

  18. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  19. Laser-driven electron acceleration in an inhomogeneous plasma channel

    SciTech Connect

    Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui

    2015-12-15

    We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.

  20. Double-layer ion acceleration triggered by ion magnetization in expanding radiofrequency plasma sources

    SciTech Connect

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod W.; Fujiwara, Tamiya

    2010-10-04

    Ion energy distribution functions downstream of the source exit in magnetically expanding low-pressure plasmas are experimentally investigated for four source tube diameters ranging from about 5 to 15 cm. The magnetic-field threshold corresponding to a transition from a simple expanding plasma to a double layer-containing plasma is observed to increase with a decrease in the source tube diameter. The results demonstrate that for the four geometries, the double layer and the accelerated ion beam form when the ion Larmour radius in the source becomes smaller than the source tube radius, i.e., when the ions become magnetized in the source tube.

  1. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    SciTech Connect

    Kajimura, Y.; Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H.

    2008-12-31

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction ({alpha}) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease {alpha} value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  2. Magnetic-Field Generation and Amplification in an Expanding Plasma

    NASA Astrophysics Data System (ADS)

    Schoeffler, K. M.; Loureiro, N. F.; Fonseca, R. A.; Silva, L. O.

    2014-05-01

    Particle-in-cell simulations are used to investigate the formation of magnetic fields B in plasmas with perpendicular electron density and temperature gradients. For system sizes L comparable to the ion skin depth di, it is shown that B˜di/L, consistent with the Biermann battery effect. However, for large L/di, it is found that the Weibel instability (due to electron temperature anisotropy) supersedes the Biermann battery as the main producer of B. The Weibel-produced fields saturate at a finite amplitude (plasma β≈100), independent of L. The magnetic energy spectra below the electron Larmor radius scale are well fitted by the power law with slope -16/3, as predicted by Schekochihin et al. [Astrophys. J. Suppl. Ser. 182, 310 (2009)].

  3. Parametric instabilities in large nonuniform laser plasmas

    SciTech Connect

    Baldis, H.A.; Montgomery, D.S.; Moody, J.D.; Estabrook, K.G.; Berger, R.L.; Kruer, W.L.; Labaune, C.; Batha, S.H.

    1992-09-01

    The study of parametric instabilities in laser plasmas is of vital importance for inertial confinement fusion (ICF). The long scale-length plasma encountered in the corona of an ICF target provides ideal conditions for the growth of instabilities such as stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), and filamentation. These instabilities can have detrimental effects in ICF and their characterization and understanding is of importance. Scattering instabilities are driven through a feedback loop by which the beating between the electromagnetic EM fields of the laser and the scattered light matches the frequency of a local longitudinal mode of the plasma. Any process which interferes with the coherence of this mechanism can substantially alter the behavior of the instability. Of particular interest is the study of laser beam smoothing techniques on parametric instabilities. These techniques are used to improve irradiation uniformity which can suppress hydrodynamic instabilities. Laser beam smoothing techniques have the potential to control the scattering level from parametric instabilities since they provide not only a smoother laser intensity distribution, but also reduced coherence. Beam smoothing techniques that affect the growth of parametric instabilities include spatial smoothing and temporal smoothing by laser bandwidth. Spatial smoothing modifies the phase fronts and temporal distribution of intensities in the focal volume. The transverse intensity spectrum is shifted towards higher spatial wavenumber and can significantly limit the growth of filamentation. Temporal smoothing reduces the coherence time and consequently limits the growth time. Laser bandwidth is required for most smoothing techniques, and can have an independent effect on the instabilities as well.

  4. Expanding the plasmonic response of bimetallic nanoparticles by laser seeding

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Rodríguez, C. E.; Afonso, C. N.

    2016-03-01

    This work explores a cost-effective route to enhance the tuning range of the optical response of metal nanostructures on substrates beyond the ranges that are achievable through the nanostructure dimensions, composition or dewetting processes. The new route (laser seeding) uses single nanosecond laser pulses to induce dewetting in regions of a metal layer deposited on a glass substrate followed by the deposition of a second metal layer, both layers being deposited by pulsed laser deposition. In order to show the possibilities of this new route, we have chosen that the two metals were different, namely Ag and Au. The comparison of the optical response of these regions to those that were laser irradiated after deposition of the second metal layer shows that while nanoalloyed nanoparticles (NPs) are formed in the latter case, the NPs produced in the former case have a heterogeneous structure. The interface between the two metals is either sharp or a narrow region where they have mixed depending on the laser fluence used. While the nanoalloyed NPs exhibit a single, narrow surface plasmon resonance (SPR), the heterogeneous NPs show broader SPRs that peak in the near infrared and depending on conditions exhibit even two clear SPRs. The laser seeding approach in the conditions used in this work allows for the expansion of the tuning range of the color to the blue-green region, i.e. beyond the region that can be achieved through nanoalloyed NPs (yellow-red region). In addition, the results presented foresee the laser seeding route as a means to produce round and almost isolated NPs in an enhanced range of diameters.

  5. Experimental Demonstration of Collisionless Particle Acceleration Mechanisms and Entrainment of Ambient Plasma Ions by a Rapidly Expanding Diamagnetic Cavity.

    NASA Astrophysics Data System (ADS)

    Bonde, J.; Vincena, S. T.; Gekelman, W. N.

    2015-12-01

    The collisionless coupling of an expanding diamagnetic cavity to a magnetized, ambient plasma is studied in a laboratory environment using a laser-produced plasma (LPP). The seed LPP rapidly expands with velocities up to the background Alfvén speed, vexp ≤ vA. The boundary layer of the expansion is characterized with in situ diagnostics as a cylindrical version of the Ferraro-Rosenbluth current sheath. Maintenance of quasi-neutrality in this sheath forms an electric field opposing the cross-field expansion which simultaneously drives the electron current that forms the diamagnetic cavity, decelerates the LPP ions to stagnation, and accelerates ambient ions inward. The field topology across the background magnetic field is identical to that described by Bernhardt, et al. [1] for the AMPTE magnetotail barium releases. The boundary along the magnetic field, however, is shown to contain an electric field with E·B ≠ 0, which is absent in simple fluid models of diamagnetic cavities. The electric fields at this boundary help explain previous observations in the experiment of the ejection of suprathermal electrons and return currents that generated whistler- and Alfvén-wave radiation in the ambient plasma. Magnetic loops and an emissive probe measure the magnetic field and electrostatic potential along 3 dimensions while a laser-induced fluorescence scheme measures the cross-field flow of the ambient argon ions as they penetrate the diamagnetic cavity. Particle orbit solvers employing the measured fields corroborate the flow diagnostic and predict strong outflows of ambient ions with higher charge to mass ratios after diamagnetic cavity collapse. This experiment was conducted in the Large Plasma Device at the Basic Plasma Science Facility and funded by grants from the US Department of Energy and the National Science Foundation. [1] P.A. Bernhardt, R.A. Roussel-Dupre, M.B. Pongratz, J. Geophys. Res. 92, 57777 (1987).

  6. Enhancement of KSTAR plasma control for expanding operational space

    NASA Astrophysics Data System (ADS)

    Hahn, Sang-Hee; Jeon, Y. M.; Han, H.; Ahn, H. S.; Kim, J.; Kim, Y. J.; Joung, M.; Woo, M. H.; Mueller, D.; Eidietis, N. W.; Lanctot, M.; Humphreys, D. A.; Hyatt, A. W.; Welander, A. S.; Walker, M. L.; Kolemen, E.; Park, Y. S.; Sabbagh, S. A.

    2015-11-01

    In order to expand the operational space with stationary high performances, new approaches on the magnetic control design are necessary. A few examples on recent achievements at KSTAr are presented here: The Introduction of the in-vessel radial control (IRC) provides a fundamental change on baseline axisymmetric magnetic controls. Analysis on dedicated simulations/experiments for the vertical stabilization control margin gave an insight for improvement of the vertical position control. In order to enhance flexibility on the non-axisymmetric 3D field physics studies, the KSTAR RMP coil systems have been upgraded in 2015 provide more variety on the available 3D field profile. Integration of real-time heating device control enabled more elaborate kinetic controls since 2013. Real-time TM suppression is introduced as an example of the integrated control, which will be linked to stability control in the high-beta regime relevant to ITER success.

  7. High amplitude waves in the expanding solar wind plasma

    NASA Technical Reports Server (NTRS)

    Schmidt, J. M.; Velli, M.; Grappin, R.

    1995-01-01

    We simulated the 1-D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacoustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. In our simulations, fast and slow magnetoacoustic waves seem to have a level in the density-fluctuations which is too high when we compare with the observations. Furthermore, the evolution of energies for slow magnetoacoustic waves differs strongly from the evolution of fluctuation energies in situ.

  8. Laser ignition of plasma off aluminum surfaces

    NASA Astrophysics Data System (ADS)

    Weyl, G.; Pirri, A.; Root, R.

    1980-07-01

    The prompt initiation of a plasma above metal surfaces irradiated by a CO2 laser pulse in the intensities range one million to one billion W per sq cm is modelled. The initiation mechanism is assumed to be the vaporization of flakes or surface defects that are thermally insulated from the bulk surface, followed by laser induced breakdown in the vapor. The fluid dynamics of the expansion in an air background is modelled in the 1 dimensional and 3 dimensional regimes. Breakdown of the vapor due to inverse bremsstrahlung absorption of the laser radiation is calculated specifically for aluminum by use of a Boltzmann code. Results are presented in the form of a map of breakdown time versus incident laser flux and compared with available experimental data.

  9. New laser technology expands the range of holographic NDT

    SciTech Connect

    Ambroseo, J.; Peterson, P. )

    1994-05-01

    Holographic nondestructive testing and shearography are interferometric, optical methods used to detect flaws during stress testing. This process can be used to test a diverse cross-section of items, such as airplane jet engines, turbine rings, electronic circuit boards, and truck/aircraft tires. As with any interferometric technique, both methods require a coherent light source (laser) with appropriate characteristics. Until very recently, visible wavelength gas lasers have been the source of choice for these applications. In this article the authors examine the impact of a new breed of diode pumped solid state (DPSS) lasers that offers high power visible output, true portability, and a high level of stability and coherence. The major benefits of this novel technology for holography and shearography are improvements in resolution, accuracy, convenience, and utility, combined with low overall operating costs.

  10. Laser-induced breakdown spectroscopy expands into industrial applications

    NASA Astrophysics Data System (ADS)

    Noll, Reinhard; Fricke-Begemann, Cord; Brunk, Markus; Connemann, Sven; Meinhardt, Christoph; Scharun, Michael; Sturm, Volker; Makowe, Joachim; Gehlen, Christoph

    This paper presents R&D activities in the field of laser-induced breakdown spectroscopy for industrial applications and shows novel LIBS systems running in routine operation for inline process control tasks. Starting with a comparison of the typical characteristics of LIBS with XRF and spark-discharge optical emission spectrometry, the principal structure of LIBS machines embedded for inline process monitoring will be presented. A systematic requirement analysis for LIBS systems following Ishikawa's scheme was worked out. Stability issues are studied for laser sources and Paschen-Runge spectrometers as key components for industrial LIBS systems. Examples of industrial applications range from handheld LIBS systems using a fiber laser source, via a set of LIBS machines for inline process control tasks, such as scrap analysis, coal analysis, liquid slag analysis and finally monitoring of drill dust.

  11. Formation of Expanded Austenite on a Cold-Sprayed AISI 316L Coating by Low-Temperature Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Adachi, Shinichiro; Ueda, Nobuhiro

    2015-12-01

    Low-temperature plasma nitriding at temperatures below 450 °C is commonly applied to austenitic stainless steels to enhance wear resistance, while maintaining corrosion resistance, by forming expanded austenite (known as the S-phase). In this work, low-temperature plasma nitriding of cold-sprayed AISI 316L coatings was examined. A cold-spray technique was developed to produce metal coatings with less oxidation. However, the cold-sprayed AISI 316L coating obtained by use of nitrogen gas as propellant contained many interconnected pores and cracks, and was, consequently, unsuitable as an anticorrosive coating. Therefore, laser post-treatment was used to modify the coating and increase its density to similar to that of bulk steel. The anticorrosive performance of this coating on a carbon steel substrate in NaCl solution was substantially improved. Subsequent low-temperature plasma nitriding enhanced the wear resistance by two orders of magnitude. It is concluded that cold-sprayed AISI 316L coatings treated by laser post-treatment and subsequent low-temperature plasma nitriding could be used as protective coatings under severe wear and corrosion conditions.

  12. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    SciTech Connect

    Purohit, Gunjan Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-05-15

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.

  13. Ion beam control in laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2016-03-01

    By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.

  14. Ion and X-ray techniques used for study of laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Wolowski, J.; Parys, P.; Rosinski, M.; Ryć, L.; Woryna, E.

    2015-04-01

    This review article describes apparatus for ion and X-ray diagnostics, which were used in experimental studies of laser-produced plasmas performed by the IPPLM's team in collaboration with other researchers at IPPLM and PALS Research Centre in Prague (the Czech Republic). The investigations of expanding laser-produced plasma properties in dependence on laser beam parameters were done by means of ion diagnostics devices: ion collectors (ICs), cylindrical ion energy analyzer (IEA) and the mass spectrograph of the Thomson type. At IPPLM, different types of detectors have been developed for measurement of X-ray emission. Properties of laser-produced beams of ions and X-ray radiation were analysed in the cooperative experiments performed with the use of a high-energy iodine laser PALS at the PALS Research Centre ASCR in the Czech Republic and the low-energy repetitive laser at IPPLM.

  15. Laser-produced plasma source system development

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor V.; Brandt, David C.; Bykanov, Alexander N.; Ershov, Alexander I.; Partlo, William N.; Myers, David W.; Böwering, Norbert R.; Vaschenko, Georgiy O.; Khodykin, Oleh V.; Hoffman, Jerzy R.; Vargas L., Ernesto; Simmons, Rodney D.; Chavez, Juan A.; Chrobak, Christopher P.

    2007-03-01

    This paper describes the development of laser produced plasma (LPP) technology as an EUV source for advanced scanner lithography applications in high volume manufacturing. EUV lithography is expected to succeed 193 nm immersion technology for critical layer patterning below 32 nm beginning with beta generation scanners in 2009. This paper describes the development status of subsystems most critical to the performance to meet joint scanner manufacturer requirements and semiconductor industry standards for reliability and economic targets for cost of ownership. The intensity and power of the drive laser are critical parameters in the development of extreme ultraviolet LPP lithography sources. The conversion efficiency (CE) of laser light into EUV light is strongly dependent on the intensity of the laser energy on the target material at the point of interaction. The total EUV light generated then scales directly with the total incident laser power. The progress on the development of a short pulse, high power CO2 laser for EUV applications is reported. The lifetime of the collector mirror is a critical parameter in the development of extreme ultra-violet LPP lithography sources. The deposition of target materials and contaminants, as well as sputtering of the collector multilayer coating and implantation of incident particles can reduce the reflectivity of the mirror substantially over the exposure time even though debris mitigation schemes are being employed. The results of measurements of high energy ions generated by a short-pulse CO2 laser on a laser-produced plasma EUV light source with Sn target are presented. Droplet generation is a key element of the LPP source being developed at Cymer for EUV lithography applications. The main purpose of this device is to deliver small quantities of liquid target material as droplets to the laser focus. The EUV light in such configuration is obtained as a result of creating a highly ionized plasma from the material of the

  16. Propagation of chirped laser pulses in a plasma channel

    SciTech Connect

    Jha, Pallavi; Malviya, Amita; Upadhyay, Ajay K.

    2009-06-15

    Propagation of an initially chirped, Gaussian laser pulse in a preformed parabolic plasma channel is analyzed. A variational technique is used to obtain equations describing the evolution of the phase shift and laser spot size. The effect of initial chirp on the laser pulse length and intensity of a matched laser beam propagating in a plasma channel has been analyzed. The effective pulse length and chirp parameter of the laser pulse due to its interaction with plasma have been obtained and graphically depicted. The resultant variation in laser frequency across the laser pulse is discussed.

  17. Landau damping of a driven plasma wave from laser pulses

    SciTech Connect

    Bu Zhigang; Ji Peiyong

    2012-01-15

    The interaction between a laser pulse and a driven plasma wave with a phase velocity approaching the speed of light is studied, and our investigation is focused on the Gaussian laser pulse. It is demonstrated that when the resonance condition between the plasma wave and the laser pulse is satisfied, the Landau damping phenomenon of the plasma wave originated from the laser pulse will emerge. The dispersion relations for the plasma waves in resonance and non-resonance regions are obtained. It is proved that the Landau damping rate for a driven plasma wave is {gamma}>0 in the resonance region, so the laser pulse can produce an inverse damping effect, namely Landau growth effect, which leads an instability for the plasma wave. The Landau growth means that the energy is transmitted from the laser pulse to the plasma wave, which could be an effective process for enhancing the plasma wave.

  18. High amplitude waves in the expanding solar wind plasma

    SciTech Connect

    Schmidt, J. M.; Velli, M.; Grappin, R.

    1996-07-20

    We simulated the 1 D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. It is the generation of sound due to ponderomotive forces of the Alfven wave which we can detect in the latter case. For slow magnetoacustic waves we find a kind of oscillation of the character of the wave between a sound wave and an Alfven wave. This is the more, the slow magnetoacustic wave is close to a sound wave in the beginning. On the other hand, fast magnetoacustic waves are much more dissipated than the other wave-types and their general behaviour is close to the Alfven. The normalized cross-helicity {sigma}{sub c} is close to one for Alfven-waves and this quantity is decreasing slightly when density-fluctuations are generated. {sigma}{sub c} decreases significantly when the waves are close to perpendicular propagation. Then, the waves are close to quasi-static structures.

  19. Kinetic Approach for Laser-Induced Plasmas

    SciTech Connect

    Omar, Banaz; Rethfeld, Baerbel

    2008-10-22

    Non-equilibrium distribution functions of electron gas and phonon gas excited with ultrashort intense laser pulses are calculated for laser-induced plasmas occurring in solids. The excitation during femtosecond irradiation and the subsequent thermalization of the free electrons, as well as the dynamics of phonons are described by kinetic equations. The microscopic collision processes, such as absorption by inverse bremsstrahlung, electron-electron collisions, and electron-phonon interactions are considered by complete Boltzmann collision integrals. We apply our kinetic approach for gold by taking s-band electron into account and compare it with the case of excitation of d-band electrons.

  20. Laser plasma in a magnetic field

    SciTech Connect

    Kondo,K.; Kanesue, T.; Tamura, J.; Dabrowski, R.; Okamura, M.

    2009-09-20

    Laser Ion Source (LIS) is a candidate among various heavy ion sources. A high density plasma produced by Nd:YAG laser with drift velocity realizes high current and high charge state ion beams. In order to obtain higher charged particle ions, we had test experiments of LIS with a magnetic field by which a connement effect can make higher charged beams. We measured total current by Faraday Cup (FC) and analyzed charge distribution by Electrostatic Ion Analyzer (EIA). It is shown that the ion beam charge state is higher by a permanent magnet.

  1. Electromagnetically Induced Guiding of Counter-propagating Lasers in Plasmas

    SciTech Connect

    First Author = G. Shvets; A. Pukhov

    1998-05-01

    The interaction of counter-propagating laser pulses in a plasma is considered. When the frequencies of the two lasers are close, nonlinear modification of the refraction index results in the mutual focusing of the two beams. A short (of order the plasma period) laser pulse can also be nonlinearly focused by a long counter-propagating beam which extends over the entire guiding length. This phenomenon of electromagnetically induced guiding can be utilized in laser-driven plasma accelerators.

  2. Variable xy-UV beam expander for high-power laser beam shaping

    NASA Astrophysics Data System (ADS)

    Nadorff, Georg; DeWitt, Frank; Lindau, Sten

    2012-10-01

    A five element zoomable anamorphic beam expander is designed and fabricated for a laser illumination system used in the manufacture of patterned micro-circuit substrates. The beam expander is the front end of a Gaussian to top-hat beam shaping illuminator. The tightly toleranced optical system downstream of the beam expander should not be readjusted with changes to the input beam. The job of the beam expander is to maintain, independent of the input beam, a constant diffraction limited output beam size as well as a specific waist location. A high power quasi-CW laser at 355 nm is employed for high throughput. The specifications of the laser allow for a range of x,y-beam diameters (ellipticity), x,y-waist locations (astigmatism), and x,y-divergence. As the laser's frequency tripling crystal is exposed to high fluence over time, the beam parameters will change. At some point the laser is exchanged for a new one, and a new set of beam parameters is presented to the beam expander. Movable cylindrical lenses enable the independent adjustment of x- and y-beam parameters. The mounting cells are motorized to enable adjustments remotely. We present the optical design approach using Gaussian beam ray tracing and discuss the mechanical implementation.

  3. Laser-heated emissive plasma probe

    SciTech Connect

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-08-15

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  4. Control of laser-ablation plasma potential with external electrodes

    SciTech Connect

    Isono, Fumika Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2015-08-15

    The potential of a laser-ablation plasma was controlled stably up to +2 kV by using external ring electrodes. A stable electron sheath was formed between the plasma and the external electrodes by placing the ring electrodes away from the boundary of the drifting plasma. The plasma kept the potential for a few μs regardless of the flux change of the ablation plasma. We also found that the plasma potential changed with the expansion angle of the plasma from the target. By changing the distance between the plasma boundary and the external electrodes, we succeeded in controlling the potential of laser-ablation plasma.

  5. Infusion of plasma expanders may lead to unexpected results in urinary protein assays.

    PubMed

    de Keijzer, M H; Klasen, I S; Branten, A J; Hordijk, W; Wetzels, J F

    1999-04-01

    Overt proteinuria was detected in the urine of a potential kidney donor, ultimately leading to the refusal of the kidneys for transplantation purposes. Histological examination of the kidneys did not reveal any abnormalities. Searching for substances that could have interfered with the urinary total protein assay, the role of infused, modified gelatin plasma expanders was investigated. We therefore measured the concentration of protein before and after the addition of various artificial plasma expanders to urine. Only when Biuret reagent or Pyrogallol Red dye were used did we find elevated concentrations of protein. Other methods, including the turbidimetric assays, did not detect additional amounts of protein in the spiked urine. We conclude that the infusion of modified gelatin solutions may cause apparent proteinuria. This effect is not observed with starch-based plasma expanders. Clinical chemists and clinicians should be aware of this phenomenon and possibly repeat the analysis with a different technique.

  6. Electron diamagnetic effect on axial force in an expanding plasma: experiments and theory.

    PubMed

    Takahashi, Kazunori; Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod W

    2011-12-02

    The axial force imparted from a magnetically expanding current-free plasma is directly measured for three different experimental configurations and compared with a two-dimensional fluid theory. The force component solely resulting from the expanding field is directly measured and identified as an axial force produced by the azimuthal current due to an electron diamagnetic drift and the radial component of the magnetic field. The experimentally measured forces are well described by the theory.

  7. Electron Diamagnetic Effect on Axial Force in an Expanding Plasma: Experiments and Theory

    SciTech Connect

    Takahashi, Kazunori; Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod W.

    2011-12-02

    The axial force imparted from a magnetically expanding current-free plasma is directly measured for three different experimental configurations and compared with a two-dimensional fluid theory. The force component solely resulting from the expanding field is directly measured and identified as an axial force produced by the azimuthal current due to an electron diamagnetic drift and the radial component of the magnetic field. The experimentally measured forces are well described by the theory.

  8. Interaction of laser radiation with plasma under the MG external magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; Sawada, H.; Sentoku, Y.

    2016-10-01

    Strong magnetic fields play an important role in many physical processes relevant to astrophysical events and fusion research. Laser produced plasma in the MG external magnetic field was studied at the 1 MA pulsed power generator coupled with the laser operated in ns and ps regimes. Rod loads and coils under 1 MA current were used to produce a magnetic field of 2-3 MG. In one type of experiments, a 0.8 ns laser pulse was focused on the load surface with intensity of 3x1015 W/cm2. Laser diagnostics showed that the laser produced plasma expands in the transversal magnetic field and forms a thin plasma disc with a typical diameter of 3-7 mm and thickness of 0.2-0.4 mm. A magnetosonic-type wave was observed in the plasma disc and on the surface of the rod load. The plasma disc expands radially across the magnetic field with a velocity of the order of the magnetosonic velocity. Physical mechanisms involved in the formation of the plasma disc may be relevant to the generation of plasma loops in sun flares. Other experiments, with a 0.4 ps laser pulse were carried for investigation of the isochoric heating of plasma with fast electrons confined by the strong magnetic field. The laser beam was focused by the parabola mirror on a solid target in the magnetic field of the coil. Work was supported by the DOE Grant DE-SC0008824 and DOE/NNSA UNR Grant DE-FC52-06NA27616.

  9. Tunable Plasma-Wave Laser Amplifier

    NASA Astrophysics Data System (ADS)

    Bromage, J.; Haberberger, D.; Davies, A.; Bucht, S.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2016-10-01

    Raman amplification is a process by which a long energetic pump pulse transfers its energy to a counter-propagating short seed pulse through a resonant electron plasma wave. Since its conception, theory and simulations have shown exciting results with up to tens of percent of energy transfer from the pump to the seed pulse. However, experiments have yet to surpass transfer efficiencies of a few percent. A review of past literature shows that largely chirped pump pulses and finite temperature wave breaking could have been the two most detrimental effects. A Raman amplification platform is being developed at the Laboratory for Laser Energetics where a combination of a high-intensity tunable seed laser with sophisticated plasma diagnostics (dynamic Thomson scattering) will make it possible to find the optimal parameter space for high-energy transfer. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Laser Wakefield in Low Density Plasma

    NASA Astrophysics Data System (ADS)

    Takahashi, Eiji; Honda, Hiroshi; Miura, Eisuke; Yugami, Noboru; Nishida, Yasushi; Kondo, Kiminori

    2000-10-01

    The laser wakefiled (LWF) and the relativistic and charge-displacementself-channeling in the comparatively low density plasma were studied.The dynamics of the electron plasma wave (EPW) in LWF wasexperimentally observed at the electron density of ˜1016 cm-3.The two dimensional instantaneous image of EPW was also obtained.The asymmetric 2D image was explained by the modified liner theory.These experimental results suggest that the intensity of ˜1018 W/cm2 was achieved in the low density static gas target.This means the possibility of not only the coherent control of EPW, but also the long relativistic and charge-displacement self-channeling withthe low density static gas.For the self-channeling, the simple model tells us that the long channelwithout defocusing could be possible with a tens of TW, ps glass laser system.

  11. Excitation of nuclear isomers by X rays from laser plasma

    SciTech Connect

    Andreev, Aleksandr A; Karpeshin, F; Trzhaskovskaya, M B; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V

    2010-06-23

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer {sup 93}Mo upon irradiation of a niobium {sup 93}Nb target by {approx}50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma. (interaction of laser radiation with matter. laser plasma)

  12. Plasma volume expanders: use in medicine and detecting misuse in sports.

    PubMed

    Simoni, Ruth E; Scalco, Fernanda B; de Oliveira, Maria Lucia C; Aquino Neto, Francisco R

    2011-01-01

    Plasma volume expanders comprise a heterogeneous group of substances used in medicine that are intravenously administered in cases of great blood loss owing to surgery or medical emergency. These substances, however, can also be used to artificially enhance performance of healthy athletes in sport activities, and to mask the presence of others substances. These practices are considered doping, and are therefore prohibited by the International Olympic Committee and the World Antidoping Agency. Consequently, drug testing procedures are essential. The present work provides an overview of plasma volume expanders, assembling pertinent data such as chemical characteristics, physiological aspects, adverse effects, doping and analytical detection methods, which are currently dispersed in the literature.

  13. Laser mode control using leaky plasma channels

    NASA Astrophysics Data System (ADS)

    Djordjević, B. Z.; Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2017-03-01

    The evolution and propagation of a non-Gaussian laser pulse in matched parabolic channels as well as leaky channels are investigated. It has previously been shown for a Gaussian pulse that matched guiding can be achieved using such channels. In the low power regime, analytical work demonstrates that, for multi-mode pulses, there is significant transverse beating. The interaction between different modes may have an adverse effect on the laser pulse as it propagates through the primary channel, in which plasma wakefield acceleration of the electron beam is to occur, and this effect can be shown in numerical simulations of high-power laser-plasma interactions. To improve guiding of the pulse, we propose using leaky channels. Higher order mode content is minimized through the leaky channel, while the fundamental mode remains well-guided. In addition to numerical simulations, it can be qualitatively shown, through the Wentzel-Kramers-Brillouin (WKB) method and the Source Dependent Expansion (SDE) analysis, that in finite channels, higher order modes either leak out or transfer energy to the fundamental. In conclusion, an idealized plasma filter based on leaky channels is found to filter out the higher order modes and leave a near-Gaussian profile before the pulse enters the primary channel.

  14. Summary Report of Working Group 6: Laser-Plasma Acceleration

    SciTech Connect

    Leemans, Wim P.; Downer, Michael; Siders, Craig

    2006-07-01

    A summary is given of presentations and discussions in theLaser-Plasma Acceleration Working Group at the 2006 Advanced AcceleratorConcepts Workshop. Presentation highlights include: widespreadobservation of quasi-monoenergetic electrons; good agreement betweenmeasured and simulated beam properties; the first demonstration oflaser-plasma acceleration up to 1 GeV; single-shot visualization of laserwakefield structure; new methods for measuring<100 fs electronbunches; and new methods for "machining" laser-plasma acceleratorstructures. Discussion of future direction includes: developing a roadmapfor laser-plasma acceleration beyond 1 GeV; a debate over injection andguiding; benchmarking simulations with improved wake diagnostics;petawatt laser technology for future laser-plasmaaccelerators.

  15. Hybrid Laser Wakefield and Direct Laser Plasma Accelerator in the Plasma Bubble Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Khudik, Vladimir; Pukhov, Alexander; Shvets, Gennady

    2015-11-01

    The concept of hybrid laser wakefield and direct laser plasma accelerator in plasma bubble regime was recently proposed. The advantage of this approach is two-fold: (a) electrons' energy gains from the laser and from the wake add up, and (b) dephasing is slowed down. Using 2D VLPL simulations, we will demonstrate that two conditions must be met by the electrons injected into the hybrid accelerator: (1) strong spatial overlap with the laser field, and (2) large initial transverse energy. The firstcondition is met by employing two laser pulses: one to produce a plasma bubble, and the second time-delayed pulse to interact with the injected electrons. We will show that there are two approaches to meeting the second condition: self-injection using an engineered density bump and ionization-injection. The criteria for direct laser acceleration of ionization-injected electrons will be discussed. Combinations of laser pulses with different wavelengths will also be considered. This work is supported by the US DOE grant DE-SC0007889 and the AFOSR grant FA9550-14-1-0045.

  16. Structure of an exploding laser-produced plasma

    SciTech Connect

    Collette, A.; Gekelman, W.

    2011-05-15

    Currents and instabilities associated with an expanding dense plasma embedded in a magnetized background plasma are investigated by direct volumetric probe measurements of the magnetic field and floating potential. A diamagnetic cavity is formed and found to collapse rapidly compared to the expected magnetic diffusion time. The three-dimensional current density within the expanding plasma includes currents along the background magnetic field, in addition to the diamagnetic current. Correlation measurements reveal that flutelike structures at the plasma surface translate with the expanding plasma across the magnetic field and extend into the current system that sustains the diamagnetic cavity, possibly contributing to its collapse.

  17. Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas

    SciTech Connect

    Harilal, Sivanandan S.; Brumfield, Brian E.; Cannon, Bret D.; Phillips, Mark C.

    2016-02-16

    Laser ablation is used in a variety of applications albeit formation mechanisms of molecules and nanoclusters are not well understood. We investigated the formation mechanisms of AlO molecules during complex interactions between an Al laser plume expanding into ambient air at atmospheric pressure levels. To produce the plasma a high-purity Al target was ablated using 1064 nm, 6 ns laser pulses. Our results show that the plasma chemistry leading to the formation of AlO is mediated by shock waves. During the early times of plasma expansion, the generated shock waves at the plume edges act as a barrier for the combustion process and the molecular formation is prevalent after the shockwave collapse. The temporally and spatially resolved contour mapping of Al and AlO highlight the formation routes and persistence of species in the plasma and its relation to plume hydrodynamics.

  18. Paraxial properties of three-element zoom systems for laser beam expanders.

    PubMed

    Mikš, Antonín; Novák, Pavel

    2014-09-08

    Our work is focused on the problem of theoretical analysis of paraxial properties of the three-element zoom optical system for laser beam expanders. Equations that enable to calculate mutual axial distances between individual elements of the system based on the axial position of the beam waist of the input Gaussian beam and the desired magnification of the system are derived. Finally, the derived equations are applied on an example of calculation of paraxial parameters of the three-element zoom system for the laser beam expander.

  19. Resonance Absorption of Laser Light by Warm and Cold Plasmas.

    DTIC Science & Technology

    1981-03-01

    34 Ponderomotive Force................38 Hot Electron Energy ................40 Validity bf Assumptions..............41 V. Conclusions...Indicated by Arrows) for the Warm and Cold Plasma Models ..... ................ 31 7 Cold Plasma: Fraction of Laser Energy Resonantly Absorbed as a...Function of Incident Angle .. ............ 35 8 Warm Plasma: Fraction of Laser Energy Resonantly Absorbed as a Function of Incident Angle (T = 637 ev and

  20. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Excitation of nuclear isomers by X rays from laser plasma

    NASA Astrophysics Data System (ADS)

    Andreev, Aleksandr A.; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V.; Karpeshin, F.; Trzhaskovskaya, M. B.

    2010-06-01

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer 93Mo upon irradiation of a niobium 93Nb target by ~50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma.

  1. Dynamics of Converging Laser-Created Plasmas in Semi-Cylindrical Cavities Studied using Soft X-Ray Laser Interferometry

    SciTech Connect

    Purvis, M A; Grava, J; Filevich, J; Marconi, M; Dunn, J; Moon, S J; Shlyaptsev, V N; Jankowska, E; Rocca, J J

    2007-09-19

    The evolution of dense aluminum and carbon plasmas produced by laser irradiation of 500 {micro}m diameter semi-cylindrical targets was studied using soft x-ray laser interferometry. Plasmas created heating the cavity walls with 120 picosecond duration optical laser pulses of {approx} 1 x 10{sup 12} W cm{sup -2} peak intensity were observed to expand and converge on axis to form a localized high density plasma region. Electron density maps were measured using a 46.9 nm wavelength tabletop capillary discharge soft x-ray laser probe in combination with an amplitude division interferometer based on diffraction gratings. The measurements show that the plasma density on axis exceeds 1 x 10{sup 20} cm{sup -3}. The electron density profiles are compared with simulations conducted using the hydrodynamic code HYDRA, which show that the abrupt density increase near the axis is dominantly caused by the convergence of plasma generated at the bottom of the groove during laser irradiation.

  2. The absorption and radiation of a tungsten plasma plume during nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Moscicki, T.; Hoffman, J.; Chrzanowska, J.

