Science.gov

Sample records for expansion chambers

  1. External combustion engine having a combustion expansion chamber

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    This patent application discloses an external combustion engine having a combustion expansion chamber. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel, and a cylinder for receiving the energized gas through a rotary valve to perform work on a cylinder disposed therein. A baffle plate is positioned between the combustion area and expansion area for reducing the pressure of the gas. The combustion area and expansion area are separated by a baffle plate having a flow area which is sufficiently large to eliminate the transmission of pressure pulsations from the combustion area to the expansion area while being small enough to provide for substantially complete combustion in the combustion area. The engine is particularly well suited for use in a torpedo.

  2. Re-expansion method for circular waveguide discontinuities: Application to concentric expansion chambers

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2012-01-01

    The paper applies the re-expansion method for analyzing planar discontinuities at the junction of two axi-symmetrical circular waveguides. The normal modes in the two waveguides are expanded at the junction plane into a system of functions accounting for velocity singularities at the corner points. As the new expansion has a high convergence order, only a few terms have to be considered for obtaining the solution of most practical problems. This paper gives the equivalent impedance accounting for nonplanar waves into a plane-wave analysis and also the scattering matrix describing the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both sides of the duct. The last section applies the re-expansion technique to some concentric expansion chambers providing an explicit formula for the transmission loss coefficient. PMID:22352491

  3. Re-expansion method for circular waveguide discontinuities: application to concentric expansion chambers.

    PubMed

    Homentcovschi, Dorel; Miles, Ronald N

    2012-02-01

    The paper applies the re-expansion method for analyzing planar discontinuities at the junction of two axi-symmetrical circular waveguides. The normal modes in the two waveguides are expanded at the junction plane into a system of functions accounting for velocity singularities at the corner points. As the new expansion has a high convergence order, only a few terms have to be considered for obtaining the solution of most practical problems. This paper gives the equivalent impedance accounting for nonplanar waves into a plane-wave analysis and also the scattering matrix describing the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both sides of the duct. The last section applies the re-expansion technique to some concentric expansion chambers providing an explicit formula for the transmission loss coefficient.

  4. Effect of combustion-chamber pressure and nozzle expansion ratio on theoretical performance of several rocket propellant systems

    NASA Technical Reports Server (NTRS)

    Morrell, Virginia E

    1956-01-01

    Theoretical calculations of specific impulse to determine the separate effects of increasing the combustion-chamber pressure and the nozzle expansion ratio on the performance of the propellants, hydrogen-fluorine, hydrogen-oxygen, ammonia-fluorine and AN-F-58 fuel - white fuming nitric acid (95 percent). The results indicate that an increase in specific impulse obtainable with an increase in combustion-chamber pressure is almost entirely caused by the increased expansion ratio through the nozzle.

  5. Performance of the Time Expansion Chamber / Transition Radiation Detector in PHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Luiz Silva, Cesar

    2004-10-01

    The Time Expansion Chamber / Transition Radiation Detector (TEC/TRD) in the PHENIX Experiment at RHIC measures ionization losses (dE/dX) and transition radiation from charged particles produced by beam collisions. It is designed to perform tracking and identification for charged particles on very high particle multiplicity environment. The TEC/TRD consists of 24 wire chambers readout on both sides filled with recycled Xe-based gas mixture. This wire chamber configuration, besides providing measurements of ionization losses for charged particles, can absorb X-Ray photons generated by transition radiation from incident particles with γ>1000 crossing fiber radiators placed at the entrance of the chambers. This allows TEC/TRD to distinguish electrons from the huge pion signal produced over a broad momentum range (1GeV/c

  6. An improved method for design of expansion-chamber mufflers with application to an operational helicopter

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.

    1973-01-01

    An improved method for the design of expansion-chamber mufflers is described and applied to the task of reducing exhaust noise generated by a helicopter. The method is an improvement of standard transmission-line theory in that it accounts for the effect of the mean exhaust-gas flow on the acoustic-transmission properties of a muffler system, including the termination boundary condition. The method has been computerized, and the computer program includes an optimization procedure that adjusts muffler component lengths to achieve a minimum specified desired transmission loss over a specified frequency range. A printout of the program is included together with a user-oriented description.

  7. Homogeneous condensation - Freezing nucleation rate measurements for small water droplets in an expansion cloud chamber

    NASA Technical Reports Server (NTRS)

    Hagen, D. E.; Anderson, R. J.; Kassner, J. L., Jr.

    1981-01-01

    Experimental data on ice nucleation, presented in an earlier paper, are analyzed to yield information about the homogeneous nucleation rate of ice from supercooled liquid and the heights of energy barriers to that nucleation. The experiment consisted of using an expansion cloud chamber to nucleate from the vapor a cloud of supercooled pure water drops and the observation of the fraction of drops which subsequently froze. The analysis employed standard classical homogeneous nucleation theory. The data are used to extract the first experimental measurement (albeit indirect) of the activation energy for the transfer of a water molecule across the liquid-ice interface at temperatures near -40 C. The results provide further evidence that the local liquid structure becomes more icelike as the temperature is lowered.

  8. Neutral density map of Hall thruster plume expansion in a vacuum chamber

    SciTech Connect

    Walker, Mitchell L.R.; Gallimore, Alec D.

    2005-05-15

    A neutral background pressure map of the large vacuum test facility (LVTF) is presented. The LVTF is mapped at cold anode flow rates of 5.25, 10.46, and 14.09 mg/s. In addition, neutral background pressure maps are created at hot anode (i.e., discharge on) flow rates of 5.25 and 10.46 mg/s for discharge voltages of 300 and 500 V, corresponding to P5 Hall thruster operating conditions ranging from 1.5 to 5.0 kW. The chamber pressure is mapped at nominal xenon pumping speeds of 140,000 and 240,000 l/s. The pressure map is performed with a rake consisting of five calibrated Bayard-Alpert hot-cathode ionization gauges. The plume expansion appears to be independent of anode flow rate and facility background pressure. Analysis of axial pressure profiles on the LVTF's centerline shows that the plume pressure decreases from a maximum at the thruster exit plane down to the facility background pressure at approximately 2 m downstream of the exit plane. Comparison of axial pressure profiles on the LVTF's centerline shows that the neutral density is nearly the same for cold flow and hot flow. The study shows that a cold flow neutral density background map accurately characterizes the neutral density in an operating Hall thruster plume.

  9. Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    NASA Astrophysics Data System (ADS)

    Nichman, Leonid; Fuchs, Claudia; Järvinen, Emma; Ignatius, Karoliina; Florian Höppel, Niko; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Bjerring Kristensen, Thomas; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-03-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary organic aerosol (SOA) are presented. We report observations of significant liquid-viscous SOA particle polarization transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarization ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulfate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentrations and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to tropical troposphere layer analysis.

  10. Effect of expansion chamber geometry on atomization and spray dispersion characters of a flashing mixture containing inerts. Part II: High speed imaging measurements.

