Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.
Seibel, Brad A
2011-01-15
The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology.
Oceanographic and biological effects of shoaling of the oxygen minimum zone.
Gilly, William F; Beman, J Michael; Litvin, Steven Y; Robison, Bruce H
2013-01-01
Long-term declines in oxygen concentrations are evident throughout much of the ocean interior and are particularly acute in midwater oxygen minimum zones (OMZs). These regions are defined by extremely low oxygen concentrations (<20-45 μmol kg(-1)), cover wide expanses of the ocean, and are associated with productive oceanic and coastal regions. OMZs have expanded over the past 50 years, and this expansion is predicted to continue as the climate warms worldwide. Shoaling of the upper boundaries of the OMZs accompanies OMZ expansion, and decreased oxygen at shallower depths can affect all marine organisms through multiple direct and indirect mechanisms. Effects include altered microbial processes that produce and consume key nutrients and gases, changes in predator-prey dynamics, and shifts in the abundance and accessibility of commercially fished species. Although many species will be negatively affected by these effects, others may expand their range or exploit new niches. OMZ shoaling is thus likely to have major and far-reaching consequences.
Beman, J Michael; Carolan, Molly T
2013-01-01
Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans' largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.
NASA Astrophysics Data System (ADS)
Beman, J. Michael; Carolan, Molly T.
2013-10-01
Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans’ largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.
A Theoretical Basis for the Transition to Denitrification at Nanomolar Oxygen Concentrations
NASA Astrophysics Data System (ADS)
Zakem, E.; Follows, M. J.
2016-02-01
Current climate change is likely to expand the size and intensity of marine oxygen minimum zones. How will this affect denitrification rates? Current global biogeochemical models typically prescribe a critical oxygen concentration below which anaerobic activity occurs, rather than resolve the underlying microbial processes. Here, we explore the dynamics of an idealized, simulated anoxic zone in which multiple prokaryotic metabolisms are resolved mechanistically, defined by redox chemistry and biophysical constraints. We first ask, what controls the critical oxygen concentration governing the favorability of aerobic or anaerobic respiration? The predicted threshold oxygen concentration varies as a function of the environment as well as of cell physiology, and lies within the nanomolar range. The model thus provides a theoretical underpinning for the recent observations of nanomolar oxygen concentrations in oxygen minimum zones. In the context of an idealized, two-dimensional intensified upwelling simulation, we also predict denitrification at oxygen concentrations orders of magnitude higher due to physical mixing, reconciling observations of denitrification over a similar range and demonstrating a decoupling of denitrification from the local oxygen concentration. In a sensitivity study with the idealized ocean model, we comment upon the relationship between the volume of anoxic waters and total denitrification.
Oxygen and Temperature Effects on Vertically Migrating Animals in Oxygen Minimum Zones
NASA Astrophysics Data System (ADS)
Seibel, B.
2016-02-01
Large populations of oceanic nekton and zooplankton undergo daily migrations from shallow water at night to depths greater than 200 m during the daytime. In some regions, these migrations cross extreme gradients of temperature, oxygen and carbon dioxide. Oxygen minimum zones (OMZs) are extensive and characterized by deep-water (100-800 m) oxygen partial pressures that would be lethal to most marine organisms, yet are tolerated by vertical migrators. Climate change is predicted to further deplete oxygen, and measurable reductions in oxygen have already been documented in some regions. Increases in shallow water temperature and carbon dioxide are occurring simultaneously. Oxygen levels and temperature are important drivers of biodiversity and distribution, and documented changes in community structure and function are reportedly associated with OMZ expansion and warming. Here I answer fundamental questions concerning zooplankton distributions, adaptations, and functions in oxygen minimum zones. In particular I report that metabolic suppression is a common strategy that facilitates diel occupancy of extreme hypoxia in many oceanic taxa. Anaerobic metabolic pathways play a minimal role in compensating for reduced aerobic ATP production. Numerous epigenetic mechanisms lead to reductions in energetically costly cellular processes, such as transcription and translation. Total metabolism is reduced by 50% or more during exposure to levels of hypoxia that characterize the daytime habitat for most vertically-migrating zooplankton. I further show that many migrators approach their upper thermal maximum in shallow water at night. Thus expanding OMZs and global warming may together compress the habitable depth range for many species.
Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Paša-Tolić, Ljiljana; Hallam, Steven J.
2014-01-01
Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand. PMID:25053816
Hawley, Alyse K; Brewer, Heather M; Norbeck, Angela D; Paša-Tolić, Ljiljana; Hallam, Steven J
2014-08-05
Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand.
NASA Astrophysics Data System (ADS)
Galbraith, E. D.; bianchi, D.
2013-12-01
A global network of marine multi-proxy sediment records has shown that during the last deglaciation, hypoxic waters of the northern Indo-Pacific expanded, the oxygen minimum zones intensified, and denitrification within the oxygen minima accelerated. These changes would have impacted the fish and zooplankton that migrate on a daily basis down to the upper margins of hypoxic, or even suboxic waters, presumably in order to hide from predators. But the reasons behind these observed changes remain uncertain. Physical circulation changes could have altered the supply rate of oxygen to the subsurface, simultaneously modifying the resupply of nutrients to the ocean surface, while changes in dust deposition could have changed the iron nutrition of phytoplankton, further modifying export fluxes. Changes in respiration patterns could also have played an important part, either by altering the sinking depth of organic particles, or - perhaps - through changes in the respiration patterns of migrating animals, which could have acted as a strong feedback on any of the other changes. We show model simulations that explore the possible roles of these different mechanisms in natural oceanic oxygenation changes of the Quaternary.
Macrofaunal colonization across the Indian margin oxygen minimum zone
NASA Astrophysics Data System (ADS)
Levin, L. A.; McGregor, A. L.; Mendoza, G. F.; Woulds, C.; Cross, P.; Witte, U.; Gooday, A. J.; Cowie, G.; Kitazato, H.
2013-11-01
There is a growing need to understand the ability of bathyal assemblages to recover from disturbance and oxygen stress, as human activities and expanding oxygen minimum zones increasingly affect deep continental margins. The effects of a pronounced oxygen minimum zone (OMZ) on slope benthic community structure have been studied on every major upwelling margin; however, little is known about the dynamics or resilience of these benthic populations. To examine the influence of oxygen and phytodetritus on short-term settlement patterns, we conducted colonization experiments at 3 depths on the West Indian continental margin. Four colonization trays were deployed at each depth for 4 days at 542 and 802 m (transect 1-16°58' N) and for 9 days at 817 and 1147 m (transect 2-17°31' N). Oxygen concentrations ranged from 0.9 μM (0.02 mL L-1) at 542 m to 22 μM (0.5 mL L-1) at 1147 m. All trays contained local defaunated sediments; half of the trays at each depth also contained 13C/15N-labeled phytodetritus mixed into the sediments. Sediment cores were collected between 535 m and 1140 m from 2 cross-margin transects for analysis of ambient (source) macrofaunal (>300 μm) densities and composition. Ambient macrofaunal densities ranged from 0 ind m-2 (at 535-542 m) to 7400 ind m-2, with maximum values on both transects at 700-800 m. Macrofaunal colonizer densities ranged from 0 ind m-2 at 542 m, where oxygen was lowest, to average values of 142 ind m-2 at 800 m, and 3074 ind m-2 at 1147 m, where oxygen concentration was highest. These were equal to 4.3 and 151% of the ambient community at 800 m and 1147 m, respectively. Community structure of settlers showed no response to the presence of phytodetritus. Increasing depth and oxygen concentration, however, significantly influenced the community composition and abundance of colonizing macrofauna. Polychaetes constituted 92.4% of the total colonizers, followed by crustaceans (4.2%), mollusks (2.5%), and echinoderms (0.8%). The majority of colonizers were found at 1147 m; 88.5% of these were Capitella sp., although they were rare in the ambient community. Colonists at 800 and 1147 m also included ampharetid, spionid, syllid, lumbrinerid, cirratulid, cossurid and sabellid polychaetes. Consumption of 13C/15N-labeled phytodetritus was observed for macrofaunal foraminifera (too large to be colonizers) at the 542 and 802/817 m sites, and by metazoan macrofauna mainly at the deepest, better oxygenated sites. Calcareous foraminifera (Uvigerina, Hoeglundina sp.), capitellid polychaetes and cumaceans were among the major phytodetritus consumers. These preliminary experiments suggest that bottom-water oxygen concentrations may strongly influence ecosystem services on continental margins, as reflected in rates of colonization by benthos and colonizer processing of carbon following disturbance. They may also provide a window into future patterns of settlement on the continental slope as the world's oxygen minimum zones expand.
NASA Astrophysics Data System (ADS)
Seibel, Brad A.
2013-10-01
Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.
Functioning of the Ocean Biological Pump in the Oxygen Minimum Zones
NASA Astrophysics Data System (ADS)
Moore, J. K.
2015-12-01
Oxygen minimum zones occur at mid-depths in the water column in regions with weak ventilation and relatively high export of organic matter from surface waters. They are important ocean for ocean biogeochemistry, and potentially for climate, as sites of water column denitrification and nitrous oxide production. Denitrification is the dominant loss process for fixed nitrogen in the oceans, and can thus affect the ocean inventory of this key nutrient. Denitrification is less energetically efficient than oxic remineralization. Larger zooplankton, which feed on sinking particles, are not present in the lowest oxygen waters. Both of these factors suggest that the remineralization of sinking particles may be slower within the OMZs than in more oxygenated waters. There is limited field evidence and from some modeling studies that remineralization is slower (remineralization length scales are longer) within OMZ waters. In this talk, I will present results from the Community Earth System Model (CESM) ocean component attempting to test this hypothesis. Comparing model results with observed ocean biogeochemical tracer distributions (i.e., phosphate, oxygen), I will examine whether slower remineralization within low oxygen waters provides a better match between simulated and observed tracer distributions. Longer remineralization length scales under low oxygen conditions would provide a negative feedback under global warming scenarios. The biological pump would transfer organic materials to depth more efficiently as ocean oxygen concentrations decline and the OMZs expand.
NASA Astrophysics Data System (ADS)
Glock, N.; Liebetrau, V.; Eisenhauer, A.
2014-12-01
Tropical oxygen minimum zones (OMZs) are most important areas of oxygen depletion in today´s oceans and nutrient cycling in these regions has a large socio-economic impact because they account for about 17% of the global commercial fish catches(1). Possibly increasing magnitude and area of oxygen depletion in these regions, might endanger rich pelagic fish habitats in the future threatening the global marine food supply. By the use of a quantitative redox proxy in OMZs, reconstruction of the temporal variation in OMZ extension eventually providing information about past and future changes in oxygenation and the anthropogenic role in the recent trend of expanding OMZs(2). Recent work has shown that iodine/calcium (I/Ca) ratios in marine carbonates are a promising proxy for ambient oxygen concentration(3). Our study explores the correlation of I/Ca ratios in four benthic foraminiferal species (three calcitic, one aragonitic) from the Peruvian OMZ to bottom water oxygen concentrations ([O2]BW) and evaluates foraminiferal I/Ca ratios as a possible redox proxy for the ambient water masses. Our results show that all species have a positive trend in the I/Ca ratios as a function of [O2]BW. Only for the aragonitic species Hoeglundina elegans this trend is not significant. The highest significance has been found for Uvigerina striata (I/Ca = 0.032(±0.004).[O2]BW + 0.29(±0.03), R² = 0.61, F = 75, P < 0.0001). Although I/Ca ratios in benthic foraminifera appear to be a robust redox proxy there are some methodical issues which have to be considered. These "pitfalls" include: (i) the volatility of iodine in acidic solutions, (ii) a species dependency of the I/Ca-[O2]BW relationship which is either related to a strong vital effect or toa species dependency on the calcification depth within sediment, and (iii) the inter-test variability of I/Ca between different specimens from the same species and habitat. (1): FAO FishStat: Fisheries and aquaculture software. In: FAO Fisheries and Aquaculture Department[online]. Rome. Updated 28 Nov. 2013. (2): Stramma et al.: Expanding Oxygen-Minimum Zones in the Tropical Oceans, Science, 320, 655-658, 2008. (3): Lu et al.: Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events, Geology, 38, 1107-1110, 2010.
Fish Ecology and Evolution in the World's Oxygen Minimum Zones and Implications of a Warming Ocean
NASA Astrophysics Data System (ADS)
Gallo, N.; Navarro, E. C.; Yazzie, A. T.; Barry, J. P.; Levin, L. A.
2016-02-01
Predicting how demersal fish communities will respond as hypoxic areas expand with climate change requires an understanding of how existing oxygen gradients influence the abundance, diversity, and trophic ecology of demersal fish communities. A literature review of studies from continental margins with oxygen minimum zones in the Pacific, Atlantic, and Indian Ocean, is combined with new data from research cruises to the Gulf of California and the US West Coast, to examine how hypoxic areas influence the structure and function of demersal fish communities. Oxygen minimum zones (OMZs) are deep-sea environments where organisms experience chronic hypoxic and suboxic conditions and have persisted over much longer timescales than coastal eutrophication-induced hypoxic zones, allowing for the evolution of adaptations to low oxygen conditions. While coastal studies have found that fish are one of the most hypoxia-intolerant groups, representative demersal fish species in the orders Cottiformes, Scorpaeniformes, Pleuronectiformes, Gobiiformes, Perciformes, Lophiiformes, Carcharhiniformes, Ophidiiformes, Myxiniformes, and Gadiformes have evolved to exploit physiologically extreme OMZ environments and are important components of the benthic community. In OMZs, certain fish species are some of the most hypoxia-tolerant members of the megafauna community, present even under extremely low oxygen conditions (< 5 µmol/kg) where most invertebrates are absent, though these communities are typically characterized by single-species dominance. To explore differences in the trophic ecology of these "hypoxia-tolerant" fish communities, stable isotope and gut content analysis are used to compare the Southern California Bight OMZ core fish community to the hypoxia-intolerant upper slope fish community. Results show that fish living in the OMZ core have significantly enriched δ13C and δ15N signatures and feed on different prey items.
A compendium of geochemical information from the Saanich Inlet water column
NASA Astrophysics Data System (ADS)
Torres-Beltrán, Mónica; Hawley, Alyse K.; Capelle, David; Zaikova, Elena; Walsh, David A.; Mueller, Andreas; Scofield, Melanie; Payne, Chris; Pakhomova, Larysa; Kheirandish, Sam; Finke, Jan; Bhatia, Maya; Shevchuk, Olena; Gies, Esther A.; Fairley, Diane; Michiels, Céline; Suttle, Curtis A.; Whitney, Frank; Crowe, Sean A.; Tortell, Philippe D.; Hallam, Steven J.
2017-10-01
Extensive and expanding oxygen minimum zones (OMZs) exist at variable depths in coastal and open ocean waters. As oxygen levels decline, nutrients and energy are increasingly diverted away from higher trophic levels into microbial community metabolism, resulting in fixed nitrogen loss and production of climate active trace gases including nitrous oxide and methane. While ocean deoxygenation has been reported on a global scale, our understanding of OMZ biology and geochemistry is limited by a lack of time-resolved data sets. Here, we present a historical dataset of oxygen concentrations spanning fifty years and nine years of monthly geochemical time series observations in Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia, Canada that undergoes recurring changes in water column oxygenation status. This compendium provides a unique geochemical framework for evaluating long-term trends in biogeochemical cycling in OMZ waters.
Duret, Manon T; Pachiadaki, Maria G; Stewart, Frank J; Sarode, Neha; Christaki, Urania; Monchy, Sébastien; Srivastava, Ankita; Edgcomb, Virginia P
2015-05-01
Oxygen minimum zones (OMZs) caused by water column stratification appear to expand in parts of the world's ocean, with consequences for marine biogeochemical cycles. OMZ formation is often fueled by high surface primary production, and sinking organic particles can be hotspots of interactions and activity within microbial communities. This study investigated the diversity of OMZ protist communities in two biomass size fractions (>30 and 30-1.6 μm filters) from the world's largest permanent OMZ in the Eastern Tropical North Pacific. Diversity was quantified via Illumina MiSeq sequencing of V4 region of 18S SSU rRNA genes in samples spanning oxygen gradients at two stations. Alveolata and Rhizaria dominated the two size fractions at both sites along the oxygen gradient. Community composition at finer taxonomic levels was partially shaped by oxygen concentration, as communities associated with versus anoxic waters shared only ∼32% of operational taxonomic unit (OTU) (97% sequence identity) composition. Overall, only 9.7% of total OTUs were recovered at both stations and under all oxygen conditions sampled, implying structuring of the eukaryotic community in this area. Size-fractionated communities exhibited different taxonomical features (e.g. Syndiniales Group I in the 1.6-30 μm fraction) that could be explained by the microniches created on the surface-originated sinking particles. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Effect of Changes in the Hadley Circulation on Oceanic Oxygen Minimum Zones
NASA Astrophysics Data System (ADS)
De La Cruz Tello, G.; Ummenhofer, C.; Karnauskas, K. B.
2014-12-01
Recent research argued that the Hadley circulation (HC) is composed of three regional cells located at the eastern edges of the ocean basins, rather than a single, globe-encircling cell as the classic textbook view suggests. The HC is expected to expand in concert with global warming, which means that the dry regions beneath the descending branches of the HC are projected to become even drier. Changes in the HC are thus likely to impact freshwater resources on land, as well as the underlying ocean in the subtropics. The eastern edges of ocean basins are characterized by oxygen minimum zones (OMZs), which are regions of very low oxygen concentrations. They affect marine life, as many animals cannot handle the stress caused by such conditions. OMZs have expanded and shoaled in the last 50 years, and they are expected to continue to do so as global climate changes. The purpose of this research is to find links between the projected changes in OMZs and the HC. The National Center for Atmospheric Research (NCAR) Community Earth System Model 1.0 (CESM), Representative Concentration Pathways 8.5 (RCP8.5) experiment with a resolution of 0.9 by 1.25 degrees, which formed part of the Coupled Model Intercomparison Project phase 5 (CMIP5), was used for this analysis. Meridional winds and oceanic oxygen concentrations were the primarily analyzed variables. Latitudinal ocean oxygen slices demonstrate the OMZs' location along the eastern edges of ocean basins. Meridional winds overlayed with oxygen concentration are consistent with the idea that surface meridional 'Hadleywise flow' (i.e., towards the equator at the surface and towards the poles aloft) and OMZs are linked through changes in upwelling. Area-averaged time series spanning the historical period through to the end of the 21st century with RCP8.5 confirm that future changes in OMZs and the HC may be connected. Further research could lead to improved understanding of the factors that drive changes in both, which could help anticipate and mitigate the consequences discussed previously.
Seibel, Brad A; Schneider, Jillian L; Kaartvedt, Stein; Wishner, Karen F; Daly, Kendra L
2016-10-01
The effects of regional variations in oxygen and temperature levels with depth were assessed for the metabolism and hypoxia tolerance of dominant euphausiid species. The physiological strategies employed by these species facilitate prediction of changing vertical distributions with expanding oxygen minimum zones and inform estimates of the contribution of vertically migrating species to biogeochemical cycles. The migrating species from the Eastern Tropical Pacific (ETP), Euphausia eximia and Nematoscelis gracilis, tolerate a Partial Pressure (PO2) of 0.8 kPa at 10 °C (∼15 µM O2) for at least 12 h without mortality, while the California Current species, Nematoscelis difficilis, is incapable of surviving even 2.4 kPa PO2 (∼32 µM O2) for more than 3 h at that temperature. Euphausia diomedeae from the Red Sea migrates into an intermediate oxygen minimum zone, but one in which the temperature at depth remains near 22 °C. Euphausia diomedeae survived 1.6 kPa PO2 (∼22 µM O2) at 22 °C for the duration of six hour respiration experiments. Critical oxygen partial pressures were estimated for each species, and, for E. eximia, measured via oxygen consumption (2.1 kPa, 10 °C, n = 2) and lactate accumulation (1.1 kPa, 10 °C). A primary mechanism facilitating low oxygen tolerance is an ability to dramatically reduce energy expenditure during daytime forays into low oxygen waters. The ETP and Red Sea species reduced aerobic metabolism by more than 50% during exposure to hypoxia. Anaerobic glycolytic energy production, as indicated by whole-animal lactate accumulation, contributed only modestly to the energy deficit. Thus, the total metabolic rate was suppressed by ∼49-64%. Metabolic suppression during diel migrations to depth reduces the metabolic contribution of these species to vertical carbon and nitrogen flux (i.e., the biological pump) by an equivalent amount. Growing evidence suggests that metabolic suppression is a widespread strategy among migrating zooplankton in oxygen minimum zones and may have important implications for the economy and ecology of the oceans. The interacting effects of oxygen and temperature on the metabolism of oceanic species facilitate predictions of changing vertical distribution with climate change. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...
14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...
14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...
14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...
NASA Astrophysics Data System (ADS)
Beman, J. M.
2016-02-01
Oxygen minimum zones (OMZs) play a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet our understanding of these changes is limited by a lack of systematic analyses of low-oxygen ecosystems. In particular, forecasting biogeochemical feedbacks to deoxygenation requires detailed knowledge of microbial community assembly and activity as oxygen declines. Marine `lakes'—isolated bodies of seawater surrounded by land—are an ideal comparative system, as they provide a pronounced oxygen gradient extending from well-mixed, holomictic lakes to stratified, meromictic lakes that vary in their extent of anoxia. We examined 13 marine lakes using pyrosequencing of 16S rRNA genes, quantitative PCR for nitrogen (N)- and sulfur (S)-cycling functional genes and groups, and N- and carbon (C)-cycling rate measurements. All lakes were inhabited by well-known marine bacteria, demonstrating the broad relevance of this study system. Microbial diversity was typically highest in the anoxic monimolimnion of meromictic lakes, with marine cyanobacteria, SAR11, and other common bacteria replaced by anoxygenic phototrophs, sulfate-reducing bacteria (SRBs), and SAR406 in the monimolimnion. Denitrifier nitrite reductase (nirS) genes were also detected alongside high abundances (>106 ml-1) of dissimilatory sulfite reductase (dsrA) genes from SRBs in the monimolimnion. Sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis=76%) and deterministic processes dominated community assembly at all depths (nearest taxon index values >4). These results indicate that oxygen is a strong, deterministic driver of microbial community assembly. We also observed enhanced N- and C-cycling rates along the transition from hypoxic to anoxic to sulfidic conditions, suggesting that microbial communities form a positive feedback loop that may accelerate deoxygenation and OMZ expansion.
Oxygen measurements at high pressures with vertical cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Wang, J.; Sanders, S. T.; Jeffries, J. B.; Hanson, R. K.
Measurements of oxygen concentration at high pressures (to 10.9 bar) were made using diode-laser absorption of oxygen A-band transitions near 760 nm. The wide current-tuning frequency range (>30 cm-1) of vertical cavity surface-emitting lasers (VCSELs) was exploited to enable the first scanned-wavelength demonstration of diode-laser absorption at high pressures; this strategy is more robust than fixed-wavelength strategies, particularly in hostile environments. The wide tuning range and rapid frequency response of the current tuning were further exploited to demonstrate wavelength-modulation absorption spectroscopy in a high-pressure environment. The minimum detectable absorbance demonstrated, 1×10-4, corresponds to 800 ppm-m oxygen detectivity at room temperature and is limited by etalon noise. The rapid- and wide-frequency tunability of VCSELs should significantly expand the application domain of absorption-based sensors limited in the past by the small current-tuning frequency range (typically <2 cm-1) of conventional edge-emitting diode lasers.
Diazotroph community structure in the deep oxygen minimum zone of the Costa Rica Dome.
Cheung, Shunyan; Xia, Xiaomin; Guo, Cui; Liu, Hongbin
2016-03-01
Oxygen minimum zones (OMZs), characterized by depleted dissolved oxygen concentration in the intermediate depth of the water column, are predicted to expand under the influence of global warming. Recent studies in the Eastern Tropical South Pacific Ocean and Arabian Sea have reported that heterotrophic nitrogen fixation is active in the OMZs. In this study, we investigated the community structure of diazotrophs in the OMZ of the Costa Rica Dome (CRD) upwelling region in the Eastern Tropical North Pacific Ocean, using 454-pyrosequencing of nifH gene amplicons. Comparing diazotroph assemblages in different depth strata of the OMZ (200-1000 m in depth), we found a unique diazotroph community in the OMZ core, which was mainly dominated by methanotroph-like diazotrophs, suggesting a potential coupling of nitrogen cycle and methane assimilation. In addition, some OTUs revealed in this study, especially those belonging to the large sub-cluster Vibrio diazotrophicus , were reported to be abundant and expressing the nifH gene in other OMZs. Our results suggest that the unique hydrographic conditions in OMZs may support similar assemblages of diazotrophs, and heterotrophic nitrogen fixation could also be occurring in our studied region. Our study provides the first insight into the composition and distribution of putative diazotrophs in the CRD OMZ.
2014-01-01
Background A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Results Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A 15N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol 15NH4+ g-1 protein h-1. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6–8 μmol NO3- g-1 protein) for dissimilatory nitrate reduction. Conclusions Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide. PMID:24517718
Habitat Parameters for Oxygen Minimum Zone Copepods from the Eastern Tropical North Pacific
NASA Astrophysics Data System (ADS)
Wishner, K. F.; Outram, D.; Grassian, B.
2016-02-01
Oxygen minimum zones (OMZs) affect zooplankton distributions and may be expanding in worldwide spatial and vertical extent from climate change. We studied zooplankton (especially copepod) distributions in the Eastern Tropical North Pacific (ETNP) OMZ, using day-night vertically-stratified MOCNESS tows (0-1000m). Habitat parameters (temperature, oxygen, depth) were defined for abundant copepod species and groups. Zooplankton layers, with a unique suite of species, occurred at upper and lower OMZ oxyclines. At the mesopelagic lower oxycline, there was a layer with a characteristic species assemblage and a sharp 10X biomass increase compared to nearby depths. The lower oxycline layer occurred within a narrow very low oxygen concentration (2µM). At two stations with different OMZ vertical extents, the lower oxycline layer depth changed with OMZ thickness, remaining at the same oxygen concentration but different temperature. Life history habitat (diapause depth, temperature) of the copepod Eucalanus inermis was also affected. In the upper water column at the two stations, large diel vertical migrators (fish, euphausiids) descended to taxon-specific daytime depths in the mid OMZ, regardless of oxygen level, but copepod species distributions showed more variability and sensitivity to habitat parameters. We predict that, with moderate OMZ expansion, the lower oxycline community will likely shift depth, thus re-distributing midwater biomass, species, and processes. In the upper water column, large vertical migrator distributions may be less affected, while smaller taxa (copepods) will likely be sensitive to habitat changes. At some point, the ability to withstand these changes may be exceeded for particular taxa, with consequences for assemblages, trophic webs, and export. In keeping with the session theme, we hope to compare our oceanic findings with others' results from coastal hypoxic situations.
Stief, Peter; Fuchs-Ocklenburg, Silvia; Kamp, Anja; Manohar, Cathrine-Sumathi; Houbraken, Jos; Boekhout, Teun; de Beer, Dirk; Stoeck, Thorsten
2014-02-11
A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A ¹⁵N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol ¹⁵NH₄⁺ g⁻¹ protein h⁻¹. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6-8 μmol NO₃⁻ g⁻¹ protein) for dissimilatory nitrate reduction. Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide.
NASA Astrophysics Data System (ADS)
Niemeyer, Daniela; Kemena, Tronje P.; Meissner, Katrin J.; Oschlies, Andreas
2017-05-01
Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a release of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity fluxes into the ocean and therefore raise the ocean's phosphorus inventory even further. A higher availability of phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to weathering-induced alkalinity input. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here, we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the University of Victoria (UVic) Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively (> 80 %) from the input via terrestrial weathering and causes a 4- to 5-fold expansion of the suboxic water volume in the model.
Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995
Haggard, Brian; Green, W. Reed
2002-01-01
The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.
The role of the oceanic oxygen minima in generating biodiversity in the deep sea
NASA Astrophysics Data System (ADS)
Rogers, Alex D.
2000-01-01
Many studies on the deep-sea benthic biota have shown that the most species-rich areas lie on the continental margins between 500 and 2500 m, which coincides with the present oxygen-minimum in the world's oceans. Some species have adapted to hypoxic conditions in oxygen-minimum zones, and some can even fulfil all their energy requirements through anaerobic metabolism for at least short periods of time. It is, however, apparent that the geographic and vertical distribution of many species is restricted by the presence of oxygen-minimum zones. Historically, cycles of global warming and cooling have led to periods of expansion and contraction of oxygen-minimum layers throughout the world's oceans. Such shifts in the global distribution of oxygen-minimum zones have presented many opportunities for allopatric speciation in organisms inhabiting slope habitats associated with continental margins, oceanic islands and seamounts. On a smaller scale, oxygen-minimum zones can be seen today as providing a barrier to gene-flow between allopatric populations. Recent studies of the Arabian Sea and in other regions of upwelling also have shown that the presence of an oxygen-minimum layer creates a strong vertical gradient in physical and biological parameters. The reduced utilisation of the downward flux of organic material in the oxygen-minimum zone results in an abundant supply of food for organisms immediately below it. The occupation of this area by species exploiting abundant food supplies may lead to strong vertical gradients in selective pressures for optimal rates of growth, modes of reproduction and development and in other aspects of species biology. The presence of such strong selective gradients may have led to an increase in habitat specialisation in the lower reaches of oxygen-minimum zones and an increased rate of speciation.
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.
2010-01-01
As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future lander descent main engines.
Deoxygenation of the Baltic Sea during the last century
Carstensen, Jacob; Andersen, Jesper H.; Gustafsson, Bo G.; Conley, Daniel J.
2014-01-01
Deoxygenation is a global problem in coastal and open regions of the ocean, and has led to expanding areas of oxygen minimum zones and coastal hypoxia. The recent expansion of hypoxia in coastal ecosystems has been primarily attributed to global warming and enhanced nutrient input from land and atmosphere. The largest anthropogenically induced hypoxic area in the world is the Baltic Sea, where the relative importance of physical forcing versus eutrophication is still debated. We have analyzed water column oxygen and salinity profiles to reconstruct oxygen and stratification conditions over the last 115 y and compare the influence of both climate and anthropogenic forcing on hypoxia. We report a 10-fold increase of hypoxia in the Baltic Sea and show that this is primarily linked to increased inputs of nutrients from land, although increased respiration from higher temperatures during the last two decades has contributed to worsening oxygen conditions. Although shifts in climate and physical circulation are important factors modulating the extent of hypoxia, further nutrient reductions in the Baltic Sea will be necessary to reduce the ecosystems impacts of deoxygenation. PMID:24706804
Monitoring microbial responses to ocean deoxygenation in a model oxygen minimum zone.
Hallam, Steven J; Torres-Beltrán, Mónica; Hawley, Alyse K
2017-10-31
Today in Scientific Data, two compendia of geochemical and multi-omic sequence information (DNA, RNA, protein) generated over almost a decade of time series monitoring in a seasonally anoxic coastal marine setting are presented to the scientific community. These data descriptors introduce a model ecosystem for the study of microbial responses to ocean deoxygenation, a phenotype that is currently expanding due to climate change. Public access to this time series information is intended to promote scientific collaborations and the generation of new hypotheses relevant to microbial ecology, biogeochemistry and global change issues.
Centennial changes in North Pacific anoxia linked to tropical trade winds
Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander
2014-01-01
Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ15N) from multiple sediment cores. Increasing δ15N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ15N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean’s largest anoxic zone will contract despite a global O2 decline.
14 CFR 121.335 - Equipment standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of...
14 CFR 121.335 - Equipment standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of...
14 CFR 121.335 - Equipment standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of...
14 CFR 121.335 - Equipment standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of...
14 CFR 121.335 - Equipment standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply of...
Hunter, William R; Veuger, Bart; Witte, Ursula
2012-01-01
Oxygen minimum zones (OMZs) currently impinge upon >1 million km2 of sea floor and are predicted to expand with climate change. We investigated how changes in oxygen availability, macrofaunal biomass and retention of labile organic matter (OM) regulate heterotrophic bacterial C and N incorporation in the sediments of the OMZ-impacted Indian continental margin (540–1100 m; [O2]=0.35–15 μmol l−1). In situ pulse-chase experiments traced 13C:15N-labelled phytodetritus into bulk sediment OM and hydrolysable amino acids, including the bacterial biomarker 𝒟-alanine. Where oxygen availability was lowest ([O2]=0.35 μmol l−1), metazoan macrofauna were absent and bacteria assimilated 30–90% of the labelled phytodetritus within the sediment. At higher oxygen levels ([O2]=2–15 μmol l−1) the macrofaunal presence and lower phytodetritus retention with the sediment occur concomitantly, and bacterial phytodetrital incorporation was reduced and retarded. Bacterial C and N incorporation exhibited a significant negative relationship with macrofaunal biomass across the OMZ. We hypothesise that fauna–bacterial interactions significantly influence OM recycling in low-oxygen sediments and need to be considered when assessing the consequences of global change on biogeochemical cycles. PMID:22592818
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2010 CFR
2010-01-01
... discretion. (c) If first-aid oxygen equipment is installed, the minimum mass flow of oxygen to each user may... upon an average flow rate of 3 liters per minute per person for whom first-aid oxygen is required. (d...
NASA Astrophysics Data System (ADS)
Lopes, Ana Rita; Trübenbach, Katja; Teixeira, Tatiana; Lopes, Vanessa M.; Pires, Vanessa; Baptista, Miguel; Repolho, Tiago; Calado, Ricardo; Diniz, Mário; Rosa, Rui
2013-12-01
Diel vertical migrators, such as myctophid fishes, are known to encounter oxygen minimum zones (OMZ) during daytime in the Eastern Pacific Ocean and, therefore, have to cope with temperature and oxidative stress that arise while ascending to warmer, normoxic surface waters at night-time. The aim of this study was to investigate the antioxidant defense strategies and heat shock response (HSR) in two myctophid species, namely Triphoturus mexicanus and Benthosema panamense, at shallow and warm surface waters (21 kPa, 20-25 °C) and at hypoxic, cold (≤1 kPa, 10 °C) mesopelagic depths. More specifically, we quantified (i) heat shock protein concentrations (HSP70/HSC70) (ii) antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], and (iii) lipid peroxidation [malondialdehyde (MDA) levels]. HSP70/HSC70 levels increased in both myctophid species at warmer, well-oxygenated surface waters probably to prevent cellular damage (oxidative stress) due to increased oxygen demand under elevated temperatures and reactive oxygen species (ROS) formation. On the other hand, CAT and GST activities were augmented under hypoxic conditions, probably as preparatory response to a burst of oxyradicals during the reoxygenation phase (while ascending). SOD activity decreased under hypoxia in B. panamense, but was kept unchanged in T. mexicanus. MDA levels in B. panamense did not change between the surface and deep-sea conditions, whereas T. mexicanus showed elevated MDA and HSP70/HSC70 concentrations at warmer surface waters. This indicated that T. mexicanus seems to be not so well tuned to temperature and oxidative stress associated to diel vertical migrations. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how different species might respond to the impacts of environmental stressors (e.g. expanding mesopelagic hypoxia) coupled with global climate change.
Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.
2003-01-01
Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.
NASA Astrophysics Data System (ADS)
Zhou, X.; Thomas, E.; Winguth, A. M. E.; Ridgwell, A.; Scher, H.; Hoogakker, B. A. A.; Rickaby, R. E. M.; Lu, Z.
2016-12-01
Anthropogenic warming could well drive depletion of oceanic oxygen in the future. Important insight into the relationship between deoxygenation and warming can be gleaned from the geological record, but evidence is limited because few ocean oxygenation records are available for past greenhouse climate conditions. We use I/Ca in benthic foraminifera to reconstruct late Paleocene through early Eocene bottom and pore water redox conditions in the South Atlantic and Southern Indian Oceans and compare our results with those derived from Mn speciation and the Ce anomaly in fish teeth. We conclude that waters with lower oxygen concentrations were widespread at intermediate depths (1.5-2 km), whereas bottom waters were more oxygenated at the deepest site, in the Southeast Atlantic Ocean (>3 km). Epifaunal benthic foraminiferal I/Ca values were higher in the late Paleocene, especially at low-oxygen sites, than at well-oxygenated modern sites, indicating higher seawater total iodine concentrations in the late Paleocene than today. The proxy-based bottom water oxygenation pattern agrees with the site-to-site O2 gradient as simulated in a comprehensive climate model (Community Climate System Model Version 3), but the simulated absolute dissolved O2 values are low (< 35 µmol/kg), while higher O2 values ( 60-100 µmol/kg) were obtained in an Earth system model (Grid ENabled Integrated Earth system model). Multiproxy data together with improvements in boundary conditions and model parameterization are necessary if the details of past oceanographic oxygenation are to be resolved.
Integrated turbomachine oxygen plant
Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan
2014-06-17
An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.
Oceanography. Centennial changes in North Pacific anoxia linked to tropical trade winds.
Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander
2014-08-08
Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ(15)N) from multiple sediment cores. Increasing δ(15)N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ(15)N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean's largest anoxic zone will contract despite a global O2 decline. Copyright © 2014, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, David A.; Zaikova, Elena; Howes, Charles L.
Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide rangemore » of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control.« less
NASA Astrophysics Data System (ADS)
Bianchi, Thomas S.; Schreiner, Kathryn M.; Smith, Richard W.; Burdige, David J.; Woodard, Stella; Conley, Daniel J.
2016-06-01
Coastal margins play a significant role in the burial of organic matter (OM) on Earth. These margins vary considerably with respect to their efficiency in OM burial and to the amounts and periodicity of their OM delivery, depending in large part on whether they are passive or active margins. In the context of global warming, these coastal regions are expected to experience higher water temperatures, changes in riverine inputs of OM, and sea level rise. Low-oxygen conditions continue to expand around the globe in estuarine regions (i.e., hypoxic zones) and shelf regions (i.e., oxygen minimum zones), which will impact the amounts and sources of OM stored in these regions. In this review, we explore how these changes are impacting the storage of OM and the preservation of sedimentary biomarkers, used as proxies to reconstruct environmental change, in coastal margins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.
2014-08-05
Oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified marine waters. Currently OMZs are expanding due to global climate change. This expansion alters marine ecosystem function and the productivity of fisheries due to habitat compression and changes in biogeochemical cycling leading to fixed nitrogen loss and greenhouse gas production. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally anoxic fjord, Saanich Inlet to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components formore » nitrification, anaerobic ammonium oxidation (anammox), denitrification and inorganic carbon fixation predominantly co-varied with abundance and distribution patterns of Thaumarchaeota, Nitrospira, Planctomycetes and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Within these groups, pathways mediating inorganic carbon fixation and nitrogen and sulfur transformations were differentially expressed across the redoxcline. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters and denitrification, sulfur-oxidation and inorganic carbon fixation pathways affiliated with SUP05 dominated suboxic and anoxic waters. Nitrite-oxidation and anammox pathways affiliated with Nitrospina and Planctomycetes respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The differential expression of these pathways under changing water column redox conditions has quantitative implications for coupled biogeochemical cycling linking different modes of inorganic carbon fixation with distributed nitrogen and sulfur-based energy metabolism extensible to coastal and open ocean OMZs.« less
Supra-plasma expanders: the future of treating blood loss and anemia without red cell transfusions?
Tsai, Amy G; Vázquez, Beatriz Y Salazar; Hofmann, Axel; Acharya, Seetharama A; Intaglietta, Marcos
2015-01-01
Oxygen delivery capacity during profoundly anemic conditions depends on blood's oxygen-carrying capacity and cardiac output. Oxygen-carrying blood substitutes and blood transfusion augment oxygen-carrying capacity, but both have given rise to safety concerns, and their efficacy remains unresolved. Anemia decreases oxygen-carrying capacity and blood viscosity. Present studies show that correcting the decrease of blood viscosity by increasing plasma viscosity with newly developed plasma expanders significantly improves tissue perfusion. These new plasma expanders promote tissue perfusion, increasing oxygen delivery capacity without increasing blood oxygen-carrying capacity, thus treating the effects of anemia while avoiding the transfusion of blood.
NASA Astrophysics Data System (ADS)
Lachkar, Zouhair; Smith, Shafer; Levy, Marina
2017-04-01
The decline in oxygen supply to the ocean associated with global warming of sea-surface temperatures is expected to expand the oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the World's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo records and future climate projections indicate strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from -50% to +50%) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Oceanic Modeling System (ROMS) coupled to a nitrogen based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased lateral ventilation. The enhanced lateral ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200m) of the western and central Arabian Sea, leading to intermittent expansions of habitats and a more frequent alternation of hypoxic and oxic conditions there. The increased productivity and deepening of the OMZ also lead to a strong intensification of denitrification at depth, resulting in a substantial amplification of fixed nitrogen depletion in the Arabian Sea. We conclude that changes in the Indian monsoon can affect, on longer timescales, the large-scale biogeochemical cycles of nitrogen and carbon, with a positive feedback on climate change in the case of stronger winds.
Development Status of the CECE Cryogenic Deep Throttling Demonstrator Engine
NASA Technical Reports Server (NTRS)
2008-01-01
As one of the first technology development programs awarded by NASA under the U.S. Space Exploration Policy (USSEP), the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA's Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RLI0, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Two series of demonstrator engine tests, the first in April-May 2006 and the second in March-April 2007, have demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. Both test series have explored a combustion instability ("chug") environment at low throttled power levels. These tests have provided an early demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future CECE Demonstrator engine tests.
Communicating Emerging Issues in Ocean Hypoxia (or Suffocating in Your Own Home)
NASA Astrophysics Data System (ADS)
Whitney, F. A.; Tunnicliffe, V.; Diaz, R. J.
2009-12-01
Some large regions of our interior oceans are losing oxygen both from the impacts of human uses of coastal margins and the impacts that climate change is having on ocean circulation. As oxygen minimum zones expand, impacts are especially noticed along the edges of continents. Ecosystems are being affected in ways that result in habitat compression or forced migrations. Looking into the future, we foresee large scale disruptions to habitat that, in some cases, will dramatically impact fish productivity. As waters become more hypoxic, energy fixed by marine plants will be less available to support higher trophic levels (e.g. fish and marine mammals). Communicating concern about hypoxia has its challenges: the word itself is poorly know to those on land who live in an oxygen-rich world. Thus, crucial factors in effective communication include illustrating: i) how many ocean animals live “on the edge”, ii) how ocean organisms respond to hypoxia iii) the long-term effects on ocean ecosystems and iv) causes and mitigation. For media that respond to visual stimulation, good graphics, evocative analogies and focussed examples are important.
Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2011-12-01
Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption rates. This least-favorable zone for aerobic respiration is bound to expand with further ocean warming.
Oxygen enhanced switching to combustion of lower rank fuels
Kobayashi, Hisashi; Bool, III, Lawrence E.; Wu, Kuang Tsai
2004-03-02
A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.
NC10 Bacteria in a Marine Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Padilla, C. C.; Bristow, L. A.; Benson, C. R.; Sarode, N. D.; Girguis, P. R.; Glass, J. B.; DiChristina, T. J.; Thamdrup, B.; Stewart, F. J.
2014-12-01
Marine oxygen minimum zones (OMZs) are key regions of nitrogen cycling and nitrogen loss as N2. The potential for methane cycling to influence OMZ nitrogen budgets remains largely unknown. The anaerobic oxidation of methane (AOM) coupled to nitrite or nitrate reduction has been shown to be a potential source of methane consumption, N loss, and oxygen production in freshwater sediments, but has not been described for marine pelagic environments. Nitrite-dependent AOM is performed by bacteria of the candidate division NC10 through an intra-aerobic pathway involving the dismutation of nitric oxide to O2 and N2. We explored the potential that NC10-like bacteria are present and active in the anoxic, nitrite-rich OMZ of the Eastern Tropical North Pacific. Community transcriptome sequencing confirmed the expression of genes with top matches to the NC10 bacterium 'Candidatus Methylomirabilis oxyfera.' NC10-like transcripts increased in relative abundance with depth into the anoxic OMZ core and included genes of aerobic methanotrophy and denitrification, as well as high numbers of transcripts matching norZ nitric oxide reductase, hypothesized to play a role in the O2-yielding dismutation reaction. Phylogenetic analysis of OMZ particulate methane monooxygenase (pmoA) and 16S rRNA gene sequences recovered by PCR revealed multiple clades of NC10 phylotypes in the OMZ. Preliminary data from OMZ enrichments revealed methane-dependent nitrite consumption, but further characterization is required to identify the pathways and organisms mediating this process. These findings expand the known environmental range of NC10 and suggest the possibility of previously uncharacterized linkages between OMZ nitrogen and methane cycles.
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.
2010-01-01
As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop technology and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Three series of demonstrator engine tests, the first in April-May 2006, the second in March-April 2007 and the third in November-December 2008, have demonstrated up to 13:1 throttling (104% to 8% thrust range) of the hydrogen/oxygen expander cycle engine. The first two test series explored a propellant feed system instability ("chug") environment at low throttled power levels. Lessons learned from these two tests were successfully applied to the third test series, resulting in stable operation throughout the 13:1 throttling range. The first three tests have provided an early demonstration of an enabling cryogenic propulsion concept, accumulating over 5,000 seconds of hot fire time over 27 hot fire tests, and have provided invaluable system-level technology data toward design and development risk mitigation for the NASA Altair and future lander propulsion system applications. This paper describes the results obtained from the highly successful third test series as well as the test objectives and early results obtained from a fourth test series conducted over March-May 2010
Effect of Structural Parameters on the Combustion Performance of Platelet Engines
NASA Astrophysics Data System (ADS)
Liang, Yin; Liu, Weiqiang
2017-12-01
Numerical simulation was adopted to determine its flow and combustion characteristics by using gaseous methane and oxygen as the main propellants, the effects of nozzle space and expanding angle are examined for the single element splash platelet injector. Navier-Stokes (N-S) equations were solved for the gas-gas flow field with a reduced mechanism involving 9 species and 1 reaction. Results indicated that large corner recirculation zones are produced in the combustor head. This phenomenon consequently enhances mixing and stabilizes combustion, but non-uniformity in temperature contour is observed in the combustor head. Recirculation zone decreases as nozzle space increases, which induces the decrease of maximum temperature and high temperature regions, but it has little influence on the combustion efficiency and combustion length. The combustion length and maximum temperature decrease initially and then increase as expanding angle increases. Conversely, a D value of 2.4 mm and γ value of 60° are selected for the future works because of the shortest combustion length and minimum temperature of the injector faceplate.
Seibel, Brad A; Häfker, N Sören; Trübenbach, Katja; Zhang, Jing; Tessier, Shannon N; Pörtner, Hans-Otto; Rosa, Rui; Storey, Kenneth B
2014-07-15
The jumbo squid, Dosidicus gigas, can survive extended forays into the oxygen minimum zone (OMZ) of the Eastern Pacific Ocean. Previous studies have demonstrated reduced oxygen consumption and a limited anaerobic contribution to ATP production, suggesting the capacity for substantial metabolic suppression during hypoxic exposure. Here, we provide a more complete description of energy metabolism and explore the expression of proteins indicative of transcriptional and translational arrest that may contribute to metabolic suppression. We demonstrate a suppression of total ATP demand under hypoxic conditions (1% oxygen, PO2 =0.8 kPa) in both juveniles (52%) and adults (35%) of the jumbo squid. Oxygen consumption rates are reduced to 20% under hypoxia relative to air-saturated controls. Concentrations of arginine phosphate (Arg-P) and ATP declined initially, reaching a new steady state (~30% of controls) after the first hour of hypoxic exposure. Octopine began accumulating after the first hour of hypoxic exposure, once Arg-P breakdown resulted in sufficient free arginine for substrate. Octopine reached levels near 30 mmol g(-1) after 3.4 h of hypoxic exposure. Succinate did increase through hypoxia but contributed minimally to total ATP production. Glycogenolysis in mantle muscle presumably serves to maintain muscle functionality and balance energetics during hypoxia. We provide evidence that post-translational modifications on histone proteins and translation factors serve as a primary means of energy conservation and that select components of the stress response are altered in hypoxic squids. Reduced ATP consumption under hypoxia serves to maintain ATP levels, prolong fuel store use and minimize the accumulation of acidic intermediates of anaerobic ATP-generating pathways during prolonged diel forays into the OMZ. Metabolic suppression likely limits active, daytime foraging at depth in the core of the OMZ, but confers an energetic advantage over competitors that must remain in warm, oxygenated surface waters. Moreover, the capacity for metabolic suppression provides habitat flexibility as OMZs expand as a result of climate change. © 2014. Published by The Company of Biologists Ltd.
The conductive propagation of nuclear flames. I - Degenerate C + O and O + Ne + Mg white dwarfs
NASA Technical Reports Server (NTRS)
Timmes, F. X.; Woosley, S. E.
1992-01-01
The paper determines the physical properties - speed, width, and density structure - of conductive burning fronts in degenerate carbon-oxygen (C + O) and oxygen-neon-magnesium (O + Ne + Mg) compositions for a grid of initial densities and compositions. The dependence of the physical properties of the flame on the assumed values of nuclear reaction rates, the nuclear reaction network employed, the thermal conductivity, and the choice of coordinate system are investigated. The occurrence of accretion-induced collapse of a white dwarf is found to be critically dependent on the velocity of the nuclear conductive burning front and the growth rate of hydrodynamic instabilities. Treating the expanding area of the turbulent burning region as a fractal whose tile size is identical to the minimum unstable Rayleigh-Taylor wavelength, it is found, for all reasonable values of the fractal dimension, that for initial C + O or O + Ne + Mg densities above about 9 x 10 exp 9 g/cu cm the white dwarf should collapse to a neutron star.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roux, Simon; Hawley, Alyse K.; Torres Beltran, Monica
Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks, specific virus–host interaction dynamics remain cryptic. In this study, we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186more » microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together, these results demonstrate closely coupled SUP05 virus–host co-evolutionary dynamics with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.« less
NASA Astrophysics Data System (ADS)
Frenger, Ivy; Bianchi, Daniele; Stührenberg, Carolin; Oschlies, Andreas; Dunne, John; Deutsch, Curtis; Galbraith, Eric; Schütte, Florian
2018-02-01
Subsurface eddies are known features of ocean circulation, but the sparsity of observations prevents an assessment of their importance for biogeochemistry. Here we use a global eddying (0.1°) ocean-biogeochemical model to carry out a census of subsurface coherent eddies originating from eastern boundary upwelling systems (EBUS) and quantify their biogeochemical effects as they propagate westward into the subtropical gyres. While most eddies exist for a few months, moving over distances of hundreds of kilometers, a small fraction (<5%) of long-lived eddies propagates over distances greater than 1,000 km, carrying the oxygen-poor and nutrient-rich signature of EBUS into the gyre interiors. In the Pacific, transport by subsurface coherent eddies accounts for roughly 10% of the offshore transport of oxygen and nutrients in pycnocline waters. This "leakage" of subsurface waters can be a significant fraction of the transport by nutrient-rich poleward undercurrents and may contribute to the well-known reduction of productivity by eddies in EBUS. Furthermore, at the density layer of their cores, eddies decrease climatological oxygen locally by close to 10%, thereby expanding oxygen minimum zones. Finally, eddies represent low-oxygen extreme events in otherwise oxygenated waters, increasing the area of hypoxic waters by several percent and producing dramatic short-term changes that may play an important ecological role. Capturing these nonlocal effects in global climate models, which typically include noneddying oceans, would require dedicated parameterizations.
Acoustic Observation of Living Organisms Reveals the Upper Limit of the Oxygen Minimum Zone
Bertrand, Arnaud; Ballón, Michael; Chaigneau, Alexis
2010-01-01
Background Oxygen minimum zones (OMZs) are expanding in the World Ocean as a result of climate change and direct anthropogenic influence. OMZ expansion greatly affects biogeochemical processes and marine life, especially by constraining the vertical habitat of most marine organisms. Currently, monitoring the variability of the upper limit of the OMZs relies on time intensive sampling protocols, causing poor spatial resolution. Methodology/Principal Findings Using routine underwater acoustic observations of the vertical distribution of marine organisms, we propose a new method that allows determination of the upper limit of the OMZ with a high precision. Applied in the eastern South-Pacific, this original sampling technique provides high-resolution information on the depth of the upper OMZ allowing documentation of mesoscale and submesoscale features (e.g., eddies and filaments) that structure the upper ocean and the marine ecosystems. We also use this information to estimate the habitable volume for the world's most exploited fish, the Peruvian anchovy (Engraulis ringens). Conclusions/Significance This opportunistic method could be implemented on any vessel geared with multi-frequency echosounders to perform comprehensive high-resolution monitoring of the upper limit of the OMZ. Our approach is a novel way of studying the impact of physical processes on marine life and extracting valid information about the pelagic habitat and its spatial structure, a crucial aspect of Ecosystem-based Fisheries Management in the current context of climate change. PMID:20442791
Primary propulsion/large space system interaction study
NASA Technical Reports Server (NTRS)
Coyner, J. V.; Dergance, R. H.; Robertson, R. I.; Wiggins, J. V.
1981-01-01
An interaction study was conducted between propulsion systems and large space structures to determine the effect of low thrust primary propulsion system characteristics on the mass, area, and orbit transfer characteristics of large space systems (LSS). The LSS which were considered would be deployed from the space shuttle orbiter bay in low Earth orbit, then transferred to geosynchronous equatorial orbit by their own propulsion systems. The types of structures studied were the expandable box truss, hoop and column, and wrap radial rib each with various surface mesh densities. The impact of the acceleration forces on system sizing was determined and the effects of single point, multipoint, and transient thrust applications were examined. Orbit transfer strategies were analyzed to determine the required velocity increment, burn time, trip time, and payload capability over a range of final acceleration levels. Variables considered were number of perigee burns, delivered specific impulse, and constant thrust and constant acceleration modes of propulsion. Propulsion stages were sized for four propellant combinations; oxygen/hydrogen, oxygen/methane, oxygen/kerosene, and nitrogen tetroxide/monomethylhydrazine, for pump fed and pressure fed engine systems. Two types of tankage configurations were evaluated, minimum length to maximize available payload volume and maximum performance to maximize available payload mass.
NASA Astrophysics Data System (ADS)
Lachkar, Zouhair; Lévy, Marina; Smith, Shafer
2018-01-01
The decline in oxygen supply to the ocean associated with global warming is expected to expand oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the world's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo-records and future climate projections indicates strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from -50 to +50 %) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Ocean Modeling System (ROMS) coupled to a nitrogen-based nutrient-phytoplankton-zooplankton-detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased ventilation. The enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200 m) of the western and central Arabian Sea, leading to intermittent expansions of marine habitats and a more frequent alternation of hypoxic and oxic conditions there. The increased productivity and deepening of the OMZ also lead to a strong intensification of denitrification at depth, resulting in a substantial amplification of fixed nitrogen depletion in the Arabian Sea. We conclude that changes in the Indian monsoon can affect, on longer timescales, the large-scale biogeochemical cycles of nitrogen and carbon, with a positive feedback on climate change in the case of stronger winds. Additional potential changes in large-scale ocean ventilation and stratification may affect the sensitivity of the Arabian Sea OMZ to monsoon intensification.