    2015-10-01

    In this paper, the effect of absorption of the laser beam and subsequent radiation on the dynamics of a tungsten plasma plume during pulsed laser ablation is analyzed. Different laser wavelengths are taken into consideration. The absorption and emission coefficients of tungsten plasma in a pressure range of 0.1-100 MPa and temperature up to 70 000 K are presented. The shielding effects due to the absorption and radiation of plasma may have an impact on the course of ablation. The numerical model that describes the tungsten target heating and the formation of the plasma and its expansion were made for 355 nm and 1064 nm wavelengths of a Nd:YAG laser. The laser beam with a Gaussian profile was focused to a spot size of 0.055 mm2 with a power density of 1 × 109 W/cm2 (10 ns full width half maximum pulse duration). The plasma expands into air at ambient pressure of 1 mPa. The use of the shorter wavelength causes faster heating of the target, thus the higher ablation rate. The consequences of a higher ablation rate are slower expansion and smaller dimensions of the plasma plume. The higher plasma temperature in the case of 1064 nm is due to the lower density and lower plasma radiation. In the initial phase of propagation of the plasma plume, when both the temperature and pressure are very high, the dominant radiation is emission due to photo-recombination. However, for a 1064 nm laser wavelength after 100 ns of plasma expansion, the radiation of the spectral lines is up to 46.5% of the total plasma radiation and should not be neglected.

  3. The absorption and radiation of a tungsten plasma plume during nanosecond laser ablation

    SciTech Connect

    Moscicki, T. Hoffman, J.; Chrzanowska, J.

    2015-10-15

    In this paper, the effect of absorption of the laser beam and subsequent radiation on the dynamics of a tungsten plasma plume during pulsed laser ablation is analyzed. Different laser wavelengths are taken into consideration. The absorption and emission coefficients of tungsten plasma in a pressure range of 0.1–100 MPa and temperature up to 70 000 K are presented. The shielding effects due to the absorption and radiation of plasma may have an impact on the course of ablation. The numerical model that describes the tungsten target heating and the formation of the plasma and its expansion were made for 355 nm and 1064 nm wavelengths of a Nd:YAG laser. The laser beam with a Gaussian profile was focused to a spot size of 0.055 mm{sup 2} with a power density of 1 × 10{sup 9 }W/cm{sup 2} (10 ns full width half maximum pulse duration). The plasma expands into air at ambient pressure of 1 mPa. The use of the shorter wavelength causes faster heating of the target, thus the higher ablation rate. The consequences of a higher ablation rate are slower expansion and smaller dimensions of the plasma plume. The higher plasma temperature in the case of 1064 nm is due to the lower density and lower plasma radiation. In the initial phase of propagation of the plasma plume, when both the temperature and pressure are very high, the dominant radiation is emission due to photo-recombination. However, for a 1064 nm laser wavelength after 100 ns of plasma expansion, the radiation of the spectral lines is up to 46.5% of the total plasma radiation and should not be neglected.

  4. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    SciTech Connect

    Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

    2010-05-17

    Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

  5. Measurements of laser-induced plasma temperature field in deep penetration laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Genyu; Zhang, Mingjun; Zhao, Zhi; Zhang, Yi; Li, Shichun

    2013-02-01

    Laser-induced plasma in deep penetration laser welding is located inside or outside the keyhole, namely, keyhole plasma or plasma plume, respectively. The emergence of laser-induced plasma in laser welding reveals important information of the welding technological process. Generally, electron temperature and electron density are two important characteristic parameters of plasma. In this paper, spectroscopic measurements of electron temperature and electron density of the keyhole plasma and plasma plume in deep penetration laser welding conditions were carried out. To receive spectra from several points separately and simultaneously, an Optical Multi-channel Analyser (OMA) was developed. On the assumption that the plasma was in local thermal equilibrium, the temperature was calculated with the spectral relative intensity method. The spectra collected were processed with Abel inversion method to obtain the temperature fields of keyhole plasma and plasma plume.

  6. Development of High-Density Plasma Photonic Crystals Using High-Power Lasers

    NASA Astrophysics Data System (ADS)

    Colon Quinones, Roberto; Wang, Benjamin; Lucca Fabris, Andrea; Cappelli, Mark

    2015-09-01

    A plasma photonic crystal (PPC) is an array of plasma structures that interacts with electromagnetic (EM) waves in ways not possible with natural materials. 2D PPCs can be used for generating a band gap, which is a range of wave frequencies in which no waves are transmitted through the structure. Such gap forms when an EM wave travels through a 2D PPC with spacing equal to half the wavelength of the wave and plasma frequency (ωp) on the order of the frequency of the wave. Until recently, research on PPCs has been limited to ωp < 30 GHz, which is equivalent to a plasma density of ne <1013 cm-3 . Over the last year, PPCs of ne >1015 cm-3 have been generated at Stanford through the use of high-power lasers. The PPCs are generated by expanding the laser beam from a Q-switched Nd:YAG laser through a Galilean beam expander and subsequently focusing the beam through an optical micro-lens array. The intense photoionization of air that occurs at the focus of the individual lenses leads to the formation of a 2D array of very dense plasma spots. Photomultiplier measurements show a plasma lifetime of ~150 ns during which the plasma array functions as a PPC, representing a first step towards advancing the field forward into the low THz regime. Sponsored by the AFOSR MURI and DoD NDSEG.

  7. Instabilities observed at the bubble edge of a laser produced plasma during its expansion in an ambient tenuous plasma

    NASA Astrophysics Data System (ADS)

    Lee, Bo Ram; Clark, S. E.; Hoffmann, D. H. H.; Niemann, C.

    2014-10-01

    The Raptor kJ class 1053 nm Nd:Glass laser in the Phoenix laser laboratory at University of California, Los Angeles, is used to ablate a dense debris plasma from a graphite or plastic target embedded in a tenuous, uniform, and quiescent ambient magnetized plasma in the Large Plasma Device (LAPD) which provides a peak plasma density of ni ~ 1013 cm-3. Its background magnetic field can vary between 200 and 1200 G. Debris ions from laser produced plasma expand out conically with super-Alfvénic speed (MA ~ 2) and expel the background magnetic field and ambient ions to form a diamagnetic bubble. The debris plasma interacts with the ambient plasma and the magnetic field and acts as a piston which can create collisionless shocks. Flute-type instabilities, which are probably large Larmor radius Rayleigh Taylor instabilities or lower hybrid drift instabilities, are developed at the bubble edge and also observed in the experiment. The amplitude and wavelength dependence of the instabilities, which might be a strong function of debris to ambient mass to charge ratio, is studied and the experimental results are compared to the two dimensional hybrid simulations. the Deutsche Forschungsgemeinschaft in the framework of the Excellence Initiative Darmstadt Graduate School of Energy Science and Engineering (GSC1070).

  8. PLASMA WAKE EXCITATION BY LASERS OR PARTICLE BEAMS

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; Benedetti, Carlo; Toth, Csaba; Geddes, Cameron; Leemans, Wim

    2011-04-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed. Plasma-based accelerators have attracted considerable attention owing to the ultrahigh field gradients sustainable in a plasma wave, enabling compact accelerators. These relativistic plasma waves are excited by displacing electrons in a neutral plasma. Two basic mechanisms for excitation of plasma waves are actively being researched: (i) excitation by the nonlinear ponderomotive force (radiation pressure) of an intense laser or (ii) excitation by the space-charge force of a dense charged particle beam. There has been significant recent experimental success using lasers and particle beam drivers for plasma acceleration. In particular, for laser-plasma accelerators (LPAs), the demonstration at LBNL in 2006 of high-quality, 1 GeV electron beams produced in approximately 3 cm plasma using a 40 TW laser. In 2007, for beam-driven plasma accelerators, or plasma-wakefield accelerators (PWFAs), the energy doubling over a meter to 42 GeV of a fraction of beam electrons on the tail of an electron beam by the plasma wave excited by the head was demonstrated at SLAC. These experimental successes have resulted in further interest in the development of plasma-based acceleration as a basis for a linear collider, and preliminary collider designs using laser drivers and beam drivers are being developed. The different physical mechanisms of plasma wave excitation, as well as the typical characteristics of the drivers, have implications for accelerator design. In the following, we identify the similarities and differences between wave excitation by lasers and particle beams. The field structure of the plasma wave driven by lasers or particle beams is discussed, as well as the

  9. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Formation of a coupled state in a laser plume

    NASA Astrophysics Data System (ADS)

    Kask, Nikolai E.; Michurin, Sergei V.; Fedorov, Gennadii M.; Chopornyak, D. B.

    2005-04-01

    The results of experimental investigation of a low-temperature plasma produced by laser irradiation at the surface of metal targets are reported. The optical characteristics and the plasma pressure in the laser plume are found to exhibit a threshold behaviour under vaporised-material density variation. The results are interpreted using the model of a coupled plasma state with limitation of plasma expansion.

  10. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  11. Physics considerations for laser-plasma linear colliders

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  12. Enhancement of terahertz wave generation from laser induced plasma

    SciTech Connect

    Xie Xu; Xu Jingzhou; Dai Jianming; Zhang, X.-C.

    2007-04-02

    It is well known that air plasma induced by ultrashort laser pulses emits broadband terahertz waves. The authors report the study of terahertz wave generation from the laser induced plasma where there is a preexisting plasma background. When a laser beam from a Ti:sapphire amplifier is used to generate a terahertz wave, enhancement of the generation is observed if there is another laser beam creating a plasma background. The enhancement of the terahertz wave amplitude lasts hundreds of picoseconds after the preionized background is created, with a maximum enhancement up to 250% observed.

  13. Explosion of relativistic electron vortices in laser plasmas

    NASA Astrophysics Data System (ADS)

    Lezhnin, Kirill; Kamenets, Fedor; Esirkepov, Timur; Bulanov, Sergei; Gu, Yanjun; Weber, Stefan; Korn, Georg

    2016-10-01

    The interaction of high intensity laser radiation with underdense plasma may lead to the formation of electron vortices. Though being quasistationary on an electron timescales, these structures tend to expand on a proton timescale due to Coloumb repulsion of ions. Using a simple analytical model of a stationary vortex as initial condition, 2D PIC simulations are performed. A number of effects are observed such as vortex boundary field intensification, multistream instabilities at the vortex boundary, and bending of the vortex boundary with the subsequent transformation into smaller electron vortices. This work was supported by the ELI Project No. CZ.02.1.01/0.0/0.0/15 008/0000162. We also would like to acknowledge the support from Russian Foundation for Basic Research (Grant No. 15-02-03063).

  14. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  15. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  16. Collaborative Research: Instability and transport of laser beam in plasma

    SciTech Connect

    Rose, Harvey Arnold; Lushnikov, Pavel

    2014-11-18

    Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.

  17. Role of laser photoablative therapy and expandable metal stents in colorectal carcinoma

    NASA Astrophysics Data System (ADS)

    Chennupati, Raja S.; Trowers, Eugene A.

    2000-05-01

    Metallic stents are effective in relieving colorectal obstruction in more than 80% of cases. Self expanding metallic stents allow for decompression of the proximal colon and preoperative bowel cleansing. Hence, emergent surgery for large bowel obstruction with its associated high morbidity and mortality might be avoided. Endoscopic laser photoablation and stent placement may successfully palliate inoperable colorectal cancer patients by maintaining luminal patency and avoiding the need for a colostomy. Major complications associated with metallic stents include pressure necrosis, perforation, bleeding and migration. The effectiveness of expandable metallic stents in obstructive colorectal carcinoma is critically reviewed. The authors present a concise review of the effectiveness of endoscopic laser photoablation and expandable metal stent placement.

  18. A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation

    SciTech Connect

    Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

    2012-05-01

    Langmuir probes (LP) are used extensively to characterize plasma environments produced by radio frequency, pulsed plasma thrusters, and laser ablation. We discuss here the development of a LP diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{micro}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  19. Resonant optical characteristics of an ultracold laser plasma

    SciTech Connect

    Kosarev, N I; Shaparev, N Ya

    2009-12-31

    We report a computer simulation study of light absorption, scattering and emission at 397 nm in an ultracold calcium ion plasma under resonant excitation. The results point to spectral asymmetry of light scattering, nonlinear absorption, and emission in the plasma. An approach is proposed for ultracold plasma diagnostics using resonant optical characteristics. (laser plasma)

  20. Study of Laser Created Metal Vapour Plasmas.

    DTIC Science & Technology

    1981-09-01

    appended as Appendix F. However, in this analysis we had assumed that the resonance state population can be regarded as being in equilibrium with the...value expected on the basis of LTE (local thermo- dynamic equilibrium ) and laser saturation, i.e., N N xlO21e -3 0 4 /k Te’ LTE o ogS(kTe) 3x(kTe )3...1 + g)R 1 / "I , (1) studies,"’ (v) neutral-hydrogen measurements where the rate of stimulated emission in Tokamaks ,?.ls and (vi) fusion-plasma

  1. Relativistic mirrors in laser plasmas (analytical methods)

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.

    2016-10-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.

  2. Quasilinear Theory of Laser-Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Neil, Alastair John

    The interaction of a high intensity laser beam with a plasma is generally susceptible to the filamentation instability due to nonuniformities in the laser profile. In ponderomotive filamentation high intensity spots in the beam expell plasma by ponderomotive force, lowering the local density, causing even more light to be focused into the already high intensity region. The result--the beam is broken up into a filamentary structure. Several optical smoothing techniques have been proposed to eliminate this problem. In the Random Phase Plates (RPS) approach, the beam is split into a very fine scale, time-stationary interference pattern. The irregularities in this pattern are small enough that thermal diffusion is then responsible for smoothing the illumination. In the Induced Spatial Incoherence (ISI) approach the beam is broken up into a larger scale but non-time-stationary interference pattern. In this dissertation we propose that the photons in an ISI beam resonantly interact with the sound waves in the wake of the beam. Such a resonant interaction induces diffusion in the velocity space of the photons. The diffusion will tend to spread the distribution of photons, thus if the diffusion time is much shorter than the e-folding time of the filamentation instability, the instability will be suppressed. Using a wave-kinetic description of laser-plasma interactions we have applied quasilinear theory to model the resonant interaction of the photons in an ISI beam with the beam's wake field. We have derived an analytic expression for the transverse diffusion coefficient. The quasilinear hypothesis was tested numerically and shown to yield an underestimate of the diffusion rate. By comparing the quasilinear diffusion rate, gamma_ {D}, with the maximum growth rate for the ponderomotive filamentation of a uniform beam, gamma_{f_{max}} , we have derived a worst case criterion for stability against ponderomotive filamentation: { gamma_{f_{max}} over gamma_ D} ~ .5 { ~ f^5/~ D

  3. Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces

    NASA Astrophysics Data System (ADS)

    Han, Jinghua; Luo, Li; Zhang, Yubo; Hu, Ruifeng; Feng, Guoying

    2016-09-01

    Particles can be removed from a silicon surface by means of irradiation and a laser plasma shock wave. The particles and silicon are heated by the irradiation and they will expand differently due to their different expansion coefficients, making the particles easier to be removed. Laser plasma can ionize and even vaporize particles more significantly than an incident laser and, therefore, it can remove the particles more efficiently. The laser plasma shock wave plays a dominant role in removing particles, which is attributed to its strong burst force. The pressure of the laser plasma shock wave is determined by the laser pulse energy and the gap between the focus of laser and substrate surface. In order to obtain the working conditions for particle removal, the removal mechanism, as well as the temporal and spatial characteristics of velocity, propagation distance and pressure of shock wave have been researched. On the basis of our results, the conditions for nano-particle removal are achieved. Project supported by the National Natural Science Foundation of China (Grant No. 11574221).

  4. Plasma detector for TEA CO2 laser pulse measurement

    NASA Astrophysics Data System (ADS)

    Ichikawa, Y.; Yamanaka, M.; Mitsuishi, A.; Fujita, S.; Yamanaka, T.; Yamanaka, C.; Tsunawaki, Y.; Iwasaki, T.; Takai, M.

    1983-10-01

    Laser-pulse evolution can be detected by measuring the emf generated by fast electrons in a laser-produced plasma when the laser radiation is focused onto a solid metal target in a vacuum. Using this phenomenon a 'plasma detector' is constructed, and its characteristics for the TEA CO2 laser radiation of intensity 10 to the 9th to 10 to the 10th W/sq cm are investigated experimentally. The plasma detector operates at room temperature and is strong against laser damages. For the evacuated plasma detector down to 0.1 torr, a maximum output voltage of 90 V and a rise time shorter than 1 ns are observed. The plasma detector, therefore, can be used as a power monitor for laser pulses and as a trigger voltage source.

  5. Mitigating Laser-Plasma Instabilities in Hohlraum Laser-Plasmas Using Magnetic Insulation

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Simakov, A.; Albright, B. J.; Yin, L.; Davies, J. R.; Fiksel, G.; Froula, D. H.; Betti, R.

    2012-10-01

    Controlling laser-plasma instabilities in hohlraum plasmas is important for achieving high-gain inertial fusion using indirect drive. Experiments at the National Ignition Facility (NIF) suggest that coronal electron temperatures in NIF hohlraums may be cooler than initially thought due to efficient thermal conduction from the under dense low-Z plasma to the dense high-Z hohlraum wall [1]. This leads to weaker Landau damping and stronger growth of parametric instabilities. For NIF laser-plasma conditions, it is shown that a 10-T external magnetic field may substantially reduce cross-field transport and may increase plasma temperatures, thus increasing linear Landau damping and mitigating parametric instabilities. Additional benefits may be realized since the hot electrons will be strongly magnetized and may be prevented from reaching the capsule or hohlraum walls. We will present calculations and simulations supporting this concept, and describe experimental plans to test the concept using gas-filled hohlraums at the Omega Laser Facility.[4pt] [1] M.D. Rosen et al., High Eng. Dens. Phys. 7, 180 (2011).

  6. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    SciTech Connect

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Polyanskiy, M. N.; Skaritka, J.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Lu, W.; Cook, N.; Ting, A.; Chen, Y-H

    2016-01-20

    Here we discuss how expanding the scope of relativistic plasma research to wavelengths longer than λ/≈0.8₋1.1μm covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ=9₋11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One for example is shock-wave ion acceleration from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR laser BESTIA will open new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of Laser Wake Field Accelerator (LWFA) studies into unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100-TW CO2 laser beam will be capable to efficiently generate plasma “bubbles” thousand times bigger in volume compared to a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate study of external seeding and staging of LWFA.

  7. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    DOE PAGES

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; ...

    2016-01-20

    Here we discuss how expanding the scope of relativistic plasma research to wavelengths longer than λ/≈0.8₋1.1μm covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ=9₋11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecularmore » gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One for example is shock-wave ion acceleration from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR laser BESTIA will open new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of Laser Wake Field Accelerator (LWFA) studies into unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100-TW CO2 laser beam will be capable to efficiently generate plasma “bubbles” thousand times bigger in volume compared to a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate study of external seeding and staging of LWFA.« less

  8. Free-electron lasers driven by laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Isono, F.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2017-03-01

    Laser-plasma accelerators (LPAs) have the potential to drive compact free-electron lasers (FELs). Even with LPA energy spreads typically at the percent level, the e-beam brightness can be excellent, due to the low normalized emittance (<0.5 µm) and high peak current (multi-kA) resulting from the ultra-short e-beam duration (few fs). It is critical, however, that in order to mitigate the effect of percent-level energy spread, one has to actively manipulate the phase-space distribution of the e-beam. We provide an overview of the methods proposed by the various LPA FEL research groups. At the BELLA Center at LBNL, we are pursuing the use of a chicane for longitudinal e-beam decompression (therefore greatly reducing the slice energy spread), in combination with short-scale-length e-beam transportation with an active plasma lens and a strong-focusing 4-m-long undulator. We present ELEGANT & GENESIS simulations on the transport and FEL gain, showing strong enhancement in output power over the incoherent background, and present estimates of the 3D gain length for deviations from the expected e-beam properties (varying e-beam lengths and emittances). To highlight the role of collective effects, we also present ELEGANT & GENESIS simulation results.

  9. Laser Plasma Coupling for High Temperature Hohlraums

    SciTech Connect

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  10. Direct design of laser-beam shapers, zoom-beam expanders, and combinations thereof

    NASA Astrophysics Data System (ADS)

    Duerr, Fabian; Thienpont, Hugo

    2016-10-01

    Laser sources have become indispensable for industrial materials processing applications like surface treatment, cutting or welding to name a few examples. Many of these applications pose different requirements on the delivered laser irradiance distribution. Some applications might not only favor a specific irradiance distribution (e.g. a at-top) but can additionally benefit from time-varying distributions. We present an overview of a recently developed design approach that allows direct calculation of virtually any refractive or reflective laser beam shaping system. The derived analytic solution is fully described by few initial parameters and does allow an increasingly accurate calculation of all optical surfaces. Unlike other existing direct design methods for laser beam shaping, there is almost no limitation in the number of surfaces that can be calculated with this approach. This is of particular importance for optical designs of dynamic systems such as variable optical beam expanders that require four (or more) optical surfaces. Besides conventional static beam shapers, we present direct designs of zoom beam expanders, and as a novelty, a class of dynamic systems that shape and expand the input beam simultaneously. Such dynamic zoom beam shapers consist of a minimal number of optical elements and provide a much more compact solution, yet achieving excellent overall optical performance throughout the full range of zoom positions.

  11. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    SciTech Connect

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.

  12. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE PAGES

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Composition and dynamics of an erosion plasma produced by microsecond laser pulses

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Sebrant, A. Yu; Stepanova, M. A.

    1995-08-01

    The ion and energy compositions were determined and the dynamics was studied of an erosion plume formed by microsecond CO2 laser pulses incident on a graphite target. The ionic emission lines were used to find the electron density and temperature of the plasma on the target surface. The temperature of the plasma source did not change throughout the line emission time (4 μs). At the plasma recombination stage the lines of the C II, C III, and C IV ions were accompanied by bands of the C2 molecule near the target surface and also near the surface of an substrate when a plasma flow interacted with it. Ways were found for controlling the plume expansion anisotropy and for producing plasma flows with controlled parameters by selection of the conditions during formation of a quasisteady erosion plasma flow.

  14. Transition from single to multiple axial potential structure in expanding helicon plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Chattopadhyay, P. K.; Ghosh, J.; Pal, R.; Bora, D.

    2017-02-01

    Transition from single to multiple axial potential structure (MAPS) formation is reported in expanding helicon plasma. This transition is created by forming a cusp magnetic field at the downstream after the expansion throat. Two distinct potential drops are separated by a uniform axial potential zone. Non-uniform axial density distribution exists in expanding helicon systems. A cusp-like field nourishes both the axial density gradients sufficient enough for the formation of these two distinct potential drops. It is also shown that both single and multiple axial potential structures are observed only when both geometric and magnetic expansions closely coincide with each other. Coexistence of these two expansions at the same location enhances plasma expansion which facilitates deviation from Boltzmann distribution and violates quasi-neutrality locally.

  15. Experiments with laser driven plasma jets

    NASA Astrophysics Data System (ADS)

    Nicolai, Philippe

    2008-04-01

    Laboratory studies can address issues relevant to astrophysics^1 and in some cases improve our understanding of the physical processes that occur in astrophysical objects. So issues related to the jet propagation and collimation over considerable distance and their interactions with surrounding media have begun to be addressed these last years. Laboratory plasmas and astrophysical objects have different length, time and density scales. However, the typical velocities are the same, of a few hundred km/s and the similarity criteria^2 can be applied to scale the laboratory jets to astrophysical conditions. In this presentation, we use a method of jet formation^3 which allows to launch a very fast jet having a velocity around 400 km/s by using a relatively small laser energy, of the order of 100 J. The jet has a Mach number greater than 10, a length of a few mm, and a radius of a few tenths of mm. The interaction of these jets with a gas puff has been recently studied in an experiment carried out at the PALS laser facility. Varying gas pressure and composition, we show that the nature of interaction zone changes from a quasi adiabatic outflow to a strongly radiatively cooling jet. The use of various diagnostics, allows to relate the x-ray emission to the density map of the interaction zone. Already observed in astrophysical objets for strongly different time and space scales, these structures are interpreted in our laboratory experiment by using a semi-analytical model and 2D radiation hydrodynamic simulations. [1] B. Remington et al, Rev. Mod. Phys. 78, 755 (2007) [2] D. Ryutov et al, Phys . Plasmas 8, 1804 (2001) [3] Ph. Nicolai et al, Phys. Plasmas 13, 062701 (2007)

  16. Surfatron laser-plasma accelerator: prospects and limitations

    SciTech Connect

    Joshi, C.

    1983-01-01

    The surfatron laser-plasma accelerator is an extension of the plasma beat wave accelerator scheme. It utilizes very intense electric fields, 10/sup 9/ to 10/sup 10/ V/cm, associated with focussed laser beams to accelerate particles. (GHT)

  17. Simulations for Plasma and Laser Acceleration

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Lehe, Rémi

    Computer simulations have had a profound impact on the design and understanding of past and present plasma acceleration experiments, and will be a key component for turning plasma accelerators from a promising technology into a mainstream scientific tool. In this article, we present an overview of the numerical techniques used with the most popular approaches to model plasma-based accelerators: electromagnetic particle-in-cell, quasistatic and ponderomotive guiding center. The material that is presented is intended to serve as an introduction to the basics of those approaches, and to advances (some of them very recent) that have pushed the state of the art, such as the optimal Lorentz-boosted frame, advanced laser envelope solvers and the elimination of numerical Cherenkov instability. The particle-in-cell method, which has broader interest and is more standardized, is presented in more depth. Additional topics that are cross-cutting, such as azimuthal Fourier decomposition or filtering, are also discussed, as well as potential challenges and remedies in the initialization of simulations and output of data. Examples of simulations using the techniques that are presented have been left out of this article for conciseness, and because simulation results are best understood when presented together, and contrasted with theoretical and/or experimental results, as in other articles of this volume.

  18. Comparative study on interactions between laser and arc plasma during laser-GTA welding and laser-GMA welding

    NASA Astrophysics Data System (ADS)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa

    2016-10-01

    This paper describes an investigation on differences in interactions between laser and arc plasma during laser-gas tungsten arc (LT) welding and laser-gas metal arc (LM) welding. The characteristics of LT heat source and LM heat source, such as plasma behavior, heat penetration ability and spectral information were comparably studied. Based on the plasma discharge theory, the interactions during plasma discharge were modeled and analyzed. Results show that in both LT and LM welding, coupling discharge between the laser keyhole plasma and arc happens, which strongly enhance the arc. But, the enhancing effect in LT welding is much more sensitive than that in LM welding when parameters are adjusted.

  19. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-09-09

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity (<10{sup 14}Wcm{sup -2}) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  20. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Polyanskiy, M. N.; Skaritka, J.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Lu, W.; Cook, N.; Ting, A.; Chen, Y.-H.

    2016-03-01

    Expanding the scope of relativistic plasma research to wavelengths longer than the λ/≈   0.8-1.1 μm range covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ  =   9-11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One example is shock-wave ion acceleration (SWA) from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at an energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR BESTIA will open up new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of laser wakefield accelerator (LWFA) studies into the unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100 TW CO2 laser beam will be capable of efficiently generating plasma ‘bubbles’ a thousand times greater in volume compared with a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate the study of external seeding and staging of LWFAs.

  1. Laser Initiation and Radiofrequency Sustainment of Seeded Air Plasmas

    DTIC Science & Technology

    2006-04-01

    pressure plasma that projects well away from the antenna by this means that could not be obtained by RF alone. The initial plasma ionization also...a much lower RF power levels and with more enhanced axial projection away from the antenna with laser initiation than without. Power densities of 1...SCIENTECH ( Astral AD30). In order to account for the laser attenuation by the UV window, the UV window is placed in front of the energy meter. A laser

  2. Application of delrin in laser plasma micro-propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Gao, H.; Gao, L.; Xing, J.; Fan, Z. J.

    2013-09-01

    The interaction between polymer of Delrin with nano-second pulse laser is investigated in laser plasma micro-propulsion. The coupling coefficient and specific impulse are measured respectively. The coupling coefficient about 42 dyne/W and specific impulse up to 646 s have been obtained. Moreover, the surface images after ablation have been observed. It is found that Delrin has less debris on ablation surface. This indicates that Delrin is a potential polymer material in laser plasma propulsion.

  3. Electron-ion recombination in laser-produced plasmas using optical interferometry

    NASA Astrophysics Data System (ADS)

    Heilmann, Nathan; Peatross, Justin; Bergeson, Scott

    2011-10-01

    We are developing methods to measure electron-ion recombination in laser-produced plasmas. A high intensity fs laser pulse is focused into a gas jet and forms a plasma. A weaker probe beam first passes through a slightly mis-aligned Michelson interferometer and is also focused into the plasma. The probe ``beam'' is actually two temporally coincident but spatially offset laser beams. One of the laser beams passes through the plasma and the other does not. These beams expand and produce interference fringes in the far field, similar to a Young's double slit experiment. The spatial position of these fringes depends on the differential phase shift in the two probe beams. This differential shift is due to the electron density in the plasma, which is probed by only one beam. By measuring the fringe shift as a function of time after the plasma is formed, we should be able to measure the time-evolving electron density. At sufficiently high densities, three-body recombination will become important. In that regime, the measured recombination rate can be used to determine the electron temperature.

  4. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    SciTech Connect

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle; Schollmeier, Marius; Scoglietti, Daniel; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher; Vesey, Roger A.; Porter, John L.

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. We determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.

  5. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    DOE PAGES

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; ...

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less

  6. Efficacy of laser photoablative therapy and expandable metal stents for esophageal carcinoma

    NASA Astrophysics Data System (ADS)

    Balachandar, Gowra; Trowers, Eugene A.

    2000-05-01

    Malignant dysphagia is a serious condition in which 70% of patients die within one year, regardless of the treatment received. It provokes a rapid deterioration of a patient's physical condition and a significant worsening of quality of life. The surgical treatment of dysphagia is frequently complicated with technical difficulties, and often the tumors cannot be excised because of extensive invasion into adjacent structures. Furthermore, many patients are considered inoperable due to advanced age, associated diseases and malnutrition. Laser photoablative therapy coupled with expandable metal stents restores luminal patency in more than 80% of patients allowing them to eat liquids and soft foods. The efficacy of laser photoablative therapy and expandable metal stents for the palliation esophageal carcinoma will be critically reviewed.

  7. Filamentation of a relativistic short pulse laser in a plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Tripathi, V. K.; Sawhney, B. K.

    2006-06-01

    An intense short pulse laser propagating through a plasma undergoes filamentation instability under the combined effects of relativistic mass variation and ponderomotive force-induced electron density depression. These two nonlinearities superimpose each other. In a tenuous plasma, the filament size scales as {\\sim}( c / \\omega _p\\; a_0 ) \\sqrt 2 \\gamma _0^{1/2} , where ω p is the plasma frequency, a0 is the normalized laser amplitude and γ 0 is the relativistic gamma factor.

  8. Spectroscopic diagnostics of plasma during laser processing of aluminium

    NASA Astrophysics Data System (ADS)

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  9. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  10. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  11. Observation of weakly and strongly diverging ion beams in a magnetically expanding plasma

    SciTech Connect

    Takahashi, K.; Fujiwara, T.

    2009-02-09

    The spatial distribution of an ion beam created in a magnetically expanding plasma using permanent magnets is experimentally investigated for 0.35 and 1 mTorr, where the magnetic-field strength is about 100 G in the plasma source and is decreasing into a few gauss in the diffusion chamber. The beam profile for 0.35 mTorr is weakly divergent. On the other hand, the strongly diverging beam is detected for 1 mTorr. The results are discussed from the viewpoint of the plasma-potential structures and imply the beam divergence caused by the radial electric fields in the ion acceleration region and the diffusion chamber.

  12. Ion acceleration in a solenoid-free plasma expanded by permanent magnets

    SciTech Connect

    Takahashi, K.; Oguni, K.; Yamada, H.; Fujiwara, T.

    2008-08-15

    Ion acceleration is achieved in a low-pressure solenoid-free plasma expanded by permanent magnet arrays. Although a permanent magnet normally forms cusp magnetic fields which prevents plasma diffusion and double layer formation, by employing double concentric arrays of permanent magnets, a constant field area, and a diverging magnetic field can be generated near the outlet of the plasma source. In the source, a rapid potential drop with 4 cm thickness from 50 V to 20 V is generated at the diverging field area for 0.35 mTorr and a supersonic ion beam accelerated through the potential drop is observed in the diffusion chamber. The beam energy can be increased up to over 40 eV with a decrease in gas pressure.

  13. Modulation instability of laser pulse in magnetized plasma

    SciTech Connect

    Jha, Pallavi; Kumar, Punit; Raj, Gaurav; Upadhyaya, Ajay K.

    2005-12-15

    Modulation instability of a laser pulse propagating through transversely magnetized underdense plasma is studied. It is observed that interaction of laser radiation with plasma in the presence of uniform magnetic field results in an additional perturbed transverse plasma current density along with the relativistic and ponderomotive nonlinear current densities, thus affecting the modulational interaction. In the plane wave limit it is observed that modulational interaction is more stable for magnetized plasma as compared to the unmagnetized case. The analysis shows that there is a significant reduction in the growth rate of modulation instability over a given range of unstable wave numbers due to magnetization of plasma.

  14. Microwave interferometry of laser induced air plasmas formed by short laser pulses

    SciTech Connect

    Jungwirth, P.W.

    1993-08-01

    Applications for the interaction of laser induced plasmas with electromagnetic probes requires time varying complex conductivity data for specific laser/electromagnetic probe geometries. Applications for this data include plasma switching (Q switching) and the study of ionization fronts. The plasmas were created in laboratory air by 100 ps laser pulses at a wavelength of 1 {mu}m. A long focal length lens focused the laser pulse into WR90 (X band) rectangular waveguide. Two different laser beam/electromagnetic probe geometries were investigated. For the longitudinal geometry, the laser pulse and the microwave counterpropagated inside the waveguide. For the transverse geometry, the laser created a plasma ``post`` inside the waveguide. The effects of the laser beam deliberately hitting the waveguide were also investigated. Each geometry exhibits its own characteristics. This research project focused on the longitudinal geometry. Since the laser beam intensity varies inside the waveguide, the charge distribution inside the waveguide also varies. A 10 GHz CW microwave probe traveled through the laser induced plasma. From the magnitude and phase of the microwave probe, a spatially integrated complex conductivity was calculated. No measurements of the temporal or spatial variation of the laser induced plasma were made. For the ``plasma post,`` the electron density is more uniform.

  15. Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-06-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  16. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    SciTech Connect

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  17. Laser plasma influence on the space-time structure of powerful laser radiation

    NASA Astrophysics Data System (ADS)

    Ananyin, O. B.; Bogdanov, G. S.; Vovchenko, E. D.; Gerasimov, I. A.; Kuznetsov, A. P.; Melekhov, A. P.

    2016-01-01

    This paper deals with the influence of laser plasma on the structure of the radiation field of a powerful Nd-glass laser with pulse energy up to 30 J and with the diameter of the output beam 45 mm. Laser plasma is generated by focusing the laser radiation on a low-density target such as nylon mesh and teflon or mylar films. Temporal profile of the laser pulse with a total duration of 25 ns consists of a several short pulse train. Duration of each pulse is about 2 ns. Notable smoothing of spatially non-uniform radiation structure was observed in the middle of the laser pulse.