    PubMed

    Ju, Dehao; Shrimpton, John; Bowdrey, Moira; Hearn, Alex

    2012-08-01

    A breath activated, pressurized metered dose inhaler (pMDI) device (Oxette(®)) has been developed to replace the traditional cigarette. In this paper, internal and external spray characters are measured by high speed imaging along with sizing the residual droplets at the distance from the discharge orifice where the human oropharynx locates. Two different formulations with 95% and 98% mass fraction of HFA 134a and two prototype cigarette alternatives with different expansion chamber volumes have been analyzed. The internal and external flows issuing from early stage prototype Oxette(®) are discussed along with boiling and evaporation phenomena. The expansion and entrainment regions of the jet are observed and discussed with comparison to the turbulent round jet of a single phase. From the visualizations of internal flows in the earlier design, a small expansion chamber can hardly generate small bubbles, which is difficult to produce fine sprays. The larger the expansion chamber volume, the more room for the propellant evaporation, recirculation, bubble generation and growth, all of which produces finer sprays. Therefore the later prototype of Oxette(®) 2 made a significant improvement to produce fine sprays and facilitated development of the cigarette alternative. Furthermore, the characters of the spray generated by Oxette(®) are compared to that issuing from a pMDI by previous researchers, where the residual MMD is larger than that of a pMDI, because the Oxette(®) has a smaller expansion chamber and the geometry provides less opportunity for the recirculation due to restrictions of the design space. Although the formulation with higher mass fraction of HFA 134a can generate smaller droplets, it cannot produce steady puffs with relatively low mass flow rate.

  11. Effect of expansion chamber geometry on atomization and spray dispersion characters of a flashing mixture containing inerts. Part I. Numerical predictions and dual laser measurements.

    PubMed

    Ju, Dehao; Shrimpton, John; Bowdrey, Moira; Hearn, Alex

    2012-08-01

    A cigarette alternative is designed to deliver a dose of medicinal nicotine within a timeframe comparable to that of a cigarette, and gives much of what smokers expect from a cigarette without the risks of smoking tobacco. The design concept is the same as a pressurized metered dose inhaler (pMDI), but is a breath actuated device (Oxette(®)). This work predicts the residual mass median diameter (MMD) of the spray issuing from early stage Oxette(®) prototypes by using an evaporation model of multi-component liquid droplets with the help of a numerical multi-component two-phase actuation model (developed by the authors) to quantify the sprays. Two different formulations with 95% and 98% mass fraction of HFA 134a, and two prototypes of cigarette alternatives with different expansion chamber volumes have been analyzed by the numerical model and compared with laser based measurements. The later designed device provides a larger expansion chamber volume to enhance the propellant evaporation, recirculation, bubble generation and growth inside the chamber, and it makes a significant improvement to produce finer sprays than the earlier design. The mass fraction of the formulation does not affect significantly on the initial MMD of the droplets near the discharge orifice. However, it influences the residual MMD at x=100mm from the discharge orifice, where the ratio of the predicted residual MMDs of the droplets generated by the formulations with 98% and 95% of HFA 134a is 0.73. Although the formulation with 98% of HFA 134a can generate smaller droplets, the formulation with 95% of HFA 134a produces more steady puffs with relatively low mass flow rate.

  12. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  13. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  14. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  15. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  16. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  17. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  18. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  19. Rocket Combustion Chambers Resist Thermal Fatigue

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.; Pavli, Albert J.

    1995-01-01

    Improved design concept developed for combustion chambers for rocket engines, described in three reports. Provides compliance allowing unrestrained thermal expansion in circumferential direction. Compliance lengthens life of rocket engine by reducing amount of thermal deformation caused by repeated firings.

  20. Chamber propagation

    SciTech Connect

    Langdon, B.

    1991-01-16

    Propagation of a heavy ion beam to the target appears possible under conditions thought to be realizable by several reactor designs. Beam quality at the lens is believed to provide adequate intensity at the target -- but the beam must pass through chamber debris and its self fields along the way. This paper reviews present consensus on propagation modes and presents recent results on the effects of photoionization of the beam ions by thermal x-rays from the heated target. Ballistic propagation through very low densities is a conservative mode. The more-speculative self-pinched mode, at 1 to 10 Torr, offers reactor advantages and is being re-examined by others. 13 refs.

  1. Chamber transport

    SciTech Connect

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  2. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  3. Universal Expansion.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Describes a week-long activity for general to honors-level students that addresses Hubble's law and the universal expansion theory. Uses a discrepant event-type activity to lead up to the abstract principles of the universal expansion theory. (JRH)

  4. Theoretical Performance of Hydrogen-Oxygen Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Sievers, Gilbert K.; Tomazic, William A.; Kinney, George R.

    1961-01-01

    Data are presented for liquid-hydrogen-liquid-oxygen thrust chambers at chamber pressures from 15 to 1200 pounds per square inch absolute, area ratios to approximately 300, and percent fuel from about 8 to 34 for both equilibrium and frozen composition during expansion. Specific impulse in vacuum, specific impulse, combustion-chamber temperature, nozzle-exit temperature, characteristic velocity, and the ratio of chamber-to-nozzle-exit pressure are included. The data are presented in convenient graphical forms to allow quick calculation of theoretical nozzle performance with over- or underexpansion, flow separation, and introduction of the propellants at various initial conditions or heat loss from the combustion chamber.

  5. Liquid Engine Design: Effect of Chamber Dimensions on Specific Impulse

    NASA Technical Reports Server (NTRS)

    Hoggard, Lindsay; Leahy, Joe

    2009-01-01

    Which assumption of combustion chemistry - frozen or equilibrium - should be used in the prediction of liquid rocket engine performance calculations? Can a correlation be developed for this? A literature search using the LaSSe tool, an online repository of old rocket data and reports, was completed. Test results of NTO/Aerozine-50 and Lox/LH2 subscale and full-scale injector and combustion chamber test results were found and studied for this task. NASA code, Chemical Equilibrium with Applications (CEA) was used to predict engine performance using both chemistry assumptions, defined here. Frozen- composition remains frozen during expansion through the nozzle. Equilibrium- instantaneous chemical equilibrium during nozzle expansion. Chamber parameters were varied to understand what dimensions drive chamber C* and Isp. Contraction Ratio is the ratio of the nozzle throat area to the area of the chamber. L is the length of the chamber. Characteristic chamber length, L*, is the length that the chamber would be if it were a straight tube and had no converging nozzle. Goal: Develop a qualitative and quantitative correlation for performance parameters - Specific Impulse (Isp) and Characteristic Velocity (C*) - as a function of one or more chamber dimensions - Contraction Ratio (CR), Chamber Length (L ) and/or Characteristic Chamber Length (L*). Determine if chamber dimensions can be correlated to frozen or equilibrium chemistry.

  6. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)

  7. Internal combustion engine with multiple combustion chambers

    SciTech Connect

    Gruenwald, D.J.