Lembke-Jene, Lester; Tiedemann, Ralf; Nürnberg, Dirk; Gong, Xun; Lohmann, Gerrit
2018-05-22
The Pacific hosts the largest oxygen minimum zones (OMZs) in the world ocean, which are thought to intensify and expand under future climate change, with significant consequences for marine ecosystems, biogeochemical cycles, and fisheries. At present, no deep ventilation occurs in the North Pacific due to a persistent halocline, but relatively better-oxygenated subsurface North Pacific Intermediate Water (NPIW) mitigates OMZ development in lower latitudes. Over the past decades, instrumental data show decreasing oxygenation in NPIW; however, long-term variations in middepth ventilation are potentially large, obscuring anthropogenic influences against millennial-scale natural background shifts. Here, we use paleoceanographic proxy evidence from the Okhotsk Sea, the foremost North Pacific ventilation region, to show that its modern oxygenated pattern is a relatively recent feature, with little to no ventilation before six thousand years ago, constituting an apparent Early-Middle Holocene (EMH) threshold or "tipping point." Complementary paleomodeling results likewise indicate a warmer, saltier EMH NPIW, different from its modern conditions. During the EMH, the Okhotsk Sea switched from a modern oxygenation source to a sink, through a combination of sea ice loss, higher water temperatures, and remineralization rates, inhibiting ventilation. We estimate a strongly decreased EMH NPIW oxygenation of ∼30 to 50%, and increased middepth Pacific nutrient concentrations and carbon storage. Our results ( i ) imply that under past or future warmer-than-present conditions, oceanic biogeochemical feedback mechanisms may change or even switch direction, and ( ii ) provide constraints on the high-latitude North Pacific's influence on mesopelagic ventilation dynamics, with consequences for large oceanic regions. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Schmidt, M.; Eggert, A.
2016-02-01
The Angola Gyre and the Northern Benguela Upwelling System are two major oxygen minimum zones (OMZ) of different kind connected by the system of African Eastern Boundary Currents. We discuss results from a 3-dimensional coupled biogeochemical model covering both oxygen-deficient systems. The biogeochemical model component comprises trophic levels up to zooplankton. Physiological properties of organisms are parameterized from field data gained mainly in the course of the project "Geochemistry and Ecology of the Namibian Upwelling System" (GENUS). The challenge of the modelling effort is the different nature of both systems. The Angola Gyre, located in a "shadow zone" of the tropical Atlantic, has a low productivity and little ventilation, hence a long residence time of water masses. In the northern Benguela Upwelling System, trade winds drive an intermittent, but permanent nutrient supply into the euphotic zone which fuels a high coastal productivity, large particle export and high oxygen consumption from dissimilatory processes. In addition to the local processes, oxygen-deficient water formed in the Angola Gyre is one of the source water masses of the poleward undercurrent, which feeds oxygen depleted water into the Benguela system. In order to simulate the oxygen distribution in the Benguela system, both physical transport as well as local biological processes need to be carefully adjusted in the model. The focus of the analysis is on the time scale and the relative contribution of the different oxygen related processes to the oxygen budgets in both the oxygen minimum zones. Although these are very different in both the OMZ, the model is found as suitable to produce oxygen minimum zones comparable with observations in the Benguela and the Angola Gyre as well. Variability of the oxygen concentration in the Angola Gyre depends strongly on organismic oxygen consumption, whereas the variability of the oxygen concentration on the Namibian shelf is governed mostly by pole-ward advection of tropical water masses.
42 CFR 84.86 - Component parts exposed to oxygen pressures; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Component parts exposed to oxygen pressures; minimum requirements. 84.86 Section 84.86 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY...
42 CFR 84.86 - Component parts exposed to oxygen pressures; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Component parts exposed to oxygen pressures; minimum requirements. 84.86 Section 84.86 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY...
42 CFR 84.86 - Component parts exposed to oxygen pressures; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Component parts exposed to oxygen pressures; minimum requirements. 84.86 Section 84.86 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY...
42 CFR 84.86 - Component parts exposed to oxygen pressures; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Component parts exposed to oxygen pressures; minimum requirements. 84.86 Section 84.86 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY...
42 CFR 84.86 - Component parts exposed to oxygen pressures; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Component parts exposed to oxygen pressures; minimum requirements. 84.86 Section 84.86 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY...
Microbial stratification and microbially catalyzed processes along a hypersaline chemocline
NASA Astrophysics Data System (ADS)
Hyde, A.; Joye, S. B.; Teske, A.
2017-12-01
Orca Basin is the largest deep hypersaline anoxic basin in the world, covering over 400 km2. Located at the bottom of the Gulf of Mexico, this body of water reaches depths of 200 meters and is 8 times denser (and more saline) than the overlying seawater. The sharp pycnocline prevents any significant vertical mixing and serves as a particle trap for sinking organic matter. These rapid changes in salinity, oxygen, organic matter, and other geochemical parameters present unique conditions for the microbial communities present. We collected samples in 10m intervals throughout the chemocline. After filtering the water, we used high-throughput bacterial and archaeal 16S rRNA gene sequencing to characterize the changing microbial community along the Orca Basin chemocline. The results reveal a dominance of microbial taxa whose biogeochemical function is entirely unknown. We then used metagenomic sequencing and reconstructed genomes for select samples, revealing the potential dominant metabolic processes in the Orca Basin chemocline. Understanding how these unique geochemical conditions shape microbial communities and metabolic capabilities will have implications for the ocean's biogeochemical cycles and the consequences of expanding oxygen minimum zones.
Roux, Simon; Hawley, Alyse K.; Torres Beltran, Monica; ...
2014-08-29
Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks, specific virus–host interaction dynamics remain cryptic. In this study, we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186more » microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together, these results demonstrate closely coupled SUP05 virus–host co-evolutionary dynamics with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.« less
NASA Astrophysics Data System (ADS)
Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.
2014-10-01
Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.
Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.
Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M
2015-01-01
Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.
Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones
Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.
2015-01-01
Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623
NASA Astrophysics Data System (ADS)
Medina-Silva, Renata; de Oliveira, Rafael R.; Pivel, Maria A. G.; Borges, Luiz G. A.; Simão, Taiz L. L.; Pereira, Leandro M.; Trindade, Fernanda J.; Augustin, Adolpho H.; Valdez, Fernanda P.; Eizirik, Eduardo; Utz, Laura R. P.; Groposo, Claudia; Miller, Dennis J.; Viana, Adriano R.; Ketzer, João M. M.; Giongo, Adriana
2018-02-01
Conspicuous physicochemical vertical stratification in the deep sea is one of the main forces driving microbial diversity in the oceans. Oxygen and sunlight availability are key factors promoting microbial diversity throughout the water column. Ocean currents also play a major role in the physicochemical stratification, carrying oxygen down to deeper zones as well as moving deeper water masses up towards shallower depths. Water samples within a 50-km radius in a pockmark location of the southwestern Atlantic Ocean were collected and the prokaryotic communities from different water depths - chlorophyll maximum, oxygen minimum and deep-sea bottom (down to 1355 m) - were described. At phylum level, Proteobacteria were the most frequent in all water depths, Cyanobacteria were statistically more frequent in chlorophyll maximum zone, while Thaumarchaeota were significantly more abundant in both oxygen minimum and bottom waters. The most frequent microorganism in the chlorophyll maximum and oxygen minimum zones was a Pelagibacteraceae operational taxonomic unit (OTU). At the bottom, the most abundant genus was the archaeon Nitrosopumilus. Beta diversity analysis of the 16S rRNA gene sequencing data uncovered in this study shows high spatial heterogeneity among water zones communities. Our data brings important contribution for the characterisation of oceanic microbial diversity, as it consists of the first description of prokaryotic communities occurring in different oceanic water zones in the southwestern Atlantic Ocean.
Simulated effects of southern hemispheric wind changes on the Pacific oxygen minimum zone
NASA Astrophysics Data System (ADS)
Getzlaff, Julia; Dietze, Heiner; Oschlies, Andreas
2016-01-01
A coupled ocean biogeochemistry-circulation model is used to investigate the impact of observed past and anticipated future wind changes in the Southern Hemisphere on the oxygen minimum zone in the tropical Pacific. We consider the industrial period until the end of the 21st century and distinguish effects due to a strengthening of the westerlies from effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our model results show that a strengthening of the westerlies counteracts part of the warming-induced decline in the global marine oxygen inventory. A poleward shift of the trade-westerlies boundary, however, triggers a significant decrease of oxygen in the tropical oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-westerlies boundary and warming-induced increase in stratification contribute equally to the expansion of suboxic waters in the tropical Pacific.
14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2010 CFR
2010-01-01
...,100 cc. with a constant time interval between respirations. (d) If first-aid oxygen equipment is... minute per person for whom first-aid oxygen is required. (e) If portable oxygen equipment is installed...
78 FR 1765 - Requirements for Chemical Oxygen Generators Installed on Transport Category Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... the supplemental oxygen supply can also complicate activating the oxygen flow, since that is generally... oxygen quantity requirements of Sec. 25.1443, Minimum mass flow of supplemental oxygen. E. Related...-0812; Notice No. 13-01] RIN 2120-AK14 Requirements for Chemical Oxygen Generators Installed on...
Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter
2010-01-01
The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052
NASA Technical Reports Server (NTRS)
1996-01-01
NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.
Bacterioplankton Populations within the Oxygen Minimum Zone of the Sargasso Sea
NASA Astrophysics Data System (ADS)
Schuler, G.; Parsons, R. J.; Johnson, R. J.
2016-02-01
Oxygen minimum zones are present throughout the world's oceans, and occur at depths between 200 to 1000m. Heterotrophic bacteria reduce the dissolved oxygen within this layer through respiration, while metabolizing falling particles. This report studied the bacterioplankton in the oxygen minimum zone at the BATS (Bermuda Atlantic Times-series Study) site from July 2014 until November 2014. Total bacterioplankton populations were enumerated through direct counts. In the transitional zone (400m-800m) of the oxygen minimum zone, a secondary bacterioplankton peak formed. This study used FISH (Fluorescent in situ hybridization) and CARD-FISH (Catalyzed Reporter Deposition-Fluorescent in situ hybridization) to enumerate specific bacterial and archaeal taxa. Crenarchaeota (including Thaumarchaeota) increased in abundance within the upper oxycline. Thaumarchaeota have the ammonia monooxygenase gene that oxidizes ammonium into nitrite in low oxygen conditions. Amplification of the amoA gene confirmed that ammonia oxidizing archaea (AOA) were present within the OMZ. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP), the bacterial community structure showed high similarity based depth zones (0-80m, 160-600m, and 800-4500m). Niskin experiments determined that water collected at 800m had an exponential increase in bacterioplankton over time. While experimental design did not allow for oxygen levels to be maintained, the bacterioplankton community was predominantly bacteria with eubacteria positive cells making up 89.3% of the of the total bacterioplankton community by day 34. Improvements to the experimental design are required to determine which specific bacterial taxa caused this increase at 800m. This study suggests that there are factors other than oxygen influencing bacterioplankton populations at the BATS site, and more analysis is needed once the BATS data is available to determine the key drivers of bacterioplankton dynamics within the BATS OMZ.
USDA-ARS?s Scientific Manuscript database
The effect of daily minimum dissolved oxygen concentration on growth and yield (kg/ha) of the channel catfish (Ictalurus punctatus) and the channel x blue hybrid catfish (I. punctatus female x I. furcatus male), which shared the Jubilee strain of channel catfish as the maternal parent, was evaluated...
Vercoutere, T.L.; Mullins, H.T.; McDougall, K.; Thompson, J.B.
1987-01-01
Distribution, abundance, and diversity of terrigenous, authigenous, and biogenous material provide evidence of the effect of bottom currents and oxygen minimum zone (OMZ) on continental slope sedimentation offshore central California. Three major OMZ facies are identified, along the upper and lower edges of OMZ and one at its core.-from Authors
NASA Astrophysics Data System (ADS)
Rosa, Rui; Seibel, Brad A.
2010-07-01
The Humboldt (or jumbo) squid, Dosidicus gigas, is an active predator endemic to the Eastern Pacific that undergoes diel vertical migrations into a pronounced oxygen minimum layer (OML). Here, we investigate the physiological mechanisms that facilitate these migrations and assess the associated costs and benefits. Exposure to hypoxic conditions equivalent to those found in the OML (∼10 μM O 2 at 10 °C) led to a significant reduction in the squid’s routine metabolic rate (RMR), from 8.9 to 1.6 μmol O 2 g -1 h -1 ( p < 0.05), and a concomitant increase in mantle muscle octopine levels (from 0.50 to 5.24 μmol g -1 tissue, p < 0.05). Enhanced glycolitic ATP production accounted for only 7.0% and 2.8% at 10 °C and 20 °C, respectively, of the energy deficit that resulted from the decline in aerobic respiration. The observed metabolic suppression presumably extends survival time in the OML by conserving the finite stores of fermentable substrate and avoiding the accumulation of the deleterious anaerobic end products in the tissues. RMR increased significantly with temperature ( p < 0.05), from 8.9 (at 10 °C) to 49.85 μmol O 2 g -1 h -1 (at 25 °C) which yielded a Q10 of 2.0 between 10 and 20 °C and 7.9 between 20 and 25 °C ( p < 0.05). These results suggest that 25 °C, although within the normal surface temperature range in the Gulf of California, is outside this species’ normal temperature range. By following the scattering layer into oxygen-enriched shallow water at night, D. gigas may repay any oxygen debt accumulated during the daytime. The dive to deeper water may minimize exposure to stressful surface temperatures when most prey have migrated to depth during the daytime. The physiological and ecological strategies demonstrated here may have facilitated the recent range expansion of this species into northern waters where expanding hypoxic zones prohibit competing top predators.
CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.
2007-01-01
As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.
Dynamics of a pulsed laser generated tin plasma expanding in an oxygen atmosphere
NASA Astrophysics Data System (ADS)
Barreca, F.; Fazio, E.; Neri, F.; Barletta, E.; Trusso, S.; Fazio, B.
2005-10-01
Semiconducting tin oxide can be successfully deposited by means of the laser ablation technique. In particular by ablating metallic tin in a controlled oxygen atmosphere, thin films of SnOx have been deposited. The partial oxygen pressure at which the films are deposited strongly influences both the stoichiometry and the structural properties of the films. In this work, we present a study of the expansion dynamics of the plasma generated by ablating a tin target by means of a pulsed laser using time and space resolved optical emission spectroscopy and fast photography imaging of the expanding plasma. Both Sn I and Sn II optical emission lines have been observed from the time-integrated spectroscopy. Time resolved-measurements revealed the dynamics of the expanding plasma in the ambient oxygen atmosphere. Stoichiometry of the films has been determined by means of X-ray photoelectron spectroscopy and correlated to the expansion dynamics of the plasma.
Sulfur isotope change across the Early Mississippian K-O (Kinderhookian-Osagean) δ13C excursion
NASA Astrophysics Data System (ADS)
Maharjan, Dev; Jiang, Ganqing; Peng, Yongbo; Nicholl, Michael J.
2018-07-01
Paired carbonate associate sulfate (CAS) sulfur isotopes (δ34SCAS), pyrite sulfur isotopes (δ34SPY) and CAS oxygen isotopes (δ18OCAS) across the Early Mississippian K-O δ13C excursion are documented from two sections of a west-dipping carbonate ramp in the southern Great Basin, western U.S.A. A 4-6‰ positive δ34SCAS anomaly, accompanied by negative shifts in δ34SPY and δ18OCAS, is found within the K-O δ13C excursion. In the section with a broader δ13C excursion, Δ34S (Δ34 S =δ34SCAS-δ34SPY) increases from 15‰ to 45‰ and δ13Ccarb drops from 7‰ to 4‰ at the same stratigraphic interval. If this δ34SCAS anomaly represents a global phenomenon, the large magnitude (4-6‰) and short duration (shorter than that of δ13C) suggest an unusual pyrite burial event that expanded from sediments to the ocean water column. In this scenario, the areal and volumetric expansion of sulfate reduction and pyrite burial was likely triggered by abundantly available organic matter near the peak of the K-O δ13C excursion, during which organic carbon production and burial may have reached a maximum, thus substantially expanding the oxygen minimum zone (OMZ). Numerical simulations suggest that pyrite burial rates 2.5-5 times higher than that of the modern ocean followed by sulfide oxidation are required to produce the observed δ34SCAS anomaly in a sulfate-rich ([SO4] ≥28 mM) Early Mississippian ocean. Alternatively, the sulfur and CAS oxygen isotope anomalies may record local sulfur cycling in a foreland basin where changes in weathering input and bottom-water redox conditions in response to sea-level fall and cooling resulted in isotope changes. In both scenarios (either local or global), the integrated carbon, sulfur, and CAS-oxygen isotope data suggest a much more dynamic sulfur cycle across the K-O δ13C excursion than has been previously suggested.
NASA Astrophysics Data System (ADS)
Ruz, Paula M.; Hidalgo, Pamela; Yáñez, Sonia; Escribano, Rubén; Keister, Julie E.
2015-08-01
Oxygen Minimum Zones (OMZ's) are expanding and intensifying as result of climate change, affecting Eastern Boundary Upwelling Systems. Local effects of vertical movements of OMZ's that result from changes in upwelling intensity could reduce or expand the oxygenated surface layer that most zooplanktonic species inhabit in coastal areas. Using the copepods Calanus chilensis and Acartia tonsa as model organisms, an experimental test of the impact of different dissolved oxygen (DO) concentrations (between 0.5 and 5 ml L- 1) on egg production and hatching success was carried out and compared with field estimations of egg production, female and egg abundance in Mejillones Bay (23°S). Abundance of C. chilensis was highly variability and no consistent pattern in egg production and hatching success was found across DO levels, whereas A. tonsa egg production had maximum values between 2.6 and 4.7 ml O2 L- 1 and hatching success was positively correlated with DO (r = 0.75). In the field, temperature was the main factor controlling the dynamics of both species, while Chl-a and DO were also correlated with C. chilensis and A. tonsa, respectively. Principal Component Analysis showed that abundances of both copepods were controlled by temperature, stratification, OMZ depth, and Ekman transport, which together explained more than 70% of the total variance and were the main factors that modulated the populations of C. chilensis and A. tonsa in the upwelling zone of northern Chile (23°S). The differential responses of C. chilensis and A. tonsa to changes in DO concentrations associated with vertical movements of the OMZ suggest that C. chilensis may be better adapted to hypoxic conditions than A. tonsa, however both species are successful and persistent all year-round. We suggest that physiological responses of copepods could be used to evaluate population dynamics affected by the shoaling of OMZ's and the repercussions to trophic food webs of eastern boundary current systems.
Characterization and impact of "dead-zone" eddies in the tropical Northeast Atlantic Ocean
NASA Astrophysics Data System (ADS)
Schuette, Florian; Karstensen, Johannes; Krahmann, Gerd; Hauss, Helena; Fiedler, Björn; Brandt, Peter; Visbeck, Martin; Körtzinger, Arne
2016-04-01
Localized open-ocean low-oxygen dead-zones in the tropical Northeast Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic modewater eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats shows that eddies with low oxygen concentrations at 50-150 m depths can be found in surprisingly high numbers and in a large area (from about 5°N to 20°N, from the shelf at the eastern boundary to 30°W). Minimum oxygen concentrations of about 9 μmol/kg in CEs and close to anoxic concentrations (< 1 μmol/kg) in ACMEs were observed. In total, 495 profiles with oxygen concentrations below the minimum background concentration of 40 μmol/kg could be associated with 27 independent "dead-zone" eddies (10 CEs; 17 ACMEs). The low oxygen concentration right beneath the mixed layer has been attributed to the combination of high productivity in the surface waters of the eddies and the isolation of the eddies' cores. Indeed eddies of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The oxygen minimum is located in the eddy core beneath the mixed layer at around 80 m depth. The mean oxygen anomaly between 50 to 150 m depth for CEs (ACMEs) is -49 (-81) μmol/kg. Eddies south of 12°N carry weak hydrographic anomalies in their cores and seem to be generated in the open ocean away from the boundary. North of 12°N, eddies of both types carry anomalously low salinity water of South Atlantic Central Water origin from the eastern boundary upwelling region into the open ocean. This points to an eddy generation near the eastern boundary. A conservative estimate yields that around 5 dead-zone eddies (4 CEs; 1 ACME) per year entering the area north of 12°N between the Cap Verde Islands and 19°W. The associated contribution to the oxygen budget of the shallow oxygen minimum zone in that area is about -10.3 (-3.0) μmol/kg/yr for CEs (ACMEs). The consumption within these eddies represents an essential part of the total consumption in the open tropical Northeast Atlantic Ocean and might be partly responsible for the formation of the shallow oxygen minimum zone.
Roux, Simon; Hawley, Alyse K; Torres Beltran, Monica; Scofield, Melanie; Schwientek, Patrick; Stepanauskas, Ramunas; Woyke, Tanja; Hallam, Steven J; Sullivan, Matthew B
2014-01-01
Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks, specific virus–host interaction dynamics remain cryptic. In this study, we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186 microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together, these results demonstrate closely coupled SUP05 virus–host co-evolutionary dynamics with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs. DOI: http://dx.doi.org/10.7554/eLife.03125.001 PMID:25171894
NASA Astrophysics Data System (ADS)
Panyi, A.; Long, M. H.; Mooney, T. A.
2016-02-01
While young animals found future cohorts and populations, these early life stages are often particularly susceptible to conditions of the local environment in which they develop. The oxygen and pH of this critical developmental environment is likely impacted by the nearby physical conditions and the animals own respirations. Yet, in nearly all cases, this microenvironment is unknown, limiting our understanding of animal tolerances to current and future OA and hypoxic conditions. This study investigated the oxygen and pH environment adjacent to and within the egg cases of a keystone species, the longfin squid, Doryteuthis pealeii, under ambient and elevated CO2 (400 and 2200 ppm), and across differing water flow rates (0, 1, and 10 cm/s) using microprobes. Under both CO2 treatments, oxygen and pH in the egg case centers dropped dramatically across development to levels generally considered metabolically stressful even for adults. In the ambient CO2 trial, oxygen concentrations reached a minimum of 4.351 µmol/L, and pH reached a minimum of 7.36. In the elevated CO2 trial, oxygen concentrations reached a minimum of 9.910 µmol/L, and pH reached a minimum of 6.79. Flow appeared to alleviate these conditions, with highest O2 concentrations in the egg cases exposed to 10 cm/s flow in both CO2 trials, across all age classes measured. Surprisingly, all tested egg cases successfully hatched, demonstrating that developing D. pealeii embryos have a strong tolerance for low oxygen and pH, but there were more unsuccessful embryos counted in the 0 and 1 cm/s flow conditions. Further climate change could place young, keystone squid outside of their physiological limits, but water flow may play a key role in mitigating developmental stress to egg case bound embryos by increasing available oxygen.
Minimizing excess air could be wasting energy in process heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieberman, N.P.
1988-02-01
Operating a process heater simply to achieve a minimum excess oxygen target in the flue gas may be wasting energy in some process heaters. That's because the real minimum excess oxygen percentage is that required to reach the point of absolute combustion in the furnace. The oxygen target required to achieve absolute combustion may be 1%, or it may be 6%, depending on the operating characteristics of the furnace. Where natural gas is burned, incomplete combustion can occur, wasting fuel dollars. Energy can be wasted because of some misconceptions regarding excess air control. These are: 2-3% excess oxygen in themore » flue gas is a universally good target, too little excess oxygen will always cause the evolution of black smoke in the stack, and excess air requirements are unaffected by commissioning an air preheater.« less
Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.
2016-09-27
A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.
Sub-physiological oxygen levels optimal for growth and survival of human atrial cardiac stem cells.
RajendranNair, Deepthi Sreerengam; Karunakaran, Jayakumar; Nair, Renuka R
2017-08-01
Cardiac stem cells reside in niches where the oxygen levels are close to 3%. For cytotherapy, cells are conventionally expanded in ambient oxygen (21% O 2 ) which represents hyperoxia compared to the oxygen tension of niches. Cardiosphere-derived cells (CDCs) are then transplanted to host tissue with lower-O 2 levels. The high-O 2 gradient can reduce the efficacy of cultured cells. Based on the assumption that minimizing injury due to O 2 gradients will enhance the yield of functionally efficient cells, CDCs were cultured in 3% O 2 and compared with cells maintained in ambient O 2 . CDCs were isolated from human right atrial explants and expanded in parallel in 21 and 3% oxygen and compared with regard to survival, proliferation, and retention of stemness. Increased cell viability even in the tenth passage and enhanced cardiosphere formation was observed in cells expanded in 3% O 2 . The cell yield from seven passages was fourfold higher for cells cultured in 3% O 2 . Preservation of stemness in hypoxic environment was evident from the proportion of c-kit-positive cells and reduced myogenic differentiation. Hypoxia promoted angiogenesis and reduced the tendency to differentiate to noncardiac lineages (adipocytes and osteocytes). Mimicking the microenvironment at transplantation, when shifted to 5% O 2 , viability and proliferation rate were significantly higher for CDCs expanded in 3% O 2 . Expansion of CDCs, from atria in sub-physiological oxygen, helps in obtaining a higher yield of healthy cells with better preservation of stem cell characteristics. The cells so cultured are expected to improve engraftment and facilitate myocardial regeneration.
NASA Astrophysics Data System (ADS)
Hou, Chen
Space-filling fractal surfaces play a fundamental role in how organisms function at various levels and in how structure determines function at different levels. In this thesis, we develop a quantitative theory of oxygen transport to and across the surface of the highly branched, space-filling system of alveoli, the fundamental gas exchange unit (acinar airways), in the human lung. Oxygen transport in the acinar airways is by diffusion, and we treat the two steps---diffusion through the branched airways, and transfer across the alveolar membranes---as a stationary diffusion-reaction problem, taking into account that there may be steep concentration gradients between the entrance and remote alveoli (screening). We develop a renormalization treatment of this screening effect and derive an analytic formula for the oxygen current across the cumulative alveolar membrane surface, modeled as a fractal, space-filling surface. The formula predicts the current from a minimum of morphological data of the acinus and appropriate values of the transport parameters, through a number of power laws (scaling laws). We find that the lung at rest operates near the borderline between partial screening and no screening; that it switches to no screening under exercise; and that the computed currents agree with measured values within experimental uncertainties. From an analysis of the computed current as a function of membrane permeability, we find that the space-filling structure of the gas exchanger is simultaneously optimal with respect to five criteria. The exchanger (i) generates a maximum oxygen current at minimum permeability; (ii) 'wastes' a minimum of surface area; (iii) maintains a minimum residence time of oxygen in the acinar airways; (iv) has a maximum fault tolerance to loss of permeability; and (v) generates a maximum current increase when switching from rest to exercise.
NASA Astrophysics Data System (ADS)
Davies, S.; Sanchez Velasco, L.; Beier, E.; Godinez, V. M.; Barton, E. D.; Tamayo, A.
2016-02-01
Three-dimensional distribution of larval fish habitats was analyzed, from the upper limit of the shallow oxygen minimum zone ( 0.2 mL/L) to the sea surface, in the eastern tropical Pacific Ocean off Mexico in February 2010.The upper limit rises from 250 m depth in the entrance of the Gulf of California to 80 m depth off Cabo Corrientes. Three larval fish habitats were defined statistically: (i) a Gulf of California habitat dominated by Anchoa spp. larvae (epipelagic species), constrained to the oxygenated surface layer (>3.5 mL/L) in and above the thermocline ( 60 m depth), and separated by a salinity front from the Tropical Pacific habitat; (ii) a Tropical Pacific habitat, dominated by Vinciguerria lucetia larvae (mesopelagic species), located throughout the sampled water column, but with the highest abundance in the oxygenated upper layer above the thermocline; (iii) an Oxygen Minimum habitat defined mostly below the thermocline in hypoxic (<1 mL/L; 70 m depth) and anoxic (<0.2 mL/L; 80 m depth) water off Cabo Corrientes. This subsurface hypoxic habitat had the highest species richness and larval abundance, with dominance of Bregmaceros bathymaster, an endemic neritic pelagic species; which was an unexpected result. This maybe associated with the shoaling of the upper limit of the shallow oxygen minimum zone near the coast, a result of the strong costal upwelling detected by the Bakun Index. In this region of strong and semi-continuous coastal upwelling in the eastern tropical Pacific off Mexico, the shallow hypoxic water does not have dramatic effects on the total larval fish abundance but appears to affect species composition.
NASA Astrophysics Data System (ADS)
Subha Anand, S.; Rengarajan, R.; Sarma, V. V. S. S.; Sudheer, A. K.; Bhushan, R.; Singh, S. K.
2017-05-01
The northern Indian Ocean is globally significant for its seasonally reversing winds, upwelled nutrients, high biological production, and expanding oxygen minimum zones. The region acts as sink and source for atmospheric CO2. However, the efficiency of the biological carbon pump to sequester atmospheric CO2 and export particulate organic carbon from the surface is not well known. To quantify the upper ocean carbon export flux and to estimate the efficiency of biological carbon pump in the Bay of Bengal and the Indian Ocean, seawater profiles of total 234Th were measured from surface to 300 m depth at 13 stations from 19.9°N to 25.3°S in a transect along 87°E, during spring intermonsoon period (March-April 2014). Results showed enhanced in situ primary production in the equatorial Indian Ocean and the central Bay of Bengal and varied from 13.2 to 173.8 mmol C m-2 d-1. POC export flux in this region varied from 0 to 7.7 mmol C m-2 d-1. Though high carbon export flux was found in the equatorial region, remineralization of organic carbon in the surface and subsurface waters considerably reduced organic carbon export in the Bay of Bengal. Annually recurring anticyclonic eddies enhanced organic carbon utilization and heterotrophy. Oxygen minimum zone developed due to stratification and poor ventilation was intensified by subsurface remineralization. 234Th-based carbon export fluxes were not comparable with empirical statistical model estimates based on primary production and temperature. Region-specific refinement of model parameters is required to accurately predict POC export fluxes.
14 CFR 91.211 - Supplemental oxygen.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Supplemental oxygen. 91.211 Section 91.211... Requirements § 91.211 Supplemental oxygen. (a) General. No person may operate a civil aircraft of U.S. registry... the required minimum flight crew is provided with and uses supplemental oxygen for that part of the...
14 CFR 91.211 - Supplemental oxygen.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Supplemental oxygen. 91.211 Section 91.211... Requirements § 91.211 Supplemental oxygen. (a) General. No person may operate a civil aircraft of U.S. registry... the required minimum flight crew is provided with and uses supplemental oxygen for that part of the...
14 CFR 91.211 - Supplemental oxygen.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Supplemental oxygen. 91.211 Section 91.211... Requirements § 91.211 Supplemental oxygen. (a) General. No person may operate a civil aircraft of U.S. registry... the required minimum flight crew is provided with and uses supplemental oxygen for that part of the...
14 CFR 91.211 - Supplemental oxygen.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Supplemental oxygen. 91.211 Section 91.211... Requirements § 91.211 Supplemental oxygen. (a) General. No person may operate a civil aircraft of U.S. registry... the required minimum flight crew is provided with and uses supplemental oxygen for that part of the...
14 CFR 91.211 - Supplemental oxygen.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Supplemental oxygen. 91.211 Section 91.211... Requirements § 91.211 Supplemental oxygen. (a) General. No person may operate a civil aircraft of U.S. registry... the required minimum flight crew is provided with and uses supplemental oxygen for that part of the...
Nitrous oxide production in the eastern tropical South Pacific oxygen minimum zone
NASA Astrophysics Data System (ADS)
Ji, Qixing; Altabet, Mark; Arevalo-Martinez, Damian; Bange, Hermann; Ma, Xiao; Marandino, Christa; Sun, Mingshuang; Grundle, Damian
2017-04-01
Nitrous oxide (N2O) is an important climate active trace gas that contributes to both atmospheric warming and ozone destruction, and the ocean is an important source of N2O to the atmosphere. Dissolved oxygen concentrations play an important role in regulating N2O production in the ocean, such that under low oxygen conditions major shifts in the predominant production pathways (i.e. nitrification vs. denitrification) can occur and the magnitude of production may increase substantially. To this end, major oceanic oxygen minimum zones (OMZs) are responsible for a disproportionately high amount of marine N2O production. During the October 2015 ASTRA-OMZ cruise to the eastern tropical South Pacific (ETSP), one of the three major oceanic OMZs, we measured a suite of N2O parameters which included N2O concentrations, N2O production, and natural abundance N2O isotope (i.e. del 15N and del 18O) and isotopomer (i.e. 15N site-preference) signatures. Based on the results from these measurements, our presentation will demonstrate how N2O production and the different production pathways change along the oxygen concentration gradients from the oxygenated surface waters through the oxygen minimum layer. Our data could better constrain the importance of the ETSP-OMZ as source of marine N2O. Results from this work will provide insights into how N2O cycling responds to ocean deoxygenation as a result of climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan
If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less
Oxygen index evaluation of fire-retardant-treated wood
Robert H. White
1979-01-01
The applicability of using the oxygen index test (ASTM D 2863-76) to obtain an indication of the relative flammability of fire-retardant- treated wood products was investigated. The oxygen index is the minimum percentage oxygen that is required to maintain flaming combustion of a specimen under specified laboratory conditions. Within the plastics industry, the test is...
NASA Astrophysics Data System (ADS)
Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien
2008-10-01
SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress. We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for ϕgas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.
Wang, Hui; Guo, Ruoyu; Ki, Jang-Seu
2018-03-01
Endocrine disrupting chemicals (EDCs) have toxic effects on algae; however, their molecular genomic responses have not been sufficiently elucidated. Here, we evaluated genome-scaled responses of the dinoflagellate alga Prorocentrum minimum exposed to an EDC, polychlorinated biphenyl (PCB), using a 6.0 K microarray. Based on two-fold change cut-off, we identified that 609 genes (∼10.2%) responded to the PCB treatment. KEGG pathway analysis showed that differentially expressed genes (DEGs) were related to ribosomes, biosynthesis of amino acids, spliceosomes, and cellular processes. Many DEGs were involved in cell cycle progression, apoptosis, signal transduction, ion binding, and cellular transportation. In contrast, only a few genes related to photosynthesis and oxidative stress were expressed in response to PCB exposure. This was supported by that fact that there were no obvious changes in the photosynthetic efficiency and reactive oxygen species (ROS) production. These results suggest that PCB might not cause chloroplast and oxidative damage, but could lead to cell cycle arrest and apoptosis. In addition, various signal transduction and transport pathways might be disrupted in the cells, which could further contribute to cell death. These results expand the genomic understanding of the effects of EDCs on this dinoflagellate protist. Copyright © 2017 Elsevier Ltd. All rights reserved.
Variability of dissolved oxygen over the last millennium and the 21st century in CESM
NASA Astrophysics Data System (ADS)
Hameau, Angélique; Joos, Fortunat; Mignot, Juliette; Keller, Kathrin
2017-04-01
The earth system models simulate a depletion of the oxygen content in the ocean under global warming conditions (Cocco et al. 2012, Frölicher et al. 2009). The response to external forcing and mechanism underlying this evolution are not completely understood. Physical and biogeochemical processes are involved and tangled up to each other leading to a decrease of the global mean concentration of O2 in the ocean with the increase of the ocean temperature. This result is supported by experimental and observational studies in Atlantic and Pacific oceans (Stramma et al. 2008, Brandt et al. 2010). Here, we study the evolution of dissolved oxygen in a climate simulation of the Community Earth System Model (CESM) covering the last millennium and the 21st century. This long period allows us to identify the natural variability of the climate in this system, and therefore analyse the time of emergence (ToE) of the anthropogenic signal under the RCP8.5 scenario. Based on Keller et al. 2014, the time of emergence is defined as the point in time when the trend signal reaches twice the standard deviation of the signal during the preindustrial period (1000 years). The ToE of oxygen and of temperature present an offset. We show that the anthropogenic emissions are seen in a first hand by the oxygen and only then by the temperature. We also look at the OMZ response. The oxygen minimum zones result from a combination of weak ventilation and sustained respiration by the microorgamisms. With a global decrease of the oceanic oxygen content, the OMZ may therefore expand impacting the environment of marine species. But this statement is questioned by Deutsch et al 2014, who relates the variations of Pacific OMZ to the variations of the tropical Walker circulation. The CESM climate model predicts an expansion of the oxygen low zones and the emergence of new ones over the last century. Magnitude and timescales of these responses will be discussed and compared to natural variability.
NASA Technical Reports Server (NTRS)
Kuck, David L.
1991-01-01
Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.
NASA Astrophysics Data System (ADS)
Kuck, David L.
Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.
Kean, Thomas J.; Dennis, James E.
2015-01-01
Background Current tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential. Methods Porcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%), and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically. Results Human chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions. Conclusions Synoviocyte-derived matrix supports enhanced expansion of human chondrocytes such that the chondrocytes are maintained in a state from which they can re-differentiate into a cartilage phenotype after significantly more population doublings. Also, low oxygen tension supports GAG, but not collagen, accumulation. These findings are a step towards the production of a more functional, tissue engineered cartilage. PMID:26075742
Li, K K; Riley, R W; Powell, N B; Zonato, A; Troell, R; Guilleminault, C
2000-02-01
To evaluate the upper airway characteristics in the early postoperative period after maxilomandibular advancement for obstructive sleep apnea syndrome. Nasopharyngolaryngoscopy was performed before and 48 hours after surgery on 70 consecutive patients who underwent maxillomandibular advancement for obstructive sleep apnea syndrome. The preoperative and the postoperative evaluations were performed by the same examiner for consistency. Mild to moderate lateral pharyngeal wall edema was identified in 70 consecutive patients. Fourteen patients (20%) had edema as well as ecchymosis involving the pyriform sinus and aryepiglottic fold. Four of these patients (6%) were also noted to have hypopharyngeal hematoma involving the pyriform sinus, aryepiglottic fold, arytenoid, and false vocal cord that partially obstructed the airway. These four patients were closely monitored for 1 to 2 additional days for possible expanding hematoma leading to airway compromise. None of these patients were found to have airway difficulty, and the minimum oxygen saturation was more than 90% throughout the hospitalization. All four patients were discharged uneventfully, and the hematoma resolved completely within 10 days. Although postoperative edema was expected after maxillomandibular advancement, hypopharyngeal hematoma was unexpected. Although none of our patients had evidence of airway difficulty, the possibility of an expanding hypopharyngeal hematoma should be considered in patients complaining of breathing difficulty after maxillomandibular advancement surgery.
NASA Astrophysics Data System (ADS)
Montes, I.; Dewitte, B.; Gutknecht, E.; Paulmier, A.; Dadou, I.; Oschlies, A.; Garçon, V. C.
2015-12-01
The Eastern Tropical South Pacific encompasses one of the most extended Oxygen Minimum zones, which is mainly maintained by a combination of sluggish circulation and high biological productivity in the surface layer leading to elevate organic matter decomposition consuming dissolved oxygen. Low-oxygen areas are important not only for macroorganisms that cannot survive in oxygen-poor conditions, but also because of special biogeochemical processes occurring at low oxygen concentrations. In particular, a large fraction of oceanic nitrogen-loss occurs in these areas via anaerobic microbial processes. These include denitrification and axammox that both lead to a net loss of fixed nitrogen once oxygen concentrations have fallen below some threshold of a few umol/l. Recently it has been found that eddies may act as nitrogen-loss hotspots, possibly by shielding enclosed water parcels from lateral mixing with better ventilated oxygen-richer waters outside the eddies. Here we used a regional coupled biogeochemical model to investigate the relationship between eddies and the nitrogen-loss. We also investigate the mechanisms responsible for the generation of eddies and for possible modulations of eddy activity on interannual timescales, in particular during cold and warm phases of the El Nino Southern Oscillation.
A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific
NASA Astrophysics Data System (ADS)
Hawco, Nicholas J.; Ohnemus, Daniel C.; Resing, Joseph A.; Twining, Benjamin S.; Saito, Mak A.
2016-10-01
Cobalt is a nutrient to phytoplankton, but knowledge about its biogeochemical cycling is limited, especially in the Pacific Ocean. Here, we report sections of dissolved cobalt and labile dissolved cobalt from the US GEOTRACES GP16 transect in the South Pacific. The cobalt distribution is closely tied to the extent and intensity of the oxygen minimum zone in the eastern South Pacific with highest concentrations measured at the oxycline near the Peru margin. Below 200 m, remineralization and circulation produce an inverse relationship between cobalt and dissolved oxygen that extends throughout the basin. Within the oxygen minimum zone, elevated concentrations of labile cobalt are generated by input from coastal sources and reduced scavenging at low O2. As these high cobalt waters are upwelled and advected offshore, phytoplankton export returns cobalt to low-oxygen water masses underneath. West of the Peru upwelling region, dissolved cobalt is less than 10 pM in the euphotic zone and strongly bound by organic ligands. Because the cobalt nutricline within the South Pacific gyre is deeper than in oligotrophic regions in the North and South Atlantic, cobalt involved in sustaining phytoplankton productivity in the gyre is heavily recycled and ultimately arrives from lateral transport of upwelled waters from the eastern margin. In contrast to large coastal inputs, atmospheric deposition and hydrothermal vents along the East Pacific Rise appear to be minor sources of cobalt. Overall, these results demonstrate that oxygen biogeochemistry exerts a strong influence on cobalt cycling.
Rosa, Rui; Seibel, Brad A
2008-12-30
By the end of this century, anthropogenic carbon dioxide (CO(2)) emissions are expected to decrease the surface ocean pH by as much as 0.3 unit. At the same time, the ocean is expected to warm with an associated expansion of the oxygen minimum layer (OML). Thus, there is a growing demand to understand the response of the marine biota to these global changes. We show that ocean acidification will substantially depress metabolic rates (31%) and activity levels (45%) in the jumbo squid, Dosidicus gigas, a top predator in the Eastern Pacific. This effect is exacerbated by high temperature. Reduced aerobic and locomotory scope in warm, high-CO(2) surface waters will presumably impair predator-prey interactions with cascading consequences for growth, reproduction, and survival. Moreover, as the OML shoals, squids will have to retreat to these shallower, less hospitable, waters at night to feed and repay any oxygen debt that accumulates during their diel vertical migration into the OML. Thus, we demonstrate that, in the absence of adaptation or horizontal migration, the synergism between ocean acidification, global warming, and expanding hypoxia will compress the habitable depth range of the species. These interactions may ultimately define the long-term fate of this commercially and ecologically important predator.
Rosa, Rui; Seibel, Brad A.
2008-01-01
By the end of this century, anthropogenic carbon dioxide (CO2) emissions are expected to decrease the surface ocean pH by as much as 0.3 unit. At the same time, the ocean is expected to warm with an associated expansion of the oxygen minimum layer (OML). Thus, there is a growing demand to understand the response of the marine biota to these global changes. We show that ocean acidification will substantially depress metabolic rates (31%) and activity levels (45%) in the jumbo squid, Dosidicus gigas, a top predator in the Eastern Pacific. This effect is exacerbated by high temperature. Reduced aerobic and locomotory scope in warm, high-CO2 surface waters will presumably impair predator–prey interactions with cascading consequences for growth, reproduction, and survival. Moreover, as the OML shoals, squids will have to retreat to these shallower, less hospitable, waters at night to feed and repay any oxygen debt that accumulates during their diel vertical migration into the OML. Thus, we demonstrate that, in the absence of adaptation or horizontal migration, the synergism between ocean acidification, global warming, and expanding hypoxia will compress the habitable depth range of the species. These interactions may ultimately define the long-term fate of this commercially and ecologically important predator. PMID:19075232
Distribution of dissolved manganese in the Peruvian Upwelling and Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Vedamati, Jagruti; Chan, Catherine; Moffett, James W.
2015-05-01
The geochemistry of manganese (Mn) in seawater is dominated by its redox chemistry, as Mn(II) is soluble and Mn(IV) forms insoluble oxides, and redox transformations are mediated by a variety of processes in the oceans. Dissolved Mn (DMn) accumulates under reducing conditions and is depleted under oxidizing conditions. Thus the Peruvian upwelling region, characterized by highly reducing conditions over a broad continental shelf and a major oxygen minimum zone extending far offshore, is potentially a large source of Mn to the eastern Tropical South Pacific. In this study, DMn was determined on cruises in October 2005 and February 2010 in the Peruvian Upwelling and Oxygen Minimum Zone, to evaluate the relationship between Mn, oxygen and nitrogen cycle processes. DMn concentrations were determined using simple dilution and matrix-matched external standardization inductively coupled mass spectrometry. Surprisingly, DMn was depleted under the most reducing conditions along the Peruvian shelf. Concentrations of dissolved Mn in surface waters increased offshore, indicating that advection of Mn offshore from the Peruvian shelf is a minor source. Subsurface Mn maxima were observed within the oxycline rather than within the oxygen minimum zone (OMZ), indicating they arise from remineralization of organic matter rather than reduction of Mn oxides. The distribution of DMn appears to be dominated by non-redox processes and inputs from the atmosphere and from other regions associated with specific water masses. Lower than expected DMn concentrations on the shelf probably reflect limited fluvial inputs from the continent and efficient offshore transport. This behavior is in stark contrast to Fe, reported in a companion study which is very high on the shelf and undergoes dynamic redox cycling.
Renoud, Marie‐Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe
2016-01-01
Abstract Adipose‐derived stem cells (ADSCs) have led to growing interest in cell‐based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA‐seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress‐associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68–76 PMID:28170194
Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?
NASA Astrophysics Data System (ADS)
Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A.
2016-08-01
The Peruvian upwelling system encompasses the most intense and shallowest oxygen minimum zone (OMZ) in the ocean. This system shows pronounced submesoscale activity like filaments and fronts. We carried out glider-based observations off Peru during austral summer 2013 to investigate whether submesoscale frontal processes ventilate the Peruvian OMZ. We present observational evidence for the subduction of highly oxygenated surface water in a submesoscale cold filament. The subduction event ventilates the oxycline but does not reach OMZ core waters. In a regional submesoscale-permitting model we study the pathways of newly upwelled water. About 50% of upwelled virtual floats are subducted below the mixed layer within 5 days emphasizing a hitherto unrecognized importance of subduction for the ventilation of the Peruvian oxycline.
Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans
NASA Astrophysics Data System (ADS)
Karstensen, Johannes; Stramma, Lothar; Visbeck, Martin
2008-06-01
Within the eastern tropical oceans of the Atlantic and Pacific basin vast oxygen minimum zones (OMZ) exist in the depth range between 100 and 900 m. Minimum oxygen values are reached at 300-500 m depth which in the eastern Pacific become suboxic (dissolved oxygen content <4.5 μmol kg -1) with dissolved oxygen concentration of less than 1 μmol kg -1. The OMZ of the eastern Atlantic is not suboxic and has relatively high oxygen minimum values of about 17 μmol kg -1 in the South Atlantic and more than 40 μmol kg -1 in the North Atlantic. About 20 (40%) of the North Pacific volume is occupied by an OMZ when using 45 μmol kg -1 (or 90 μmol kg -1, respectively) as an upper bound for OMZ oxygen concentration for ocean densities lighter than σθ < 27.2 kg m -3. The relative volumes reduce to less than half for the South Pacific (7% and 13%, respectively). The abundance of OMZs are considerably smaller (1% and 7%) for the South Atlantic and only ∼0% and 5% for the North Atlantic. Thermal domes characterized by upward displacements of isotherms located in the northeastern Pacific and Atlantic and in the southeastern Atlantic are co-located with the centres of the OMZs. They seem not to be directly involved in the generation of the OMZs. OMZs are a consequence of a combination of weak ocean ventilation, which supplies oxygen, and respiration, which consumes oxygen. Oxygen consumption can be approximated by the apparent oxygen utilization (AOU). However, AOU scaled with an appropriate consumption rate (aOUR) gives a time, the oxygen age. Here we derive oxygen ages using climatological AOU data and an empirical estimate of aOUR. Averaging oxygen ages for main thermocline isopycnals of the Atlantic and Pacific Ocean exhibit an exponential increase with density without an obvious signature of the OMZs. Oxygen supply originates from a surface outcrop area and can also be approximated by the turn-over time, the ratio of ocean volume to ventilating flux. The turn-over time corresponds well to the average oxygen ages for the well ventilated waters. However, in the density ranges of the suboxic OMZs the turn-over time substantially increases. This indicates that reduced ventilation in the outcrop is directly related to the existence of suboxic OMZs, but they are not obviously related to enhanced consumption indicated by the oxygen ages. The turn-over time suggests that the lower thermocline of the North Atlantic would be suboxic but at present this is compensated by the import of water from the well ventilated South Atlantic. The turn-over time approach itself is independent of details of ocean transport pathways. Instead the geographical location of the OMZ is to first order determined by: (i) the patterns of upwelling, either through Ekman or equatorial divergence, (ii) the regions of general sluggish horizontal transport at the eastern boundaries, and (iii) to a lesser extent to regions with high productivity as indicated through ocean colour data.
NASA Astrophysics Data System (ADS)
Sharon, S.; Belanger, C. L.; Du, J.; Mix, A. C.; Asahi, H.
2016-12-01
During the last ice age, millennial-scale episodes of expanded low-oxygen conditions occurred around the margins of the North Pacific, however the drivers of these events are not well understood. Differences in the timing of dysoxic events in the shallow and deep Pacific have been proposed, which imply changes in ocean circulation may play a role. Here we combine faunal and geochemical analyses to investigate the timing and severity of low-oxygen events in the North Pacific at a slope (682 m) and a deeper-water (3680 m) site from a transect cored by IODP Expedition 341 in the Gulf of Alaska. At the slope site, multivariate faunal analyses based on the relative abundances of benthic foraminiferal species reveal a distinct fauna characterized by high abundances of taxa associated with dysoxic to suboxic conditions including Buliminella tenuata, Bolivia pacifica, and Epistominella pacifica. These assemblages occur during the most recent deglacial ( 12,000 kyr) and during MIS 3 from 45,000-55,000 years ago. These fossil assemblages have no faunal analog within the modern Gulf of Alaska, although they are most similar to faunas from the modern oxygen minimum zone (OMZ). Thus, these faunas may represent a more intense OMZ. Sedimentary trace element analyses show enrichment in Re, Mo, and U where these faunas are found, supporting them as low-oxygen indicators. Similarly, a distinct fauna occurs at the deeper site, which has high relative abundances of Nonionella sp., Stainforthia fusiformis, and small-bodied taxa common in suboxic settings with high phytodetritus. Ongoing age-model improvements and increased sampling resolution will allow us to better test whether faunal changes are offset at the two sites and assess the abruptness of the onset of extreme low-oxygen events in the North Pacific.
Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.
2018-03-01
Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mitchell, J. C.
1991-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
A Phosphate Minimum in the Oxygen Minimum Zone (OMZ) off Peru
NASA Astrophysics Data System (ADS)
Paulmier, A.; Giraud, M.; Sudre, J.; Jonca, J.; Leon, V.; Moron, O.; Dewitte, B.; Lavik, G.; Grasse, P.; Frank, M.; Stramma, L.; Garcon, V.
2016-02-01
The Oxygen Minimum Zone (OMZ) off Peru is known to be associated with the advection of Equatorial SubSurface Waters (ESSW), rich in nutrients and poor in oxygen, through the Peru-Chile UnderCurrent (PCUC), but this circulation remains to be refined within the OMZ. During the Pelágico cruise in November-December 2010, measurements of phosphate revealed the presence of a phosphate minimum (Pmin) in various hydrographic stations, which could not be explained so far and could be associated with a specific water mass. This Pmin, localized at a relatively constant layer ( 20<220 m) and with a patchy distribution mainly between 10 and 16°S, is confirmed and characterized in details from the complementary hydrological data acquired during the German Meteor cruise M77 (Legs 3 and 4, January-February 2009). The significant Pmin present an intense minimum with a mean vertical phosphate decrease of 0.6 µM but highly variable between 0.1 and 2.2 µM. In average, these Pmin are associated with a predominant mixing of SubTropical Under- and Surface Waters (STUW and STSW: 20 and 40%, respectively) within ESSW ( 25%), complemented evenly by overlying (ESW, TSW: 8%) and underlying waters (AAIW, SPDW: 7%). The hypotheses and mechanisms leading to the Pmin formation in the OMZ are further explored and discussed, considering the physical regional contribution associated with various circulation pathways ventilating the OMZ and the local biogeochemical contribution including the potential diazotrophic activity.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-03
... zero or the lowest Minimum Trading Increment or (ii) the Expanded Quote Range has been calculated as zero. The proposal codifies existing functionality during the Exchange's Opening Process. Specifically... either zero or the lowest Minimum Trading Increment and market order sell interest has a quantity greater...
Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender
2016-10-01
This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Experiences from 10 years of school programmes at GEOMAR Kiel
NASA Astrophysics Data System (ADS)
Dengg, Joachim
2014-05-01
GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany, started a programme of cooperations with secondary schools in 2003, which has been expanding continually since that time. By active involvement of teachers and students, the Centre's research topics are communicated to schools, and young people are encouraged to develop their interest for biogeosciences. The portfolio of activities includes: project work with schools over periods from one day to several months, individual student theses at the research centre, internships, a weekly "Research Club" allowing individual experiments, summer school programmes, teacher training courses, joint activities with international partners and a video-project in which students portray scientific aspects of oceanic oxygen minimum zones (in the context of the Collaborative Research Center SFB 754) to other students. Essential prerequisites for these activities are the direct involvement of the Centre's researchers who contribute their expertise and act as role-models for the students, dedicated staff for coordination and continuity, and financial and structural support both at the research centre and the schools.
On the subduction of oxygenated surface water in submesoscale cold filaments off Peru.