  18. Non-thermal ablation of expanded polytetrafluoroethylene with an intense femtosecond-pulse laser.

    PubMed

    Hashida, M; Mishima, H; Tokita, S; Sakabe, S

    2009-07-20

    Ablation of expanded polytetrafluoroethylene without disruption of the fine porous structure is demonstrated using an intense femtosecond-pulse laser. As a result of laser-matter interactions near ablation threshold fluence, high-energy ions are emitted, which cannot be produced by thermal dissociation of the molecules. The ion energy is produced by Coulomb explosion of the elements of (-CF(2)-CF(2)-)(n) and the energy spectra of the ions show contributions from the Coulomb explosions of the ions rather than those of thermal expansion to generate high-energy ions. The dependence of ion energy on the laser fluence of a 180-fs pulse, compared with that of a 400-ps pulse, also suggests that the high-energy ions are accelerated by Coulomb explosion.

  19. An experimental study of laser supported hydrogen plasmas

    NASA Technical Reports Server (NTRS)

    Vanzandt, D. M.; Mccay, T. D.; Eskridge, R. H.

    1984-01-01

    The rudiments of a rocket thruster which receives its enthalpy from an energy source which is remotely beamed from a laser is described. An experimental study now partially complete is discussed which will eventually provide a detailed understanding of the physics for assessing the feasibility of using hydrogen plasmas for accepting and converting this energy to enthalpy. A plasma ignition scheme which uses a pulsed CO2 laser has been developed and the properties of the ignition spark documented, including breakdown intensities in hydrogen. A complete diagnostic system capable of determining plasma temperature and the plasma absorptivity for subsequent steady state absorption of a high power CO2 laser beam are developed and demonstrative use is discussed for the preliminary case study, a two atmosphere laser supported argon plasma.

  20. Plasma Jet Interaction with Thomson Scattering Probe Laser

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  1. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    SciTech Connect

    Wu, Jian; Wei, Wenfu; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag model was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.

  2. Two-temperature modeling of laser sustained hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Mertogul, Ayhan E.; Krier, Herman

    1994-10-01

    A kinetic nonequilibrium model of laser sustained hydrogen plasmas has been formulated and solved for the prediction of steady-state energy transport processes. This model is the first of its kind and includes a discretized beam ray-trace with a variable index of refraction based upon plasma electron number density for a 10.6-micron CO2 laser input. Model results for fraction of incident laser power absorbed, and fraction of incident laser power retained by the hydrogen gas have compared favorably with experimental results. The model has been used to provide predictions of laser sustained plasma (LSP) performance well outside the realm of experiments to incident powers as high as 700 kW. At the gas pressures studied, minimal kinetic nonequilibrium was observed in LSP core regions, even for 700-kW laser power.

  3. Measurement and Analysis of CN Violet System in Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Behery, Sultan A.; Parigger, Christian G.

    2014-03-01

    Pulsed, infrared Nd:YAG laser radiation is utilized to ablate material from carbon-containing samples in air. Time-resolved measurements of the micro-plasma show well-developed diatomic spectra of the CN violet system. Of Interest are interferences from the C2 Deslandres D'Azambuja system in the CN spectra, as previously noted in experiments with CO2 laser radiation focused into CO2 gas expanding into air. The recombination emission spectra from diatomic species, e.g., CN or C2, clearly indicate temperatures in excess of 6000 Kelvin. Studies of the CO2 TEA laser-induced micro-plasmas show these highly excited, high-temperature molecular transitions several tens of microseconds after plasma generation, mixed with signatures of Stark-broadened atomic lines. Spectroscopic fitting with accurate molecular line strengths of superposed emission spectra is of current interest, including study of the C2 Deslandres D'Azambuja system near the 4-4 band of the CN Δv = 0 sequence of the CN B2Σ+ --> X2Σ+ Violet System. In addition, discussed are physics phenomena associated with laser-induced optical breakdown. Laser-induced plasma applications include characterization of carbon and nitrogen containing materials.

  4. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    SciTech Connect

    Lafleur, T.; Charles, C.; Boswell, R. W.; Takahashi, K.

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  5. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Mechanism of high-energy electron production in a laser plasma

    NASA Astrophysics Data System (ADS)

    Belyaev, V. S.

    2004-01-01

    A mechanism of high-energy electron production in the interaction of high-intensity short laser pulses with a solid target is proposed and analysed. The theoretical dependences of fast-electron kinetic energy on the parameters of laser radiation and target material are given. The effect of ionisation of the target material is considered. The generation of ultrastrong magnetic fields in the laser plasma is shown to play the key part in the formation, transfer, and acceleration of electron beams. This results in the production of vortex electric fields accelerating electrons. The theoretical dependences yield well-proved limits for the electron energy and are in good agreement with the results of experiments performed on high-intensity laser setups, including the results obtained with participation of the author.

  6. Emission and afterglow properties of an expanding RF plasma with nonuniform neutral gas density

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2016-08-01

    We describe some notable aspects of the light emission and afterglow properties in pulsed, high-density ( 1018-1020 m-3 ) argon inductively coupled discharges initiated following fast gas injection. The plasma was created in a long, narrow discharge tube and then expanded downstream of the radiofrequency (RF) antenna into a large chamber. Fast camera images of the expanding plasma revealed a multi-phase time-dependent emission pattern that did not follow the ion density distribution. Dramatic differences in visible brightness were observed between discharges with and without an externally applied magnetic field. These phenomena were studied by tracking excited state populations using passive emission spectroscopy and are discussed in terms of the distinction between ionizing and recombining phase plasmas. Additionally, a method is presented for inferring the unknown neutral gas pressure in the discharge tube from the time-dependent visible and infrared emission measured by a simple photodiode placed near the antenna. In magnetized discharges created with fast gas injection, the downstream ion density rose by Δni˜1018 m-3 in the first ˜100 μs after the RF power was turned off. The conditions conducive to this afterglow density rise are investigated in detail, and the effect is tentatively attributed to pooling ionization.

  7. Laser-plasma booster for ion post acceleration

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Kawata, S.; Takahashi, K.; Izumiyama, T.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.; Li, Y. T.; Sheng, Z. M.; Klimo, O.; Limpouch, J.; Andreev, A. A.

    2013-11-01

    A remarkable ion energy increase is demonstrated for post acceleration by a laser-plasma booster. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when this intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase in the magnetic field, a longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. Our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by several tens of MeV.

  8. Modeling laser-plasma acceleration in the laboratory frame

    SciTech Connect

    2011-01-01

    A simulation of laser-plasma acceleration in the laboratory frame. Both the laser and the wakefield buckets must be resolved over the entire domain of the plasma, requiring many cells and many time steps. While researchers often use a simulation window that moves with the pulse, this reduces only the multitude of cells, not the multitude of time steps. For an artistic impression of how to solve the simulation by using the boosted-frame method, watch the video "Modeling laser-plasma acceleration in the wakefield frame."

  9. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  10. Strongly-coupled plasmas formed from laser-heated solids

    PubMed Central

    Lyon, M.; Bergeson, S. D.; Hart, G.; Murillo, M. S.

    2015-01-01

    We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred. PMID:26503293

  11. The Precision Expandable Radar Calibration Sphere (PERCS) With Applications for Laser Imaging and Ranging

    NASA Astrophysics Data System (ADS)

    Bernhardt, P.; Nicholas, A.; Thomas, L.; Davis, M.; Hoberman, C.; Davis, M.

    The Naval Research Laboratory will provide an orbiting calibration sphere to be used with ground-based laser imaging telescopes and HF radio systems. The Precision Expandable Radar Calibration Sphere (PERCS) is a practical, reliable, high-performance HF calibration sphere and laser imaging target to orbit at about 600 km altitude. The sphere will be made of a spherical wire frame with aspect independent radar cross section in the 3 to 35 MHz frequency range. The necessary launch vehicle to place the PERCS in orbit will be provided by the Department of Defense Space Test Program. The expandable calibration target has a stowed diameter of 1 meter and a fully deployed diameter of 10.2 meters. A separate deployment mechanism is provided for the sphere. After deployment, the Precision Expandable Radar Calibration Sphere (PERCS) with 180 vertices will be in a high inclination orbit to scatter radio pulses from a number of ground systems, including (1) over-the-horizon (OTH) radars operated by the United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral region mapping; and (4) HF direction finding for Navy ships. With the PERCS satellite, the accuracy of HF radars can be periodically checked for range, elevation, and azimuth errors. In addition, each of the 360 vertices on the PERCS sphere will support an optical retro-reflector for operations with ground laser facilities used to track satellites. The ground laser systems will be used to measure the precise location of the sphere within one cm accuracy and will provide the spatial orientation of the sphere as well as the rotation rate. The Department of Defense facilities that can use the corner-cube reflectors on the PERCS include (1) the Air Force Maui Optical Site (AMOS), (2) the Starfire Optical Range (SOR), and (3) the NRL Optical Test Facility (OTF).

  12. Axial force imparted by a current-free magnetically expanding plasma

    SciTech Connect

    Takahashi, Kazunori; Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod W.

    2012-08-15

    The axial force imparted from a magnetically expanding, current-free, radiofrequency plasma is directly measured. For an argon gas flow rate of 25 sccm and an effective rf input power of {approx}800W, a maximum force of {approx}6mN is obtained; {approx}3mN of which is transmitted via the expanding magnetic field. The measured forces are reasonably compared with a simple fluid model associated with the measured electron pressure. The model suggests that the total force is the sum of an electron pressure inside the source and a Lorentz force due to the electron diamagnetic drift current and the applied radial magnetic field. It is shown that the Lorentz force is greatest near the magnetic nozzle surface where the radial pressure gradient is largest.

  13. Expansion of radiative cooling of the laser induced plasma

    SciTech Connect

    Wen, Sy-Bor; Mao, Xianglei; Liu, Chunyi; Greif, Ralph; Russo,Richard

    2006-05-05

    To study the expansion and cooling process of the laser induced plasma generated by nanosecond pulsed laser ablation, experiments have been conducted which measure the position of the external shockwaves and the temperature of the vapor plumes. The positions of external shockwaves were determined by a femtosecond laser time-resolved imaging system. Vapor plume temperature was determined from spectroscopic measurements of the plasma emission lines. A model which considers the mass, momentum, and energy conservation of the region affected by the laser energy was developed. It shows good agreement to the experimental data.

  14. Mid-infrared lasers for energy frontier plasma accelerators

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Polyanskiy, M. N.; Kimura, W. D.

    2016-09-01

    Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO2 lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the design of such a machine. The revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO2 laser technology.

  15. Laser-plasma interactions relevant to Inertial Confinement Fusion

    SciTech Connect

    Wharton, K. B.

    1998-11-01

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a

  16. Compression of laser radiation in plasmas using electromagnetic cascading

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei

    2005-10-01

    We theoretically suggest an approach to generation of trains of few-femtosecond electromagnetic (EM) pulses in rarefied plasmas. The technique is based on the near-resonant laser beat wave excitation of electron plasma wave (EPW). The EPW modifies the refractive index of plasma thus inducing the periodic phase modulation of the driving laser (the modulation period being equal to the beat period). In spectral terms, the phase modulation is expressed as an EM cascading with the laser bandwidth proportional to the product of the plasma length, laser wavelength, and electron density perturbation in the EPW. In the case of beat wave downshifted from the Langmuir plasma frequency the longer-wavelength spectral components are advanced in time with respect to the shorter-wavelength ones near the center of each laser beat note. The anomalous group velocity dispersion of plasma compresses so chirped beat notes to a few-laser-pulse duration thus creating a train of sharp EM spikes with the beat wave periodicity. Depending on the plasma and laser parameters, chirping and compression can be implemented either concurrently in the same, or sequentially in different plasmas. Evolution of the laser beat wave and electron density perturbations is described in time and in two spatial dimensions (2D) in a weakly relativistic approximation. Using the compression effect, we demonstrate that the relativistic bi-stability regime of the EPW excitation [G. Shvets, Phys. Rev. Lett. 93, 195004 (2004)] can be achieved with the initially sub-threshold beat wave pulse. The effects of 2D evolution such as the relativistic self-focusing and cascade focusing are also addressed. We conjecture that this technique could be used for increasing the local power of sub- picosecond petawatt laser beams.

  17. Dynamics of neutrals and ions in an ultrafast laser produced Zn plasma

    SciTech Connect

    Smijesh, N.; Rao, Kavya H.; Philip, Reji

    2015-03-15

    Optical time of flight dynamics of neutrals and ions in an ultrafast laser produced zinc plasma generated by irradiating a solid zinc target using 100 fs laser pulses is investigated. An acceleration of ions is observed which arises from internal Coulomb forces acting between charged species in the plasma. Some of the fast ions recombine with electrons in the plasma and generate fast neutrals. Plasma plume imaging performed at various ambient pressures indicates adiabatic expansion at lower pressures and plume front deceleration at higher pressures: at lower pressures the plume front-time (R-t) plot displays a linear expansion, shock wave model fits to the data at 5 Torr and at higher pressures the data fits better to the drag model. Furthermore, around an intermediate pressure of 10 Torr, the R-t plot fits to the shock wave model at earlier stages of plasma expansion, while it fits to the drag model at the later stages. These investigations provide relevant information on the acceleration of ions and neutrals in an expanding zinc plasma plume produced by ultrafast laser pulses.

  18. Diagnostics of recombining laser plasma parameters based on He-like ion resonance lines intensity ratios

    NASA Astrophysics Data System (ADS)

    Ryazantsev, S. N.; Skobelev, I. Yu; Faenov, A. Ya; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.

    2016-11-01

    While the plasma created by powerful laser expands from the target surface it becomes overcooled, i.e. recombining one. Improving of diagnostic methods applicable for such plasma is rather important problem in laboratory astrophysics nowadays because laser produced jets are fully scalable to young stellar objects. Such scaling is possible because of the plasma hydrodynamic equations invariance under some transformations. In this paper it is shown that relative intensities of the resonance transitions in He-like ions can be used to measure the parameters of recombining plasma. Intensity of the spectral lines corresponding to these transitions is sensitive to the density in the range of 1016-1020 cm-3 while the temperature ranges from 10 to 100 eV for ions with nuclear charge Zn ∼ 10. Calculations were carried out for F VIII ion and allowed to determine parameters of plasma jets created by nanosecond laser system ELFIE (Ecole Polytechnique, France) for astrophysical phenomenon modelling. Obtained dependencies are quite universal and can be used for any recombining plasma containing He-like fluorine ions.

  19. High-order harmonics from laser-irradiated plasma surfaces

    SciTech Connect

    Teubner, U.; Gibbon, P.

    2009-04-15

    The investigation of high-order harmonic generation (HHG) of femtosecond laser pulses by means of laser-produced plasmas is surveyed. This kind of harmonic generation is an alternative to the HHG in gases and shows significantly higher conversion efficiency. Furthermore, with plasma targets there is no limitation on applicable laser intensity and thus the generated harmonics can be much more intense. In principle, harmonic light may also be generated at relativistic laser intensity, in which case their harmonic intensities may even exceed that of the focused laser pulse by many orders of magnitude. This phenomenon presents new opportunities for applications such as nonlinear optics in the extreme ultraviolet region, photoelectron spectroscopy, and opacity measurements of high-density matter with high temporal and spatial resolution. On the other hand, HHG is strongly influenced by the laser-plasma interaction itself. In particular, recent results show a strong correlation with high-energy electrons generated during the interaction process. The harmonics are a promising tool for obtaining information not only on plasma parameters such as the local electron density, but also on the presence of large electric and magnetic fields, plasma waves, and the (electron) transport inside the target. This paper reviews the theoretical and experimental progress on HHG via laser-plasma interactions and discusses the prospects for applying HHG as a short-wavelength, coherent optical tool.

  20. Development And Optical Absorption Properties Of A Laser Induced Plasma During CO2-Laser Processing

    NASA Astrophysics Data System (ADS)

    Beyer, E.; Bakowsky, L.; Loosen, P.; Poprawe, R.; Herziger, G.

    1984-03-01

    Laser material processing is accompanied by a laser induced plasma in front of the target surface as soon as the laser radiation exceeds a certain critical intensity. For cw CO2-laser machining of metal targets the threshold for plasma onset is about 106 W/cm2. Critical condition for plasma generation at this intensity level is to reach evaporation temperature at the target's surface. At intensity levels exceeding 106 W/cm2 the laser light is interacting with the laser induced plasma and then the plasma in turn interacts with the target. The absorptivity is no longer constant, but increases with increasing intensity of the incident radiation, so that the total amount of power coupled to the target is increasing. This holds up to intensity levels of 2'10 Wicm2. Then the plasma begins to withdraw from the target surface, thus interrupting plasma-target interaction so that the laser power is no longer coupled into the target completely. The results of laser welding (welding depth) in the intensity level of 106 W/cm2 are governed by the product of incident intensity times focus radius, so that welding results are a measure to determine focus radius and laser intensity.

  1. Tuning of betatron radiation in laser-plasma accelerators via multimodal laser propagation through capillary waveguides

    NASA Astrophysics Data System (ADS)

    Curcio, A.; Giulietti, D.; Petrarca, M.

    2017-02-01

    The betatron radiation from laser-plasma accelerated electrons in dielectric capillary waveguides is investigated. The multimode laser propagation is responsible for a modulated plasma wakefield structure, which affects the electron transverse dynamics, therefore influencing the betatron radiation spectra. Such a phenomenon can be exploited to tune the energy spectrum of the betatron radiation by controlling the excitation of the capillary modes.

  2. Plasma formation in diode pumped alkali lasers sustained in Cs

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Kushner, Mark J.

    2016-11-01

    In diode pumped alkali lasers (DPALs), lasing action occurs on the resonant lines of alkali atoms following pumping by broadband semiconductor lasers. The goal is to convert the efficient but usually poor optical quality of inexpensive diode lasers into the high optical quality of atomic vapor lasers. Resonant excitation of alkali vapor leads to plasma formation through the excitation transfer from the 2P states to upper lying states, which then are photoionized by the pump and intracavity radiation. A first principles global model was developed to investigate the operation of the He/Cs DPAL system and the consequences of plasma formation on the efficiency of the laser. Over a range of pump powers, cell temperatures, excitation frequency, and mole fraction of the collision mixing agent (N2 or C2H6), we found that sufficient plasma formation can occur that the Cs vapor is depleted. Although N2 is not a favored collisional mixing agent due to large rates of quenching of the 2P states, we found a range of pump parameters where laser oscillation may occur. The poor performance of N2 buffered systems may be explained in part by plasma formation. We found that during the operation of the DPAL system with N2 as the collisional mixing agent, plasma formation is in excess of 1014-1015 cm-3, which can degrade laser output intensity by both depletion of the neutral vapor and electron collisional mixing of the laser levels.

  3. Improving the Capabilities of a Continuum Laser Plasma Interaction Code

    SciTech Connect

    Hittinger, J F; Dorr, M R

    2006-06-15

    The numerical simulation of plasmas is a critical tool for inertial confinement fusion (ICF). We have been working to improve the predictive capability of a continuum laser plasma interaction code pF3d, which couples a continuum hydrodynamic model of an unmagnetized plasma to paraxial wave equations modeling the laser light. Advanced numerical techniques such as local mesh refinement, multigrid, and multifluid Godunov methods have been adapted and applied to nonlinear heat conduction and to multifluid plasma models. We describe these algorithms and briefly demonstrate their capabilities.

  4. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: X-ray spectral diagnostics of plasmas heated by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bryunetkin, B. A.; Skobelev, I. Yu; Faenov, A. Ya; Khakhalin, S. Ya; Kalashnikov, M. P.; Nickles, P. V.; Schnürer, M.

    1993-06-01

    The properties of a magnesium plasma heated by picosecond laser pulses have been determined by x-ray spectral methods. Experiments were carried out at a laser power density ~ 1.5 · 1018 W/cm2. The x-ray spectra were detected by spectrographs with a plane CsAP crystal and a mica crystal bent into part of a spherical surface 10 cm in radius. The experimental data are compared with predictions of a calculation on the time-varying kinetics of multiply charged magnesium ions.

  5. Multistage coupling of independent laser-plasma accelerators.

    PubMed

    Steinke, S; van Tilborg, J; Benedetti, C; Geddes, C G R; Schroeder, C B; Daniels, J; Swanson, K K; Gonsalves, A J; Nakamura, K; Matlis, N H; Shaw, B H; Esarey, E; Leemans, W P

    2016-02-11

    Laser-plasma accelerators (LPAs) are capable of accelerating charged particles to very high energies in very compact structures. In theory, therefore, they offer advantages over conventional, large-scale particle accelerators. However, the energy gain in a single-stage LPA can be limited by laser diffraction, dephasing, electron-beam loading and laser-energy depletion. The problem of laser diffraction can be addressed by using laser-pulse guiding and preformed plasma waveguides to maintain the required laser intensity over distances of many Rayleigh lengths; dephasing can be mitigated by longitudinal tailoring of the plasma density; and beam loading can be controlled by proper shaping of the electron beam. To increase the beam energy further, it is necessary to tackle the problem of the depletion of laser energy, by sequencing the accelerator into stages, each powered by a separate laser pulse. Here, we present results from an experiment that demonstrates such staging. Two LPA stages were coupled over a short distance (as is needed to preserve the average acceleration gradient) by a plasma mirror. Stable electron beams from a first LPA were focused to a twenty-micrometre radius--by a discharge capillary-based active plasma lens--into a second LPA, such that the beams interacted with the wakefield excited by a separate laser. Staged acceleration by the wakefield of the second stage is detected via an energy gain of 100 megaelectronvolts for a subset of the electron beam. Changing the arrival time of the electron beam with respect to the second-stage laser pulse allowed us to reconstruct the temporal wakefield structure and to determine the plasma density. Our results indicate that the fundamental limitation to energy gain presented by laser depletion can be overcome by using staged acceleration, suggesting a way of reaching the electron energies required for collider applications.

  6. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Coulomb explosion of a laser plasma

    NASA Astrophysics Data System (ADS)

    Tkachev, Aleksei N.; Yakovlenko, Sergei I.

    1993-11-01

    The behavior of a plasma produced by multistep selective ionization of a vapor and subjected to an intense pulsed electric field has been studied. Electrons are quickly "sucked" out of such a plasma, and then there is a Coulomb explosion of the net charge.

  7. [New methods and technologies expandable to the laser detection of biological and medical samples].

    PubMed

    Shi, Gui-zhen; Du, Hai; Ge, Liao-hai; Tian, Yu; Huang, Mao-cheng; Wang, Wen-yun

    2011-07-01

    The multicolour three-photon resonant photoionization spectra and high-time-resolved laser spectrum of UI were measured with a setup composed of a Nd:YAG-laser (532 nm, operated at 10 Hz)-pumped pulsed tunable dye laser system, a time-of-flight mass spectrometer, including micro-channel plate components, ns-oscilloscope, boxcar integrator, and so on. Creative inventions of this paper are for the first time by laser-induced quantum population of the graphic method, the causes for single-colour and two-colour three-photon resonant photoionization spectra peak were given in the three-colour three-photon resonant photoionization experiment; The question how to avoid producing single-colour and two-colour three-photon resonant photoionization spectra peak was solved, That is, how to solve the problem to avoid "false peaks", so that multicolour three-photon resonant photoionization purity was raised remarkably; On this basis, not only in close proximity to energy level position with just a difference 0.642 cm, the isotopes A and B of uranium, which are difficult to distinguish, were well resolved, but the two excited state lifetime values were obtained respectively. This technology is not limited to uranium spectrum, but more importantly, it's versatile. The new methods and technologies of basic research can be expanded to samples of biological and medical research fields with laser detecting and analysis.

  8. Magnetically Controlled Plasma Waveguide For Laser Wakefield Acceleration

    SciTech Connect

    Froula, D H; Divol, L; Davis, P; Palastro, J; Michel, P; Leurent, V; Glenzer, S H; Pollock, B; Tynan, G

    2008-05-14

    An external magnetic field applied to a laser plasma is shown produce a plasma channel at densities relevant to creating GeV monoenergetic electrons through laser wakefield acceleration. Furthermore, the magnetic field also provides a pressure to help shape the channel to match the guiding conditions of an incident laser beam. Measured density channels suitable for guiding relativistic short-pulse laser beams are presented with a minimum density of 5 x 10{sup 17} cm{sup -3} which corresponds to a linear dephasing length of several centimeters suitable for multi-GeV electron acceleration. The experimental setup at the Jupiter Laser Facility, Lawrence Livermore National Laboratory, where a 1-ns, 150 J 1054 nm laser will produce a magnetically controlled channel to guide a < 75 fs, 10 J short-pulse laser beam through 5-cm of 5 x 10{sup 17} cm{sup -3} plasma is presented. Calculations presented show that electrons can be accelerated to 3 GeV with this system. Three-dimensional resistive magneto-hydrodynamic simulations are used to design the laser and plasma parameters and quasi-static kinetic simulations indicate that the channel will guide a 200 TW laser beam over 5-cm.

  9. Transition of the BELLA PW laser system towards a collaborative research facility in laser plasma science

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Evans, Dave; Gonsalves, Anthony J.; Kirkpatrick, Mark; Magana, Art; Mannino, Greg; Mao, Hann-Shin; Nakamura, Kei; Riley, Joe R.; Steinke, Sven; Sipla, Tyler; Syversrud, Don; Ybarrolaza, Nathan; Leemans, Wim P.

    2017-03-01

    The advancement of Laser-Plasma Accelerators (LPA) requires systematic studies with ever increasing precision and reproducibility. A key component of such a research endeavor is a facility that provides reliable, well characterized laser sources, flexible target systems, and comprehensive diagnostics of the laser pulses, the interaction region, and the produced electron beams. The Berkeley Lab Laser Accelerator (BELLA), a PW laser facility, now routinely provides high quality focused laser pulses for high precision experiments. A description of the commissioning process, the layout of the laser systems, the major components of the laser and radiation protection systems, and a summary of early results are given. Further scientific plans and highlights of operational experience that serve as the basis for transition to a collaborative research facility in high-peak power laser-plasma interaction research are reviewed.

  10. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  11. Relativistically strong CO{sub 2} laser driver for plasma-channeled particle acceleration

    SciTech Connect

    Pogorelsky, I.V.

    1995-12-31

    Long-wavelength, short-duration laser pulses are desirable for plasma wakefield particle acceleration and plasma waveguiding. The first picosecond terawatt CO{sub 2} laser is under development to test laser-driven electron acceleration schemes.

  12. Plasma expander viscosity effects on red cell-free layer thickness after moderate hemodilution.

    PubMed

    Yalcin, Ozlem; Wang, Qi; Johnson, Paul C; Palmer, Andre F; Cabrales, Pedro

    2011-01-01

    The objective of the study was to investigate the effects of plasma viscosity after hemodilution on the thickness of the erythrocyte cell free layer (CFL) and on the interface between the flowing column of erythrocytes and the vascular endothelium. The erythrocyte CFL thickness was measured in the rat cremaster muscle preparation. Plasma viscosity was modified in an isovolemic hemodilution, in which the systemic hematocrit (Hctsys) was lowered to 30%. The plasma expanders (PE) of similar nature and different viscosities were generated by glutaraldehyde polymerization of human serum albumin (HSA) at various molar ratios glutaraldehyde to HSA: (i) unpolymerized HSA; (ii) PolyHSA24:1, molar ratio = 24 and (iii) PolyHSA60:1, molar ratio = 60. The HSA viscosities determined at 200 s(-1) were 1.1, 4.2 and 6.0 dyn x cm(-2), respectively. CFL thickness, vessel diameter and blood flow velocity were measured, while volumetric flow, shear rate and stress were calculated. Hemodilution with PolyHSA60:1 increased plasma viscosity and the blood showed marked shear thinning behavior. CFL thickness decreased as plasma viscosity increased after hemodilution; thus the CFL thickness with HSA and PolyHSA24:1 increased compared to baseline. Conversely, the CFL thickness of PolyHSA60:1 was not different from baseline. Blood flow increased with both PolyHSA's compared to baseline. Wall shear rate and shear stress increased for PolyHSA60:1 compared to HSA and PolyHSA24:1, respectively. In conclusion, PE viscosity determined plasma viscosity after hemodilution and affected erythrocyte column hydrodynamics, changing the velocity profile, CFL thickness, and wall shear stress. This study relates the perfusion caused by PolyHSA60:1 to hemodynamic changes induced by the rheological properties of blood diluted with PolyHSA60:1.

  13. PIC Simulations of direct laser accelerated electron from underdense plasmas using the OMEGA EP Laser

    NASA Astrophysics Data System (ADS)

    Hussein, Amina; Batson, Thomas; Krushelnick, Karl; Willingale, Louise; Arefiev, Alex; Wang, Tao; Nilson, Phil; Froula, Dustin; Haberberger, Dan; Davies, Andrew; Theobald, Wolfgang; Williams, Jackson; Chen, Hui

    2016-10-01

    The OMEGA EP laser system is used to study channeling phenomena and direct laser acceleration (DLA) through an underdense plasma. The interaction of a ps laser pulse with a subcritical density CH plasma plume results in the expulsion of electron along the laser axis, forming a positively charged channel. Electrons confined within this channel are subject to the action of the laser field as well as the transverse electric field of the channel, resulting the DLA of these electrons and the formation of a high energy electron beam. We have performed 2D simulations of ultra-intense laser radiation with underdense plasma using the PIC code EPOCH to investigate electron densities and self-consistently generated electric fields, as well as electron trajectories. This work was supported by the National Laser Users' Facility (NLUF), DOE.

  14. Measurement of acceleration in femtosecond laser-plasmas

    SciTech Connect

    Haessner, R.; Theobald, W.; Niedermeier, S.; Michelmann, K.; Feurer, T.; Schillinger, H.; Sauerbrey, R.

    1998-02-20

    Accelerations up to 4x10{sup 19} m/s{sup 2} are measured in femtosecond laser-produced plasmas at intensities of 10{sup 18} W/cm{sup 2} using the Frequency Resolved Optical Gating (FROG) technique. A high density plasma is formed by focusing an ultrashort unchirped laser pulse on a plane carbon target and part of the reflected pulse is eventually detected by a FROG autocorrelator. Radiation pressure and thermal pressure accelerate the plasma which causes a chirp in the reflected laser pulse. The retrieved phase and amplitude information reveal that the plasma motion is dominated by the large light pressure which pushes the plasma into the target. This is supported by theoretical estimates and by the results of independently measured time integrated spectra of the reflected pulse.

  15. Laser ablated zirconium plasma: A source of neutral zirconium

    SciTech Connect

    Yadav, Dheerendra; Thareja, Raj K.

    2010-10-15

    The authors report spectroscopic investigations of laser produced zirconium (Zr) plasma at moderate laser fluence. At low laser fluence the neutral zirconium species are observed to dominate over the higher species of zirconium. Laser induced fluorescence technique is used to study the velocity distribution of ground state neutral zirconium species. Two-dimensional time-resolved density distributions of ground state zirconium is mapped using planner laser induced fluorescence imaging and total ablated mass of neutral zirconium atoms is estimated. Temporal and spatial evolutions of electron density and temperature are discussed by measuring Stark broadened profile and ratio of intensity of emission lines, respectively.

  16. A source to deliver mesoscopic particles for laser plasma studies.

    PubMed

    Gopal, R; Kumar, R; Anand, M; Kulkarni, A; Singh, D P; Krishnan, S R; Sharma, V; Krishnamurthy, M

    2017-02-01

    Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 10(16) W/cm(2).

  17. A source to deliver mesoscopic particles for laser plasma studies

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Kumar, R.; Anand, M.; Kulkarni, A.; Singh, D. P.; Krishnan, S. R.; Sharma, V.; Krishnamurthy, M.

    2017-02-01

    Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 1016 W/cm2.

  18. Novel concepts for laser-plasma-based acceleration of electrons using ultrahigh power laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Koo

    Analytical and numerical studies of plasma physics in ultra-intense plasma wave generation, electron injection, and wavebreaking are performed, which are relevant to the subject of plasma wake-field accelerators. A method for generating large-amplitude nonlinear plasma waves, which utilizes an optimized train of independently adjustable, intense laser pulses, is analyzed in one dimension both theoretically and numerically (using both Maxwell-fluid and particle-in-cell codes). Optimal pulse widths and interpulse spacings are computed for pulses with either square or finite-rise-time sine shapes. A resonant region of the plasma-wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. Resonant excitation is found to be superior for electron acceleration to either beatwave or single- pulse excitation because comparable plasma wave amplitudes may be generated at lower plasma densities, reducing electron-phase detuning, or at lower laser intensities, reducing laser-plasma instabilities. The idea of all-optical acceleration of electrons in the wakefield is also discussed. It is shown that the injection of background plasma electrons can be accomplished using the large ponderomotive force of an injection laser pulse in either collinear or transverse geometry with respect to the direction of pump propagation, thus removing the necessity of an expensive first-stage linac system for injection of electrons. Detailed nonlinear analysis of the trapping and acceleration of electrons inside the separatrix of the wakefield is formulated and compared with PIC (Particle- In-Cell) and fluid simulations. The three-dimensional wave-breaking of relativistic plasma waves driven by a ultrashort high-power lasers, is described within a framework of cold 2-D fluid theory. It is shown that the transverse nonlinearity of the plasma wave results in temporally increasing transverse plasma oscillation in the wake of the laser pulse, inevitably inducing wave

  19. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Optical spectroscopy of laser plasma in a deep crater

    NASA Astrophysics Data System (ADS)

    Kononenko, Taras V.; Walter, D.; Konov, Vitalii I.; Dausinger, F.

    2009-04-01

    The time dynamics of plasma-emission spectra is studied experimentally at different stages of the drilling of a steel plate by 100-fs and 5-ps laser pulses: from a shallow crater to a hole. The change in the time dependence of the plasma temperature caused by variations in the irradiated surface geometry is analysed. It is found that the time interval needed to reach a particular temperature (about 8000 K) drastically increases from 40-50 to 150-200 ns when a specific crater depth is achieved. The opposite tendency is observed as the crater depth grows further and a hole is produced. Strong self-absorption in a plasma plume inside a deep crater is experimentally confirmed which results in the appearance of line absorption against a continuous emission spectrum.

  20. Effect of ambient pressure on a femtosecond laser induced titanium plasma

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Chuansong; Gao, Xun; Lin, Jingquan; Man, Baoyuan; Sun, Yanna; Li, Feifei

    2016-11-01

    Femtosecond laser induced Ti plasma has been characterized as a function of pressure by means of femtosecond laser induced breakdown spectroscopy (fs-LIBS). Experiments were performed with a Ti: sapphire laser system (100 fs, 800 nm), in an air pressure from 10 Pa to 104 Pa. The time-resolved spectrum has been acquired and the spectral intensities of different plasma species have been investigated with a changing ambient pressure. The Ti atomic lines decay while the ionic ones grow with an increasing pressure. The enhancement of nitrogen ionic line has also been observed. The time of flight spectroscopy is adopted to measure the expanding velocity of the plasma plume. The increasing pressure slows the plasma expansion along both axial and radial directions. The electron density and temperature are measured by means of Boltzmann plot method and Stark width method, respectively. It is concluded that higher pressure will increase the energy absorption and retard the plasma expansion, leading to larger electron density and temperature.