    1992-05-26

    This patent describes a two-cycle compression ignition engine. It comprises one cylinder, a reciprocable piston moveable in the cylinder, a piston connecting rod, a crankshaft for operation of the piston connecting rod, a cylinder head enclosing the cylinder, the upper surface of the piston and the enclosing surface of the cylinder head defining a cylinder clearance volume, a first combustion chamber and a second combustion chamber located in the cylinder head. This patent describes improvement in means for isolating the combustion process for one full 360{degrees} rotation of the crankshaft; wherein the combustion chambers alternatively provide for expansion of combustion products in the respective chambers into the cylinder volume near top dead center upon each revolution of the crankshaft.

  8. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  9. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  10. Stove with multiple chambers

    SciTech Connect

    Black, A.

    1987-04-21

    A stove is described for burning a solid fuel such as wood. The wall means defines a main air inlet, a combustion gas outlet, and four chambers through which gas passes sequentially from the main air inlet to the combustion gas outlet. The chambers comprises a pre-heat plenum chamber into which the main air inlet opens. A main combustion chamber contains solid fuel to be burned into which gas passes from the pre-heat plenum chamber, a second combustion chamber which is downstream of the main combustion chamber with respect to the flow of gas from the main air inlet to the combustion gas outlet, and a third combustion chamber from which the combustion gas outlet opens. The stove also comprises a plate having a restricted opening for providing communication between the second and third combustion chambers. And a catalytic converter comprises a body of solid material formed with passageways, the body of solid material being fitted in the restricted opening so that gas passes from the second combustion chamber to the third combustion chamber by way of the passageways in the body.

  11. Quasi-Porous Plug With Vortex Chamber

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1985-01-01

    Pressure-letdown valve combines quasi-porous-plug and vortex-chamber in one controllable unit. Valve useful in fossil-energy plants for reducing pressures in such erosive two-phase process streams as steam/water, coal slurries, or combustion gases with entrained particles. Quasi-Porous Plug consists of plenums separated by perforated plates. Number or size of perforations increases with each succeeding stage to compensate for expansion. In Vortex Chamber, control flow varies to control swirl and therefore difference between inlet and outlet pressures.

  12. Hot fire fatigue testing results for the compliant combustion chamber

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kazaroff, John M.; Jankovsky, Robert S.

    1992-01-01

    A hydrogen-oxygen subscale rocket combustion chamber was designed incorporating an advanced design concept to reduce strain and increase life. The design permits unrestrained thermal expansion of a circumferential direction and, thereby, provides structural compliance during the thermal cycling of hot-fire testing. The chamber was built and test fired at a chamber pressure of 4137 kN/sq m (600 psia) and a hydrogen-oxygen mixture ratio of 6.0. Compared with a conventional milled-channel configuration, the new structurally compliant chamber had a 134 or 287 percent increase in fatigue life, depending on the life predicted for the conventional configuration.

  13. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  14. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  15. A soundproof pressure chamber.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Inoue, S

    1994-01-01

    For neurotological research we designed a soundproof pressure chamber in which pressure can be adjusted +/- 1000 mmH2O at the rate of less than 100 mmH2O per second. Noise in the chamber can be maintained under 30-35 dB while pressure is kept at a given level.

  16. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  17. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  18. 45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  19. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  20. The Mars Chamber

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  1. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  2. Solar thermal plasma chamber

    NASA Astrophysics Data System (ADS)

    Bonometti, Joseph; Buchele, Donald R.; Castle, Charles H.; Gregory, Don A.

    2001-11-01

    A unique solar thermal chamber has been designed and fabricated to produce the maximum concentration of solar energy and highest temperature possible. Its primary purpose was for solar plasma propulsion experiments and related material specimen testing above 3000 Kelvin. The design not only maximized solar concentration, but also, minimized infrared heat loss. This paper provides the underlining theory and operation of the chamber and initial optical correlation to the actual fabricated hardware. The chamber is placed at the focal point of an existing primary concentrator with a 2.74-meter (9 foot) focal length. A quartz lens focuses a smaller sun image at the inlet hole of the mirrored cavity. The lens focuses two image planes at prescribed positions; the sun at the cavity's entrance hole, and the primary concentrator at the junction plane of two surfaces that form the cavity chamber. The back half is an ellipsoid reflector that produces a 1.27 cm diameter final sun image. The image is 'suspended in space' 7.1cm away from the nearest cavity surface, to minimize thermal and contaminate damage to the mirror surfaces. A hemisphere mirror makes up the front chamber and has its center of curvature at the target image, where rays leaving the target are reflected back upon themselves, minimizing radiation losses.

  3. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  4. Drift Chamber Experiment

    NASA Astrophysics Data System (ADS)

    Walenta, A. H.; ćonka Nurdan, T.

    2003-07-01

    This paper describes a laboratory course held at ICFA 2002 Regional Instrumentation School in Morelia, Mexico. This course intends to introduce drift chambers, which play an important role in particle physics experiments as tracking detectors. The experimental setup consists of a single-sided, single-cell drift chamber, a plastic scintillator detector and a collimated 90Sr source. The measurements on the drift velocity of electrons, its change as a function of a drift field, gas gain and diffusion are performed at this laboratory course.

  5. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  6. Internal combustion chamber

    SciTech Connect

    Schmitz, D.L.

    1988-03-08

    In combination with a high-powered reciprocating piston internal combustion engine, an internal combustion cylinder assembly is described comprising: a cylinder head made of weldable material; a cylinder liner for containing and guiding a reciprocating piston of the engine, a coolant jacket adapted to receive a cooling fluid, mounted on and surrounding the cylinder liner, the jacket being attached to the cylinder head and detachably supported by the cylinder liner, and forming a cooling chamber around the cylinder liner; means to supply the cooling fluid to the cooling chamber and to discharge the cooling fluid therefrom.

  7. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  8. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  9. Ultrasonic Drying Processing Chamber

    NASA Astrophysics Data System (ADS)

    Acosta, V.; Bon, J.; Riera, E.; Pinto, A.

    The design of a high intensity ultrasonic chamber for drying process was investigated. The acoustic pressure distribution in the ultrasonic drying chamber was simulated solving linear elastic models with attenuation for the acoustic-structure interaction. Together with the government equations, the selection of appropriate boundary conditions, mesh refinement, and configuration parameters of the calculation methods, which is of great importance to simulate adequately the process, were considered. Numerical solution, applying the finite element method (FEM), of acoustic-structure interactions involves to couple structural and fluid elements (with different degrees of freedom), whose solution implies several problems of hardware requirements and software configuration, which were solved. To design the drying chamber, the influence of the directivity of the drying open camera and the staggered reflectors over the acoustic pressure distribution was analyzed. Furthermore, to optimize the influence of the acoustic energy on the drying process, the average value of the acoustic energy distribution in the drying chamber was studied. This would determine the adequate position of the food samples to be dried. For this purpose, the acoustic power absorbed by the samples will be analyzed in later studies.

  10. Flame-Test Chamber

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.