NASA Astrophysics Data System (ADS)
Thomsen, Soeren; Kanzow, Torsten; Colas, Francois; Echevin, Vincent; Krahmann, Gerd
2015-04-01
The Peruvian upwelling regime is characterized by pronounced submesoscale variability including filaments and sharp density fronts. Submesoscale frontal processes can drive large vertical velocities and enhance vertical tracer fluxes in the upper ocean. The associated high temporal and spatial variability poses a large challenge to observational approaches targeting submesoscale processes. In this study the role of submesoscale processes for both the ventilation of the near-coastal oxygen minimum zone off Peru and the physical-biogeochemical coupling at these scales is investigated. For our study we use satellite based sea surface temperature measurements in combination with multiple high-resolution glider observations of temperature, salinity, oxygen and chlorophyll fluorescence carried out in January and February 2013 off Peru near 14°S during active upwelling. Additionally, high-resolution regional ocean circulation model outputs (ROMS) are analysed. At the beginning of our observations a previously upwelled, productive and highly oxygenated body of water is found within the mixed layer. Subsequently, a cold filament forms and the waters are moved offshore. After the decay of the filament and the relaxation of the upwelling front, the oxygen enriched surface water is found within the previously less oxygenated thermocline suggesting the occurrence of frontal subduction. A numerical model simulation is used to analyse the evolution of passive tracers and Lagrangian floats within several upwelling filaments, whose vertical structure and hydrographic properties agree well with the observations. The simulated temporal evolution of the tracers and floats support our interpretation that the subduction of previously upwelled water indeed occurs within cold filaments off Peru. Filaments are common features within eastern boundary upwelling systems, which all encompass large oxygen minimum zones. However, most state of-the-art large and regional scale physical-biogeochemical ocean models do not resolve submesoscale filaments and the associated downward transport of oxygen and other solutes. Even if the observed subduction event only reaches into the still oxygenated thermocline the associated ventilation mechanism likely influences the shape and depth of the upper boundary of oxygen minimum zones, which would probably be even shallower without this process.
NASA Astrophysics Data System (ADS)
Lamont, Peter A.; Gage, John D.
2000-01-01
Morphological adaptation to low dissolved oxygen consisting of enlarged respiratory surface area is described in polychaete species belonging to the family Spionidae from the Oman margin where the oxygen minimum zone impinges on the continental slope. Similar adaptation is suggested for species in the family Cossuridae. Such morphological adaptation apparently has not been previously recorded among polychaetes living in hypoxic conditions. The response consists of enlargement in size and branching of the branchiae relative to similar species living in normal levels of dissolved oxygen. Specimens were examined in benthic samples from different depths along a transect through the oxygen minimum zone. There was a highly significant trend shown to increasing respiratory area relative to body size in two undescribed spionid species with decreasing depth and oxygen within the OMZ. Yet the size and number of branchiae are often used as taxonomic characters. These within-species differences in size and number of branchiae may be a direct response by the phenotype to intensity of hypoxia. The alternative explanations are that they either reflect a pattern of differential post-settlement selection among a highly variable genotype, or represent early genetic differentiation among depth-isolated sub-populations.
Manohar, Cathrine Sumathi; Menezes, Larissa Danielle; Ramasamy, Kesava Priyan; Meena, Ram M
2015-03-01
Reports on the active role of fungi as denitrifiers in terrestrial ecosystems have stimulated an interest in the study of the role of fungi in oxygen-deficient marine systems. In this study, the culturable diversity of fungi was investigated from 4 stations within the permanent, oceanic, oxygen minimum zone of the Arabian Sea. The isolated cultures grouped within the 2 major fungal phyla Ascomycota and Basidiomycota; diversity estimates in the stations sampled indicated that the diversity of the oxygen-depleted environments is less than that of mangrove regions and deep-sea habitats. Phylogenetic analyses of 18S rRNA sequences revealed a few divergent isolates that clustered with environmental sequences previously obtained by others. This is significant, as these isolates represent phylotypes that so far were known only from metagenomic studies and are of phylogenetic importance. Nitrate reduction activity, the first step in the denitrification process, was recorded for isolates under simulated anoxic, deep-sea conditions showing ecological significance of fungi in the oxygen-depleted habitats. This report increases our understanding of fungal diversity in unique, poorly studied habitats and underlines the importance of fungi in the oxygen-depleted environments.
Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes
NASA Astrophysics Data System (ADS)
Stramma, Lothar; Prince, Eric D.; Schmidtko, Sunke; Luo, Jiangang; Hoolihan, John P.; Visbeck, Martin; Wallace, Douglas W. R.; Brandt, Peter; Körtzinger, Arne
2012-01-01
Climate model predictions and observations reveal regional declines in oceanic dissolved oxygen, which are probably influenced by global warming. Studies indicate ongoing dissolved oxygen depletion and vertical expansion of the oxygen minimum zone (OMZ) in the tropical northeast Atlantic Ocean. OMZ shoaling may restrict the usable habitat of billfishes and tunas to a narrow surface layer. We report a decrease in the upper ocean layer exceeding 3.5mll-1 dissolved oxygen at a rate of <=1myr-1 in the tropical northeast Atlantic (0-25°N, 12-30°W), amounting to an annual habitat loss of ~5.95×1013m3, or 15% for the period 1960-2010. Habitat compression and associated potential habitat loss was validated using electronic tagging data from 47 blue marlin. This phenomenon increases vulnerability to surface fishing gear for billfishes and tunas, and may be associated with a 10-50% worldwide decline of pelagic predator diversity. Further expansion of the Atlantic OMZ along with overfishing may threaten the sustainability of these valuable pelagic fisheries and marine ecosystems.
Jayakumar, Amal; Chang, Bonnie X; Widner, Brittany; Bernhardt, Peter; Mulholland, Margaret R; Ward, Bess B
2017-10-01
Biological nitrogen fixation (BNF) was investigated above and within the oxygen-depleted waters of the oxygen-minimum zone of the Eastern Tropical North Pacific Ocean. BNF rates were estimated using an isotope tracer method that overcame the uncertainty of the conventional bubble method by directly measuring the tracer enrichment during the incubations. Highest rates of BNF (~4 nM day -1 ) occurred in coastal surface waters and lowest detectable rates (~0.2 nM day -1 ) were found in the anoxic region of offshore stations. BNF was not detectable in most samples from oxygen-depleted waters. The composition of the N 2 -fixing assemblage was investigated by sequencing of nifH genes. The diazotrophic assemblage in surface waters contained mainly Proteobacterial sequences (Cluster I nifH), while both Proteobacterial sequences and sequences with high identities to those of anaerobic microbes characterized as Clusters III and IV type nifH sequences were found in the anoxic waters. Our results indicate modest input of N through BNF in oxygen-depleted zones mainly due to the activity of proteobacterial diazotrophs.
The oxygen minimum zone of the eastern South Pacific
NASA Astrophysics Data System (ADS)
Ulloa, Osvaldo; Pantoja, Silvio
2009-07-01
In spite of the fact that oxygen-deficient waters with ⩽20 μM of dissolved oxygen—known as oxygen minimum zones (OMZs)—occupy only ˜1% of the volume of the global ocean, they disproportionately affect global biogeochemical cycles, particularly the nitrogen cycle. The macrobiota diversity in OMZs is low, but the fauna that do inhabit these regions present special adaptations to the low-oxygen conditions. Conversely, microbial communities in the OMZ water column and sediments are abundant and phylogenetically and metabolically very diverse, and microbial processes occurring therein (e.g., denitrification, anammox, and organic matter degradation) are important for global marine biogeochemical cycles. In this introductory article, we present the collection of papers for the special volume on the OMZ of the eastern South Pacific, one of the three main open-ocean oxygen-deficient regions of the global ocean. These papers deal with aspects of regional oceanography, inorganic and organic geochemistry, ecology, and the biochemistry of micro and macro organisms—both in the plankton and in the sediments—and past changes in the fish scales preserved in the sediments bathed by OMZ waters.
Benthic foraminifera from the Arabian Sea oxygen minimum zone: towards a paleo-oxygenation proxy.
NASA Astrophysics Data System (ADS)
Clemence, Caulle; Meryem, Mojtahid; Karoliina, Koho; Andy, Gooday; Gert-Jan, Reichart; Gerhard, Schmiedl; Frans, Jorissen
2014-05-01
Benthic foraminifera from the Arabian Sea oxygen minimum zone: towards a paleo-oxygenation proxy. C. Caulle1, M. Mojtahid1, K. Koho2,3, A. Gooday4, G. J. Reichart2,3, G. Schmiedl5, F. Jorissen1 1UMR CNRS 6112 LPG-BIAF, University of Angers, 2 bd Lavoisier, 49045 Angers Cedex 2Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Budapestlaan 4, 3584 CD Utrecht, The Netherlands 3Royal Netherland Institute for Sea Research (Royal NIOZ), Landsdiep 4, 1797 SZ 't Horntje (Texel) 4Southampton Oceanography Centre, Empress Dock, European Way, Southampton SO14 3ZH, UK 5Department of Geosciences, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany The thermohaline circulation oxygenates the deep ocean sediment and therefore enables aerobic life on the sea-floor. In the past, interruption of this deep water formation occurred several times causing hypoxic to anoxic conditions on the sea-floor leading to major ecological turnover. A better understanding of the interaction between climate and bottom water oxygenation is therefore essential in order to predict future oceanic responses. Presently, permanent (stable over decadal timescale) low-oxygen conditions occur naturally at mid-water depths in the northern Indian Ocean (Arabian Sea). Oxygen Minimum Zones (OMZ) are key areas to understand the hypoxic-anoxic events and their impact on the benthic ecosystem. In this context, a good knowledge of the ecology and life cycle adaptations of the benthic foraminiferal assemblages living in these low oxygen areas is essential. A series of multicores were recovered from three transects showing an oxygen gradient across the OMZ: the Murray Ridge, the Oman margin and the Indian margin. The stations located at the same depths showed slightly different oxygen concentrations and large differences in organic matter content. These differences are mainly related to the geographic location in the Arabian Sea. We investigated at these stations live and dead benthic foraminiferal faunas. At each location, faunal diversity seems to be controlled by bottom-water oxygen content; limited diversity corresponding to low oxygen content. Foraminiferal abundances reflect organic matter quantity and quality; higher organic matter quality and quantity are related to higher foraminiferal abundances. When comparing the three study areas, similar foraminiferal species (live and dead) are observed suggesting that benthic foraminifera from the Arabian Sea predominantly respond to bottom-water oxygenation. Based on these observations, we aim to develop a paleo-oxygenation proxy based on live, dead and fossil faunas resulting from both our study and previous studies in the Arabian Sea.
viral abundance distribution in deep waters of the Northern of South China Sea
NASA Astrophysics Data System (ADS)
He, Lei; Yin, Kedong
2017-04-01
Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.
Fiber optic oxygen sensor leak detection system for space applications
NASA Astrophysics Data System (ADS)
Kazemi, Alex A.; Goswami, Kish; Mendoza, Edgar A.; Kempen, Lothar U.
2007-09-01
This paper describes the successful test of a multi-point fiber optic oxygen sensor system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta IV common booster core (CBC) rocket engine at NASA's Stennis Flight Center. The system consisted of microsensors (optrodes) using an oxygen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel opto-electronic sensor readout unit that monitored the oxygen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The sensor packaging for oxygen consisted of two optrodes - one doped with an indicator sensitive to oxygen, and the other doped with an indicator sensitive to temperature. The multichannel oxygen sensor system is fully reversible. It has demonstrated a dynamic response to oxygen gas in the range of 0% to 100% with 0.1% resolution and a response time of <=10 seconds. The sensor package was attached to a custom fiber optic ribbon cable, which was then connected to a fiber optic trunk communications cable (standard telecommunications-grade fiber) that connected to the optoelectronics module. Each board in the expandable module included light sources, photo-detectors, and associated electronics required for detecting oxygen and temperature. The paper illustrates the sensor design and performance data under field deployment conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Pia; Department of Neurosurgery, University of Bern, CH-3010 Bern; Gramsbergen, Jan-Bert
Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactivemore » (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.« less
NASA Astrophysics Data System (ADS)
Koho, K. A.; Reichart, G.-J.
2012-04-01
The Arabian Sea Oxygen Minimum Zone (OMZ) is sustained by high surface water productivity and relatively weak mid-depth water column ventilation. High primary productivity drives high respiration rates in the water column, causing severe oxygen depletion between ±150-1400 m water depths, with the oxygen concentrations falling below 2 μM in the core of the OMZ. Living (rose Bengal stained) benthic foraminifera were collected at 10-stations, covering a large bottom water oxygen concentration gradient from the Murray Ridge. This sub-marine ridge is located in the open marine environment of the Arabian Sea and thus not affected by large gradients in surface water productivity such as encountered at the continental margins. Since these sites thus receive similar organic fluxes, but are bathed in bottom waters with contrasting oxygen concentrations, pore water profiles mainly reflect bottom water oxygenation. The study sites represent a natural laboratory to investigate the impact of bottom water chemistry on trace metal incorporation in benthic foraminifera. Trace metal analyses by laser ablation ICP-MS allows detailed single chamber measurements of trace metal content, which can be related to in situ pore water geochemistry. Focus of this study is on redox sensitive trace metal (e.g. Mn, U) incorporation into foraminiferal test calcite in relation to pore water oxygen and carbonate chemistry.
Sharma, Neeraj Kumar; Akhtar, M S; Pandey, Nityanand; Singh, Ravindra; Singh, Atul Kumar
2015-08-01
We studied the season dependent thermal tolerance, oxygen consumption, respiratory burst response and antioxidative enzyme activities in juveniles of Barilius bendelisis. The critical thermal maximum (CTmax), lethal thermal maximum (LTmax), critical thermal minimum (CTmin) and lethal thermal minimum (LTmin) were significantly different at five different seasons viz. winter (10.64°C), spring (16.25°C), summer (22.11°C), rainy (20.87°C) and autumn (17.77°C). The highest CTmax was registered in summer (36.02°C), and lowest CTmin was recorded during winter (2.77°C). Water temperature, dissolved oxygen and pH were strongly related to CTmax, LTmax, CTmin and LTmin suggesting seasonal acclimatization of B. bendelisis. The thermal tolerance polygon area of the B. bendelisis juveniles within the range of seasonal temperature (10.64-22.11°C) was calculated as 470.92°C(2). Oxygen consumption rate was significantly different (p<0.05) between seasons with maximum value during summer (57.66mgO2/kg/h) and lowest in winter (32.60mgO2/kg/h). Total white blood cell count including neutrophil and monocytes also showed significant difference (p<0.05) between seasons with maximum value during summer and minimum number in winter and were found correlated to temperature, dissolved oxygen, pH and respiratory burst activity. Respiratory burst activity of blood phagocytes significantly differed (p<0.05) among seasons with higher value during summer (0.163 OD540nm) and minimum in winter season (0.054 OD540nm). The activity of superoxide dismutase, catalase and glutathione-s-transferase both in liver and gill, also varied significantly (p<0.05) during different seasons. Overall results of this study suggest that multiple environmental factors play a role in seasonal acclimation in B. bendelisis, which modulate the thermal tolerance, oxygen consumption, respiratory burst activity and status of anti-oxidative potential in wild environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brand, Uwe
1989-12-01
A progressive trend towards heavier δ 13C values of Devonian-Mississippian brachiopods from North America, Europe, Afghanistan and Algeria probably reflects expansion of the terrestrestrial and/or marine biomass and/or burial of carbon in soils/sediments. Oceanic Productivity crises, based on perturbations in the overall δ 13C trend, are recognized for the Mid Givetian, Early Famennian, Late Kinderhookian, Late Osagean and Early and Late Meramecian. The Givetian productivity crisis was probably accompanied by massive overturn of biologically toxic deep-ocean water. Temperature data, adjusted for the possible secular variation of seawater, support the hypothesis of global greenhouse conditions for the Devonian (mean of 30°C, mean of 26°C if extrinsic data are deleted) and icehouse conditions for the Mississippian (mean of 17°C). During the Mid Givetian, Frasnian and Early Famennian calculated water temperatures for tropical epeiric seas were generally above the thermal threshold limit (˜ 38°C) of most marine invertebrates or epeiric seawater was characterized by unusually low salinities (˜ pp ppt) or a combination of the two. These elevated water temperatures and/or low salinities, in conjunction with the postulated productivity crises and overturning of toxic deep waters are considered prime causes for the biotic crisis of the Late Devonian. In addition, a presumed expanding oxygen-minimum zone and general anoxia in the oceans prevented shallow-water organisms from escaping these inhospitable conditions. Re-population of the tropical seas occurred, after either water temperatures had dropped below the thermal threshold limit and/or salinities were back to normal, and oceanic productivity had increased due to more vigorous oceanic circulation, sometime during the Mid-Late Famennian. Migration of eurythermal, shallow- and deeper-water organisms into the vacant niches of the shallow seas was possible because of, generally, slightly lower sea levels, but, more importantly of more restricted oxygen-minimum zone and generally reduced oceanic anoxia.
Oxygen index: An approximate value for the evaluation of combustion characteristics
NASA Technical Reports Server (NTRS)
Zartmann, I.; Reinwardt, D.; Franke, A.
1986-01-01
The oxygen index has gained international recognition for the determination of combustion characteristics of plastic material. The amounts of oxygen and nitrogen were more accurately determined for existing test equipment in order to specify the oxygen index as precisely and as reproducible as possible. Parameters are outlined such as the size of the ignition flame, ignition of test pieces, test piece sizes and test temperature. The minimum oxygen index was determined by the dimension and duration of the fire. The results are sufficiently accurate for factory operating conditions and are also reproducible.
Effect of oxygen minimum zone formation on communities of marine protists
Orsi, William; Song, Young C; Hallam, Steven; Edgcomb, Virginia
2012-01-01
Changes in ocean temperature and circulation patterns compounded by human activities are leading to oxygen minimum zone (OMZ) expansion with concomitant alteration in nutrient and climate active trace gas cycling. Here, we report the response of microbial eukaryote populations to seasonal changes in water column oxygen-deficiency using Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island British Columbia, as a model ecosystem. We combine small subunit ribosomal RNA gene sequencing approaches with multivariate statistical methods to reveal shifts in operational taxonomic units during successive stages of seasonal stratification and renewal. A meta-analysis is used to identify common and unique patterns of community composition between Saanich Inlet and the anoxic/sulfidic Cariaco Basin (Venezuela) and Framvaren Fjord (Norway) to show shared and unique responses of microbial eukaryotes to oxygen and sulfide in these three environments. Our analyses also reveal temporal fluctuations in rare populations of microbial eukaryotes, particularly anaerobic ciliates, that may be of significant importance to the biogeochemical cycling of methane in OMZs. PMID:22402396
NASA Astrophysics Data System (ADS)
Ji, Qixing; Babbin, Andrew R.; Jayakumar, Amal; Oleynik, Sergey; Ward, Bess B.
2015-12-01
The Eastern Tropical South Pacific oxygen minimum zone (ETSP-OMZ) is a site of intense nitrous oxide (N2O) flux to the atmosphere. This flux results from production of N2O by nitrification and denitrification, but the contribution of the two processes is unknown. The rates of these pathways and their distributions were measured directly using 15N tracers. The highest N2O production rates occurred at the depth of peak N2O concentrations at the oxic-anoxic interface above the oxygen deficient zone (ODZ) because slightly oxygenated waters allowed (1) N2O production from both nitrification and denitrification and (2) higher nitrous oxide production yields from nitrification. Within the ODZ proper (i.e., anoxia), the only source of N2O was denitrification (i.e., nitrite and nitrate reduction), the rates of which were reflected in the abundance of nirS genes (encoding nitrite reductase). Overall, denitrification was the dominant pathway contributing the N2O production in the ETSP-OMZ.
Eutrophication, microbial-sulfate reduction and mass extinctions
Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph
2016-01-01
ABSTRACT In post-Cambrian time, life on Earth experienced 5 major extinction events, likely instigated by adverse environmental conditions. Biodiversity loss among marine taxa, for at least 3 of these mass extinction events (Late Devonian, end-Permian and end-Triassic), has been connected with widespread oxygen-depleted and sulfide-bearing marine water. Furthermore, geochemical and sedimentary evidence suggest that these events correlate with rather abrupt climate warming and possibly increased terrestrial weathering. This suggests that biodiversity loss may be triggered by mechanisms intrinsic to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This climate warming feedback produces large-scale eutrophication on the continental shelf, which, in turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by increased microbial-sulfate reduction due to increased availability of organic matter. A plankton community turnover from a high-diversity eukaryote to high-biomass bacterial dominated food web is the catalyst proposed in this anoxia-extinction scenario and stands in stark contrast to the postulated productivity collapse suggested for the end-Cretaceous mass extinction. This cascade of events is relevant for the future ocean under predicted greenhouse driven climate change. The exacerbation of anoxic “dead” zones is already progressing in modern oceanic environments, and this is likely to increase due to climate induced continental weathering and resulting eutrophication of the oceans. PMID:27066181
Lenz, Josefine; Jones, Benjamin M.; Wetterich, Sebastian; Tjallingii, Rik; Fritz, Michael; Arp, Christopher D.; Rudaya, Natalia; Grosse, Guido
2016-01-01
Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation, and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological, and geochemical proxies. Radiocarbon and 210Pb/137Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~1400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the “alder high” that occurred in the region ~4000 cal yr BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were, therefore, archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.
Method and apparatus for determining and utilizing a time-expanded decision network
NASA Technical Reports Server (NTRS)
de Weck, Olivier (Inventor); Silver, Matthew (Inventor)
2012-01-01
A method, apparatus and computer program for determining and utilizing a time-expanded decision network is presented. A set of potential system configurations is defined. Next, switching costs are quantified to create a "static network" that captures the difficulty of switching among these configurations. A time-expanded decision network is provided by expanding the static network in time, including chance and decision nodes. Minimum cost paths through the network are evaluated under plausible operating scenarios. The set of initial design configurations are iteratively modified to exploit high-leverage switches and the process is repeated to convergence. Time-expanded decision networks are applicable, but not limited to, the design of systems, products, services and contracts.
Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones
Glass, Jennifer B.; Kretz, Cecilia B.; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L.; Buck, Kristen N.; Landing, William M.; Morton, Peter L.; Moffett, James W.; Giovannoni, Stephen J.; Vergin, Kevin L.; Stewart, Frank J.
2015-01-01
Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3−, NO2−, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu. PMID:26441925
Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones.
Glass, Jennifer B; Kretz, Cecilia B; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L; Buck, Kristen N; Landing, William M; Morton, Peter L; Moffett, James W; Giovannoni, Stephen J; Vergin, Kevin L; Stewart, Frank J
2015-01-01
Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO[Formula: see text], NO[Formula: see text], Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.
Nitrification of raw or used water using expanded bed biofilm reactor technology.
Dempsey, M J
2011-01-01
Excessive ammonia in raw water increases the consumption of chlorine for disinfection during production of potable water, through oxidation to produce chloramines. Excessive ammonia in used water results in pollution of the aquatic environment, where it is particularly toxic to fish. Furthermore, nitrifying prokaryotes in the receiving water will consume dissolved oxygen equivalent to 4.6 g oxygen per g ammonia-nitrogen oxidized to nitrate. This places a considerable oxygen demand on the receiving water and can result in anoxic conditions. One solution to these problems is to nitrify the ammonia in a dedicated biological process. As nitrifiers are particularly slow growing, they are easily washed out of conventional water and wastewater treatment processes; hence, the use of immobilized biomass in an expanded bed biofilm reactor. This solution typically allows at least 10-times the biomass concentration of conventional systems, with a similar decrease in bioreactor size or increase in bioreactor productivity. This chapter describes expanded bed technology for nitrification of water, and methods for studying biomass and process performance. Copyright © 2011 Elsevier Inc. All rights reserved.
Biver, Marc; Filella, Montserrat
2016-05-03
The toxicity of Cd being well established and that of Te suspected, the bulk, surface-normalized steady-state dissolution rates of two industrially important binary tellurides-polycrystalline cadmium and bismuth tellurides- were studied over the pH range 3-11, at various temperatures (25-70 °C) and dissolved oxygen concentrations (0-100% O2 in the gas phase). The behavior of both tellurides is strikingly different. The dissolution rates of CdTe monotonically decreased with increasing pH, the trend becoming more pronounced with increasing temperature. Activation energies were of the order of magnitude associated with surface controlled processes; they decreased with decreasing acidity. At pH 7, the CdTe dissolution rate increased linearly with dissolved oxygen. In anoxic solution, CdTe dissolved at a finite rate. In contrast, the dissolution rate of Bi2Te3 passed through a minimum at pH 5.3. The activation energy had a maximum in the rate minimum at pH 5.3 and fell below the threshold for diffusion control at pH 11. No oxygen dependence was detected. Bi2Te3 dissolves much more slowly than CdTe; from one to more than 3.5 orders of magnitude in the Bi2Te3 rate minimum. Both will readily dissolve under long-term landfill deposition conditions but comparatively slowly.
Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean
NASA Astrophysics Data System (ADS)
Ward, Bess B.; Tuit, Caroline B.; Jayakumar, Amal; Rich, Jeremy J.; Moffett, James; Naqvi, S. Wajih A.
2008-12-01
Incubation experiments under trace metal clean conditions and ambient oxygen concentrations were used to investigate the response of microbial assemblages in oxygen minimum zones (OMZs) to additions of organic carbon and copper, two factors that might be expected to limit denitrification in the ocean. In the OMZs of the Eastern Tropical North and South Pacific, denitrification appeared to be limited by organic carbon; exponential cell growth and rapid nitrate and nitrite depletion occurred upon the addition of small amounts of carbon, but copper had no effect. In the OMZ of the Arabian Sea, neither carbon nor copper appeared to be limiting. We hypothesize that denitrification is variable in time and space in the OMZs in ways that may be predictable based on links to the episodic supply of organic substrates from overlying productive surface waters.
NASA Astrophysics Data System (ADS)
Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju
2016-01-01
The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.
Dean, Walter E.; Gardner, James V.; Anderson, Roger Y.
1994-01-01
The present upper water mass of the northeastern Pacific Ocean off California has a well-developed oxygen minimum zone between 600 and 1200 m wherein concentrations of dissolved oxygen are less than 0.5 mL/L. Even at such low concentrations of dissolved oxygen, benthic burrowing organisms are abundant enough to thoroughly bioturbate the surface and near-surface sediments. These macro organisms, together with micro organisms, also consume large quantities of organic carbon produced by large seasonal stocks of plankton in the overlying surface waters, which are supported by high concentrations of nutrients within the California Current upwelling system. In contrast to modern conditions of bioturbation, laminated sediments are preserved in upper Pleistocene sections of cores collected on the continental slope at water depths within the present oxygen minimum zone from at least as far north as the California-Oregon border and as far south as Point Conception. Comparison of sediment components in the laminae with those delivered to sediment traps as pelagic marine “snow” demonstrates that the dark-light lamination couplets are indeed annual (varves). These upper Pleistocene varved sediments contain more abundant lipid-rich “sapropelic” (type II) organic matter than the overlying bioturbated, oxidized Holocene sediments. The baseline of stable carbon isotopic composition of the organic matter in these slope cores does not change with time, indicating that the higher concentrations of type II organic matter in the varved sediments represent better preservation of organic matter rather than any change in the source of organic matter.
NASA Astrophysics Data System (ADS)
Zirks, Eleen; Goodman-Tchernov, Beverly; Krom, Michael D.
2017-04-01
Understanding the nature and evolution of past Oxygen Minimum Zones (OMZ) are of great interest since they shed light on expanding OMZ's in the modern ocean. Furthermore, as we alter the nutrient fluxes emitted from modern major rivers there are known to major, often undesirable, consequence to the oxygen status in the marine basin both proximal and distal to the river discharge (e.g. Mississippi). Recent Global Climate Model (GCM) of the nature and development of S-1 sapropel in the Eastern Mediterranean (EMS) have suggested a four layer system with a well-ventilated surface water (0-200 m) and intermediate water (200-500 m), a partially ventilated sapropel intermediate water (SIW, 500-1800 m) and long-term stagnant deep water below 1800 m. Our conceptual model is of the partially ventilated SIW flowing from Adriatic/Aegean towards the east and becoming depleted in oxygen as it is increasingly influenced by descending labile organic matter derived directly or indirectly from the Nile flood. Most studies of sapropels in the EMS concentrate on the deep water below 1800 m water depths with only a limited number of samples having been taken from the SIW layer. In this review, we focus on the several stations sampled between 500-1800 m and particularly on stations in the Eastern Aegean and Levantine basins. Data has been obtained from sediment cores (9509, 9501, SL112, PS009PC, SL123, 562MC) in which either benthic foraminifera fauna or redox sensitive trace metals (RSTM) data have been measured. The Shannon-Weaver diversity index and the Oxygen Index have been calculated on the benthic foraminifera fauna. These cores reveal a distinct pattern in onset and offset of sapropel S1 and in the interruption of the sapropel at 8.2 ka BP. The onset of S1 was earlier in the shallower water depths consistent with greater respiration rates from progressively less labile organic matter dropping from the photic zone. There was a clear spatial trend in intensity of the OMZ with benthic foraminifera surviving in SIW throughout S1 offshore Libya (562MC) and close to Crete (SL123) nearer the source of SIW. By contrast the diversity is reduced and in case of 562MC the Oxygen Index reached zero close to the Israeli coast and under the direct influence of the Nile. There was an observed correlation between the V/Al ratio (PS009PC), a redox sensitive trace metal used as an indicator for sub-oxic conditions in the water column and the calculated Oxygen Index as well as diversity on benthic foraminifera (SL112). Our study also shows that the intensity of S1 sapropel was greater in this region between its onset and the 8.2 interruption, than in the period from 8.2 to the end of S1. Indeed, close to Cyprus (9501) sapropel S1 ends at 8.2 ka BP and doesn't have a second sapropelic part.
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Ye, Feng; Huang, Xiao-ping; Shi, Zhen; Liu, Qing-xi
2013-05-01
More and more attention has focused on assessing impacts of extreme hydrologic events on estuarine ecosystem under the background of climate change. Based on a summer cruise conducted in the Pearl River Estuary in 2011 (extreme drought event), we have investigated the spatial distribution of dissolved oxygen (DO) and its relationships to water column stability, nutrient concentrations, and organic matter; besides, the major reason which caused the oxygen depletion was discussed. Under the influence of the extreme drought event, low bottom water dissolved oxygen was apparent in regions characterized by great depths, with an oxygen minimum value of 1.38 mg x L(-1). Statistical analysis shows significant correlations among deltaDO, deltaT, deltaS and deltaPOC. A comparison was conducted to show the mechanisms of oxygen depletion during the summers of 1999, 2009 and 2011, respectively. The result indicates that prolonged residence time of water due to the extremely low discharge and the subsequently decomposition of organic substance are major factors causing the formation of hypoxia during the summer drought in 2011. Despite the changing nutrient and organic matter regime in the Pearl River Estuary, there was no apparent trend in the minimum values of DO over the past 2 decades.
42 CFR 84.141 - Breathing gas; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen. (b... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American..._locations.html. (c) Compressed, liquefied breathing air shall meet the applicable minimum grade requirements...
Microbial oceanography of anoxic oxygen minimum zones.
Ulloa, Osvaldo; Canfield, Donald E; DeLong, Edward F; Letelier, Ricardo M; Stewart, Frank J
2012-10-02
Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N(2)) and nitrous oxide (N(2)O) gases. Anaerobic microbial processes, including the two pathways of N(2) production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two "end points" represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future.
Microbial oceanography of anoxic oxygen minimum zones
Ulloa, Osvaldo; Canfield, Donald E.; DeLong, Edward F.; Letelier, Ricardo M.; Stewart, Frank J.
2012-01-01
Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N2) and nitrous oxide (N2O) gases. Anaerobic microbial processes, including the two pathways of N2 production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two “end points” represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future. PMID:22967509
NASA Astrophysics Data System (ADS)
Hidalgo, P.; Escribano, R.
2015-12-01
A shallow oxygen minimum zone (OMZ) is a critical component in the coastal upwelling ecosystem off Chile. This OMZ causes oxygen-deficient water entering the photic layer and affecting plankton communities having low tolerance to hypoxia. Variable, and usually species-dependent, responses of zooplankton to hypoxia condition can be found. Most dominant species avoid hypoxia by restricting their vertical distribution, while others can temporarily enter and even spent part of their life cycle within the OMZ. Whatever the case, low-oxygen conditions appear to affect virtually all vital rates of zooplankton, such as mortality, fecundity, development and growth and metabolism, and early developmental stages seem more sensitive, with significant consequences for population and community dynamics. For most study cases, these effects are negative at individual and population levels. Observations and predictions upon increasing upwelling intensity over the last 20-30 years indicate a gradual shoaling of the OMZ, and so that an expected enhancement of these negative effects of hypoxia on the zooplankton community. Unknown processes of adaptation and community-structure adjustments are expected to take place with uncertain consequences for the food web of this highly productive eastern boundary current ecosystem.
NASA Astrophysics Data System (ADS)
Srain, B.; Pantoja, S.; Sepúlveda, J.; Lange, C. B.; Muñoz, P.; Summons, R. E.; McKay, J.; Salamanca, M.
2015-04-01
We reconstructed oxygenation changes in the Oxygen Minimum Zone of the upwelling ecosystem off Concepción (36° S), Chile, using inorganic and organic proxies in a sediment core covering the last ca. 110 years of sedimentation in this area. Authigenic enrichments of Mo, U and Cd were observed between ca. 1935-1971 CE indicating a prolonged period of more reduced conditions in bottom waters and surface sediments. Significant positive correlations (p < 0.05; Spearman) between redox sensitive metals, algal sterols, biomarkers of anaerobic microorganisms, and archaeal glycerol dialkyl glycerol tetraether indicated a coupling among bottom water oxygen depletion, and increased primary and export production, suggesting that the period with low O2 of ca. 35 years, follows low frequency inter-decadal variation of the Pacific Decadal Oscillation, which may have resulted in O2 depletion over the entire continental shelf off Concepción. Taken together with the concurrent increase in sedimentary molecular indicators of anaerobic microbes allow us to suggest that the prokaryote community has been influenced by changes in oxygenation of the water column.
Nitrous oxide as a function of oxygen and archaeal gene abundance in the North Pacific
NASA Astrophysics Data System (ADS)
Trimmer, Mark; Chronopoulou, Panagiota-Myrsini; Maanoja, Susanna T.; Upstill-Goddard, Robert C.; Kitidis, Vassilis; Purdy, Kevin J.
2016-12-01
Oceanic oxygen minimum zones are strong sources of the potent greenhouse gas N2O but its microbial source is unclear. We characterized an exponential response in N2O production to decreasing oxygen between 1 and 30 μmol O2 l-1 within and below the oxycline using 15NO2-, a relationship that held along a 550 km offshore transect in the North Pacific. Differences in the overall magnitude of N2O production were accounted for by archaeal functional gene abundance. A one-dimensional (1D) model, parameterized with our experimentally derived exponential terms, accurately reproduces N2O profiles in the top 350 m of water column and, together with a strong 45N2O signature indicated neither canonical nor nitrifier-denitrification production while statistical modelling supported production by archaea, possibly via hybrid N2O formation. Further, with just archaeal N2O production, we could balance high-resolution estimates of sea-to-air N2O exchange. Hence, a significant source of N2O, previously described as leakage from bacterial ammonium oxidation, is better described by low-oxygen archaeal production at the oxygen minimum zone's margins.
NASA Astrophysics Data System (ADS)
Sánchez-Velasco, Laura; Ruvalcaba-Aroche, Erick D.; Beier, Emilio; Godínez, Victor M.; Barton, Eric D.; Díaz-Viloria, Noe; Pacheco, María. R.
2016-03-01
The three-dimensional distribution of the paralarvae of the complex Sthenoteuthis oualaniensis-Dosidicus gigas (Cephalopoda: Ommastrephidae) was analyzed at the northern limit of the shallow oxygen minimum zone in the Eastern Tropical Pacific in April 2012. The upper limit of the oxygen minimum water (˜44 µmol/kg or 1 mL/L) rises from ˜100 m depth in the entrance of the Gulf of California to ˜20 m depth off Cabo Corrientes. Most of the paralarvae of this complex, dominated by D. gigas, were concentrated in the Gulf entrance, between the thermocline (˜20 to ˜50 m depth) and the sea surface, in the warmest (>19°C) oxygenated (>176 µmol/kg) layer. The highest abundance of paralarvae was detected in an anticyclonic eddy (˜120 km diameter and >500 m deep), which contained lower-salinity water (<35 g/kg), consistent with formation in the California Current. Lower paralarvae abundance was recorded further south off Cabo Corrientes, where hypoxic layers were elevated as water shoaled nearshore. Almost no paralarvae were found in the north of the study area beyond the strong salinity front (˜34.8-35.4 g/kg) that bounded the anticyclone. These results showed an affinity of the paralarvae for lower-salinity, oxygenated water, illustrated by the influence of the mesoscale anticyclonic eddy and the salinity front in their distribution. Based on this study, it can be concluded that the expansion of the depth range of hypoxic water observed in the Eastern Tropical Pacific may be increasing environmental stress on the paralarvae by vertically restricting their habitat, and so affecting their survival.
Characterization of the intra-annual variability in the Oxygen Minimum Zone (OMZ) off Peru
NASA Astrophysics Data System (ADS)
Paulmier, A.; Campos, F.; Dewitte, B.; Garcon, V.; Illig, S.; Carrasco, E.; Depretz de Gesincourt, O.; Grelet, J.; Ledesma, J. A.; Maes, C.; Montes, I.; Oschlies, A.; Quispe, J.; Scouarnec, L.
2016-02-01
The Oxygen Minimum Zones (OMZs) are oceanic deoxygenated layers between 50 and 1000 meters depth, which impact climate and ecosystems at both local and global scales. In particular, associated with the most productive upwelling system (10% of the world fisheries), the OMZ off Peru has the shallowest and most intense core with the lowest O2 concentration. Little is known on O2 variability at hourly to intra-seasonal timescales in this region. Thanks to the first long term subsurface mooring deployed off Lima (12°02'S, 77°40'W) at 30 nm from the coast, this study investigates the OMZ variability. The mooring consists in an instrumented line including sensors of pressure, temperature, salinity and oxygen located at 5 depths (30, 50, 75, 145 and 160 meters below the surface) with an acquisition frequency of 15 minutes during 14 months from January 5th , 2013 until February 21th, 2014. These data collected in the framework of the trans-disciplinary AMOP project (Activity of investigation dedicated to Oxygen Minimum Zone of the eastern Pacific) allow documenting the dynamics of both the oxycline and core and of their physical forcing (e.g. waves, wind). Three main regimes of variability are reported: sub-daily (< 1 day), sub-monthly (1-30 days) and sub-seasonal (30-90 days), which corresponds to distinct physical mechanisms. Preliminary results from a high-resolution coupled model platform are presented, which serve as material for the interpretation of the data.
ERIC Educational Resources Information Center
Swant, Gary D.
Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…
The Relationship between Aerobic Capacity and Physical Activity in Blind and Sighted Adolescents.
ERIC Educational Resources Information Center
Kobberling, G.; And Others
1991-01-01
This study investigated the relationship between habitual physical activity and aerobic capacity in 30 blind and 30 sighted adolescents. Both physical activity and maximal oxygen consumption were significantly higher among the sighted adolescents. A minimum of 30 minutes of daily activity at a minimal oxygen consumption of 8 METs (resting…
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirement enforceable? 60.1750 Section 60.1750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 1999 Model Rule-Continuous Emission Monitoring § 60.1750 What is the minimum amount of monitoring data... only), and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirement enforceable? 60.1750 Section 60.1750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 1999 Model Rule-Continuous Emission Monitoring § 60.1750 What is the minimum amount of monitoring data... only), and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirement enforceable? 60.1750 Section 60.1750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 1999 Model Rule-Continuous Emission Monitoring § 60.1750 What is the minimum amount of monitoring data... only), and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the...
The Effects of Oxygen Concentration on Benthic Foraminiferal Growth and Size
NASA Astrophysics Data System (ADS)
Ng, B.; Keating-Bitonti, C.; Payne, J.
2015-12-01
Many organisms use oxygen through cellular respiration in order to gain energy. For this reason, oxygen has a significant influence on organism size and growth. The amount of oxygen an organism needs depends on its metabolic demand, which is partially a function organism size (i.e., mass). The Santa Monica Basin (SMB) is an oxygen minimum zone located off the southern coast of California that maintains a steep oxygen gradient and is thus an ideal location for conducting research on how oxygen influences organism size. Here we use benthic foraminifera, widespread single-celled protists that produce shells (tests), to study the controls of oxygen on organism size. Because cell mass and cell volume are correlated, we study trends in the log test volume of four abundant species from SMB: Uvigerina peregrina, Bolivina spissa, B. argentea, Loxostomum pseudobeyrichi. These foraminifera make multi-chambered tests, thus we also count the number of chambers per specimen in order to further assess their growth under varying oxygen concentrations. We analyzed the data using quantile regressions to determine trends in not only median values of the log test volume and number of chambers as a function of oxygen concentrations, but also in the 10th, 25th, 75th, and 90th percentiles because oxygen availability often constrains the maximum and minimum size of organisms. Our results show a positive correlation between oxygen concentration and the maximum log test volumes of L. pseudobeyrichi and B. argentea, supporting our hypothesis. However, we observed a negative correlation between oxygen concentration and the maximum percentiles of log test volume in U. peregrina. Nevertheless, U. peregrina still displays a positive correlation between chamber number and oxygen concentrations in line with our hypothesis. The preponderance of trends supporting a direct correlation between log test volume or chamber number and oxygen concentration suggest that oxygen limits the maximum obtainable size of benthic foraminifera through its effects on test volume or chamber growth. This study is important because it holds a glimpse into how changes in oxygen levels can affect organisms given current fluctuations in oxygen level around the world due to man-made climate change.
Evaluation of High Performance Aircrew Helmets and Oxygen Masks
1982-10-01
site. This is achieved because 1.6 cm of expanded polystyrene is inserted in this area. It is concludeC that, while only the DH 41-4D helmets provide...Plastic Liner (TPL). Impact protection is provided by a rigid expanded polystyrene interliner between the helmet shell and the TPL. Four of these liners
2017-12-05
The mission of the Bigelow Expandable Activity Module (BEAM) on the International Space Station has been, well, expanded. After more than a year and a half on orbit providing performance data on expandable habitat technologies, NASA and Bigelow Aerospace have reached agreement to extend the life of the privately-owned module. For a minimum of three more years, BEAM will be a more operational element of the station used in crew activities and on board storage, allowing time to gather more data on the technology’s structural integrity, thermal stability, and resistance to space debris, radiation and microbial growth. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1993-01-01
The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.
Global niche of marine anaerobic metabolisms expanded by particle microenvironments
NASA Astrophysics Data System (ADS)
Bianchi, Daniele; Weber, Thomas S.; Kiko, Rainer; Deutsch, Curtis
2018-04-01
In ocean waters, anaerobic microbial respiration should be confined to the anoxic waters found in coastal regions and tropical oxygen minimum zones, where it is energetically favourable. However, recent molecular and geochemical evidence has pointed to a much broader distribution of denitrifying and sulfate-reducing microbes. Anaerobic metabolisms are thought to thrive in microenvironments that develop inside sinking organic aggregates, but the global distribution and geochemical significance of these microenvironments is poorly understood. Here, we develop a new size-resolved particle model to predict anaerobic respiration from aggregate properties and seawater chemistry. Constrained by observations of the size spectrum of sinking particles, the model predicts that denitrification and sulfate reduction can be sustained throughout vast, hypoxic expanses of the ocean, and could explain the trace metal enrichment observed in particles due to sulfide precipitation. Globally, the expansion of the anaerobic niche due to particle microenvironments doubles the rate of water column denitrification compared with estimates based on anoxic zones alone, and changes the sensitivity of the marine nitrogen cycle to deoxygenation in a warming climate.
NASA Astrophysics Data System (ADS)
Donoso, Katty; Escribano, Ruben
2014-01-01
A shallow oxygen minimum zone (OMZ) in the coastal upwelling zone off Chile may vertically confine most zooplankton to a narrow (< 50 m) upper layer. From laboratory experiments, we estimated oxygen consumption of the mesozooplankton community obtained in Bay of Mejillones, northern Chile (23°S) in May 2010, December 2010 and August 2011. Mass-specific respiration rates were in the range of 8.2-24.5 μmol O2 mg dry mass- 1 day- 1, at an average temperature of 12 °C. Estimates of the mesozooplankton biomass in the water column indicated that its aerobic respiration may remove daily a maximum of about 20% of oxygen available at the base of the oxycline. Since previous work indicates that zooplankton aggregate near the base of the oxycline, the impact of aerobic respiration on oxygen content might be even stronger at this depth. Mesozooplankton respiration, along with community respiration by microorganisms near the base of the oxycline and a strongly stratified condition (limiting vertical flux of O2), are suggested as being critical factors causing and maintaining a persistent subsurface oxygen-deficient ecological barrier (BEDOX) in the upwelling zone. This BEDOX layer can have a major role in affecting and regulating zooplankton distribution and their dynamics in the highly productive coastal upwelling zone of the Humboldt Current System.
VO2sim 0.1: Using Simulation to Understand Measurement Error in Indirect Calorimetry
2015-08-01
illness. The Army has recognized the importance of understanding oxygen consumption in the field and is developing models to aid in operational decision...acclimatize to high altitude (Amann et al. 2013) and hypoxia (Self et al. 2013). The Army has recognized the importance of understanding oxygen consumption ...minimum detectable change using the K4b2: oxygen consumption , gait efficiency, and heart rate for healthy adults during submaximal walking. Res Q Exerc
Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K
2016-01-01
The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (P<0.01, r=0.538). A total of 29 vitrified embryos after warming and measuring the oxygen consumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability. Copyright © 2015 Elsevier B.V. All rights reserved.
Liabakh, E G; Lissov, P N
2012-01-01
The regulatory impact of the mitochondria spatial distribution and enlargement in their oxidative power qO2 on the tissue oxygenation of skeletal muscle during hypoxia were studied. Investigations were performed by the mathematical modeling of 3D O2 diffusion-reaction in muscle fiber. The oxygen consumption rate VO2 and tissue pO2 were analyzed in response to a decrease in arterial blood oxygen concentration from 19.5 to 10 vol. % at a moderate load (3.5 ml/min per 100 g). The cells with evenly (case 1) and unevenly (case 2) distributed mitochondria were considered. According to calculations due to a rise in mitochondria oxidative power from 3.5 to 6.5 ml/min. per 100 g of tissue it is possible to maintain muscle oxygen V(O2) at constant level of 3.5 ml/min per 100 g despite a decrease in O2 delivery. Minimum value of tissue pO2 was about 0 and an area of hypoxia appeared inside the cell in case 1. But hypoxia disappeared and minimum value of pO2 increased from 0 to 4 mm Hg if mitochondria were distributed unevenly (case 2). It is shown that the possibilities of such regulation were limited and depended on the ratio of "the degree of hypoxemia--the level of oxygen delivery." It was assumed that an increase in mitochondria enzyme activity and mitochondria migration to the places of the greatest oxygen consumption rate can improve oxygen regime in the cells in terms of their adaptation to hypoxia. It is possible that changes in mitochondrial oxidative power and their intracellular redistribution may be considered as a new dimension in regulation of cell oxygen regime.
Effects of Southern Hemispheric Wind Changes on Global Oxygen and the Pacific Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Getzlaff, J.; Dietze, H.; Oschlies, A.
2016-02-01
We use a coupled ocean biogeochemistry-circulation model to compare the impact of changes in southern hemispheric winds with that of warming induced buoyancy fluxes on dissolved oxygen. Changes in the southern hemispheric wind fields, which are in line with an observed shift of the southern annual mode, are a combination of a strengthening and poleward shift of the southern westerlies. We differentiate between effects caused by a strengthening of the westerlies and effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our results confirm that the Southern Ocean plays an important role for the marine oxygen supply: a strengthening of the southern westerlies, that leads to an increase of the water formation rates of the oxygen rich deep and intermediate water masses, can counteract part of the warming-induced decline in marine oxygen levels. The wind driven intensification of the Southern Ocean meridional overturning circulation drives an increase of the global oxygen supply. Furthermore the results show that the shift of the boundary between westerlies and trades results in an increase of subantarctic mode water and an anti-correlated decrease of deep water formation and reduces the oceanic oxygen supply. In addition we find that the increased meridional extension of the southern trade winds, results in a strengthening and southward shift of the subtropical wind stress curl. This alters the subtropical gyre circulation (intensification and southward shift) and with it decreases the water mass transport into the oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-to-westerlies boundary is as important for the future evolution of the suboxic volume as direct warming-induced changes.
Early Cambrian oxygen minimum zone-like conditions at Chengjiang
NASA Astrophysics Data System (ADS)
Hammarlund, Emma U.; Gaines, Robert R.; Prokopenko, Maria G.; Qi, Changshi; Hou, Xian-Guang; Canfield, Donald E.
2017-10-01
The early Cambrian succession at Chengjiang contains the most diverse Cambrian fossil assemblage yet described, and contributes significantly to our understanding of the diversification of metazoans in the Cambrian ;explosion;. The Cambrian Period occupies a transitional episode of global ocean chemistry, following the oxygenation of the surface ocean and of shallow marine environments during the Ediacaran Period, but prior to the establishment of a predominantly oxygenated deep ocean in the mid-Paleozoic. Despite recent attention, a detailed understanding of the chemical conditions that prevailed in early Cambrian marine settings and the relationship of those conditions to early metazoan ecosystems is still emerging. Here, we report multi-proxy geochemical data from two drill cores through the early Cambrian (Series 2) Yu'anshan Formation of Yunnan, China. Results reveal dynamic water-column chemistry within the succession, which progressively shifted from euxinic to oxic conditions during deposition of the Yu'anshan Formation. The Chengjiang biota occurs in strata that appear to have been deposited under an oxygen-depleted water column that may have supported denitrification, as in modern oxygen-minimum zones. The oxygenated benthic environments in which the Chengjiang biota thrived were proximal to, but sharply separated from, the open ocean by a persistent anoxic water mass that occupied a portion of the outer shelf. Oxygen depletion in the lower water column developed dynamically in response to nutrient availability and possibly at lower thresholds of productivity due to lower atmospheric oxygen concentrations in Cambrian. These findings suggest that the frequent development of oxygen-limiting conditions in continental margin settings provided an environmental barrier that may have affected biogeographic, ecological and evolutionary development of early metazoan communities.
Chaplin, Jeffrey J.; Crawford, J. Kent; Brightbill, Robin A.
2009-01-01
Mortalities of young-of-the-year (YOY) smallmouth bass (Micropterus dolomieu) recently have occurred in the Susquehanna River due to Flavobacterium columnare, a bacterium that typically infects stressed fish. Stress factors include but are not limited to elevated water temperature and low dissolved oxygen during times critical for survival and development of smallmouth bass (May 1 through July 31). The infections were first discovered in the Susquehanna River and major tributaries in the summer months of 2005 but also were prevalent in 2007. The U.S. Geological Survey, Pennsylvania Fish and Boat Commission, Pennsylvania Department of Environmental Protection, and PPL Corporation worked together to monitor dissolved oxygen, water temperature, pH, and specific conductance on a continuous basis at seven locations from May through mid October 2008. In addition, nutrient concentrations, which may affect dissolved-oxygen concentrations, were measured once in water and streambed sediment at 25 locations. Data from water-quality meters (sondes) deployed as pairs showed daily minimum dissolved-oxygen concentration at YOY smallmouth-bass microhabitats in the Susquehanna River at Clemson Island and the Juniata River at Howe Township Park were significantly lower (p-value < 0.0001) than nearby main-channel habitats. The average daily minimum dissolved-oxygen concentration during the critical period (May 1-July 31) was 1.1 mg/L lower in the Susquehanna River microhabitat and 0.3 mg/L lower in the Juniata River. Daily minimum dissolved-oxygen concentrations were lower than the applicable national criterion (5.0 mg/L) in microhabitat in the Susquehanna River at Clemson Island on 31 days (of 92 days in the critical period) compared to no days in the corresponding main-channel habitat. In the Juniata River, daily minimum dissolved-oxygen concentration in the microhabitat was lower than 5.0 mg/L on 20 days compared to only 5 days in the main-channel habitat. The maximum time periods that dissolved oxygen was less than 5.0 mg/L in microhabitats of the Susquehanna and Juniata Rivers were 8.5 and 5.5 hours, respectively. Dissolved-oxygen concentrations lower than the national criterion generally occurred during nighttime and early-morning hours between midnight and 0800. The lowest instantaneous dissolved-oxygen concentrations measured in microhabitats during the critical period were 3.3 mg/L for the Susquehanna River at Clemson Island (June 11, 2008) and 4.1 mg/L for the Juniata River at Howe Township Park (July 22, 2008). Comparison of 2008 data to available continuous-monitoring data from 1974 to 1979 in the Susquehanna River at Harrisburg, Pa., indicates the critical period of 2008 had an average daily mean dissolved-oxygen concentration that was 1.1 mg/L lower (p-value < 0.0001) than in the 1970s and an average daily mean water temperature that was 0.8 deg C warmer (p-value = 0.0056). Streamflow was not significantly different (p-value = 0.0952) between the two time periods indicating that it is not a likely explanation for the differences in water quality. During the critical period in 2008, dissolved-oxygen concentrations were lower in the Susquehanna River at Harrisburg, Pa., than in the Delaware River at Trenton, N.J., or Allegheny River at Acmetonia near Pittsburgh, Pa. Daily minimum dissolved-oxygen concentrations were below the national criterion of 5.0 mg/L on 6 days during the critical period in the Susquehanna River at Harrisburg compared to no days in the Delaware River at Trenton and the Allegheny River at Acmetonia. Average daily mean water temperature in the Susquehanna River at Harrisburg was 1.8 deg C warmer than in the Delaware River at Trenton and 3.4 deg C warmer than in the Allegheny River at Acmetonia. These results indicate that any stress induced by dissolved oxygen or other environmental conditions is likely to be magnified by elevated temperature in the Susquehanna River at Harrisburg compared to the Delaw
USDA-ARS?s Scientific Manuscript database
As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to dissolved oxygen management strategies. The purpose of this study was to compare the production and water quality responses of the channel x...
Spatial and temporal patterns of dissolved oxygen (DO) in Yaquina Estuary, Oregon (USA) are examined using historic and recent data. There was a significant increasing trend in DO in the upstream portion of the estuary during the years 1960–1985. Historically, minimum dry season ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirement enforceable? 60.1260 Section 60.1260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring § 60.1260 What is the minimum amount of monitoring data I must collect with my continuous emission..., nitrogen oxides, and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirement enforceable? 60.1260 Section 60.1260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring § 60.1260 What is the minimum amount of monitoring data I must collect with my continuous emission..., nitrogen oxides, and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirement enforceable? 60.1260 Section 60.1260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring § 60.1260 What is the minimum amount of monitoring data I must collect with my continuous emission..., nitrogen oxides, and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the...
Code of Federal Regulations, 2013 CFR
2013-04-01
... CONSUMPTION (CONTINUED) PRIOR-SANCTIONED FOOD INGREDIENTS Specific Prior-Sanctioned Food Ingredients § 181.27... oxygen, minimum, 6.0 percent). Ethylphthalyl ethyl glycolate. Glycerol monooleate. Monoisopropyl citrate...