  1. Characterization of >100 T magnetic fields associated with relativistic Weibel instability in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Ruyer, Charles; Goede, Sebastian; Roedel, Christian; Gauthier, Maxence; Zeil, Karl; Schramm, Ulrich; Glenzer, Siegfried; Fiuza, Frederico

    2016-10-01

    Weibel-type instabilities can occur in weakly magnetized and anisotropic plasmas of relevance to a wide range of astrophysical and laboratory scenarios. It leads to the conversion of a significant fraction of the kinetic energy of the plasma into magnetic energy. We will present a detailed numerical study, using 2D and 3D PIC simulations of the Weibel instability in relativistic laser-solid interactions. In this case, the instability develops due to the counter-streaming of laser-heated electrons and the background return current. We show that the growth rate of the instability is maximized near the critical density region on the rear side of the expanded plasma, producing up to 400 MG magnetic fields for Hydrogen plasmas. We have found that this strong field can be directly probed by energetic protons accelerated in rear side of the plasma by Target Normal Sheath Acceleration (TNSA). This allows the experimental characterization of the instability from the analysis of the spatial modulation of the detected protons. Our numerical results are compared with recent laser experiments with Hydrogen jets and show good agreement with the proton modulations observed experimentally. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  2. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    SciTech Connect

    Dong, Yunsong; Zhang, Lu; Yang, Jiamin; Shang, Wanli

    2013-12-15

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wave front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.

  3. New oxygen plasma process rivals laser cutting methods

    SciTech Connect

    Fernicola, R.C. )

    1994-06-01

    For many years, oxygen plasma cutting has been looked upon as a desirable process for cutting steel but not practical in production because of very short consumable parts life. Recently, a number of technical advances in the oxygen plasma cutting process provides parts life several times that of older systems and cut quality approaching that of laser systems. This paper discusses these advances.

  4. Generation of quasistationary magnetic fields in a turbulent laser plasma

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.; Chokparova, G. A.

    1984-07-01

    A theory is derived for the generation of quasi-stationary magnetic fields in a laser plasma with well developed ion-acoustic turbulence. Qualitative changes are caused in the nature of the magnetic-field generation by an anomalous anisotropic transport in the turbulent plasma. The role played by turbulent diffusion and thermodiffusive transport in the magnetic-field saturation is discussed.

  5. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOEpatents

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  6. Precision Mapping of Laser-Driven Magnetic Fields and Their Evolution in High-Energy-Density Plasmas

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Nilson, P.; Igumenshchev, I.; Haines, M. G.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2016-10-01

    The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50 μm) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4 x 1014 W/cm2. The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code DRACO when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included. The work provides significant insight into the generation and transport of Biermann fields in laser-produced plasmas, particularly those used in laser-driven magnetic reconnection and laboratory astrophysics experiments. deceased.

  7. Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Nandan Gupta, Devki

    2016-11-01

    The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.

  8. Summary Report of Working Group 1: Laser-Plasma Acceleration

    SciTech Connect

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-06-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  9. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  10. Filamentation instability in two counter-streaming laser plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Dong, Quan-Li; Yuan, Da-Wei; Liu, Xun; Hua, Neng; Qiao, Zhan-Feng; Zhu, Bao-Qiang; Zhu, Jian-Qiang; Jiang, Bo-Bin; Du, Kai; Tang, Yong-Jian; Zhao, Gang; Yuan, Xiao-Hui; Sheng, Zheng-Ming; Zhang, Jie

    2016-12-01

    The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows, which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with 1ns-pulsed laser beams of total energy of 1.7 kJ in two laser spots. With characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074297, 11674146, and 11220101002) and the National Basic Research Program of China (Grant No. 2013CBA01500.

  11. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  12. Threshold conditions for laser-initiated plasma shutters

    NASA Astrophysics Data System (ADS)

    Czuchlewski, S. J.; Figueira, J. F.

    1981-03-01

    The characteristics of laser-initiated plasma shutters used for retropulse isolation in high-power CO2 laser-fusion systems are discussed. Initiation of the plasma breakdown is shown to depend on the fluence that is incident on the edge of the iris which is employed in these shutters. A relatively simple model for the ignition process has been verified for a range of pulse durations (0.7-60 ns) and iris diameters (100-800 microns). This model provides practical design criteria for sizing plasma isolators for a variety of applications.

  13. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  14. Intense terahertz radiation from relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Liao, G. Q.; Li, Y. T.; Li, C.; Liu, H.; Zhang, Y. H.; Jiang, W. M.; Yuan, X. H.; Nilsen, J.; Ozaki, T.; Wang, W. M.; Sheng, Z. M.; Neely, D.; McKenna, P.; Zhang, J.

    2017-01-01

    The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This paper presents our measurements of intense THz radiation from relativistic laser-plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. The results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.

  15. Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

    SciTech Connect

    Hutson, M. Shane; Ma Xiaoyan

    2007-10-12

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  16. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser plume spectroscopy. 1. Graphite target

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Solomonov, V. I.; Platonov, V. V.; Snigireva, O. A.; Ivanov, M. G.; Lisenkov, V. V.

    2005-05-01

    Spectral and kinetic characteristics of a plume formed in the vicinity of a graphite target exposed to radiation from a pulsed CO2 laser at 10.6 μm with a peak power of 9 kW (pulse energy 1.69 J, pulse duration 330 μs at the 0.1 level) in air are studied at room temperature. It is shown that the plume propagating at a right angle to the target surface and at an angle of 45° to the laser radiation is a nonequilibrium gas plasma flow at a temperature of the order of 10 kK; its shape and size are determined by the shape and power of the laser pulse. Emission of C+ ions and C2 molecules is excited in the plume. The temperature and emission are sustained by the energy of the exothermic reaction of association of carbon atoms and the vibrationally excited molecules formed in it.

  17. Characteristics of microwave plasma induced by lasers and sparks.

    PubMed

    Ikeda, Yuji; Tsuruoka, Ryoji

    2012-03-01

    Characteristics of the plasma light source of microwave (MW) plus laser-induced breakdown spectroscopy (LIBS) or spark-induced breakdown spectroscopy (SIBS) were studied. The plasma was initially generated by laser- or spark-induced breakdown as a plasma seed. A plasma volume was then grown and sustained by MWs in air. This MW plasma had a long lifetime, large volume, strong emission intensity, and high stability with time. These characteristics are suitable for applications in the molecular analysis of gases such as OH or N(2). Because the plasma properties did not depend on laser or spark plasma seeds, the resulting plasma was easily controllable by the input power and duration of the MWs. Therefore, a significant improvement was achieved in the spectral intensity and signal-to-noise ratio. For example, the peak intensity of the Pb spectra of LIBS increased 15 times, and that of SIBS increased 880 times without increases in their background noise. A MW-enhanced plasma light source could be used to make the total system smaller and cheaper than a conventional LIBS system, which would be useful for real-time and in situ analysis of gas molecules in, for example, food processing, medical applications, chemical exposure, and gas turbine or automobile air-to-fuel ratio and exhaust gas measurement.

  18. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  19. Intense tera-hertz laser driven proton acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  20. Picosecond resolution soft x-ray laser plasma interferometry

    SciTech Connect

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  1. Plasma-based polarization modulator for high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Pukhov, Alexander

    2016-12-01

    Manipulation of laser pulses at high intensities is an important yet challenging issue. New types of plasma-based optical devices are promising alternatives to achieve this goal. Here we propose to modulate the polarization state of intense lasers based on oblique reflection from solid-plasma surfaces. A new analytical description is presented considering the plasma as an uniaxial medium that causes birefringence effect. Particle-in-cell simulation results numerically demonstrate that such a scheme can provide a tunable polarization control of the laser pulses even in the relativistic regime. The results are thus relevant for the design of compact, easy to use, and versatile polarization modulators for high-intensity laser pulses.

  2. Research on radiation induced laser plasmas

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Rowe, M. J.; Carter, B. D.; Walters, R. A.; Cox, J. D.; Liang, R.; Roxey, T.; Zapata, L.

    1979-01-01

    The development of high power nuclear pumped lasers is discussed. The excitation mechanism of continuous wave (CW) HeNe nuclear pumped lasers is studied and a CO2 nuclear pumped laser is used to demonstrate the CW output in the order of watts. The assumption that high power densities are only achievable by volume fission fragment sources is used to identify laser gases which are compatible with UF6 by excited states lifetime measurements. The examination of Xe2, XeF, and KrF under nuclear irradiation to determine if they are good candidates for nuclear-pumped lasers is described.

  3. Optical spectroscopy of laser plasma in a deep crater

    SciTech Connect

    Kononenko, Taras V; Konov, Vitalii I; Walter, D; Dausinger, F

    2009-04-30

    The time dynamics of plasma-emission spectra is studied experimentally at different stages of the drilling of a steel plate by 100-fs and 5-ps laser pulses: from a shallow crater to a hole. The change in the time dependence of the plasma temperature caused by variations in the irradiated surface geometry is analysed. It is found that the time interval needed to reach a particular temperature (about 8000 K) drastically increases from 40-50 to 150-200 ns when a specific crater depth is achieved. The opposite tendency is observed as the crater depth grows further and a hole is produced. Strong self-absorption in a plasma plume inside a deep crater is experimentally confirmed which results in the appearance of line absorption against a continuous emission spectrum. (interaction of laser radiation with matter. laser plasma)

  4. Profiling compact toroid plasma density on CTIX with laser deflection

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel Joseph Erwin

    A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.

  5. Space-dependent characterization of laser-induced plasma plume during fiber laser welding

    NASA Astrophysics Data System (ADS)

    Xiao, Xianfeng; Song, Lijun; Xiao, Wenjia; Liu, Xingbo

    2016-12-01

    The role of a plasma plume in high power fiber laser welding is of considerable interest due to its influence on the energy transfer mechanism. In this study, the space-dependent plasma characteristics including spectrum intensity, plasma temperature and electron density were investigated using optical emission spectroscopy technique. The plasma temperature was calculated using the Boltzmann plot of atomic iron lines, whereas the electron density was determined from the Stark broadening of the Fe I line at 381.584 nm. Quantitative analysis of plasma characteristics with respect to the laser radiation was performed. The results show that the plasma radiation increases as the laser power increases during the partial penetration mode, and then decreases sharply after the initiation of full penetration. Both the plasma temperature and electron density increase with the increase of laser power until they reach steady state values after full penetration. Moreover, the hottest core of the plasma shifts toward the surface of the workpiece as the penetration depth increases, whereas the electron density is more evenly distributed above the surface of the workpiece. The results also indicate that the absorption and scattering of nanoparticles in the plasma plume is the main mechanism for laser power attenuation.

  6. Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses

    SciTech Connect

    Lecz, Zs.; Andreev, A.

    2015-04-15

    The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter than the characteristic development time of the parasitic Weibel instability.

  7. Plasma undulator excited by high-order mode lasers

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Rykovanov, Sergey

    2016-10-01

    A laser-created plasma undulator together with a laser-plasma accelerator makes it possible to construct an economical and extremely compact XFEL. However, the spectrum spread of the radiation from the current plasma undulators is too large for XFELs, because of the different values of strength parameters. The phase slippage between the electrons and the wakefield also limits the number of the electron oscillation cycles, thus reduces the performance of XFEL. Here we proposed a phase-locked plasma undulator created by high-order mode lasers. The modulating field is uniform along the transverse direction by choosing appropriate laser intensities of the modes, which enables all the electrons oscillate with the same strength parameter. The plasma density is tapered to lock the phase between the electrons and the wakefield, which signally increases the oscillation cycles. As a result, X-ray radiation with high brightness and narrow bandwidth is generated by injecting a high-energy electron beam into the novel plasma undulator. The beam loading limit indicates that the current of the electron beam could be hundreds of Ampere. These properties imply that such a plasma undulator may have great potential in compact XFELs. This work was supported by the Helmholtz Association (Young Investigator's Group No. VH-NG-1037).

  8. Collision dynamics of laser produced carbon plasma plumes

    NASA Astrophysics Data System (ADS)

    Favre, M.; Ruiz, H. M.; Cortés, D.; Merello, F.; Bhuyan, H.; Veloso, F.; Wyndham, E.

    2016-05-01

    We present preliminary experimental observations of the collision processes between two orthogonal laser produced plasmas in a low pressure neutral gas background. A Nd:YAG laser, 340 mJ, 3.5 ns, at 1.06 μm, operating at 10 Hz, is used in the experiments. The main laser beam is divided in two beams by a 50% beam splitter, and then focused over two rotating graphite targets, with characteristic fluence 3.5 J/cm2. Experiments are conducted in a range from a base pressure of 0.3 mTorr, up to 50 mTorr argon. The dynamics of the laser plasmas is characterized by time resolved and time integrated optical emission spectroscopy (OES), with 20 ns and 10 ms time resolution, and 50 ns time resolved plasma imaging of visible plasma emission. Clear effects of the neutral gas background on the postcollision plasma dynamics are identified. The overall dynamics of the post-collision plasma is found to be consistent with high collisionality of the carbon plasma plumes, which results in full stagnation on collisioning.

  9. Investigation of early plasma evolution induced by ultrashort laser pulses.

    PubMed

    Hu, Wenqian; Shin, Yung C; King, Galen B

    2012-07-02

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment(1-11). Early plasma evolution has been captured through pump-probe shadowgraphy(1-3) and interferometry(1,4-7). However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 10(14) W/cm(2). Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions(12). The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. (12) to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators.

  10. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    PubMed Central

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  11. Transient Plasma Photonic Crystals for High-Power Lasers.

    PubMed

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  12. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  13. Laser absorption and electron propagation in rippled plasma targets

    NASA Astrophysics Data System (ADS)

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2016-10-01

    Efficient absorption of laser energy and the collimated propagation of relativistic electron beams (generated by the laser target interaction) in plasma are two issues which are of significant importance for applications such as fast ignition scheme of inertial confinement fusion (ICF). It is shown with the help of 2-D Particle- In- Cell simulations that introducing density ripples transverse to the laser propagation direction enhances the efficiency of laser power absorption. Furthermore, the density ripples are also instrumental in suppressing the Weibel instability of the propagating electron beam (which is responsible for the divergence of the beam). A physical understanding of the two effects is also provided.

  14. Invited Article: Expanded and improved traceability of vibration measurements by laser interferometry

    SciTech Connect

    Martens, Hans-Jürgen von

    2013-12-15

    Traceability to the International System of Units has been established for vibration and shock measurements as specified in international document standards, recommendations, and regulations to ensure product quality, health, and safety. New and upgraded laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods in the ISO 16063 series of international document standards. In ISO 16063-11:1999, three interferometric methods are specified for the primary calibration of vibration transducers (reference standard accelerometers) in a frequency range from 1 Hz to 10 kHz. In order to specify the same (modified) methods for the calibration of laser vibrometers (ISO 16063-41:2011), their applicability in an expanded frequency range was investigated. Steady-state sinusoidal vibrations were generated by piezoelectric actuators at specific frequencies up to 347 kHz (acceleration amplitudes up to 376 km/s{sup 2}). The displacement amplitude, adjusted by the special interferometric method of coincidence to 158.2 nm (quarter the wavelength of the He-Ne laser light), was measured by the standardized interferometric methods of fringe counting and sine-approximation. The deviations between the measurement results of the three interferometric methods applied simultaneously were smaller than 1 %. The limits of measurement uncertainty specified in ISO 16063-11 between 1 Hz to 10 kHz were kept up to frequencies, which are orders of magnitude greater; the uncertainty limit 0.5 % specified at the reference frequency 160 Hz was not exceeded at 160 kHz. The reported results were considered during the development of ISO 16063-41 by specifying the instrumentation and procedures for performing calibrations of rectilinear laser vibrometers in the frequency range typically between 0.4 Hz and 50 kHz—the interferometric methods may be applied within expanded frequency ranges using

  15. Ion acceleration enhanced by additional neutralizing electrons in a magnetically expanding double layer plasma

    SciTech Connect

    Takahashi, Kazunori; Fujiwara, Tamiya

    2010-10-15

    Electrons neutralizing an ion beam are additionally supplied to a magnetically expanding double layer (DL) plasma from the downstream side of the DL. The rf power and the argon gas pressure are maintained at 200 W and 55 mPa, respectively, and the source magnetic field is varied in the range of about 70-550 G. It is observed that the ion beam energy corresponding to the DL potential drop increases up to 30 eV with an increase in the magnetic field when supplying the additional electrons, while it saturates at 20 eV for the case of the absence of the additional electrons. The supplied electrons are believed to be an energy source for the DL such that increasing the magnetic field is able to increase the potential drop beyond the limit found in the absence of the supplied electrons.

  16. Effect of Laser Beam Filamentation on Second Harmonic Spectrum in Laser Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana; Sharma, R. P.

    2009-11-01

    This paper presents the laser beam filamentation at ultra relativistic laser powers, when the restriction on the beam is relaxed during filamentation process. On account of laser beam intensity gradient and background density gradients in filamentary regions the electron plasma wave (epw) at pump wave frequency is generated, this epw is found to be highly localized on account of the laser beam filaments. Interaction of incident laser beam with these epw leads to second harmonic generation. The second harmonic spectrum has also been studied in detail and its correlation with the filamentation of the laser beam has been established. Starting almost with a monochromatic component of laser beam propagation, the second harmonic spectrum becomes more complicated and broadened as the laser beam propagates further, and filamentation takes place. For the typical laser beam and plasma parameters: λ0= 1064 nm, power flux (10^22 W/cm^2),φp=0.03φ0, vth=0.1c, n0=1.9x10^19. We found that conversion efficiency comes out to be (E2/E0) = 8x10-3, and the spectrum is quite broad which depends upon the laser beam propagation distance. The results (specifically, second harmonic spectral feature) presented here may be used for the diagnostics of laser produced plasmas.

  17. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    NASA Astrophysics Data System (ADS)

    Cros, B.; Paradkar, B. S.; Davoine, X.; Chancé, A.; Desforges, F. G.; Dobosz-Dufrénoy, S.; Delerue, N.; Ju, J.; Audet, T. L.; Maynard, G.; Lobet, M.; Gremillet, L.; Mora, P.; Schwindling, J.; Delferrière, O.; Bruni, C.; Rimbault, C.; Vinatier, T.; Di Piazza, A.; Grech, M.; Riconda, C.; Marquès, J. R.; Beck, A.; Specka, A.; Martin, Ph.; Monot, P.; Normand, D.; Mathieu, F.; Audebert, P.; Amiranoff, F.

    2014-03-01

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (> 15 fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  18. Effect of solenoidal magnetic field on drifting laser plasma

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  19. Characterization of a laser plasma produced from a graphite target

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Guzmán, F.; Favre, M.; Hevia, S.; Correa, N.; Bhuyan, H.; Wynham, E. S.; Chuaqui, H.

    2014-05-01

    In order to improve the understanding of pulsed laser deposition (PLD) of diamondlike carbon (DLC) films, we have initiated a detailed study of the plasma dynamics of laser produced carbon plasmas. The carbon plasma is produced by focusing a Nd:YAG laser pulse, 380 mJ, 4 ns at 1.06 μm, onto a graphite target, at a background pressure of 0.3 mTorr. Time resolved optical emission spectroscopic (OES) observations of the carbon plasma plume are obtained, with time and space resolution, using a SpectraPro 275 spectrograph, with a 15 ns MCP gated OMA. Line emission from CII to CIV carbon ions is identified at different stages of the plasma evolution. Line intensity ratios of successive ionization stages, CIII/CIV, was used to estimate the electron temperature throughout the Saha-Boltzmann equation, under the assumption of local thermodynamic equilibrium (LTE), and Stark broadening of CII lines was used to obtain measurements of the electron density. Characteristic plasma parameters, short after plasma formation, are 3.0 eV and 2-1017 cm-3which after 60 ns of plasma expansion decay to 2.7 eV and 5·10 cm-3, respectively.

  20. Staging and laser acceleration of ions in underdense plasma

    NASA Astrophysics Data System (ADS)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  1. Stimulated Raman backscattering of laser radiation in deep plasma channels

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Yu.; Shvets, G.

    2004-10-01

    Stimulated Raman backscattering (RBS) of intense laser radiation confined by a single-mode plasma channel with a radial variation of plasma frequency greater than a homogeneous-plasma RBS bandwidth is characterized by a strong transverse localization of resonantly driven electron plasma waves (EPW). The EPW localization reduces the peak growth rate of RBS and increases the amplification bandwidth. The continuum of nonbound modes of backscattered radiation shrinks the transverse field profile in a channel and increases the RBS growth rate. Solution of the initial-value problem shows that an electromagnetic pulse amplified by the RBS in the single-mode deep plasma channel has a group velocity higher than in the case of homogeneous-plasma Raman amplification. Implications to the design of a RBS pulse compressor in a plasma channel are discussed.

  2. Interaction of UV laser pulses with reactive dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.

  3. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    SciTech Connect

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-27

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  4. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-01

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  5. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    SciTech Connect

    Ciocarlan, C.; Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-09-15

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup −3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

  6. First Laser-Plasma Interaction and Hohlraum Experiments on NIF

    SciTech Connect

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; McDonald, J W; Niemann, C; Mackinnon, A J

    2005-06-17

    Recently the first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) designs. The effects of laser beam smoothing by spectral dispersion (SSD) and polarization smoothing (PS) on the beam propagation in long scale gas-filled pipes has been studied at plasma scales as found in indirect drive gas filled ignition hohlraum designs. The long scale gas-filled target experiments have shown propagation over 7 mm of dense plasma without filamentation and beam break up when using full laser smoothing. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment in analytical models and in LASNEX calculations has been proven for the first time. The comparison of these results with modeling will be discussed.

  7. Study of laser plasma interactions in the relativistic regime

    SciTech Connect

    Umstadter, D.

    1997-08-13

    We discuss the first experimental demonstration of electron acceleration by a laser wakefield over instances greater than a Rayleigh range (or the distance a laser normally propagates in vacuum). A self-modulated laser wakefield plasma wave is shown to have a field gradient that exceeds that of an RF linac by four orders of magnitude (E => 200 GV/m) and accelerates electrons with over 1-nC of charge per bunch in a beam with space-charge-limited emittance (1 mm-mrad). Above a laser power threshold, a plasma channel, created by the intense ultrashort laser pulse (I approx. 4 x1018 W/CM2, gamma = 1 micron, r = 400 fs), was found to increase the laser propagation distance, decrease the electron beam divergence, and increase the electron energy. The plasma wave, directly measured with coherent Thomson scattering is shown to damp-due to beam loading-in a duration of 1.5 ps or approx. 100 plasma periods. These results may have important implications for the proposed fast ignitor concept.

  8. Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet.

    PubMed

    Li, Na; Bai, Ya; Miao, Tianshi; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2016-10-03

    Contribution of plasma oscillation to the broadband terahertz (THz) emission is revealed by interacting two-color (ω/2ω) laser pulses with a supersonic jet of nitrogen molecules. Temporal and spectral shifts of THz waves are observed as the plasma density varies. The former owes to the changing refractive index of the THz waves, and the latter correlates to the varying plasma frequency. Simulation of considering photocurrents, plasma oscillation and decaying plasma density explains the broadband THz spectrum and the varying THz spectrum. Plasma oscillation only contributes to THz waves at low plasma density owing to negligible plasma absorption. At the longer medium or higher density, the combining effects of plasma oscillation and absorption results in the observed low-frequency broadband THz spectra.

  9. Erosion resistant nozzles for laser plasma extreme ultraviolet (EUV) sources

    DOEpatents

    Kubiak, Glenn D.; Bernardez, II, Luis J.

    2000-01-04

    A gas nozzle having an increased resistance to erosion from energetic plasma particles generated by laser plasma sources. By reducing the area of the plasma-facing portion of the nozzle below a critical dimension and fabricating the nozzle from a material that has a high EUV transmission as well as a low sputtering coefficient such as Be, C, or Si, it has been shown that a significant reduction in reflectance loss of nearby optical components can be achieved even after exposing the nozzle to at least 10.sup.7 Xe plasma pulses.

  10. The Lensing Effect of CO(2) Laser Plasma.

    PubMed

    Lotsch, H K; Davis, W C

    1970-12-01

    An unexpected phenomenon has been observed which triggered an investigation into the lensing effect of a CO(2) laser plasma. This effect, so far thought to be negligible in a conventional CO(2) laser of, for example, 2-m length, produces a focal length in the order of magnitude of - 20 m. In view of this experimental observation, the focal length of the plasma lens, as well as the stability condition for an optical resonator with a plasma lens within its plane concave mirror system, are determined and expressed in terms of plasma and resonator characteristics as well as of the electrical power dissipated in the plasma. The analysis reveals that the semiconfocal configuration is most adverse for a frequency-stabilized laser. The overall result of this investigation suggests that the optimum configuration of a conventional CO(2) laser for maximum output power is obtained when the negative focal power of the plasma lens precisely compensates for the positive focal power of the slightly curved mirror.

  11. Two-dimensional fluorescence spectroscopy of laser-produced plasmas

    SciTech Connect

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.

  12. Plasma treatment of expanded PTFE offers a way to a biofunctionalization of its surface

    NASA Astrophysics Data System (ADS)

    Baquey, Ch.; Palumbo, F.; Porte-Durrieu, M. C.; Legeay, G.; Tressaud, A.; d'Agostino, R.

    1999-05-01

    Biointegration is the ideal outcome which is expected for an artificial implant. That means that the phenomena which seats at the interface between the implant and the host tissues does not induce neither any deleterious effect, such as chronic inflammatory response, nor the formation of unusual tissues. Thus it is of paramount importance to design biomaterials, used for the fabrication of implants, with the best appropriate surface properties. At the same time these biomaterials must feature bulk properties which meet other requirements, especially mechanical properties, deriving from the intended function of the implant in which they are involved. As it is quite impossible to design biomaterials which fulfil at the same time both types of requirements, it is commonly agreed that the solution to this issue goes through the selection or the design of biomaterials with adequate bulk properties, and a further treatment of the surface which would improve the properties of the latter. In this respect ionizing radiations and plasma based treatments, offer a wide panel of possibilities; as an example we describe here how the surface of expanded poly(tetrafluoroethylene) samples can be activated using cold plasma, in order to open a way to chemical modifications of such a surface. Subsequently, Radio Frequency Glow Discharge (RFGD) containing oligopeptides, known for their role in mediating the adhesion of cells to the extracellular matrix, were bound to the modified surface, and the affinity of endothelial cells for the latter was investigated.

  13. Laser-electron Compton interaction in plasma channels

    SciTech Connect

    Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.

    1998-10-01

    A concept of high intensity femtosecond laser synchrotron source (LSS) is based on Compton backscattering of focused electron and laser beams. The short Rayleigh length of the focused laser beam limits the length of interaction to a few picoseconds. However, the technology of the high repetition rate high-average power picosecond lasers required for high put through LSS applications is not developed yet. Another problem associated with the picosecond laser pulses is undesirable nonlinear effects occurring when the laser photons are concentrated in a short time interval. To avoid the nonlinear Compton scattering, the laser beam has to be split, and the required hard radiation flux is accumulated over a number of consecutive interactions that complicates the LSS design. In order to relieve the technological constraints and achieve a practically feasible high-power laser synchrotron source, the authors propose to confine the laser-electron interaction region in the extended plasma channel. This approach permits to use nanosecond laser pulses instead of the picosecond pulses. That helps to avoid the nonlinear Compton scattering regime and allows to utilize already existing technology of the high-repetition rate TEA CO{sub 2} lasers operating at the atmospheric pressure. They demonstrate the advantages of the channeled LSS approach by the example of the prospective polarized positron source for Japan Linear Collider.

  14. Interaction of Ultraintense Laser Vortices with Plasma Mirrors

    NASA Astrophysics Data System (ADS)

    Denoeud, A.; Chopineau, L.; Leblanc, A.; Quéré, F.

    2017-01-01

    Laser beams carrying orbital angular momentum (OAM) have found major applications in a variety of scientific fields, and their potential for ultrahigh-intensity laser-matter interactions has since recently been considered theoretically. We present an experiment where such beams interact with plasma mirrors up to laser intensities such that the motion of electrons in the laser field is relativistic. By measuring the spatial intensity and phase profiles of the high-order harmonics generated in the reflected beam, we obtain evidence for the helical wavefronts of the high-intensity laser at focus, and study the conservation of OAM in highly nonlinear optical processes at extreme laser intensities. The physical effects determining the field mode content of the twisted harmonic beams are elucidated.

  15. Plasma physics issues in gas discharge laser development

    SciTech Connect

    Garscadden, A. ); Kushner, M.J.; Eden, J.G. . Dept. of Electrical and Computer Engineering)

    1991-12-01

    In this paper an account is given of the interplay between partially ionized plasma physics and the development of gas discharge lasers. Gas discharge excitation has provided a wide array of laser devices extending from the soft X-ray region to the far infrared. The scaling of gas discharge lasers in power and energy also covers many orders of magnitude. The particular features of three regimes are discussed: short wavelength lasers (deep UV to soft X-ray); visible and near UV lasers; and infrared molecular gas lasers. The current status (Fall 1990) of these areas is reviewed, and an assessment is made of future research topics that are perceived to be important.

  16. The effect of laser wavelength on laser-induced carbon plasma

    SciTech Connect

    Moscicki, T.; Hoffman, J.; Szymanski, Z.

    2013-08-28

    The effect of laser wavelength on parameters of laser-ablated carbon plume is studied. A theoretical model is applied, which describes the target heating and formation of the plasma and its expansion, and calculations are made for the fundamental and third harmonic of a Nd:YAG laser. The calculated distributions of plasma temperature and electron density in the early phase of expansion show that plasma temperatures are higher in the case of 1064 nm but the electron densities are higher in the case of 355 nm, which is in agreement with experimental findings. It has been shown that while a higher plasma temperature in the case of 1064 nm is the result of stronger plasma absorption, the greater ablation rate in the case of 355 nm results in larger mass density of the ablated plume and hence, in higher electron densities. An additional consequence of a higher ablation rate is slower expansion and smaller dimensions of the plume.

  17. Visualization of plasma turbulence with laser-induced fluorescence (invited)

    SciTech Connect

    Levinton, Fred M.; Trintchouk, Fedor

    2001-01-01

    Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.

  18. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Thresholds of surface plasma formation by the interaction of laser pulses with a metal

    NASA Astrophysics Data System (ADS)

    Borets-Pervak, I. Yu; Vorob'ev, V. S.

    1995-04-01

    An analysis is made of a model of the formation of a surface laser plasma which takes account of the heating and vaporisation of thermally insulated surface microdefects. This model is used in an interpretation of experiments in which such a plasma has been formed by irradiation of a titanium target with microsecond CO2 laser pulses. A comparison with the experimental breakdown intensities is used to calculate the average sizes of microdefects and their concentration: the results are in agreement with the published data. The dependence of the delay time of plasma formation on the total energy in a laser pulse is calculated.

  19. Laser-plasma-based Space Radiation Reproduction in the Laboratory.

    PubMed

    Hidding, B; Karger, O; Königstein, T; Pretzler, G; Manahan, G G; McKenna, P; Gray, R; Wilson, R; Wiggins, S M; Welsh, G H; Beaton, A; Delinikolas, P; Jaroszynski, D A; Rosenzweig, J B; Karmakar, A; Ferlet-Cavrois, V; Costantino, A; Muschitiello, M; Daly, E

    2017-02-08

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  20. Resonant self-focusing of laser light in a plasma

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Clayton, C. E.; Chen, F. F.

    1982-03-01

    Difficulties regarding an employment of lasers in inertia-confinement fusion projects are related to possibilities of an occurrence of undesirable parametric instabilities such as stimulated Brillouin scattering. The use of multiline lasers has been proposed to overcome these difficulties. Attention is given to a sequence of events in which optical mixing first excites a plasma wave, which is driven to larger amplitude by stimulated Raman scattering in the forward direction. The ponderomotive force of the plasma wave creates then a density depression, causing a deflection of the laser beam by refraction. It is pointed out that such a mechanism could alter the focusing of beams onto a small target. The effect is similar to ponderomotive self-focusing of light by a plasma. Aspects of resonant self-focusing are considered.

  1. Plasma shape control by pulsed solenoid on laser ion source

    DOE PAGES

    Sekine, M.; Ikeda, S.; Romanelli, M.; ...

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less

  2. Plasma shape control by pulsed solenoid on laser ion source

    SciTech Connect

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.

  3. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    PubMed Central

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  4. Advanced targets, diagnostics and applications of laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  5. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    NASA Astrophysics Data System (ADS)

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-02-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  6. Plasma shape control by pulsed solenoid on laser ion source

    NASA Astrophysics Data System (ADS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  7. DEVELOPMENT OF WATER JET PLASMA MIRROR FOR STAGING OF LASER PLASMA ACCELERATORS

    SciTech Connect

    Panasenko, Dmitriy; Gonsalves, Anthony J.; Leemans, Wim; Nakamura, Kei; Shu, Anthony; Toth, Csaba

    2009-05-04

    Staging Laser Plasma Accelerators (LPAs) is necessary in order to reach beam energies of 100 GeV and above. This requires incoupling of additional laser beams into accelerating stages. In order to maintain the high average accelerating gradient of a staged LPA, it is imperative to minimize the distance that is needed for laser incoupling. A plasma mirror is proposed as the final coupling optic reducing the coupling distance from tens of meters, using a conventional optic, to as small as a few cm. Both a planar water jet and a nitrocellulose foil are used as reflecting surfacesand characterized. A maximum reflectivity of 70percent was obtained using both surfaces.

  8. Fundamental Study of Nuclear Pumped Laser Plasmas.

    DTIC Science & Technology

    1980-12-23

    rate of up to 2pps. The plasma cell/gas- handling system obtains base pressures of 5xlO 8 Torr prior to high purity gas fill. The plasma cell is...synchronization problems, etc.). Due to the exceptional reproducibility of e-beam characteristics, todate , only prefire has caused data rejection. IV. Recent

  9. Paraxial properties of three-element zoom system for laser beam expanders based on tunable-focus lenses.

    PubMed

    Mikš, Antonín; Novák, Pavel

    2015-06-15

    The paper is focused on the problem of a theoretical analysis of paraxial imaging properties and initial optical design of the three-element zoom optical system for laser beam expanders using lenses with a tunable focal length. Equations which allow calculation of required optical powers of individual elements of the three-element zoom optical system for laser beam expander depending on the value of the axial position of the beam waist of the input Gaussian beam and the required magnification of the system are derived.

  10. Microengineering Laser Plasma Interactions at Relativistic Intensities

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Ji, L. L.; Audesirk, H.; George, K. M.; Snyder, J.; Krygier, A.; Poole, P.; Willis, C.; Daskalova, R.; Chowdhury, E.; Lewis, N. S.; Schumacher, D. W.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2016-02-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  11. Microengineering Laser Plasma Interactions at Relativistic Intensities.

    PubMed

    Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2016-02-26

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  12. Laser-driven plasma beat-wave propagation in a density-modulated plasma.

    PubMed

    Gupta, Devki Nandan; Nam, In Hyuk; Suk, Hyyong

    2011-11-01

    A laser-driven plasma beat wave, propagating through a plasma with a periodic density modulation, can generate two sideband plasma waves. One sideband moves with a smaller phase velocity than the pump plasma wave and the other propagates with a larger phase velocity. The plasma beat wave with a smaller phase velocity can accelerate modest-energy electrons to gain substantial energy and the electrons are further accelerated by the main plasma wave. The large phase velocity plasma wave can accelerate these electrons to higher energies. As a result, the electrons can attain high energies during the acceleration by the plasma waves in the presence of a periodic density modulation. The analytical results are compared with particle-in-cell simulations and are found to be in reasonable agreement.

  13. Laser beam propagation through inertial confinement fusion hohlraum plasmas

    SciTech Connect

    Froula, D. H.; Divol, L.; Meezan, N. B.; Dixit, S.; Neumayer, P.; Moody, J. D.; Pollock, B. B.; Ross, J. S.; Suter, L.; Glenzer, S. H.