    1984-01-01

    Experimental chamber provides controlled environment for observation and measurement of flames propagating in expanding plume of flammable air/fuel mixture under atmospheric conditions. Designed to evaluate quenching capability of screen-type flame arresters in atmospheric vents of fuel cargo tanks aboard marine cargo vessels.

  11. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  12. Review of straw chambers

    SciTech Connect

    Toki, W.H.

    1990-03-01

    This is a review of straw chambers used in the HRS, MAC, Mark III, CLEO, AMY, and TPC e{sup +}e{sup {minus}} experiments. The straws are 6--8 mm in diameter, operate at 1--4 atmospheres and obtain resolutions of 45--100 microns. The designs and constructions are summarized and possible improvements discussed.

  13. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  14. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  15. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  16. 44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), LOOKING NORTHEAST SHOWING DRAIN PIPE FROM SUMP - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  17. 61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION PPP) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  18. 41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING NORTHEAST FROM SOUTHWEST CORNER (LOCATION AAA) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  19. 50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ENCLOSURE (LOCATION III) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  20. 72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR AND CANAL (LOCATION T) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  1. Weak measure expansive flows

    NASA Astrophysics Data System (ADS)

    Lee, Keonhee; Oh, Jumi

    2016-01-01

    A notion of measure expansivity for flows was introduced by Carrasco-Olivera and Morales in [3] as a generalization of expansivity, and they proved that there were no measure expansive flows on closed surfaces. In this paper we introduce a concept of weak measure expansivity for flows which is really weaker than that of measure expansivity, and show that there is a weak measure expansive flow on a closed surface. Moreover we show that any C1 stably weak measure expansive flow on a C∞ closed manifold M is Ω-stable, and any C1 stably measure expansive flow on M satisfies both Axiom A and the quasi-transversality condition.

  2. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  3. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  4. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  5. Electrostatic Levitator Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  6. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  7. Electrostatic Levitator Vaccum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), positioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  8. Vibrating-chamber levitation systems

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C. (Inventor)

    1985-01-01

    Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.

  9. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  10. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  11. Vibrating-chamber levitation systems

    NASA Astrophysics Data System (ADS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1985-10-01

    Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.

  12. Multi-anode ionization chamber

    DOEpatents

    Bolotnikov, Aleksey E.; Smith, Graham; Mahler, George J.; Vanier, Peter E.

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  13. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  14. Review of wire chamber aging

    SciTech Connect

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.

  15. Investigation of thermal and temporal responses of ionization chambers in radiation dosimetry.

    PubMed

    AlMasri, Hussein; Funyu, Akira; Kakinohana, Yasumasa; Murayama, Sadayuki

    2012-07-01

    The ionization chamber is a primary dosimeter that is used in radiation dosimetry. Generally, the ion chamber response requires temperature/pressure correction according to the ideal gas law. However, this correction does not consider the thermal volume effect of chambers. The temporal and thermal volume effects of various chambers (CC01, CC13, NACP parallel-plate, PTW) with different wall and electrode materials have been studied in a water phantom. Measurements were done after heating the water with a suitable heating system, and chambers were submerged for a sufficient time to allow for temperature equilibrium. Temporal results show that all chambers equilibrate quickly in water. The equilibration time was between 3 and 5 min for all chambers. Thermal results show that all chambers expanded in response to heating except for the PTW, which contracted. This might be explained by the differences in the volumes of all chambers and also by the difference in wall material composition of PTW from the other chambers. It was found that the smallest chamber, CC01, showed the greatest expansion. The magnitude of the expansion was ~1, 0.8, and 0.9% for CC01, CC13, and parallel-plate chambers, respectively, in the temperature range of 295-320 K. The magnitude of the detected contraction was <0.3% for PTW in the same temperature range. For absolute dosimetry, it is necessary to make corrections for the ion chamber response, especially for small ion chambers like the CC01. Otherwise, room and water phantom temperatures should remain within a close range. PMID:22467281

  16. Diogene pictorial drift chamber

    SciTech Connect

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  17. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  18. Environmental calibration chamber operations

    NASA Technical Reports Server (NTRS)

    Lester, D. L.

    1988-01-01

    Thermal vacuum capabilities are provided for the development, calibration, and functional operation checks of flight sensors, sources, and laboratory and field instruments. Two systems are available. The first is a 46 cm diameter diffusion pumped vacuum chambler of the bell jar variety. It has an internal thermal shroud, LN2 old trap, two viewing ports, and various electrical and fluid feedthroughs. The other, also an oil diffusion pumped system, consists of a 1.8 m diameter by 2.5 m long stainless steel vacuum tank, associated pumping and control equipment, a liquid nitrogen storage and transfer system and internal IR/visible calibration sources. This is a two story system with the chamber located on one floor and the pumping/cryogenic systems located on the floor below.

  19. Diogene pictorial drift chamber

    NASA Astrophysics Data System (ADS)

    Gosset, J.

    1984-02-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  20. Variable expansion ratio reaction engine

    SciTech Connect

    Wagner, W.R.

    1987-11-24

    A variable expansion ratio reaction rocket engine for producing a mainstream of hot combustion gases is described comprising: a reaction chamber including a thrust nozzle portion formed by converging and diverging wall portions in which the diverging portion terminates in a gas discharge and through which the combustion gases pass; a nozzle throat section at the juncture of the convergent-divergent wall portions; rows of circumferentially and axially spaced injection ports formed within the wall portions and communicating therethrough and into the reaction chamber; fluid conduit means in communication with the injection ports; at least one high pressure pump in communication with the fluid conduit means; a fluid containing storage tank including a conduit in communication with the high pressure pump; and means for selectively controlling a flow of fluid out of the tank, through the pump and to the fluid conduit means and the injection ports for controlling a cross-sectional area of the mainstream combustion gases passing through the thrust nozzle.

  1. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  2. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  3. Fast-response cloud chamber

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1977-01-01

    Wall structure keeps chambers at constant, uniform temperature, yet allows them to be cooled rapidly if necessary. Wall structure, used in fast-response cloud chamber, has surface heater and coolant shell separated by foam insulation. It is lightweight and requires relatively little power.

  4. Chamber Music: Skills and Teamwork.

    ERIC Educational Resources Information Center

    Villarrubia, Charles

    2000-01-01

    Focuses on the benefits of participating in chamber music ensembles, such as the development of a heightened level of awareness, and considers the role of the music educator/conductor. Provides tools and exercises that teachers can introduce to chamber music players to improve their rehearsals and performances. (CMK)

  5. Analysis of physical processes in ICF target chambers

    SciTech Connect

    MacFarlane, J.J.; Peterson, R.R.; Moses, G.A.