Operation and testing of Mark 10 Mod 3 underwater breathing apparatus
NASA Technical Reports Server (NTRS)
Milwee, W. I., Jr.
1972-01-01
Performance tests on a closed circuit, mixed gas underwater breathing apparatus are reported. The equipment is designed to provide a minimum diving duration of four hours at 1500 ft below sea surface; it senses oxygen partial pressure in the breathing gas mix and controls oxygen content of the breathing gas within narrow limits about a preset value. The breathing circuit subsystem provides respirable gas to the diver and removes carbon dioxide and moisture from the expired gas. Test results indicate undesirable variations in oxygen partial pressure with oxygen addition and insufficient carbon dioxide absorption.
Design manual: Oxygen Thermal Test Article (OTTA)
NASA Technical Reports Server (NTRS)
Chronic, W. L.; Baese, C. L.; Conder, R. L.
1974-01-01
The characteristics of a cryogenic tank for storing liquid hydrogen, nitrogen, oxygen, methane, or helium for an extended period of time with minimum losses are discussed. A description of the tank and control module, assembly drawings and details of major subassemblies, specific requirements controlling development of the system, thermal concept considerations, thermal analysis methods, and a record of test results are provided. The oxygen thermal test article thermal protection system has proven that the insulation system for cryogenic vessels is effective.
Absi, Mohammed; Kumar, Susheel Tk; Sandhu, Hitesh
2017-09-01
Extracorporeal membrane oxygenation was instituted as an aid to in-hospital cardiopulmonary resuscitation (E-CPR) nearly 23 years ago, this led to remarkable improvement in survival considering the mortality rate associated with conventional cardiopulmonary resuscitation (CPR). Given this success, one begins to wonder whether the time has come for expanding the use of E-CPR to outside hospital cardiac arrests especially in the light of development of newer extracorporeal life support devices that are small, mobile, and easy to assemble. This editorial will review recent studies on this subject and address some key guidelines and limitations of this evolving and promising technology.
Collins Cryocooler Design for Zero-Boil Storage of Liquid Hydrogen and Oxygen in Space
NASA Astrophysics Data System (ADS)
Segado, M. A.; Hannon, C. L.; Brisson, J. G.
2010-04-01
Several models of multi-stage cryocoolers are developed for zero-boil-off storage of liquid hydrogen and oxygen in space. The thermodynamic cycles are based on a modified Collins cycle being developed by MIT and AMTI, and each configuration is optimized for maximum efficiency by varying the mass flows, heat exchanger UA distribution, and other variables where applicable, subject to the required heat loads of 100 W at 100 K and 20 W at 25 K. By using double expanders connected in series with the heat loads in one or more stages of the cooler, we were able to achieve predicted efficiency gains of 10-24% over single expander designs.
NASA Technical Reports Server (NTRS)
Buckmann, P. S.; Hayden, W. R.; Lorenc, S. A.; Sabiers, R. L.; Shimp, N. R.
1990-01-01
The design, fabrication, and initial testing of a rocket engine turbopump (TPA) for the delivery of high pressure liquid oxygen using hot oxygen for the turbine drive fluid are described. This TPA is basic to the dual expander engine which uses both oxygen and hydrogen as working fluids. Separate tasks addressed the key issue of materials for this TPA. All materials selections emphasized compatibility with hot oxygen. The OX TPA design uses a two-stage centrifugal pump driven by a single-stage axial turbine on a common shaft. The design includes ports for three shaft displacement/speed sensors, various temperature measurements, and accelerometers.
Gallo, N D; Levin, L A
Oxygen minimum zones (OMZs) and oxygen limited zones (OLZs) are important oceanographic features in the Pacific, Atlantic, and Indian Ocean, and are characterized by hypoxic conditions that are physiologically challenging for demersal fish. Thickness, depth of the upper boundary, minimum oxygen levels, local temperatures, and diurnal, seasonal, and interannual oxycline variability differ regionally, with the thickest and shallowest OMZs occurring in the subtropics and tropics. Although most fish are not hypoxia-tolerant, at least 77 demersal fish species from 16 orders have evolved physiological, behavioural, and morphological adaptations that allow them to live under the severely hypoxic, hypercapnic, and at times sulphidic conditions found in OMZs. Tolerance to OMZ conditions has evolved multiple times in multiple groups with no single fish family or genus exploiting all OMZs globally. Severely hypoxic conditions in OMZs lead to decreased demersal fish diversity, but fish density trends are variable and dependent on region-specific thresholds. Some OMZ-adapted fish species are more hypoxia-tolerant than most megafaunal invertebrates and are present even when most invertebrates are excluded. Expansions and contractions of OMZs in the past have affected fish evolution and diversity. Current patterns of ocean warming are leading to ocean deoxygenation, causing the expansion and shoaling of OMZs, which is expected to decrease demersal fish diversity and alter trophic pathways on affected margins. Habitat compression is expected for hypoxia-intolerant species, causing increased susceptibility to overfishing for fisheries species. Demersal fisheries are likely to be negatively impacted overall by the expansion of OMZs in a warming world. © 2016 Elsevier Ltd. All rights reserved.
Isopycnal diffusivity in the tropical North Atlantic oxygen minimum zone
NASA Astrophysics Data System (ADS)
Köllner, Manuela; Visbeck, Martin; Tanhua, Toste; Fischer, Tim
2017-04-01
Isopycnal diffusivity plays an important role in the ventilation of the Eastern Tropical North Atlantic (ETNA) Oxygen Minimum Zone (OMZ). Lateral tracer transport is described by isopycnal diffusivity and mean advection of the tracer (e.g. oxygen), together they account for up to 70% of the oxygen supply for the OMZ. One of the big challenges is to separate diffusivity from advection. Isopycnal diffusivity was estimated to be Ky=(500 ± 200) m2 s-1 and Kx=(1200 ± 600) m2 s-1 by Banyte et. al (2013) from a Tracer Release Experiment (TRE). Hahn et al. (2014) estimated a meridional eddy diffusivity of 1350 m2 s-1 at 100 m depth decaying to less than 300 m2 s-1 below 800 m depth from repeated ship sections of CTD and ADCP data in addition with hydrographic mooring data. Uncertainties of the estimated diffusivities were still large, thus the Oxygen Supply Tracer Release Experiment (OSTRE) was set up to estimate isopycnal diffusivity in the OMZ using a newly developed sampling strategy of a control volume. The tracer was released in 2012 in the core of the OMZ at approximately 410 m depth and mapped after 6, 15 and 29 months in a regular grid. In addition to the calculation of tracer column integrals from vertical tracer profiles a new sampling method was invented and tested during two of the mapping cruises. The mean eddy diffusivity during OSTRE was found to be about (300 ± 130) m2 s-1. Additionally, the tracer has been advected further to the east and west by zonal jets. We compare different analysis methods to estimate isopycnal diffusivity from tracer spreading and show the advantage of the control volume surveys and control box approach. From the control box approach we are estimating the strength of the zonal jets within the OMZ core integrated over the TRE time period. References: Banyte, D., Visbeck, M., Tanhua, T., Fischer, T., Krahmann, G.,Karstensen, J., 2013. Lateral Diffusivity from Tracer Release Experiments in the Tropical North Atlantic Thermocline. Journal of Geophysical Research 118. Hahn, J., Brandt, P., Greatbatch, R., Krahmann, G., Körtzinger, A., 2014. Oxygen variance and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone. Climate Dynamics 43, 2999-3024.
Sink or link? The bacterial role in benthic carbon cycling in the Arabian Sea's oxygen minimum zone
NASA Astrophysics Data System (ADS)
Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.
2013-11-01
The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea's oxygen minimum zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the 7 day experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient, in sediments both inside and outside the OMZ. Moreover, metazoans directly consumed labile particulate organic matter resources and thus competed with bacteria for phytodetritus.
Sink or link? The bacterial role in benthic carbon cycling in the Arabian sea oxygen minimum zone
NASA Astrophysics Data System (ADS)
Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.
2013-06-01
The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic aquatic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea Oxygen Minimum Zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient in these sediments. Moreover, metazoans directly consume labile particulate organic matter resources and thus compete with bacteria for phytodetritus.
2015-01-01
Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. The data obtained from these studies help define safe operating conditions for the use of oxygen with organic solvents. PMID:26622165
NASA Astrophysics Data System (ADS)
Il'ina, A. D.; Glazov, A. L.; Semenova, I. V.; Vasyutinskii, O. S.
2016-06-01
Photosensitized generation of singlet oxygen with the aid of Radahlorin® photosensitizer has been investigated. The dependences of the intensity of singlet oxygen phosphorescence and photosensitizer fluorescence on the excitation radiation wavelength in the range of 350-440 nm and on the irradiation dose have been obtained. The dependence of the ratio of the sensitizer fluorescence intensity at about 670 nm to the singlet oxygen phosphorescence intensity at a wavelength of 1270 nm on the excitation radiation wavelength is found to be nonmonotonic and have a minimum near the center of the absorption band on its red wing. The results obtained can be used to monitor the singlet oxygen concentration in solutions.
Effects of natural and human-induced hypoxia on coastal benthos
NASA Astrophysics Data System (ADS)
Levin, L. A.; Ekau, W.; Gooday, A. J.; Jorissen, F.; Middelburg, J. J.; Naqvi, W.; Neira, C.; Rabalais, N. N.; Zhang, J.
2009-04-01
Coastal hypoxia (<1.42 ml L-1; 62.5 μM; 2 mg L-1, approx. 30% oxygen saturation) occurs seasonally in many estuaries, fjords, and along open coasts subject to upwelling or excessive riverine nutrient input, and permanently in some isolated seas and marine basins. Underlying causes of hypoxia include enhanced nutrient input from natural causes (upwelling) or anthropogenic origin (eutrophication) and reduction of mixing by limited circulation or enhanced stratification; combined these lead to higher surface water production, microbial respiration and eventual oxygen depletion. Advective inputs of low-oxygen waters may initiate or expand hypoxic conditions. Responses of estuarine, enclosed sea, and open shelf benthos to hypoxia depend on the duration, predictability, and intensity of oxygen depletion and on whether H2S is formed. Under suboxic conditions, large mats of filamentous sulfide oxidizing bacteria cover the seabed and consume sulfide, thereby providing a detoxified microhabitat for eukaryotic benthic communities. Calcareous foraminiferans and nematodes are particularly tolerant of low oxygen concentrations and may attain high densities and dominance, often in association with microbial mats. When oxygen is sufficient to support metazoans, small, soft-bodied invertebrates (typically annelids), often with short generation times and elaborate branchial structures, predominate. Large taxa are more sensitive than small taxa to hypoxia. Crustaceans and echinoderms are typically more sensitive to hypoxia, with lower oxygen thresholds, than annelids, sipunculans, molluscs and cnidarians. Mobile fish and shellfish will migrate away from low-oxygen areas. Within a species, early life stages may be more subject to oxygen stress than older life stages. Hypoxia alters both the structure and function of benthic communities, but effects may differ with regional hypoxia history. Human-caused hypoxia is generally linked to eutrophication, and occurs adjacent to watersheds with large populations or agricultural activities. Many occurrences are seasonal, within estuaries, fjords or enclosed seas of the North Atlantic and the NW Pacific Oceans. Benthic faunal responses, elicited at oxygen levels below 2 ml L-1, typically involve avoidance or mortality of large species and elevated abundances of enrichment opportunists, sometimes prior to population crashes. Areas of low oxygen persist seasonally or continuously beneath upwelling regions, associated with the upper parts of oxygen minimum zones (SE Pacific, W Africa, N Indian Ocean). These have a distribution largely distinct from eutrophic areas and support a resident fauna that is adapted to survive and reproduce at oxygen concentrations <0.5 ml L-1. Under both natural and eutrophication-caused hypoxia there is loss of diversity, through attrition of intolerant species and elevated dominance, as well as reductions in body size. These shifts in species composition and diversity yield altered trophic structure, energy flow pathways, and corresponding ecosystem services such as production, organic matter cycling and organic C burial. Increasingly the influences of nature and humans interact to generate or exacerbate hypoxia. A warmer ocean is more stratified, holds less oxygen, and may experience greater advection of oxygen-poor source waters, making new regions subject to hypoxia. Future understanding of benthic responses to hypoxia must be established in the context of global climate change and other human influences such as overfishing, pollution, disease, habitat loss, and species invasions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... averages for sulfur dioxide, nitrogen oxides (Class I municipal waste combustion units only), and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the equivalent carbon dioxide level). Use the 1-hour averages of oxygen (or carbon dioxide) data from your continuous emission monitoring...
Code of Federal Regulations, 2013 CFR
2013-07-01
... averages for sulfur dioxide, nitrogen oxides (Class I municipal waste combustion units only), and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the equivalent carbon dioxide level). Use the 1-hour averages of oxygen (or carbon dioxide) data from your continuous emission monitoring...
Code of Federal Regulations, 2012 CFR
2012-07-01
... averages for sulfur dioxide, nitrogen oxides (Class I municipal waste combustion units only), and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the equivalent carbon dioxide level). Use the 1-hour averages of oxygen (or carbon dioxide) data from your continuous emission monitoring...
Talley, L D; Feely, R A; Sloyan, B M; Wanninkhof, R; Baringer, M O; Bullister, J L; Carlson, C A; Doney, S C; Fine, R A; Firing, E; Gruber, N; Hansell, D A; Ishii, M; Johnson, G C; Katsumata, K; Key, R M; Kramp, M; Langdon, C; Macdonald, A M; Mathis, J T; McDonagh, E L; Mecking, S; Millero, F J; Mordy, C W; Nakano, T; Sabine, C L; Smethie, W M; Swift, J H; Tanhua, T; Thurnherr, A M; Warner, M J; Zhang, J-Z
2016-01-01
Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.
Effect of oxygen minimum zone formation on communities of marine protists.
Orsi, William; Song, Young C; Hallam, Steven; Edgcomb, Virginia
2012-08-01
Changes in ocean temperature and circulation patterns compounded by human activities are leading to oxygen minimum zone (OMZ) expansion with concomitant alteration in nutrient and climate active trace gas cycling. Here, we report the response of microbial eukaryote populations to seasonal changes in water column oxygen-deficiency using Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island British Columbia, as a model ecosystem. We combine small subunit ribosomal RNA gene sequencing approaches with multivariate statistical methods to reveal shifts in operational taxonomic units during successive stages of seasonal stratification and renewal. A meta-analysis is used to identify common and unique patterns of community composition between Saanich Inlet and the anoxic/sulfidic Cariaco Basin (Venezuela) and Framvaren Fjord (Norway) to show shared and unique responses of microbial eukaryotes to oxygen and sulfide in these three environments. Our analyses also reveal temporal fluctuations in rare populations of microbial eukaryotes, particularly anaerobic ciliates, that may be of significant importance to the biogeochemical cycling of methane in OMZs. Eukaryotic 18S rRNA gene sequences recovered from the Saanich Inlet water column on were deposited in Genbank under accession numbers HQ864863–HQ871151.
Cardoso-Neto, J.E.; Williams, D.W.
1995-01-01
A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.
Cardoso-Neto, Joao E.; Williams, Daniel W.
1996-01-01
A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.
Solar-powered turbocompressor heat pump system
Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.
1982-08-12
The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.
Physical Controls on Oxygen Distribution and Denitrification Potential in the North West Arabian Sea
NASA Astrophysics Data System (ADS)
Queste, Bastien Y.; Vic, Clément; Heywood, Karen J.; Piontkovski, Sergey A.
2018-05-01
At suboxic oxygen concentrations, key biogeochemical cycles change and denitrification becomes the dominant remineralization pathway. Earth system models predict oxygen loss across most ocean basins in the next century; oxygen minimum zones near suboxia may become suboxic and therefore denitrifying. Using an ocean glider survey and historical data, we show oxygen loss in the Gulf of Oman (from 6-12 to <2 μmol kg-1) not represented in climatologies. Because of the nonlinearity between denitrification and oxygen concentration, resolutions of current Earth system models are too coarse to accurately estimate denitrification. We develop a novel physical proxy for oxygen from the glider data and use a high-resolution physical model to show eddy stirring of oxygen across the Gulf of Oman. We use the model to investigate spatial and seasonal differences in the ratio of oxic and suboxic water across the Gulf of Oman and waters exported to the wider Arabian Sea.
Chemical potential of oxygen in (U, Pu) mixed oxide with Pu/(U+Pu) = 0.46
NASA Astrophysics Data System (ADS)
Dawar, Rimpi; Chandramouli, V.; Anthonysamy, S.
2016-05-01
Chemical potential of oxygen in (U,Pu) mixed oxide with Pu/(U + Pu) = 0.46 was measured for the first time using H2/H2O gas equilibration combined with solid electrolyte EMF technique at 1073, 1273 and 1473 K covering an oxygen potential range of -525 to -325 kJ mol-1. The effect of oxygen potential on the oxygen to metal ratio was determined. Increase in oxygen potential increases the O/M. In this study the minimum O/M obtained was 1.985 below which reduction was not possible. Partial molar enthalpy ΔHbar O2 and entropy ΔSbar O2 of oxygen were calculated from the oxygen potential data. The values of -752.36 kJ mol-1 and 0.25 kJ mol-1 were obtained for ΔHbar O2 and ΔSbar O2 respectively.
NASA Astrophysics Data System (ADS)
Erdem, Z.; Schönfeld, J.; Glock, N.
2015-12-01
Benthic foraminifera have been used as proxies for the prevailing conditions at the sediment-water interface. Their distribution patterns are thought to facilitate reconstruction of past environmental conditions. Variations of bottom water oxygenation can be traced by the downcore distribution of benthic foraminifera and some of their morphological characters. Being one of the strongest and most pronounced OMZs in today's world oceans, the Peruvian OMZ is a key area to study such variations in relation with changing climate. Spatial changes or an extension of the OMZ through time and space are investigated using sediment cores from the lower OMZ boundary. We focus on time intervals Late Holocene, Early Holocene, Bølling Allerød, Heinrich-Stadial 1 and Last Glacial Maximum (LGM) to investigate changes in bottom-water oxygen and redox conditions. The recent distributions of benthic foraminiferal assemblages provide background data for an interpretation of the past conditions. Living benthic foraminiferal faunas from the Peruvian margin are structured with the prevailing bottom-water oxygen concentrations today (Mallon et al., 2012). Downcore distribution of benthic foraminiferal assemblages showed fluctuations in the abundance of the indicator species depicting variations and a decreasing trend in bottom water oxygen conditions since the LGM. In addition, changes in bottom-water oxygen and nitrate concentrations are reconstructed for the same time intervals by the pore density in tests of Planulina limbata and Bolivina spissa (Glock et al., 2011), respectively. The pore densities also indicate a trend of higher oxygen and nitrate concentrations in the LGM compared to the Holocene. Combination of both proxies provide information on past bottom-water conditions and changes of oxygen concentrations for the Peruvian margin. Glock et al., 2011: Environmental influences on the pore density of Bolivina spissa (Cushman), Journal of Foraminiferal Research, v. 41, no. 1, p. 22-32. Mallon et al., 2012: The response of benthic foraminifera to low-oxygen conditions of the Peruvian oxygen minimum zone, in ANOXIA, pp.305-322.
Review of 1,000 consecutive extracorporeal membrane oxygenation runs as a quality initiative.
Lovvorn, Harold N; Hardison, Daphne C; Chen, Heidi; Westrick, Ashly C; Danko, Melissa E; Bridges, Brian C; Walsh, William F; Pietsch, John B
2017-08-01
Extracorporeal membrane oxygenation is a resource-intensive mode of life-support potentially applicable when conventional therapies fail. Given the initial success of extracorporeal membrane oxygenation to support neonates and infants in the 1980s, indications have expanded to include adolescents, adults, and selected moribund patients during cardiopulmonary resuscitation. This single-institution analysis was conducted to evaluate programmatic growth, outcomes, and risk for death despite extracorporeal membrane oxygenation across all ages and diseases. Beginning in 1989, we registered prospectively all extracorporeal membrane oxygenation patient data with the Extracorporeal Life Support Organization. We queried this registry for our institution-specific data to compare the parameter of "discharge alive" between age groups (neonatal, pediatric, adult), disease groups (respiratory, cardiac, cardiopulmonary resuscitation), and modes of extracorporeal membrane oxygenation (veno-venous; veno-arterial). Extracorporeal membrane oxygenation-specific complications (mechanical, hemorrhagic, neurologic, renal, cardiovascular, pulmonary, infectious, metabolic) were analyzed similarly. Descriptive statistics, Kaplan-Meier, and linear regression analyses were conducted. After 1,052 extracorporeal membrane oxygenation runs, indications have expanded to include adults, to supplement cardiopulmonary resuscitation, to support hemodialysis in neonates and plasmapheresis in children, and to bridge all age patients to heart and lung transplant. Overall survival to discharge was 52% and was better for respiratory diseases (P < .001). Probability of individual survival decreased to <50% if pre-extracorporeal membrane oxygenation mechanical ventilation exceeded respectively 123 hours for cardiac, 166 hours for cardiopulmonary resuscitation, and 183 hours for respiratory diseases (P = .013). Complications occurred most commonly among cardiac and cardiopulmonary resuscitation runs (P < .001), the veno-arterial mode (P < .001), and in adults (P = .044). Our extracorporeal membrane oxygenation program, an Extracorporeal Life Support Organization-designated Center of Excellence, has experienced substantial growth in volume and indications, including increasing age and disease severity. Considering the entire cohort, pre-extracorporeal membrane oxygenation ventilation exceeding 7 days was associated with an increased probability of death. Copyright © 2017 Elsevier Inc. All rights reserved.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Riccardi, D. P.; Mitchell, J. C.
1993-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.
NASA Astrophysics Data System (ADS)
Silva, Nelson; Rojas, Nora; Fedele, Aldo
2009-07-01
Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.
Predicting Biological Information Flow in a Model Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Louca, S.; Hawley, A. K.; Katsev, S.; Beltran, M. T.; Bhatia, M. P.; Michiels, C.; Capelle, D.; Lavik, G.; Doebeli, M.; Crowe, S.; Hallam, S. J.
2016-02-01
Microbial activity drives marine biochemical fluxes and nutrient cycling at global scales. Geochemical measurements as well as molecular techniques such as metagenomics, metatranscriptomics and metaproteomics provide great insight into microbial activity. However, an integration of molecular and geochemical data into mechanistic biogeochemical models is still lacking. Recent work suggests that microbial metabolic pathways are, at the ecosystem level, strongly shaped by stoichiometric and energetic constraints. Hence, models rooted in fluxes of matter and energy may yield a holistic understanding of biogeochemistry. Furthermore, such pathway-centric models would allow a direct consolidation with meta'omic data. Here we present a pathway-centric biogeochemical model for the seasonal oxygen minimum zone in Saanich Inlet, a fjord off the coast of Vancouver Island. The model considers key dissimilatory nitrogen and sulfur fluxes, as well as the population dynamics of the genes that mediate them. By assuming a direct translation of biocatalyzed energy fluxes to biosynthesis rates, we make predictions about the distribution and activity of the corresponding genes. A comparison of the model to molecular measurements indicates that the model explains observed DNA, RNA, protein and cell depth profiles. This suggests that microbial activity in marine ecosystems such as oxygen minimum zones is well described by DNA abundance, which, in conjunction with geochemical constraints, determines pathway expression and process rates. Our work further demonstrates how meta'omic data can be mechanistically linked to environmental redox conditions and biogeochemical processes.
Study of oxygen gas production phenomenon during stand and discharge in silver-zinc batteries
NASA Technical Reports Server (NTRS)
1974-01-01
Standard production procedures for manufacturing silver zinc batteries are evaluated and modified to reduce oxygen generation during open circuit stand and discharge. Production predictions of several variable combinations using analysis models are listed for minimum gassing, with emphasis on the concentration of potassium hydroxide in plate formation. A recommendation for work optimizing the variables involved in plate processing is included.
Effect Of Water On Permeation By Hydrogen
NASA Technical Reports Server (NTRS)
Tomazic, William A.; Hulligan, David
1988-01-01
Water vapor in working fluid equilibrates with permeability-reducing oxides in metal parts. Report describes study of effects of water on permeation of heater-head tubes by hydrogen in Stirling engine. Experiments performed to determine minimum concentration of oxygen and/or oxygen-bearing gas maintaining oxide coverage adequate for low permeability. Tests showed 750 ppm or more of water effective in maintaining stable, low permeability.
NASA Astrophysics Data System (ADS)
Singh, R.; Ingole, B. S.
2016-01-01
We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and low oxygen levels on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. The oxygen minimum zone extended from 102 to 1001 m. Nematodes (described and undescribed) were identified to species and classified according to biological and functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Three depth zones were identified: the shelf (depth range: 34-102 m; highest nematode mean density: 176.6 ± 37 ind 10 cm-2), the slope (525-1524 m; 124.3 ± 16 ind 10 cm-2), and the basin (2001-2546 m; 62.9 ± 2 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, Desmodora sp. 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Nematode communities in different zones differed in species composition. Chromadorita sp. 2 (2.78 %) and Sphaerolaimus gracilis (2.21 %) were dominant on the shelf, whereas Terschellingia longicaudata (4.73 %) and Desmodora sp. 1 (4.42 %) were dominant on the slope, but in the basin, Halalaimus sp. 1(1.11 %) and Acantholaimus elegans (1.11 %) were dominant. The information in a particular functional group was not a simple reflection of the information in species abundance. Ecological information captured by adult length, adult shape, and life-history strategy was less site-specific and thus differed notably from information contained in other taxonomic groups. The functional composition of nematodes was strongly linked to the organic-carbon and dissolved-oxygen concentration. Seven species were found exclusively in the oxygen minimum zone: Pselionema sp. 1, Choanolaimus sp. 2, Halichoanolaimus sp. 1, Cobbia dentata, Daptonema sp. 1, Trissonchulus sp. 1, and Minolaimus sp. 1. Correlation with a number of environmental variables indicated that food quantity (measured as the organic-carbon content and chlorophyll content) and oxygen level were the major factors that influenced nematode community structure and function.
The biogeochemistry of Arabian Sea surficial sediments: A review of recent studies
NASA Astrophysics Data System (ADS)
Cowie, Greg
2005-05-01
The Arabian Sea’s unusual features have drawn attention from oceanographers and other scientists since the late 1800s. Water-column processes, including the seasonally reversing monsoon-driven circulation and the associated upwelling and productivity, as well as a basin-wide, mid-water layer of intense oxygen depletion have been the foci of many studies. However, the importance of benthic processes in the Arabian Sea has also been recognized. Both the abyssal region and the continental margins have been sites of major studies focused on the biology and geochemistry of surficial sediments and key biogeochemical processes that occur across the benthic boundary layer, especially in the last decade. A summary of benthic studies carried out up to the 1990s is followed by descriptions and syntheses of biological and geochemical studies conducted since that time. The results highlight that the benthic system of the Arabian Sea is highly dynamic, with evidence of strong benthic-pelagic coupling displayed as a cross-basin trophic gradient and in benthic response to seasonal variability in productivity and C flux. Benthic biogeochemical processes, especially on the upper slope and within the oxygen minimum zone, including denitrification, phosphogenesis, and fluxes of trace metals, nutrients and dissolved organic matter, may be of global significance but remain poorly quantified. Sedimentary organic matter distributions across the Arabian Sea have served to fuel an ongoing debate over the controlling environmental factors. Recent studies have illustrated that factors including the supply of reactive organic matter, oxygen exposure, digestion and mixing by the benthos, sorptive preservation, and sediment dilution, winnowing and down-slope transport, all interact in a complex fashion and with varied impact to determine distributions of sedimentary organic matter across the different margins of this basin. Notable features include the facts that it is only at the core of the oxygen minimum zone on the Indian and Pakistan margins where laminated sediments occur and oxygen concentrations appear to fall below the threshold required for macrobenthos, and that sulfate reduction is surprisingly suppressed when compared to rates observed on other upwelling margins with oxygen minimum zones. The review is completed by suggestions for future benthic research in the Arabian Sea.
Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy.
Pérez, Cristóbal; Muckle, Matt T; Zaleski, Daniel P; Seifert, Nathan A; Temelso, Berhane; Shields, George C; Kisiel, Zbigniew; Pate, Brooks H
2012-05-18
Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18-substituted water (H(2)(18)O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.
The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease.
Townley-Tilson, W H Davin; Pi, Xinchun; Xie, Liang
2015-01-01
Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.
Osterberg, Paul M.; Niemeier, Jeffry K.; Welch, Christopher J.; ...
2014-12-06
Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. Furthermore, the data obtained from these studies help define safe operating conditions for the use of oxygen with organicmore » solvents.« less
CDC Vital Signs: Drinking and Driving
... driving episodes SOURCE: CDC Behavioral Risk Factor Surveillance System, US 2006, 2008 and 2010 Top of Page What Can Be Done States can Enforce 0.08% blood alcohol concentration and minimum legal drinking age laws. Expand the use of sobriety ...
Yan, Jia; Haaijer, Suzanne C M; Op den Camp, Huub J M; Niftrik, Laura; Stahl, David A; Könneke, Martin; Rush, Darci; Sinninghe Damsté, Jaap S; Hu, Yong Y; Jetten, Mike S M
2012-01-01
In marine oxygen minimum zones (OMZs), ammonia-oxidizing archaea (AOA) rather than marine ammonia-oxidizing bacteria (AOB) may provide nitrite to anaerobic ammonium-oxidizing (anammox) bacteria. Here we demonstrate the cooperation between marine anammox bacteria and nitrifiers in a laboratory-scale model system under oxygen limitation. A bioreactor containing ‘Candidatus Scalindua profunda’ marine anammox bacteria was supplemented with AOA (Nitrosopumilus maritimus strain SCM1) cells and limited amounts of oxygen. In this way a stable mixed culture of AOA, and anammox bacteria was established within 200 days while also a substantial amount of endogenous AOB were enriched. ‘Ca. Scalindua profunda’ and putative AOB and AOA morphologies were visualized by transmission electron microscopy and a C18 anammox [3]-ladderane fatty acid was highly abundant in the oxygen-limited culture. The rapid oxygen consumption by AOA and AOB ensured that anammox activity was not affected. High expression of AOA, AOB and anammox genes encoding for ammonium transport proteins was observed, likely caused by the increased competition for ammonium. The competition between AOA and AOB was found to be strongly related to the residual ammonium concentration based on amoA gene copy numbers. The abundance of archaeal amoA copy numbers increased markedly when the ammonium concentration was below 30 μM finally resulting in almost equal abundance of AOA and AOB amoA copy numbers. Massive parallel sequencing of mRNA and activity analyses further corroborated equal abundance of AOA and AOB. PTIO addition, inhibiting AOA activity, was employed to determine the relative contribution of AOB versus AOA to ammonium oxidation. The present study provides the first direct evidence for cooperation of archaeal ammonia oxidation with anammox bacteria by provision of nitrite and consumption of oxygen. PMID:23057688
NASA Astrophysics Data System (ADS)
Thomsen, Soeren; Kanzow, Torsten; Krahmann, Gerd; Greatbatch, Richard J.; Dengler, Marcus; Lavik, Gaute
2016-01-01
The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent (PCUC) in January and February 2013 is investigated using a multiplatform four-dimensional observational approach. Research vessel, multiple glider, and mooring-based measurements were conducted in the Peruvian upwelling regime near 12°30'S. The data set consists of >10,000 glider profiles and repeated vessel-based hydrography and velocity transects. It allows a detailed description of the eddy formation and its impact on the near-coastal salinity, oxygen, and nutrient distributions. In early January, a strong PCUC with maximum poleward velocities of ˜0.25 m/s at 100-200 m depth was observed. Starting on 20 January, a subsurface anticyclonic eddy developed in the PCUC downstream of a topographic bend, suggesting flow separation as the eddy formation mechanism. The eddy core waters exhibited oxygen concentration of <1 μmol/kg, an elevated nitrogen deficit of ˜17 μmol/L, and potential vorticity close to zero, which seemed to originate from the bottom boundary layer of the continental slope. The eddy-induced across-shelf velocities resulted in an elevated exchange of water masses between the upper continental slope and the open ocean. Small-scale salinity and oxygen structures were formed by along-isopycnal stirring, and indications of eddy-driven oxygen ventilation of the upper oxygen minimum zone were observed. It is concluded that mesoscale stirring of solutes and the offshore transport of eddy core properties could provide an important coastal open ocean exchange mechanism with potentially large implications for nutrient budgets and biogeochemical cycling in the oxygen minimum zone off Peru.
NASA Technical Reports Server (NTRS)
Sunderland, P. B.; Yuan, Z.-G.; Krishnan, S. S.; Abshire, J. M.; Gore, J. P.
2003-01-01
Owing to the absence of past work involving flames similar to the Mir fire namely oxygen-enhanced, inverse gas-jet diffusion flames in microgravity the objectives of this work are as follows: 1. Observe the effects of enhanced oxygen conditions on laminar jet diffusion flames with ethane fuel. 2. Consider both earth gravity and microgravity. 3. Examine both normal and inverse flames. 4. Compare the measured flame lengths and widths with calibrated predictions of several flame shape models. This study expands on the work of Hwang and Gore which emphasized radiative emissions from oxygen-enhanced inverse flames in earth gravity, and Sunderland et al. which emphasized the shapes of normal and inverse oxygen-enhanced gas-jet diffusion flames in microgravity.
Chao, Ting-Ting; Sytwu, Huey-Kang; Li, Shiue-Li; Fang, Mei-Cho; Chen, Hang-Kang; Lin, Yi-Chun; Kuo, Chao-Yin
2015-01-01
Previously, we demonstrated that hypoxia (1% O2) enhances stemness markers and expands the cell numbers of cochlear stem/progenitor cells (SPCs). In this study, we further investigated the long-term effect of hypoxia on stemness and the bioenergetic status of cochlear spiral ganglion SPCs cultured at low oxygen tensions. Spiral ganglion SPCs were obtained from postnatal day 1 CBA/CaJ mouse pups. The measurement of oxygen consumption rate, extracellular acidification rate (ECAR), and intracellular adenosine triphosphate levels corresponding to 20% and 5% oxygen concentrations was determined using a Seahorse XF extracellular flux analyzer. After low oxygen tension cultivation for 21 days, the mean size of the hypoxia-expanded neurospheres was significantly increased at 5% O2; this correlated with high-level expression of hypoxia-inducible factor-1 alpha (Hif-1α), proliferating cell nuclear antigen (PCNA), cyclin D1, Abcg2, nestin, and Nanog proteins but downregulated expression of p27 compared to that in a normoxic condition. Low oxygen tension cultivation tended to increase the side population fraction, with a significant difference found at 5% O2 compared to that at 20% O2. In addition, hypoxia induced a metabolic energy shift of SPCs toward higher basal ECARs and higher maximum mitochondrial respiratory capacity but lower proton leak than under normoxia, where the SPC metabolism was switched toward glycolysis in long-term hypoxic cultivation. PMID:26236724
Yusen, Roger D; Criner, Gerard J; Sternberg, Alice L; Au, David H; Fuhlbrigge, Anne L; Albert, Richard K; Casaburi, Richard; Stoller, James K; Harrington, Kathleen F; Cooper, J Allen D; Diaz, Philip; Gay, Steven; Kanner, Richard; MacIntyre, Neil; Martinez, Fernando J; Piantadosi, Steven; Sciurba, Frank; Shade, David; Stibolt, Thomas; Tonascia, James; Wise, Robert; Bailey, William C
2018-01-01
The Long-Term Oxygen Treatment Trial demonstrated that long-term supplemental oxygen did not reduce time to hospital admission or death for patients who have stable chronic obstructive pulmonary disease and resting and/or exercise-induced moderate oxyhemoglobin desaturation, nor did it provide benefit for any other outcome measured in the trial. Nine months after initiation of patient screening, after randomization of 34 patients to treatment, a trial design amendment broadened the eligible population, expanded the primary outcome, and reduced the goal sample size. Within a few years, the protocol underwent minor modifications, and a second trial design amendment lowered the required sample size because of lower than expected treatment group crossover rates. After 5.5 years of recruitment, the trial met its amended sample size goal, and 1 year later, it achieved its follow-up goal. The process of publishing the trial results brought renewed scrutiny of the study design and the amendments. This article expands on the previously published design and methods information, provides the rationale for the amendments, and gives insight into the investigators' decisions about trial conduct. The story of the Long-Term Oxygen Treatment Trial may assist investigators in future trials, especially those that seek to assess the efficacy and safety of long-term oxygen therapy. Clinical trial registered with clinicaltrials.gov (NCT00692198).
NASA Astrophysics Data System (ADS)
Ekau, W.; Auel, H.; Pörtner, H.-O.; Gilbert, D.
2009-05-01
Dissolved oxygen (DO) concentration in the water column is an environmental parameter that is crucial for the successful development of many pelagic organisms. Hypoxia tolerance and threshold values are species- and stage-specific and can vary enormously. While some fish species may suffer from oxygen values of less than 3 ml L-1 and show impact on growth, development and behaviour, other organisms such as euphausiids may survive DO levels as low as 0.1 ml L-1. A change in the average or the minimum or maximum DO in an area may have significant impacts on the survival of certain species and hence on the species composition in the ecosystem with consequent changes in trophic pathways and productivity. Evidence of the deleterious effects of oxygen depletion on species of the pelagic realm is scarce, particularly in terms of the effect of low oxygen on development, recruitment and patterns of migration and distribution. While planktonic organisms have to cope with different DOs and find adaptive mechanisms, nektonic species may avoid areas of inconvenient DO and develop adapted migrational strategies. Planktonic organisms may only be able to escape vertically, above or beneath the Oxygen Minimum Zone (OMZ). In shallow areas only the surface layer can serve as a refuge, in deep waters many organisms have developed vertical migration strategies to use, pass and cope with the OMZ. This paper elucidates the role of DO for different taxa in the pelagic realm and the consequences of low oxygen for foodweb structure and system productivity.
40 CFR Table 2 to Subpart Ddddd of... - Emission Limits for Existing Boilers and Process Heaters
Code of Federal Regulations, 2014 CFR
2014-07-01
... collect a minimum of 3 dscm. 2. Units design to burn coal/solid fossil fuel a. Filterable PM (or TSM) 4.0E... minimum of 2 dscm per run. 3. Pulverized coal boilers designed to burn coal/solid fossil fuel a. CO (or.../solid fossil fuel a. CO (or CEMS) 160 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run...
NASA Astrophysics Data System (ADS)
Wright, J.; Hallam, S.; Merzouk, A.; Tortell, P.
2008-12-01
Oxygen minimum zones (OMZs) are areas of low dissolved oxygen concentrations that play a major role in biogeochemical cycling within the world's oceans. They are major sinks for nitrogen and sources for the greenhouse gases carbon dioxide and nitrous oxide. Therefore, microbial mediated biological activity associated with these systems directly impacts ocean productivity and global climate balance. There is increasing evidence that ocean warming trends will decrease dissolved oxygen concentrations within the coastal and interior regions of the subarctic Pacific, causing an expansion of the hypoxic boundary layer. This expansion will have a direct effect on coastal benthic ecosystems and the productivity of marine fisheries due to habitat loss and changes in nutrient cycling. In order to understand the potential implications of these transitions, we are performing environmental genomic analyses of indigenous microbial communities found in coastal and open ocean OMZs in the subarctic Pacific Ocean in relation to dissolved gas and nutrient concentrations. In addition to identifying and describing the key microbial players and biochemical pathways contributing to carbon, nitrogen and sulfur metabolism within the subarctic Pacific Ocean, this work provides a solid comparative genomic foundation for understanding the biogeochemical processes at work in marine OMZs around the globe.
NASA Astrophysics Data System (ADS)
Rasiq, K. T.; Kurian, S.; Karapurkar, S. G.; Naqvi, S. W. A.
2016-07-01
Sedimentary pigments, carbon and nitrogen content and their stable isotopes were studied in three short cores collected from the oxygen minimum zone (OMZ) of the Eastern Arabian Sea (EAS). Nine pigments including chlorophyll a and their degradation products were quantified using High Performance Liquid Chromatography (HPLC). Astaxanthin followed by canthaxanthin and zeaxanthin were the major carotenoids detected in these cores. The total pigment concentration was high in the core collected from 500 m water depth (6.5 μgg-1) followed by 800 m (1.7 μgg-1) and 1100 m (1.1 μgg-1) depths respectively. The organic carbon did not have considerable control on sedimentary pigments preservation. Pigment degradation was comparatively high in the core collected from the 800 m site which depended not only the bottom dissolved oxygen levels, but also on the faunal activity. As reported earlier, the bottom water dissolved oxygen and presence of fauna have good control on the organic carbon accumulation and preservation at Indian margin OMZ sediments. The C/N ratios and δ13C values for all the cores conclude the marine origin of organic matter and δ15N profiles revealed signature of upwelling associated denitrification within the water column.
Adapting Teaching Strategies To Encompass New Technologies.
ERIC Educational Resources Information Center
Oravec, Jo Ann
2001-01-01
The explosion of special-purpose computing devices--Internet appliances, handheld computers, wireless Internet, networked household appliances--challenges business educators attempting to provide computer literacy education. At a minimum, they should address connectivity, expanded applications, and social and public policy implications of these…
Computer program optimizes design of nuclear radiation shields
NASA Technical Reports Server (NTRS)
Lahti, G. P.
1971-01-01
Computer program, OPEX 2, determines minimum weight, volume, or cost for shields. Program incorporates improved coding, simplified data input, spherical geometry, and an expanded output. Method is capable of altering dose-thickness relationship when a shield layer has been removed.
NC10 bacteria in marine oxygen minimum zones
Padilla, Cory C; Bristow, Laura A; Sarode, Neha; Garcia-Robledo, Emilio; Gómez Ramírez, Eddy; Benson, Catherine R; Bourbonnais, Annie; Altabet, Mark A; Girguis, Peter R; Thamdrup, Bo; Stewart, Frank J
2016-01-01
Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic oxygen minimum zones (OMZs) off northern Mexico and Costa Rica. NC10 16S rRNA genes were detected at all sites, peaking in abundance in the anoxic zone with elevated nitrite and methane concentrations. Phylogenetic analysis of particulate methane monooxygenase genes further confirmed the presence of NC10. rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized to participate in O2-producing NO dismutation. These findings confirm pelagic OMZs as a niche for NC10, suggesting a role for this group in OMZ nitrogen, methane and oxygen cycling. PMID:26918666
On the existence of free and metal complexed sulfide in the Arabian Sea and its oxygen minimum zone
NASA Astrophysics Data System (ADS)
Theberge, Stephen M.; Luther, George W.; Farrenkopf, Anna M.
Free hydrogen sulfide was not detected in the oxygen minimum zone (OMZ) of the Arabian Sea during legs D1 (September 1992) and D3 (October-November 1992) of the Netherlands Indian Ocean Programme (NIOP). However, sulfide complexed to metals was detected by cathodic stripping square wave voltammetry at 2 nM or less throughout the water column. A slight increase in sulfide was measured in the OMZ relative to the surface waters and may be related to sulfur release from organic matter during decomposition. Sulfide complexes are of two general types at low concentrations of metal and sulfide. First, metals such as Mn, Fe, Co and Ni form complexes with bisulfide ion (HS -) that are kinetically labile to dissociation and are reactive. Second, metals such as Cu and Zn form multinuclear complexes with sulfide (S 2-) that are kinetically inert to dissociation; thus, they are less reactive than free (bi)sulfide and the labile metal bisulfide complexes. Zinc and copper sulfide complexes are important in allowing hydrogen sulfide to persist in seawater which contains measurable oxygen.
Torres-Cuevas, Isabel; Cernada, Maria; Nuñez, Antonio; Escobar, Javier; Kuligowski, Julia; Chafer-Pericas, Consuelo; Vento, Maximo
2016-01-01
Fetal life elapses in a relatively low oxygen environment. Immediately after birth with the initiation of breathing, the lung expands and oxygen availability to tissue rises by twofold, generating a physiologic oxidative stress. However, both lung anatomy and function and the antioxidant defense system do not mature until late in gestation, and therefore, very preterm infants often need respiratory support and oxygen supplementation in the delivery room to achieve postnatal stabilization. Notably, interventions in the first minutes of life can have long-lasting consequences. Recent trials have aimed to assess what initial inspiratory fraction of oxygen and what oxygen targets during this transitional period are best for extremely preterm infants based on the available nomogram. However, oxygen saturation nomogram informs only of term and late preterm infants but not on extremely preterm infants. Therefore, the solution to this conundrum may still have to wait before a satisfactory answer is available.
NASA Astrophysics Data System (ADS)
Löscher, C. R.; Bange, H. W.; Schmitz, R. A.; Callbeck, C. M.; Engel, A.; Hauss, H.; Kanzow, T.; Kiko, R.; Lavik, G.; Loginova, A.; Melzner, F.; Neulinger, S. C.; Pahlow, M.; Riebesell, U.; Schunck, H.; Thomsen, S.; Wagner, H.
2015-03-01
Recent modeling results suggest that oceanic oxygen levels will decrease significantly over the next decades to centuries in response to climate change and altered ocean circulation. Hence the future ocean may experience major shifts in nutrient cycling triggered by the expansion and intensification of tropical oxygen minimum zones (OMZs). There are numerous feedbacks between oxygen concentrations, nutrient cycling and biological productivity; however, existing knowledge is insufficient to understand physical, chemical and biological interactions in order to adequately assess past and potential future changes. We investigated the pelagic biogeochemistry of OMZs in the eastern tropical North Atlantic and eastern tropical South Pacific during a series of cruise expeditions and mesocosm studies. The following summarizes the current state of research on the influence of low environmental oxygen conditions on marine biota, viruses, organic matter formation and remineralization with a particular focus on the nitrogen cycle in OMZ regions. The impact of sulfidic events on water column biogeochemistry, originating from a specific microbial community capable of highly efficient carbon fixation, nitrogen turnover and N2O production is further discussed. Based on our findings, an important role of sinking particulate organic matter in controlling the nutrient stochiometry of the water column is suggested. These particles can enhance degradation processes in OMZ waters by acting as microniches, with sharp gradients enabling different processes to happen in close vicinity, thus altering the interpretation of oxic and anoxic environments.
Supplemental oxygen: ensuring its safe delivery during facial surgery.
Reyes, R J; Smith, A A; Mascaro, J R; Windle, B H
1995-04-01
Electrosurgical coagulation in the presence of blow-by oxygen is a potential source of fire in facial surgery. A case report of a patient sustaining partial-thickness facial burns secondary to such a flash fire is presented. A fiberglass facial model is then used to study the variables involved in providing supplemental oxygen when an electrosurgical unit is employed. Oxygen flow, oxygen delivery systems, distance from the oxygen source, and coagulation current levels were varied. A nasal cannula and an adapted suction tubing provided the oxygen delivery systems on the model. Both the "displaced" nasal cannula and the adapted suction tubing ignited at a minimum coagulation level of 30 W, an oxygen flow of 2 liters/minute, and a linear distance of 5 cm from the oxygen source. The properly placed nasal cannula did not ignite at any combination of oxygen flow, coagulation current level, or distance from the oxygen source. Facial cutaneous surgery in patients provided supplemental oxygen should be practiced with caution when an electrosurgical unit is used for coagulation. The oxygen delivery systems adapted for use are hazardous and should not be used until their safety has been demonstrated.
University Degree: A Requirement for Canadian Nurses by the Year 2000.
ERIC Educational Resources Information Center
Ellerton, Mary-Lou; Downe-Wamboldt, B.
1984-01-01
Indicates that university preparation will be a minimum requirement for nurses entering the profession in Canada by the year 2000. Discusses the expanding role of nurses in the health care delivery system and the benefits of a liberal education. (JAC)
Eastward shift and maintenance of Arabian Sea oxygen minimum zone: Understanding the paradox
NASA Astrophysics Data System (ADS)
Acharya, Shiba Shankar; Panigrahi, Mruganka K.
2016-09-01
The dominance of Oxygen Minimum Zone in the eastern part of the Arabian Sea (ASOMZ) instead of the more bio-productive and likely more oxygen consuming western part is the first part of the paradox. The sources of oxygen to the ASOMZ were evaluated through the distributions of different water masses using the extended optimum multiparameter (eOMP) analysis, whereas the sinks of oxygen were evaluated through the organic matter remineralization, using the apparent oxygen utilization (AOU). The contributions of major source waters to the Arabian Sea viz. Indian Deep water (dIDW), Indian Central water (ICW), Persian Gulf Water (PGW) and Red Sea Water (RSW) have been quantified through the eOMP analysis which shows that the PGW and RSW are significant for the eastward shift of ASOMZ instead of voluminous ICW and dIDW. The distribution of Net Primary Production (NPP) and AOU clearly suggest the transport of organic detritus from the highly productive western Arabian Sea to its eastern counterpart which adds to the eastward shifting of ASOMZ. A revised estimate of the seasonal variation of areal extent and volume occupied by ASOMZ through analysis of latest available data reveals a distinct intensification of ASOMZ by 30% and increase in its volume by 5% during the spring-summer transition. However, during this seasonal transition the productivity in the Arabian Sea shows 100% increase in mean NPP. This disparity between ASOMZ and monsoonal variation of productivity is the other part of the paradox, which has been constrained through apparent oxygen utilization, Net Primary Production along with a variation of core depths of source waters. This study reveals a subtle balance between the circulation of marginal oxygen-rich water masses from the western Arabian Sea and organic matter remineralization in the eastern Arabian Sea in different seasons that explains the maintenance of ASOMZ throughout the year.
Rickman, Ronald L.
1998-01-01
A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate habitat for salmon incubation. The study that determined this minimum flow did not account for the effects of ice formation on habitat. The limiting factor for determining the minimal acceptable flow limit appears to be stream-water velocity. The minimum short-term flow needed to ensure adequate salmon incubation habitat when ice is present is about 30 cubic feet per second. For long-term flows, 40 cubic feet per second is adequate when ice is present. Long-term minimum discharge needed to ensure adequate incubation habitat--which is based on mean velocity alone--is as follows: 40 cubic feet per second when ice is forming; 35 cubic feet per second for stable and eroding ice conditions; and 30 cubic feet per second for ice-free conditions. The effects of long-term streamflow less than 40 cubic feet per second on fine-sediment deposition and dissolved-oxygen interchange could not be extrapolated from the data. Hydrologic properties and water-quality data were measured in winter only from March 1993 to April 1998 at six transects in the lower Bradley River under three phases of icing: forming, stable, and eroding. Discharge in the lower Bradley River ranged from 33.3 to 73.0 cubic feet per second during all phases of ice formation and ice conditions, which ranged from ice free to 100 percent ice cover. Hydrostatic head was adequate for habitat protection for all ice phases and discharges. Mean stream velocity was adequate for all but one ice-forming episode. Velocity distribution within each transect varied significantly from one sampling period to the next. No relation was found between ice phase, discharge, and wetted perimeter. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface- and intragravel-water dissolved-oxygen levels were adequate for all ice phases and discharges. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Fine-sediment deposition was greatest at the downstream end of the study reach because of low shear velocities and tide-induced deposition. Dissolved-oxygen interchange was adequate for all discharges and ice conditions. Stranding potential of salmon fry was found to be low throughout the study reach. Minimum flows from the fish-water bypass needed to maintain 40 cubic feet per second in the lower Bradley River are estimated.
Nur-E-Alam, M; Islam, M Monirul; Islam, M Nazrul; Rima, Farhana Rahman; Islam, M Nurul
2016-03-01
The cleansing efficiencies of laundry detergents depend on composition and variation of ingredients such as surfactants, phosphate, and co-builders. Among these ingredients, surfactants and phosphate are considered as hazardous materials. Knowledge on compositions and micellar behavior is very useful for understanding their cleansing efficiencies and environmental impact. With this view, composition, critical micelle concentration, and dissolved oxygen level in aqueous solution of some laundry detergents available in Bangladesh such as keya, Wheel Power White, Tibet, Surf Excel, and Chaka were determined. Surfactant and phosphate were found to be maximum in Surf Excel and Wheel Power White, respectively, while both of the ingredients were found to be minimum in Tibet. The critical micelle concentration decreased with increasing surfactant content. The amount of laundry detergents required for efficient cleansing was found to be minimum for Surf Excel and maximum for Chaka; however, cleansing cost was the highest for Surf Excel and the lowest for Tibet. The maximum amount of surfactants and phosphate was discharged by Surf Excel and Wheel Power White, respectively, while discharges of both of the ingredients were minimum for Tibet. The maximum decrease of dissolved oxygen level was caused by Surf Excel and the minimum by Tibet. Therefore, it can be concluded that Tibet is cost-effective and environment friendly, whereas Surf Excel and Wheel Power White are expensive and pose a threat to water environment.
Oxygen, ecology, and the Cambrian radiation of animals
NASA Astrophysics Data System (ADS)
Sperling, Erik A.; Frieder, Christina A.; Raman, Akkur V.; Girguis, Peter R.; Levin, Lisa A.; Knoll, Andrew H.
2013-08-01
The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator-prey "arms races" can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation.
Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong
2017-04-01
The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}<001>. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}<001>, {110}<1-10>, and {111}<1-10>, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.
Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting.
Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong
2017-12-01
The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}<001>. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}<001>, {110}<1-10>, and {111}<1-10>, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.
NASA Astrophysics Data System (ADS)
Gowing, Marcia M.; Wishner, Karen F.
Feeding ecology of the calanoid copepod Lucicutia aff. L. grandis collected in the Arabian Sea at one station during the Spring Intermonsoon and during the Southwest Monsoon of 1995 was studied with transmission electron microscopy of gut-contents. Highest abundances of these animals occurred from ˜400 to 1100 m, near the lower interface of the oxygen minimum zone and at the inflection point where oxygen starts to increase. We expected that their gut-contents would include particles and cells that had sunk relatively undegraded from surface waters as well as those from within the oxygen minimum zone, and that gut-contents would differ between the Spring Intermonsoon and the more productive SW Monsoon. Overall, in both seasons Lucicutia aff. L. grandis was omnivorous, and consumed a variety of detrital particles, prokaryotic and eukaryotic autotrophs, gram-negative bacteria including metal-precipitating bacteria, aggregates of probable gram-positive bacteria, microheterotrophs, virus-like particles and large virus-like particles, as well as cuticle and cnidarian tissue. Few significant differences in types of food consumed were seen among life stages within or among various depth zones. Amorphous, unidentifiable material was significantly more abundant in guts during the Spring Intermonsoon than during the late SW Monsoon, and recognizable cells made up a significantly higher portion of gut-contents during the late SW Monsoon. This is consistent with the Intermonsoon as a time when organic material is considerably re-worked by the surface water microbial loop before leaving the euphotic zone. In both seasons Lucicutia aff. L. grandis had consumed what appeared to be aggregates of probable gram-positive bacteria, similar to those we had previously found in gut-contents of several species of zooplankton from the oxygen minimum zone in the eastern tropical Pacific. By intercepting sinking material, populations of Lucicutia aff. L. grandis act as a filter for carbon sinking to the sea floor. They also modify sinking carbon in several ways: enhancing pelagic-abyssal coupling of carbon from cyanobacteria, eliminating part of the deep-sea microbial loop by direct consumption of bacterial aggregates, and redistributing particulate manganese and iron from association with suspended cells or aggregates to containment in rapidly sinking fecal pellets. Lucicutia aff. L. grandis can be viewed as representative of deep-dwelling detritivorous mesozooplankton. Assessing the magnitude of the effects of such organisms on carbon flux in the Arabian Sea will require data on feeding rates.