    2007-05-15

    A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (T{sub e}=3.5 keV), dense (n{sub e}=5x10{sup 20} cm{sup -3}), long-scale length (L{approx}2 mm) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than I<2x10{sup 15} W cm{sup -2}. The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows a stimulated Brillouin scattering threshold (R=10%) for a linear gain of 15; these high temperature, low density experiments produce plasma conditions comparable to those along the outer beams in ignition hohlraum designs. By increasing the gas fill density (n{sub e}=10{sup 21} cm{sup -3}) in these targets, the inner beam ignition hohlraum conditions are accessed. In this case, stimulated Raman scattering dominates the backscattering processes and we show that scattering is small for gains less than 20 which can be achieved through proper choice of the laser beam intensity.

  14. Guiding of laser beams in plasmas by electromagnetic cascade compression

    NASA Astrophysics Data System (ADS)

    Kalmykov, S.; Shvets, G.

    2006-10-01

    The near-resonant beatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few- femtosecond electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of sidebands red- and blue-shifted by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser phase, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. Thus, a train of high intensity radiation spikes with continually evolving longitudinal profile can be self- guided over several Rayleigh lengths in homogeneous plasma. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW show that achieving GeV energy is possible under realistic experimental conditions.

  15. Relativistic ponderomotive effect on the propagation of rippled laser beam and the excitation of electron plasma wave in collisionless plasma

    NASA Astrophysics Data System (ADS)

    Priyanka; Chauhan, Prashant; Purohit, Gunjan

    2013-01-01

    This paper presents an investigation of the propagation of rippled laser beam in a collisionless plasma and its effect on and the excitation of electron plasma wave and particle acceleration, when relativistic and ponderomotive nonlinearities are simultaneously operative. Electron plasma wave (EPW) coupling with rippled laser beam arises on account of the relativistic change in the electron mass and the modification of the background electron density due to ponderomotive nonlinearity. When the electron plasma wave gets coupled to the rippled laser beam, a large fraction of the pump energy gets transferred to EPW and this excited EPW can accelerate the electrons. Analytical expressions for the growth rate of the laser spike in plasma, beam width of the rippled laser beam and excited electron plasma wave have been obtained using paraxial ray approximation. These coupled equations are solved analytically and numerically to study the growth of laser spike in plasma and its effect on the self focusing of rippled laser beam in plasma, amplitude of the excited electron plasma wave and particle acceleration. The result shows that the effect of including ponderomotive nonlinearity significantly affects the growth of laser spike in plasma, excitation of electron plasma wave as well as the number of energetic electrons in particle acceleration process. The results are presented for typical laser plasma parameters.

  16. Angular-momentum evolution in laser-plasma accelerators.

    PubMed

    Thaury, C; Guillaume, E; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V

    2013-09-27

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

  17. A Novel Source of Mesoscopic Particles for Laser Plasma Studies

    DTIC Science & Technology

    2015-12-16

    measured by a NaI(Tl) s X-ray detector. The red curve is the two-electron temperature fit, assuming a Maxwellian distribution. The inset shows the low ...ABSTRACT Intense laser produced plasma are known for generating high dense - high temperatures plasma that is a source for electron, ion acceleration and...focusing 2.7mJ-30fs laser pulses on boric acid particles on about 15 m size, demonstrate an electron temperature of about 50 keV with a high energy

  18. Harmonic generation by circularly polarized laser beams propagating in plasma

    SciTech Connect

    Agrawal, Ekta; Hemlata,; Jha, Pallavi

    2015-04-15

    An analytical theory is developed for studying the phenomenon of generation of harmonics by the propagation of an obliquely incident, circularly polarized laser beam in homogeneous, underdense plasma. The amplitudes of second and third harmonic radiation as well as detuning distance have been obtained and their variation with the angle of incidence is analyzed. The amplitude of harmonic radiation increases with the angle of incidence while the detuning distance decreases, for a given plasma electron density. It is observed that the generated second and third harmonic radiation is linearly and elliptically polarized, respectively. The harmonic radiation vanishes at normal incidence of the circularly polarized laser beam.

  19. Impact-Ionization Cooling in Laser-Induced Plasma Filaments

    SciTech Connect

    Filin, A.; Romanov, D. A.; Compton, R.; Levis, R. J.

    2009-04-17

    The ionization rates and subsequent electron dynamics for laser-induced plasma channels are measured for the noble gas series He, Ne, Ar, Kr, and Xe at 1.0 atm. The cw fluorescence emission increases superlinearly in the series from He to Xe in agreement with Ammosov-Delone-Krainov tunnel ionization calculations. The electron temperature after laser-induced plasma formation, measured by four-wave mixing, evolves from >20 eV to <1 eV kinetic energies with time constants ranging from 1 ns for He to 100 ps for Xe in agreement with an impact-ionization cooling model.

  20. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  1. Generation of collisionless shock in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2015-08-01

    Collisionless shocks are ubiquitous in astrophysical environments and are tightly connected with magnetic-field amplification and particle acceleration. The fast progress in high-power laser technology is bringing the study of high Mach number shocks into the realm of laboratory plasmas, where in situ measurements can be made helping us understand the fundamental kinetic processes behind shocks. I will discuss the recent progress in laser-driven shock experiments at state-of-the-art facilities like NIF and Omega and how these results, together with ab initio massively parallel simulations, can impact our understanding of magnetic field amplification and particle acceleration in astrophysical plasmas.

  2. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.

    PubMed

    Schroeder, C B; Esarey, E

    2010-05-01

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  3. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric

    2010-06-30

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically-intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a non-relativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined, and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for non-relativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  4. Plasma lenses for ultrashort multi-petawatt laser pulses

    SciTech Connect

    Palastro, J. P.; Gordon, D.; Hafizi, B.; Johnson, L. A.; Peñano, J.; Hubbard, R. F.; Helle, M.; Kaganovich, D.

    2015-12-15

    An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here, we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ∼1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ∼10 PW.

  5. Spatial diagnostics of the laser induced lithium fluoride plasma

    SciTech Connect

    Baig, M. A.; Qamar, Aisha; Fareed, M. A.; Anwar-ul-Haq, M.; Ali, Raheel

    2012-06-15

    We present spatial characteristics of the lithium fluoride plasma generated by the fundamental and second harmonic of a Nd:YAG laser. The plume emission has been recorded spatially using five spectrometers covering the spectral region from 200 nm to 720 nm. The electron density is measured from the Stark broadened line profile of the line at 610.37 nm, whereas the plasma temperature has been determined using the Boltzmann plot method including all the observed spectral lines of lithium. Both the plasma parameters; electron density and plasma temperature decrease with the increase of the distance from the target surface. The thermal conduction towards the target, the radiative cooling of the plasma, and the conversion of thermal energy into kinetic energy are the main mechanisms responsible for the spatially decrease of the plasma parameters.

  6. Plasma lenses for ultrashort multi-petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Gordon, D.; Hafizi, B.; Johnson, L. A.; Peñano, J.; Hubbard, R. F.; Helle, M.; Kaganovich, D.

    2015-12-01

    An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here, we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ˜1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ˜10 PW.

  7. State-to-state modeling of ultrashort laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Morel, Vincent; Bultel, Arnaud; Schneider, Ioan; Grisolia, Christian

    2017-01-01

    The question of the Local Thermodynamic Equilibrium (LTE) of laser-induced plasmas is crucial regarding the Laser-Induced Breakdown Spectroscopy (LIBS) technique. The most relevant way to assess theoretically the possible departure from LTE is to develop state-to-state models of the chemical species involved. The present paper illustrates such an elaboration in the case of aluminum and tungsten. Based on this state-to-state approach, the two collisional-radiative models CoRaM-Al and CoRaM-W are elaborated. They include elementary processes under electron and heavy particle impact in thermal non-equilibrium, spontaneous emission, radiative recombination and thermal Bremsstrahlung. These models are applied to the case of ultrashort laser-induced plasmas expanding in an argon gas at different pressure, for which a relevant collisional-radiative model is also elaborated to predict the propagation of the shock wave. The laser conditions are close to those used for a typical LIBS analysis under ultrashort regime. At high argon pressure (105 Pa), the relaxation of the plasma takes place according to a rather low departure from LTE, as revealed by the thorough examination of the Boltzmann plots derived from the state-to-state models. This relaxation occurs at temperature higher for aluminum than for tungsten, but close to 10,000 K from 200 ns. Conversely, at low pressure (10 Pa), the extinction of the plasma is observed at ∼ 500 ns, just after a phase corresponding to significant departure from equilibrium. These results support the idea of the choice of short gate delays close to the laser pulse for the LIBS characterization of tungsten matrices in tokamak-like conditions.

  8. Laser produced plasma diagnostics by cavity ringdown spectroscopy and applications

    SciTech Connect

    Milosevic, S.

    2012-05-25

    Laser-produced plasmas have many applications for which detailed characterization of the plume is requested. Cavity ring-down spectroscopy is a versatile absorption method which provides data on the plume and its surroundings, with spatial and temporal resolution. The measured absorption line shapes contain information about angular and velocity distributions within the plume. In various plasmas we have observed molecules or metastable atoms which were not present in the emission spectra.

  9. Laminar shocks in high power laser plasma interactions

    SciTech Connect

    Cairns, R. A.; Bingham, R.; Norreys, P.; Trines, R.

    2014-02-15

    We propose a theory to describe laminar ion sound structures in a collisionless plasma. Reflection of a small fraction of the upstream ions converts the well known ion acoustic soliton into a structure with a steep potential gradient upstream and with downstream oscillations. The theory provides a simple interpretation of results dating back more than forty years but, more importantly, is shown to provide an explanation for recent observations on laser produced plasmas relevant to inertial fusion and to ion acceleration.

  10. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  11. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  12. Absorption of laser radiation by femtosecond laser-induced plasma of air and its emission characteristics

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.

    2015-11-01

    The energy absorbed by femtosecond laser plasma has nonlinear dependence on incident laser energy. The threshold power for plasma formation is 5.2 GW. Emission of nitrogen molecule, nitrogen molecule ion, atomic oxygen (unresolved triplet O I 777 nm) and nitrogen (triplet N I 742.4, 744.3 and 746.8 nm) lines is detected. Molecular emission consists of second positive and firs negative systems of nitrogen. Time-resolved spectroscopy of plasmas shows short molecular line emission (up to 1 ns) and long atomic line emission (up to 150 ns).

  13. Influence of laser energy on the electron temperature of a laser-induced Mg plasma

    NASA Astrophysics Data System (ADS)

    Asamoah, Emmanuel; Hongbing, Yao

    2017-01-01

    The magnesium plasma induced by a 1064-nm Q-switched Nd:YAG laser in atmospheric air was investigated. The evolution of the plasma was studied by acquiring spectral images at different laser energies and delay times. We observed that the intensities of the spectral lines decrease with larger delay times. The electron temperature was determined using the Boltzmann plot method. At a delay time of 100 ns and laser energy of 350 mJ, the electron temperature attained their highest value at 10164 K and then decreases slowly up to 8833.6 K at 500 ns. We found that the electron temperature of the magnesium plasma increases rapidly with increasing laser energy.

  14. Interferometric studies of laser-created plasmas using compact soft x-ray lasers

    SciTech Connect

    Dunn, J; Nilsen, J; Moon, S; Keenan, R; Jankowska, E; Maconi, M C; Hammarsten, E C; Filevich, J; Hunter, J R; Smith, R F; Shlyaptsev, V; Rocca, J J

    2003-12-04

    We summarize results of several successful dense plasma diagnostics experiments realized by combining two different kinds of table-top soft x-ray lasers with an amplitude division interferometer based on diffraction grating beam splitters. In the first set of experiments this robust high throughput diffraction grating interferometer (DGI) was used with a 46.9 nm portable capillary discharge laser to study the dynamics of line focus and point focus laser-created plasmas. The measured electron density profiles, which differ significantly from those expected from a classical expansion, unveil important two-dimensional effects of the dynamics of these plasmas. A second DGI customized to operate in combination with a 14.7 nm Ni-like Pd transient gain laser was used to perform interferometry of line focus laser-created plasmas with picosecond time resolution. These measurements provide valuable new benchmarks for complex hydrodynamic codes and help bring new understanding of the dynamics of dense plasmas. The instrumentation and methodology we describe is scalable to significantly shorter wavelengths, and constitutes a promising scheme for extending interferometry to the study of very dense plasmas such as those investigated for inertial confinement fusion.

  15. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    SciTech Connect

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  16. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  17. Collisionless Interaction of a Magnetized Ambient Plasma and a Field-Parallel Laser Produced Plasma

    NASA Astrophysics Data System (ADS)

    Heuer, P. V.; Bondarenko, A. S.; Schaeffer, D. B.; Constantin, C. G.; Vincena, S.; Tripathi, S.; Gekelman, W.; Weidl, M.; Winske, D.; Niemann, C.

    2016-10-01

    We present measurements of the collisionless coupling between an exploding laser-produced plasma (LPP) and a large, magnetized ambient plasma. The LPP was created by focusing the Raptor laser (400 J, 40 ns) on a planar plastic target embedded in the ambient Large Plasma Device (LAPD) plasma at the University of California, Los Angeles. The resulting ablated material moved parallel to the background magnetic field, interacting with the ambient plasma along the full 17m length of the LAPD. The amplitude and polarization of waves driven by the interaction were measured by an array of 3-axis magnetic flux probes. Emissive doppler spectroscopy and a high temporal resolution monochrometer were used to observe the velocity and charge state distributions of both ambient and debris ions. Measurements are compared to hybrid simulations of quasi-parallel shocks.

  18. Neutron Source from Laser Plasma Acceleration

    NASA Astrophysics Data System (ADS)

    Jiao, Xuejing; Shaw, Joseph; McCary, Eddie; Downer, Mike; Hegelich, Bjorn

    2016-10-01

    Laser driven electron beams and ion beams were utilized to produce neutron sources via different mechanism. On the Texas Petawatt laser, deuterized plastic, gold and DLC foil targets of varying thickness were shot with 150 J , 150 fs laser pulses at a peak intensity of 2 ×1021W /cm2 . Ions were accelerated by either target normal sheath acceleration or Breakout Afterburner acceleration. Neutrons were produced via the 9Be(d,n) and 9Be(p,n) reactions when accelerated ions impinged on a Beryllium converter as well as by deuteron breakup reactions. We observed 2 ×1010 neutron per shot in average, corresponding to 5 ×1018n /s . The efficiencies for different targets are comparable. In another experiment, 38fs , 0.3 J UT3 laser pulse interacted with mixed gas target. Electrons with energy 40MeV were produced via laser wakefield acceleration. Neutron flux of 2 ×106 per shot was generated through bremsstrahlung and subsequent photoneutron reactions on a Copper converter.

  19. Optical guiding of laser beam in nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Singh Gill, Tarsem

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi ( Phys. Plasmas, 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.}

  20. Stagnation and interpenetration of laser-created colliding plasmas

    SciTech Connect

    Pollaine, S.M.; Albritton, J.R.; Kauffman, R.; Keane, C.J. ); Berger, R.L.; Bosch, R.; Delameter, N.D.; Failor, B.H. )

    1990-11-05

    A KMS laser experiment collides Aluminum (A1) and Magnesium (Mg) plasmas. The measurements include electron density, time and space resolved Ly-alpha and He-alpha lines of Al and Mg, and x-ray images. These measurements were analyzed with a hydrodynamic code, LASNEX, and a special two-fluid code OFIS. The results strongly suggest that at early times, the Al interpenetrates the counterstreaming Mg and deposits in the dense Mg region. At late times, the Al plasma stagnates against the Mg plasma.

  1. Radiative heat transport instability in a laser produced inhomogeneous plasma

    SciTech Connect

    Bychenkov, V. Yu.; Rozmus, W.

    2015-08-15

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation emission and radiative heat transfer supports ion acoustic instability. A linear dispersion relation is derived, and instability is compared to the radiation cooling instability [R. G. Evans, Plasma Phys. Controlled Fusion 27, 751 (1985)]. Under conditions of indirect drive fusion experiments, the driving term for the instability is the radiative heat flux and, in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered. This instability may lead to plasma jet formation and anisotropic x-ray generation, thus affecting inertial confinement fusion related experiments.

  2. Study of Laser Created Metal Vapor Plasmas.

    DTIC Science & Technology

    1979-11-16

    the past year. We now have two nitrogen laser pumped dye lasers and a dual wavelength photodetection system. We have a new low pressure ablation chffber...ablation chamber and improved photodetection system is shcw in the foreground An RCA C31034 P’r and a SPEX 1700 monochromator is used in one cha-nel, while...independent, photodetection channels and a new fast dual bean oscilloscope. L13)1S - Theoretical Progrc-=, Over the past two years we have developed

  3. Redirection of the spherical expanding shock wave on the interface with plasma

    SciTech Connect

    Markhotok, A.; Popovic, S.

    2014-02-15

    We study a strong spherical expanding shock wave interacting with the finite-gradient interface between neutral cold gas and weakly ionized plasma. We want to see how the interaction with the interface can alter the shock structure compared to the case of its free propagation through the media with the exponentially varying density. From our comparative calculations based on the 2D model, we found substantial difference in the shock structure including strong deformation of the shock front followed with its gradual flattening and the redirection in its propagation. There are a number of factors that can be used to control this phenomenon in order to strengthen or lessen the effect. The calculations can be made on any scale, limited with the requirement for the shock wave to be strong. The study points at the possibility in certain applications to avoid the shock wave with its redirection rather than attenuation. The results can be applicable to optimization of the energy deposition into the supersonic flux, the drag reduction in hypersonic flight, in the detonation theory, and combustion through the control of the ignition conditions, and for environmental improvements through sonic boom reduction. Cartesian coordinates were used in order to visualize the phenomenon.

  4. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    PubMed Central

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592

  5. Expanded Vandermonde Powers and Sum Rules for the Two-Dimensional One-Component Plasma

    NASA Astrophysics Data System (ADS)

    Téllez, Gabriel; Forrester, Peter J.

    2012-09-01

    The two-dimensional one-component plasma (2dOCP) is a system of N mobile particles of the same charge q on a surface with a neutralizing background. The Boltzmann factor of the 2dOCP at temperature T can be expressed as a Vandermonde determinant to the power Γ= q 2/( k B T). Recent advances in the theory of symmetric and anti-symmetric Jack polynomials provide an efficient way to expand this power of the Vandermonde in their monomial basis, allowing the computation of several thermodynamic and structural properties of the 2dOCP for N values up to 14 and Γ equal to 4, 6 and 8. In this work we explore two applications of this formalism, to the study of the pair correlation function of the 2dOCP on the sphere, and the distribution of radial statistics of the 2dOCP in the plane. Also provided is a finite N approximation to the pair correlation on the sphere, and a sum rule for the constant term in the large N expansion of the moments of the density in the plane.

  6. Characterization and physiological effect of tapioca maltodextrin colloid plasma expander in hemorrhagic shock and resuscitation model.

    PubMed

    Chatpun, Surapong; Sawanyawisuth, Kittisak; Wansuksri, Rungtiva; Piyachomkwan, Kuakoon

    2016-05-01

    Plasma expanders (PEs) are administered fluids to replace blood volume when massive blood loss has occured. Maltodextrin from tapioca starch was selected as a study candidate to prepare a colloid PE due to an uncomplicated production process. The formulations of mixture between tapioca maltodextrin and 0.9 % sodium chloride solution were prepared and then characterized. This was to investigate the effects of a dextrose equivalent (DE) and the concentration on the physical properties. Storage stability of each formulation was also determined and compared with clinically used PE [6 % hydroxyethyl starch (HES), 130/0.4]. The effects on the circulatory system in hamsters with hemorrhagic shock and resuscitation using prepared PE were also investigated. The results showed that low DE value led to high retrogradation, turbidity and viscosity but low colloid osmotic pressure and poor solubility. Among the prepared solutions, tapioca maltodextrin with DE6 at 10 % w/v concentration had comparable properties with 6 % HES 130/0.4. Animals resuscitated with 10 % DE6 PE had improved mean arterial blood pressure similar to those resuscitated with 6 % HES 130/0.4. However, several parameters in animals resuscitated with 10 % DE6 PE were lower than those resuscitated with 6 % HES 130/0.4, i.e., heart rate, functional capillary density. Therefore, if using tapioca maltodextrin for PE, some properties have to be considered and efficiently optimized.

  7. Physicochemical properties and responses in microcirculation of native tapioca starch-based plasma expander.

    PubMed

    Chatpun, Surapong; Meesane, Jirut; Rujirojindakul, Pairaya

    2016-02-01

    Plasma expanders (PEs) such as hydroxyethyl strach are widely used for volume replacement. The plantation and production of tapioca in Thailand is abundant which may provide a new source for PEs starch with novel properties. This work investigated the properties and circulatory effects of native tapioca starch-based PE (TPE). Various formulations of mixture between native tapioca starch and 0.9% sodium chloride solution were prepared and characterized in order to obtain the proper physicochemical and rheological properties. About 1% concentration by weight per volume of TPE was compared with 6% hydroxyethyl starch 130/0.4 in 0.9% sodium chloride (HES130/0.4) using an acute hemodilution by 40% of blood volume in an animal protocol. TPE had higher turbidity and viscosity but lower colloid osmotic pressure compared with HES 130/0.4. The in vivo study demonstrated that Golden Syrian hamsters hemodiluted with TPE maintained a mean arterial blood pressure and no significant difference compared to HES 130/0.4. The arterial vasodilation and functional capillary density in the animals hemodiluted with TPE had higher values than in the animals hemodiluted with HES 130/0.4. Although the in vivo study reported positive results using this native tapioca starch-based PE, the product needs work to improve some of its physiochemical properties.

  8. Ultrashort pulse laser microsurgery system with plasma luminescence feedback control

    SciTech Connect

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.

    1997-11-10

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  9. Stability of liquid-nitrogen-jet laser-plasma targets

    SciTech Connect

    Fogelqvist, E. Kördel, M.; Selin, M.; Hertz, H. M.

    2015-11-07

    Microscopic jets of cryogenic substances such as liquid nitrogen are important regenerative high-density targets for high-repetition rate, high-brightness laser-plasma soft x-ray sources. When operated in vacuum such liquid jets exhibit several non-classical instabilities that negatively influence the x-ray source's spatial and temporal stability, yield, and brightness, parameters that all are important for applications such as water-window microscopy. In the present paper, we investigate liquid-nitrogen jets with a flash-illumination imaging system that allows for a quantitative stability analysis with high spatial and temporal resolution. Direct and indirect consequences of evaporation are identified as the key reasons for the observed instabilities. Operating the jets in an approximately 100 mbar ambient atmosphere counteracts the effects of evaporation and produces highly stable liquid nitrogen jets. For operation in vacuum, which is necessary for the laser plasmas, we improve the stability by introducing an external radiative heating element. The method significantly extends the distance from the nozzle that can be used for liquid-jet laser plasmas, which is of importance for high-average-power applications. Finally, we show that laser-plasma operation with the heating-element-stabilized jet shows improved short-term and long-term temporal stability in its water-window x-ray emission.

  10. Plasma erosion rate diagnostics using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Turley, R. S.; Matossian, J. N.; Beattie, J. R.; Williamson, W. S.

    1992-01-01

    An optical technique for measuring the sputtering rate of a molybdenum surface immersed in a xenon plasma has been developed and demonstrated. This approach, which may be useful in real-time wear diagnostics for ion thrusters, relies on laser-induced fluorescence to determine the density of sputtered molybdenum atoms.

  11. Laser-plasma mirrors: from electron acceleration to harmonics generation

    NASA Astrophysics Data System (ADS)

    Thévenet, Maxence; Bocoum, Maïmouna; Faure, Jérôme; Leblanc, Adrien; Vincenti, Henri; Quéré, Fabien

    2016-10-01

    Accelerating electrons in the > 10 TV/m fields inside an ultrashort ultraintense laser pulse has been a long-standing goal in experimental physics, motivated by promising theoretical predictions. The biggest hurdle was to have electrons injected in the center of the laser pulse. Recent experimental and numerical results showed that this problem could be solved using a plasma mirror, i.e. an overdense plasma with a sharp (<laser wavelength) density gradient on its front side, leading to a 10 MeV 3 nC electron beam. Using particle-in-cell simulations, the ejection process was identified as a push-pull mechanism occuring at each laser period, resulting in a train of attosecond electron bunches injected in the reflected field. We present a study and a model of this process, and show the gradient characteristic length is the crucial parameter for this phenomenon. Finally, the electron ejection process was put into perspective with respect to the high harmonic generation mechanisms on plasma mirrors, giving new insights into the motion of the plasma mirror surface. funded by the European Research Council, Contract No. 306708, ERC Starting Grant FEMTOELEC.

  12. Temporary spectral analysis of a laser plasma of mineral coal

    NASA Astrophysics Data System (ADS)

    Rebolledo, P.; Pacheco, P.; Sarmiento, R.; Cabanzo, R.; Mejía-Ospino, E.

    2013-11-01

    In this work we present results of the temporal spectral study of a plasma laser of mineral coal using the Laser-induced Breakdown Spectroscopy (LIBS) technique. The plasma was generated by focusing a laser beam of Nd:YAG laser emitting at 532 nm with energy per pulse of 35 mJ on coal target pellets. The plasma radiation was conducted by an optical fiber to the entrance slit of a spectrograph of 0.5 m, equipped with a 1200 and 2400 grooves/mm diffraction grating and an ICCD camera for registration with different delay times of the spectra in the spectral range from 250 nm to 900 nm. The temporal spectral analysis allowed the identification of the elements Al, Fe, Ca, Mg, K, and Si, and CN and C2 molecules present in natural coals. The characteristics of the spectral lines and bands were studied at different delay times obtaining the calculation of the evolution of electron temperature, electron density, and vibrational temperature of plasmas in the time. The delay times used were between 0.5 μs and 5 μs, calculating the electron temperature ranged between 5 000 K and 1 000 K.

  13. Subsurface plasma in beam of continuous CO2-laser

    NASA Astrophysics Data System (ADS)

    Danytsikov, Y. V.; Dymshakov, V. A.; Lebedev, F. V.; Pismennyy, V. D.; Ryazanov, A. V.

    1986-03-01

    Experiments performed at the Institute of Atomic Energy established the conditions for formation of subsurface plasma in substances by laser radiation and its characteristics. A quasi-continuous CO2 laser emitting square pulses of 0.1 to 1.0 ms duration and 1 to 10 kW power as well as a continuous CO2 laser served as radiation sources. Radiation was focused on spots 0.1 to 0.5 mm in diameter and maintained at levels ensuring constant power density during the interaction time, while the temperature of the target surface was measured continuously. Metals, graphite and dielectric materials were tested with laser action taking place in air N2 + O2 mixtures, Ar or He atmosphere under pressures of 0.01 to 1.0 atm. Data on radiation intensity thresholds for evaporation and plasma formation were obtained. On the basis of these thresholds, combined with data on energy balance and the temperature profile in plasma layers, a universal state diagram was constructed for subsurface plasma with nonquantified surface temperature and radiation intensity coordinates.

  14. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  15. Resonant enhancement for amplitude-modulated laser filament induced magnetic field in an inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Annou, R.; Tripathi, V. K.; Srivastava, M. P.

    1996-09-01

    The Tripathi-Liu [Phys. Plasmas 1, 990 (1994)] model of magnetic-field generation due to an amplitude-modulated laser in a plasma is revisited. At plasma resonance, where modulation frequency equals the plasma frequency, significant enhancement in the magnetic field is seen. The magnetic field is found to scale directly with laser intensity and plasma frequency, while scaling inversely with laser spot size.

  16. Saturation of Langmuir waves in laser-produced plasmas

    SciTech Connect

    Baker, K.L.

    1996-04-01

    This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.

  17. Imploding plasma x-ray laser research. Draft final report

    SciTech Connect

    Wong, S.; Koppel, L.; Burr, L.; Rodenburg, R.; Fortner, R.; Stewart, R.; Dietrich, D.; Egan, P.; Young, B.; Dukart, R.

    1984-09-01

    The population inversion mechanisms and gain estimates for the Ne-like Kr x-ray laser scheme are discussed. An experimental configuration has been developed which produces stable plasmas with conditions close to the optimum for lasing. By imploding a coaxial argon plasma on an inner krypton plasma (the puff-on-puff configuration), a quiescent krypton center plasma was produced with an electron temperature of about 600 eV and an electron density of about 10/sup 21/ cm/sup -3/. The center plasma was stable and linear, with little evidence of kink instabilities. Nozzle development work was also performed. X-ray measurements of electron temperature and density as well as XUV linewidths are presented. (LEW)

  18. Mechanical properties and biocompatibility of plasma-nitrided laser-cut 316L cardiovascular stents.

    PubMed

    Arslan, Erdem; Iğdil, Mustafa C; Yazici, Hilal; Tamerler, Candan; Bermek, Hakan; Trabzon, Levent

    2008-05-01

    The effect of surface modification of laser-cut 316L cardiovascular stents by low-T plasma nitriding was evaluated in terms of mechanical properties and biocompatibility of the stents. The plasma nitriding was performed at 400, 450 or 500 degrees C using various ratios of nitrogen-hydrogen gas mixtures. The flexibility and radial strength were measured in crimped and expanded state of the stents, respectively. The mechanical properties could be adjusted and improved by plasma nitriding conducted at temperatures lower than 450 degrees C and/or nitrogen content less than 10% in the treatment gas. An osteoblast cell culture model system was utilized to investigate the effect of plasma nitriding of the stents on the biological response towards the stents, using biological criteria such as cell viability, alkaline phosphatase and nitric oxide production. In terms of cell viability and alkaline phosphatase production, the plasma nitriding procedure did not appear to negatively affect the biocompatibility of the 316L steel stents. However, in terms of nitric oxide production that was slightly increased in the presence of the plasma-nitrided stents, an indirect improvement in the biocompatibility could possibly be expected.

  19. Frequency-Domain Tomography for Single-shot, Ultrafast Imaging of Evolving Laser-Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Downer, Michael

    2011-10-01

    Intense laser pulses propagating through plasma create plasma wakefields that often evolve significantly, e.g. by expanding and contracting. However, such dynamics are known in detail only through intensive simulations. Laboratory visualization of evolving plasma wakes in the ``bubble'' regime is important for optimizing and scaling laser-plasma accelerators. Recently snap-shots of quasi-static wakes were recorded using frequency-domain holography (FDH). To visualize the wake's evolution, we have generalized FDH to frequency-domain tomography (FDT), which uses multiple probes propagating at different angles with respect to the pump pulse. Each probe records a phase streak, imprinting a partial record of the evolution of pump-created structures. We then topographically reconstruct the full evolution from all phase streaks. To prove the concept, a prototype experiment visualizing nonlinear index evolution in glass is demonstrated. Four probes propagating at 0, 0.6, 2, 14 degrees to the index ``bubble'' are angularly and temporally multiplexed to a single spectrometer to achieve cost-effective FDT. From these four phase streaks, an FDT algorithm analogous to conventional CT yields a single-shot movie of the pump's self-focusing dynamics.

  20. Experimental and theoretical investigation of the effect of laser parameters on laser ablation and laser-induced plasma formation

    NASA Astrophysics Data System (ADS)

    Stancalie, Andrei; Ciobanu, Savu-Sorin; Sporea, Dan

    2016-04-01

    We report results from a wide range of laser operating conditions, typical for laser induced breakdown spectroscopy (LIBS) and laser ablation (LA) experiments on copper metallic target, which form the basis of further systematically investigation of the effect of laser irradiance, pulse duration and wavelength, on the target, plume and plasma behavior, during and after laser-solid interaction. In the LA experiment, the laser beam was focused through a 25 cm focal length convergent lens on a plane copper target in air, at atmospheric pressure. The target was rotated in order to have fresh areas under laser irradiance. In the LIBS experiment, the Applied Photonics LIBS-6 instrument allowed modifying the laser irradiance at the sample surface by changing the pulse energy or the laser focusing distance. For the duration of the laser pulse, the power density at the surface of the target material exceeds 109 W/cm2 using only a compact laser device and simple focusing lenses. The plasma parameters were experimentally estimated from spectroscopic data generated by the plasma itself, namely by the line intensities and their ratio which reflect the relative population of neutral or ionic excited species in the plasma. The fitting of the Saha-Boltzmann plot to a straight line provides an apparent ionization temperature, whose value depends on the lines used in the plots. For the typical conditions of LA and LIBS, the temperature can be so high that Cu+ ions are formed. The first-order ionization of Cu (i.e., the ratio of Cu+/Cu0 ) is calculated.

  1. Laser Absorption by Over-Critical Plasmas

    NASA Astrophysics Data System (ADS)

    May, J.; Tonge, J.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Mori, W. B.

    2015-11-01

    Absorption of high intensity laser light by matter has important applications to emerging sciences and technology, such as Fast Ignition ICF and ion acceleration. As such, understanding the underlying mechanisms of this absorption is key to developing these technologies. Critical features which distinguish the interaction of high intensity light - defined here as a laser field having a normalized vector potential greater than unity - are that the reaction of the material to the fields results in sharp high-density interfaces; and that the movement of the electrons is in general relativistic, both in a fluid and a thermal sense. The results of these features are that the absorption mechanisms are qualitatively distinct from those at lower intensities. We will review previous work, by our group and others, on the absorption mechanisms, and highlight current research. We will show that the standing wave structure of the reflected laser light is key to particle dynamics for normally incident lasers. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  2. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.; Kerbel, G. D.; Thomas, C. A.; Ralph, J. E.; Moody, J. D.; Schneider, M. B.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  3. Extraction of metal ions from laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V.

    2005-10-01

    Experimental results concerning the extraction of Cu ions from laser-produced plasma are reported in this work. An XeCl excimer laser was used, providing a power density on the target surface of about 3.5 × 108 W/cm2. Laser wavelength and pulse duration were 308 nm and 20 ns, respectively. The experimental apparatus consisted substantially of a plasma generation chamber and a drift tube. An expansion chamber was mounted on the target stem inside the generation chamber. Its end together with a bored electrode connected to ground formed the acceleration gap, which was 1.3 cm large. A Faraday cup was used to reveal ions. The highest accelerating voltage applied to the extraction gap was 18 kV, resulting in extraction of an ion bunch of about 4.2 nC, with a peak current of 220 μA.

  4. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    DOE PAGES

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; ...

    2017-01-12

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less

  5. Material measurement method based on femtosecond laser plasma shock wave

    NASA Astrophysics Data System (ADS)

    Zhong, Dong; Li, Zhongming

    2017-03-01

    The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.

  6. Laser plasma emission of small particles in different gas atmospheres

    NASA Astrophysics Data System (ADS)

    Andreev, Alexander A.; Ueda, Toshitsugu; Wakamatsu, Muneaki

    2002-06-01

    The problem of laser pulse interaction with small solid particles in a gas atmosphere when detecting its parameters is a serous one in industrial and environmental applications. Previous investigations have shown the possibility of using the laser induced breakdown method. This method is very sensitive, but for a particle size of less than 0.1 micrometers the damage threshold of the solid target is very close to the breakdown point of pure gas. At breakdown, a small volume of dense hot plasma emits radiation by which the size and material of particles can be detected. We used an analytical model, simulation code and experiments to analyze this radiation and found that the emitted intensity varied with laser, gas and particle parameters. The increased dependence of SSP plasma emission rate on initial particle volume permits this method to be used for measuring small particle size by using emitted line spectrum at the late time stage.