    1989-03-01

    When a high-gain inertial fusion target explodes, roughly one third of the energy is released in the form of x-rays and energetic ions, which can damage the wall of the chamber. One method of protecting the wall is to place a gas in the chamber cavity. The authors use a 1-D Lagrangian radiation-hydrodynamics code (CONRAD) to study the target energy deposition in this cavity gas and first surface material, the growth of and radiative emission from the microfireball, the expansion of the shock front, the vaporization and hydromotion of the first surface material, and the recondensation of that material back onto the wall. The authors describe recent improvements to CONRAD, and present results for two target chamber designs currently being considered by Lawrence Livermore National Laboratory for the Laboratory Microfusion Facility.

  6. National Ignition Facility Target Chamber

    SciTech Connect

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  7. University of Missouri-Rolla cloud simulation facility - Proto II chamber

    NASA Technical Reports Server (NTRS)

    White, Daniel R.; Carstens, John C.; Hagen, Donald E.; Schmitt, John L.; Kassner, James L.

    1987-01-01

    The design and supporting systems for the cooled-wall expansion cloud chamber, designated Proto II, are described. The chamber is a 10-sided vertical cylinder designed to be operated with interior wall temperatures between +40 and -40 C, and is to be utilized to study microphysical processes active in atmospheric clouds and fogs. Temperatures are measured using transistor thermometers which have a range of + or - 50 C and a resolution of about + or - 0.001 C; and pressures are measured in the chamber by a differential strain gauge pressure transducer. The methods used for temperature and pressure control are discussed. Consideration is given to the chamber windows, optical table, photographic/video, optical attenuation, Mie scattering, and the scanning system for the chamber. The system's minicomputer and humidifier, sample preparation, and chamber flushing are examined.

  8. Ion chamber based neutron detectors

    DOEpatents

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  9. Starting a High School Chamber Music Group.

    ERIC Educational Resources Information Center

    Rutkowski, Joseph

    2000-01-01

    Presents ideas on how to begin a chamber music ensemble. Discusses how to find time to accomplish chamber music playing in and around the school day. Presents short descriptions of chamber music that can be used with ensembles. Includes chamber music resources and additional chamber works. (CMK)

  10. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography.

  11. IRIS Leaves Thermal Vacuum Chamber

    NASA Video Gallery

    This video shows the transportation of the IRIS observatory from the thermal vacuum chamber back to the clean tent for final testing and preparations for delivery to the launch site at Vandenberg A...

  12. The multigap resistive plate chamber

    SciTech Connect

    Zeballos, E. Cerron; Crotty, I.; Hatzifotiadou, D.; Valverde, J. Lamas; Neupane, S.; Williams, M. C. S.; Zichichi, A.

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  13. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  14. Influences on role expansion.

    PubMed

    Bullough, B

    1976-09-01

    Several factors are influencing role expansion for registered nurses, among them the shortage of primary care physicians, the federal government, the physician's assistant movement, the growing complexity of acute hospital care, educational reform, and the women's liberation movement. As state licensure statutes are revised to allow for role expansion, the changing laws themselves become a factor supporting the movement.

  15. 63. Interior view, kitchen chamber, north elevation. The kitchen chamber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Interior view, kitchen chamber, north elevation. The kitchen chamber was completed in the first stages of phase III construction. The paneled wall to the fireplace's right displays a phase III molding profile. The mark between the cabinet doors and on the large lower panel indicates the former position of a partition wall. The chimney-breast paneling bears a phase I profile and might have been moved to the room when the fireplace mass in the hall was reduced. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  16. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  17. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  18. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  19. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  20. Thermal Expansion "Paradox."

    ERIC Educational Resources Information Center

    Fakhruddin, Hasan

    1993-01-01

    Describes a paradox in the equation for thermal expansion. If the calculations for heating a rod and subsequently cooling a rod are determined, the new length of the cool rod is shorter than expected. (PR)

  1. Pen Branch delta expansion

    SciTech Connect

    Nelson, E.A.; Christensen, E.J.; Mackey, H.E.; Sharitz, R.R.; Jensen, J.R.; Hodgson, M.E.

    1984-02-01

    Since 1954, cooling water discharges from K Reactor ({anti X} = 370 cfs {at} 59 C) to Pen Branch have altered vegetation and deposited sediment in the Savannah River Swamp forming the Pen Branch delta. Currently, the delta covers over 300 acres and continues to expand at a rate of about 16 acres/yr. Examination of delta expansion can provide important information on environmental impacts to wetlands exposed to elevated temperature and flow conditions. To assess the current status and predict future expansion of the Pen Branch delta, historic aerial photographs were analyzed using both basic photo interpretation and computer techniques to provide the following information: (1) past and current expansion rates; (2) location and changes of impacted areas; (3) total acreage presently affected. Delta acreage changes were then compared to historic reactor discharge temperature and flow data to see if expansion rate variations could be related to reactor operations.

  2. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  3. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  4. The CLAS drift chamber system

    SciTech Connect

    Mestayer, M.D.; Carman, D.S.; Asavaphibhop, B.

    1999-04-01

    Experimental Hall B at Jefferson Laboratory houses the CEBAF Large Acceptance Spectrometer, the magnetic field of which is produced by a superconducting toroid. The six coils of this toroid divide the detector azimuthally into six sectors, each of which contains three large multi-layer drift chambers for tracking charged particles produced from a fixed target on a toroidal axis. Within the 18 drift chambers are a total of 35,148 individually instrumented hexagonal drift cells. The novel geometry of these chambers provides for good tracking resolution and efficiency, along with large acceptance. The design and construction challenges posed by these large-scale detectors are described, and detailed results are presented from in-beam measurements.

  5. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  6. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam M.

    2011-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications, including the treatment of medical conditions. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy available in the developing world for the treatment of a variety of medical conditions. Specifically, hyperbaric oxygen therapy is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. Hyperbaric oxygen therapy is simply too expensive and too dangerous to implement in the developing world using standard equipment. The hydrostatic hyperbaric chamber technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system that will provide controlled pressurization of the system, and provide adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the

  7. Modifications of a Composite-Material Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; McNeal, Shawn R.

    2005-01-01

    Two short reports discuss modifications of a small, lightweight combustion chamber that comprises a carbon/carbon composite outer shell and an iridium/ rhenium inner liner. The first report discusses chamber design modifications made as results of hot-fire tests and post-test characterization. The Books & Reports 32 NASA Tech Briefs, June 2005 modifications were intended to serve a variety of purposes, including improving fabrication, reducing thermal-expansion mismatch stresses, increasing strength-to-weight ratios of some components, and improving cooling of some components. The second report discusses (1) the origin of stress in the mismatch between the thermal expansions of the Ir/Re liner and a niobium sleeve and flange attached to the carbon/ carbon shell and (2) a modification intended to relieve the stress. The modification involves the redesign of an inlet connection to incorporate a compressible seal between the Ir/Re liner and the Nb flange. A nickel alloy was selected as the seal material on the basis of its thermal-expansion properties and its ability to withstand the anticipated stresses, including the greatest stresses caused by the high temperatures to be used in brazing during fabrication.

  8. Open-chamber combustion study

    NASA Astrophysics Data System (ADS)

    Meyers, D. P.; Meyer, R. C.