Low-thrust chemical propulsion system pump technology
NASA Technical Reports Server (NTRS)
Meadville, J. W.
1980-01-01
A study was conducted within the thrust range 450 to 9000 N (100 to 2000 pounds). Performance analyses were made on centrifugal, pitot, Barske, drag, Tesla, gear, piston, lobe, and vane pumps with liquid hydrogen, liquid methane, and liquid oxygen as propellants. Gaseous methane and hydrogen driven axial impulse turbines, vane expanders, piston expanders, and electric motors were studied as drivers. Data are presented on performance, sizes, weights, and estimated service lives and costs.
User Oriented Product Evaluation.
ERIC Educational Resources Information Center
Alkin, Marvin C.; Wingard, Joseph
While the educational product development field has expanded tremendously over the last 15 years, there is a paucity of conveniently assembled and readily interpretable information that would enable users to make accurate and informed evaluations of different, but comparable, instructional products. Minimum types of validation data which should be…
Ohio Studies: Minimum Standards Leadership Series 1985.
ERIC Educational Resources Information Center
Ohio State Dept. of Education, Columbus. Div. of Elementary and Secondary Education.
This monograph is designed to provide materials, ideas, and strategies for school districts and teachers to broaden and expand the standards and requirements of Ohio studies. Section 1, "Introduction" provides an overview of the monograph. Section 2, "Organizing for Instruction" gives several alternative approaches to designing…
Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?
NASA Astrophysics Data System (ADS)
Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A.
2016-02-01
The Peruvian upwelling region shows pronounced near-surface submesoscale variability including filaments and sharp density fronts. Submesoscale frontal processes can drive large vertical velocities and enhance vertical tracer fluxes in the upper ocean. The associated high temporal and spatial variability poses a large challenge to observational approaches targeting these processes. In this study the role of submesoscale processes for the ventilation of the near-coastal oxygen minimum zone off Peru is investigated. We use satellite based sea surface temperature measurements and multiple high-resolution glider observations of temperature, salinity, oxygen and chlorophyll fluorescence carried out in January and February 2013 off Peru near 14°S during active upwelling. Additionally, high-resolution regional ocean circulation model outputs (ROMS) outputs are analysed. At the beginning of our observational survey a previously upwelled, productive and highly oxygenated water body is found in the mixed layer. Subsequently, a cold filament forms and the waters are moved offshore. After the decay of the filament and the relaxation of the upwelling front, the oxygen enriched surface water is found in the previously less oxygenated thermocline suggesting the occurrence of frontal subduction. A numerical model simulation is used to analyse the evolution of Lagrangian numerical floats in several upwelling filaments, whose vertical structure and hydrographic properties agree well with the observations. The floats trajectories support our interpretation that the subduction of previously upwelled water occurs in filaments off Peru. We find that 40 - 60 % of the floats seeded in the newly upwelled water is subducted within a time period of 5 days. This hightlights the importance of this process in ventilating the oxycline off Peru.
NASA Technical Reports Server (NTRS)
deGroh, Kim; Berger, Lauren; Roberts, Lily
2009-01-01
The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.
NASA Astrophysics Data System (ADS)
Tiano, Laura; Garcia-Robledo, Emilio; Dalsgaard, Tage; Devol, Allan H.; Ward, Bess B.; Ulloa, Osvaldo; Canfield, Donald E.; Peter Revsbech, Niels
2014-12-01
Highly sensitive STOX O2 sensors were used for determination of in situ O2 distribution in the eastern tropical north and south Pacific oxygen minimum zones (ETN/SP OMZs), as well as for laboratory determination of O2 uptake rates of water masses at various depths within these OMZs. Oxygen was generally below the detection limit (few nmol L-1) in the core of both OMZs, suggesting the presence of vast volumes of functionally anoxic waters in the eastern Pacific Ocean. Oxygen was often not detectable in the deep secondary chlorophyll maximum found at some locations, but other secondary maxima contained up to 0.4 μmol L-1. Directly measured respiration rates were high in surface and subsurface oxic layers of the coastal waters, reaching values up to 85 nmol L-1 O2 h-1. Substantially lower values were found at the depths of the upper oxycline, where values varied from 2 to 33 nmol L-1 O2 h-1. Where secondary chlorophyll maxima were found the rates were higher than in the oxic water just above. Incubation times longer than 20 h, in the all-glass containers, resulted in highly increased respiration rates. Addition of amino acids to the water from the upper oxycline did not lead to a significant initial rise in respiration rate within the first 20 h, indicating that the measurement of respiration rates in oligotrophic Ocean water may not be severely affected by low levels of organic contamination during sampling. Our measurements indicate that aerobic metabolism proceeds efficiently at extremely low oxygen concentrations with apparent half-saturation concentrations (Km values) ranging from about 10 to about 200 nmol L-1.
Steenhaut, Kevin; Lapage, Koen; Bové, Thierry; De Hert, Stefan; Moerman, Annelies
2017-12-01
An increasing number of NIRS devices are used to provide measurements of peripheral tissue oxygen saturation (S t O 2 ). The aim of the present study is to test the hypothesis that despite technological differences between devices, similar trend values will be obtained during a vascular occlusion test. The devices compared are NIRO-200NX, which measures S t O 2 and oxyhemoglobin by spatially resolved spectroscopy and the Beer-Lambert law, respectively, and INVOS 5100C and Foresight Elite, which both measure S t O 2 with the Beer-Lambert law, enhanced with the spatial resolution technique. Forty consenting adults scheduled for CABG surgery were recruited. The respective sensors of the three NIRS devices were applied over the brachioradial muscle. Before induction of anesthesia, 3 min of ischemia were induced by inflating a blood pressure cuff at the upper arm, whereafter cuff pressure was rapidly released. Tissue oxygenation measurements included baseline, minimum and maximum values, desaturation and resaturation slopes, and rise time. Comparisons between devices were performed with the Kruskal-Wallis test with post hoc Mann-Whitney pairwise comparisons. Agreement was evaluated using Bland-Altman plots. Oxyhemoglobin measured with NIRO responded faster than the other NIRS technologies to changes in peripheral tissue oxygenation (20 vs. 27-40 s, p ≤ 0.01). When comparing INVOS with Foresight, oxygenation changes were prompter (upslope 311 [92-523]%/min vs. 114[65-199]%/min, p ≤ 0.01) and more pronounced (minimum value 36 [21-48] vs. 45 [40-51]%, p ≤ 0.01) with INVOS. Significant differences in tissue oxygen saturation measurements were observed, both within the same device as between different devices using the same measurement technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedersen, T.F.; Shimmield, G.B.; Price, N.B.
1992-01-01
The impingement of oxygen minima on continental margins is widely thought to promote the accumulation of sedimentary facies enriched in well-preserved organic matter. It is shown here, however, that such a relationship does not clearly apply to the productive Oman Margin in the Arabian Sea, which hosts one of the most severe oxygen minima in the oceans. Measurements made on the 0-1 cm depth interval from fourteen box cores collected from the outer shelf-upper continental slope area off Oman show that (1) deposited organic matter is overwhelmingly of marine origin, (2) there is no significant correlation between the abundance ofmore » sedimentary organic carbon (C{sub org}) and the bottom-water O{sub 2} concentration, (3) there is no relation between the sedimentary C{sub org}:N ratio and bottom-water O{sub 2}, and (4) there is no correlation between the hydrogen index (HI) of the organic matter and bottom water oxygen. There are, however, significant correlations between the C{sub org}:N ratio and the I:C{sub org}, Cr:Al, and Zr:Al ratios, as well as between the C{sub org}:N ratio and the hydrogen index. Overall, these data suggest that the bottom water oxygen concentration has little effect in governing either the distribution of the degree of preservation of organic matter on this margin. Thus, the generally high but spatially variable C{sub org} content of the sediments on the Oman Margin may not reflect the occurrence of an oxygen minimum but instead be the result of a high settling flux of organic matter, supported by monsoon-driven upwelling, and post-depositional redistribution of the organic material by hydrodynamic influences.« less
The structure of water around the compressibility minimum
L. B. Skinner; Benmore, C. J.; Parise, J.; ...
2014-12-03
Here we present diffraction data that yield the oxygen-oxygen pair distribution function, gOO(r) over the range 254.2–365.9 K. The running O-O coordination number, which represents the integral of the pair distribution function as a function of radial distance, is found to exhibit an isosbestic point at 3.30(5) Å. The probability of finding an oxygen atom surrounding another oxygen at this distance is therefore shown to be independent of temperature and corresponds to an O-O coordination number of 4.3(2). Moreover, the experimental data also show a continuous transition associated with the second peak position in gOO(r) concomitant with the compressibility minimummore » at 319 K.« less
NASA Technical Reports Server (NTRS)
Hirsch, David; Williams, Jim; Beeson, Harold
2006-01-01
Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.
The significance of oxygen during contact lens wear.
Papas, Eric B
2014-12-01
In order to establish the relevance of oxygen to contemporary contact lens practice, a review of the literature was conducted. The results indicate that there are a number of processes occurring in the normal healthy eye where oxygen is required and which are potentially affected by the presence of a contact lens. These activities appear to take place at all corneal levels, as well as at the limbus. Evidence from laboratory, clinical and modelling studies indicates that what constitutes normal oxygenation (normoxia) depends on, among other things, the physiological system under consideration, corneal location and the state of eye closure. This diversity is reflected in the wide range of minimum lens oxygen transmissibility (Dk/t) requirements that are present in a literature. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2015-01-01
Through photosynthesis, plants can be used to generate oxygen and food for life support in human exploration of space. Initial contributions of plants to life support would likely occur through the production of supplemental, fresh foods. For plants to provide significant contributions to oxygen production, larger areas and significant lighting would be needed. An area of 10 m2 of plants with moderate lighting could provide about 13 of a human's oxygen needs. As mission distances and durations increase, plant growing areas could be expanded to assume more of the human life support needs.
Widdas, W F
2006-10-30
Hyde's scientific book The Language of Shape has emphasized the importance of minimum surfaces in the structure of biological membranes. Minimum surfaces can be visualized as the property which brings many droplets of liquids to spherical bubbles, since a sphere has the minimum surface to volume ratio. Thus, a sphere with a surface of 4pir2 and volume of 4/3pir3 has a surface to volume ratio of 3/r, that is, the ratio is dependent upon the reciprocal of the radius. The chemistry of water as dihydrides of the electronegative element oxygen is fundamentally dependent upon its polar properties and particularly the delta positive charges on the hydrogen atoms and the double delta negative charge on the larger oxygen atom, which from its mass (16 Da) is regarded as the centre of the water molecules. The cohesion of water as a liquid or as semi-crystal like structures in the surface depends upon electrostatic forces that are comparable in strength to covalent bonds. This review discusses the functional implications of some unexpected properties which have been evinced by model building and illustrated as a Poster in the 4th World Congress of Cellular and Molecular Biology.
Proteomic Characterization of Central Pacific Oxygen Minimum Zone Microbial Communities
NASA Astrophysics Data System (ADS)
Saunders, J. K.; McIlvin, M. M.; Moran, D.; Held, N.; Futrelle, J.; Webb, E.; Santoro, A.; Dupont, C.; Saito, M.
2018-05-01
Microbial proteomic profiles are excellent for surveying vast expanses of pelagic ecosystems for links between microbial communities and the biogeochemical cycles they mediate. Data from the ProteOMZ expedition supports the utility of this method.
Arslan, Erşan; Aras, Dicle
2016-01-01
[Purpose] The aim of this study was to compare the body composition, heart rate variability, and aerobic and anaerobic performance between competitive cyclists and triathletes. [Subjects] Six cyclists and eight triathletes with experience in competitions voluntarily participated in this study. [Methods] The subjects’ body composition was measured with an anthropometric tape and skinfold caliper. Maximal oxygen consumption and maximum heart rate were determined using the incremental treadmill test. Heart rate variability was measured by 7 min electrocardiographic recording. The Wingate test was conducted to determine anaerobic physical performance. [Results] There were significant differences in minimum power and relative minimum power between the triathletes and cyclists. Anthropometric characteristics and heart rate variability responses were similar among the triathletes and cyclists. However, triathletes had higher maximal oxygen consumption and lower resting heart rates. This study demonstrated that athletes in both sports have similar body composition and aerobic performance characteristics. PMID:27190476
Liquid-Oxygen-Compatible Cement for Gaskets
NASA Technical Reports Server (NTRS)
Elmore, N. L.; Neale, B. C.
1984-01-01
Fluorelastomer and metal bonded reliably by new procedure. To cure fluoroelastomer cement, metal plate/gasket assembly placed in vacuum bag evacuated to minimum vacuum of 27 inches (69 cm) of mercury. Vacuum maintained throughout heating process and until assembly returns to ambient room temperature. Used to seal gaskets and O-rings or used to splice layers of elastomer to form non-standard sized O-rings. Another possible use is to apply protective, liquid-oxygen-compatible coating to metal parts.
Nitrite oxidation in the Namibian oxygen minimum zone.
Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel M M
2012-06-01
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in (15)N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (≤372 nM NO(2)(-) d(-1)) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ~9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO(3)(-) was re-oxidized back to NO(3)(-) via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.
Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.
2003-01-01
Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3) fully loaded (in accordance with South Carolina Department of Health and Environmental Control National Discharge Elimination System permits). Results indicate that the 24-hour mean and minimum dissolved-oxygen concentrations for August 24, 1996, changed from the no-load condition within a range of - 0.33 to 0.02 milligram per liter and - 0.48 to 0.00 milligram per liter, respectively. Fully permitted loading conditions changed the 24-hour mean and minimum dissolved-oxygen concentrations from - 0.88 to 0.04 milligram per liter and - 1.04 to 0.00 milligram per liter, respectively. A second scenario included the addition of a point-source discharge of 25 million gallons per day to the August 1996 calibration conditions. The discharge was added at S.C. Highway 5 or at a location near Culp Island (about 4 miles downstream from S.C. Highway 5) and had no significant effect on the daily mean and minimum dissolved-oxygen concentration. A third scenario evaluated the phosphorus loading into Fishing Creek Reservoir; four loading conditions of phosphorus into Catawba River were simulated. The four conditions included fully permitted and actual loading conditions, removal of all point sources from the Catawba River, and removal of all point and nonpoint sources from Sugar Creek. Removing the point-source inputs on the Catawba River and the point and nonpoint sources in Sugar Creek reduced the organic phosphorus and orthophosphate loadings to Fishing Creek Reservoir by 78 and 85 percent, respectively.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... inflation; exclude retirement and education accounts from countable resources; permit States to expand the...)--Excluding education accounts from resources; Section 4107--Increasing the minimum benefit for small... accept or continue employment, or to participate in training or education in preparation for employment...
Paleoceanographic insights on recent oxygen minimum zone expansion: lessons for modern oceanography.
Moffitt, Sarah E; Moffitt, Russell A; Sauthoff, Wilson; Davis, Catherine V; Hewett, Kathryn; Hill, Tessa M
2015-01-01
Climate-driven Oxygen Minimum Zone (OMZ) expansions in the geologic record provide an opportunity to characterize the spatial and temporal scales of OMZ change. Here we investigate OMZ expansion through the global-scale warming event of the most recent deglaciation (18-11 ka), an event with clear relevance to understanding modern anthropogenic climate change. Deglacial marine sediment records were compiled to quantify the vertical extent, intensity, surface area and volume impingements of hypoxic waters upon continental margins. By integrating sediment records (183-2,309 meters below sea level; mbsl) containing one or more geochemical, sedimentary or microfossil oxygenation proxies integrated with analyses of eustatic sea level rise, we reconstruct the timing, depth and intensity of seafloor hypoxia. The maximum vertical OMZ extent during the deglaciation was variable by region: Subarctic Pacific (~600-2,900 mbsl), California Current (~330-1,500 mbsl), Mexico Margin (~330-830 mbsl), and the Humboldt Current and Equatorial Pacific (~110-3,100 mbsl). The timing of OMZ expansion is regionally coherent but not globally synchronous. Subarctic Pacific and California Current continental margins exhibit tight correlation to the oscillations of Northern Hemisphere deglacial events (Termination IA, Bølling-Allerød, Younger Dryas and Termination IB). Southern regions (Mexico Margin and the Equatorial Pacific and Humboldt Current) exhibit hypoxia expansion prior to Termination IA (~14.7 ka), and no regional oxygenation oscillations. Our analyses provide new evidence for the geographically and vertically extensive expansion of OMZs, and the extreme compression of upper-ocean oxygenated ecosystems during the geologically recent deglaciation.
Paleoceanographic Insights on Recent Oxygen Minimum Zone Expansion: Lessons for Modern Oceanography
Moffitt, Sarah E.; Moffitt, Russell A.; Sauthoff, Wilson; Davis, Catherine V.; Hewett, Kathryn; Hill, Tessa M.
2015-01-01
Climate-driven Oxygen Minimum Zone (OMZ) expansions in the geologic record provide an opportunity to characterize the spatial and temporal scales of OMZ change. Here we investigate OMZ expansion through the global-scale warming event of the most recent deglaciation (18-11 ka), an event with clear relevance to understanding modern anthropogenic climate change. Deglacial marine sediment records were compiled to quantify the vertical extent, intensity, surface area and volume impingements of hypoxic waters upon continental margins. By integrating sediment records (183-2,309 meters below sea level; mbsl) containing one or more geochemical, sedimentary or microfossil oxygenation proxies integrated with analyses of eustatic sea level rise, we reconstruct the timing, depth and intensity of seafloor hypoxia. The maximum vertical OMZ extent during the deglaciation was variable by region: Subarctic Pacific (~600-2,900 mbsl), California Current (~330-1,500 mbsl), Mexico Margin (~330-830 mbsl), and the Humboldt Current and Equatorial Pacific (~110-3,100 mbsl). The timing of OMZ expansion is regionally coherent but not globally synchronous. Subarctic Pacific and California Current continental margins exhibit tight correlation to the oscillations of Northern Hemisphere deglacial events (Termination IA, Bølling-Allerød, Younger Dryas and Termination IB). Southern regions (Mexico Margin and the Equatorial Pacific and Humboldt Current) exhibit hypoxia expansion prior to Termination IA (~14.7 ka), and no regional oxygenation oscillations. Our analyses provide new evidence for the geographically and vertically extensive expansion of OMZs, and the extreme compression of upper-ocean oxygenated ecosystems during the geologically recent deglaciation. PMID:25629508
Bryant, Jessica A; Stewart, Frank J; Eppley, John M; DeLong, Edward F
2012-07-01
Oxygen minimum zones (OMZs) are natural physical features of the world's oceans. They create steep physiochemical gradients in the water column, which most notably include a dramatic draw down in oxygen concentrations over small vertical distances (<100 m). Microbial communities within OMZs play central roles in ocean and global biogeochemical cycles, yet we still lack a fundamental understanding of how microbial biodiversity is distributed across OMZs. Here, we used metagenomic sequencing to investigate microbial diversity across a vertical gradient in the water column during three seasons in the Eastern Tropical South Pacific (ETSP) OMZ. Based on analysis of small subunit ribosomal RNA (SSU rRNA) gene fragments, we found that both taxonomic and phylogenetic diversity declined steeply along the transition from oxygen-rich surface water to the permanent OMZ. We observed similar declines in the diversity of protein-coding gene categories, suggesting a decrease in functional (trait) diversity with depth. Metrics of functional and trait dispersion indicated that microbial communities are phylogenetically and functionally more overdispersed in oxic waters, but clustered within the OMZ. These dispersion patterns suggest that community assembly drivers (e.g., competition, environmental filtering) vary strikingly across the oxygen gradient. To understand the generality of our findings, we compared OMZ results to two marine depth gradients in subtropical oligotrophic sites and found that the oligotrophic sites did not display similar patterns, likely reflecting unique features found in the OMZ. Finally, we discuss how our results may relate to niche theory, diversity-energy relationships and stress gradients.
NASA Astrophysics Data System (ADS)
Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.
2015-10-01
Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.
CPAP Devices for Emergency Prehospital Use: A Bench Study.
Brusasco, Claudia; Corradi, Francesco; De Ferrari, Alessandra; Ball, Lorenzo; Kacmarek, Robert M; Pelosi, Paolo
2015-12-01
CPAP is frequently used in prehospital and emergency settings. An air-flow output minimum of 60 L/min and a constant positive pressure are 2 important features for a successful CPAP device. Unlike hospital CPAP devices, which require electricity, CPAP devices for ambulance use need only an oxygen source to function. The aim of the study was to evaluate and compare on a bench model the performance of 3 orofacial mask devices (Ventumask, EasyVent, and Boussignac CPAP system) and 2 helmets (Ventukit and EVE Coulisse) used to apply CPAP in the prehospital setting. A static test evaluated air-flow output, positive pressure applied, and FIO2 delivered by each device. A dynamic test assessed airway pressure stability during simulated ventilation. Efficiency of devices was compared based on oxygen flow needed to generate a minimum air flow of 60 L/min at each CPAP setting. The EasyVent and EVE Coulisse devices delivered significantly higher mean air-flow outputs compared with the Ventumask and Ventukit under all CPAP conditions tested. The Boussignac CPAP system never reached an air-flow output of 60 L/min. The EasyVent had significantly lower pressure excursion than the Ventumask at all CPAP levels, and the EVE Coulisse had lower pressure excursion than the Ventukit at 5, 15, and 20 cm H2O, whereas at 10 cm H2O, no significant difference was observed between the 2 devices. Estimated oxygen consumption was lower for the EasyVent and EVE Coulisse compared with the Ventumask and Ventukit. Air-flow output, pressure applied, FIO2 delivered, device oxygen consumption, and ability to maintain air flow at 60 L/min differed significantly among the CPAP devices tested. Only the EasyVent and EVE Coulisse achieved the required minimum level of air-flow output needed to ensure an effective therapy under all CPAP conditions. Copyright © 2015 by Daedalus Enterprises.
NASA Astrophysics Data System (ADS)
Singh, R.; Ingole, B. S.
2015-07-01
We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and oxygen minimum on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. Nematodes were identified to species and classified according to biological/functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Mean nematode density was higher on the shelf (176 ind 10 cm-2, 34 m depth) than on the slope (124 ind 10 cm-2) or in the basin 62.9 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, (15.2 %), Desmodora sp 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Multidimensional scaling ordination (nMDS) of the nematode species abundance data indicated the effect of different zones (ANOSIM; Global R = 0.607; P = 0.028), but it was not the same in case of functional traits. Only seven species were found exclusively in the oxygen minimum zone: Pselionema sp 1, Choanolaimus sp 2, Halichoanolaimus sp 1, Cobbia dentata, Daptonema sp 1, Trissonchulus sp 1, and Minolaimus sp 1. Moreover, in our study, species diversity was higher on the shelf than on the slope or in the basin. The distinctive features of all three zones as based on nematofaunal abundance were also reflected in the functional traits (feeding types, body shape, tail shape, and life history strategy). Correlation with a number of environmental variables indicated that food quality (measured as the organic carbon content and chlorophyll content) and oxygen level were the major factors that influenced the nematode community (structural and functional).
NASA Astrophysics Data System (ADS)
Moffitt, S. E.; Moffitt, R.; Sauthoff, W.; Davis, C. V.; Hewett, K.; Hill, T. M.
2013-12-01
The expansion of low oxygen hydrographic zones in the modern ocean, known as Oxygen Minimum Zones (OMZ), has the potential to deteriorate ecosystems, alter ocean nutrient cycling and inflict mass mortality events upon benthic and pelagic communities. During the last deglaciation (18-10 ka), large, climate-driven changes in the oxygen content of the upper ocean occurred. We propose that previous climate-driven OMZ expansions are data-rich events with which to characterize the spatial scales of OMZ hydrographic perturbation, and the temporal scales of natural OMZ variability. Here we synthesize a global compilation of marine sediment records from modern OMZ regions to investigate deglacial changes in the vertical extent, intensity, and surface area impingements of hypoxic waters upon continental margins. We surveyed sediment core records within water depths of 183-3,296 meters below sea level (mbsl) and took advantage of cores with geochemical, sedimentary or microfossil oxygenation proxies to reconstruct the timing, depth and intensity of seafloor hypoxia. OMZ maximum vertical extent during the deglaciation was variable by region: Subarctic Pacific (~600-2,900 mbsl), California Current (~330-1,500 mbsl), Baja and Mexico (~330-830 mbsl), and Equatorial Pacific and Humboldt Current (~110-3,100 mbsl). Expansion timing is regionally coherent but not globally synchronous, such that Subarctic Pacific and California Current marginal areas exhibit tight correlation and oxygenation reversals with Northern Hemisphere deglacial events (Termination 1A, Bølling-Allerød, Younger Dryas and Termination 1B). Southern regions (Baja and Mexico, and the Equatorial Pacific and Humboldt Current) exhibit hypoxia expansion prior to Termination 1A (~16 ka), and no oxygenation reversals. Our analysis provides new evidence for the geospatially coherent and temporally rapid expansion of OMZs during the last deglaciation, and reveals the extreme shallowness of the upper hypoxic boundary in coastal waters during events of global-scale warming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, P.; Purdue University, West Lafayette, Indiana 47907; Verma, K.
Borazine is isoelectronic with benzene and is popularly referred to as inorganic benzene. The study of non-covalent interactions with borazine and comparison with its organic counterpart promises to show interesting similarities and differences. The motivation of the present study of the borazine-water interaction, for the first time, stems from such interesting possibilities. Hydrogen-bonded complexes of borazine and water were studied using matrix isolation infrared spectroscopy and quantum chemical calculations. Computations were performed at M06-2X and MP2 levels of theory using 6-311++G(d,p) and aug-cc-pVDZ basis sets. At both the levels of theory, the complex involving an N–H⋯O interaction, where the N–Hmore » of borazine serves as the proton donor to the oxygen of water was found to be the global minimum, in contrast to the benzene-water system, which showed an H–π interaction. The experimentally observed infrared spectra of the complexes corroborated well with our computations for the complex corresponding to the global minimum. In addition to the global minimum, our computations also located two local minima on the borazine-water potential energy surface. Of the two local minima, one corresponded to a structure where the water was the proton donor to the nitrogen of borazine, approaching the borazine ring from above the plane of the ring; a structure that resembled the global minimum in the benzene-water H–π complex. The second local minimum corresponded to an interaction of the oxygen of water with the boron of borazine, which can be termed as the boron bond. Clearly the borazine-water system presents a richer landscape than the benzene-water system.« less
Schefter, John E.; Hirsch, Robert M.
1980-01-01
A method for evaluating the cost-effectiveness of alternative strategies for dissolved-oxygen (DO) management is demonstrated, using the Chattahoochee River, GA., as an example. The conceptual framework for the analysis is suggested by the economic theory of production. The minimum flow of the river and the percentage of the total waste inflow receiving nitrification are considered to be two variable inputs to be used in the production of given minimum concentration of DO in the river. Each of the inputs has a cost: the loss of dependable peak hydroelectric generating capacity at Buford Dam associated with flow augmentation and the cost associated with nitrification of wastes. The least-cost combination of minimum flow and waste treatment necessary to achieve a prescribed minimum DO concentration is identified. Results of the study indicate that, in some instances, the waste-assimilation capacity of the Chattahoochee River can be substituted for increased waste treatment; the associated savings in waste-treatment costs more than offset the benefits foregone because of the loss of peak generating capacity at Buford Dam. The sensitivity of the results to the estimates of the cost of replacing peak generating capacity is examined. It is also demonstrated that a flexible approach to the management of DO in the Chattahoochee River may be much more cost effective than a more rigid, institutional approach wherein constraints are placed on the flow of the river and(or) on waste-treatment practices. (USGS)
CO2 maximum in the oxygen minimum zone (OMZ)
NASA Astrophysics Data System (ADS)
Paulmier, A.; Ruiz-Pino, D.; Garçon, V.
2011-02-01
Oxygen minimum zones (OMZs), known as suboxic layers which are mainly localized in the Eastern Boundary Upwelling Systems, have been expanding since the 20th "high CO2" century, probably due to global warming. OMZs are also known to significantly contribute to the oceanic production of N2O, a greenhouse gas (GHG) more efficient than CO2. However, the contribution of the OMZs on the oceanic sources and sinks budget of CO2, the main GHG, still remains to be established. We present here the dissolved inorganic carbon (DIC) structure, associated locally with the Chilean OMZ and globally with the main most intense OMZs (O2<20 μmol kg-1) in the open ocean. To achieve this, we examine simultaneous DIC and O2 data collected off Chile during 4 cruises (2000-2002) and a monthly monitoring (2000-2001) in one of the shallowest OMZs, along with international DIC and O2 databases and climatology for other OMZs. High DIC concentrations (>2225 μmol kg-1, up to 2350 μmol kg-1) have been reported over the whole OMZ thickness, allowing the definition for all studied OMZs a Carbon Maximum Zone (CMZ). Locally off Chile, the shallow cores of the OMZ and CMZ are spatially and temporally collocated at 21° S, 30° S and 36° S despite different cross-shore, long-shore and seasonal configurations. Globally, the mean state of the main OMZs also corresponds to the largest carbon reserves of the ocean in subsurface waters. The CMZs-OMZs could then induce a positive feedback for the atmosphere during upwelling activity, as potential direct local sources of CO2. The CMZ paradoxically presents a slight "carbon deficit" in its core (~10%), meaning a DIC increase from the oxygenated ocean to the OMZ lower than the corresponding O2 decrease (assuming classical C/O molar ratios). This "carbon deficit" would be related to regional thermal mechanisms affecting faster O2 than DIC (due to the carbonate buffer effect) and occurring upstream in warm waters (e.g., in the Equatorial Divergence), where the CMZ-OMZ core originates. The "carbon deficit" in the CMZ core would be mainly compensated locally at the oxycline, by a "carbon excess" induced by a specific remineralization. Indeed, a possible co-existence of bacterial heterotrophic and autotrophic processes usually occurring at different depths could stimulate an intense aerobic-anaerobic remineralization, inducing the deviation of C/O molar ratios from the canonical Redfield ratios. Further studies to confirm these results for all OMZs are required to understand the OMZ effects on both climatic feedback mechanisms and marine ecosystem perturbations.
Liscum, Fred; Goss, R.L.; Paul, E.M.
1987-01-01
The third approach was a comparison at each site of the mean, maximum, and minimum values computed for seven constituents that did not correlate with discharge. These constituents or properties of water were temperature, pH, dissolved oxygen, dissolved oxygen percent saturation, total-coliform bacteria, fecal-conform bacteria, and fecal-streptococci bacteria. The only consistent water-quality changes observed were with the three bacteria groups, which were decreased by flood-water detention.
Oxygen-enriched air for MHD power plants
NASA Technical Reports Server (NTRS)
Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.
1979-01-01
Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.
NASA Astrophysics Data System (ADS)
Guo, Jinxue; Li, Xiaoyan; Sun, Yanfang; Liu, Qingyun; Quan, Zhenlan; Zhang, Xiao
2018-06-01
Development of noble-metal-free catalysts towards highly efficient electrochemical oxygen evolution reaction (OER) is critical but challenging in the renewable energy area. Herein, we firstly embed NiFe LDHs quantum dots (QDs) into expanded graphite (NiFe LDHs/EG) via in-situ confined formation process. The interlayer spacing of EG layers acts as nanoreactors for spatially confined formation of NiFe LDHs QDs. The QDs supply huge catalytic sites for OER. The in-situ decoration endows the strong affinity between QDs with EG, thus inducing fast charge transfer. Based on the aforementioned benefits, the designed catalyst exhibits outstanding OER properties, in terms of small overpotential (220 mV required to generate 10 mA cm-2), low Tafel slope, and good durable stability, making it a promising candidate for inexpensive OER catalyst.
Robot Electronics Architecture
NASA Technical Reports Server (NTRS)
Garrett, Michael; Magnone, Lee; Aghazarian, Hrand; Baumgartner, Eric; Kennedy, Brett
2008-01-01
An electronics architecture has been developed to enable the rapid construction and testing of prototypes of robotic systems. This architecture is designed to be a research vehicle of great stability, reliability, and versatility. A system according to this architecture can easily be reconfigured (including expanded or contracted) to satisfy a variety of needs with respect to input, output, processing of data, sensing, actuation, and power. The architecture affords a variety of expandable input/output options that enable ready integration of instruments, actuators, sensors, and other devices as independent modular units. The separation of different electrical functions onto independent circuit boards facilitates the development of corresponding simple and modular software interfaces. As a result, both hardware and software can be made to expand or contract in modular fashion while expending a minimum of time and effort.
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2011 CFR
2011-01-01
... displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is, 0 °C at 760 mm. Hg with no water vapor...
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2013 CFR
2013-01-01
... displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is 0 °C at 760mm Hg with no water vapor...
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2014 CFR
2014-01-01
... displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is 0 °C at 760mm Hg with no water vapor...
Oxygen, ecology, and the Cambrian radiation of animals
Sperling, Erik A.; Frieder, Christina A.; Raman, Akkur V.; Girguis, Peter R.; Levin, Lisa A.; Knoll, Andrew H.
2013-01-01
The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator–prey “arms races” can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation. PMID:23898193
Science & Technology Review November 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radousky, H
This months issue has the following articles: (1) Expanded Supercomputing Maximizes Scientific Discovery--Commentary by Dona Crawford; (2) Thunder's Power Delivers Breakthrough Science--Livermore's Thunder supercomputer allows researchers to model systems at scales never before possible. (3) Extracting Key Content from Images--A new system called the Image Content Engine is helping analysts find significant but hard-to-recognize details in overhead images. (4) Got Oxygen?--Oxygen, especially oxygen metabolism, was key to evolution, and a Livermore project helps find out why. (5) A Shocking New Form of Laserlike Light--According to research at Livermore, smashing a crystal with a shock wave can result in coherent light.
NASA Astrophysics Data System (ADS)
Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan
2018-06-01
Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.
Designing from minimum to optimum functionality
NASA Astrophysics Data System (ADS)
Bannova, Olga; Bell, Larry
2011-04-01
This paper discusses a multifaceted strategy to link NASA Minimal Functionality Habitable Element (MFHE) requirements to a compatible growth plan; leading forward to evolutionary, deployable habitats including outpost development stages. The discussion begins by reviewing fundamental geometric features inherent in small scale, vertical and horizontal, pressurized module configuration options to characterize applicability to meet stringent MFHE constraints. A proposed scenario to incorporate a vertical core MFHE concept into an expanded architecture to provide continuity of structural form and a logical path from "minimum" to "optimum" design of a habitable module. The paper describes how habitation and logistics accommodations could be pre-integrated into a common Hab/Log Module that serves both habitation and logistics functions. This is offered as a means to reduce unnecessary redundant development costs and to avoid EVA-intensive on-site adaptation and retrofitting requirements for augmented crew capacity. An evolutionary version of the hard shell Hab/Log design would have an expandable middle section to afford larger living and working accommodations. In conclusion, the paper illustrates that a number of cargo missions referenced for NASA's 4.0.0 Lunar Campaign Scenario could be eliminated altogether to expedite progress and reduce budgets. The plan concludes with a vertical growth geometry that provides versatile and efficient site development opportunities using a combination of hard Hab/Log modules and a hybrid expandable "CLAM" (Crew Lunar Accommodations Module) element.
Integrated control and health management. Orbit transfer rocket engine technology program
NASA Technical Reports Server (NTRS)
Holzmann, Wilfried A.; Hayden, Warren R.
1988-01-01
To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods.
Manufacturing and operational issues with lead-acid batteries
NASA Astrophysics Data System (ADS)
Rand, D. A. J.; Boden, D. P.; Lakshmi, C. S.; Nelson, R. F.; Prengaman, R. D.
An expert panel replies to questions on lead-acid technology and performance asked by delegates to the Ninth Asian Battery Conference. The subjects are as follows. Grid alloys: effects of calcium and tin levels on microstructure, corrosion, mechanical and electrochemical properties; effect of alloy-fabrication process on mechanical strength and corrosion resistance; low dross-make during casting of lead-calcium-tin alloys; future of book-mould casting; effect of increasing levels of silver; stability of continuously processed grids at high temperature. Negative-plate expanders: function of lignosulfonates and barium sulfate; benefits of pre-blended expanders; optimum expander formulations. Valve-regulated batteries: effect of oxygen cycle; optimum methods for float charging; charging and deep-cycle lifetimes; reliability testing.
A 3D analysis of oxygen transfer in a low-cost micro-bioreactor for animal cell suspension culture.
Yu, P; Lee, T S; Zeng, Y; Low, H T
2007-01-01
A 3D numerical model was developed to study the flow field and oxygen transport in a micro-bioreactor with a rotating magnetic bar on the bottom to mix the culture medium. The Reynolds number (Re) was kept in the range of 100-716 to ensure laminar environment for animal cell culture. The volumetric oxygen transfer coefficient (k(L)a) was determined from the oxygen concentration distribution. It was found that the effect of the cell consumption on k(L)a could be negligible. A correlation was proposed to predict the liquid-phase oxygen transfer coefficient (k(Lm)) as a function of Re. The overall oxygen transfer coefficient (k(L)) was obtained by the two-resistance model. Another correlation, within an error of 15%, was proposed to estimate the minimum oxygen concentration to avoid cell hypoxia. By combination of the correlations, the maximum cell density, which the present micro-bioreactor could support, was predicted to be in the order of 10(12) cells m(-3). The results are comparable with typical values reported for animal cell growth in mechanically stirred bioreactors.
Atmospheric oxygenation three billion years ago.
Crowe, Sean A; Døssing, Lasse N; Beukes, Nicolas J; Bau, Michael; Kruger, Stephanus J; Frei, Robert; Canfield, Donald E
2013-09-26
It is widely assumed that atmospheric oxygen concentrations remained persistently low (less than 10(-5) times present levels) for about the first 2 billion years of Earth's history. The first long-term oxygenation of the atmosphere is thought to have taken place around 2.3 billion years ago, during the Great Oxidation Event. Geochemical indications of transient atmospheric oxygenation, however, date back to 2.6-2.7 billion years ago. Here we examine the distribution of chromium isotopes and redox-sensitive metals in the approximately 3-billion-year-old Nsuze palaeosol and in the near-contemporaneous Ijzermyn iron formation from the Pongola Supergroup, South Africa. We find extensive mobilization of redox-sensitive elements through oxidative weathering. Furthermore, using our data we compute a best minimum estimate for atmospheric oxygen concentrations at that time of 3 × 10(-4) times present levels. Overall, our findings suggest that there were appreciable levels of atmospheric oxygen about 3 billion years ago, more than 600 million years before the Great Oxidation Event and some 300-400 million years earlier than previous indications for Earth surface oxygenation.
Peters, James G.; Wilber, W.G.; Crawford, Charles G.; Girardi, F.P.
1979-01-01
A digital computer model calibrated to observe stream conditions was used to evaluate water quality in West Fork Blue River, Washington County, IN. Instream dissolved-oxygen concentration averaged 96.5% of saturation at selected sites on West Fork Blue River during two 24-hour summer surveys. This high dissolved-oxygen concentration reflects small carbonaceous and nitrogenous waste loads; adequate dilution of waste by the stream; and natural reaeration. Nonpoint source waste loads accounted for an average of 53.2% of the total carbonaceous biochemical-oxygen demand and 90.2% of the nitrogenous biochemical-oxygen demand. Waste-load assimilation was studiedfor critical summer and winter low flows. Natural streamflow for these conditions was zero, so no benefit from dilution was provided. The projected stream reaeration capacity was not sufficient to maintain the minimum daily dissolved-oxygen concentration (5 milligrams per liter) in the stream with current waste-discharge restrictions. During winter low flow, ammonia toxicity, rather than dissolved-oxygen concentration, was the limiting water-quality criterion downstream from the Salem wastewater-treatment facility. (USGS)
Thermal transport in tantalum oxide films for memristive applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon, Colin D.; Wilke, Rudeger H. T.; Brumbach, Michael T.
2015-07-13
The thermal conductivity of amorphous TaO{sub x} memristive films having variable oxygen content is measured using time domain thermoreflectance. Thermal transport is described by a two-part model where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. The vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaO{sub x} switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced charge state migration.
Study of oxygen gas production phenomenon during stand and discharge in silver-zinc batteries
NASA Technical Reports Server (NTRS)
1973-01-01
The effects of a number of cell process and performance variables upon the oxygen evolution rate of silver/silver oxide cathodes are studied to predict and measure the conditions which would result in the production of a minimum of oxygen. The following five tasks comprise the study: the design and fabrication of two pilot test cells to be used for electrode testing; the determination of the sensitivity and accuracy of the test cell; the determination of total volumes and rates of generation by cathodes of standard production procedures; the construction of a sequential test plan; and the construction of a series of positive formation cells in which formation process factors can be controlled.
2013-09-30
population dynamics (growth rate, production, mortality) of copepod nauplii in the field or captured water columns (mesocosms). Since biology...36-45, doi:10.1016/j.dsr.2012.03.001, 2012. PUBLICATIONS Banse, K., Naqvi, S.W.A., Narvekar, P.V., Postel, J.R., Jayakumar , D.A. Oxygen minimum
A tracer study of ventilation in the Japan/East Sea
NASA Astrophysics Data System (ADS)
Postlethwaite, C. F.; Rohling, E. J.; Jenkins, W. J.; Walker, C. F.
2005-06-01
During the Circulation Research in East Asian Marginal Seas (CREAMS) summer cruises in 1999, a suite of samples was collected for tracer analysis. Oxygen isotopes combined with tritium-helium ventilation timescales and noble gas measurements give unique insights into the ventilation of water masses in the Japan/East Sea (JES). In particular, noble gases and oxygen isotopes are indicators of brine rejection, which may assist in explaining the recent changes observed in the ventilation of the JES. Oxygen isotope data presented here indicate that both thermally driven convection and brine rejection have played significant roles in deep-water formation but that brine rejection is unlikely to be a significant contributor at the moment. A 6-box ventilation model of the JES, calibrated with tritium and helium-3 measurements, performed better when a significant decrease of dense-water formation rates in the mid-1960s was incorporated. However, the model calculations suggest that Japan Sea Intermediate Water formation is still occurring. Subduction of sea-ice melt water may be a significant ventilation mechanism for this water mass, based on an argon saturation minimum at the recently ventilated salinity minimum in the northwestern sector of the JES. The salinity and oxygen isotope budgets imply a potential bottom-water formation rate of 3.97±0.89×10 12 m 3 yr -1 due to brine rejection, which could account for a time averaged fraction of between 25% and 35% of the ventilation of subsurface water formation in the JES.
Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone.
Lüke, Claudia; Speth, Daan R; Kox, Martine A R; Villanueva, Laura; Jetten, Mike S M
2016-01-01
Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community of Thaumarchaeota in the upper zone of the OMZ, whereas a low diversity of Scalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed by Nitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance as Nitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergent nrfA gene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria.
Nitrite oxidation in the Namibian oxygen minimum zone
Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel MM
2012-01-01
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2− d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3− was re-oxidized back to NO3− via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways. PMID:22170426
Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone
Kox, Martine A.R.; Villanueva, Laura; Jetten, Mike S.M.
2016-01-01
Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community of Thaumarchaeota in the upper zone of the OMZ, whereas a low diversity of Scalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed by Nitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance as Nitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergent nrfA gene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria. PMID:27077014
Endogenous Bone Regeneration Is Dependent Upon a Dynamic Oxygen Event
2014-01-01
endosteum and nail epithelium (Fig. 2G ). By DPA 21 hypoxyprobe signaling is still apparent in osteoblasts in the newly formed trabecular bone, but to a...affiliated with cells that surround the vascular lumen (Fig. 2G ’). This signal within the distal tip of P3 expands at DPA 21, associated...vivo (Fig. 3G -I). Digit slices were cultured at 21% oxygen and 5% CO2. Bone formation was assessed using Alizarin red staining. Bone morphology is
NASA Astrophysics Data System (ADS)
Tierney, J.; Cleaveland, L.; Herbert, T.; Altabet, M.
2004-12-01
The Peru Margin upwelling zone plays a key role in regulating marine biogeochemical cycles, particularly the fate of nitrate. High biological productivity and low oxygen waters fed into the oxygen minimum zone result in intense denitrification in the modern system, the consequences of which are global in nature. It has been very difficult, however, to study the paleoclimatic history of this region because of the poor preservation of carbonate in Peru Margin sediments. Here we present records of trace metal accumulation from two cores located in the heart of the suboxic zone off the central Peru coast. Chronology comes from multiple AMS 14C dates on the alkenone fraction of the sediment, as well as correlation using major features of the \\delta 15N record in each core. ODP Site 1228 provides a high resolution, continuous sediment record from the Recent to about 14ka, while gravity core W7706-41k extends the record to the Last Glacial Maximum. Both cores were sampled at a 100 yr resolution, then analyzed for % N, \\delta 15N, alkenones, and trace metal concentration. Analysis of redox-sensitive metals (Mo and V) alongside metals associated with changes in productivity (Ni and Zn) provides perspective on the evolution of the upwelling system and distinguishes the two major factors controlling the intensity of the oxygen minimum zone. The trace metal record exhibits a notable increase in the intensity and variability of low oxygen waters and productivity beginning around 6ka and extending to the present. Within this most recent 6ka interval, the data suggest fluctuations in oxygenation and productivity occur on 1000 yr timescales. Our core records, therefore, suggest that the Peru Margin upwelling system strengthened significantly during the mid to late Holocene.
Hypoxia tolerance and antioxidant defense system of juvenile jumbo squids in oxygen minimum zones
NASA Astrophysics Data System (ADS)
Trübenbach, Katja; Teixeira, Tatiana; Diniz, Mário; Rosa, Rui
2013-10-01
Jumbo squid (Dosidicus gigas) is a large oceanic squid endemic off the Eastern Tropical Pacific that undertakes diel vertical migrations into mesopelagic oxygen minimum zones. One of the expected physiological effects of such migration is the generation of reactive oxygen species (ROS) at the surface, promoted by the transition between hypoxia and reoxygenation states. The aim of this study was to investigate the energy expenditure rates and the antioxidant stress strategies of juvenile D. gigas under normoxia and hypoxia, namely by quantifying oxygen consumption rates, antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], heat shock protein expression (Hsp70/Hsc70), and lipid peroxidation [malondialdehyde (MDA) levels]. A high significant decrease (68%) in squid's metabolic rates was observed during hypoxia (p<0.05). This process of metabolic suppression was followed by a significant increase in Hsp70/Hsc70 expression (p<0.05), which may be interpreted as a strategy to prevent post-hypoxic oxidative damage during the squid's night upwards migration to the surface ocean. On the other hand, in normoxia, the higher SOD and CAT activities seemed to be a strategy to cope with the reoxygenation process, and may constitute an integrated stress response at shallower depths. GST activity and MDA concentrations did not change significantly from normoxia to hypoxia (p>0.05), with the latter indicating no enhancement of lipid peroxidation (i.e. cellular damage) at the warmer and normoxic surface waters. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how this species is quickly responding to the impacts of environmental stressors coupled with global climate change.
78 FR 21955 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... Set was developed specifically for use in LTCHs for data collection of NQF 0678 Pressure Ulcer measures beginning October 1, 2012, with the understanding that the data set would expand in future... well-known and clinically established data sets, including but not limited to the Minimum Data Set 3.0...
Prefabricated foldable lunar base modular systems for habitats, offices, and laboratories
NASA Technical Reports Server (NTRS)
Hijazi, Yousef
1992-01-01
The first habitat and work station on the lunar surface undoubtedly has to be prefabricated, self-erecting, and self-contained. The building structure should be folded and compacted to the minimum size and made of materials of minimum weight. It must also be designed to provide maximum possible habitable and usable space on the Moon. For this purpose the concept of multistory, foldable structures was further developed. The idea is to contain foldable structural units in a cylinder or in a capsule adapted for launching. Upon landing on the lunar surface, the cylinder of the first proposal in this paper will open in two hinge-connected halves while the capsule of the second proposal will expand horizontally and vertically in all directions. In both proposals, the foldable structural units will self-erect providing a multistory building with several room enclosures. The solar radiation protection is maintained through regolith-filled pneumatic structures as in the first proposal, or two regolith-filled expandable capsule shells as in the second one, which provide the shielding while being supported by the erected internal skeletal structure.
LDEF microenvironments, observed and predicted
NASA Astrophysics Data System (ADS)
Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.
1993-04-01
A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.
LDEF microenvironments, observed and predicted
NASA Technical Reports Server (NTRS)
Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.
1993-01-01
A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.
Spietz, Rachel L; Williams, Cheryl M; Rocap, Gabrielle; Horner-Devine, M Claire
2015-01-01
Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA-a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L(-1). This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L(-1)), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.
NASA Technical Reports Server (NTRS)
1999-01-01
Through a SBIR contract with Lewis Research Center, ElectroChem, Inc. developed a hydrogen/oxygen fuel cell. The objective for Lewis Research Center's collaboration with ElectroChem was to develop a fuel cell system that could deliver 200-W (minimum) approximately to 10kWh of electrical energy.
Role of turboexpanders in low-temperature processing is growing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwood, L.
1969-01-20
The word turboexpander is, in some respects, an unfortunate choice of names since it implies there is a fundamental difference between a turboexpander and a turbine. Actually an expander is a turbine and a turbine is an expander. In simplest terms a turboexpander converts the energy of high-pressure gas into kinetic energy by increasing the velocity of the gas in the nozzles. It then converts this energy into work by the action of the high-velocity jets impinging on the expander blades. This describes an expander where all the pressure drop occurs in the nozzle. By far, the largest current applicationmore » for expansion turbines is in air-separation plants. These plants separate air into its various constituents for the tonnage production of oxygen, nitrogen, argon, etc. The recovery of helium from natural gas and the liquefaction of natural gas for storage and transportation are 2 processes requiring large quantities of refrigeration at low temperatures. Turbine expanders can be used to advantage in these systems.« less
Global distribution of naturally occurring marine hypoxia on continental margins
NASA Astrophysics Data System (ADS)
Helly, John J.; Levin, Lisa A.
2004-09-01
Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of marine species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of naturally hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km 2 of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5 ml l -1; over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable marine resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions.
NASA Astrophysics Data System (ADS)
Ramirez-Llodra, Eva; Olabarria, Celia
2005-11-01
The present study describes some aspects of the distribution and biology of Tibia delicatula (Nevill), a gastropod belonging to the family Strombidae. This species has been found in large numbers in the upper oxygen minimum zone (OMZ) of the Oman margin, and has also been collected from the OMZ of the Pakistan margin. The highest abundance of adult specimens in the Oman OMZ was found between 300 and 450 m. Numbers dropped rapidly below 450 m, to zero below 500 m depth. Similarly dense populations were not observed in the Pakistan OMZ. Multiple regression with oxygen concentration and depth indicates that depth (and its related variables) is the main factor explaining the variation in abundance of T. delicatula. The populations from the Oman and Pakistan OMZs were dominated by juveniles. This suggests a unimodal size structure with evidence of a marked recruitment event. Basic reproductive aspects were analysed. All specimens had a penis and sperm groove. The gonad wall consisted of reticular tissue that might be used for nutrient storage or as an irrigation system. Only vitellogenic oocytes were present. The large oocyte sizes observed (200-300 μm) suggest a lecithotrophic larval development.
Exploring a microbial ecosystem approach to modeling deep ocean biogeochemical cycles
NASA Astrophysics Data System (ADS)
Zakem, E.; Follows, M. J.
2014-12-01
Though microbial respiration of organic matter in the deep ocean governs ocean and atmosphere biogeochemistry, it is not represented mechanistically in current global biogeochemical models. We seek approaches that are feasible for a global resolution, yet still reflect the enormous biodiversity of the deep microbial community and its associated metabolic pathways. We present a modeling framework grounded in thermodynamics and redox reaction stoichiometry that represents diverse microbial metabolisms explicitly. We describe a bacterial/archaeal functional type with two parameters: a growth efficiency representing the chemistry underlying a bacterial metabolism, and a rate limitation given by the rate of uptake of each of the necessary substrates for that metabolism. We then apply this approach to answer questions about microbial ecology. As a start, we resolve two dominant heterotrophic respiratory pathways- reduction of oxygen and nitrate- and associated microbial functional types. We combine these into an ecological model and a two-dimensional ocean circulation model to explore the organization, biogeochemistry, and ecology of oxygen minimum zones. Intensified upwelling and lateral transport conspire to produce an oxygen minimum at mid-depth, populated by anaerobic denitrifiers. This modeling approach should ultimately allow for the emergence of bacterial biogeography from competition of metabolisms and for the incorporation of microbial feedbacks to the climate system.
Kong, Liangliang; Jing, Hongmei; Kataoka, Takafumi; Buchwald, Carolyn; Liu, Hongbin
2013-01-01
Anaerobic ammonia oxidation (anammox) as an important nitrogen loss pathway has been reported in marine oxygen minimum zones (OMZs), but the community composition and spatial distribution of anammox bacteria in the eastern tropical North Pacific (ETNP) OMZ are poorly determined. In this study, anammox bacterial communities in the OMZ off Costa Rica (CRD-OMZ) were analyzed based on both hydrazine oxidoreductase (hzo) genes and their transcripts assigned to cluster 1 and 2. The anammox communities revealed by hzo genes and proteins in CRD-OMZ showed a low diversity. Gene quantification results showed that hzo gene abundances peaked in the upper OMZs, associated with the peaks of nitrite concentration. Nitrite and oxygen concentrations may therefore colimit the distribution of anammox bacteria in this area. Furthermore, transcriptional activity of anammox bacteria was confirmed by obtaining abundant hzo mRNA transcripts through qRT-PCR. A novel hzo cluster 2x clade was identified by the phylogenetic analysis and these novel sequences were abundant and widely distributed in this environment. Our study demonstrated that both cluster 1 and 2 anammox bacteria play an active role in the CRD-OMZ, and the cluster 1 abundance and transcriptional activity were higher than cluster 2 in both free-living and particle-attached fractions at both gene and transcriptional levels.
Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile.