  7. Validating Laser-Induced Birefringence Theory with Plasma Interferometry

    SciTech Connect

    Chen, Cecilia

    2015-09-02

    Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variations of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Kosareva, O. G.; Grigor'evskii, A. V.; Kandidov, V. P.

    2005-11-01

    The formation of plasma channels of a femtosecond laser pulse in the bulk of fused silica is studied by numerical simulation, and the advantages of using a conical lens (axicon) over conventional parabolic lenses are shown. It is found that the length of the plasma channel formed with the help of an axicon exceeds the length of the channel formed upon lens focusing.

  9. Laser plasma ignition: status, perspectives, solutions

    NASA Astrophysics Data System (ADS)

    Wintner, E.; Kofler, H.; Srivastava, D. K.; Agarwal, A. K.

    2013-11-01

    Laser ignition can yield certain advantages compared to conventional sparkplug ignition. Among other already frequently discussed reasons due to: i) option for sequential or multipoint ignition which can contribute to more reliable ignition in direct injection engines; ii) ignition of leaner mixtures at higher compression being most relevant for gas engines. A satisfying solution to the above mentioned requirements is the longitudinally diode-pumped passively Q-switched Cr4+:YAG/Nd 3+:YAG laser capable of emitting ˜1-ns-pulses of at least 20 mJ . This type of solid-state laser (SSL) confectioned in an engine-compatible form can be called a laser sparkplug. Early versions of this concept comprised a high-power diode pump laser (quasi-cw power <500 W @ ˜500 μs duration) which were placed remote from the engine to avoid detrimental influences of temperature, vibrations, pollution etc. In this case only the SSL is exposed to the elevated temperature in the vicinity of the cylinder walls (<100°C). Recently, technical and cost-oriented considerations allow a change of concept from fiber-based remote pumping via edge emitter arrays to the use of newly developed so-called power VCSELs with two-dimensional stacking. Collimation to form a round pump beam thereby becomes much easier. Their temperature resistance allows lower-cost direct mounting although thereby a wavelength shift is induced. The Q-switched SSL in the sparkplug also faces temperature dependent phenomena like reduction of pulse energy and efficiency, a change of pulse timing and beam profile which will be discussed in the paper.

  10. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  11. Atomic mass dependent electrostatic diagnostics of colliding laser plasma plumes

    SciTech Connect

    Yeates, P.; Fallon, C.; Kennedy, E. T.; Costello, J. T.

    2013-09-15

    The behaviours of colliding laser plasma plumes (C{sub p}) compared with single plasma plumes (S{sub p}) are investigated for 14 different atomic mass targets. A Faraday cup, situated at the end of a drift tube (L = 0.99 m), is employed to record the time-of-flight (TOF) current traces for all elements and both plume configurations, for a fixed laser intensity of I{sub p} = 4.2 × 10{sup 10} W cm{sup −2} (F = 0.25 kJ cm{sup −2}). The ratio of the peak current from the C{sub p} relative to twice that from the S{sub p} is designated as the peak current ratio while the ratio of the integrated charge yield from the C{sub p} relative to twice that from the S{sub p} is designated as the charge yield ratio. Variation of the position of the Faraday cup within the drift tube (L = 0.33, 0.55, and 0.99 m) in conjunction with a lower laser fluence (F = 0.14 kJ cm{sup −2}) facilitated direct comparison of the changing TOF traces from both plasma configurations for the five lightest elements studied (C, Al, Si, Ti, and Mn). The results are discussed in the frame of laser plasma hydrodynamic modelling to approximate the critical recombination distance L{sub CR}. The dynamics of colliding laser plasma plumes and the atomic mass dependence trends observed are presented and discussed.

  12. Laser Beam Propagation through Inertial Confinement Fusion Hohlraum Plasmas

    SciTech Connect

    Froula, D H; Divol, L; Meezan, N B; DIxit, S; Neumayer, P; Moody, J D; Pollock, B B; Ross, J S; Glenzer, S H

    2006-10-26

    A study of the relevant laser-plasma interaction processes has been performed in long-scale length plasmas that emulate the plasma conditions in indirect drive inertial confinement fusion targets. Experiments in this high-temperature (T{sub e} = 3.5 keV), dense (n{sub e} = 0.5 - 1 x 10{sup -3}) hohlraum plasma have demonstrated that blue 351-nm laser beams produce less than 1% total backscatter resulting in transmission greater than 90% for ignition relevant laser intensities (I < 2 x 10{sup 15} W cm{sup -2}). The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows that these results are relevant for the outer beams in ignition hohlraum experiments corresponding to a gain threshold for stimulated Brillouin scattering of 15. By increasing the gas fill density in these experiments further accesses inner beam ignition hohlraum conditions. In this case, stimulated Raman scattering dominates the backscattering processes. They show that scattering is small for gains smaller than 20, which can be achieved through proper choice of the laser beam intensity.

  13. Hybrid Simulation of Laser-Plasma Interactions and Fast Electron Transport in Inhomogeneous Plasma

    SciTech Connect

    Cohen, B I; Kemp, A; Divol, L

    2009-05-27

    A new framework is introduced for kinetic simulation of laser-plasma interactions in an inhomogenous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell's equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell's equations are solved using an Ohm's law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere's law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.

  14. Simulation of laser-plasma interactions and fast-electron transport in inhomogeneous plasma

    SciTech Connect

    Cohen, B.I. Kemp, A.J.; Divol, L.

    2010-06-20

    A new framework is introduced for kinetic simulation of laser-plasma interactions in an inhomogeneous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell's equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell's equations are solved using an Ohm's law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere's law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.

  15. Powerful laser pulse absorption in partly homogenized foam plasma

    NASA Astrophysics Data System (ADS)

    Cipriani, M.; Gus'kov, S. Yu.; De Angelis, R.; Andreoli, P.; Consoli, F.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Rupasov, A. A.

    2016-03-01

    The internal volume structure of a porous medium of light elements determines unique features of the absorption mechanism of laser radiation; the characteristics of relaxation and transport processes in the produced plasma are affected as well. Porous materials with an average density larger than the critical density have a central role in enhancing the pressure produced during the ablation by the laser pulse; this pressure can exceed the one produced by target direct irradiation. The problem of the absorption of powerful laser radiation in a porous material is examined both analytically and numerically. The behavior of the medium during the process of pore filling in the heated region is described by a model of viscous homogenization. An expression describing the time and space dependence of the absorption coefficient of laser radiation is therefore obtained from the model. A numerical investigation of the absorption of a nanosecond laser pulse is performed within the present model. In the context of numerical calculations, porous media with an average density larger than the critical density of the laser-produced plasma are considered. Preliminary results about the inclusion of the developed absorption model into an hydrodynamic code are presented.

  16. Plasma Parameter of a Capillary Discharge-Produced Plasma Channel to Guide an Ultrashort Laser Pulse

    SciTech Connect

    Higashiguchi, Takeshi; Terauchi, Hiromitsu; Bai, Jin-xiang; Yugami, Noboru

    2009-01-22

    We have observed the optical guiding of a 100-fs laser pulse with the laser intensity in the range of 10{sup 16} W/cm{sup 2} using a 1.5-cm long capillary discharge-produced plasma channel for compact electron acceleration applications. The optical pulse propagation using the plasma channel is achieved with the electron densities of 10{sup 17}-10{sup 18} cm{sup -3} and the electron temperatures of 0.5-4 eV at a discharge time delay of around 150 ns and a discharge current of 500 A with a pulse duration of 100-150 ns. An energy spectrum of the accelerated electrons from a laser-plasma acceleration scheme showed a peak at 1.3 MeV with a maximum energy tail of 1.6 MeV.

  17. Time of flight emission spectroscopy of laser produced nickel plasma: Short-pulse and ultrafast excitations

    SciTech Connect

    Smijesh, N.; Chandrasekharan, K.; Joshi, Jagdish C.; Philip, Reji

    2014-07-07

    We report the experimental investigation and comparison of the temporal features of short-pulse (7 ns) and ultrafast (100 fs) laser produced plasmas generated from a solid nickel target, expanding into a nitrogen background. When the ambient pressure is varied in a large range of 10⁻⁶Torr to 10²Torr, the plume intensity is found to increase rapidly as the pressure crosses 1 Torr. Time of flight (TOF) spectroscopy of emission from neutral nickel (Ni I) at 361.9 nm (3d⁹(²D) 4p → 3d⁹(²D) 4s transition) reveals two peaks (fast and slow species) in short-pulse excitation and a single peak in ultrafast excitation. The fast and slow peaks represent recombined neutrals and un-ionized neutrals, respectively. TOF emission from singly ionized nickel (Ni II) studied using the 428.5 nm (3p⁶3d⁸(³P) 4s→ 3p⁶3d⁹ 4s) transition shows only a single peak for either excitation. Velocities of the neutral and ionic species are determined from TOF measurements carried out at different positions (i.e., at distances of 2 mm and 4 mm, respectively, from the target surface) on the plume axis. Measured velocities indicate acceleration of neutrals and ions, which is caused by the Coulomb pull of the electrons enveloping the plume front in the case of ultrafast excitation. Both Coulomb pull and laser-plasma interaction contribute to the acceleration in the case of short-pulse excitation. These investigations provide new information on the pressure dependent temporal behavior of nickel plasmas produced by short-pulse and ultrafast laser pulses, which have potential uses in applications such as pulsed laser deposition and laser-induced nanoparticle generation.

  18. The critical distance in laser-induced plasmas: an operative definition

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Giuffreda, E.; Nassisi, V.

    2016-05-01

    We propose a method to estimate a precise value for the critical distance Lcr after which three-body recombination stops to produce charge losses in an expanding laser-induced plasma. We show in particular that the total charge collected has a ``reversed sigmoid'' shape as a function of the target-to-detector distance. Fitting the total charge data with a logistic related function, we could consider as Lcr the intercept of the tangent to this curve in its inflection point. Furthermore, this value scales well with theoretical predictions. From the application point of view, this could be of great practical interest, since it provide a reliable way to precisely determine the geometry of the extraction system in Laser Ion Sources.

  19. Studying astrophysical particle acceleration with laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2016-10-01

    The acceleration of non-thermal particles in plasmas is critical for our understanding of explosive astrophysical phenomena, from solar flares to gamma ray bursts. Particle acceleration is thought to be mediated by collisionless shocks and magnetic reconnection. The microphysics underlying these processes and their ability to efficiently convert flow and magnetic energy into non-thermal particles, however, is not yet fully understood. By performing for the first time ab initio 3D particle-in-cell simulations of the interaction of both magnetized and unmagnetized laser-driven plasmas, it is now possible to identify the optimal parameters for the study of particle acceleration in the laboratory relevant to astrophysical scenarios. It is predicted for the Omega and NIF laser conditions that significant non-thermal acceleration can occur during magnetic reconnection of laser-driven magnetized plasmas. Electrons are accelerated by the electric field near the X-points and trapped in contracting magnetic islands. This leads to a power-law tail extending to nearly a hundred times the thermal energy of the plasma and that contains a large fraction of the magnetic energy. The study of unmagnetized interpenetrating plasmas also reveals the possibility of forming collisionless shocks mediated by the Weibel instability on NIF. Under such conditions, both electrons and ions can be energized by scattering out of the Weibel-mediated turbulence. This also leads to power-law spectra that can be detected experimentally. The resulting experimental requirements to probe the microphysics of plasma particle acceleration will be discussed, paving the way for the first experiments of these important processes in the laboratory. As a result of these simulations and theoretical analysis, there are new experiments being planned on the Omega, NIF, and LCLS laser facilities to test these theoretical predictions. This work was supported by the SLAC LDRD program and DOE Office of Science, Fusion

  20. Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Lei; Fan, Juanjuan; Li, Yufang; Gong, Yao; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Jia, Suotang

    2015-11-01

    Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%. supported by the 973 Program of China (No. 2012CB921603), National Natural Science Foundation of China (Nos. 61475093, 61127017, 61178009, 61108030, 61378047, 61275213, 61475093, and 61205216), the National Key Technology R&D Program of China (No. 2013BAC14B01), the Shanxi Natural Science Foundation (Nos. 2013021004-1 and 2012021022-1), the Shanxi Scholarship Council of China (Nos. 2013-011 and 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China

  1. Magnetic Turbulence in Colliding Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Collette, A.; Gekelman, W.; Vincena, S.

    2007-05-01

    The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them coronal mass ejections and the many examples of plasma jets from astrophotography. Turbulence is expected to be present in many such configurations. We describe a series of experiments which involve the collision of two dense (initially, n > 1015cm-3) laser-produced plasmas within an ambient, highly magnetized background plasma. The laser-produced plasmas form diamagnetic cavities in which a large percentage of the background magnetic field (600G) has been expelled. First-stage observations of these structures have been completed using a fast (3ns exposure) camera. The photographs indicate complicated structure at late times, in addition to coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. The second stage of observation will consist of direct investigation of the magnetic field using probes. A novel diagnostic system composed of small (300-500 micron) 3-axis differential magnetic field probes in conjunction with a ceramic motor system capable of extremely fine (sub-micron) positioning accuracy is currently under development. An ensemble of magnetic field data from fixed and movable probes makes possible the calculation of the cross-spectral function. Initial data from photography and a prototype probe will be presented.

  2. Colliding Laser-Produced Plasmas on LaPD

    NASA Astrophysics Data System (ADS)

    Collette, Andrew; Gekelman, Walter

    2007-11-01

    The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them coronal mass ejections and the many examples of plasma jets from astrophotography. Turbulence is expected to be present in many such configurations. We describe a series of experiments which involve the collision of two dense (initially, n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized plasma. The laser-produced plasmas form diamagnetic cavities in which a large percentage of the background magnetic field (600G) has been expelled. First-stage observations using a fast (3ns exposure) camera indicate complicated structure at late times, in addition to coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. The second stage of observation consists of direct investigation of the magnetic field using probes. A novel diagnostic system composed of small (300-500 micron) 3-axis differential magnetic field probes in conjunction with a ceramic motor system capable of extremely fine (sub-micron) positioning accuracy is currently under development. An ensemble of magnetic field data from fixed and movable probes makes possible the calculation of the cross-spectral function.

  3. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Seyler, Charles

    2016-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling laser-plasma interactions in relativistic and nonrelativistic regimes. By formulating the fluid equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of two-fluid phenomena in dense plasmas without the need to resolve the smallest electron length and time scales. For relativistic and nonrelativistic laser-target interactions, we have validated a cycle-averaged absorption (CAA) laser driver model against the direct approach of driving the electromagnetic fields. The CAA model refers to driving the radiation energy and flux rather than the fields, and using hyperbolic radiative transport, coupled to the plasma equations via energy source terms, to model absorption and propagation of the radiation. CAA has the advantage of not requiring adequate grid resolution of each laser wavelength, so that the system can span many wavelengths without requiring prohibitive CPU time. For several laser-target problems, we compare existing MHD results to extended-MHD results generated using PERSEUS with the CAA model, and examine effects arising from Hall physics. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  4. Expanding applications for surface-contaminant sensing using the laser interrogation of surface agents (LISA) technique

    NASA Astrophysics Data System (ADS)

    Ponsardin, Patrick L.; Higdon, N. S.; Chyba, Thomas H.; Armstrong, Wayne T.; Sedlacek, Arthur J., III; Christesen, Steven D.; Wong, Anna

    2004-02-01

    Laser Interrogation of Surface Agents (LISA) is a UV-Raman technique that provides short-range standoff detection and identification of surface-deposited chemical agents. ITT Industries, Advanced Engineering and Sciences Division, is currently developing and expanding the LISA technology under several programs that span a variety of missions for homeland defense. We will present and discuss some of these applications, while putting in perspective the overall evolution undergone by the technique within the last years. These applications include LISA-Recon (now called the Joint Contaminated Surface Detector--JCSD) which was developed under a cost-sharing arrangement with the U.S. Army Soldier and Biological Chemical Command (SBCCOM) for incorporation on the Army"s future reconnaissance vehicles, and designed to demonstrate single-shot on-the-move measurements of chemical contaminants at concentration levels below the Army's requirements. In parallel, LISA-Shipboard is being developed to optimize the sensor technique for detection of surface contaminants in the operational environment of a ship. The most recently started activity is LISA-Inspector that is being developed to provide a transportable sensor in a 'cart-like' configuration.

  5. Laser initiation and decay processes in an organic vapor plasma

    NASA Astrophysics Data System (ADS)

    Ding, Guowen

    A large volume organic molecular plasma (hundreds of cm3) is created by a 193 nm laser ionizing an organic molecule, Tetrakis-(dimethylamino)-ethylene (TMAE). The plasma is found to be characterized by high electron density (10 13-1011cm-3), low electron temperature (~0.1 eV), fast creation (~10 ns) and rapid decaying (electron-ion recombination coefficient ~10-6 cm3/s). Fast Langmuir probe (LP) techniques are developed for diagnosing this plasma, including a novel probe design and fabrication, a fast detection system, sampling, indirect probe heating, electro-magnetic shielding and dummy probe techniques. Plasma physical processes regarding fast LP diagnostics for different time scales (t> and <100 ns) are studied. A theory for the correction due to a rapidly decaying plasma to LP measurements is developed. The mechanisms responsible for the plasma decay are studied, and a delayed ionization process is found to be important in interpreting the decay processes. It is also found that nitrogen can enhance the delayed emission of a TMAE Rydberg state from the TMAE plasma. This result strongly suggests that a long-lifetime highly-excited state is important in the TMAE plasma decay process. This result supports the delayed ionization mechanism. A model combining electron-ion recombination and delayed ionization processes is developed to calculate the delayed ionization lifetime.

  6. Formulation and development of plasma volume expander using natural and modified starch from Solanum tuberosum

    PubMed Central

    Thombre, Nilima A.; Vishwakarma, Ajit V.; Jadhav, Trupti S.; Kshirsagar, Sanjay J.

    2016-01-01

    Background: To formulation and development of plasma volume expander (PVE) by using natural and modified starch from Solanum tuberosum. The function of blood circulation is to provide the needs of the body tissues and to maintain an appropriate environment in all tissue fluids of the body for the optimal survival and functions of the cells. Rapid restoration of the blood volume is necessary to decrease reduction in the amount of the blood. The PVEs are isotonic colloidal solutions, act by increasing the osmotic pressure of the intravascular compartment, which leads to the influx of the interstitial fluids through the capillary pore which, in turn, leads to the increase in the volume of the blood. Therefore, there is a need to discover the PVE with less side effects. The main aim of the present study is to use amylopectin as PVEs, fractionated from natural and modified starch obtained from S. tuberosum. Methods: The starch extracted from the normal grains and the tubers of potatoes was selected for the production of starch. Statistical analysis includes in vitro characterization that involves viscosity studies, plasma–product interaction, osmotic pressure detection, molecular weight–viscosity relationship, determination of weight average molecular weight, enzymatic interaction, and in vivo characterization such as toxicity studies and the effect of the products on the blood coagulation. The isolated starch and fractionated amylopectin were analyzed for the physicochemical characteristics. Result and Conclusion: The amylopectin fractionated from isolated starch from grains and tubers of potatoes can be used as PVE, as per the outcome of the study. PMID:28123990

  7. Laser-induced breakdown spectroscopy of tantalum plasma

    SciTech Connect

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  8. THz Radiation Generation via Laser Plasma Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Yugami, Noboru; Higashiguchi, Takeshi

    2008-12-01

    Recently radiation generation from the interaction between laser and plasma is studied. Terahertz radiation from photo-conductive antenna which is based on semiconductor technology is widely used, The power is in the order of nano-watt level so that it is hard to use for application. On the other hand, terahertz radiation from laser plasma interaction is much higher than that of semiconductor technology. In our experiments, we have studied by use DARC (dc to ac radiation converter) mechanism by using YAG laser with nano-second pulse duration. DARC is novel radiation source using the interaction between laser-created ionization front and static electric field. The frequency of radiation is determined by both plasma density of ionization front and the geometry of DARC structure. We observed radiation pulse of frequency of 1.2 THz and pulse duration of 2 ps with ZnSe crystal as media detected by EO (electro-optics) sampling technique. Note from Publisher: This article contains the abstract only.

  9. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K. E.; Toth, Cs.; Esarey, E.; Leemans, W. P.

    2008-08-04

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (~;;10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10^13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  10. Correlation between laser absorption and radiation conversion efficiency in laser produced tin plasma

    SciTech Connect

    Matsukuma, Hiraku Hosoda, Tatsuya; Fujioka, Shinsuke; Nishimura, Hiroaki; Sunahara, Atsushi; Yanagida, Tatsuya; Tomuro, Hiroaki; Kouge, Kouichiro; Kodama, Takeshi

    2015-09-21

    The correlation between the laser absorption and the conversion efficiency (CE) for 13.5 nm extreme ultraviolet (EUV) light in a laser-produced tin plasma was investigated. The absorption rate α and the CE were measured simultaneously for a laser-pre-formed low-density tin target as a function of the time delay between the pre-pulse and the main laser pulse. A clear and positive correlation between α and CE was found with increasing delay time; however, the CE decreases rapidly at longer delay times. This result is partly attributed to a reduction in the absorption rate, but is mainly attributed to the self-absorption of EUV light in excessively long-scale plasmas.

  11. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Robinson, K. E.; Toth, Cs.; Gruener, F.; Bakeman, M.; Nakamura, K.; Esarey, E.; Leemans, W. P.

    2009-01-22

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by a high-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source ({approx}10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (> or approx.10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10{sup 13} photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  12. Plasma Interactions in Laser Irradiated Semi-Cylindrical Cavities Studied with Soft X-Ray Interferometry Using a Capillary Discharge Laser

    SciTech Connect

    Purvis, M A; Grava, J; Filevich, J; Marconi, M; Rocca, J J; Moon, S J; Dunn, J; Nilsen, J; Shlyaptsev, V N; Jankowska, E

    2007-09-19

    Soft x-ray interferometry was used to measure the evolution of dense converging plasmas created by laser irradiation of 500 {micro}m diameter semi-cylindrical carbon targets. Optical laser pulses with an intensity of {approx} 1 x 10{sup 12} W cm{sup -2} and 120 ps duration were used to heat the surface of the cavities. The dense plasma formed expands from the walls converging slightly off the semi-cylinder's axis, giving rise to a bright localized high density plasma region. A sequence of electron density maps were measured using a 46.9 nm wavelength tabletop capillary discharge soft x-ray laser probe and a amplitude division interferometer based on diffraction gratings. The measured density profiles are compared with simulations conducted using the multi-dimensional hydrodynamic code HYDRA. The benchmarked model was then used to simulate particle trajectories which reveal that the increase in electron density near the axis is mainly the result of the convergence of plasma that originated at the bottom of the groove during laser irradiation.

  13. 21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas

    SciTech Connect

    Dunn, J; Rus, B; Mocek, T; Nelson, A J; Foord, M E; Rozmus, W; Baldis, H A; Shepherd, R L; Kozlova, M; Polan, J; Homer, P; Stupka, M

    2007-09-26

    Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}.

  14. Model of a laser heated plasma interacting with walls arising in laser keyhole welding

    NASA Astrophysics Data System (ADS)

    Tix, C.; Simon, G.

    1994-07-01

    In laser welding with laser intensities of approximately 1011 W/m2, a hole, called a keyhole, is formed in the material. In this keyhole a plasma is detected, which is characterized by high pressure as well as being influenced by the boundary of the keyhole. Experimental data on plasma parameters are rare and difficult to obtain [W. Sokolowski, G. Herziger, and E. Beyer, in High Power Lasers and Laser Machining Technology, edited by A. Quenzer, SPIE Proc. Vol. 1132 (SPIE, Bellingham, WA, 1989), pp. 288-295]. In a previous paper [C. Tix and G. Simon, J. Phys. D 26, 2066 (1993)] we considered just a simple plasma model without excited states and with constant ion-neutral-atom temperature. Therefore we neglected radiative transport of excitations and underestimated the ion-neutral-atom temperature and the ionization rate. Here we extend our previous model for a continuous CO2 laser and iron and take into account radiative transfer of excitations and a variable ion-neutral-atom temperature. We consider singly charged ions, electrons, and three excitation states of neutral atoms. The plasma is divided in plasma bulk, presheath, and sheath. The transport equations are solved with boundary conditions mainly determined through the appearance of walls. Some effort is made to clarify the energy transport mechanism from the laser beam into the material. Dependent on the incident laser power, the mean electron temperature and density are obtained to be 1.0-1.3 eV and 2.5×1023-3×1023 m-3. Radiative transport of excitations does not contribute significantly to the energy transport.

  15. Experimental Investigation of Laser-sustained Plasma in Supersonic Argon Flow

    SciTech Connect

    Sperber, David; Eckel, Hans-Albert; Moessinger, Peter; Fasoulas, Stefanos

    2011-11-10

    Laser-induced energy deposition is widely discussed as a flow control technique in supersonic transportation. In case of thermal laser-plasma upstream of a blunt body, a substantial adaptation of shock wave geometry and magnitude of wave drag is predicted. Related to the research on laser supported detonation, the paper describes the implementation of laser-sustained plasma in a supersonic Argon jet. The stable plasma state is generated by the intersection of a Q-switched Nd:YAG-laser and a continuous wave CO{sub 2}-laser beams, for ignition and maintenance of the plasma respectively. A miniature supersonic Ludwieg tube test facility generates a supersonic jet at velocities of Mach 2.1. Modifications of the flow and plasma conditions are investigated and characterized by Schlieren flow visualisation, laser energy transmission and plasma radiation measurements. The results include the discussions of the flow field as well as the required laser and gas parameters.

  16. Peculiarities of the angular distribution of laser radiation intensity scattered by laser-spark plasma in air

    SciTech Connect

    Malyutin, A A; Podvyaznikov, V A; Chevokin, V K

    2010-02-28

    The spatiotemporal study of the diagram of laser radiation scattering by the laser-spark plasma produced by 3-ns and 50-ns pulses is performed. It is shown that radiation appearing outside the laser beam cone is scattered during the first one - two nanoseconds after the air breakdown, when the spark plasma is located in the vicinity of the laser beam waist and has a shape close to spherical.

  17. Front surface structured targets for enhancing laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  18. Bernstein wave aided laser third harmonic generation in a plasma

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok

    2016-09-01

    The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.

  19. Laser Channeling in an Inhomogeneous Plasma for Fast-Ignition Laser Fusion

    NASA Astrophysics Data System (ADS)

    Ivancic, S.; Haberberger, D.; Theobald, W.; Anderson, K. S.; Froula, D. H.; Meyerhofer, D. D.; Tanaka, K.; Habara, H.; Iwawaki, T.

    2014-10-01

    The evacuation of a plasma cavity by a high-intensity laser beam is of practical importance to the channeling fast-ignition concept. The channel in the plasma corona of an imploded inertial confinement fusion capsule provides a clear path through the plasma so that the energy from a second high-intensity laser can be deposited close to the dense core of the assembled fuel to achieve ignition. This study reports on experiments that demonstrate the transport of high-intensity (>1017 W/cm2) laser light through an inhomogeneous kilojoule-laser-produced plasma up to overcritical density. The multikilojoule high-intensity light evacuates a cavity inside the focal spot, leaving a parabolic trough that is observed using a novel optical probing technique--angular filter refractometery. The cavity forms in less than 100 ps using a 20-TW laser pulse and bores at a velocity of ~ 2 μm/ps. The experimentally measured depths of the cavity are consistent with a ponderomotive hole-boring model. The experiments show that 100-ps IR pulses with an intensity of ~ 5 ×1017 W/cm2 produced a channel up to the critical density, while 10-ps pulses with the same energy but higher intensity did not propagate as far. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Laser-Plasma Interactions in NIF Direct-Drive-Scale Plasmas

    NASA Astrophysics Data System (ADS)

    Regan, S. P.

    1998-11-01

    Laser-plasma interactions have been carried out on OMEGA under plasma conditions representative of the peak of the NIF direct-drive laser pulse. This pulse, for a 1.5 MJ, α = 3 design, has a peak intensity of 2 × 10^15 W/cm^2 (summed over all beams) and a foot intensity of 4 × 10^13 W/cm^2. The coronal plasmas predicted for these implosions have Te ~ 4 keV and a ~1-mm density scale length at the peak of the laser pulse, and Te ~ 600 eV and a ~0.25-mm density scale length during the foot. In the OMEGA experiments, exploding foil plasmas with a maximum on-axis density of n_c/5 have been produced by irradiating mass-limited, 18- to 20-μm-thick CH foils on both sides with a total of 20 kJ of laser energy from 38 beams. In addition, NIF direct-drive scale plasmas including a critical density have been created by irradiating solid CH targets on one side with 10 kJ of laser energy from 19 beams. All of the experiments were carried out with distributed phase plates (DPP's) and 2-D SSD ( ~0.25 THz). The electron temperature and density of exploding-foil plasmas have been diagnosed using time-resolved x-ray spectroscopy and stimulated Raman scattering (SRS) measurements and are consistent with SAGE code predictions. Temperatures increasing with time up to 4 keV have been found. When these plasmas were irradiated with our interaction beam at ~1.5 × 10^15 W/cm^2, stimulated Brillouin backscattering (SBS) was found to be completely inhibited when DPP's were used. Without a DPP in the interaction beam, the SBS reflectivity can exceed 10%. Future experiments on OMEGA will address the parametric instabilities of the coronal plasmas in the foot and transition regions of the NIF laser pulse. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460. *In collaboration with D.K. Bradley^a, J.J. Carroll III^b, A.V. Chirokikh^a, R.S. Craxton^a, R.P. Drake^b, D.D. Meyerhofer^a, W. Seka^a, R

  1. Appearance of Density Cavitations in the Laser Wake in Simulations of High Intensity Laser-Plasma Interactions

    SciTech Connect

    Wang, T.-L.

    2009-01-22

    Nonlinear interactions of high intensity, ultrashort laser pulses with underdense plasmas produce many interesting features that may appear in computer simulations. One of these features commonly observed in Particle-In-Cell (PIC) simulations is the spontaneous appearance of long-lived density cavitations in the plasma wake region behind the laser pulse. To study these cavitations, several small 2D PIC simulations are run in which plasma density, density ramps, total simulation time, laser pulsewidth, laser intensity, and laser polarization parameters have been varied. Based on the simulation results, some possible aspects of an experiment designed to directly detect these structures are discussed.

  2. Laser interaction based on resonance saturation (LIBORS): an alternative to inverse bremsstrahlung for coupling laser energy into a plasma.

    PubMed

    Measures, R M; Drewell, N; Cardinal, P

    1979-06-01

    Resonance saturation represents an efficient and rapid method of coupling laser energy into a gaseous medium. In the case of a plasma superelastic collision quenching of the laser maintained resonance state population effectively converts the laser beam energy into translational energy of the free electrons. Subsequently, ionization of the laser pumped species rapidly ensues as a result of both the elevated electron temperature and the effective reduction of the ionization energy for those atoms maintained in the resonance state by the laser radiation. This method of coupling laser energy into a plasma has several advantages over inverse bremsstrahlung and could therefore be applicable to several areas of current interest including plasma channel formation for transportation of electron and ion beams, x-ray laser development, laser fusion, negative ion beam production, and the conversion of laser energy to electricity.

  3. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    SciTech Connect

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  4. Plasmas as Light Sources for Lasers.

    DTIC Science & Technology

    1984-09-01

    RD-R159 460 PLASMS RS LIGHT SOURCES FOR LSERS(U) LBANA UNIV IN ./I HUNTSVILLE T A BARR ET AL. SEP 64 ANSMI/RH-CR-85-14 pAAHS-82-D-AS±6 N...and experimental results are presented, together with a * possible explanation of the optical radiation-tim history of the plasm . Potential...into a cold pl’sma device at Te - 1 eV and l018 / cc ions. Incidentally this experiment showed why there may be a need for a plasma light source

  5. Progress in Long Scale Length Laser-Plasma Interactions

    SciTech Connect

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M

    2003-11-11

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3{omega}) with a total intensity of 2 x 10{sup 15} W cm{sup -2}. The targets were filled with 1 atm of CO{sub 2} producing of up to 7 mm long homogeneously heated plasmas with densities of n{sub e} = 6 x 10{sup 20} cm{sup -3} and temperatures of T{sub e} = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last {approx}1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length ({approx}2 mm). increasing to 12% for {approx}7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths.

  6. Laser ablation plasmas for diagnostics of structured electronic and optical materials during or after laser processing

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Yoo, Jong H.; González, Jhanis J.

    2012-03-01

    Laser induced plasma can be used for rapid optical diagnostics of electronic, optical, electro-optical, electromechanical and other structures. Plasma monitoring and diagnostics can be realized during laser processing in real time by means of measuring optical emission that originates from the pulsed laser-material interaction. In post-process applications, e.g., quality assurance and quality control, surface raster scanning and depth profiling can be realized with high spatial resolution (~10 nm in depth and ~3 μm lateral). Commercial instruments based on laser induced breakdown spectrometry (LIBS) are available for these purposes. Since only a laser beam comes in direct contact with the sample, such diagnostics are sterile and non-disruptive, and can be performed at a distance, e.g. through a window. The technique enables rapid micro-localized chemical analysis without a need for sample preparation, dissolution or evacuation of samples, thus it is particularly beneficial in fabrication of thin films and structures, such as electronic, photovoltaic and electro-optical devices or circuits of devices. Spectrum acquisition from a single laser shot provides detection limits for metal traces of ~10 μg/g, which can be further improved by accumulating signal from multiple laser pulses. LIBS detection limit for Br in polyethylene is 90 μg/g using 50-shot spectral accumulation (halogen detection is a requirement for semiconductor package materials). Three to four orders of magnitude lower detection limits can be obtained with a femtosecond laser ablation - inductively coupled plasma mass spectrometer (LA-ICP-MS), which is also provided on commercial basis. Laser repetition rate is currently up to 20 Hz in LIBS instruments and up to 100 kHz in LA-ICP-MS.

  7. Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy

    SciTech Connect

    O'Neill, D.M.; Lewis, C.L.S.; Neely, D.; Davidson, S.J. ); Rose, S.J. ); Lee, R.W. )

    1991-08-15

    The technique of point-projection spectroscopy has been shown to be applicable to the study of expanding aluminum plasmas generated by {similar to}80 ps laser pulses incident on massive, aluminum stripe targets of {similar to}125 {mu}m width. Targets were irradiated at an intensity of 2.5{plus minus}0.5{times}10{sup 13} W/cm{sup 2} in a line focus geometry and under conditions similar to those of interest in x-ray laser schemes. Hydrogenic and heliumlike aluminum resonance lines were observed in absorption using a quasicontinuous uranium backlighter plasma. Using a pentaerythrital Bragg crystal as the dispersive element, a resolving power of {similar to}3500 was achieved with spatial resolution at the 5-{mu}m level in frame times of the order of 100 ps. Reduction of the data for times up to 150 ps after the peak of the incident laser pulse produced estimates of the temperature and ion densities present, as a function of space and time. The one-dimensional Lagrangian hydrodynamic code MEDUSA coupled to the atomic physics non-local-thermodynamic-equilibrium ionized material package was used to simulate the experiment in planar geometry and has been shown to be consistent with the measurements.

  8. Plasma discreteness effects in the presence of an intense, ultrashort laser pulse

    SciTech Connect

    Savchenko, V.I.; Fisch, N.J.