    1994-04-01

    The test program was undertaken to research trade-offs between engine design and operational parameters on open-chamber, premixed spark-ignited gas engines, with a primary focus on combustion effects. This included combustion chamber designs which are conceptually diametrically opposed -- a high squish design typical of diesel engines and a virtually quiescent design. The reader should note that these data are somewhat abstract compared to conventional engines, because the Labeco test engine has exceptionally high friction and the lean-burn data were run unboosted.

  9. The Mark III vertex chamber

    SciTech Connect

    Adler, J.; Bolton, T.; Bunnell, K.; Cassell, R.; Cheu, E.; Freese, T.; Grab, C.; Mazaheri, G.; Mir, R.; Odian, A.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 ..mu..m at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 ..mu..m using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin.

  10. Test chamber for alpha spectrometry

    DOEpatents

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  11. Laboratory Course on Drift Chambers

    NASA Astrophysics Data System (ADS)

    García-Ferreira, Ix-B.; García-Herrera, J.; Villaseñor, L.

    2006-09-01

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas.

  12. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  13. General view looking down the approximate centerline of the expansion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view looking down the approximate centerline of the expansion nozzle of a Space Shuttle Main Engine (SSME) mounted on a SSME Engine Handler in the SSME Processing Facility at Kennedy Space Center. This view shows the 1080 cooling tubes used to regeneratively cool the Nozzle and Combustion Chamber by circulating relatively low temperature fuel through the tubes and manifolds before being ignited in the Main Combustion Chamber. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Lightweight Chambers for Thrust Assemblies

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Lee, Jonathan; Holmes, Richard; Zimmerman, Frank; Effinger, Mike; Turner, James E. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) has successfully applied new materials and fabrication techniques to create actively cooled thrust chambers that operate 200-400 degrees hotter and weigh 50% lighter than conventional designs. In some vehicles, thrust assemblies account for as much as 20% of the engine weight. So, reducing the weight of these components and increasing their operating range will benefit many engines and vehicle designs, including Reusable Launch Vehicle (RLV) concepts. Obviously, copper and steel alloys have been used successfully for many years in the chamber components of thrust assemblies. Yet, by replacing the steel alloys with Polymer Matrix Composite (PMC) and/or Metal Matrix Composite (MMC) materials, design weights can be drastically reduced. In addition, replacing the traditional copper alloys with a Ceramic Matrix Composite (CMC) or an advanced copper alloy (Cu-8Cr-4Nb, also known as GRCop-84) significantly increases allowable operating temperatures. Several small MMC and PMC demonstration chambers have recently been fabricated with promising results. Each of these designs included GRCop-84 for the cooled chamber liner. These units successfully verified that designs over 50% lighter are feasible. New fabrication processes, including advanced casting technology and a low cost vacuum plasma spray (VPS) process, were also demonstrated with these units. Hot-fire testing at MSFC is currently being conducted on the chambers to verify increased operating temperatures available with the GRCop-84 liner. Unique CMC chamber liners were also successfully fabricated and prepared for hot-fire testing. Yet, early results indicate these CMC liners need significantly more development in order to use them in required chamber designs. Based on the successful efforts with the MMC and PMC concepts, two full size "lightweight" chambers are currently being designed and fabricated for hot

  15. Combustion chamber and thermal vapor stream producing apparatus and method

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  16. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles can be…

  17. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  18. Chamber Music for Every Instrumentalist.

    ERIC Educational Resources Information Center

    Latten, James E.

    2001-01-01

    Discusses why students who play musical instruments should participate in a chamber music ensemble. Provides rationale for using small ensembles in the high school band curriculum. Focuses on the topic of scheduling, illustrating how to insert small ensembles into the lesson schedule, and how to set up a new schedule. (CMK)

  19. Chamber Music for Better Bands.

    ERIC Educational Resources Information Center

    Brown, Michael R.

    1998-01-01

    Considers why students should participate in a chamber music ensemble: (1) students develop a sense of collegiality and self-worth; (2) ensembles encourage practice time; and (3) ensembles provide flexible performance opportunities. Highlights the different aspects of creating an ensemble from the availability of faculty to selecting challenging…

  20. Chamber Clearing First Principles Modeling

    SciTech Connect

    Loosmore, G

    2009-06-09

    LIFE fusion is designed to generate 37.5 MJ of energy per shot, at 13.3 Hz, for a total average fusion power of 500 MW. The energy from each shot is partitioned among neutrons ({approx}78%), x-rays ({approx}12%), and ions ({approx}10%). First wall heating is dominated by x-rays and debris because the neutron mean free path is much longer than the wall thickness. Ion implantation in the first wall also causes damage such as blistering if not prevented. To moderate the peak-pulse heating, the LIFE fusion chamber is filled with a gas (such as xenon) to reduce the peak-pulse heat load. The debris ions and majority of the x-rays stop in the gas, which re-radiates this energy over a longer timescale (allowing time for heat conduction to cool the first wall sufficiently to avoid damage). After a shot, because of the x-ray and ion deposition, the chamber fill gas is hot and turbulent and contains debris ions. The debris needs to be removed. The ions increase the gas density, may cluster or form aerosols, and can interfere with the propagation of the laser beams to the target for the next shot. Moreover, the tritium and high-Z hohlraum debris needs to be recovered for reuse. Additionally, the cryogenic target needs to survive transport through the gas mixture to the chamber center. Hence, it will be necessary to clear the chamber of the hot contaminated gas mixture and refill it with a cool, clean gas between shots. The refilling process may create density gradients that could interfere with beam propagation, so the fluid dynamics must be studied carefully. This paper describes an analytic modeling effort to study the clearing and refilling process for the LIFE fusion chamber. The models used here are derived from first principles and balances of mass and energy, with the intent of providing a first estimate of clearing rates, clearing times, fractional removal of ions, equilibrated chamber temperatures, and equilibrated ion concentrations for the chamber. These can be used

  1. Accelerating the loop expansion

    SciTech Connect

    Ingermanson, R.

    1986-07-29

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi/sup 4/ theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs.

  2. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  3. REEP Hotels/Chambers Federal Workplace Literacy Project. April 1, 1990-December 31, 1991.

    ERIC Educational Resources Information Center

    Arlington County Public Schools, VA. REEP, Arlington Education and Employment Program.