Parris, Darren J; Ganesh, Sangita; Edgcomb, Virginia P; DeLong, Edward F; Stewart, Frank J
2014-01-01
Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2-1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2-1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40-70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2-1.6 μm fraction was dominated (11-99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion.
Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile
Parris, Darren J.; Ganesh, Sangita; Edgcomb, Virginia P.; DeLong, Edward F.; Stewart, Frank J.
2014-01-01
Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2–1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2–1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40–70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2–1.6 μm fraction was dominated (11–99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion. PMID:25389417
Parametrically driven scalar field in an expanding background
NASA Astrophysics Data System (ADS)
Yanez-Pagans, Sergio; Urzagasti, Deterlino; Oporto, Zui
2017-10-01
We study the existence and dynamic behavior of localized and extended structures in a massive scalar inflaton field ϕ in 1 +1 dimensions in the framework of an expanding universe with constant Hubble parameter. We introduce a parametric forcing, produced by another quantum scalar field ψ , over the effective mass squared around the minimum of the inflaton potential. For this purpose, we study the system in the context of the cubic quintic complex Ginzburg-Landau equation and find the associated amplitude equation to the cosmological scalar field equation, which near the parametric resonance allows us to find the field amplitude. We find homogeneous null solutions, flat-top expanding solitons, and dark soliton patterns. No persistent non-null solutions are found in the absence of parametric forcing, and divergent solutions are obtained when the forcing amplitude is greater than 4 /3 .
NASA Astrophysics Data System (ADS)
Won, An-Na; Song, Hae-Eun; Yang, Young-Kwon; Park, Jin-Chul; Hwang, Jung-Ha
2017-07-01
After the outbreak of the MERS (Middle East Respiratory Syndrome) epidemic, issues were raised regarding response capabilities of medical institutions, including the lack of isolation rooms at hospitals. Since then, the government of Korea has been revising regulations to enforce medical laws in order to expand the operation of isolation rooms and to strengthen standards regarding their mandatory installation at hospitals. Among general and tertiary hospitals in Korea, a total of 159 are estimated to be required to install isolation rooms to meet minimum standards. For the purpose of contributing to hospital construction plans in the future, this study conducted a questionnaire survey of experts and analysed the environment and devices necessary in isolation rooms, to determine their appropriate minimum size to treat patients. The result of the analysis is as follows: First, isolation rooms at hospitals are required to have a minimum 3,300mm minor axis and a minimum 5,000mm major axis for the isolation room itself, and a minimum 1,800mm minor axis for the antechamber where personal protective equipment is donned and removed. Second, the 15 ㎡-or-larger standard for the floor area of isolation rooms will have to be reviewed and standards for the minimum width of isolation rooms will have to be established.
Magnetic energy dissipation in force-free jets
NASA Technical Reports Server (NTRS)
Choudhuri, Arnab Rai; Konigl, Arieh
1986-01-01
It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.
Global compilation of marine varve records
NASA Astrophysics Data System (ADS)
Schimmelmann, Arndt; Lange, Carina B.; Schieber, Juergen; Francus, Pierre; Ojala, Antti E. K.; Zolitschka, Bernd
2017-04-01
Marine varves contain highly resolved records of geochemical and other paleoceanographic and paleoenvironmental proxies with annual to seasonal resolution. We present a global compilation of marine varved sedimentary records throughout the Holocene and Quaternary covering more than 50 sites worldwide. Marine varve deposition and preservation typically depend on environmental and sedimentological conditions, such as a sufficiently high sedimentation rate, severe depletion of dissolved oxygen in bottom water to exclude bioturbation by macrobenthos, and a seasonally varying sedimentary input to yield a recognizable rhythmic varve pattern. Additional oceanographic factors may include the strength and depth range of the Oxygen Minimum Zone (OMZ) and regional anthropogenic eutrophication. Modern to Quaternary marine varves are not only found in those parts of the open ocean that comply with these conditions, but also in fjords, embayments and estuaries with thermohaline density stratification, and nearshore 'marine lakes' with strong hydrologic connections to ocean water. Marine varves have also been postulated in pre-Quaternary rocks. In the case of non-evaporitic laminations in fine-grained ancient marine rocks, such as banded iron formations and black shales, laminations may not be varves but instead may have multiple alternative origins such as event beds or formation via bottom currents that transported and sorted silt-sized particles, clay floccules, and organic-mineral aggregates in the form of migrating bedload ripples. Modern marine ecosystems on continental shelves and slopes, in coastal zones and in estuaries are susceptible to stress by anthropogenic pressures, for example in the form of eutrophication, enhanced OMZs, and expanding ranges of oxygen-depletion in bottom waters. Sensitive laminated sites may play the important role of a 'canary in the coal mine' where monitoring the character and geographical extent of laminations/varves serves as a diagnostic tool to judge the environmental conditions and longer-term trends of benthic ecosystems. Analyses of modern varve records will gain importance for simultaneously providing high-resolution and longer-term perspectives. Especially in regions with limited resources or at remote sites, the comparatively low cost of high-resolution sediment analyses for environmental monitoring is an essential advantage over continuous monitoring of oceanographic conditions in the water column.
Dissolved Rare Earth Elements in the US GEOTRACES North Atlantic Section
NASA Astrophysics Data System (ADS)
Shiller, A. M.
2016-12-01
The rare earth elements (REEs) are a unique chemical set wherein there are systematic changes in geochemical behavior across the series. Furthermore, while most REEs are in the +III oxidation state, Ce and Eu can be in other oxidation states leading to distinct characteristics of those elements. Thus, the geochemical properties of the REEs make them particularly useful tools for inquiring into various geochemical processes. As part of the US GEOTRACES effort, we determined dissolved REEs and Y at 32 stations across the North Atlantic during US cruises GT10 and GT11 along a meridional transect from Lisbon to the Cape Verde Islands and a zonal transect from Cape Cod to the Mauritanian coast. While profiles are similar to previous reports, the high spatial resolution of the section allows for better elucidation of processes. Light rare earths (LREEs) show removal in the upper water column with a minimum at the chlorophyll maximum. LREE concentrations then increase into the oxygen minimum followed by a slight decrease and fairly constant concentrations in the mid-water column followed by an increase into the deep and bottom waters. Heavy rare earths (HREEs) show a more monotonic increase with depth. We also take advantage of a previously published water mass analysis for the section to estimate that most of the deep water changes can be explained by conservative mixing of waters with different pre-formed REE concentrations. Nonetheless, the pattern of LREE shallow water removal followed by regeneration, possible re-scavenging, and then deep water input is still preserved. Other features of note include an increase in LREEs in the strong oxygen minimum zone off Mauritania, consistent with an association of REE cycling with the redox cycles of Fe and Mn. Also along the eastern margin, but below the oxygen minimum, a small but distinct increase in the cerium and europium anomalies is observed, consistent with terrigenous input. In hydrothermally influenced waters along the mid-Atlantic Ridge, there are increases in Ce/Ce*, Eu/Eu*, and Y/Ho but a decrease in Nd/Yb and in REE concentrations. Surface water distributions are more consistent with elements influenced by margin inputs than with atmospheric input.
Welch, Eugene Brummer
1969-01-01
Phytoplankton productivity, standing stock, and related environmental factors were studied during 1964-66 in the Duwamish River estuary, at Seattle, Wash., to ascertain the factors that affect phytoplankton growth in the estuary; a knowledge of these factors in turn permits the detection and evaluation of the influence that effluent nutrients have on phytoplankton production. The factors that control the concentration of dissolved oxygen were also evaluated because of the importance of dissolved oxygen to the salmonid populations that migrate through the estuary. Phytoplankton blooms, primarily of diatoms, occurred in the lower estuary during August 1965 and 1966. No bloom occurred during 1964, but the presence of oxygen-supersaturated surface water in August 1963 indicates that a bloom did occur then. Nutrients probably were not the primary factor controlling the timing of phytoplankton blooms. Ammonia ,and phosphate concentrations increased significantly downstream from the Municipality of Metropolitan Seattle's Renton Treatment Plant outfall after the plant began operation in June 1965, and concentrations of nitrogen and phosphorus were relatively high before operation of the Renton Treatment Plant and during nonbloom periods. The consistent coincidence of blooms with minimum fresh-water discharge and tidal exchange during August throughout the study period indicates that bloom timing probably was controlled mostly by hydrographic factors that determine retention time and stability of the surface-water layer. This control was demonstrated in part by a highly significant correlation of gross productivity with retention time (as indicated by fresh-water discharge) and vertical stability (as indicated by the difference between mean surface and mean bottom temperatures). The failure of a bloom to develop in 1964 is related to a minimum fresh-water discharge that was much greater than normal during that summer. Hydrographic factors are apparently important because, as shown by studies of other estuarine environments by other workers, phytoplankton production increases when the zone of vertical turbulent mixing is not markedly deeper than the compensation depth. Phytoplankton cells produced in the surface waters sink, thereby contributing oxidizable organic matter to the bottom saline-water wedge. The maximum BOD (biochemical oxygen demand) in this bottom wedge occurs in the same section of the estuary and ,at the same time as the maximum phytoplankton biomass (as indicated by chlorophyll a) and minimum DO (dissolved oxygen). Other sources of BOD occur in the estuary, and conditions of minimum discharge and tidal exchange assist in reducing DO. Nonetheless, the highly significant correlation of chlorophyll a with BOD throughout the summer indicates that respiration and decomposition of phytoplankton cells is dearly an important contributor of BOD. Increases in the biomass and resultant B0D of blooms because of increased effluent nutrients presumably would further decrease the concentration of DO. This possible effect of effluent nutrients was evaluated by laboratory .bioassays and by a comparison of mean annual biomasses in the estuary. A green algal population in vitro did increase in response to added effluent nutrients; however, the available field data suggest that a 46-percent increase in effluent discharge between 1965 and 1966 did not increase the estuary's phytoplankton biomass significantly.
Advanced Expander Test Bed Program. Preliminary Design Review Report
1991-05-01
Engines & Space Propulsion P.O. Box 109600 West Palm Beach. Florida 33410-9600 May 1991 T :. ’ 3 J i, Prepared for: Lewis Research Center ! Under...IINTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . I 11 SUMMARY...................................................... 3 A. Design Approach... 3 B. Operating Cycles............................................... 4 C. Oxygen Turbopump
Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels.
Hyakutake, Toru; Kishimoto, Takumi
2017-12-01
The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction-diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 μm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.
Evaluation of Proposed Rocket Engines for Earth-to-Orbit Vehicles
NASA Technical Reports Server (NTRS)
Martin, James A.; Kramer, Richard D.
1990-01-01
The objective is to evaluate recently analyzed rocket engines for advanced Earth-to-orbit vehicles. The engines evaluated are full-flow staged combustion engines and split expander engines, both at mixture ratios at 6 and above with oxygen and hydrogen propellants. The vehicles considered are single-stage and two-stage fully reusable vehicles and the Space Shuttle with liquid rocket boosters. The results indicate that the split expander engine at a mixture ratio of about 7 is competitive with the full-flow staged combustion engine for all three vehicle concepts. A key factor in this result is the capability to increase the chamber pressure for the split expander as the mixture ratio is increased from 6 to 7.
Effects of Surface Oxygen on the Performance of Carbon as an Anode in Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Clark, Gregory W.
2001-01-01
Carbon materials with similar bulk structure but different surface oxygen were compared for their performance as anodes in lithium-ion battery. The bulk structure was such that the graphene planes were perpendicular to the surface. Three types of surfaces were examined: surface containing C=O type oxygen. surface containing -O-C type oxygen, and surface containing high concentration of active sites. The test involved cycles of lithium insertion into and release from the carbon materials, which was in the half cells of carbon/saturated LiI-50/50 (vol %) EC and DMC/lithium. During the first cycle of lithium insertion, the presence of adsorbed oxygen, -O-C type oxygen, active carbon sites, and C=O type oxygen resulted in the formation of solid-electrolyte interface (SEI) when the carbon's voltage relative to lithium metal was >1.35, 1 to 1.35, 0.5 to 1, and 0.67 to 0.7 V, respectively. An optimum -O-C type oxygen and a minimum C=O type oxygen was found to increase the reversible and decrease the irreversible capacity of carbon. Active sites on the carbon surface result in a large irreversible capacity and a second lithium insertion-release mechanism. However, this new mechanism has a short cycle life.
Climate and Anthropogenic Controls of Coastal Deoxygenation on Interannual to Centennial Timescales
NASA Astrophysics Data System (ADS)
Wang, Yi; Hendy, Ingrid; Napier, Tiffany J.
2017-11-01
Understanding dissolved oxygen variability in the ocean is limited by the short duration of direct measurements; however, sedimentary oxidation-reduction reactions can provide context for modern observations. Here we use bulk sediment redox-sensitive metal enrichment factors (MoEF, ReEF, and UEF) and scanning X-ray fluorescence records to examine annual-scale sedimentary oxygen concentrations in the Santa Barbara Basin from the Industrial Revolution (Common Era 1850) to present. Enrichments are linked to measured bottom water oxygen concentrations after 1986. We reveal gradual intensification of the coastal oxygen minimum zone (OMZ) on the southern California margin coinciding with the twentieth century anthropogenic warming trend that leads to reduced oxygen solubility and greater stratification. High-frequency interannual oscillations become more prominent over the last three decades. These are attributed to local "flushing events" triggered by the transition from El Niño to La Niña conditions, which further amplify changes in the extratropical southern Californian OMZ.
NASA Astrophysics Data System (ADS)
Chiang, Yen-Chang; Hsiao, Yang-Hsuan; Li, Jeng-Ting; Chen, Jen-Sue
2018-02-01
Charge-trapping memories (CTMs) based on zinc tin oxide (ZTO) semiconductor thin-film transistors (TFTs) can be programmed by a positive gate voltage and erased by a negative gate voltage in conjunction with light illumination. To understand the mechanism involved, the sub-gap density of states associated with ionized oxygen vacancies in the ZTO active layer is extracted from optical response capacitance-voltage (C-V) measurements. The corresponding energy states of ionized oxygen vacancies are observed below the conduction band minimum at approximately 0.5-1.0 eV. From a comparison of the fitted oxygen vacancy concentration in the CTM-TFT after the light-bias erasing operation, it is found that the pristine-erased device contains more oxygen vacancies than the program-erased device because the trapped electrons in the programmed device are pulled into the active layer and neutralized by the oxygen vacancies that are present there.
Dingley, J; Williams, D; Douglas, P; Douglas, M; Douglas, J O
2016-12-01
The objective was to develop a sodium percarbonate/water/catalyst chemical oxygen generator that did not require compressed gas. Existing devices utilising this reaction have a very short duration of action. Preliminary experiments with a glass reaction vessel, water bath and electronic flowmeter indicated that many factors affected oxygen production rate including reagent formulation, temperature, water volume and agitation frequency. Having undertaken full-scale experiments using a stainless steel vessel, an optimum combination of reagents was found to be 1 litre water, 0.75 g manganese dioxide catalyst, 60 g sodium percarbonate granules and 800 g of custom pressed 7.21 (0.28) g sodium percarbonate tablets. This combination of granules and slower dissolution tablets produced a rapid initial oxygen flow to 'purge' an attached low-flow breathing system allowing immediate use, followed by a constant flow meeting metabolic requirements for a minimum of 1 h duration. © 2016 The Association of Anaesthetists of Great Britain and Ireland.
Demonstration Advanced Avionics System (DAAS). Phase 1 report
NASA Technical Reports Server (NTRS)
1981-01-01
An integrated avionics system which provides expanded functional capabilities that significantly enhance the utility and safety of general aviation at a cost commensurate with the general aviation market is discussed. Displays and control were designed so that the pilot can use the system after minimum training. Functional and hardware descriptions, operational evaluation and failure modes effects analysis are included.
What "Counts" as Educational Policy? Notes toward a New Paradigm
ERIC Educational Resources Information Center
Anyon, Jean
2005-01-01
In this piece, Jean Anyon argues that the definition of education policy should be expanded to include the consideration of economic policies. She asserts that the impact of economic policies, such as minimum wage laws, have large and often ignored impacts on the experiences of urban students. Anyon argues that even small annual salary…
Thermal transport in tantalum oxide films for memristive applications
Landon, Colin Donald; Wilke, Rudeger H. T.; Brumbach, Michael T.; ...
2015-07-15
The thermal conductivity of amorphous TaO x memristive films having variable oxygen content is measured using time domain thermoreflectance. Furthermore, the thermal transport is described by a two-partmodel where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. Additionally, the vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaO x switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically bymore » field-induced charge state migration.« less
Martin, Jeffrey D.
1995-01-01
Concentrations of dissolved oxygen measured at the station in the middle of the combined-sewer overflows were less than the Indiana minimum ambient water-quality standard of 4.0 milligrams per liter during all storms. Concentrations of ammonia, oxygen demand, copper, lead, zinc, and fecal coliform bacteria at the stations downstream from the combined-sewer overflows were much higher in storm runoff than in base flow. Increased concentrations of oxygen demand in runoff probably were caused by combined-sewer overflows, urban runoff, and the resuspension of organic material deposited on the streambed. Some of the increased concentrations of lead, zinc, and probably copper can be attributed to the discharge and resuspension of filter backwash
NASA Astrophysics Data System (ADS)
Shibahara, Akihiko; Ohkushi, Ken'ichi; Kennett, James P.; Ikehara, Ken
2007-09-01
A strong oxygen minimum zone (OMZ) currently exists at upper intermediate water depths on the northern Japanese margin, NW Pacific. The OMZ results largely from a combination of high surface water productivity and poor ventilation of upper intermediate waters. We investigated late Quaternary history (last 34 kyr) of ocean floor oxygenation and the OMZ using quantitative changes in benthic foraminiferal assemblages in three sediment cores taken from the continental slope off Shimokita Peninsula and Tokachi, northern Japan, at water depths between 975 and 1363 m. These cores are well located within the present-day OMZ, a region of high surface water productivity, and in close proximity to the source region of North Pacific Intermediate Water. Late Quaternary benthic foraminiferal assemblages experienced major changes in response to changes in dissolved oxygen concentration in ocean floor sediments. Foraminiferal assemblages are interpreted to represent three main groups representing oxic, suboxic, and dysoxic conditions. Assemblage changes in all three cores and hence in bottom water oxygenation coincided with late Quaternary climatic episodes, similar to that known for the southern California margin. These episodes, in turn, are correlated with orbital and millennial climate episodes in the Greenland ice core including the last glacial episode, Bølling-Ållerød (B/A), Younger Dryas, Preboreal (earliest Holocene), early Holocene, and late Holocene. The lowest oxygen conditions, marked by dysoxic taxa and laminated sediments in one core, occurred during the B/A and the Preboreal intervals. Suboxic taxa dominated mainly during the last glacial, the Younger Dryas, and most of the Holocene. Dysoxic conditions during the B/A and Preboreal intervals in this region were possibly caused by high surface water productivity at times of reduced intermediate ventilation in the northwestern Pacific. Remarkable similarities are evident in the late Quaternary sequence of benthic foraminiferal assemblage change between the two very distant continental margins of northern Japan and southern California. The oscillations in OMZ strength, reflected by these faunal changes, were widespread and apparently synchronous over wide areas of the North Pacific, reflecting broad changes in intermediate water ventilation and surface ocean productivity closely linked with late Quaternary climate change on millennial and orbital timescales.
Technology readiness assessment of advanced space engine integrated controls and health monitoring
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1991-01-01
An evaluation is given for an integrated control and health monitoring system (ICHM) system that is designed to be used with hydrogen-oxygen rocket engines. The minimum required ICHM functions, system elements, technology readiness, and system cost are assessed for a system which permits the operation of H-O engines that are space-based, reusable, and descent throttleable. Based on the evaluation of the H-O ICHM, it is estimated that the minimum system requirements for demonstration on an engine system testbed will require an investment of 30 to 45 million dollars over six years.
Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987
NASA Technical Reports Server (NTRS)
Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.
1990-01-01
Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.
Croutze, Roger; Jomha, Nadr; Uludag, Hasan; Adesida, Adetola
2013-12-13
Limited intrinsic healing potential of the meniscus and a strong correlation between meniscal injury and osteoarthritis have prompted investigation of surgical repair options, including the implantation of functional bioengineered constructs. Cell-based constructs appear promising, however the generation of meniscal constructs is complicated by the presence of diverse cell populations within this heterogeneous tissue and gaps in the information concerning their response to manipulation of oxygen tension during cell culture. Four human lateral menisci were harvested from patients undergoing total knee replacement. Inner and outer meniscal fibrochondrocytes (MFCs) were expanded to passage 3 in growth medium supplemented with basic fibroblast growth factor (FGF-2), then embedded in porous collagen type I scaffolds and chondrogenically stimulated with transforming growth factor β3 (TGF-β3) under 21% (normal or normoxic) or 3% (hypoxic) oxygen tension for 21 days. Following scaffold culture, constructs were analyzed biochemically for glycosaminoglycan production, histologically for deposition of extracellular matrix (ECM), as well as at the molecular level for expression of characteristic mRNA transcripts. Constructs cultured under normal oxygen tension expressed higher levels of collagen type II (p = 0.05), aggrecan (p < 0.05) and cartilage oligomeric matrix protein, (COMP) (p < 0.05) compared to hypoxic expanded and cultured constructs. Accumulation of ECM rich in collagen type II and sulfated proteoglycan was evident in normoxic cultured scaffolds compared to those under low oxygen tension. There was no significant difference in expression of these genes between scaffolds seeded with MFCs isolated from inner or outer regions of the tissue following 21 days chondrogenic stimulation (p > 0.05). Cells isolated from inner and outer regions of the human meniscus demonstrated equivalent differentiation potential toward chondrogenic phenotype and ECM production. Oxygen tension played a key role in modulating the redifferentiation of meniscal fibrochondrocytes on a 3D collagen scaffold in vitro.
Spietz, Rachel L.; Williams, Cheryl M.; Rocap, Gabrielle; Horner-Devine, M. Claire
2015-01-01
Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems. PMID:26270047
Metal availability and the expanding network of microbial metabolisms in the Archaean eon
NASA Astrophysics Data System (ADS)
Moore, Eli K.; Jelen, Benjamin I.; Giovannelli, Donato; Raanan, Hagai; Falkowski, Paul G.
2017-09-01
Life is based on energy gained by electron-transfer processes; these processes rely on oxidoreductase enzymes, which often contain transition metals in their structures. The availability of different metals and substrates has changed over the course of Earth's history as a result of secular changes in redox conditions, particularly global oxygenation. New metabolic pathways using different transition metals co-evolved alongside changing redox conditions. Sulfur reduction, sulfate reduction, methanogenesis and anoxygenic photosynthesis appeared between about 3.8 and 3.4 billion years ago. The oxidoreductases responsible for these metabolisms incorporated metals that were readily available in Archaean oceans, chiefly iron and iron-sulfur clusters. Oxygenic photosynthesis appeared between 3.2 and 2.5 billion years ago, as did methane oxidation, nitrogen fixation, nitrification and denitrification. These metabolisms rely on an expanded range of transition metals presumably made available by the build-up of molecular oxygen in soil crusts and marine microbial mats. The appropriation of copper in enzymes before the Great Oxidation Event is particularly important, as copper is key to nitrogen and methane cycling and was later incorporated into numerous aerobic metabolisms. We find that the diversity of metals used in oxidoreductases has increased through time, suggesting that surface redox potential and metal incorporation influenced the evolution of metabolism, biological electron transfer and microbial ecology.
Chromium Isotope Anomaly Scaling with Past Warming Episodes
NASA Astrophysics Data System (ADS)
Remmelzwaal, S.; O'Connor, L.; Preston, W.; Parkinson, I. J.; Schmidt, D. N.
2017-12-01
The recent expansion of oxygen minimum zones caused by anthropogenic global warming raises questions about the scale of this expansion with different emission scenarios. Ocean deoxygenation will impact marine ecosystems and fisheries demanding an assessment of the possible extent and intensity of deoxygenation. Here, we used past climate warming events to quantify a potential link between warming and the spread of oxygen minimum zones: including Ocean Anoxic Event (OAE) 1a, OAE 2 in the Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Eocene Thermal Maximum 2 (ETM2), and Pleistocene glacial-interglacial cycles. We applied the emerging proxy of chromium isotopes in planktic foraminifera to assess redox changes during the PETM, ETM2, and Pleistocene and bulk carbonate for the OAEs. Both δ53Cr and chromium concentrations respond markedly during the PETM indicative of a reduction in dissolved oxygen concentrations caused by changes in ocean ventilation and associated warming [1]. A strong correlation between Δδ53Cr and benthic Δδ18O, a measure of the excursion size in both oxygen and chromium isotopes, suggest temperatures to be one of the main drivers of ocean deoxygenation in the past [1]. Chromium concentrations decrease during ETM2 and OAE1a, and, increase by 4.5 ppm over the Plenus Cold Event during OAE2, which suggests enhanced seafloor ventilation. [1] Remmelzwaal, S.R.C., Dixon, S., Parkinson, I.J., Schmidt, D.N., Monteiro, F.M., Sexton, P., Fehr, M., Peacock, C., Donnadieu, Y., James, R.H., in review. Ocean deoxygenation during the Palaeocene-Eocene Thermal Maximum. EPSL.
NASA Astrophysics Data System (ADS)
Fernandes, S. Q.; Mazumdar, A.; Peketi, A.; Bhattacharya, S.; Carvalho, M.; Da Silva, R.; Roy, R.; Mapder, T.; Roy, C.; Banik, S. K.; Ghosh, W.
2017-12-01
The oxygen minimum zone (OMZ) of the Arabian Sea in the northern Indian Ocean is one of the three major global sites of open ocean denitrification. The functionally anoxic water column between 150 to 1200 mbsl plays host to unique biogeochemical processes and organism interactions. Little is known, however, about the consequence of the low dissolved oxygen on the underlying sedimentary biogeochemical processes. Here we present, for the first time, a comprehensive investigation of sediment biogeochemistry of the Arabian Sea OMZ by coupling pore fluid analyses with microbial diversity data in eight sediment cores collected across a transect off the west coast of India in the Eastern Arabian Sea. We observed that in sediments underlying the core of the OMZ, high organic carbon sequestration coincides with a high diversity of all bacteria (the majority of which are complex organic matter hydrolyzers) and sulfate reducing bacteria (simple organic compound utilizers). Depth-integrated sulfate reduction rate also intensifies in this territory. These biogeochemical features, together with the detected shallowing of the sulfate-methane interface and buildup of pore-water sulfide, are all reflective of heightened carbon-sulfur cycling in the sediments underlying the OMZ core. Our data suggests that the sediment biogeochemistry of the OMZ is sensitive to minute changes in bottom water dissolved oxygen, and is dictated by the potential abundance and bioavailability of complex to simple carbon compounds which can stimulate a cascade of geomicrobial activities pertaining to the carbon-sulfur cycle. Our findings hold implications in benthic ecology and sediment diagenesis.
Pitcher, Angela; Villanueva, Laura; Hopmans, Ellen C; Schouten, Stefan; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S
2011-01-01
Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of the most intense and vertically exaggerated OMZs in the global ocean, using a unique combination of intact polar lipid (IPL) and gene-based analyses, at both DNA and RNA levels. To screen for AOA-specific IPLs, we developed a high-performance liquid chromatography/mass spectrometry/mass spectrometry method targeting hexose-phosphohexose (HPH) crenarchaeol, a common IPL of cultivated AOA. HPH-crenarchaeol showed highest abundances in the upper OMZ transition zone at oxygen concentrations of ca. 5 μ, coincident with peaks in both thaumarchaeotal 16S rDNA and amoA gene abundances and gene expression. In contrast, concentrations of anammox-specific IPLs peaked within the core of the OMZ at 600 m, where oxygen reached the lowest concentrations, and coincided with peak anammox 16S rDNA and the hydrazine oxidoreductase (hzo) gene abundances and their expression. Taken together, the data reveal a unique depth distribution of abundant AOA and anammox bacteria and the segregation of their respective niches by >400 m, suggesting no direct coupling of their metabolisms at the time and site of sampling in the Arabian Sea OMZ. PMID:21593795
NASA Astrophysics Data System (ADS)
Sanchez Velasco, L.; Ruvalcaba-Aroche, E. D.; Beier, E.; Godinez, V. M.; Barton, E. D.; Diaz-Viloria, N.; Pacheco, M.
2016-02-01
The three-dimensional distribution of the paralarvae of the complex Sthenoteuthis oualaniensis - Dosidicus gigas (Cephalopoda: Ommastrephidae) was analyzed in the northern limit of the shallow oxygen minimum zone in the Eastern Tropical Pacific (April, 2012). The hypoxic water ( 1 mL/L) rises from 100 m depth in the entrance of the Gulf of California to 20 m depth off Cabo Corrientes. Most of the paralarvae of this complex, dominated by D. gigas, were concentrated in the Gulf entrance, between the thermocline ( 20 to 50 m depth) and the sea surface, in the warmest (> 19oC) and oxygenated (> 4 mL/L) layer. The highest abundance of paralarvae was detected in an anticyclonic eddy ( 120 km diameter and > 500 m deep), which contained lower salinity water (< 35 g/kg), consistent with formation in the California Current. Lower paralarvae abundance was recorded further south off Cabo Corrientes, where hypoxic layers were elevated as water shoaled near shore. No paralarvae were found in the north of the study area beyond the strong salinity front ( 34.8 - 35.4 g/kg) that bounded the anticyclone. These results showed an affinity of the paralarvae for lower salinity, oxygenated water, illustrated by the influence of the mesoescale anticyclonic eddy and the salinity front in their distribution. Based on this study, it can be hypothesized that the expansion of the depth range of hypoxic water observed in the Eastern Tropical Pacific is vertically restricting the paralarvae habitat and likely causing a northward expansion of its range.
Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions
NASA Astrophysics Data System (ADS)
Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.
2016-11-01
Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.
Sufficient oxygen for animal respiration 1,400 million years ago
Zhang, Shuichang; Wang, Xiaomei; Wang, Huajian; Bjerrum, Christian J.; Hammarlund, Emma U.; Costa, M. Mafalda; Connelly, James N.; Zhang, Baomin; Su, Jin; Canfield, Donald E.
2016-01-01
The Mesoproterozoic Eon [1,600–1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon−oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves. PMID:26729865
40 CFR 799.9420 - TSCA carcinogenicity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... inhalation equipment designed to sustain a minimum air flow of 10 air changes per hr, an adequate oxygen... sufficient. If pretest measurements are not within 10% of each other, three to four measurements should be... methods including significance criteria shall be selected during the design of the study. (2) Evaluation...
40 CFR 799.9420 - TSCA carcinogenicity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... inhalation equipment designed to sustain a minimum air flow of 10 air changes per hr, an adequate oxygen... sufficient. If pretest measurements are not within 10% of each other, three to four measurements should be... methods including significance criteria shall be selected during the design of the study. (2) Evaluation...
40 CFR 799.9420 - TSCA carcinogenicity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... inhalation equipment designed to sustain a minimum air flow of 10 air changes per hr, an adequate oxygen... sufficient. If pretest measurements are not within 10% of each other, three to four measurements should be... methods including significance criteria shall be selected during the design of the study. (2) Evaluation...
40 CFR 799.9420 - TSCA carcinogenicity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... inhalation equipment designed to sustain a minimum air flow of 10 air changes per hr, an adequate oxygen... sufficient. If pretest measurements are not within 10% of each other, three to four measurements should be... methods including significance criteria shall be selected during the design of the study. (2) Evaluation...
40 CFR 799.9420 - TSCA carcinogenicity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... inhalation equipment designed to sustain a minimum air flow of 10 air changes per hr, an adequate oxygen... sufficient. If pretest measurements are not within 10% of each other, three to four measurements should be... methods including significance criteria shall be selected during the design of the study. (2) Evaluation...
21 CFR 172.260 - Oxidized polyethylene.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION... polyethylene has a minimum number average molecular weight of 1,200, as determined by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total oxygen; and has an acid value of 9...
NASA Astrophysics Data System (ADS)
Ovsepyan, E.; Ivanova, E. V.; Tiedemann, R.
2017-12-01
Seasonally sea-ice covered Bering Sea is known to be a sensitive region to study rapid climatic oscillations. Based on benthic (BF) and planktic (PF) foraminiferal data from two sediment cores SO201-2-85KL (85KL, w.d. 968 m) and SO201-2-77KL (77KL, w.d. 2163 m) we reconstruct variations in intensity of oxygen minimum zone (OMZ) and its relation to sea-surface bioproductivity in the central and southern parts of the Shirshov Ridge, western Bering Sea, during the Termination I. A prevalence of suboxic BF group (Kaiho, 1994) in both cores mirrors moderately oxygenated intermediate and deep waters during LGM-Heinrich I interval. Rapid increase in percentages of dysoxic group is registered in the core 77KL at the onset of Bølling/Allerød. This implies that relatively low-oxygen conditions developed at 2 km water depths in the southwestern Bering Sea, but occurrence (20-30%) of suboxic group suggests that oxygen depletion was not dramatic. Simultaneous spikes of high-productivity species point to a bioproductivity rise above the southern part of the ridge. Increase in bioproductivity and decrease in oxygen content are detected 0.9 kyr later above the central part of Shirshov Ridge than above the southern one. This delay might reflect a gradual sea ice retreat from station 77 KL to 85KL during the global warming and sea level rise. Moderate bottom-water oxygenation is suggested for the intermediate depths of 1 km whereas no changes in relative oxygen content are found at 2 km below sea level during the Younger Dryas. Concurrent decrease in bioproductivity is reconstructed from BF records from the core 85KL. However, presence of high-productivity species and elevated BF accumulation rates in the core 77KL point to higher organic matter flux to the sea floor in the southern part of the ridge at the end of Younger Dryas. For the Early Holocene, bioproductivity rise and oxygen depletion in the intermediate waters are inferred from BF data. Strong dominance of dysoxic group in the 85KL indicates that oxygen content at the intermediate depths was much lower during the Early Holocene than during the Bølling/Allerød. The results provide evidence for complex development of OMZ in the western Bering Sea during the Termination I. They also demonstrate high potential to extend such studies to the North Pacific realm.
Wilber, William G.; Peters, James G.; Crawford, Charles G.
1979-01-01
A digital model calibrated to conditions in East Fork White River, Bartholomew County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand and the headwater concentrations of carbonaceous biochemical-oxygen demand, nitrogenous biochemical-oxygen demand, and dissolved oxygen are the most significant factors affecting the dissolved-oxygen concentration of East Fork White River downstream from the Columbus wastewater-treatment facility. The effect of effluent from the facility on the water quality of East Fork White River was minimal. The model also indicates that, with a benthic-oxygen demand of approximately 0.65 gram per square meter per day, the stream has no additional waste-load assimilative capacity during summer low flows. Regardless of the quality of the Columbus wastewater effluent, the minimum 24-hour average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams, would not be met. Ammonia toxicity is not a limiting water-quality criterion during summer and winter low flows. During winter low flows, the current carbonaceous biochemical-oxygen demand limits for the Columbus wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard. (USGS)
Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.
Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P
2014-12-01
This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Patterns of deoxygenation: sensitivity to natural and anthropogenic drivers
NASA Astrophysics Data System (ADS)
Oschlies, Andreas; Duteil, Olaf; Getzlaff, Julia; Koeve, Wolfgang; Landolfi, Angela; Schmidtko, Sunke
2017-08-01
Observational estimates and numerical models both indicate a significant overall decline in marine oxygen levels over the past few decades. Spatial patterns of oxygen change, however, differ considerably between observed and modelled estimates. Particularly in the tropical thermocline that hosts open-ocean oxygen minimum zones, observations indicate a general oxygen decline, whereas most of the state-of-the-art models simulate increasing oxygen levels. Possible reasons for the apparent model-data discrepancies are examined. In order to attribute observed historical variations in oxygen levels, we here study mechanisms of changes in oxygen supply and consumption with sensitivity model simulations. Specifically, the role of equatorial jets, of lateral and diapycnal mixing processes, of changes in the wind-driven circulation and atmospheric nutrient supply, and of some poorly constrained biogeochemical processes are investigated. Predominantly wind-driven changes in the low-latitude oceanic ventilation are identified as a possible factor contributing to observed oxygen changes in the low-latitude thermocline during the past decades, while the potential role of biogeochemical processes remains difficult to constrain. We discuss implications for the attribution of observed oxygen changes to anthropogenic impacts and research priorities that may help to improve our mechanistic understanding of oxygen changes and the quality of projections into a changing future. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
Laser supported detonation wave source of atomic oxygen for aerospace material testing
NASA Technical Reports Server (NTRS)
Krech, Robert H.; Caledonia, George E.
1990-01-01
A pulsed high-flux source of nearly monoenergetic atomic oxygen was developed to perform accelerated erosion testing of spacecraft materials in a simulated low-earth orbit (LEO) environment. Molecular oxygen is introduced into an evacuated conical expansion nozzle at several atmospheres pressure through a pulsed molecular beam valve. A laser-induced breakdown is generated in the nozzle throat by a pulsed CO2 TEA laser. The resulting plasma is heated by the ensuing laser-supported detonation wave, and then it rapidly expands and cools. An atomic oxygen beam is generated with fluxes above 10 to the 18th atoms per pulse at 8 + or - 1.6 km/s with an ion content below 1 percent for LEO testing. Materials testing yielded the same surface oxygen enrichment in polyethylene samples as observed on the STS mission, and scanning electron micrographs of the irradiated polymer surfaces showed an erosion morphology similar to that obtained on low earth orbit.
Advanced chemical oxygen iodine lasers for novel beam generation
NASA Astrophysics Data System (ADS)
Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi
2018-03-01
Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.
Dynamics of the Indian-Ocean oxygen minimum zones
NASA Astrophysics Data System (ADS)
McCreary, Julian P.; Yu, Zuojun; Hood, Raleigh R.; Vinaychandran, P. N.; Furue, Ryo; Ishida, Akio; Richards, Kelvin J.
2013-05-01
In the Indian Ocean, mid-depth oxygen minimum zones (OMZs) occur in the Arabian Sea and the Bay of Bengal. The lower part of the Arabian-Sea OMZ (ASOMZ; below 400 m) intensifies northward across the basin; in contrast, its upper part (above 400 m) is located in the central/eastern basin, well east of the most productive regions along the western boundary. The Bay-of-Bengal OMZ (BBOMZ), although strong, is weaker than the ASOMZ. To investigate the processes that maintain the Indian-Ocean OMZs, we obtain a suite of solutions to a coupled biological/physical model. Its physical component is a variable-density, 61/2 >-layer model, in which each layer corresponds to a distinct dynamical regime or water-mass type. Its biological component has six compartments: nutrients, phytoplankton, zooplankton, two size classes of detritus, and oxygen. Because the model grid is non-eddy resolving (0.5°), the biological model also includes a parameterization of enhanced mixing based on the eddy kinetic energy derived from satellite observations. To explore further the impact of local processes on OMZs, we also obtain analytic solutions to a one-dimensional, simplified version of the biological model. Our control run is able to simulate basic features of the oxygen, nutrient, and phytoplankton fields throughout the Indian Ocean. The model OMZs result from a balance, or lack thereof, between a sink of oxygen by remineralization and subsurface oxygen sources due primarily to northward spreading of oxygenated water from the Southern Hemisphere, with a contribution from Persian-Gulf water in the northern Arabian Sea. The northward intensification of the lower ASOMZ results mostly from horizontal mixing since advection is weak in its depth range. The eastward shift of the upper ASOMZ is due primarily to enhanced advection and vertical eddy mixing in the western Arabian Sea, which spread oxygenated waters both horizontally and vertically. Advection carries small detritus from the western boundary into the central/eastern Arabian Sea, where it provides an additional source of remineralization that drives the ASOMZ to suboxic levels. The model BBOMZ is weaker than the ASOMZ because the Bay lacks a remote source of detritus from the western boundary. Although detritus has a prominent annual cycle, the model OMZs do not because there is not enough time for significant remineralization to occur.
NASA Astrophysics Data System (ADS)
Schubert, Brian A.; Jahren, A. Hope
2015-10-01
Modern and ancient wood is a valuable terrestrial record of carbon ultimately derived from the atmosphere and oxygen inherited from local meteoric water. Many modern and fossil wood specimens display rings sufficiently thick for intra-annual sampling, and analytical techniques are rapidly improving to allow for precise carbon and oxygen isotope measurements on very small samples, yielding unprecedented resolution of seasonal isotope records. However, the interpretation of these records across diverse environments has been problematic because a unifying model for the quantitative interpretation of seasonal climate parameters from oxygen isotopes in wood is lacking. Towards such a model, we compiled a dataset of intra-ring oxygen isotope measurements on modern wood cellulose (δ18Ocell) from 33 globally distributed sites. Five of these sites represent original data produced for this study, while the data for the other 28 sites were taken from the literature. We defined the intra-annual change in oxygen isotope value of wood cellulose [Δ(δ18Ocell)] as the difference between the maximum and minimum δ18Ocell values determined within the ring. Then, using the monthly-resolved dataset of the oxygen isotope composition of meteoric water (δ18OMW) provided by the Global Network of Isotopes in Precipitation database, we quantified the empirical relationship between the intra-annual change in meteoric water [Δ(δ18OMW)] and Δ(δ18Ocell). We then used monthly-resolved datasets of temperature and precipitation to develop a global relationship between Δ(δ18OMW) and maximum/minimum monthly temperatures and winter/summer precipitation amounts. By combining these relationships we produced a single equation that explains much of the variability in the intra-ring δ18Ocell signal through only changes in seasonal temperature and precipitation amount (R2 = 0.82). We show how our recent model that quantifies seasonal precipitation from intra-ring carbon isotope profiles can be incorporated into the oxygen model above in order to separately quantify both seasonal temperature and seasonal precipitation. Determination of seasonal climate variation using high-resolution isotopes in tree-ring records makes possible a new understanding of the seasonal fluctuations that control the environmental conditions to which organisms are subject, both during recent history and in the geologic past.
Effects of natural and human-induced hypoxia on coastal benthos
NASA Astrophysics Data System (ADS)
Levin, L. A.; Ekau, W.; Gooday, A. J.; Jorissen, F.; Middelburg, J. J.; Naqvi, S. W. A.; Neira, C.; Rabalais, N. N.; Zhang, J.
2009-10-01
Coastal hypoxia (defined here as <1.42 ml L-1; 62.5 μM; 2 mg L-1, approx. 30% oxygen saturation) develops seasonally in many estuaries, fjords, and along open coasts as a result of natural upwelling or from anthropogenic eutrophication induced by riverine nutrient inputs. Permanent hypoxia occurs naturally in some isolated seas and marine basins as well as in open slope oxygen minimum zones. Responses of benthos to hypoxia depend on the duration, predictability, and intensity of oxygen depletion and on whether H2S is formed. Under suboxic conditions, large mats of filamentous sulfide oxidizing bacteria cover the seabed and consume sulfide. They are hypothesized to provide a detoxified microhabitat for eukaryotic benthic communities. Calcareous foraminiferans and nematodes are particularly tolerant of low oxygen concentrations and may attain high densities and dominance, often in association with microbial mats. When oxygen is sufficient to support metazoans, small, soft-bodied invertebrates (typically annelids), often with short generation times and elaborate branchial structures, predominate. Large taxa are more sensitive than small taxa to hypoxia. Crustaceans and echinoderms are typically more sensitive to hypoxia, with lower oxygen thresholds, than annelids, sipunculans, molluscs and cnidarians. Mobile fish and shellfish will migrate away from low-oxygen areas. Within a species, early life stages may be more subject to oxygen stress than older life stages. Hypoxia alters both the structure and function of benthic communities, but effects may differ with regional hypoxia history. Human-caused hypoxia is generally linked to eutrophication, and occurs adjacent to watersheds with large populations or agricultural activities. Many occurrences are seasonal, within estuaries, fjords or enclosed seas of the North Atlantic and the NW Pacific Oceans. Benthic faunal responses, elicited at oxygen levels below 2 ml L-1, typically involve avoidance or mortality of large species and elevated abundances of enrichment opportunists, sometimes prior to population crashes. Areas of low oxygen persist seasonally or continuously beneath upwelling regions, associated with the upper parts of oxygen minimum zones (SE Pacific, W Africa, N Indian Ocean). These have a distribution largely distinct from eutrophic areas and support a resident fauna that is adapted to survive and reproduce at oxygen concentrations <0.5 ml L-1. Under both natural and eutrophication-caused hypoxia there is loss of diversity, through attrition of intolerant species and elevated dominance, as well as reductions in body size. These shifts in species composition and diversity yield altered trophic structure, energy flow pathways, and corresponding ecosystem services such as production, organic matter cycling and organic C burial. Increasingly the influences of nature and humans interact to generate or exacerbate hypoxia. A warmer ocean is more stratified, holds less oxygen, and may experience greater advection of oxygen-poor source waters, making new regions subject to hypoxia. Future understanding of benthic responses to hypoxia must be established in the context of global climate change and other human influences such as overfishing, pollution, disease, habitat loss, and species invasions.
NASA Astrophysics Data System (ADS)
Visbeck, M.; Banyte, D.; Brandt, P.; Dengler, M.; Fischer, T.; Karstensen, J.; Krahmann, G.; Tanhua, T. S.; Stramma, L.
2013-12-01
Equatorial Dynamics provide an essential influence on the ventilation pathways of well oxygenated surface water on their route to tropical oxygen minimum zones (OMZ). The large scale wind driven circulation shield OMZs from the direct ventilation pathways. They are located in the so called ';shadow zones' equator ward of the subtropical gyres. From what is known most of the oxygen is supplied via pathways from the western boundary modulated by the complex zonal equatorial current system and marginally by vertical mixing. What was less clear is which of the possible pathways are most effective in transporting dissolved oxygen towards the OMZ. A collaborative research program focused on the dynamics of oxygen minimum zones, called SFB754 "Climate - Biogeochemistry Interactions in the Tropical Ocean", allowed us to conduct two ocean tracer release experiments to investigate the vertical and horizontal mixing rates and associated oxygen transports. Specifically we report on the first deliberate tracer release experiment (GUTRE, Guinea Upwelling Tracer Release Experiment) in the tropical northeast Atlantic carried out in order to determine the diapycnal diffusivity coefficient in the upper layer of the OMZ. A tracer (CF3SF5) was injected in spring of 2008 and subsequently measured during three designated tracer survey cruises until the end of 2010. We found that, generally, the diffusivity is larger than expected for low latitudes and similar in magnitude to what has previously been experimentally determined in the Canary Basin. When combining the tracer study with estimates of diapycnal mixing based on microstructure profiling and a newly developed method using ship board ADCPs we were able to compute the vertical oxygen flux and its divergence for the OMZ. To our surprise, the vertical flux of oxygen by diapycnal mixing provides about 30% of the total ventilation. The estimate was derived from the simple advection-diffusion model taking into account moored and ship based velocity observations of the equatorial current systems along 23°W in the tropical Atlantic. However, the advective pathways are less certain and possibly more variable. Firstly, the strength of lateral eddy stirring and the role in oxygen transport is less well known, and is the focus of the ongoing second tracer release experiment (OSTRE, Oxygen Supply Tracer Release Experiment). Secondly, the analysis of historical data from the equatorial regime suggests that the observed decline in dissolved oxygen in the tropical North Atlantic might in part be a consequence of reduced horizontal ventilation by equatorial intermediate current systems. The uncertainty of the long-term variability of the circulation in the equatorial systems and additional uncertainty in the biogeochemical consumption rates provide a challenge for estimates of the future of the OMZ regimes. Model prediction of future oxygen changes depend on the models ability to reproduce the observed oxygen ventilation pathways and processes, which might limit the prediction's accuracy.
Lee, Ho Nyung; Ambrose Seo, Sung S.; Choi, Woo Seok; Rouleau, Christopher M.
2016-01-01
In many transition metal oxides, oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that, through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects even in high vacuum. We use a model homoepitaxial system of SrTiO3 (STO) thin films on single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Therefore, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but expands the utility of pulsed laser epitaxy of other materials as well. PMID:26823119
Modern and ancient geochemical constraints on Proterozoic atmosphere-ocean redox evolution
NASA Astrophysics Data System (ADS)
Hardisty, D. S.; Horner, T. J.; Wankel, S. D.; Lu, Z.; Lyons, T.; Nielsen, S.
2017-12-01
A detailed understanding of the spatiotemporal oxygenation of Earth's atmosphere-ocean system through the Precambrian has important implications for the environments capable of sustaining early eukaryotic life and the evolving oxidant budget of subducted sediments. Proxy records suggest an anoxic Fe-rich deep ocean through much of the Precambrian and atmospheric and surface-ocean oxygenation that started in earnest at the Paleoproterozoic Great Oxidation Event (GOE). The marine photic zone represented the initial site of oxygen production and accumulation via cyanobacteria, yet our understanding of surface-ocean oxygen contents and the extent and timing of oxygen propagation and exchange between the atmosphere and deeper ocean are limited. Here, we present an updated perspective of the constraints on atmospheric, surface-ocean, and deep-ocean oxygen contents starting at the GOE. Our research uses the iodine content of Proterozoic carbonates as a tracer of dissolved iodate in the shallow ocean, a redox-sensitive species quantitatively reduced in modern oxygen minimum zones. We supplement our understanding of the ancient record with novel experiments examining the rates of iodate production from oxygenated marine environments based on seawater incubations. Combining new data from iodine with published shallow marine (Ce anomaly, N isotopes) and atmospheric redox proxies, we provide an integrated view of the vertical redox structure of the atmosphere and ocean across the Proterozoic.
Shah, Siddharth; Acholonu, Rhonda Graves; Ohene-Frempong, Kwaku; Asakura, Toshio
2015-12-01
We previously found that blood samples collected from steady-state patients with sickle cell disease (SCD) without exposure to air contain a new type of reversibly sickled cells (RSCs) with blunt edges at a level of as high as 78%. Since partial oxygenation of once-deoxygenated sickled cells with pointy edges to near venous oxygen pressure generates similar sickled cells with blunt edges in vitro, we named them as partially oxygenated sickled cells (POSCs). On the other hand, partial deoxygenation of once-oxygenated SS cells to venous oxygen pressure generates partially deoxygenated sickled cells (PDSCs) with pointy edges. In this study, we obtained blood samples from 6 steady-state patients with SCD under venous oxygen pressure without exposure to air, subjected them to various oxygenation/deoxygenation/reoxygenation cycles, and studied their filterability through a membrane filter with pore diameter of 3μm, the theoretical minimum diameter of a capillary. Our results indicated that discocytes, POSCs with blunt edges, and irreversibly sickled cells could deform and pass through the filter, while PDSCs with pointy edges were rigid and could not. The filterability of SS cells seems to be related to the length and amount of deoxy-hemoglobin S fibers in the cells. Copyright © 2015. Published by Elsevier Inc.
Biogeochemical modelling of dissolved oxygen in a changing ocean.
Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha
2017-09-13
Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of p CO 2 -sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a p CO 2 -sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).
Biogeochemical modelling of dissolved oxygen in a changing ocean
NASA Astrophysics Data System (ADS)
Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha
2017-08-01
Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
Interactions of Oxygen and Hydrogen on Pd(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demchenko, D.O.; Sacha, G.M.; Salmeron, M.
2008-06-25
The coadsorption and interactions of oxygen and hydrogen on Pd(1 1 1) was studied by scanning tunneling microscopy and density functional theory calculations. In the absence of hydrogen oxygen forms a (2 x 2) ordered structure. Coadsorption of hydrogen leads to a structural transformation from (2 x 2) to a ({radical}3 x {radical}3)R30 degree structure. In addition to this transformation, hydrogen enhances the mobility of oxygen. To explain these observations, the interaction of oxygen and hydrogen on Pd(1 1 1) was studied within the density functional theory. In agreement with the experiment the calculations find a total energy minimum formore » the oxygen (2 x 2) structure. The interaction between H and O atoms was found to be repulsive and short ranged, leading to a compression of the O islands from (2 x 2) to ({radical}3 x {radical}3)R30 degree ordered structure at high H coverage. The computed energy barriers for the oxygen diffusion were found to be reduced due to the coadsorption of hydrogen, in agreement with the experimentally observed enhancement of oxygen mobility. The calculations also support the finding that at low temperatures the water formation reaction does not occur on Pd(1 1 1).« less
Effects of Cyanate and 2,3-Diphosphoglycerate on Sickling RELATIONSHIP TO OXYGENATION
Jensen, Michael; Bunn, H. Franklin; Halikas, George; Kan, Yuet Wai; Nathan, David G.
1973-01-01
Cyanate and 2,3-diphosphoglycerate (2,3-DPG) both influence the oxygen affinity of hemoglobin. The studies presented here concern the effects of these compounds on the sickling phenomenon. The inhibitory effect of cyanate on sickling is largely due to the fact that it increases the percentage of oxyhemoglobin S at a given oxygen tension. In addition, cyanate inhibits sickling by a mechanism that is independent of oxygenation. In this paper, we have demonstrated that the viscosity of carbamylated sickle blood was lower than that of non-carbamylated controls at the same oxygen saturation. Furthermore, carbamylation resulted in an increase in the minimum concentration of deoxy-sickle hemoglobin required for gelation. Like cyanate, 2,3-DPG affected sickling of intact erythrocytes by two mechanisms. Since 2,3-DPG decreases the percentage of oxyhemoglobin S at a given oxygen tension, sickling is enhanced. In addition, 2,3-DPG had a direct effect. When the intracellular 2,3-DPG concentration was increased in vitro, a greater percentage of cells were sickled at a given oxygen saturation. Conversely, sickling was inhibited in cells in which 2,3-DPG was artificially lowered. These data indicate that the enhancement of sickling by 2,3-DPG is in part independent of its influence on oxygen affinity. PMID:4729047
Meik, Jesse M; Makowsky, Robert
2018-01-01
We expand a framework for estimating minimum area thresholds to elaborate biogeographic patterns between two groups of snakes (rattlesnakes and colubrid snakes) on islands in the western Gulf of California, Mexico. The minimum area thresholds for supporting single species versus coexistence of two or more species relate to hypotheses of the relative importance of energetic efficiency and competitive interactions within groups, respectively. We used ordinal logistic regression probability functions to estimate minimum area thresholds after evaluating the influence of island area, isolation, and age on rattlesnake and colubrid occupancy patterns across 83 islands. Minimum area thresholds for islands supporting one species were nearly identical for rattlesnakes and colubrids (~1.7 km 2 ), suggesting that selective tradeoffs for distinctive life history traits between rattlesnakes and colubrids did not result in any clear advantage of one life history strategy over the other on islands. However, the minimum area threshold for supporting two or more species of rattlesnakes (37.1 km 2 ) was over five times greater than it was for supporting two or more species of colubrids (6.7 km 2 ). The great differences between rattlesnakes and colubrids in minimum area required to support more than one species imply that for islands in the Gulf of California relative extinction risks are higher for coexistence of multiple species of rattlesnakes and that competition within and between species of rattlesnakes is likely much more intense than it is within and between species of colubrids.