    1996-03-01

    Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma effects, in certain regimes the energy absorbed in the plasma microfields can be important. A scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser field.

  9. Frequency Domain Tomography Of Evolving Laser-Plasma Accelerator Structures

    SciTech Connect

    Dong Peng; Reed, Stephen; Kalmykov, Serguei; Shvets, Gennady; Downer, Mike

    2009-01-22

    Frequency Domain Holography (FDH), a technique for visualizing quasistatic objects propagating near the speed of light, has produced 'snapshots' of laser wakefields, but they are averaged over structural variations that occur during propagation through the plasma medium. Here we explore via simulations a generalization of FDH--that we call Frequency Domain Tomography (FDT)--that can potentially record a time sequence of quasistatic snapshots, like the frames of a movie, of the wake structure as it propagates through the plasma. FDT utilizes a several probe-reference pulse pairs that propagate obliquely to the drive pulse and wakefield, along with tomographic reconstruction algorithms similar to those used in medical CAT scans.

  10. Laser-plasma spectra of highly ionized fluorine

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Nagel, D. J.; Behring, W. E.; Cowan, R. D.

    1974-01-01

    Lines between 11.3 and 17.2 A of lithium-like, helium-like, and hydrogen-like fluorine have been observed in spectra of laser-produced plasmas. These lines include nine members of the Lyman series of F IX; eight members of the principal series of F VIII; and satellite lines arising from doubly excited configurations of F VII and F VIII. Similar satellite lines of the abundant solar elements have been identified in soft X-ray spectra of solar flares. A wavelength list of fluorine lines is given, and physical conditions in the plasma are discussed.

  11. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Suter, Jonathan D.; Phillips, Mark C.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlO is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Efficient heating of near-surface plasmas with femtosecond laser pulses stimulated by nanoscale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Mikhailova, Yu M.; Platonenko, Viktor T.; Savel'ev, Andrei B.

    2005-01-01

    The interaction of intense (1016 - 1018 W cm-2) ultrashort (50-200 fs) laser pulses with the dense plasmas produced at the surfaces of the porous target is numerically simulated by the particle-in-cell technique. Nanostructure-enhanced absorption of femtosecond pulses in high-porous (P>4) targets is demonstrated. We show that the presence of plasma inhomogeneities essentially alters the heating of plasma electrons and ions; in particular, it stimulates the significant increase in the mean energy and number of hot electrons. The numerical investigation of the dynamics of plasma electrons made it possible to reveal the physical mechanisms behind their heating in a porous medium.

  13. Femtosecond-Laser-Driven Cluster-Based Plasma Source for High-Resolution Ionography

    SciTech Connect

    Faenov, A. Ya.; Pikuz, T. A.; Fukuda, Y.; Kando, M.; Kotaki, H.; Homma, T.; Kawase, K.; Kameshima, T.; Mori, M.; Sakaki, H.; Hayashi, Y.; Nakamura, T.; Pirozhkov, A.; Yogo, A.; Tampo, M.; Bolton, P.; Daido, H.; Tajima, T.; Pikuz, S. A. Jr.; Kartashev, V.

    2009-07-25

    The intense isotropic source of multicharged ions, with energy above 300 keV, was produced by femtosecond Ti:Sa laser pulses irradiation (intensity of approx4x10{sup 17} W/cm{sup 2}) of the He and CO{sub 2} gases mixture expanded in supersonic jet. High contrast ionography images have been obtained for 2000 dpi metal mesh, 1 mum polypropylene and 100 nm Zr foils, as well as for different biological objects. Images were recorded on 1 mm thick CR-39 ion detector placed in contact with back surface of the imaged samples, at the distances 140-160 mm from the plasma source. The obtained spatial resolution of the image was approx600 nm. A 100 nm object thickness difference was resolved very well for both Zr and polymer foils. The multicharged ion energy for Carbon and Oxygen ions passing through the 1 mum polypropylene foil is estimated to give the energy of more than 300 keV. An almost equal number of ions were measured with total number of about 10{sup 8} per shot at a different direction from plasma source. Easy production of different sub-MeV ions in wide space angle, recognizes femtosecond-laser-driven-cluster-based plasma as a well-suited bright source for novel type of submicron ionography to image different media, including nanofoils, membranes, and other low-contrast objects.

  14. An Expanding Plasma Model for the X-ray/radio knots in KPC-scale Jets of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sahayanathan, S.; Misra, R.; Kembhavi, A. K.; Kaul, C. L.

    2003-03-01

    We model the observed X-ray/radio knots in Active Galactic Nuclei (AGN) as isotropically expanding spherical plasma clouds fed continously by non-thermal electrons. The time-dependent electron distribution and the emitted photon spectrum are computed using the standard kinetic equation considering synchrotron, adiabatic and inverse Compton cooling processes. We use this model to study the knots of 1136 - 135 and 1150 + 497, recenly observed by Chandra. 29

  15. Exploring novel structures for manipulating relativistic laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Ji, Liangliang

    2016-10-01

    The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).

  16. Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser

    SciTech Connect

    Burdt, Russell A.; Yuspeh, Sam; Najmabadi, Farrokh; Sequoia, Kevin L.; Tao Yezheng; Tillack, Mark S.

    2009-08-01

    The ablation depth in planar Sn targets irradiated with a pulsed 1064 nm laser was investigated over laser intensities from 3x10{sup 11} to 2x10{sup 12} W/cm{sup 2}. The ablation depth was measured by irradiating a thin layer of Sn evaporated onto a Si wafer, and looking for signatures of Si ions in the expanding plasma with spectroscopic and particle diagnostics. It was found that ablation depth scales with laser intensity to the (5/9)th power, which is consistent with analytical models of steady-state laser ablation, as well as empirical formulae from previous studies of mass ablation rate in overlapping parameter space. In addition, the scaling of mass ablation rate with atomic number of the target as given by empirical formulae in previous studies using targets such as C and Al, are shown to remain valid for the higher atomic number of the target (Z=50) used in these experiments.

  17. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-06

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity. 2 figs.

  18. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, Lal A.

    1999-01-01

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity.

  19. Effect of the laser wavefront in a laser-plasma accelerator

    NASA Astrophysics Data System (ADS)

    Vernier, Aline; Beaurepaire, B.; Bocoum, M.; Böhle, F.; Jullien, A.; Rousseau, J.-P.; Lefrou, T.; Iaquaniello, G.; Lopez-Martens, R.; Lifschitz, A.; Faure, J.

    2015-11-01

    Laser-plasma accelerators are a promising alternative as they can currently provide short (down to a few fs), relativistic (from a few MeV up to a few GeV) electron beams over millimeter distances. In such devices, an intense laser pulse drives a plasma wave in which self-injected electrons can be accelerated. The quality, in terms of emittance, of such electron beams is known to strongly depend on the laser focal spot, but very little attention is generally given to the laser transverse distribution on either side of the focal plane. Our recent experimental results and PIC simulations quantify the role of the wavefront at the focus on the acceleration of eletrons: distortions of the laser wavefront cause spatial inhomogeneity of the out-of-focus laser intensity distribution and consequently, the laser pulse drives a transversely inhomogenous wakefield whose focusing/defocusing properties affect the electron distribution. We acknowledge support from the ERC (Contract No. 306708), and the ANR (ANR-11-EQPX-005-ATTOLAB).

  20. Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma

    SciTech Connect

    Anoop, K. K.; Harilal, S. S.; Philip, Reji; Bruzzese, R.; Amoruso, S.

    2016-11-14

    The characteristic emission features of a laser-produced plasma strongly depend strongly on the laser fluence. We investigated the spatial and temporal dynamics of neutrals and ions in femtosecond laser (800 nm, ≈ 40 fs, Ti:Sapphire) induced copper plasma in vacuum using both optical emission spectroscopy (OES) and spectrally resolved two-dimensional (2D) imaging methods over a wide fluence range of 0.5 J/cm2-77.5 J/cm2. 2D fast gated monochromatic images showed distinct plume splitting between the neutral and ions especially at moderate to higher fluence ranges. OES studies at low to moderate laser fluence regime confirm intense neutral line emission over the ion emission whereas this trend changes at higher laser fluence with dominance of the latter. This evidences a clear change in the physical processes involved in femtosecond laser matter interaction at high input laser intensity. The obtained ion dynamics resulting from the OES, and spectrally resolved 2D imaging are compared with charged particle measurement employing Faraday cup and Langmuir probe and results showed good correlation.

  1. Colliding laser-produced plasmas as targets for laser-generated extreme ultraviolet sources

    SciTech Connect

    Cummins, T.; O'Gorman, C.; Dunne, P.; Sokell, E.; O'Sullivan, G.; Hayden, P.

    2014-07-28

    Colliding plasmas produced by neodymium-doped yttrium aluminium garnet (Nd:YAG) laser illumination of tin wedge targets form stagnation layers, the physical parameters of which can be controlled to optimise coupling with a carbon dioxide (CO{sub 2}) heating laser pulse and subsequent extreme ultraviolet (EUV) production. The conversion efficiency (CE) of total laser energy into EUV emission at 13.5 nm ± 1% was 3.6%. Neglecting both the energy required to form the stagnation layer and the EUV light produced before the CO{sub 2} laser pulse is incident results in a CE of 5.1% of the CO{sub 2} laser energy into EUV light.

  2. On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas

    SciTech Connect

    Nariyuki, Y.

    2015-02-15

    A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation of Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.

  3. [Soft X-ray reflectometer with laser produced plasma source].

    PubMed

    Chen, Bo; Ni, Qi-liang; Cao, Ji-hong

    2005-03-01

    A soft X-ray reflectometor with laser-produced plasma source developed in the authorial lab is presented for the measurements of efficiencies of gratings, transmission of filter and reflectance of multilayer coatings. The reflectometer is composed of a soft X-ray laser-produced plasma source, a grazing incidence monochromator with a constant deviation angle, a vacuum chamber, a sample table, a photo-electronic unit and a computer controlling unit. The working wavelength is from 8 to 30 nm and the maximum sample size is 130 mm long by 120 mm wide by 120 mm high. In order to test the performances of the reflectometer, the reflectivity of multilayer coatings was obtained by using this device. The measured results agree well with the theoretical calculation. The reproducibility of measured reflectance is +/-0.6%.

  4. Optimization of plasma effect in laser drilling of high aspect ratio microvias

    NASA Astrophysics Data System (ADS)

    Tokarev, V. N.; Cheshev, E. A.; Bezotosnyi, V. V.; Khomich, V. Yu; Mikolutskiy, S. I.; Vasil'yeva, N. V.

    2015-05-01

    The simple theoretical model of heating side walls by laser plasma in the laser drilling of high aspect ratio microvias in metals and semiconductors is proposed. According to this model the recommendations are given on how to avoid the undesirable effect of melting side walls by laser plasma, strongly deteriorating microdrilling quality. The obtained results constitute a physical basis for the development of clean laser microdrilling. Particular estimations are given for the laser drilling of silicon wafers.

  5. Induced Current Characteristics Due to Laser Induced Plasma and Its Application to Laser Processing Monitoring

    SciTech Connect

    Madjid, Syahrun Nur; Idris, Nasrullah; Kurniawan, Koo Hendrik

    2011-03-30

    In laser processing, suitable conditions for laser and gas play important role in ensuring a high quality of processing. To determine suitable conditions, we employed the electromagnetic phenomena associated with laser plasma generation. An electrode circuit was utilised to detect induced current due to the fast electrons propelled from the material during laser material processing. The characteristics of induced current were examined by changing parameters such as supplied voltage, laser pulse energy, number of laser shots, and type of ambient gas. These characteristics were compared with the optical emission characteristics. It was shown that the induced current technique proposed in this study is much more sensitive than the optical method in monitoring laser processing, that is to determine the precise focusing condition, and to accurately determine the moment of completion of laser beam penetration. In this study it was also shown that the induced current technique induced by CW CO{sub 2} laser can be applied in industrial material processing for monitoring the penetration completion in a stainless steel plate drilling process.

  6. Measurements of Laser-Plasma Instability Relevant to Ignition Hohlraums

    NASA Astrophysics Data System (ADS)

    Fernández, Juan C.

    1996-11-01

    footnotetext[1]This work is supported by the US DOE. footnotetext[2]In collaboration with: B.S. Bauer, J.A. Cobble, D.F. DuBois, G.A. Kyrala, D.S. Montgomery, H.A. Rose, H.X. Vu, R.G. Watt, B.H. Wilde, M.D. Wilke, W.M. Wood, Los Alamos National Laboratory; R. Kirkwood, B.J. MacGowan, Lawrence Livermore National Laboratory; B.H. Failor, Physics International. Recent experimental observations contribute to a much better understanding of laser interactions with plasmas having the long scale lengths and high electron densities (n_e) and temperatures (T_e) expected within hohlraums designed to drive a fusion capsule to ignition. Some important effects being observed and explained theoretically are intimately related to the presence of hot spots in high-energy lasers. For example, measured onset intensities for strong stimulated Brillouin and Raman scattering (SBS and SRS) in various plasma conditions are consistent with predictions from models which include realistic hot-spot statistics. We also present direct experimental evidence that the combination of plasma flow transverse to a laser beam and self-focusing can deflect the beam, an effect unrelated to conventional refraction. In these plasmas, SRS could saturate at a level where the SRS Langmuir-wave amplitude is sufficiently high for it to be strongly unstable to parametric decay involving a daughter ion-acoustic wave. In support of this model, the measured SRS reflectivity depends on ion acoustic damping, which should otherwise be unrelated to SRS. This saturation mechanism is predicted to become ineffective at the highest Te and lowest ne values, where fortunately the calculated SRS onset intensity is highest and could exceed the desired laser intensity. The SBS and SRS light at the target plane can now be imaged to study correlations between SRS and SBS. The initial results from this study are also presented.

  7. Propagation of intense laser pulse in cold underdense plasma

    SciTech Connect

    Chen, X.L.; Sudan, R.N.

    1994-10-05

    We have derived a simplified set of three dimensional equations for the propagation of an intense laser pulse in cold underdense plasma [Phys. Fluids, {bold B}5, 1336 (1993)]. A three dimensional code has recently been developed to study this set of equations. Here we report on some of the preliminary results from the 3-d code. {copyright} 1994 {ital American} {ital Institute} {ital of} {ital Physics}

  8. Laser-Induced Fluorescence Helps Diagnose Plasma Processes

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Mattosian, J. N.; Gaeta, C. J.; Turley, R. S.; Williams, J. D.; Williamson, W. S.

    1994-01-01

    Technique developed to provide in situ monitoring of rates of ion sputter erosion of accelerator electrodes in ion thrusters also used for ground-based applications to monitor, calibrate, and otherwise diagnose plasma processes in fabrication of electronic and optical devices. Involves use of laser-induced-fluorescence measurements, which provide information on rates of ion etching, inferred rates of sputter deposition, and concentrations of contaminants.

  9. High Magnetic field generation for laser-plasma experiments

    SciTech Connect

    Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Fulkerson, S; Bower, J; Satariano, J; Price, D; Glenzer, S H

    2006-05-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.

  10. Dynamics and interactions of pulsed laser generated plasma bubbles in dusty plasma liquids

    SciTech Connect

    Chu Hongyu; Liao Chenting; I Lin

    2005-10-31

    The plasma bubble with dust particle depletion can be generated by a nano-second laser pulse focused on one of the dust particles suspended in a strongly coupled dusty plasma liquid. The bubble dynamics at different time scales, including the initial forming and later traveling stages are investigated. In the first stage, dust particles are pushed outward by the outward ion flow associated with the plume generated by the more intensed plasma. The bubble then travels downward at a speed about 60 mm/s associated with a surrounding dipole-like dust flow field. Two bubbles can also be simultaneously generated at different locations by separated laser pulses to study their interactions. Strong coupling is observed between two vertical bubbles. However, two horizontal bubbles are weakly coupled. The possible mechanism is discussed.

  11. Electron temperature and average density in spherical laser-produced plasmas - Ultraviolet plasma spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldsmith, S.; Seely, J. F.; Feldman, U.; Behring, W. E.; Cohen, L.

    1985-01-01

    The average values of the electron temperature Te and the electron density Ne in the corona plasmas of spherically irradiated high-Z targets have been estimated. Targets composed of the elements Cu through Br, Rb, and Mo were irradiated using the fundamental (1.06 microns) and the frequency-tripled (351 nm) output of the Omega laser system. Spectra were recorded in the wavelength region 15-200 A. Using various extreme ultraviolet spectroscopic techniques, it is found that for the case of a Mo plasma produced by frequency-tripled laser irradiation, Te = 2600 + or - 600 eV and Ne is greater than 6 x 10 to the 20th/cu cm. This is consistent with a 'flux limit' smaller than 0.1. The estimated values of Te and Ne are lower in the corona plasmas produced using the fundamental (1.06 micron) irradiation.

  12. Raman laser amplification in preformed and ionizing plasmas

    SciTech Connect

    Clark, D S; Fisch, N J

    2004-09-01

    The recently proposed backward Raman laser amplification scheme utilizes the stimulated Raman backscattering in plasma of a long pumping laser pulse to amplify a short, frequency downshifted seed pulse. The output intensity for this scheme is limited by the development of forward Raman scattering (FRS) or modulational instabilities of the highly amplified seed. Theoretically, focused output intensities as high as 1025 W/cm{sup 2} and pulse lengths of less than 100 fs could be accessible by this technique for 1 {micro}m lasers--an improvement of 10{sup 4}-10{sup 5} in focused intensity over current techniques. Simulations with the particle-in-cell (PIC) code Zohar are presented which investigate the effects of FRS and modulational instabilities and of Langmuir wave breaking on the output intensity for Raman amplification. Using the intense seed pulse to photoionize the plasma simultaneous with its amplification (and hence avoid plasmas-based instabilities of the pump) is also investigated by PIC simulations. It is shown that both approaches can access focused intensities in the 1025 W/cm{sup 2} range.

  13. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    NASA Astrophysics Data System (ADS)

    Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A. R.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serafini, L.

    2012-08-01

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  14. Ion Beam Analysis applied to laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Macková, A.; Havranek, V.; Malinsky, P.; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, J.; Dudzak, R.

    2016-04-01

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed.

  15. Ion acceleration by a double stage accelerating device for laser-induced plasma ions

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Siciliano, M. V.; Velardi, L.; Nassisi, V.

    2010-10-01

    A new laser ion source configuration was studied and realized in order to generate and accelerate ions of different elements. This ion source consisted of a laser-induced plasma from solid targets where the plume was made to expand before the action of the accelerating field. The accelerating field was reached by the application of two high voltage power supplies of different polarity. Therefore, the ions were made to undergo double acceleration that can imprint a maximum ion energy up to 160 keV per charge state. We analyzed the extracted charge from a Cu target as a function of the accelerating voltage at the laser fluences of 1.7 and 2.3 J/cm2. At 60 kV of total accelerating voltage and higher laser fluence, the maximum ion dose was 1012 ions/cm2. Under this last condition, the maximum output current was 5 mA and the emittance measured by the pepper pot method resulted in 0.22π mm mrad. With this machine, biomedical materials such as polyethylene were implanted with carbon and titanium ions. At doses of 6×1015 ions/cm2, the polyethylene surface increased its micro-hardness by about 3-fold, as measured by the scratch test.

  16. Spatial and Temporal Investigations of Laser Ablation Plasma Plume Density and Composition

    NASA Astrophysics Data System (ADS)

    Iratcabal, Jeremy; Bach, Bernhard; Beatty, Cuyler; Dutra, Eric; Darling, Timothy; Wiewior, Piotr; Covington, Aaron

    2016-10-01

    Laser ablation of solid targets with laser intensities of the order of 108-1011 W/cm2 provides a rich platform for investigating the density and composition of coexisting molecular, atomic, and ion species in the resulting plasma plume. Experiments measuring the spatial- and temporal-evolution of laser ablation plumes have been performed to simultaneously characterize the multiple parameters related to the energy and momentum partitioning of the incident laser energy as the ablation process occurs. The temperature, density, and relative populations of different molecular, atomic, and ion species can be determined by the simultaneous measurement of optical and charged particle spectroscopy, fast imaging cameras, and optical interferometric diagnostics. Additionally, background gas pressure, density, and species were carefully varied. A comparison of density measurements obtained with multiple interferometric, spectroscopic, and fast imaging diagnostics for a carbon ablation plume expanding into vacuum and into background gases with different Reynolds numbers will be presented. Atomic, molecular, and ion species population evolution will be presented as measured with optical and charged particle spectroscopy. This work was supported by the U.S. DOE NNSA Cooperative Agreement No. DE-NA0002075 and National Securities Technologies, LLC under Contract No. DE-AC52-06NA25946/subcontract No. 165819.

  17. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    SciTech Connect

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; van Mourik, Reinier; Leemans, Wim

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  18. Wakefield evolution and electron acceleration in interaction of frequency-chirped laser pulse with inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Rezaei-Pandari, M.; Niknam, A. R.; Massudi, R.; Jahangiri, F.; Hassaninejad, H.; Khorashadizadeh, S. M.

    2017-02-01

    The nonlinear interaction of an ultra-short intense frequency-chirped laser pulse with an underdense plasma is studied. The effects of plasma inhomogeneity and laser parameters such as chirp, pulse duration, and intensity on plasma density and wakefield evolutions, and electron acceleration are examined. It is found that a properly chirped laser pulse could induce a stronger laser wakefield in an inhomogeneous plasma and result in higher electron acceleration energy. It is also shown that the wakefield amplitude is enhanced by increasing the slope of density in the inhomogeneous plasma.

  19. Prepulse-induced shock waves in the gas jet target of a laser plasma EUV radiation source

    NASA Astrophysics Data System (ADS)

    Garbaruk, A. V.; Gritskevich, M. S.; Kalmykov, S. G.; Mozharov, A. M.; Sasin, M. E.

    2017-01-01

    In experiments with a laser-plasma EUV-radiation source, the main IR Nd:YAG laser pulse was preceded by that of a UV KrF excimer laser. Dramatic modulations of EUV plasma emissivity have been observed at long interpulse times, from hundreds of nanoseconds up to microseconds. To discover the nature of these prepulse-produced long-living perturbations of the target, a fluid dynamics numerical simulation of the Xe gas jet has been carried out. The prepulse has been found to generate a quasi-spherical shock wave with a thin dense front layer and a vast rarefied inside area. In the course of time, the front expands and simultaneously drifts downstream along with the gas. Depending on the interpulse time, the IR laser beam either intersects the dense layer or propagates within the rarefied gas cavity whereby the above-mentioned variations in the plasma emission can be explained. The possibilities of making use of the discovered phenomena to enhance the observed EUV plasma brightness are discussed.

  20. Laser Thomson scattering measurements of electron temperature and density in a hall-effect plasma

    NASA Astrophysics Data System (ADS)

    Washeleski, Robert L.

    Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method

  1. Emission of strong Terahertz pulses from laser wakefields in weakly coupled plasma

    NASA Astrophysics Data System (ADS)

    Singh, Divya; Malik, Hitendra K.

    2016-09-01

    The present paper discusses the laser plasma interaction for the wakefield excitation and the role of external magnetic field for the emission of Terahertz radiation in a collisional plasma. Flat top lasers are shown to be more appropriate than the conventional Gaussian lasers for the effective excitation of wakefields and hence, the generation of strong Terahertz radiation through the transverse component of wakefield.

  2. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Effect of the electronic structure of target atoms on the emission continuum of laser plasma

    NASA Astrophysics Data System (ADS)

    Kask, Nikolai E.; Michurin, Sergei V.; Fedorov, Gennadii M.

    2004-06-01

    The low-temperature laser plasma at the surface of metal targets is experimentally investigated. Continuous spectra emitted from a laser plume are found to be similar for targets consisting of the elements of the same subgroup of the Mendeleev periodic table. The similarity manifests itself both in the dependence of the emission intensity on the external pressure and in the structure of absorption bands related to a fine-dispersed phase existing in the peripheral regions of the plume.

  3. Colliding Laser-Produced Plasmas on LaPD

    NASA Astrophysics Data System (ADS)

    Collette, Andrew; Gekelman, Walter

    2008-11-01

    The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes. We describe a series of experiments which involve the collision of two dense (initially n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized background plasma at the UCLA Large Plasma Device facility. These plasmas form diamagnetic cavities in which a large fraction of the background field (600G) has been expelled. Fast (3ns) camera observations of this experiment recorded complicated structures, including coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. In order to directly investigate the evolution of the magnetic field, we developed a novel diagnostic system composed of small (1-mm) 3-axis differential magnetic field probes, in conjunction with a vacuum ceramic motor system capable of sub-micron positioning accuracy. Using an ensemble of magnetic field data from fixed and movable probes, we calculate the cross-spectral function, from which the dominant modes and ultimately the dispersion relation of waves in this region may be deduced.

  4. Mono-Energetic Beams from Laser Plasma Interactions

    SciTech Connect

    Geddes, C.G.R.; Esarey, E.; Leemans, W.P.; Schroeder, C.B.; Toth,Cs.; van Tilborg, J.; Cary, John R.; Bruhwiler, David L.; Nieter, Chet

    2005-05-09

    A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200 pC charge above 80 MeV and with normalized emittance estimated at< 2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality.

  5. Ultra-Intense Laser Pulse Propagation in Gas and Plasma

    SciTech Connect

    Antonsen, T. M.

    2004-10-26

    It is proposed here to continue their program in the development of theories and models capable of describing the varied phenomena expected to influence the propagation of ultra-intense, ultra-short laser pulses with particular emphasis on guided propagation. This program builds upon expertise already developed over the years through collaborations with the NSF funded experimental effort lead by Professor Howard Milchberg here at Maryland, and in addition the research group at the Ecole Polytechnique in France. As in the past, close coupling between theory and experiment will continue. The main effort of the proposed research will center on the development of computational models and analytic theories of intense laser pulse propagation and guiding structures. In particular, they will use their simulation code WAKE to study propagation in plasma channels, in dielectric capillaries and in gases where self focusing is important. At present this code simulates the two-dimensional propagation (radial coordinate, axial coordinate and time) of short pulses in gas/plasma media. The plasma is treated either as an ensemble of particles which respond to the ponderomotive force of the laser and the self consistent electric and magnetic fields created in the wake of pulse or as a fluid. the plasma particle motion is treated kinetically and relativistically allowing for study of intense pulses that result in complete cavitation of the plasma. The gas is treated as a nonlinear medium with rate equations describing the various stages of ionization. A number of important physics issues will be addressed during the program. These include (1) studies of propagation in plasma channels, (2) investigation of plasma channel nonuniformities caused by parametric excitation of channel modes, (3) propagation in dielectric capillaries including harmonic generation and ionization scattering, (4) self guided propagation in gas, (5) studies of the ionization scattering instability recently

  6. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma.

    PubMed

    Labaune, C; Baccou, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

  7. Incoherent synchrotron emission of laser-driven plasma edge

    SciTech Connect

    Serebryakov, D. A. Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-15

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  8. Modelling of intense line radiation from laser-produced plasmas

    SciTech Connect

    Lee, Yim T.; Gee, M.

    1990-04-01

    In this paper, we discuss modelling of Lyman-{alpha} (i.e. Ly-{alpha}) radiation emitted from laser-produced plasmas. We are interested in the application of one of these line radiations to pump a transition of an ion in a different plasma spatially separated from the emitting source. The interest is in perturbing the plasma rather than just probing it as in some backlighting experiments. As a result of pumping, the populations of certain excited levels are inverted. The resulting gain coefficients depend strongly on the population inversion density which in turn depends on the brightness of the pump radiation. As a result, we must produce an intense bright radiation source. In addition, to pump a transition effectively, we also need a pump line with a width larger than the mismatch of the resonance since the widths of the pumped transitions are rather narrow

  9. Incoherent synchrotron emission of laser-driven plasma edge

    NASA Astrophysics Data System (ADS)

    Serebryakov, D. A.; Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-01

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  10. Ideal Laser Beam Propagation through high temperature ignition hohlraum plasmas

    SciTech Connect

    Froula, D H; Divol, L; Meezan, N; Dixit, S; Moody, J D; Pollock, B B; Ross, J S; Glenzer, S H

    2006-09-20

    We demonstrate that a blue (3{omega}, 351 nm) laser beam with an intensity of 2 x 10{sup 15} W-cm{sup -2} propagates within the original beam cone through a 2-mm long, T{sub e}=3.5 keV high density (n{sub e} = 5 x 10{sup 20} cm{sup -3}) plasma. The beam produced less than 1% total backscatter; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  11. Large diameter permanent-magnets-expanded plasma source for spontaneous generation of low-energy ion beam.

    PubMed

    Takahashi, Kazunori; Suzuki, Tatsuya; Ando, Akira

    2014-02-01

    Diameter of a permanent-magnets-expanded, radiofrequency (rf) plasma source is enlarged up to ∼13 cm for an application to a space propulsion device and tested with being attached to a diffusion chamber. The source is operated at 13.56 MHz 300 W rf power in low-pressure (40 mPa) argon. Measurement of ion energy distribution functions downstream of the source exit shows generation of a supersonic ion beam of about 20 eV. The detailed radial measurements demonstrate that the diameter and energy of the ion beam corresponds to the source tube diameter and the potential difference between the source and downstream plasmas, and that the radial profile of the beam flux is similar to the plasma density profile in the source cavity.

  12. Large diameter permanent-magnets-expanded plasma source for spontaneous generation of low-energy ion beam

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Suzuki, Tatsuya; Ando, Akira

    2014-02-01

    Diameter of a permanent-magnets-expanded, radiofrequency (rf) plasma source is enlarged up to ˜13 cm for an application to a space propulsion device and tested with being attached to a diffusion chamber. The source is operated at 13.56 MHz 300 W rf power in low-pressure (40 mPa) argon. Measurement of ion energy distribution functions downstream of the source exit shows generation of a supersonic ion beam of about 20 eV. The detailed radial measurements demonstrate that the diameter and energy of the ion beam corresponds to the source tube diameter and the potential difference between the source and downstream plasmas, and that the radial profile of the beam flux is similar to the plasma density profile in the source cavity.

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Plasma-mediated surface evaporation of an aluminium target in vacuum under UV laser irradiation

    NASA Astrophysics Data System (ADS)

    Mazhukin, V. I.; Nosov, V. V.

    2005-05-01

    Mathematical simulation is employed to investigate the dynamics of evaporation and condensation on the surface of a metal target under the conditions of plasma production in the vaporised material exposed to the 0.248-μm UV radiation of a KrF laser with the intensity G0= 2×108—109 W cm-2, and a pulse duration τ= 20 ns. A transient two-dimensional mathematical model is used, which includes, for the condensed medium, the heat conduction equation with the Stefan boundary condition and additional kinetic conditions at the evaporation surface and, for the vapour, the equations of radiative gas dynamics and laser radiation transfer supplemented with tabular data for the parameters of the equations of state and absorption coefficients. The target evaporation in vacuum induced by the UV radiation was found to occur during the laser pulse and is divided into two characteristic stages: initial evaporation with a sound velocity and subsonic evaporation after the plasma production. At the subsonic evaporation stage, one part of the laser radiation passes through the plasma and is absorbed by the target surface and another part is absorbed in a thin plasma layer near the surface to produce a high pressure, which significantly moderates the vapour ejection. After completion of the pulse, a part of the vaporised material is condensed on the surface, both in the evaporation region and some distance away from it due to the lateral expansion of the plasma cloud.

  14. Absorption of the laser radiation by the laser plasma with gas microjet targets

    NASA Astrophysics Data System (ADS)

    Borisevichus, D. A.; Zabrodskii, V. V.; Kalmykov, S. G.; Sasin, M. E.; Seisyan, R. P.

    2017-01-01

    An upper limit of absorption of the laser radiation in the plasma produced in a gas jet Xe target with the average density of (3-6) × 1018 cm-3 and the effective diameter of 0.7 mm is found. It is equal to ≈50% and remains constant under any variation in this range of densities. This result contradicts both theoretical assessments that have predicted virtually complete absorption and results of earlier experiments with the laser spark in an unlimited stationary Xe gas with the same density, where the upper limit of absorption was close to 100%. An analysis shows that nonlinearity of absorption and plasma nonequilibrium lead to the reduction of the absorption coefficient that, along with the limited size of plasma, can explain the experimental results.

  15. The Role of the Plasma during Laser-Gas Laser-Metal Interactions.

    DTIC Science & Technology

    1986-10-13

    subsequently expanded, converting thermal energy to kinetic energy or thrust. The relatively simple absorption chamber eliminates much of the mass...geosynchronous orbital transfer. A comprehensive review of tho history and status of laser propulsion was made by Glumb and Krier [201. Part of the research...supersonic nozzle to convert thermal energy to kinetic energy or Ithrust. A complete review of this application can be found in the paper by Glumb

  16. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator

    SciTech Connect

    Leemans, W.P.; Duarte, R.; Esarey, E.; Fournier, S.; Geddes, C.G.R.; Lockhart, D.; Schroeder, C.B.; Toth, C.; Vay, J.-L.; Zimmermann, S.

    2010-06-01

    An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA) that will be driven by a PW-class laser system and of the BELLA Project, which has as its primary goal to build and install the required Ti:sapphire laser system for the acceleration experiments. The basic design of the 10 GeV stage aims at operation in the quasi-linear regime, where the laser excited wakes are largely sinusoidal and offer the possibility of accelerating both electrons and positrons. Simulations show that a 10 GeV electron beam can be generated in a meter scale plasma channel guided LPA operating at a density of about 1017 cm-3 and powered by laser pulses containing 30-40 J of energy in a 50- 200 fs duration pulse, focused to a spotsize of 50-100 micron. The lay-out of the facility and laser system will be presented as well as the progress on building the facility.

  17. Beat wave excitation of electron plasma wave by relativistic cross focusing of cosh-Gaussian laser beams in plasma

    NASA Astrophysics Data System (ADS)

    Singh, Arvinder; Gupta, Naveen

    2015-06-01

    A scheme for beat wave excitation of electron plasma wave (EPW) is proposed by relativistic cross-focusing of two coaxial Cosh-Gaussian (ChG) laser beams in an under dense plasma. The plasma wave is generated on account of beating of two coaxial laser beams of frequencies ω1 and ω2 . The mechanism for laser produced nonlinearity is assumed to be relativistic nonlinearity in electron mass. Following moment theory approach in Wentzel Kramers Brillouin (W.K.B) approximation, the coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived. The relativistic nonlinearity depends not only on the intensity of first laser beam but also on the intensity of second laser beam. Therefore, propagation dynamics of one laser beam affect that of second beam and hence cross-focusing of the two laser beams takes place. Due to non uniform intensity distribution of pump laser beams, the background electron concentration gets modified. The amplitude of EPW, which depends on the background electron concentration, thus gets nonlinearly coupled with the laser beams. The effects of relativistic electron mass nonlinearity and the cross-focusing of pump beams on excitation of EPW have been incorporated. Numerical simulations have been carried out to investigate the effect of laser as well as plasma parameters on cross-focusing of laser beams and further its effect on power of excited EPW.

  18. Time- and space-resolved spectroscopic characterization of laser-induced swine muscle tissue plasma

    NASA Astrophysics Data System (ADS)

    Camacho, J. J.; Diaz, L.; Martinez-Ramirez, S.; Caceres, J. O.