    In an expansion of an earlier National Workplace Literacy Program project, this document reports on a workplace literacy model operated by the Arlington Education and Employment Program (REEP) that includes the Alexandria and Arlington, Virginia Public Schools, the chambers of commerce of both cities, and 14 local hotels. The project provided…

  4. Optimal Electric Utility Expansion

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  5. Novel Foraminal Expansion Technique

    PubMed Central

    Senturk, Salim; Ciplak, Mert; Oktenoglu, Tunc; Sasani, Mehdi; Egemen, Emrah; Yaman, Onur; Suzer, Tuncer

    2016-01-01

    The technique we describe was developed for cervical foraminal stenosis for cases in which a keyhole foraminotomy would not be effective. Many cervical stenosis cases are so severe that keyhole foraminotomy is not successful. However, the technique outlined in this study provides adequate enlargement of an entire cervical foraminal diameter. This study reports on a novel foraminal expansion technique. Linear drilling was performed in the middle of the facet joint. A small bone graft was placed between the divided lateral masses after distraction. A lateral mass stabilization was performed with screws and rods following the expansion procedure. A cervical foramen was linearly drilled medially to laterally, then expanded with small bone grafts, and a lateral mass instrumentation was added with surgery. The patient was well after the surgery. The novel foraminal expansion is an effective surgical method for severe foraminal stenosis. PMID:27559460

  6. Novel Foraminal Expansion Technique.

    PubMed

    Ozer, Ali Fahir; Senturk, Salim; Ciplak, Mert; Oktenoglu, Tunc; Sasani, Mehdi; Egemen, Emrah; Yaman, Onur; Suzer, Tuncer

    2016-08-01

    The technique we describe was developed for cervical foraminal stenosis for cases in which a keyhole foraminotomy would not be effective. Many cervical stenosis cases are so severe that keyhole foraminotomy is not successful. However, the technique outlined in this study provides adequate enlargement of an entire cervical foraminal diameter. This study reports on a novel foraminal expansion technique. Linear drilling was performed in the middle of the facet joint. A small bone graft was placed between the divided lateral masses after distraction. A lateral mass stabilization was performed with screws and rods following the expansion procedure. A cervical foramen was linearly drilled medially to laterally, then expanded with small bone grafts, and a lateral mass instrumentation was added with surgery. The patient was well after the surgery. The novel foraminal expansion is an effective surgical method for severe foraminal stenosis. PMID:27559460

  7. Thermal expansion in nanoresonators

    NASA Astrophysics Data System (ADS)

    Mancardo Viotti, Agustín; Monastra, Alejandro G.; Moreno, Mariano F.; Florencia Carusela, M.

    2016-08-01

    Inspired by some recent experiments and numerical works related to nanoresonators, we perform classical molecular dynamics simulations to investigate the thermal expansion and the ability of the device to act as a strain sensor assisted by thermally-induced vibrations. The proposed model consists in a chain of atoms interacting anharmonically with both ends clamped to thermal reservoirs. We analyze the thermal expansion and resonant frequency shifts as a function of temperature and the applied strain. For the transversal modes the shift is approximately linear with strain. We also present analytical results from canonical calculations in the harmonic approximation showing that thermal expansion is uniform along the device. This prediction also works when the system operates in a nonlinear oscillation regime at moderate and high temperatures.

  8. Novel Foraminal Expansion Technique.

    PubMed

    Ozer, Ali Fahir; Senturk, Salim; Ciplak, Mert; Oktenoglu, Tunc; Sasani, Mehdi; Egemen, Emrah; Yaman, Onur; Suzer, Tuncer

    2016-08-01

    The technique we describe was developed for cervical foraminal stenosis for cases in which a keyhole foraminotomy would not be effective. Many cervical stenosis cases are so severe that keyhole foraminotomy is not successful. However, the technique outlined in this study provides adequate enlargement of an entire cervical foraminal diameter. This study reports on a novel foraminal expansion technique. Linear drilling was performed in the middle of the facet joint. A small bone graft was placed between the divided lateral masses after distraction. A lateral mass stabilization was performed with screws and rods following the expansion procedure. A cervical foramen was linearly drilled medially to laterally, then expanded with small bone grafts, and a lateral mass instrumentation was added with surgery. The patient was well after the surgery. The novel foraminal expansion is an effective surgical method for severe foraminal stenosis.

  9. Chamber dynamic research with pulsed power

    SciTech Connect

    PETERSON,ROBERT R.; OLSON,CRAIG L.; RENK,TIMOTHY J.; ROCHAU,GARY E.; SWEENEY,MARY ANN

    2000-05-15

    In Inertial Fusion Energy (IFE), Target Chamber Dynamics (TCD) is an integral part of the target chamber design and performance. TCD includes target output deposition of target x-rays, ions and neutrons in target chamber gases and structures, vaporization and melting of target chamber materials, radiation-hydrodynamics in target chamber vapors and gases, and chamber conditions at the time of target and beam injections. Pulsed power provides a unique environment for IFE-TCD validation experiments in two important ways: they do not require the very clean conditions which lasers need and they currently provide large x-ray and ion energies.

  10. A Special Trinomial Expansion

    ERIC Educational Resources Information Center

    Ayoub, Ayoub B.

    2006-01-01

    In this article, the author takes up the special trinomial (1 + x + x[squared])[superscript n] and shows that the coefficients of its expansion are entries of a Pascal-like triangle. He also shows how to calculate these entries recursively and explicitly. This article could be used in the classroom for enrichment. (Contains 1 table.)

  11. Urban Expansion Study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Under an Egyptian government contract, PADCO studies urban growth in the Nile Area. They were assisted by LANDSAT survey maps and measurements provided by TAC. TAC had classified the raw LANDSAT data and processed it into various categories to detail urban expansion. PADCO crews spot checked the results, and correlations were established.

  12. Expansion of Pannes

    EPA Science Inventory

    For the Long Island, New Jersey, and southern New England region, one facet of marsh drowning as a result of accelerated sea level rise is the expansion of salt marsh ponds and pannes. Over the past century, marsh ponds and pannes have formed and expanded in areas of poor drainag...

  13. AUTO-EXPANSIVE FLOW

    EPA Science Inventory

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  14. Static gas expansion cooler

    DOEpatents

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  15. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael D. (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The phenolic in the tape is cured and the end of the wrap is machined. The remainder of the mandrel is wrapped with a third silica tape. The resin in the third tape is cured and the assembly is machined. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  16. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  17. The STAR Time Projection Chamber

    SciTech Connect

    Retiere, F.; STAR Collaboration

    2002-01-11

    The STAR Time Projection Chamber was successfully operated during the first RHIC run in 2000. Most of the STAR contributions reported in these proceedings are based on the analysis of data from the TPC. In this article, we show that the performance achieved by the TPC, in terms of track reconstruction, position resolution, and particle identification are well suited for measuring precise and reliable physics observables.

  18. MPS II drift chamber system

    SciTech Connect

    Platner, E.D.

    1982-01-01

    The MPS II detectors are narrow drift space chambers designed for high position resolution in a magnetic field and in a very high particle flux environment. Central to this implementation was the development of 3 multi-channel custom IC's and one multi-channel hybrid. The system is deadtimeless and requires no corrections on an anode-to-anode basis. Operational experience and relevance to ISABELLE detectors is discussed.