Teaching Receptor Theory to Biochemistry Undergraduates
ERIC Educational Resources Information Center
Benore-Parsons, Marilee; Sufka, Kenneth J.
2003-01-01
Receptor:ligand interactions account for numerous reactions critical to biochemistry and molecular biology. While students are typically exposed to some examples, such as hemoglobin binding of oxygen and signal transduction pathways, the topic could easily be expanded. Theory and kinetic analysis, types of receptors, and the experimental assay…
Implementing oxygen control in chip-based cell and tissue culture systems.
Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth
2016-09-21
Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.
Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.
Vitale, Sarah A; Robbins, Gary A
2017-07-01
Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.
Management of intellectual property rights in India: An updated review
Tiwari, R.; Tiwari, G.; Rai, A. K.; Srivastawa, Birendra
2011-01-01
The World Trade Organization's agreement on Trade-Related Aspects of Intellectual Property Rights set global minimum standards for the protection of intellectual property, substantially increasing and expanding intellectual property rights, and generated clear gains for the pharmaceutical industry and the developed world. The present review elaborates all aspects of Intellectual Property Rights in detail, along with their protection criteria. PMID:22470229
Canonical fluid thermodynamics. [variational principles of stability for compressible adiabatic flow
NASA Technical Reports Server (NTRS)
Schmid, L. A.
1974-01-01
The space-time integral of the thermodynamic pressure plays in a certain sense the role of the thermodynamic potential for compressible adiabatic flow. The stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and temperature to be generalized velocities. In the fluid context, the definition of proper-time differentiation involves the fluid velocity expressed in terms of three particle identity parameters. The pressure function is then converted into a functional which is the Lagrangian density of the variational principle. Being also a minimum principle, the variational principle provides a means for comparing the relative stability of different flows. For boundary conditions with a high degree of symmetry, as in the case of a uniformly expanding spherical gas box, the most stable flow is a rectilinear flow for which the world-trajectory of each particle is a straight line. Since the behavior of the interior of a freely expanding cosmic cloud may be expected to be similar to that of the fluid in the spherical box of gas, this suggests that the cosmic principle is a consequence of the laws of thermodynamics, rather than just an ad hoc postulate.
Recent Studies of the Behavior of the Sun's White-Light Corona Over Time
NASA Technical Reports Server (NTRS)
SaintCyr, O. C.; Young, D. E.; Pesnell, W. D.; Lecinski, A.; Eddy, J.
2008-01-01
Predictions of upcoming solar cycles are often related to the nature and dynamics of the Sun's polar magnetic field and its influence on the corona. For the past 30 years we have a more-or-less continuous record of the Sun's white-light corona from groundbased and spacebased coronagraphs. Over that interval, the large scale features of the corona have varied in what we now consider a 'predictable' fashion--complex, showing multiple streamers at all latitudes during solar activity maximum; and a simple dipolar shape aligned with the rotational pole during solar minimum. Over the past three decades the white-light corona appears to be a better indicator of 'true' solar minimum than sunspot number since sunspots disappear for months (even years) at solar minimum. Since almost all predictions of the timing of the next solar maximum depend on the timing of solar minimum, the white-light corona is a potentially important observational discriminator for future predictors. In this contribution we describe recent work quantifying the large-scale appearance of the Sun's corona to correlate it with the sunspot record, especially around solar minimum. These three decades can be expanded with the HAO archive of eclipse photographs which, although sparse compared to the coronagraphic coverage, extends back to 1869. A more extensive understanding of this proxy would give researchers confidence in using the white-light corona as an indicator of solar minimum conditions.
Sela, M; Tirza, G; Ravid, O; Volovitz, I; Solodeev, I; Friedman, O; Zipori, D; Gur, E; Krelin, Y; Shani, N
2015-01-01
Mesenchymal stromal cells (MSCs) are multipotent and can be derived from different adult tissues including fat. Our repeated attempts to produce long-term proliferative cultures of rat abdominal adipose stem cells (aASCs) under normal oxygen concentration (21%) were unsuccessful. We set to examine the events controlling this cytostasis of aASCs and found that it resulted from overproduction of reactive oxygen species (ROS) that led to apoptosis. ROS overproduction in aASCs was accompanied by increased expression of NOX1 but not of NOX2 or NOX4. NOX family members are an important source of intracellular ROS pointing to NOX1 involvement in ROS accumulation. This was verified when aASCs that were grown under 3% oxygen conditions expanded long term, displaying reduced NOX1 expression and decreased ROS accumulation. NOX1 involvement in aASC cytostasis was reaffirmed when cells that were expanded under normoxic conditions in the presence of a specific NOX1 inhibitor, ML171, demonstrated reduced ROS accumulation, reduced apoptosis and long-term expansion. aASC expansion arrest was accompanied also by a weak fat differentiation and migratory potential, which was enhanced by NOX1 inhibition. This suggests an inhibitory role for NOX1-induced ROS overproduction on aASCs, their fat differentiation and migratory potential. In contrast to aASCs, similar cells produced from subcutaneous fat were easily expanded in normoxic cultures, exhibiting low ROS concentrations, a low number of apoptotic cells and improved fat differentiation and migration. Taken together, our results show, for the first time, that NOX1-induced ROS accumulation halts ASC expansion and reduces their differentiation and migratory potential under normoxic conditions. Importantly, this phenotype comprises a tissue-specific signature as it was evident in aASCs but not in subcutaneous ASCs. NOX-induced ROS accumulation and cytokine production by fat are part of the metabolic syndrome. The similarity of this phenomenon to aASC phenotype may indicate that they arise from similar molecular mechanisms. PMID:25880095
Atmospheric pressure cold plasma as an antifungal therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Peng; Wu Haiyan; Sun Yi
2011-01-10
A microhollow cathode based, direct-current, atmospheric pressure, He/O{sub 2} (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.
Hassani, Bahia Khalfaoui; Steunou, Anne-Soisig; Liotenberg, Sylviane; Reiss-Husson, Françoise; Astier, Chantal; Ouchane, Soufian
2010-06-25
The appearance of oxygen in the Earth's atmosphere via oxygenic photosynthesis required strict anaerobes and obligate phototrophs to cope with the presence of this toxic molecule. Here we show that in the anoxygenic phototroph Rubrivivax gelatinosus, the terminal oxidases (cbb(3), bd, and caa(3)) expand the range of ambient oxygen tensions under which the organism can initiate photosynthesis. Unlike the wild type, the cbb(3)(-)/bd(-) double mutant can start photosynthesis only in deoxygenated medium or when oxygen is removed, either by sparging cultures with nitrogen or by co-inoculation with strict aerobes bacteria. In oxygenated environments, this mutant survives nonphotosynthetically until the O(2) tension is reduced. The cbb(3) and bd oxidases are therefore required not only for respiration but also for reduction of the environmental O(2) pressure prior to anaerobic photosynthesis. Suppressor mutations that restore respiration simultaneously restore photosynthesis in nondeoxygenated medium. Furthermore, induction of photosystem in the cbb(3)(-) mutant led to a highly unstable strain. These results demonstrate that photosynthetic metabolism in environments exposed to oxygen is critically dependent on the O(2)-detoxifying action of terminal oxidases.
Behavioral ecology of jumbo squid (Dosidicus gigas) in relation to oxygen minimum zones
NASA Astrophysics Data System (ADS)
Stewart, Julia S.; Field, John C.; Markaida, Unai; Gilly, William F.
2013-10-01
Habitat utilization, behavior and food habits of the jumbo or Humboldt squid, Dosidicus gigas, were compared between an area recently inhabited in the northern California Current System (CCS) and a historically established area of residence in the Gulf of California (GOC). Low dissolved oxygen concentrations at midwater depths define the oxygen minimum zone (OMZ), an important environmental feature in both areas. We analyzed vertical diving behavior and diet of D. gigas and hydrographic properties of the water column to ascertain the extent to which squid utilized the OMZ in the two areas. The upper boundary of the OMZ has been shoaling in recent decades in the CCS, and this phenomenon has been proposed to vertically compress the pelagic environment inhabited by aerobic predators. A shoaling OMZ will also bring mesopelagic communities into a depth range with more illumination during daytime, making these organisms more vulnerable to predation by visual predators (i.e. jumbo squid). Because the OMZ in the GOC is considerably shallower than in the CCS, our study provides insight into the behavioral plasticity of jumbo squid and how they may respond to a shoaling OMZ in the CCS. We propose that shoaling OMZs are likely to be favorable to jumbo squid and could be a key indirect factor behind the recent range expansion of this highly migratory predator.
Kong, Liangliang; Jing, Hongmei; Kataoka, Takafumi; Buchwald, Carolyn; Liu, Hongbin
2013-01-01
Anaerobic ammonia oxidation (anammox) as an important nitrogen loss pathway has been reported in marine oxygen minimum zones (OMZs), but the community composition and spatial distribution of anammox bacteria in the eastern tropical North Pacific (ETNP) OMZ are poorly determined. In this study, anammox bacterial communities in the OMZ off Costa Rica (CRD-OMZ) were analyzed based on both hydrazine oxidoreductase (hzo) genes and their transcripts assigned to cluster 1 and 2. The anammox communities revealed by hzo genes and proteins in CRD-OMZ showed a low diversity. Gene quantification results showed that hzo gene abundances peaked in the upper OMZs, associated with the peaks of nitrite concentration. Nitrite and oxygen concentrations may therefore colimit the distribution of anammox bacteria in this area. Furthermore, transcriptional activity of anammox bacteria was confirmed by obtaining abundant hzo mRNA transcripts through qRT-PCR. A novel hzo cluster 2x clade was identified by the phylogenetic analysis and these novel sequences were abundant and widely distributed in this environment. Our study demonstrated that both cluster 1 and 2 anammox bacteria play an active role in the CRD-OMZ, and the cluster 1 abundance and transcriptional activity were higher than cluster 2 in both free-living and particle-attached fractions at both gene and transcriptional levels. PMID:24205176
Gooday, Andrew J; Bowser, Samuel S
2005-06-01
We describe a gromiid protist Gromia pyriformis sp. nov., from bathyal depths on the Pakistan margin (NE Arabian Sea), an area characterised by a well-developed Oxygen Minimum Zone (OMZ). The new species is smaller (length usually <1 mm) than the only other described deep-sea gromiid species (Gromia sphaerica) or the well-known coastal species Gromia oviformis. Its identification as a gromiid is based on the test-wall ultrastructure. This includes (i) an outer wall (165-300 nm thick) limited by an electron-opaque layer and perforated by pore structures which typically extend through its entire thickness, and (ii) inner "honeycomb membrane" structures which form a discontinuous sheet (18-20 nm thick) lying parallel to the outer wall. An outermost glycocalyx (approximately 75 nm thick), not observed in other gromiid species, is also present and imparts a finely granular appearance to the outer test surface, as seen by Scanning Electron Microscopy (SEM). Numerous rod-shaped prokaryotes are attached to the exterior of the glycocalyx. Gromia pyriformis sp. nov. typically occurs above the sediment-water interface, attached to the large arborescent foraminiferan Pelosina sp. It is confined to a very narrow bathymetric zone (approximately 1000 m water depth) in the lower portion of the OMZ, where bottom-water oxygen concentrations are approximately 0.2 ml l(-1).
Ebbert, J.C.
2002-01-01
The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by photosynthesis and respiration. The upper limit on oxygen demand caused by the scour of anoxic bed sediment and subsequent oxidation of reduced iron and manganese is less than 1 mg/L. The actual demand, if any, is probably negligible.In August and September 2001, concentrations of dissolved oxygen in the lower Puyallup River did not fall below the water-quality standard of 8 mg/L, except at high tide when the saline water from Commencement Bay reached the monitor at river mile 2.9. The minimum concentration of dissolved oxygen (7.6 mg/L) observed at river mile 2.9 coincided with the maximum value of specific conductance. Because the dissolved-oxygen standard for marine water is 6.0 mg/L, the standard was not violated at river mile 2.9. The concentration of dissolved oxygen at river mile 1.8 in the White River dropped below the water-quality standard on two occasions in August 2001. The minimum concentration of 7.8 mg/L occurred on August 23, and a concentration of 7.9 mg/L was recorded on August 13. Because there was some uncertainty in the monitoring record for those days, it cannot be stated with certainty that the actual concentration of dissolved oxygen in the river dropped below 8 mg/L. However, at other times when the quality of the monitoring record was good, concentrations as low as 8.2 mg/L were observed at river mile 1.8 in the White River.
NASA Astrophysics Data System (ADS)
Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei
2017-03-01
Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.
Design of an Oxygen Turbopump for a Dual Expander Cycle Rocket Engine
2008-03-01
Scharrer, Tellier , and Hibbs mentioned several applications where this bearing design choice benefits the overall engine performance, specifically in...Hydrostatic Bearings, AIAA-92-3401. 27 Scharrer, J.K., Tellier , J.G., and Hibbs, R.I., Start Transient Testing of an Annular Hydrostatic Bearing in Liquid
REFINING KNOWLEDGE OF HYPOXIA DYNAMICS: THE INTERACTION OF PHYSICS AND BIOLOGY MX964240
The specific purpose of this proposal is to expand the coupled biological/physical data acquisition by instrumenting a moored platform in the Northern Gulf of Mexico close to the Mississippi River delta off the Barataria Bay estuary. Real-time monitors for dissolved oxygen, chlo...
Oxygen Concentration Flammability Threshold Tests for the Constellation Program
NASA Technical Reports Server (NTRS)
Williams, James H.
2007-01-01
CEV atmosphere will likely change because craft will be used as LEO spacecraft, lunar spacecraft, orbital spacecraft. Possible O2 % increase and overall pressure decrease pressure vessel certs on spacecraft. Want 34% minimum threshold. Higher, better when atmosphere changes. WSTF suggests testing all materials/components to find flammability threshold, pressure and atmosphere.
Yenigun, A; Karamanli, H
2015-09-01
To investigate the neutrophil-to-lymphocyte ratio and sleep apnoea severity relationship. Patients (n = 178) were assigned to five groups according to apnoea-hypopnea indices and continuous positive airway pressure use. White blood cell, neutrophil, lymphocyte and neutrophil-to-lymphocyte ratio values were compared for each group. The neutrophil-to-lymphocyte ratio values of severe obstructive sleep apnoea syndrome patients (group 4) were significantly higher than those of: control patients (group 1), mild obstructive sleep apnoea syndrome patients (group 2) and patients treated with continuous positive airway pressure (group 5) (p = 0.008, p = 0.008 and p = 0.003). Minimum oxygen saturation values of group 4 were significantly lower than those of groups 1, 2 and 5 (p = 0.0005, p = 0.011 and p = 0.001). There was a positive correlation between apnoea-hypopnea index and neutrophil-to-lymphocyte ratio (r = 0.758, p = 0.034), and a negative correlation between apnoea-hypopnea index and minimum oxygen saturation (r = -0.179, p = 0.012). Neutrophil-to-lymphocyte ratio may be used to determine disease severity, complementing polysomnography.
Effect of water on hydrogen permeability
NASA Technical Reports Server (NTRS)
Hulligan, David; Tomazic, William A.
1987-01-01
Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.
Activity and diversity of aerobic methanotrophs in a coastal marine oxygen minimum zone
NASA Astrophysics Data System (ADS)
Padilla, C. C.; Bristow, L. A.; Sarode, N. D.; Garcia-Robledo, E.; Girguis, P. R.; Thamdrup, B.; Stewart, F. J.
2016-02-01
The pelagic ocean is a sink for the potent greenhouse gas methane, with methane consumption regulated primarily by aerobic methane-oxidizing bacteria (MOB). Marine oxygen minimum zones (OMZs) contain the largest pool of pelagic methane in the oceans but remain largely unexplored for their potential to harbor MOB communities and contribute to methane cycling. Here, we present meta-omic and geochemical evidence that aerobic MOB are present and active in a coastal OMZ, in Golfo Dulce, Costa Rica. Oxygen concentrations were < 50 nM below 85 m, and sulfide accumulated below 140 m, with methane concentrations ranging from trace levels above the oxycline to 78 nM at 180 m. The upper OMZ (90 m) was characterized by an abundant MOB and methylotroph community representing diverse lineages of the Methylophilaceae, Methylophaga, and Methylococcales. Of these, Type I methanotrophs of the Order Methylococcales dominated , representing >5% of total 16S rRNA genes and >19% of 16S rRNA transcripts. This peak in ribosomal abundance and activity was affiliated with methane oxidation rates of 2.6 ± 0.7 nM d-1, measured in seawater incubations with estimated O2 concentrations of 50 nM. Rates fell to zero with the addition of acetylene, an inhibitor of aerobic methanotrophy. In contrast, methane oxidation was below detection at lower depths in the OMZ (100 m and 120 m). Metatranscriptome sequencing indicated a peak at 90 m in the expression of pathways essential to Methylococcales, including aerobic methanotrophy and the RuMP pathway of carbon assimilation, as well as the serine pathway of Type II methanotrophs. Preliminary analysis of single-cell genomes suggests distinct adaptations by Methylococcales from the Golfo Dulce, helping explain the persistence of putative aerobic methanotrophs under very low oxygen in this OMZ. Taken together, these data suggest the boundary layers of OMZs, despite extreme oxygen depletion, are a niche for aerobic MOBs and therefore potentially important zones of pelagic methane loss.
Yücel, Mustafa; Beaton, Alexander D.; Dengler, Marcus; Mowlem, Matthew C.; Sohl, Frank; Sommer, Stefan
2015-01-01
Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958
Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea
NASA Astrophysics Data System (ADS)
Schulte, Sonja; Rostek, Frauke; Bard, Edouard; Rullkötter, Jürgen; Marchal, Olivier
1999-11-01
Two deep-sea sediment cores from the northeastern and the southeastern Arabian Sea were studied in order to reconstruct the palaeoenvironments of the past glacial cycles. Core 136KL was recovered from the high-productivity area off Pakistan within the modern oxygen-minimum zone (OMZ). By contrast, modern primary productivity at the site of MD900963 close to Maldives is moderate and bottom waters are today well oxygenated. For both cores, we reconstructed the changes in palaeoproductivity using a set of biomarkers (alkenones, dinosterol and brassicasterol); the main result is that primary productivity is enhanced during glacial stages and lowered during interstadials. The proxies associated with productivity show a 23 kyr cyclicity corresponding to the precession-related insolation cycle. Palaeoredox conditions were studied in both cores using a new organic geochemical parameter (C 35/C 31- n-alkane ratio) developed by analysing surface sediments from a transect across the OMZ off Pakistan. The value of this ratio in core 136KL shows many variations during the last 65 kyr, indicating that the OMZ was not stable during this time: it disappeared completely during Heinrich- and the Younger Dryas events, pointing to a connection between global oceanic circulation and the stability of the OMZ. The C 35/C 31 ratio determined in sediments of core MD900963 shows that bottom waters remained rather well oxygenated over the last 330 kyr, which is confirmed by comparison with authigenic metal concentrations in the same sediments. A zonally averaged, circulation-biogeochemical ocean model was used to explore how the intermediate Indian Ocean responds to a freshwater flux anomaly at the surface of the North Atlantic. As suggested by the geochemical time series, both the abundance of Southern Ocean Water and the oxygen concentration are significantly increased in response to this freshwater perturbation.
Johnson, Barry L.; Knights, Brent C.; Barko, John W.; Gaugush, Robert F.; Soballe, David M.; James, William F.
1998-01-01
The backwaters of large rivers provide winter refuge for many riverine fish, but they often exhibit low dissolved oxygen levels due to high biological oxygen demand and low flows. Introducing water from the main channel can increase oxygen levels in backwaters, but can also increase current velocity and reduce temperature during winter, which may reduce habitat suitability for fish. In 1993, culverts were installed to introduce flow to the Finger Lakes, a system of six backwater lakes on the Mississippi River, about 160 km downstream from Minneapolis, Minnesota. The goal was to improve habitat for bluegills and black crappies during winter by providing dissolved oxygen concentrations >3 mg/L, current velocities <1 cm/s, and temperatures >1°C. To achieve these conditions, we used data on lake volume and oxygen demand to estimate the minimum flow required to maintain 3 mg/L of dissolved oxygen in each lake. Estimated flows ranged from 0.02 to 0.14 m3/s among lakes. Data gathered in winter 1994 after the culverts were opened, indicated that the estimated flows met habitat goals, but that thermal stratification and lake morphometry can reduce the volume of optimal habitat created.
NASA Astrophysics Data System (ADS)
Sato, K.; Jung, J. Y.; Levin, L. A.
2016-02-01
The rapid pace of deoxygenation and ocean acidification associated with anthropogenic climate change on upwelling margins will have differing effects on marine species from the population level down to the nanoscale. Driven by the understudied effects of climate change in the deep sea, we address the question, how will dominant echinoid urchins respond to future changes in multiple stressors (i.e. ocean acidification, deoxygenation, and shoaling of hypoxic water and calcium carbonate saturation horizons) on the southern California continental slope? Samples of the sea urchin, Strongylocentrotus fragilis, were collected along gradients of multiple hydrographic variables and analyzed for phenotypic variation with respect to multiple climate change stressors (oxygen, pH, and temperature). We compare fitness traits of S. fragilis collected along the continental slope and through the Oxygen Minimum Zone (OMZ), which include growth rate, morphology, and reproductive output, in addition to nanoscale structural and biomechanical test properties. Our results indicate that growth rate of S. fragilis is directly correlated with dissolved oxygen and pH, but not depth or temperature. Reproductive output, as measured by a standard gonad index, was found to be sensitive at the OMZ core (pH 7.40; O2 0.25 mL/L), which suggests a nonlinear response to chemical stressors. Preliminary analysis of mineral density in test pieces imaged using micro- and nano- computed tomography indicates exposure to conditions in the OMZ reduces calcification. This improved understanding of how continental margin urchins differ along natural physicochemical gradients will provide modern-day insight into the threshold tolerances of species to multiple stressors and will help guide future manipulation experiments as well as fisheries and spatial management.
Arousal From Sleep and Sympathetic Excitation During Wakefulness.
Taylor, Keri S; Murai, Hisayoshi; Millar, Philip J; Haruki, Nobuhiko; Kimmerly, Derek S; Morris, Beverley L; Tomlinson, George; Bradley, T Douglas; Floras, John S
2016-12-01
Obstructive apnea during sleep elevates the set point for efferent sympathetic outflow during wakefulness. Such resetting is attributed to hypoxia-induced upregulation of peripheral chemoreceptor and brain stem sympathetic function. Whether recurrent arousal from sleep also influences daytime muscle sympathetic nerve activity is unknown. We therefore tested, in a cohort of 48 primarily nonsleepy, middle-aged, male (30) and female (18) volunteers (age: 59±1 years, mean±SE), the hypothesis that the frequency of arousals from sleep (arousal index) would relate to daytime muscle sympathetic burst incidence, independently of the frequency of apnea or its severity. Polysomnography identified 24 as having either no or mild obstructive sleep apnea (apnea-hypopnea index <15 events/h) and 24 with moderate-to-severe obstructive sleep apnea (apnea-hypopnea index >15 events/h). Burst incidence correlated significantly with arousal index (r=0.53; P<0.001), minimum oxygen saturation (r=-0.43; P=0.002), apnea-hypopnea index (r=0.41; P=0.004), age (r=0.36; P=0.013), and body mass index (r=0.33; P=0.022) but not with oxygen desaturation index (r=0.28; P=0.056). Arousal index was the single strongest predictor of muscle sympathetic nerve activity burst incidence, present in all best subsets regression models. The model with the highest adjusted R 2 (0.456) incorporated arousal index, minimum oxygen saturation, age, body mass index, and oxygen desaturation index but not apnea-hypopnea index. An apnea- and hypoxia-independent effect of sleep fragmentation on sympathetic discharge during wakefulness could contribute to intersubject variability, age-related increases in muscle sympathetic nerve activity, associations between sleep deprivation and insulin resistance or insomnia and future cardiovascular events, and residual adrenergic risk with persistence of hypertension should therapy eliminate obstructive apneas but not arousals. © 2016 American Heart Association, Inc.
Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters
Bristow, Laura A.; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B.; Bertagnolli, Anthony D.; Wright, Jody J.; Hallam, Steven J.; Ulloa, Osvaldo; Canfield, Donald E.; Revsbech, Niels Peter; Thamdrup, Bo
2016-01-01
A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (<10 nmol⋅L−1) is therefore essential for understanding and modeling nitrogen loss in OMZs. We determined rates of ammonium and nitrite oxidation in the seasonal OMZ off Concepcion, Chile at manipulated O2 levels between 5 nmol⋅L−1 and 20 μmol⋅L−1. Rates of both processes were detectable in the low nanomolar range (5–33 nmol⋅L−1 O2), but demonstrated a strong dependence on O2 concentrations with apparent half-saturation constants (Kms) of 333 ± 130 nmol⋅L−1 O2 for ammonium oxidation and 778 ± 168 nmol⋅L−1 O2 for nitrite oxidation assuming one-component Michaelis–Menten kinetics. Nitrite oxidation rates, however, were better described with a two-component Michaelis–Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss. PMID:27601665
A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors
Shipley, RJ; Davidson, AJ; Chan, K; Chaudhuri, JB; Waters, SL; Ellis, MJ
2011-01-01
The development of tissue engineering hollow fiber bioreactors (HFB) requires the optimal design of the geometry and operation parameters of the system. This article provides a strategy for specifying operating conditions for the system based on mathematical models of oxygen delivery to the cell population. Analytical and numerical solutions of these models are developed based on Michaelis–Menten kinetics. Depending on the minimum oxygen concentration required to culture a functional cell population, together with the oxygen uptake kinetics, the strategy dictates the model needed to describe mass transport so that the operating conditions can be defined. If cmin ≫ Km we capture oxygen uptake using zero-order kinetics and proceed analytically. This enables operating equations to be developed that allow the user to choose the medium flow rate, lumen length, and ECS depth to provide a prescribed value of cmin. When , we use numerical techniques to solve full Michaelis–Menten kinetics and present operating data for the bioreactor. The strategy presented utilizes both analytical and numerical approaches and can be applied to any cell type with known oxygen transport properties and uptake kinetics. PMID:21370228
NASA Astrophysics Data System (ADS)
Franz, Jasmin; Krahmann, Gerd; Lavik, Gaute; Grasse, Patricia; Dittmar, Thorsten; Riebesell, Ulf
2012-04-01
The tropical South East Pacific is characterized by strong coastal upwelling on the narrow continental shelf and an intense oxygen minimum zone (OMZ) in the intermediate water layer. These hydrographic properties are responsible for a permanent supply of intermediate water masses to the surface rich in nutrients and with a remarkably low inorganic N:P stoichiometry. To investigate the impact of OMZ-influenced upwelling waters on phytoplankton growth, elemental and taxonomical composition we measured hydrographic and biogeochemical parameters along an east-west transect at 10°S in the tropical South East Pacific, stretching from the upwelling region above the narrow continental shelf to the well-stratified oceanic section of the eastern boundary regime. New production in the area of coastal upwelling was driven by large-sized phytoplankton (e.g. diatoms) with generally low N:P ratios (<16:1). While nitrate and phosphate concentrations were at levels not limiting phytoplankton growth along the entire transect, silicate depletion prohibited diatom growth further off-shore. A deep chlorophyll a maximum consisting of pico-/nano- (Synechococcus, flagellates) and microphytoplankton occurred within a pronounced thermocline in subsurface waters above the shelf break and showed intermediate N:P ratios close to Redfield proportions. High PON:POP (>20:1) ratios were observed in the stratified open ocean section of the transect, coinciding with the abundance of two strains of the pico-cyanobacterium Prochlorococcus; a high-light adapted strain in the surface layer and a low-light adapted strain occurring along the oxic-anoxic transition zone below the thermocline. Excess phosphate present along the entire transect did not appear to stimulate growth of nitrogen-fixing phytoplankton, as pigment fingerprinting did not indicate the presence of diazotrophic cyanobacteria at any of our sampling stations. Instead, a large fraction of the excess phosphate generated within the oxygen minimum zone was consumed by non-Redfield production of large phytoplankton in shelf surface waters.
Nasby-Lucas, Nicole; Dewar, Heidi; Lam, Chi H.; Goldman, Kenneth J.; Domeier, Michael L.
2009-01-01
Background Although much is known about the behavior of white sharks in coastal regions, very little is known about their vertical movements offshore in the eastern Pacific where they spend up to five months. We provide the first detailed description of the offshore habitat use of white sharks in the eastern North Pacific. Methodology/Principal Findings This study uses 2-min data from four recovered pop-up satellite archival tags deployed at Guadalupe Island (2002 and 2005). Deployments ranged from 5.4 to 8.2 months. Two predominant vertical patterns were described. The first was a bimodal vertical pattern with time spent at the surface and at depth, which was observed while traveling. The second was a repetitive oscillatory diving mode displayed by sharks in the Shared Offshore Foraging Area (SOFA). For all four datasets the average maximum daily dive depths ranged from 442.5 to 492.8 m and were typically associated with dissolved oxygen concentrations of above 1.7 ml L−1. Although infrequent, occasional dives to near 1000 m with a minimum temperature of 3.9°C and a minimum O2 level of 0.3 ml L−1 were observed. Conclusions/Significance Recovered pop-up satellite tags from Guadalupe Island white sharks advance our understanding of the vertical habitat use of white sharks while offshore. The bimodal vertical pattern during traveling is most likely related to geolocation. The oscillatory dive pattern is likely associated with foraging. While feeding is not documented, foraging is likely occurring in association with the deep scattering layer. Diving depths were not limited by temperature but were constrained by O2 levels below approximately 1.5 ml L−1. While oxygen may limit the extent of sharks' vertical movements, it will also impact prey distribution. Consequently, the shallow oxygen minimum zone in the SOFA may act to concentrate prey, thus enhancing foraging opportunities in these oligotrophic waters. PMID:20011032
NASA Astrophysics Data System (ADS)
De Leo, Fabio C.; Gauthier, Maéva; Nephin, Jessica; Mihály, Steven; Juniper, S. Kim
2017-03-01
Understanding responses of benthic ecosystems to cumulative impacts of natural stressors, long-term ocean change and increasing resource exploitation is an emerging area of interest for marine ecologists and environmental managers. Few, if any, studies have quantitatively addressed cumulative effects in the deep sea. We report here on a study from the continental slope off Vancouver Island (Canada) in the northeast Pacific Ocean, where the Oxygen Minimum Zone impinges on seabed habitats that are subjected to widespread bottom trawling, primarily by the fishery for thornyhead (Sebastolobus ssp.). We examined how the benthic megafauna in this area was influenced by varying levels of dissolved oxygen and trawling activity, along a depth gradient that was also likely to shape community composition. Continuous video and sonar records from two ROV surveys (50 linear km total; depth range 300-1400 m) respectively provided data on faunal attributes (composition, abundance and diversity) and the frequency of trawl door marks on the seabed. Faunal and trawl data were compiled in a geo-referenced database along with corresponding dissolved oxygen data, and pooled into 500 m segments for statistical analysis. Trawl mark occurrence peaked between 500 and 1100 m, corresponding to areas of slope subjected to hypoxia (<1.4 ml l-1) and severe hypoxia (<0.5 ml l-1). A combined total of 266,251 megafauna organisms from 87 taxa were enumerated in the two transects. Significant megafaunal assemblages according to depth, trawling intensity and bottom water dissolved oxygen concentration were identified by PERMANOVA analyses, with characterizing taxa identified for all three factors. Depth, dissolved oxygen and trawl mark density accounted for 21% to 52% of the variability in benthic community structure according to multiple regression (DISTLM) models. Species richness was highest at intermediate depths and in areas subject to intermediate levels of trawling, and higher under hypoxia than under severe hypoxia. These statistically significant trends demonstrate that the structuring influences of bottom trawling on deep-sea benthic communities can be observed even where communities are being shaped by strong environmental gradients.
NASA Astrophysics Data System (ADS)
Jaccard, S. L.; Eric, G. D.; Haug, G. H.; Sigman, D. M.; Francois, R.; Dulski, P.
2006-12-01
Low-latitude Pacific Ocean records of past changes in productivity and denitrification have often been ascribed to local processes, including changes in local wind forcing, with some recent hypothesis calling on remote control by thermocline ventilation processes. Here we show that deep thermohaline circulation, a fundamentally high-latitude process, is also linked to the low-latitude thermocline biogeochemistry through its impact on nutrient and dissolved oxygen distributions. We present new, multi-proxy evidence from sediment records from the abyssal subarctic North Pacific, including sedimentary redox-sensitive trace metal distribution, Th-normalized biogenic barium, calcium carbonate, and opal mass accumulation rates, and bulk sedimentary 15N measurements. These proxies show that the abyss was significantly depleted in oxygen, and low 13C, all consistent with high DIC concentrations. Meanwhile, above a deep chemical divide, the overlying waters were relatively well-oxygenated and nutrient-poor. At the mid-point of the deglaciation, the glacial deep water mass dissipated upwards in the water column, releasing deeply-sequestered CO2 to the atmosphere and shifting nutrients into the thermocline. The flux of regenerated nutrients to the sunlit surface ocean associated with this breakdown of the deep water mass enhanced primary productivity throughout the subarctic Pacific, while records from lower latitudes of the North Pacific show a parallel boom in export production. The accelerated flux of organic matter from the surface contributed towards an intensification of the thermocline oxygen minimum zone, accelerating denitrification in the Eastern (sub)tropical North Pacific and the production of nitrous oxide. These observations, taken together with our evidence for changes in the deep North Pacific, suggest that the flux of nutrients from the deep North Pacific into the upper water column increased at the end of the ice age. This release may have occurred via the polar oceans, which today feed nutrients into the lower latitude thermocline. Alternatively, it may have occurred directly, by vertical mixing in the ocean interior. Regardless of the mechanism, this transition led to the modern configuration of a relatively well-ventilated deep sea, overlain by an oxygen minimum.
Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling
NASA Astrophysics Data System (ADS)
Chhabra, Mahendra
The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A new parameter "Oxygen Deficiency Factor" (ODF) is defined to quantify oxygen deficiency in local regions of the cornea. We use this concept to determine the minimum required contact-lens oxygen transmissibility, Dk/L = 150 Barrer/cm, to avoid hypoxia-induced corneal physiologic complications.
NASA Astrophysics Data System (ADS)
Trueblood, Lloyd A.; Seibel, Brad A.
2013-10-01
Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.
Technological advances in extracorporeal membrane oxygenation for respiratory failure.
Rehder, Kyle J; Turner, David A; Bonadonna, Desiree; Walczak, Richard J; Rudder, Robert J; Cheifetz, Ira M
2012-08-01
Extracorporeal membrane oxygenation (ECMO) for neonatal and pediatric cardiac and/or respiratory failure is well established, and its use for adult respiratory failure is rapidly increasing. Management strategies developed over the past 30 years coupled with significant recent technological advances have led to improved ECMO survival. These new technologies are expanding the potential applications for ECMO in exciting ways, including new patient populations and the ability to make ECMO mobile for both intra- and inter-hospital transport. In this article, we highlight some of the recent technological advances and their impact on the utilization of ECMO in increasingly diverse patient populations.
Wave-Based Algorithms and Bounds for Target Support Estimation
2015-05-15
vector electromagnetic formalism in [5]. This theory leads to three main variants of the optical theorem detector, in particular, three alternative...further expands the applicability for transient pulse change detection of ar- bitrary nonlinear-media and time-varying targets [9]. This report... electromagnetic methods a new methodology to estimate the minimum convex source region and the (possibly nonconvex) support of a scattering target from knowledge of
Reconnaissance and Autonomy for Small Robots (RASR)
2012-06-29
The Reconnaissance and Autonomy for Small Robots (RASR) team developed a system for the coordination of groups of unmanned ground vehicles (UGVs...development of a system that used 1) a relevant deployable platform; 2) a minimum set of relatively inexpensive navigation and LADAR sensors; 3) an...expandable and modular control system with innovative software algorithms to minimize computing footprint; and that minimized 4) required communications
Application of artificial intelligence to impulsive orbital transfers
NASA Technical Reports Server (NTRS)
Burns, Rowland E.
1987-01-01
A generalized technique for the numerical solution of any given class of problems is presented. The technique requires the analytic (or numerical) solution of every applicable equation for all variables that appear in the problem. Conditional blocks are employed to rapidly expand the set of known variables from a minimum of input. The method is illustrated via the use of the Hohmann transfer problem from orbital mechanics.
1990-02-01
segregation of jobs - particularly in the CONUS support base - as "military" or "civilian" is inappropriate. Most positions should be coded so that...military training qualifying incumbent for deployment; Short - a 1-week orientation providing minimum information in preparation for on-the- job training or...support job using civilian experience; Unit - military training by unit (rather than training center) cadre, Refr - refresher training d FO - full
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda
2005-01-01
Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.
NASA Astrophysics Data System (ADS)
Guo, Daoyou; Qin, Xinyuan; Lv, Ming; Shi, Haoze; Su, Yuanli; Yao, Guosheng; Wang, Shunli; Li, Chaorong; Li, Peigang; Tang, Weihua
2017-11-01
Highly (201) oriented Zn-doped β-Ga2O3 thin films with different dopant concentrations were grown on (0001) sapphire substrates by radio frequency magnetron sputtering. With the increase of Zn dopant concentration, the crystal lattice expands, the energy band gap shrinks, and the oxygen vacancy concentration decreases. Both the metal semiconductor metal (MSM) structure photodetectors based on the pure and Zn-doped β-Ga2O3 thin films exhibit solar blind UV photoelectric property. Compared to the pure β-Ga2O3 photodetector, the Zn-doped one exhibits a lower dark current, a higher photo/dark current ratio, a faster photoresponse speed, which can be attributed to the decreases of oxygen vacancy concentration.[Figure not available: see fulltext.
Coward, L Andrew
2010-01-01
A model is described in which the hippocampal system functions as resource manager for the neocortex. This model is developed from an architectural concept for the brain as a whole within which the receptive fields of neocortical columns can gradually expand but with some limited exceptions tend not to contract. The definition process for receptive fields is constrained so that they overlap as little as possible, and change as little as possible, but at least a minimum number of columns detect their fields within every sensory input state. Below this minimum, the receptive fields of some columns are expanded slightly until the minimum level is reached. The columns in which this expansion occurs are selected by a competitive process in the hippocampal system that identifies those in which only a relatively small expansion is required, and sends signals to those columns that trigger the expansion. These expansions in receptive fields are the information record that forms the declarative memory of the input state. Episodic memory activates a set of columns in which receptive fields expanded simultaneously at some point in the past, and the hippocampal system is therefore the appropriate source for information guiding access to such memories. Semantic memory associates columns that are often active (with or without expansions in receptive fields) simultaneously. Initially, the hippocampus can guide access to such memories on the basis of initial information recording, but to avoid corruption of the information needed for ongoing resource management, access control shifts to other parts of the neocortex. The roles of the mammillary bodies, amygdala and anterior thalamic nucleus can be understood as modulating information recording in accordance with various behavioral priorities. During sleep, provisional physical connectivity is created that supports receptive field expansions in the subsequent wake period, but previously created memories are not affected. This model matches a wide range of neuropsychological observation better than alternative hippocampal models. The information mechanisms required by the model are consistent with known brain anatomy and neuron physiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric; Snowden-Swan, Lesley J.; Talmadge, Michael
This paper presents a comparative techno-economic analysis of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates (derived either via thermochemical or biochemical conversion steps). The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates, followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. We show that the emerging pathways via oxygenated intermediatesmore » have the potential to be cost competitive with the conventional Fischer-Tropsch process. The evaluated pathways and the benchmark process generally exhibit similar fuel yields and carbon conversion efficiencies. The resulting minimum fuel selling prices are comparable to the benchmark at approximately $3.60 per gallon-gasoline equivalent, with potential for two new pathways to be more economically competitive. Additionally, the coproduct values can play an important role in the economics of the processes with oxygenated intermediates derived via syngas fermentation. Major cost drivers for the integrated processes are tied to achievable fuel yields and conversion efficiency of the intermediate steps, i.e., the production of oxygenates/alcohols from syngas and the conversion of oxygenates/alcohols to hydrocarbon fuels.« less
Optimum aerobic volume control based on continuous in-line oxygen uptake monitoring.
Svardal, K; Lindtner, S; Winkler, S
2003-01-01
Dynamic adaptation of the aerated volume to changing load conditions is essential to maximise the nitrogen removal performance and to minimise energy consumption. A control strategy is presented which provides optimum aerobic volume control (OAV-control concept) based on continuous in-line oxygen uptake monitoring. For ammonium concentrations below 1 mg/l the oxygen uptake rate shows a strong and almost linear dependency on the ammonium concentration. Therefore, the oxygen uptake rate is an ideal indicator for the nitrification performance in activated sludge systems. The OAV-control concept provides dynamic variation of the minimum aerobic volume required for complete nitrification and therefore maximises the denitrification performance. In-line oxygen uptake monitoring is carried out by controlling the oxygen concentration in a continuous aerated zone of the aeration tank and measuring the total air flow to the aeration tank. The total air flow to the aeration tank is directly proportional to the current oxygen uptake rate and can therefore be used as an indicator for the required aerobic volume. The instrumentation requirements for installation of the OAV-control are relatively low, oxygen sensors in the aeration tank and an on-line air flow measurement are needed. This enables individual control of aeration tanks operated in parallel at low investment costs. The OAV-control concept is installed at the WWTP Linz-Asten (1 Mio PE) and shows very good results. Full scale results are presented.
Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth
Brandt, Timothy D.; Spiegel, David S.
2014-01-01
The goal of finding and characterizing nearby Earth-like planets is driving many NASA high-contrast flagship mission concepts, the latest of which is known as the Advanced Technology Large-Aperture Space Telescope (ATLAST). In this article, we calculate the optimal spectral resolution R = λ/δλ and minimum signal-to-noise ratio per spectral bin (SNR), two central design requirements for a high-contrast space mission, to detect signatures of water, oxygen, and chlorophyll on an Earth twin. We first develop a minimally parametric model and demonstrate its ability to fit synthetic and observed Earth spectra; this allows us to measure the statistical evidence for each component’s presence. We find that water is the easiest to detect, requiring a resolution R ≳ 20, while the optimal resolution for oxygen is likely to be closer to R = 150, somewhat higher than the canonical value in the literature. At these resolutions, detecting oxygen will require approximately two times the SNR as water. Chlorophyll requires approximately six times the SNR as oxygen for an Earth twin, only falling to oxygen-like levels of detectability for a low cloud cover and/or a large vegetation covering fraction. This suggests designing a mission for sensitivity to oxygen and adopting a multitiered observing strategy, first targeting water, then oxygen on the more favorable planets, and finally chlorophyll on only the most promising worlds. PMID:25197095
Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth.
Brandt, Timothy D; Spiegel, David S
2014-09-16
The goal of finding and characterizing nearby Earth-like planets is driving many NASA high-contrast flagship mission concepts, the latest of which is known as the Advanced Technology Large-Aperture Space Telescope (ATLAST). In this article, we calculate the optimal spectral resolution R = λ/δλ and minimum signal-to-noise ratio per spectral bin (SNR), two central design requirements for a high-contrast space mission, to detect signatures of water, oxygen, and chlorophyll on an Earth twin. We first develop a minimally parametric model and demonstrate its ability to fit synthetic and observed Earth spectra; this allows us to measure the statistical evidence for each component's presence. We find that water is the easiest to detect, requiring a resolution R ≳ 20, while the optimal resolution for oxygen is likely to be closer to R = 150, somewhat higher than the canonical value in the literature. At these resolutions, detecting oxygen will require approximately two times the SNR as water. Chlorophyll requires approximately six times the SNR as oxygen for an Earth twin, only falling to oxygen-like levels of detectability for a low cloud cover and/or a large vegetation covering fraction. This suggests designing a mission for sensitivity to oxygen and adopting a multitiered observing strategy, first targeting water, then oxygen on the more favorable planets, and finally chlorophyll on only the most promising worlds.
Trübenbach, Katja; Pegado, Maria R; Seibel, Brad A; Rosa, Rui
2013-02-01
The Humboldt (jumbo) squid, Dosidicus gigas, is a part-time resident of the permanent oxygen minimum zone (OMZ) in the Eastern Tropical Pacific and, thereby, it encounters oxygen levels below its critical oxygen partial pressure. To better understand the ventilatory mechanisms that accompany the process of metabolic suppression in these top oceanic predators, we exposed juvenile D. gigas to the oxygen levels found in the OMZ (1% O(2), 1 kPa, 10 °C) and measured metabolic rate, activity cycling patterns, swimming mode, escape jet (burst) frequency, mantle contraction frequency and strength, stroke volume and oxygen extraction efficiency. In normoxia, metabolic rate varied between 14 and 29 μmol O(2) g(-1) wet mass h(-1), depending on the level of activity. The mantle contraction frequency and strength were linearly correlated and increased significantly with activity level. Additionally, an increase in stroke volume and ventilatory volume per minute was observed, followed by a mantle hyperinflation process during high activity periods. Squid metabolic rate dropped more than 75% during exposure to hypoxia. Maximum metabolic rate was not achieved under such conditions and the metabolic scope was significantly decreased. Hypoxia changed the relationship between mantle contraction strength and frequency from linear to polynomial with increasing activity, indicating that, under hypoxic conditions, the jumbo squid primarily increases the strength of mantle contraction and does not regulate its frequency. Under hypoxia, jumbo squid also showed a larger inflation period (reduced contraction frequency) and decreased relaxed mantle diameter (shortened diffusion pathway), which optimize oxygen extraction efficiency (up to 82%/34%, without/with consideration of 60% potential skin respiration). Additionally, they breathe 'deeply', with more powerful contractions and enhanced stroke volume. This deep-breathing behavior allows them to display a stable ventilatory volume per minute, and explains the maintenance of the squid's cycling activity under such O(2) conditions. During hypoxia, the respiratory cycles were shorter in length but increased in frequency. This was accompanied by an increase in the number of escape jets during active periods and a faster switch between swimming modes. In late hypoxia (onset ~170 ± 10 min), all the ventilatory processes were significantly reduced and followed by a lethargic state, a behavior that seems closely associated with the process of metabolic suppression and enables the squid to extend its residence time in the OMZ.
NASA Astrophysics Data System (ADS)
Keil, R. G.; Neibauer, J.; Biladeau, C.; van der Elst, K.; Devol, A. H.
2015-10-01
Free-drifting sediment net traps were deployed 14 times at depths between 80 and 500 m for 1-3 days each during the late monsoon/intermonsoon transition in the central Arabian Sea. Two locations (19.5 and 15.5° N) were within the permanently oxygen deficient zone, and a third (11° N) had a shallow and thin oxygen minimum. The secondary nitrite maximum, which serves as a tracer of the oxygen deficient zone (ODZ) zone, thinned from ∼ 250 m thick at stations 19.5 and 15.5° N to ∼ 50 m thick at station 11° N. Overall, organic carbon fluxes ranged from 13.2 g m2 yr-1 at 80 m to a minimum of 1.1 g m2 yr-1 at 500 m. Fluxes at the more oxygenated 11° N station attenuate faster than within the permanent ODZ. Martin curve attenuation coefficients for 19.5 and 15.5° N are 0.59 and 0.63 and for 11° N it is 0.98. At least six potential mechanisms might explain why sinking particles sinking through the ODZ are more effectively transferred to depth; (M1) oxygen effects, (M2) microbial loop efficiencies and chemoautotrophy, (M3) changes in zooplankton dynamics, (M4) additions of ballast that might sorb and protect organic matter from decay, (M5) inputs of refractory organic matter, and (M6) changes in sinking speeds. These mechanisms are intertwined, and were explored using a combination of mineral (XPS) and organic matter characterizations of the sinking material and ship-board incubation experiments. Evidence was found supporting an oxygen effect and/or changes in the efficiency of the microbial loop including the addition of chemoautotrophic carbon to the sinking flux in the upper 500 m. Less evidence was found for the other potential mechanisms. A simple conceptual model consistent with our and other recent data suggests that the upper ODZ microbial community determines the initial flux attenuation, and that deeper in the water column zooplankton and sinking speed become more important. The exact interplay between the various mechanisms remains to be further evaluated.
NASA Astrophysics Data System (ADS)
Wishner, Karen F.; Gelfman, Celia; Gowing, Marcia M.; Outram, Dawn M.; Rapien, Mary; Williams, Rebecca L.
2008-08-01
This paper provides the first comprehensive analysis of calanoid copepod vertical zonation and community structure at midwater depths (300-1000 m) through the lower oxygen gradient (oxycline) (0.02 to ∼0.3 ml/L) of an oxygen minimum zone (OMZ). Feeding ecology was also analyzed. Zooplankton were collected with a double 1 m 2 MOCNESS plankton net in day and night vertically-stratified oblique tows from 1000 m to the surface at six stations during four seasons as part of the 1995 US Joint Global Ocean Flux Study (JGOFS) Arabian Sea project. The geographic comparison between a eutrophic more oxygenated onshore station and an offshore station with a strong OMZ served as a natural experiment to elucidate the influence of depth, oxygen concentration, season, food resources, and predators on the copepod distributions. Copepod species and species assemblages of the Arabian Sea OMZ differed in their spatial and vertical distributions relative to environmental and ecological characteristics of the water column and region. The extent and intensity of the oxycline at the lower boundary of the OMZ, and its spatial and temporal variability over the year of sampling, was an important factor affecting distributional patterns. Calanoid copepod species showed vertical zonation through the lower OMZ oxycline. Clustering analyses defined sample groups with similar copepod assemblages and species groups with similar distributions. No apparent diel vertical migration for either calanoid or non-calanoid copepods at these midwater depths was observed, but some species had age-related differences in vertical distributions. Subzones of the OMZ, termed the OMZ Core, the Lower Oxycline, and the Sub-Oxycline, had different copepod communities and ecological interactions. Major distributional and ecological changes were associated with surprisingly small oxygen gradients at low oxygen concentrations. The calanoid copepod community was most diverse in the most oxygenated environments (oxygen >0.14 ml/L), but the rank order of abundance of species was similar in the Lower Oxycline and Sub-Oxycline. Some species were absent or much scarcer in the OMZ Core. Two copepod species common in the Lower Oxycline were primarily detritivorous but showed dietary differences suggesting feeding specialization. The copepod Spinocalanus antarcticus fed primarily on components of the vertical particulate flux and suspended material, a less versatile diet than the co-occurring copepod Lucicutia grandis. Vertical zonation of copepod species through the lower OMZ oxycline is probably a complex interplay between physiological limitation by low oxygen, potential predator control, and potential food resources. Pelagic OMZ and oxycline communities, and their ecological interactions in the water column and with the benthos, may become even more widespread and significant in the future ocean, if global warming increases the extent and intensity of OMZs as predicted.
Oxygen declines and the shoaling of the hypoxic boundary in the California Current
NASA Astrophysics Data System (ADS)
Bograd, Steven J.; Castro, Carmen G.; Di Lorenzo, Emanuele; Palacios, Daniel M.; Bailey, Helen; Gilly, William; Chavez, Francisco P.
2008-06-01
We use hydrographic data from the California Cooperative Oceanic Fisheries Investigations program to explore the spatial and temporal variability of dissolved oxygen (DO) in the southern California Current System (CCS) over the period 1984-2006. Large declines in DO (up to 2.1 μmol/kg/y) have been observed throughout the domain, with the largest relative DO declines occurring below the thermocline (mean decrease of 21% at 300 m). Linear trends were significant (p < 0.05) at the majority of stations down to 500 m. The hypoxic boundary (~60 μmol/kg) has shoaled by up to 90 m within portions of the southern CCS. The observed trends are consistent with advection of low-DO waters into the region, as well as decreased vertical oxygen transport following near-surface warming and increased stratification. Expansion of the oxygen minimum layer could lead to cascading effects on benthic and pelagic ecosystems, including habitat compression and community reorganization.
SAR11 bacteria linked to ocean anoxia and nitrogen loss
NASA Astrophysics Data System (ADS)
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M.; Burns, Andrew S.; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R.; Padilla, Cory C.; Stone, Benjamin K.; Bristow, Laura A.; Larsen, Morten; Glass, Jennifer B.; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T.; Stewart, Frank J.
2016-08-01
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.
SAR11 bacteria linked to ocean anoxia and nitrogen loss.
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M; Burns, Andrew S; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R; Padilla, Cory C; Stone, Benjamin K; Bristow, Laura A; Larsen, Morten; Glass, Jennifer B; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T; Stewart, Frank J
2016-08-11
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.
Effect of Spacecraft Environmental Variables on the Flammability of Fire Resistant Fabrics
NASA Astrophysics Data System (ADS)
Osorio, A. F.; Fernandez-Pello, C.; Takahashi, S.; Rodriguez, J.; Urban, D. L.; Ruff, G.
2012-01-01
Fire resistant fabrics are used for firefighter, racecar drivers as well as astronaut suits. However, their fire resistant characteristics depend on the environment conditions and require study. Particularly important is the response of these fabrics to elevated oxygen concentration environments and radiant heat from a source such as an adjacent fire. In this work, experiments using two fire resistant fabrics were conducted to study the effect of oxygen concentration, external radiant flux and oxidizer flow velocity in concurrent flame spread. Results show that for a given fabric the minimum oxygen concentration for flame spread depends strongly on the magnitude of the external radiant flux. At increased oxygen concentrations the external radiant flux required for flame spread decreases. Oxidizer flow velocity influences the external radiant flux only when the convective heat flux from the flame has similar values to the external radiant flux. The results of this work provide further understanding of the flammability characteristics of fire resistant fabrics in environments similar to those of future spacecrafts.
SAR11 bacteria linked to ocean anoxia and nitrogen loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N 2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here in this paper, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductasesmore » (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. Finally, these results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.« less
SAR11 bacteria linked to ocean anoxia and nitrogen loss
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; ...
2016-08-03
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N 2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here in this paper, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductasesmore » (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. Finally, these results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.« less
Forth, Michael; Liljebladh, Bengt; Stigebrandt, Anders; Hall, Per O J; Treusch, Alexander H
2015-01-01
Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l−1.We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event. PMID:25238400
Forth, Michael; Liljebladh, Bengt; Stigebrandt, Anders; Hall, Per O J; Treusch, Alexander H
2015-03-01
Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l(-1).We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event.