    2015-09-01

    The spatial-temporal evolution of muscle tissue sample plasma induced by a high-power transversely excited atmospheric (TEA) CO2 pulsed laser at vacuum conditions (0.1-0.01 Pa) has been investigated using high-resolution optical emission spectroscopy (OES) and imaging methods. The induced plasma shows mainly electronically excited neutral Na, K, C, Mg, H, Ca, N and O atoms, ionized C+, C2 +, C3 +, Mg+, Mg2 +, N+, N2 +, Ca+, O+ and O2 + species and molecular band systems of CN(B2Σ+-X2Σ+), C2(d3Πg-a3Πu), CH(B2Σ--X2Π; A2Δ-X2Π), NH(A3Π-X3Σ-), OH(A2Σ+-X2 Σ+), and CaOH(B2Σ+-X2Σ+; A2Π-X2Σ+). Time-resolved two-dimensional emission spectroscopy is used to study the expanded distribution of different species ejected during ablation. Spatial and temporal variations of different atoms and ionic excited species are reported. Plasma parameters such as electron density and temperature were measured from the spatio-temporal analysis of different species. Average velocities of some plasma species were estimated.

  19. A study on ignition and detonation wave propagation in laser-sustained plasma

    NASA Astrophysics Data System (ADS)

    Oshima, Take; Fujiwara, Toshi

    Recently giant laser sources are likely to be developed, enabling laser propulsion to be one of the main next-generation propulsion systems. The performance of laser propulsion is determined mainly by the laser absorption efficiency. Thus a laser-supported detonation (LSD) wave plays an important role because of strong laser absorption. Based on such backgrounds, we simulate this LSD wave using unsteady 1D numerical analysis and clarify the mechanism on the ignition phenomenon in a laser-sustained plasma. In addition, a special LSD wave showing plasma cutoff is simulated.

  20. Laser Plasma Accelerators for Medical and Nuclear Uses

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    2010-11-01

    Starting from the cases of the current clinical facilities as a source of reference to compare with, final performance of lasers and accelerators and even cost target were discussed. We assume maximum flexibility to enable treatment of small as well as large in-depth tumor volumes requiring the maximum energy of 250 MeV for protons and 400 MeV/u for carbon. We adopt their reference numbers for the required total number of protons / carbon ions per fraction (5 min) as well as peak numbers (per second). Other parameters (like energy spread and total number of voxels) are adjusted to the particularities of laser acceleration, which include a much higher production energy spread than in the synchrotron case and a laser pulse rate currently suggested by technology. As far as cost, it is assumed that a single laser driver unit is foreseen for one treatment room. It is suggested that the target for 10-20 years of development could be a cost of the laser driver unit not exceeding 1/4 of the conventional synchrotron facility cost, which is 40 M€. Further, design study, proposal and preliminary experimental results for all optical Compton scattering X-ray source for nuclear material detection at University of Tokyo is introduced. By using the Ti:Sapphire laser at about 7 TW and our original gas-jet and magnetic plasma channel, we succeeded in generating more than 100 MeV electrons with a reasonable emittance. Compton scattering with beam-spread Ti:Sapphire laser pulse can yield quasi-monochromatic X-rays around 110 keV near the K-edges of U, Np, Pu. Subtraction imaging across the K-edge realizes clear recognition and distingushment of those compounds in liquid.

  1. Laser Plasma Accelerators for Medical and Nuclear Uses

    SciTech Connect

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    2010-11-04

    Starting from the cases of the current clinical facilities as a source of reference to compare with, final performance of lasers and accelerators and even cost target were discussed. We assume maximum flexibility to enable treatment of small as well as large in-depth tumor volumes requiring the maximum energy of 250 MeV for protons and 400 MeV/u for carbon. We adopt their reference numbers for the required total number of protons / carbon ions per fraction (5 min) as well as peak numbers (per second). Other parameters (like energy spread and total number of voxels) are adjusted to the particularities of laser acceleration, which include a much higher production energy spread than in the synchrotron case and a laser pulse rate currently suggested by technology. As far as cost, it is assumed that a single laser driver unit is foreseen for one treatment room. It is suggested that the target for 10-20 years of development could be a cost of the laser driver unit not exceeding 1/4 of the conventional synchrotron facility cost, which is 40 MEuro. Further, design study, proposal and preliminary experimental results for all optical Compton scattering X-ray source for nuclear material detection at University of Tokyo is introduced. By using the Ti:Sapphire laser at about 7 TW and our original gas-jet and magnetic plasma channel, we succeeded in generating more than 100 MeV electrons with a reasonable emittance. Compton scattering with beam-spread Ti:Sapphire laser pulse can yield quasi-monochromatic X-rays around 110 keV near the K-edges of U, Np, Pu. Subtraction imaging across the K-edge realizes clear recognition and distingushment of those compounds in liquid.

  2. Simulations Of Laser Cooling In An Ultracold Neutral Plasma

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; Strickler, Trevor; Pohl, Thomas; Vrinceanu, Daniel; Killian, Thomas

    2016-05-01

    Ultracold neutral plasmas (UNPs) generated by photoionization of laser-cooled, magneto-optically trapped neutral gases, are useful systems for studying strongly coupled plasmas. Coupling is parameterized by Γi, the ratio of the average nearest neighbor Coulomb interaction energy to the ion kinetic energy. For typical UNPs, Γi is currently limited to ~ 3 . For alkaline earth ions, higher Γi can be achieved by laser-cooling. Using Molecular Dynamics and a quantum trajectories approach, we have simulated laser-cooling of Sr+ ions interacting through a Yukawa potential. The simulations include re-pumping from two long-lived D-states, and are conducted at experimentally achievable parameters (density n = 2 e+14 m-3, size σ0 = 4 mm, Te = 19 K). Laser-cooling is shown to both reduce the temperature by a factor of 2 over relevant timescales (tens of μ s) and slow the electron thermal-pressure driven radial expansion of the UNP. We also discuss the unique aspects of laser-cooling in a highly collisional system; in particular, the effect of collisions on dark state formation due to the coupling of the P3/2 state to both the S1/2 (via the cooling transition) and the D5/2 (via a re-pump transition) states. Supported by NSF and DoE, the Air Force Office of Scientific Research, the NDSEG Program, and NIH NCRR S10RR02950, an IBM SUR Award in partnership with CISCO, Qlogic and Adaptive Computing.

  3. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    NASA Astrophysics Data System (ADS)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  4. Effects of plasma spatial profile on conversion efficiency of laser produced plasma sources for EUV lithography

    NASA Astrophysics Data System (ADS)

    Hassanein, A.; Sizyuk, V.; Sizyuk, T.; Harilal, S.

    2009-03-01

    Extreme ultraviolet (EUV) lithography devices that use laser produced plasma (LPP), discharge produced plasma (DPP), and hybrid devices need to be optimized to achieve sufficient brightness with minimum debris generation to support the throughput requirements of High-Volume Manufacturing (HVM) lithography exposure tools with long lifetime. Source performance, debris mitigation, and reflector system are all critical to efficient EUV collection and component lifetime. Enhanced integrated models are continued to be developed using HEIGHTS computer package to simulate EUV emission at high power and debris generation and transport in multiple and colliding LPP. A new center for materials under extreme environments (CMUXE) is established to benchmark HEIGHTS models for various EUV related issues. The models being developed and enhanced include, for example, new ideas and parameters of multiple laser beams in different geometrical configurations and with different pre-pulses to maximize EUV production. Recent experimental and theoretical work show large influence of the hydrodynamic processes on EUV generation. The effect of plasma hydrodynamics evolution on the EUV radiation generation was analyzed for planar and spherical geometry of a tin target in LPP devices. The higher efficiency of planar target in comparison to the spherical geometry was explained with better hydrodynamic containment of the heated plasma. This is not the case if the plasma is slightly overheated. Recent experimental results of the conversion efficiency (CE) of LPP are in good agreement with HEIGHTS simulation.

  5. Supersonic radiative transport of electron-hole plasma in semiconductors at room temperature studied by laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Gao, W.; Gusev, V.; Glorieux, C.; Thoen, J.; Borghs, G.

    1997-02-01

    A piezoelectric semiconductor CdS 1- xSe x crystal under external electric loading was excited by pulsed nanosecond ultraviolet laser radiation. Acoustic waves were excited via the inverse piezoelectric effect due to the screening of the external electric field by expanding the space distribution of photogenerated electrons and holes. The duration of the interferometrically detected longitudinal acoustic pulses indicated that both the expansion of the screened region in space and the electron-hole plasma expansion are supersonic at the time scale of laser action. The value of 2 × 10 3 cm 2/s obtained for the electron-hole plasma diffusivity leads to the conclusion that the mechanism of this fast carrier transport is photon recycling, i.e. reabsorption of recombination radiation. This conclusion is also supported by the acoustic signals duration independence on magnitude and polarity of the external electric field.

  6. Applications of quantum cascade lasers in plasma diagnostics: a review

    NASA Astrophysics Data System (ADS)

    Röpcke, J.; Davies, P. B.; Lang, N.; Rousseau, A.; Welzel, S.

    2012-10-01

    Over the past few years mid-infrared absorption spectroscopy based on quantum cascade lasers operating over the region from 3 to 12 µm and called quantum cascade laser absorption spectroscopy or QCLAS has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, nitrogen oxides and organo-silicon compounds has led to further applications of QCLAS because most of these compounds and their decomposition products are infrared active. QCLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species at time resolutions below a microsecond, which is of particular importance for the investigation of reaction kinetics and dynamics. Information about gas temperature and population densities can also be derived from QCLAS measurements. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of QCLAS techniques to industrial requirements including the development of new diagnostic equipment. The recent availability of external cavity (EC) QCLs offers a further new option for multi-component detection. The aim of this paper is fourfold: (i) to briefly review spectroscopic issues arising from applying pulsed QCLs, (ii) to report on recent achievements in our understanding of molecular phenomena in plasmas and at surfaces, (iii) to describe the current status of industrial process monitoring in the mid-infrared and (iv) to discuss the potential of advanced instrumentation based on EC-QCLs for plasma diagnostics.

  7. Ablation of carbon-doped liquid propellant in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Liang, T.; Zhang, S. Q.; Gao, L.; Gao, H.; Zhang, Z. L.

    2016-04-01

    Carbon-doped liquid glycerol ablated by nanosecond pulse laser is investigated in laser plasma propulsion. It is found that the propulsion is much more correlated with the carbon content. The doped carbon can change the laser intensity and laser focal position so as to reduce the splashing quantity of the glycerol. Less consumption of the liquid volume results in a high specific impulse.

  8. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; Matlis, N. H.; Shaw, B. H.; Gonsalves, A. J.; Huijts, J. V.; Nakamura, K.; Daniels, J.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2015-10-01

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T /m , enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

  9. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams.

    PubMed

    van Tilborg, J; Steinke, S; Geddes, C G R; Matlis, N H; Shaw, B H; Gonsalves, A J; Huijts, J V; Nakamura, K; Daniels, J; Schroeder, C B; Benedetti, C; Esarey, E; Bulanov, S S; Bobrova, N A; Sasorov, P V; Leemans, W P

    2015-10-30

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

  10. Relative ion expansion velocity in laser-produced plasmas

    NASA Technical Reports Server (NTRS)

    Goldsmith, S.; Moreno, J. C.; Griem, H. R.; Cohen, Leonard; Richardson, M. C.

    1988-01-01

    The spectra of highly ionized titanium, Ti XIII through Ti XXI, and C VI Lyman lines were excited in laser-produced plasmas. The plasma was produced by uniformly irradiating spherical glass microballoons coated with thin layers of titanium and parylene. The 24-beam Omega laser system produced short, 0.6 ns, and high-intensity, 4 x 10 to the 14th W/sq cm, laser pulses at a wavelength of 351 nm. The measured wavelength for the 2p-3s Ti XIII resonance lines had an average shift of + 0.023 A relative to the C VI and Ti XX spectral lines. No shift was found between the C VI, Ti XIX, and Ti XX lines. The shift is attributed to a Doppler effect, resulting from a difference of (2.6 + or - 0.2) x 10 to the 7th cm/s in the expansion velocities of Ti XIX and Ti XX ions compared to Ti XIII ions.

  11. Role of beam absorption in plasma during laser welding

    SciTech Connect

    SEMAK,V.V.; STEELE,R.J.; FUERSCHBACH,PHILLIP W.; DAMKROGER,BRIAN K.

    2000-05-15

    The relationship between beam focus position and penetration depth in CW laser welding was studied numerically and experimentally for different welding conditions. Calculations were performed using a transient hydrodynamic model that incorporates the effect of evaporation recoil pressure and the associated melt expulsion. The simulation results are compared with measurements made on a series of test welds obtained using a 1650 W CO{sub 2} laser. The simulations predict, and the experiments confirm, that maximum penetration occurs with a specific location of the beam focus, with respect to the original sample surface, and that this relationship depends on the processing conditions. In particular, beam absorption in the plasma has a significant effect on the relationship between penetration and focus position. When the process parameters result in strong beam absorption in the keyhole plasma, the maximum penetration will occur when the laser focus is at or above the sample surface. In a case of weak absorption however, the penetration depth reaches its maximum value when the beam focus is located below the sample surface. In all cases, the numerical results are in good agreement with the experimental measurements.

  12. Laser-induced incandescence applied to dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Kovačević, E.; Berndt, J.

    2016-07-01

    This paper reports on the laser heating of nanoparticles (diameters ≤slant 1 μm) confined in a reactive plasma by short (150 ps) and intense (˜ 63 mJ) UV (355 nm) laser pulses (laser-induced incandescence, LII). Important parameters such as the particle temperature and radius follow from analysis of the emission spectrum of the heated nanoparticles. The nanoparticles are not ideal black bodies, which is taken into account by calculating their emissivity using a light-scattering theory relevant to our conditions (Mie theory). Three sets of refractive index data from the literature serve as model input. The obtained radii range between 100 and 165 nm, depending on the choice of refractive index data set. By fitting the temperature decay of the particles to a heat exchange model, the product of their mass density and specific heat is determined as (1.3+/- 0.5) J K-1 cm-3, which is considerably smaller than the value for bulk graphite at the temperature our particles attain (3000 K): 4.8 J K-1 cm-3. The particle sizes obtained in situ with LII are compared with ex situ scanning electron microscopy analysis of collected particles. Quantitative assessment of the LII measurements is hampered by transport of particles in the plasma volume and the fact that LII probes locally, whereas the samples with collected particles have a more global character.

  13. Xe capillary target for laser-plasma extreme ultraviolet source

    SciTech Connect

    Inoue, Takahiro; Okino, Hideyasu; Nica, Petru Edward; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu

    2007-10-15

    A cryogenic Xe jet system with an annular nozzle has been developed in order to continuously fast supply a Xe capillary target for generating a laser-plasma extreme ultraviolet (EUV) source. The cooling power of the system was evaluated to be 54 W, and the temperature stability was {+-}0.5 K at a cooling temperature of about 180 K. We investigated experimentally the influence of pressure loss inside an annular nozzle on target formation by shortening the nozzle length. Spraying caused by cavitation was mostly suppressed by mitigating the pressure loss, and a focused jet was formed. Around a liquid-solid boundary, a solid-Xe capillary target (100/70 {mu}m {phi}) was formed with a velocity of {<=}0.01 m/s. Laser-plasma EUV generation was tested by focusing a Nd:YAG laser beam on the target. The results suggested that an even thinner-walled capillary target is required to realize the inertial confinement effect.

  14. Spatial profiles of electron density, electron temperature, average ionic charge, and EUV emission of laser-produced Sn plasmas for EUV lithography

    NASA Astrophysics Data System (ADS)

    Sato, Yuta; Tomita, Kentaro; Tsukiyama, Syoichi; Eguchi, Toshiaki; Uchino, Kiichiro; Kouge, Kouichiro; Tomuro, Hiroaki; Yanagida, Tatsuya; Wada, Yasunori; Kunishima, Masahito; Kodama, Takeshi; Mizoguchi, Hakaru

    2017-03-01

    Spatial profiles of the electron density (n e), electron temperature (T e), and average ionic charge (Z) of laser-produced Sn plasmas for EUV lithography, whose conversion efficiency (CE) is sufficiently high for practical use, were measured using a collective Thomson scattering (TS) technique. For plasma production, Sn droplets of 26 µm diameter were used as a fuel. First, a picosecond-pulsed laser was used to expand a Sn target. Next, a CO2 laser was used to generate plasmas. By changing the injection timing of the picosecond and CO2 lasers, three different types of plasmas were generated. The CEs of the three types of plasmas differed, and ranged from 2.8 to 4.0%. Regarding the different plasma conditions, the spatial profiles of n e, T e, and Z clearly differed. However, under all plasma conditions, intense EUV was only observed at a sufficiently high T e (> 25 eV) and in an adequate n e range [1024–(2 × 1025) m‑3]. These plasma parameters lie in the efficient-EUV light source range, as predicted by simulations.

  15. A laser-plasma accelerator producing monoenergetic electron beams.

    PubMed

    Faure, J; Glinec, Y; Pukhov, A; Kiselev, S; Gordienko, S; Lefebvre, E; Rousseau, J-P; Burgy, F; Malka, V

    2004-09-30

    Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser-plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m(-1)). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.

  16. Density jumps in the plasma of a nanosecond laser-induced spark and their dynamics

    SciTech Connect

    Malyutin, A A; Podvyaznikov, V A; Chevokin, V K

    2011-01-31

    Experimental investigation of the structure of a laser-induced spark emerging in the focusing of 50-ns radiation pulses is described. Two density jumps were discovered in the plasma of the laser-induced spark. One of them is localised in the vicinity of the focal plane of the lens, the other propagates from this plane in the laser propagation direction at a constant velocity of {approx}7.5 km s{sup -1}. (laser plasma)

  17. Kinetic approach to the formation of 3D electromagnetic structures in flows of expanding plasma coronas. II. flow anisotropy parameters

    NASA Astrophysics Data System (ADS)

    Gubchenko, V. M.

    2015-12-01

    The formation of magnetic structures in moving hot solar coronal plasma and hot collisionless laser-produced plasma, as determined by nonlinear criteria for weak and strong magnetization on the basis of the friction parameter Γ B and Alfven number M A, is considered within the Vlasov and Maxwell equations in the second part of the work. The flow velocities are lower then the thermal electron velocity. The energy and pulse anisotropy parameters of a flow, which determine its electromagnetic properties in the Cherenkov resonance line, are calculated by shape of particle distribution function (PDF). The ratio of these parameters is the Q-factor G V ; it characterizes the electromagnetic properties of a plasma flow and is expressed via the ratio of diamagnetic and resistive current densities or via the ratio of irregular and diamagnetic plasma scales. A particle flow is similar to a conductive medium at G V ≪ 1 and a diamagnetic medium at G V ≫ 1. The following cases are considered. (1) A plasma flow is specified by an isotropic PDF and interacts with distributed magnetization. Expressions for anisotropy parameters are derived, 3D field structures in the tail wake are found, and a possibility of topological reconstruction into a compact state under variation in the parameter G V is shown. (2) A plasma flow is specified by an isotropic PDF; a steady-state diamagnetic current layer, characterized by an anisotropic PDF, is immersed inside it. The system is in the diamagnetic state G ≫ 1. The generalized anisotropy parameter is calculated and a possibility of the excitation of three types of diamagnetic structures with low resistive currents is shown. (3) The nonlinear dynamics of anisotropic quasi-current-free plasma ( G =-1), in which the diamagnetic and resistive current densities locally compensate each other in the phase space of particle velocities, is studied. This dynamics is implemented in the long wavelength limit in plasma with an anisotropic PDF.

  18. Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel.

    PubMed

    Tochitsky, S Ya; Narang, R; Filip, C V; Musumeci, P; Clayton, C E; Yoder, R B; Marsh, K A; Rosenzweig, J B; Pellegrini, C; Joshi, C

    2004-03-05

    Enhanced energy gain of externally injected electrons by a approximately 3 cm long, high-gradient relativistic plasma wave (RPW) is demonstrated. Using a CO2 laser beat wave of duration longer than the ion motion time across the laser spot size, a laser self-guiding process is initiated in a plasma channel. Guiding compensates for ionization-induced defocusing (IID) creating a longer plasma, which extends the interaction length between electrons and the RPW. In contrast to a maximum energy gain of 10 MeV when IID is dominant, the electrons gain up to 38 MeV energy in a laser-beat-wave-induced plasma channel.

  19. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    SciTech Connect

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-29

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  20. Electron Energy Distribution function in a weakly magnetized expanding helicon plasma discharge

    NASA Astrophysics Data System (ADS)

    Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert

    2016-09-01

    Helicon wave heating is well known to produce high-density plasma source for application in plasma thrusters, plasma processing and many more. Our previous study (B Ellingboe et al. APS Gaseous Electronics Conference 2015, abstract #KW2.005) has shown observation of helicon wave in a weakly magnetized inductively coupled plasma source excited by m =0 antenna at 13.56 MHz. In this paper, we investigated the Electron Energy Distribution Function (EEDF) in the same setup by using an RF compensated Langmuir probe. The ac signal superimposition technique (second harmonic technique) is used to determine EEDF. The EEDF is measured for 5-100 mTorr gas pressure, 100 W - 1.5 kW rf power and at different locations in the source chamber, boundary and diffusion chamber. This paper will discuss the change in the shape of EEDF for various heating mode transitions.

  1. Self-expanding metal mesh stents and laser therapy: a complementary approach for the palliation of malignant dysphagia

    NASA Astrophysics Data System (ADS)

    Madhotra, Ravi; Raouf, A.; Sturgess, R.; Krasner, Neville

    1997-12-01

    Re-establishment of the oesophageal lumen is the main focus of care in patients with inoperable oesophageal carcinomas. The self-expanding metal mesh stents (MMS) are increasingly being used. 51 patients aged 44 - 89 with inoperable oesophago-gastric carcinomas were intubated with MMS. 18 of these patients had endoscopic laser therapy (ELT) as primary palliation. 25 patients required follow-up endoscopy at variable intervals after stent insertion. 17 patients were found to have significant tumor growth (9), overgrowth (4) and both (4). All these patients were treated with Nd:YAG or diode laser for maintenance of satisfactory swallowing. 4 patients being treated with Nd:YAG laser developed deformity of MMS. This complication was not encountered with diode laser. The reblockage of MMS due to ingrowth or overgrowth of tumor is a not uncommon complication. The timing of the stent insertion should be carefully chosen since the longer the stent is in situ, the greater is the likelihood of tumor ingrowth or overgrowth. ELT can effectively deal with tumor ingrowth and overgrowth. Nd:YAG laser can cause melting of MMS. Overall the combination of ELT and MMS may offer the best palliation, particularly when patient survival of several months is anticipated.

  2. Laser induced focusing for over-dense plasma beams

    SciTech Connect

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-09-15

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing.

  3. Ultrafast laser-collision-induced fluorescence in atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Barnat, E. V.; Fierro, A.

    2017-04-01

    The implementation and demonstration of laser-collision-induced fluorescence (LCIF) generated in atmospheric pressure helium environments is presented in this communication. As collision times are observed to be fast (~10 ns), ultrashort pulse laser excitation (<100 fs) of the 23S to 33P (388.9 nm) is utilized to initiate the LCIF process. Both neutral-induced and electron-induced components of the LCIF are observed in the helium afterglow plasma as the reduced electric field (E/N) is tuned from  <0.1 Td to over 5 Td. Under the discharge conditions presented in this study (640 Torr He), the lower limit of electron density detection is ~1012 e cm‑3. The spatial profiles of the 23S helium metastable and electrons are presented as functions of E/N to demonstrate the spatial resolving capabilities of the LCIF method.

  4. Ultrasmooth plasma polymerized coatings for laser-fusion targets

    SciTech Connect

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-08-26

    Coatings for laser fusion targets were deposited up to 135 ..mu..m thick by plasma polymerization onto 140 ..mu..m diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 ..mu..m) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power, gas flow, and pressure, and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets.

  5. Cometary particulate analyzer. [mass spectrometry of laser plasmas

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Miller, D. J.; Utterback, N. G.

    1979-01-01

    A concept for determining the relative abundance of elements contained in cometary particulates was evaluated. The technique utilizes a short, high intensity burst of laser radiation to vaporize and ionize collected particulate material. Ions extracted from this laser produced plasma are analyzed in a time of flight mass spectrometer to yield an atomic mass spectrum representative of the relative abundance of elements in the particulates. Critical aspects of the development of this system are determining the ionization efficiencies for various atomic species and achieving adequate mass resolution. A technique called energy-time focus, which utilizes static electric fields to alter the length of the ion flight path in proportion to the ion initial energy, was used which results in a corresponding compression to the range of ion flight times which effectively improves the inherent resolution. Sufficient data were acquired to develop preliminary specifications for a flight experiment.

  6. Particle-in-cell simulations of magnetic reconnection in laser-plasma experiments on Shenguang-II facility

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui; Dong, Quanli; Zhu, Jianqiang; Sheng, Zhengming; Zhang, Jie

    2013-11-15

    Recently, magnetic reconnection has been realized in high-energy-density laser-produced plasmas. Plasma bubbles with self-generated magnetic fields are created by focusing laser beams to small-scale spots on a foil. The bubbles expand into each other, which may then drive magnetic reconnection. The reconnection experiment in laser-produced plasmas has also been conducted at Shenguang-II (SG-II) laser facility, and the existence of a plasmoid was identified in the experiment [Dong et al., Phys. Rev. Lett. 108, 215001 (2012)]. In this paper, by performing two-dimensional (2-D) particle-in-cell simulations, we investigate such a process of magnetic reconnection based on the experiment on SG-II facility, and a possible explanation for the formation of the plasmoid is proposed. The results show that before magnetic reconnection occurs, the bubbles squeeze strongly each other and a very thin current sheet is formed. The current sheet is unstable to the tearing mode instability, and we can then observe the formation of plasmoid(s) in such a multiple X-lines reconnection.

  7. Laser-plasma interactions in NIF-scale plasmas (HLP5 and HLP6)

    SciTech Connect

    MacGowan, B.; Berger, R.; Fernandez, J.

    1996-06-01

    The understanding of laser-plasma interactions in ignition-scale inertial confinement fusion (ICF) hohlraum targets is important for the success of the proposed National Ignition Facility (NIF). The success of an indirect-drive ICF ignition experiment depends on the ability to predict and control the history and spatial distribution of the x-radiation produced by the laser beams that are absorbed by the inside of the hohlraum wall. Only by controlling the symmetry of this x-ray drive is it possible to obtain the implosion symmetry in the fusion pellet necessary for ignition. The larger hohlraums and longer time scales required for ignition-scale targets result in the presence of several millimeters of plasma (electron density n{sub e} {approximately} 0.1 n{sub c} {approximately} 10{sup 21} cm{sup {minus}3}), through which the 3{omega} (351-nm) laser beams must propagate before they are absorbed at the hohlraum wall. Hydrodynamic simulations show this plasma to be very uniform [density-gradient scalelength L{sub n} = n{sub e}(dn{sub e}/dx){sup {minus}1}{approximately} 2mm] and to exhibit low velocity gradients [velocity-gradient scale-length L{sub v} = c{sub s}(dv/dx){sup {minus}1} > 6 mm].

  8. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

    2010-06-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  9. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Chen, Anmin; Li, Suyu; Qi, Hongxia; Jiang, Yuanfei; Hu, Zhan; Huang, Xuri; Jin, Mingxing

    2017-01-01

    Temporally shaped femtosecond laser pulse is used to generate the air plasma channel. The length of plasma channel is optimized by a genetic algorithm. Compared with the transform-limited pulse, the temporally shaped femtosecond laser produced by the spatial light modulator with the genetic algorithm can lead to a significant increase in length and brightness of plasma channel in atmosphere. In particular, the length of the plasma channel produced by the optimized shaped pulse can be extended by 50%. This method can be especially advantageous in the context of femtosecond laser-induced plasma channel.

  10. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.

    2015-02-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  11. A new Lagrangian formulation for laser-plasma interactions

    SciTech Connect

    Brizard, A.J. |

    1998-04-01

    A new Lagrangian structure for cold relativistic plasma electrodynamics is presented. This new formulation uses the fluid velocity {bold v} instead of the canonical-momentum Clebsch potential {psi} [X. L. Chen and R. N. Sudan, Phys. Fluids B {bold 5}, 1336 (1993)]. As a simple application, it is used to derive (through the Noether method) new {ital exact} conservation laws associated with nonlinear laser wake-field equations in the multi-dimensional quasi-static approximation. {copyright} {ital 1998 American Institute of Physics.}

  12. Supersonic gas jets for laser-plasma experiments.

    PubMed

    Schmid, K; Veisz, L

    2012-05-01

    We present an in-depth analysis of De Laval nozzles, which are ideal for gas jet generation in a wide variety of experiments. Scaling behavior of parameters especially relevant to laser-plasma experiments as jet collimation, sharpness of the jet edges and Mach number of the resulting jet is studied and several scaling laws are given. Special attention is paid to the problem of the generation of microscopic supersonic jets with diameters as small as 150 μm. In this regime, boundary layers dominate the flow formation and have to be included in the analysis.

  13. Particle physicist's dreams about PetaelectronVolt laser plasma accelerators

    SciTech Connect

    Vesztergombi, G.

    2012-07-09

    Present day accelerators are working well in the multi TeV energy scale and one is expecting exciting results in the coming years. Conventional technologies, however, can offer only incremental (factor 2 or 3) increase in beam energies which does not follow the usual speed of progress in the frontiers of high energy physics. Laser plasma accelerators theoretically provide unique possibilities to achieve orders of magnitude increases entering the PetaelectronVolt (PeV) energy range. It will be discussed what kind of new perspectives could be opened for the physics at this new energy scale. What type of accelerators would be required?.

  14. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  15. Laser light backscatter from intermediate and high Z plasmas

    NASA Astrophysics Data System (ADS)

    Berger, R. L.; Constantin, C.; Divol, L.; Meezan, N.; Froula, D. H.; Glenzer, S. H.; Suter, L. J.; Niemann, C.

    2006-09-01

    In experiments at the Omega Laser Facility [J. M. Soures et al., Fusion Technol. 30, 492 (1996)], stimulated Brillouin backscatter (SBS) from gasbags filled with krypton and xenon gases was ten times lower than from CO2-filled gasbags with similar electron densities. The SBS backscatter was a 1%-5% for both 527 and 351nm interaction beams at an intensity of ˜1015W /cm2. The SRS backscatter was less than 1%. The 351nm interaction beam is below the threshold for filamentation and the SBS occurs in the density plateau between the blast waves. Inverse bremsstrahlung absorption of the incident and SBS light account for the lower reflectivity from krypton than from CO2. The 527nm interaction beam filaments in the blowoff plasma before the beam propagates through the blast wave, where it is strongly absorbed. Thus, most of the 527nm SBS occurs in the flowing plasma outside the blast waves.

  16. Laser scattering from long scalelength plasmas on Omega. Final report

    SciTech Connect

    Drake, R.P.; Seka, W.; Craxton, R.S.; Bauer, B.S.

    1998-12-31

    In this project, the authors accomplished the tasks called for in the revised statement of work associated with this grant. Specifically, they accomplished: (1) active participation in the design of long-scalelength plasmas for Omega and in experiments to characterize these plasmas; (2) development of software that permits the rapid evaluation of laser-scattering diagnostic possibilities involving the standard parametric instabilities. It must be able to account for all 60 beams in Omega in addition to a probe beam and variable detector locations; and (3) design, purchase of components for, and assembly of instrumentation to make such measurements, providing for long-term versatility in the type of measurement. The project background and these accomplishments are discussed.

  17. Relativistic magnetic reconnection driven by intense lasers in preformed plasma

    NASA Astrophysics Data System (ADS)

    Campbell, Paul; Raymond, A.; McKelvey, A.; Maksimchuk, A.; Nees, J.; Yanovsky, V.; Krushelnick, K.; Dong, C. F.; Fox, W.; Zulick, C.; Wei, M. S.; Chen, H.; Chvykov, V.; Mileham, C.; Nilson, P. M.; Stoeckl, C.; Thomas, A. G. R.; Willingale, L.

    2016-10-01

    Experiments were performed with the OMEGA EP laser system focusing the two short pulse beams to high intensities on foil targets. Relativistic electrons drive fast reconnection self-generated magnetic fields. To investigate the effects of a preformed plasma on this relativistic magnetic reconnection, a long pulse UV beam was used to ablate the front surface of layered targets. The density and reconnection dynamics in the preformed copper or CH plasma were diagnosed with a 4 ω optical probe. A spherically bent crystal imaged characteristic copper Kα emission induced by fast electrons accelerated into the target in the reconnection diffusion region. This work was supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0002727.

  18. Generation and diagnostics of atmospheric pressure CO{sub 2} plasma by laser driven plasma wind tunnel

    SciTech Connect

    Matsui, Makoto; Yamagiwa, Yoshiki; Tanaka, Kensaku; Arakawa, Yoshihiro; Nomura, Satoshi; Komurasaki, Kimiya

    2012-08-01

    Atmospheric pressure CO{sub 2} plasma was generated by a laser driven plasma wind tunnel. At an ambient pressure of 0.38 MPa, a stable plasma was maintained by a laser power of 1000 W for more than 20 min. The translational temperature was measured using laser absorption spectroscopy with the atomic oxygen line at 777.19 nm. The measured absorption profiles were analyzed by a Voigt function considering Doppler, Stark, and pressure-broadening effects. Under the assumption of thermochemical equilibrium, all broadening effects were consistent with each other. The measured temperature ranged from 8500 K to 8900 K.

  19. Spectroscopic characterization of the plasmas formed during the deposition of ZnO and Al-doped ZnO films by plasma-assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liang, Peipei; Cai, Hua; Yang, Xu; Li, Hui; Zhang, Wu; Xu, Ning; Sun, Jian; Wu, Jiada

    2016-11-01

    An oxygen-zinc plasma and an oxygen-zinc-aluminum plasma are formed by pulsed laser ablation of a Zn target or pulsed laser co-ablation of a Zn target and an Al target in an electron cyclotron resonance (ECR) discharge-generated oxygen plasma for the deposition of ZnO and Al-doped ZnO (AZO) films. The plasmas are characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy. Both the oxygen-zinc plasma and the oxygen-zinc-aluminum plasma contain excited species originally present in the working O2 gas and energetic species ablated from the targets. The optical emission of the oxygen-zinc-aluminum plasma is abundant in the emission bands of oxygen molecular ions and the emission lines of mono-atomic oxygen, zinc and aluminum atoms and atomic ions. The time-integrated spectra as well as the time-resolved spectra of the plasma emission indicate that the oxygen species in the ECR oxygen plasma experience additional excitation by the expanding ablation plumes, and the ablated species are excited frequently when traveling accompanying the plume expansion in the oxygen plasma, making the formed plasma highly excited and very reactive, which plays an important role in the reactive growth of ZnO matrix and the in-situ doping of Al into the growing ZnO matrix. The deposited ZnO and AZO films were evaluated for composition analysis by energy dispersive X-ray spectroscopy, structure characterization by X-ray diffraction and optical transmission measurement. The deposited ZnO is slightly rich in O. The Al concentration of the AZO films can be controlled and varied simply by changing the repetition rate of the laser used for Al target ablation. Both the ZnO and the AZO films are featured with hexagonal wurtzite crystal structure and exhibit high optical transparency in a wide spectral region. Al doping results in an improvement in the ultraviolet transparency, a blue shift in the absorption edge and a widening of the band gap.

  20. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    NASA Astrophysics Data System (ADS)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a