Growth of ternary CdxZn1-xO thin films in oxygen ambient using pulsed laser deposition
NASA Astrophysics Data System (ADS)
Sharma, Sugandha; Saini, Basant; Kaur, Ravinder; Gupta, Vinay; Tomar, Monika; Kapoor, Avinashi
2018-05-01
This study reports the growth of cadmium alloyed zinc (CdxZn1-xO) oxide thin films using pulsed laser deposition. The films are deposited on Corning glass substrates at different oxygen pressures of 5, 20, and 40 mTorr. High resolution X-ray diffraction studies reveal mixed phase (hexagonal and cubic) for films deposited at 20 and 40 mTorr, while a cubic phase for film deposited at 5 mTorr pressure. Optical transmittance studies indicate red-shifting of transmission edge as oxygen pressure decreases to 5 mTorr from 20 mTorr, hinting at a possible increase in cadmium content in thin films. Minimum band gap energy is obtained at growth pressure of 5 mTorr. Resistivity measurements have been performed using Hall effect measurement set up at 298 K.
Intensification of the Northeast Pacific oxygen minimum zone during the Bölling-Alleröd warm period
Zheng, Yen; van Geen, Alexander; Anderson, Robert F.; Gardner, James V.; Dean, Walter E.
2000-01-01
Although climate records from several locations around the world show nearly synchronous and abrupt changes, the nature of the inferred teleconnection is still poorly understood. On the basis of preserved laminations and molybdenum enrichments in open margin sediments we demonstrate that the oxygen content of northeast Pacific waters at 800 m depth during the Bölling-Alleröd warm period (15–13 kyr) was greatly reduced. Existing oxygen isotopic records of benthic and planktonic foraminifera suggest that this was probably due to suppressed ventilation at higher latitudes of the North Pacific. Comparison with ventilation records for the North Atlantic indicates an antiphased pattern of convection relative to the North Pacific over the past 22 kyr, perhaps due to variations in water vapor transport across Central America.
Copper phthalocyanine-based CMPs with various internal structures and functionalities.
Ding, Xuesong; Han, Bao-Hang
2015-08-18
Several kinds of copper phthalocyanine-based conjugated microporous polymers have been synthesized, which present enhanced long-wavelength photon absorption capability and high efficiency for singlet oxygen generation under low energy light irradiation. This strategy opens a facile avenue towards expanding the scope of phthalocyanine-based porous materials with various internal structures and functionalities.
The expanding universe of hypoxia.
Zhang, Huafeng; Semenza, Gregg L
2008-07-01
Reduced oxygen availability (hypoxia) is sensed and transduced into changes in the activity or expression of cellular macromolecules. These responses impact on virtually all areas of biology and medicine. In this meeting report, we summarize major developments in the field that were presented at the 2008 Keystone Symposium on Cellular, Physiological, and Pathogenic Responses to Hypoxia.
Lee, Ho Nyung; Ambrose Seo, Sung S.; Choi, Woo Seok; ...
2016-01-29
In many transition metal oxides, oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that, through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects even in high vacuum. We use a model homoepitaxial system of SrTiO 3 (STO) thin films onmore » single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Thus, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but it expands the utility of pulsed laser epitaxy of other materials as well.₃« less
Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)
NASA Astrophysics Data System (ADS)
Vinogradov, Sergei A.; Esipova, Tatiana V.
2016-03-01
The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.
Numerical simulation of transient, incongruent vaporization induced by high power laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C.H.
1981-01-01
A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems ismore » studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.« less
USDA-ARS?s Scientific Manuscript database
Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisom...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... revisions to Sec. 75.4(e)(1), oxygen (O 2 ) and moisture monitoring systems were inadvertently [[Page 50131... passed in order for readings on the certified high scale to be reported as quality-assured. This was not..., disproportionately high and adverse human health or environmental effects of their programs, policies, and activities...
40 CFR 60.334 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to...) On a ppm basis (for NOX) and a percent O2 basis for oxygen; or (ii) On a ppm at 15 percent O2 basis... temperature (Ta), and minimum combustor inlet absolute pressure (Po) into the ISO correction equation. (iii...
40 CFR 60.334 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to...) On a ppm basis (for NOX) and a percent O2 basis for oxygen; or (ii) On a ppm at 15 percent O2 basis... temperature (Ta), and minimum combustor inlet absolute pressure (Po) into the ISO correction equation. (iii...
40 CFR 60.334 - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to...) On a ppm basis (for NOX) and a percent O2 basis for oxygen; or (ii) On a ppm at 15 percent O2 basis... temperature (Ta), and minimum combustor inlet absolute pressure (Po) into the ISO correction equation. (iii...
40 CFR 60.334 - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to...) On a ppm basis (for NOX) and a percent O2 basis for oxygen; or (ii) On a ppm at 15 percent O2 basis... temperature (Ta), and minimum combustor inlet absolute pressure (Po) into the ISO correction equation. (iii...
40 CFR 60.334 - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to...) On a ppm basis (for NOX) and a percent O2 basis for oxygen; or (ii) On a ppm at 15 percent O2 basis... temperature (Ta), and minimum combustor inlet absolute pressure (Po) into the ISO correction equation. (iii...
D.W. Reiser; T.C. Bjornn
1979-01-01
Habitat requirements of anadromous and some resident salmonid fishes have been described for various life stages, including upstream migration of adults, spawning, incubation, and juvenile rearing. Factors important in the migration of adults are water temperature, minimum water depth, maximum water velocity, turbidity, dissolved oxygen, and...
Electronic structure and vibrational analysis of AHA⋯HX complexes
NASA Astrophysics Data System (ADS)
Joshi, Kaustubh A.; Gejji, Shridhar P.
2005-10-01
Electronic structures of the binary complexes of acetohydroxamic acid (AHA) and hydrogen halides, HX (X = F, Cl, Br) have been investigated using the second order perturbation theory. In the lowest energy structure of AHA⋯HF complex, hydrogen fluoride acts as a proton-donor with carbonyl oxygen and simultaneously as a proton-acceptor with the hydroxyl group. For chloro- and bromo-substituted derivatives, however, the lowest minimum possesses hydrogen-bonded interactions with the carbonyl oxygen in addition to those from the methyl proton of AHA. Frequency shifts of NH and CN stretching vibrations enable one to distinguish different conformers of AHA⋯HX complexes.
Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2000-01-01
The possibility of using plants to provide oxygen (O2) and food during space travel has been discussed and studied for nearly 50 years. The concept is based on the process of photosynthesis, which uses CO2 as a substrate and is driven by light (photosynthetically active radiation - PAR0 in the 400 to 700 nm waveband. In addition to the CO2 and light, the plants would require a controlled environment with acceptable temperatures (approx. 10 to 35 C) and humidities (approx. 40 to 85 %), adequate supplies of water and mineral nutrients, and minimum levels of oxygen to sustain respiration.
Study of dissolved oxygen content in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan)
NASA Astrophysics Data System (ADS)
Grigoryeva, N. I.
2017-09-01
Seasonal changes in the dissolved oxygen (DO) content in water were analyzed based on long-term observations (2006-2013) in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan). It was found that the monthly average DO concentrations at the bottom of the strait were significantly lower in summer than the average annual long-term data. The minimum DO contents were recorded during four months, from July to October. It was shown that the DO content in water depended on changes in current directions in the strait: lower DO contents resulted from hypoxic water inflow, mostly from Amur Bay.
Sanz-Sanjosé, E; Ariño Irujo, J J; Sánchez Martín, C E; González Perrino, C; López-Timoneda, F
2016-05-01
According to the ERC and the AHA guidelines, FiO2 should be titrated to achieve an O2Sat ≥ 94%. The aim of this study was to determine the minimum oxygen flow and time needed to reach an FiO2 of 0.32 and 0.80 during post-cardiac arrest care. An experimental analysis was performed that consisted of a simulated post-cardiac arrest situation. Different resuscitators were tested and connected to an artificial lung: Mark IV, SPUR II, Revivator Res-Q, O-TWO. The oxygen flow levels tested were 2, 5, 10 and 15 lpm. Bonferroni and Mann-Whitney U tests were used. An FiO2 of 0.32 or more was obtained using any of the oxygen flow and resuscitators. Only the Mark IV achieved an FiO2 of 0.80 after a minimum of 75s ventilating with 2 or 5 lpm. Clinical and statistical differences (P<.05) were found: at 15 lpm it took 35s to reach an FiO2 of 0.80 or more for Mark IV (85.6 [0.3]) and Revivator (84.3 [1.5]) compared to 50s for SPUR II (87.1 [6.4]); at 2 lpm, all of the devices reached an FiO2 of ≥ 0.32 at 30s(Mark IV (34.8 [1.3]), Revivator (35.7 [1.5]) and SPUR II (34.4 [2.1]), except for O-TWO, which took 35s (36.3 [4.3]). Patients could be ventilated with any of the resuscitators using 2 lpm to obtain an FiO2 of 0.32, although possibly O-TWO would be the last option during the first 60s. In order to reach an FiO2 of 0.80, ventilating with 10 lpm should be sufficient, and preferably using Mark IV or Revivator Res-Q. In conclusion, on observing the results of our study, in any possible scenario, it would be advisable to use Revivator Res-Q or Mark IV rather than O-TWO or SPUR II. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding
Macnab, Andrew J.; Stothers, Lynn S.; Shadgan, Babak
2012-01-01
The current literature indicates that lower urinary tract symptoms (LUTSs) related to benign prostatic hyperplasia (BPH) have a heterogeneous pathophysiology. Pressure flow studies (UDSs) remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS), an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding. PMID:23019422
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toshito, T.; Kodama, K.; Yusa, K.
2006-05-10
We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsionmore » film to highly ionizing particles.« less
Rational approach for assumed stress finite elements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Sumihara, K.
1984-01-01
A new method for the formulation of hybrid elements by the Hellinger-Reissner principle is established by expanding the essential terms of the assumed stresses as complete polynomials in the natural coordinates of the element. The equilibrium conditions are imposed in a variational sense through the internal displacements which are also expanded in the natural co-ordinates. The resulting element possesses all the ideal qualities, i.e. it is invariant, it is less sensitive to geometric distortion, it contains a minimum number of stress parameters and it provides accurate stress calculations. For the formulation of a 4-node plane stress element, a small perturbation method is used to determine the equilibrium constraint equations. The element has been proved to be always rank sufficient.
Corneal Equilibrium Flux as a Function of Corneal Surface Oxygen Tension.
Compañ, Vicente; Aguilella-Arzo, Marcel; Weissman, Barry A
2017-06-01
Oxygen is essential for aerobic mammalian cell physiology. Oxygen tension (PO2) should reach a minimum at some position within the corneal stroma, and oxygen flux should be zero, by definition, at this point as well. We found the locations and magnitudes of this "corneal equilibrium flux" (xmin) and explored its physiological implications. We used an application of the Monod kinetic model to calculate xmin for normal human cornea as anterior surface PO2 changes from 155 to 20 mmHg. We find that xmin deepens, broadens, and advances from 1.25 μm above the endothelial-aqueous humor surface toward the epithelium (reaching a position 320 μm above the endothelial-aqueous humor surface) as anterior corneal surface PO2 decreases from 155 to 20 mmHg. Our model supports an anterior corneal oxygen flux of 9 μL O2 · cm · h and an epithelial oxygen consumption of approximately 4 μL O2 · cm · h. Only at the highest anterior corneal PO2 does our model predict that oxygen diffuses all the way through the cornea to perhaps reach the anterior chamber. Of most interest, corneal oxygen consumption should be supported down to a corneal surface PO2 of 60 to 80 mmHg but declines below this range. We conclude that the critical oxygen tension for hypoxia induced corneal swelling is more likely this range rather than a fixed value.
Bopp, L; Resplandy, L; Untersee, A; Le Mezo, P; Kageyama, M
2017-09-13
All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O 2sat ) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O 2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O 2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).
Molina, Verónica; Belmar, Lucy; Ulloa, Osvaldo
2010-09-01
The community structure of putative aerobic ammonia-oxidizing archaea (AOA) was explored in two oxygen-deficient ecosystems of the eastern South Pacific: the oxygen minimum zone off Peru and northern Chile (11°S-20°S), where permanent suboxic and low-ammonium conditions are found at intermediate depths, and the continental shelf off central Chile (36°S), where seasonal oxygen-deficient and relatively high-ammonium conditions develop in the water column, particularly during the upwelling season. The AOA community composition based on the ammonia monooxygenase subunit A (amoA) genes changed according to the oxygen concentration in the water column and the ecosystem studied, showing a higher diversity in the seasonal low-oxygen waters. The majority of the archaeal amoA genotypes was affiliated to the uncultured clusters A (64%) and B (35%), with Cluster A AOA being mainly associated with higher oxygen and ammonium concentrations and Cluster B AOA with permanent oxygen- and ammonium-poor waters. Q-PCR assays revealed that AOA are an abundant community (up to 10(5) amoA copies ml(-1) ), while bacterial amoA genes from β proteobacteria were undetected. Our results thus suggest that a diverse uncultured AOA community, for which, therefore, we do not have any physiological information, to date, is an important component of the nitrifying community in oxygen-deficient marine ecosystems, and particularly in rich coastal upwelling ones. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Bopp, L.; Resplandy, L.; Untersee, A.; Le Mezo, P.; Kageyama, M.
2017-08-01
All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O2sat) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
Oxygen tension affects histone remodeling of in vitro-produced embryos in a bovine model.
Gaspar, Roberta C; Arnold, Daniel R; Corrêa, Carolina A P; da Rocha, Carlos V; Penteado, João C T; Del Collado, Maite; Vantini, Roberta; Garcia, Joaquim M; Lopes, Flavia L
2015-06-01
In vitro production of bovine embryos is a biotechnology of great economic impact. Epigenetic processes, such as histone remodeling, control gene expression and are essential for proper embryo development. Given the importance of IVP as a reproductive biotechnology, the role of epigenetic processes during embryo development, and the important correlation between culture conditions and epigenetic patterns, the present study was designed as a 2 × 2 factorial to investigate the influence of varying oxygen tensions (O2; 5% and 20%) and concentrations of fetal bovine serum (0% and 2.5%), during IVC, in the epigenetic remodeling of H3K9me2 (repressive) and H3K4me2 (permissive) in bovine embryos. Bovine oocytes were used for IVP of embryos, cleavage and blastocyst rates were evaluated, and expanded blastocysts were used for evaluation of the histone marks H3K9me2 and H3K4me2. Morulae and expanded blastocysts were also used to evaluate the expression of remodeling enzymes, specific to the aforementioned marks, by real-time polymerase chain reaction. Embryos produced in the presence of fetal bovine serum (2.5%) had a 10% higher rate of blastocyst formation. Global staining for the residues H3K9me2 and H3K4me2 was not affected significantly by the presence of serum. Notwithstanding, the main effect of oxygen tension was significant for both histone marks, with both repressive and permissive marks being higher in embryos cultured at the higher oxygen tension; however, expression of the remodeling enzymes did not differ in morulae or blastocysts in response to the varying oxygen tension. These results suggest that the use of serum during IVC of embryos increases blastocyst rate without affecting the evaluated histone marks and that oxygen tension has an important effect on the histone marks H3K9me2 and H3K4me2 in bovine blastocysts. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.; Jones, Scott M.
1991-01-01
This analysis and this computer code apply to full, split, and dual expander cycles. Heat regeneration from the turbine exhaust to the pump exhaust is allowed. The combustion process is modeled as one of chemical equilibrium in an infinite-area or a finite-area combustor. Gas composition in the nozzle may be either equilibrium or frozen during expansion. This report, which serves as a users guide for the computer code, describes the system, the analysis methodology, and the program input and output. Sample calculations are included to show effects of key variables such as nozzle area ratio and oxidizer-to-fuel mass ratio.
Development of LM10-MIRA LOX/LNG expander cycle demonstrator engine
NASA Astrophysics Data System (ADS)
Rudnykh, Mikhail; Carapellese, Stefano; Liuzzi, Daniele; Arione, Luigi; Caggiano, Giuseppe; Bellomi, Paolo; D'Aversa, Emanuela; Pellegrini, Rocco; Lobov, S. D.; Gurtovoy, A. A.; Rachuk, V. S.
2016-09-01
This article contains results of joint works by Konstruktorskoe Buro Khimavtomatiki (KBKhA, Russia) and AVIO Company (Italy) on creation of the LM10-MIRA liquid-propellant rocket demonstrator engine for the third stage of the upgraded "Vega" launcher.Scientific and research activities conducted by KBKhA and AVIO in 2007-2014 in the frame of the LYRA Program, funded by the Italian Space Agency, with ELV as Prime contractor, and under dedicated ASI-Roscosmos inter-agencies agreement, were aimed at development and testing of a 7.5 t thrust expander cycle demonstrator engine propelled by oxygen and liquid natural gas (further referred to as LNG).
NASA Astrophysics Data System (ADS)
Cartapanis, O.; Tachikawa, K.; Romero, O. E.; Bard, E.
2014-02-01
The intensity and/or extent of the northeastern Pacific Oxygen Minimum Zone (OMZ) varied in-phase with the Northern Hemisphere high latitude climate on millennial timescales during the last glacial period, indicating the occurrence of atmospheric and oceanic connections under glacial conditions. While millennial variability was reported for both the Greenland and the northern Atlantic Ocean during the last interglacial period, the climatic connections with the northeastern Pacific OMZ has not yet been observed under warm interglacial conditions. Here we present a new geochemical dataset, spanning the past 120 ka, for major components (terrigenous fraction, marine organic matter, biogenic opal, and carbonates) generated by X-ray fluorescence scanning alongside with biological productivity and redox sensitive trace element content (Mo, Ni, Cd) of sediment core MD02-2508 at 23° N, retrieved from the northern limit of the modern OMZ. Based on elemental ratios Si / Ti (proxy for opal), Cd / Al and Ni / Al, we suggest that biological productivity was high during the last interglacial (MIS5). Highly resolved opal reconstruction presents millennial variability corresponding to all the Dansgaard-Oeschger interstadial events over the last interglacial, while the Mo / Al ratio indicates reduced oxygenation during these events. Extremely high opal content during warm interstadials suggests high diatom productivity. Despite the different climatic and oceanic background between glacial and interglacial periods, rapid variability in the northeastern Pacific OMZ seems to be tightly related to Northern Hemisphere high latitude climate via atmospheric and possibly oceanic processes.
NASA Astrophysics Data System (ADS)
Sexton, J. Z.; Kummel, A. C.
2004-10-01
Scanning tunneling microscopy (STM) was employed to study the mechanism for the oxidation of Al(111) with thermal O2 and NO in the 20%-40% monolayer coverage regime. Experiments show that the islands formed upon exposure to thermal O2 and NO have dramatically different shapes, which are ultimately dictated by the dynamics of the gas surface interaction. The circumference-to-area ratio and other island morphology statistics are used to quantify the average difference in the two island types. Ultrahigh-vacuum STM was employed to make the following observations: (1) Oxygen islands on the Al(111) surface, formed upon exposure to thermal oxygen, are elongated and noncompact. (2) Mixed O/N islands on the Al(111) surface, formed upon exposure to thermal nitric oxide (NO), are round and compact. (3) STM movies acquired during thermal O2 exposure indicate that a complex mechanism involving chemisorption initiated rearrangement of preexisting oxygen islands leads to the asymmetric and elongated island shapes. The overall mechanism for the oxidation of the Al(111) surface can be summarized in three regimes. Low coverage is dominated by widely isolated small oxygen features (<3 O atoms) where normal dissociative chemisorption and oxygen abstraction mechanisms are present. At 20%-40% monolayer coverage, additional oxygen chemisorption induces rearrangement of preexisting islands to form free-energy minimum island shapes. At greater than ˜40% monolayer coverage, the apparent surface oxygen coverage asymptotes corresponding to the conversion of the 2D islands to 3D Al2O3 surface crystallites. The rearrangement of oxygen islands on the surface to form the observed islands indicates that there is a short-range oxygen-oxygen attractive potential and a long-range oxygen-oxygen repulsive potential.
ERIC Educational Resources Information Center
Longview Public Library, WA.
Project Read at the Longview (Washington) Public Library conducted a program to maintain and expand the Family Literacy Center to provide a monitored tutoring site and family outreach program for a minimum of 75 adult learners and 40 tutors. Two projects were involved: (1) Project READ focused on adult learners with a one-on-one tutoring approach;…
Multi-functional magnesium alloys containing interstitial oxygen atoms.
Kang, H; Choi, H J; Kang, S W; Shin, S E; Choi, G S; Bae, D H
2016-03-15
A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 μm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design.
NASA Astrophysics Data System (ADS)
Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen
2017-10-01
Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.
Multi-functional magnesium alloys containing interstitial oxygen atoms
Kang, H.; Choi, H. J.; Kang, S. W.; Shin, S. E.; Choi, G. S.; Bae, D. H.
2016-01-01
A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 μm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design. PMID:26976372
Tuning the band gap in silicene by oxidation.
Du, Yi; Zhuang, Jincheng; Liu, Hongsheng; Xu, Xun; Eilers, Stefan; Wu, Kehui; Cheng, Peng; Zhao, Jijun; Pi, Xiaodong; See, Khay Wai; Peleckis, Germanas; Wang, Xiaolin; Dou, Shi Xue
2014-10-28
Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. With the use of low-temperature scanning tunneling microscopy, we find that the adsorption configurations and amounts of oxygen adatoms on the silicene surface are critical for band gap engineering, which is dominated by different buckled structures in √13 × √13, 4 × 4, and 2√3 × 2√3 silicene layers. The Si-O-Si bonds are the most energy-favored species formed on √13 × √13, 4 × 4, and 2√3 × 2√3 structures under oxidation, which is verified by in situ Raman spectroscopy as well as first-principles calculations. The silicene monolayers retain their structures when fully covered by oxygen adatoms. Our work demonstrates the feasibility of tuning the band gap of silicene with oxygen adatoms, which, in turn, expands the base of available two-dimensional electronic materials for devices with properties that is hardly achieved with graphene oxide.
History of Chandra X-Ray Observatory
2000-03-01
The Chandra X-Ray Observatory has captured this spectacular image of G292.0+1.8, a young, oxygen-rich supernova remnant with a pulsar at its center surrounded by outflowing material. This image shows a rapidly expanding shell of gas that is 36 light-years across and contains large amounts of elements such as oxygen, neon, magnesium, silicon and sulfur. Embedded in this cloud of multimillion-degree gas is a key piece of evidence linking neutron stars and supernovae produced by the collapse of massive stars. With an age estimated at 1,600 years, G292.0+1.8 is one of three known oxygen-rich supernovae in our galaxy. These supernovae are of great interest to astronomers because they are one of the primary sources of the heavy elements necessary to form planets and people. Scattered through the image are bluish knots of emissions containing material that is highly enriched in newly created oxygen, neon, and magnesium produced deep within the original star and ejected by the supernova explosion.
Energy balance in high-quality cutting of steel by fiber and CO2 lasers
NASA Astrophysics Data System (ADS)
Fomin, V. M.; Golyshev, A. A.; Orishich, A. M.; Shulyat'ev, V. B.
2017-03-01
The energy balance of laser cutting of low-carbon and stainless steel sheets with the minimum roughness of the cut surface is experimentally studied. Experimental data obtained in wide ranges of cutting parameters are generalized with the use of dimensionless parameters (Peclet number and absorbed laser energy). It is discovered for the first time that the minimum roughness is ensured at a certain value of energy per unit volume of the melt (approximately 26 J/mm3), regardless of the gas type (oxygen or nitrogen) and laser type (fiber laser with a wavelength of 1.07 μm or CO2 laser with a wavelength of 10.6 μm).
Advanced technology for space shuttle auxiliary propellant valves
NASA Technical Reports Server (NTRS)
Wichmann, H.
1973-01-01
Valves for the gaseous hydrogen/gaseous oxygen shuttle auxiliary propulsion system are required to feature low leakage over a wide temperature range coupled with high cycle life, long term compatibility and minimum maintenance. In addition, those valves used as thruster shutoff valves must feature fast response characteristics to achieve small, repeatable minimum impulse bits. These valve technology problems are solved by developing unique valve components such as sealing closures, guidance devices, and actuation means and by demonstrating two prototype valve concepts. One of the prototype valves is cycled over one million cycles without exceeding a leakage rate of 27 scc's per hour at 450 psia helium inlet pressure throughout the cycling program.
The phototoxicity of phenothiazinium derivatives against Escherichia coli and Staphylococcus aureus.
Phoenix, D A; Sayed, Z; Hussain, S; Harris, F; Wainwright, M
2003-10-24
Phenothiazinium dyes, and derivatives, were tested for toxicity to Escherichia coli and Staphylococcus aureus. The dyes were generally lipophilic (log P>1) and showed inherent dark toxicity (minimum lethal concentrations: 3.1-1000 microM). Dye illumination (total light dose of 3.15 J cm(-1) over 30 min) led to up to eight-fold reductions in minimum lethal concentrations. Most of the illuminated dyes showed significant relative singlet oxygen yields (phi'delta: 0.18-1.35) suggesting a type II mechanism of generating a phototoxic response. Although generally up to six-fold more effective against S. aureus, the dyes tested efficiently killed E. coli and may be of particular use in combating Gram-negative pathogens.
Continuous Real-time Viability Assessment of Kidneys Based on Oxygen Consumption
Weegman, B.P.; Kirchner, V.A.; Scott, W.E.; Avgoustiniatos, E.S.; Suszynski, T.M.; Ferrer-Fabrega, J.; Rizzari, M.D.; Kidder, L.S.; Kandaswamy, R.; Sutherland, D.E.R.; Papas, K.K.
2010-01-01
Background Current ex vivo quality assessment of donor kidneys is limited to vascular resistance measurements and histological analysis. New techniques for the assessment of organ quality before transplantation may further improve clinical outcomes while expanding the depleted deceased-donor pool. We propose the measurement of whole organ oxygen consumption rate (WOOCR) as a method to assess the quality of kidneys in real time before transplantation. Methods Five porcine kidneys were procured using a donation after cardiac death (DCD) model. The renal artery and renal vein were cannulated and the kidney connected to a custom-made hypothermic machine perfusion (HMP) system equipped with an inline oxygenator and fiber-optic oxygen sensors. Kidneys were perfused at 8°C, and the perfusion parameters and partial oxygen pressures (pO2) were measured to calculate WOOCR. Results Without an inline oxygenator, the pO2 of the perfusion solution at the arterial inlet and venous outlet diminished to near 0 within minutes. However, once adequate oxygenation was provided, a significant pO2 difference was observed and used to calculate the WOOCR. The WOOCR was consistently measured from presumably healthy kidneys, and results suggest that it can be used to differentiate between healthy and purposely damaged organs. Conclusions Custom-made HMP systems equipped with an oxygenator and inline oxygen sensors can be applied for WOOCR measurements. We suggest that WOOCR is a promising approach for the real-time quality assessment of kidneys and other organs during preservation before transplantation. PMID:20692397
Behavioral and physiological significance of minimum resting metabolic rate in king penguins.
Halsey, L G; Butler, P J; Fahlman, A; Woakes, A J; Handrich, Y
2008-01-01
Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.
2012-01-01
The ketogenic diet has been widely used and proved to be effective for intractable epilepsy. Although the mechanisms underlying its anti-epileptic effects remain to be proven, there are increasing experimental evidences for its neuroprotective effects along with many researches about expanding use of the diet in other neurologic disorders. The first success was reported in glucose transporter type 1 deficiency syndrome, in which the diet served as an alternative metabolic source. Many neurologic disorders share some of the common pathologic mechanisms such as mitochondrial dysfunction, altered neurotransmitter function and synaptic transmission, or abnormal regulation of reactive oxygen species, and the role of the ketogenic diet has been postulated in these mechanisms. In this article, we introduce an overview about the expanding use and emerging trials of the ketogenic diet in various neurologic disorders excluding intractable epilepsy and provide explanations of the mechanisms in that usage. PMID:23049588
Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming
NASA Astrophysics Data System (ADS)
Fu, Weiwei; Primeau, Francois; Keith Moore, J.; Lindsay, Keith; Randerson, James T.
2018-04-01
Dissolved oxygen (O2) is essential for the survival of marine animals. Climate change impacts on future oxygen distributions could modify species biogeography, trophic interactions, biodiversity, and biogeochemistry. The Coupled Model Intercomparison Project Phase 5 models predict a decreasing trend in marine O2 over the 21st century. Here we show that this increasing hypoxia trend reverses in the tropics after 2100 in the Community Earth System Model forced by atmospheric CO2 from the Representative Concentration Pathway 8.5 and Extended Concentration Pathway 8.5. In tropical intermediate waters between 200 and 1,000 m, the model predicts a steady decline of O2 and an expansion of oxygen minimum zones (OMZs) during the 21st century. By 2150, however, the trend reverses with oxygen concentration increasing and OMZ volume shrinking through 2300. A novel five-box model approach in conjunction with output from the full Earth system model is used to separate the contributions of biological and physical processes to the trends in tropical oxygen. The tropical O2 recovery is caused mainly by reductions in tropical biological export, coupled with a modest increase in ventilation after 2200. The time-evolving oxygen distribution impacts marine nitrogen cycling, with potentially important climate feedbacks.
Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism
NASA Astrophysics Data System (ADS)
Boardman, Leigh; Sørensen, Jesper G.; Koštál, Vladimír; Šimek, Petr; Terblanche, John S.
2016-09-01
Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.
Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions.
Chen, Dengjie; Chen, Chi; Zhang, Zhenbao; Baiyee, Zarah Medina; Ciucci, Francesco; Shao, Zongping
2015-04-29
Mixed conducting perovskite oxides are promising catalysts for high-temperature oxygen reduction reaction. Pristine SrCoO(3-δ) is a widely used parent oxide for the development of highly active mixed conductors. Doping a small amount of redox-inactive cation into the B site (Co site) of SrCoO(3-δ) has been applied as an effective way to improve physicochemical properties and electrochemical performance. Most findings however are obtained only from experimental observations, and no universal guidelines have been proposed. In this article, combined experimental and theoretical studies are conducted to obtain fundamental understanding of the effect of B-site doping concentration with redox-inactive cation (Sc) on the properties and performance of the perovskite oxides. The phase structure, electronic conductivity, defect chemistry, oxygen reduction kinetics, oxygen ion transport, and electrochemical reactivity are experimentally characterized. In-depth analysis of doping level effect is also undertaken by first-principles calculations. Among the compositions, SrCo0.95Sc0.05O(3-δ) shows the best oxygen kinetics and corresponds to the minimum fraction of Sc for stabilization of the oxygen-vacancy-disordered structure. The results strongly support that B-site doping of SrCoO(3-δ) with a small amount of redox-inactive cation is an effective strategy toward the development of highly active mixed conducting perovskites for efficient solid oxide fuel cells and oxygen transport membranes.
Senn, David; Downing-Kunz, Maureen; Novick, Emily
2016-01-01
Dissolved oxygen (DO) concentration serves as an important indicator of estuarine habitat condition, because all aquatic macro-organisms require some minimum DO level to survive and prosper. The instantaneous DO concentration, measured at a specific location in the water column, results from a balance between multiple processes that add or remove oxygen (Figure 6.1): primary production produces O2; aerobic respiration in the water column and sediments consumes O2; abiotic or microbially-mediated biogeochemical reactions utilize O2 as an oxidant (e.g., oxidation of ammonium, sulfide, and ferrous iron); O2 exchange occurs across the air:water interface in response to under- or oversaturated DO concentrations in the water column; and water currents and turbulent mixing transport DO into and out of zones in the water column. If the oxygen loss rate exceeds the oxygen production or input rate, DO concentration decreases. When DO losses exceed production or input over a prolonged enough period of time, hypoxia ((<2-3 mg/L) or anoxia can develop. Persistent hypoxia or anoxia causes stress or death in aquatic organism populations, or for organisms that can escape a hypoxic or anoxic area, the loss of habitat. In addition, sulfide, which is toxic to aquatic organisms and causes odor problems, escapes from sediments under low oxygen conditions. Low dissolved oxygen is a common aquatic ecosystem response to elevated organic
NASA Astrophysics Data System (ADS)
Schmittner, Andreas; Galbraith, Eric D.; Hostetler, Steven W.; Pedersen, Thomas F.; Zhang, Rong
2007-09-01
Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas.
Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude
NASA Astrophysics Data System (ADS)
Ridder, Nina N.; England, Matthew H.
2014-09-01
Ocean oxygenation has been observed to have changed over the past few decades and is projected to change further under global climate change due to an interplay of several mechanisms. In this study we isolate the effect of modified tropical surface wind stress conditions on the evolution of ocean oxygenation in a numerical climate model. We find that ocean oxygenation varies inversely with low-latitude surface wind stress. Approximately one third of this response is driven by sea surface temperature anomalies; the remaining two thirds result from changes in ocean circulation and marine biology. Global mean O2 concentration changes reach maximum values of +4 μM and -3.6 μM in the two most extreme perturbation cases of -30% and +30% wind change, respectively. Localized changes lie between +92 μM under 30% reduced winds and -56 μM for 30% increased winds. Overall, we find that the extent of the global low-oxygen volume varies with the same sign as the wind perturbation; namely, weaker winds reduce the low-oxygen volume on the global scale and vice versa for increased trade winds. We identify two regions, one in the Pacific Ocean off Chile and the other in the Indian Ocean off Somalia, that are of particular importance for the evolution of oxygen minimum zones in the global ocean.
ERIC Educational Resources Information Center
California State Univ., Sacramento. Dept. of Civil Engineering.
This manual was prepared by experienced wastewater collection system workers to provide a home study course to develop new qualified workers and expand the abilities of existing workers. This volume contains information on operational strategies for the activated sludge process and the use of pure oxygen, the handling and disposal of solids,…
NASA Technical Reports Server (NTRS)
Barnett, Greg; Turpin, Jason; Nettles, Mindy
2015-01-01
This task is to hot-fire test an existing Space Launch Mission (SLM) injector that is applicable for all expander cycle engines being considered for the exploration upper stage. The work leverages investment made in FY 2013 that was used to additively manufacture three injectors (fig. 1) all by different vendors..
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
...; b. expanding coverage of oxygenated fuels to include counties where a strong commuting pattern into... gas and electric vehicles; and, d. employee commute options programs. NC DENR committed to implement... received by March 25, 2013, the rule would be withdrawn and not take effect, but that the proposed rule...
DELAYING BLOOD TRANSFUSION IN EXPERIMENTAL ACUTE ANEMIA WITH A PERFLUOROCARBON EMULSION
Cabrales, Pedro; Briceño, Juan Carlos
2011-01-01
Background To avoid unnecessary blood transfusions, physiologic transfusion triggers, rather than exclusively hemoglobin-based transfusion triggers have been suggested. The objective of this study was to determine systemic and microvascular effects of using a perfluorocarbon-based oxygen carrier (PFCOC) to maintaining perfusion and oxygenation during extreme anemia. Methods The hamster (weight 55-65 g) window chamber model was used. Two isovolemic hemodilution steps were performed using 10% hydroxyethyl starch at normoxic conditions to hematocrit of 19% (5.5 gHb/dl), point where the transfusion trigger was reached. Two additional hemodilution exchanges using the PFCOC (Oxycyte™, Synthetic Blood International, Inc. Costa Mesa, CA) and increasing fraction of inspired oxygen to 1.0 were performed to reduce hematocrit to 11% (3.8 gHb/dl) and 6% (2.0 gHb/dl), respectively. No control group was used in the study, as this level of hemodilution is lethal with conventional plasma expanders. Systemic parameters, microvascular perfusion, functional capillary density and oxygen tensions across the microvascular network were measured. Results At 6% hematocrit, the PFCOC maintained mean arterial pressure, cardiac output, systemic oxygen delivery and consumption. As hematocrit was lowered from 11% to 6%, functional capillary density, calculated microvascular oxygen delivery and consumption decreased, and oxygen extraction ratio was close to 100%. Peripheral tissue oxygenation was not predicted by systemic oxygenation. Conclusions PFCOC in conjunction with hyperoxia was able to sustain organ function, and partially provide systemic oxygenation during extreme anemia over the observation period. The PFCOC can work as a bridge until red blood cells are available for transfusion, or where additional oxygen is required, notwithstanding possible limitations in peripheral tissue oxygenation. PMID:21326091
Komatsu, Hirotake; Cook, Colin; Wang, Chia-Hao; Medrano, Leonard; Lin, Henry; Kandeel, Fouad; Tai, Yu-Chong; Mullen, Yoko
2017-01-01
Background Type 1 diabetes is an autoimmune disease that destroys insulin-producing beta cells in the pancreas. Pancreatic islet transplantation could be an effective treatment option for type 1 diabetes once several issues are resolved, including donor shortage, prevention of islet necrosis and loss in pre- and post-transplantation, and optimization of immunosuppression. This study seeks to determine the cause of necrotic loss of isolated islets to improve transplant efficiency. Methodology The oxygen tension inside isolated human islets of different sizes was simulated under varying oxygen environments using a computational in silico model. In vitro human islet viability was also assessed after culturing in different oxygen conditions. Correlation between simulation data and experimentally measured islet viability was examined. Using these in vitro viability data of human islets, the effect of islet diameter and oxygen tension of the culture environment on islet viability was also analyzed using a logistic regression model. Principal findings Computational simulation clearly revealed the oxygen gradient inside the islet structure. We found that oxygen tension in the islet core was greatly lower (hypoxic) than that on the islet surface due to the oxygen consumption by the cells. The hypoxic core was expanded in the larger islets or in lower oxygen cultures. These findings were consistent with results from in vitro islet viability assays that measured central necrosis in the islet core, indicating that hypoxia is one of the major causes of central necrosis. The logistic regression analysis revealed a negative effect of large islet and low oxygen culture on islet survival. Conclusions/Significance Hypoxic core conditions, induced by the oxygen gradient inside islets, contribute to the development of central necrosis of human isolated islets. Supplying sufficient oxygen during culture could be an effective and reasonable method to maintain isolated islets viable. PMID:28832685
Code of Federal Regulations, 2013 CFR
2013-07-01
... oxygen 1 hr minimum sampling time. b. Filterable PM (or TSM) 3.2E-01 lb per MMBtu of heat input; or (4.0E... per run. 13. Units designed to burn liquid fuel a. HCl 1.2E-03 lb per MMBtu of heat input For M26A...
Fluid Bed Dehydration of Magnesium Chloride
NASA Astrophysics Data System (ADS)
Adham, K.; Lee, C.; O'Keefe, K.
Molten salt electrolysis of MgCl2 is commonly used for the production of magnesium metal. However, the electrolysis feed must be completely dry with minimum oxygen content. Therefore, complete dehydration of the MgCl2 brine or the hydrated prill is a required process, which is very challenging because of the ease of thermal degradation due to hydrolysis of magnesium chloride.
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., minus 47 mm. Hg, which is the tracheal pressure displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is, 0 °C at 760 mm. Hg with no water vapor). [Doc. No. 26344, 58 FR 18978, Apr. 9, 1993] § 23.1443...
Anomalous cosmic ray oxygen gradients throughout the heliosphere
NASA Technical Reports Server (NTRS)
Cummings, A. C.; Mewaldt, R. A.; Blake, J. B.; Cummings, J. R.; Franz, M.; Hovestadt, D.; Klecker, B.; Mason, G. M.; Mazur, J. E.; Stone, E. C.
1995-01-01
We have used data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), Ulysses, Voyager 1, Voyager 2, and Pioneer 10 spacecraft to determine the radial and latitudinal gradients of anomalous cosmic ray oxygen at 10 MeV/nuc during the last half of 1993. These five spacecraft cover radial distances from 1 AU (SAMPEX) to 58 AU (P10) and latitudes to 41 deg S (Ulysses) and 32 deg N (V1). We find that the radial gradient is a decreasing function of radial distance, approximately r(exp -n), with n = 1.7 +/- 0.7. The large-scale radial gradient between the inner and outer heliosphere is much smaller than it was during the last solar minimum period in approximately 1987. The latitudinal gradient is small and positive, 1.3 +/- 0.4 %/deg, as opposed to the large and negative latitudinal gradients found during 1987, but similar to the small positive latitudinal gradient measured during 1976 for anomalous cosmic ray helium. These observations confirm that effects of curvature and gradient drift in the large scale magnetic field of the Sun are important for establishing the three-dimensional intensity distributions of these particles in the heliosphere during periods of solar minimum conditions.
Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products
Bernatchez, Stéphanie F.; Tucker, Joseph; Chiffoleau, Gwenael
2017-01-01
Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed. PMID:29098113
Hawley, Alyse K; Kheirandish, Sam; Mueller, Andreas; Leung, Hilary T C; Norbeck, Angela D; Brewer, Heather M; Pasa-Tolic, Ljiljana; Hallam, Steven J
2013-01-01
Water column oxygen (O2)-deficiency shapes food-web structure by progressively directing nutrients and energy away from higher trophic levels into microbial community metabolism resulting in fixed nitrogen loss and greenhouse gas production. Although respiratory O2 consumption during organic matter degradation is a natural outcome of a productive surface ocean, global-warming-induced stratification intensifies this process leading to oxygen minimum zone (OMZ) expansion. Here, we describe useful tools for detection and quantification of potential key microbial players and processes in OMZ community metabolism including quantitative polymerase chain reaction primers targeting Marine Group I Thaumarchaeota, SUP05, Arctic96BD-19, and SAR324 small-subunit ribosomal RNA genes and protein extraction methods from OMZ waters compatible with high-resolution mass spectrometry for profiling microbial community structure and functional dynamics. © 2013 Elsevier Inc. All rights reserved.
On the Mechanism of Boron Ignition
NASA Technical Reports Server (NTRS)
Keil, D. G.; Dreizin, E. L.; Felder, W.; Vicenzi, E. P.
1997-01-01
Boron filaments were electrically heated in air and argon/oxygen mixtures while their resistance, temperature, and radiation at the wavelengths of BO and BO2 bands were monitored. The filaments 'burned' in two distinct stages. Samples of the filaments were quenched at different times before and during the burning and analyzed using electron microscopy. The beginning of the first stage combustion characterized by a local resistance minimum, a sharp spike in boron oxide radiation emission, and a rapid rise in temperature, occurred at 1500 +/- 70 deg. C, independent of pre-heating history and oxygen content (540%) in the gas environment. The data suggest that a phase transition occurs in the filaments at this temperature that triggers stage one combustion. Significant amounts of oxygen were found inside quenched filaments. Large spherical voids formed in the boron filaments during their second stage combustion which is interpreted to indicate a crucial role for the gas dissolution processes in the combustion scenario.
Oxygen permeability of hydrogel contact lenses with organosilicon moieties.
Compañ, V; Andrio, A; López-Alemany, A; Riande, E; Refojo, M F
2002-07-01
Oxygen transport through two extended wear (day and night) hydrogel contact lenses that contain organosilicon moieties (balafilcon A and lotrafilcon A) was studied in the hydrate (hydrogel) and dry (xerogel) states. The water uptake increased the oxygen permeability [(Dk)app] and transmissibility [Dk/L(av)] coefficients of the dry materials by about 70%. The (Dk)app for the hydrated lenses was determined following the so-called stack procedure. The values obtained were 107 +/- 4 barrer for balafilcon A and 141 +/- 5 barrer for lotrafilcon A, about 5-10 times larger than those previously reported for conventional (without organosilicon moieties) extended wear hydrogels contact lenses. The Dk/L(av) for -3.00 diopter lenses (harmonic average thickness, L(av) = 75 +/- 2 microm for lotrafilcon, and 85 +/- 2 microm for balafilcon) was 123 +/- 6 barrer/cm for balafilcon A and 183 +/- 8 barrer/cm for lotralicon A. The minimum oxygen transmissibility 87 barrer/cm stipulated by Holden and Mertz to avoid corneal edema with extended wear contact can be easily achieved with lotrafilcon and balafilcon lenses of diverse dioptric powers if the central and peripheral thickness of the lenses are kept below the critical level of oxygen transmissibility.
Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping
2010-02-01
Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.
NASA Astrophysics Data System (ADS)
Ji, Qixing; Widner, Brittany; Jayakumar, Amal; Ward, Bess; Mulholland, Margaret
2017-04-01
In coastal upwelling regions, high surface productivity leads to high export and intense remineralization consuming oxygen. This, in combination with slow ventilation, creates oxygen minimum zones (OMZ) in eastern boundary regions of the ocean, such as the one off the Peruvian coast in the Eastern Tropical South Pacific. The OMZ is characterized by a layer of high nitrite concentration coinciding with water column anoxia. Sharp oxygen gradients are located above and below the anoxic layer (upper and lower oxyclines). Thus, the OMZ harbors diverse microbial metabolisms, several of which involve the production and consumption of nitrite. The sources of nitrite are ammonium oxidation and nitrate reduction. The sinks of nitrite include anaerobic ammonium oxidation (anammox), canonical denitrification and nitrite oxidation to nitrate. To quantify the sources and sinks of nitrite in the Peruvian OMZ, incubation experiments with 15N-labeled substrates (ammonium, nitrite and nitrate) were conducted on a research cruise in January 2015. The direct measurements of instantaneous nitrite production and consumption rates were compared with ambient nitrite concentrations to evaluate the turnover rate of nitrite in the OMZ. The distribution of nitrite in the water column showed a two-peak structure. A primary nitrite maximum (up to 0.5 μM) was located in the upper oxycline. A secondary nitrite maximum (up to 10 μM) was found in the anoxic layer. A nitrite concentration minimum occurred at the oxic-anoxic interface just below the upper oxycline. For the sources of nitrite, highest rates of ammonium oxidation and nitrate reduction were detected in the upper oxycline, where both nitrite and oxygen concentrations were low. Lower rates of nitrite production were detected within the layer of secondary nitrite maximum. For the sinks of nitrite, the rates of anammox, denitrification and nitrite oxidation were the highest just below the oxic-anoxic interface. Low nitrite consumption rates were also detected within the layer of the secondary nitrite maximum. The imbalances between nitrite production and consumption rates help to explain the distribution of nitrite in the water column. The primary nitrite maximum in the upper oxycline is consistent with ammonium oxidation exceeding nitrite oxidation. Nitrite consumption rates exceeding rates of nitrite production result in the low nitrite concentration at the oxic-anoxic interface. Within the secondary nitrite maximum in the anoxic layer, production and consumption of nitrite are equivalent within measurement error. These low turnover rates suggest the stability of the nitrite pool in the secondary nitrite maximum over long time scales (decades to millennial). These data could be implemented into biogeochemical models to decipher the origin and the evolution of nitrite distribution in the OMZs.
Teuber, Lena; Schukat, Anna; Hagen, Wilhelm; Auel, Holger
2013-01-01
Oxygen minimum zones (OMZs) affect distribution patterns, community structure and metabolic processes of marine organisms. Due to the prominent role of zooplankton, especially copepods, in the marine carbon cycle and the predicted intensification and expansion of OMZs, it is essential to understand the effects of hypoxia on zooplankton distribution and ecophysiology. For this study, calanoid copepods were sampled from different depths (0-1800 m) at eight stations in the eastern tropical Atlantic (3 °47'N to 18 °S) during three expeditions in 2010 and 2011. Their horizontal and vertical distribution was determined and related to the extent and intensity of the OMZ, which increased from north to south with minimum O2 concentrations (12.7 µmol kg(-1)) in the southern Angola Gyre. Calanoid copepod abundance was highest in the northeastern Angola Basin and decreased towards equatorial regions as well as with increasing depth. Maximum copepod biodiversity was observed in the deep waters of the central Angola Basin. Respiration rates and enzyme activities were measured to reveal species-specific physiological adaptations. Enzyme activities of the electron transport system (ETS) and lactate dehydrogenase (LDH) served as proxies for aerobic and anaerobic metabolic activity, respectively. Mass-specific respiration rates and ETS activities decreased with depth of occurrence, consistent with vertical changes in copepod body mass and ambient temperature. Copepods of the families Eucalanidae and Metridinidae dominated within the OMZ. Several of these species showed adaptive characteristics such as lower metabolic rates, additional anaerobic activity and diel vertical migration that enable them to successfully inhabit hypoxic zones.
Teuber, Lena; Schukat, Anna; Hagen, Wilhelm; Auel, Holger
2013-01-01
Oxygen minimum zones (OMZs) affect distribution patterns, community structure and metabolic processes of marine organisms. Due to the prominent role of zooplankton, especially copepods, in the marine carbon cycle and the predicted intensification and expansion of OMZs, it is essential to understand the effects of hypoxia on zooplankton distribution and ecophysiology. For this study, calanoid copepods were sampled from different depths (0–1800 m) at eight stations in the eastern tropical Atlantic (3°47′N to 18°S) during three expeditions in 2010 and 2011. Their horizontal and vertical distribution was determined and related to the extent and intensity of the OMZ, which increased from north to south with minimum O2 concentrations (12.7 µmol kg−1) in the southern Angola Gyre. Calanoid copepod abundance was highest in the northeastern Angola Basin and decreased towards equatorial regions as well as with increasing depth. Maximum copepod biodiversity was observed in the deep waters of the central Angola Basin. Respiration rates and enzyme activities were measured to reveal species-specific physiological adaptations. Enzyme activities of the electron transport system (ETS) and lactate dehydrogenase (LDH) served as proxies for aerobic and anaerobic metabolic activity, respectively. Mass-specific respiration rates and ETS activities decreased with depth of occurrence, consistent with vertical changes in copepod body mass and ambient temperature. Copepods of the families Eucalanidae and Metridinidae dominated within the OMZ. Several of these species showed adaptive characteristics such as lower metabolic rates, additional anaerobic activity and diel vertical migration that enable them to successfully inhabit hypoxic zones. PMID:24223716
Uzunova, Ellie L; Mikosch, Hans
2012-03-29
The dimers of cobalt oxide (CoO)(2) with cyclic and open bent structure are studied with the B1LYP density functional; the ordering of states is validated by the CCSD(T) method. The D(2h)-symmetry rhombic dioxide Co(2)O(2) with antiferromagnetically ordered electrons on cobalt centers is the global minimum. The cyclic peroxide Co(2)(O(2)) with side-on-bonded dioxygen in (7)B(2) ground state is separated from the global minimum by an energy gap of 3.15 eV. The dioxide is highly reactive as indicated by the high value of proton affinity and chemical reactivity indices. The four-member ring structures are more stable than those with three-member ring or chain configuration. The thermodynamic stability toward dissociation to CoO increases upon carbonylation, whereas proton affinity and reactivity with release of molecular oxygen also increase. The global minimum of Co(2)O(2)(CO)(6) corresponds to a triplet state (3)A" with oxygen atoms shifted above the molecular plane of the rhombic dioxide Co(2)O(2). The SOMO-LUMO gap in the ground-state carbonylated dioxide is wider, compared to the same gap in the bare dicobalt dioxide. The peroxo-isomer Co(2)(O(2))(CO)(6) retains the planar Co(2)(O(2)) ring and is only stable in a high-spin state (7)A". The carbonylated clusters have increased reactivity in both redox and nucleophilic reactions, as a result of the increased electron density in the Co(2)O(2)-ring area.
Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation
NASA Astrophysics Data System (ADS)
Sperling, Erik A.; Wolock, Charles J.; Morgan, Alex S.; Gill, Benjamin C.; Kunzmann, Marcus; Halverson, Galen P.; MacDonald, Francis A.; Knoll, Andrew H.; Johnston, David T.
2015-07-01
Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.
Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohar S. Sohal; J. Stephen Herring
2008-07-01
Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazardsmore » related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.« less
Very Low Thrust Gaseous Oxygen-hydrogen Rocket Engine Ignition Technology
NASA Technical Reports Server (NTRS)
Bjorklund, Roy A.
1983-01-01
An experimental program was performed to determine the minimum energy per spark for reliable and repeatable ignition of gaseous oxygen (GO2) and gaseous hydrogen (GH2) in very low thrust 0.44 to 2.22-N (0.10 to 0.50-lb sub f) rocket engines or spacecraft and satellite attitude control systems (ACS) application. Initially, the testing was conducted at ambient conditions, with the results subsequently verified under vacuum conditions. An experimental breadboard electrical exciter that delivered 0.2 to 0.3 mj per spark was developed and demonstrated by repeated ignitions of a 2.22-N (0.50-lb sub f) thruster in a vacuum chamber with test durations up to 30 min.
Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Ramonell, K. M.; Kuang, A.; Porterfield, D. M.; Crispi, M. L.; Xiao, Y.; McClure, G.; Musgrave, M. E.
2001-01-01
Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.
Reduced oxygenation at intermediate depths of the southwest Pacific during the last glacial maximum
NASA Astrophysics Data System (ADS)
Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Townsend, Ashley T.; Bindoff, Nathaniel L.; Neil, Helen; Jacobsen, Geraldine
2018-06-01
To investigate changes in oxygenation at intermediate depths in the southwest Pacific between the Last Glacial Maximum (LGM) and the Holocene, redox sensitive elements uranium and rhenium were measured in 12 sediment cores located on the Campbell and Challenger plateaux offshore from New Zealand. The core sites are currently bathed by Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The sedimentary distributions of authigenic uranium and rhenium reveal reduced oxygen content at intermediate depths (800-1500 m) during the LGM compared to the Holocene. In contrast, data from deeper waters (≥1500 m) indicate higher oxygen content during the LGM compared to the Holocene. These data, together with variations in benthic foraminiferal δ13C, are consistent with a shallower AAIW-UCDW boundary over the Campbell Plateau during the LGM. Whilst AAIW continued to bathe the intermediate depths (≤1500 m) of the Challenger Plateau during the LGM, the data suggest that the AAIW at these core sites contained less oxygen compared to the Holocene. These results are at odds with the general notion that AAIW was better oxygenated and expanded deeper during the LGM due to stronger westerlies and colder temperatures. These findings may be explained by an important change in AAIW formation and circulation.
Müller, Alexander; Preuß, Annegret; Röder, Beate
2018-01-01
Photodynamic inactivation (PDI) of bacteria may play a major role in facing the challenge of the ever expanding antibiotic resistances. Here we report about the direct correlation of singlet oxygen luminescence kinetics and phototoxicity in E. coli cell suspension under PDI using the widely applied cationic photosensitizer TMPyP. Through direct access to the microenvironment, the time resolved investigation of singlet oxygen luminescence plays a key role in understanding the photosensitization mechanism and inactivation pathway. Using the homemade set-up for highly sensitive time resolved singlet oxygen luminescence detection, we show that the cationic TMPyP is localized predominantly outside the bacterial cells but in their immediate vicinity prior to photodynamic inactivation. Throughout following light exposure, a clear change in singlet oxygen kinetics indicates a redistribution of photosensitizer molecules to at least one additional microenvironment. We found the signal kinetics mirrored in cell viability measurements of equally treated samples from same overnight cultures conducted in parallel: A significant drop in cell viability of the illuminated samples and stationary viability of dark controls. Thus, for the system investigated in this work - a Gram-negative model bacteria and a well-known PS for its PDI - singlet oxygen kinetics correlates with phototoxicity. This finding suggests that it is well possible to evaluate PDI efficiency directly via time resolved singlet oxygen detection. Copyright © 2017 Elsevier B.V. All rights reserved.