  19. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  20. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel having the configuration of an assembly having a combustion chamber portion connected to a nozzle portion through a throat portion is wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The width of the tape is positioned at an angle of 30 to 50 deg. to the axis of the mandrel such that one edge of the tape contacts the mandrel while the other edge is spaced from the mandrel. The phenolic in the tape is cured and the end of the wrap is machined to provide a frusto-conical surface extending at an angle of 15 to 30 deg. with respect to the axis of the mandrel for starting a second wrap on the mandrel to cover the throat portion. The remainder of the mandrel is wrapped with a third silica tape having its width positioned at a angle of 5 to 20 deg. from the axis of the mandrel. The resin in the third tape is cured and the assembly is machined to provide a smooth outer surface. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  1. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  2. Sensorineural deafness due to compression chamber noise.

    PubMed

    Hughes, K B

    1976-05-01

    A case of unilateral sensorineural deafness following exposure to compression chamber noise is described. A review of the current literature concerning the otological hazards of compression chambers is made. The possible pathological basis is discussed.

  3. Making a fish tank cloud chamber

    NASA Astrophysics Data System (ADS)

    Green, Frances

    2012-05-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and construction are given.

  4. Uniform-Temperature Walls for Cloud Chambers

    NASA Technical Reports Server (NTRS)

    Fleischman, G.

    1985-01-01

    Flat heat pipes rapidly transfer heat to and from experimental volumes. Heat pipe vapor chamber carries heat to and from thermo electric modules. Critical surface acts as evaporator or condenser in cloud physics experiments. Used as walls of spaceborne atmospheric cloud chambers. On Earth, used as isothermal floors for environmental test chambers.

  5. Making a Fish Tank Cloud Chamber

    ERIC Educational Resources Information Center

    Green, Frances

    2012-01-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…

  6. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  7. A Sensitive Cloud Chamber without Radioactive Sources

    ERIC Educational Resources Information Center

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  8. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  9. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, J.A.; Meier, W.R.

    1982-08-17

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. Produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithiumceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  10. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  11. Evaluation of the Migrating Combustion Chamber (MCC) engine

    NASA Astrophysics Data System (ADS)

    Miller, K. M.; Morar, Dorin

    1993-01-01

    The Belvoir Research, Development and Engineering Center (BRDEC) tested three Migrating Combustion Chamber (MCC) engines built by Engine Research Associates (ERA) for Natick RD and E Center. The MCC concept attempts to provide a lightweight, quiet engine having a cool exhaust gas stream. The cool exhaust is attained by capturing additional energy from expansion beyond that achievable in conventional engines by the use of gas porting to multiple expansion chambers; this provides a more efficient engine operation than is otherwise attainable for the configuration. The testing included determining the engine torque-speed-power characteristics and the Brake Specific Fuel Consumption (BSFC) under a variety of load conditions. Startability and operability were concerns; starting under normal ambient conditions was difficult. All testing was performed using a 10:1 fuel/oil mixture of low lead gasoline with AMZOIL synthetic lubricating oil for two-stroke engines. The maximum power achieved was 0.25 horsepower at 4,400 rpm. The peak torque observed was 69 oz.-in. at 3,200 rpm. It was not possible to make noise and vibration measurements during the testing cycle, but they appeared to be low. The MCC engines tested had relatively short lives, operating for less than 25 hours. Performance and durability improvements are necessary before this MCC design can be considered as a viable alternative to commercially available two-cycle engines.

  12. Expansion tube test time predictions

    NASA Technical Reports Server (NTRS)

    Gourlay, Christopher M.

    1988-01-01

    The interaction of an interface between two gases and strong expansion is investigated and the effect on flow in an expansion tube is examined. Two mechanisms for the unsteady Pitot-pressure fluctuations found in the test section of an expansion tube are proposed. The first mechanism depends on the Rayleigh-Taylor instability of the driver-test gas interface in the presence of a strong expansion. The second mechanism depends on the reflection of the strong expansion from the interface. Predictions compare favorably with experimental results. The theory is expected to be independent of the absolute values of the initial expansion tube filling pressures.

  13. Accelerated expansion through interaction

    SciTech Connect

    Zimdahl, Winfried

    2009-05-01

    Interactions between dark matter and dark energy with a given equation of state are known to modify the cosmic dynamics. On the other hand, the strength of these interactions is subject to strong observational constraints. Here we discuss a model in which the transition from decelerated to accelerated expansion of the Universe arises as a pure interaction phenomenon. Various cosmological scenarios that describe a present stage of accelerated expansion, like the {lambda}CDM model or a (generalized) Chaplygin gas, follow as special cases for different interaction rates. This unifying view on the homogeneous and isotropic background level is accompanied by a non-adiabatic perturbation dynamics which can be seen as a consequence of a fluctuating interaction rate.

  14. China petrochemical expansion progressing

    SciTech Connect

    Not Available

    1991-08-05

    This paper reports on China's petrochemical expansion surge which is picking up speed. A worldscale petrochemical complex is emerging at Shanghai with an eye to expanding China's petrochemical exports, possibly through joint ventures with foreign companies, China Features reported. In other action, Beijing and Henan province have approved plans for a $1.2 billion chemical fibers complex at the proposed Luoyang refinery, China Daily reported.

  15. Tissue expansion in perspective.

    PubMed Central

    Sharpe, D. T.; Burd, R. M.

    1989-01-01

    Tissue expansion is a recent advance in skin cover technique. Its empirical use has enabled many previously difficult reconstructions to be completed without recourse to distant flaps. Its high complication rate and lack of basic scientific understanding at present restrict its use to selected cases, but the quality of repairs possible by this method encourage further serious scientific study. Images fig. 1 fig. 2 fig. 3 fig. 4 fig. 5 PMID:2589784

  16. MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2005-01-01

    A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.

  17. Liquid argon Time Projection Chamber

    SciTech Connect

    Doe, P.J.; Mahler, H.J.; Chen, H.H.

    1984-01-01

    The principal features of the liquid argon TPC are outlined and the status of development efforts, particularly at UCI, are discussed. Technical problems associated with liquid TPC's are: the liquid must be maintained at a high level of purity to enable long distance drifting of ionization electrons, and the signal size is small due to the absence of practical charge multiplication as found in gas chambers. These problems have been largely resolved in studies using small (1 to 100 l) detectors, thus allowing a realistic consideration of the physics potential of such devices.

  18. Chamber propagation physics for heavy ion fusion

    SciTech Connect

    Callahan, D.A.

    1995-09-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime ({approx_lt}0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime ({approx_gt}.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius ({approx} 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity.

  19. Solar-relevant plasma loop expansion in strapping field

    NASA Astrophysics Data System (ADS)

    Ha, Bao; Bellan, Paul

    2014-10-01

    Tokamak-like forces may explain fundamental behaviors of solar plasma arches. The hoop force causes arched, current-carrying plasma loops to expand. This expansion was slowed and even inhibited by a magnetic ``strapping'' field in previous solar loop experiments at Caltech but no attempt was made to control the field's spatial profile. Kliem and Torok predicted an explosive-like transition from slow expansion to fast eruption if the spatial decay rate of the strapping field exceeds a threshold. Smaller, independently-powered auxiliary coils placed inside the vacuum chamber produce strapping fields with above-threshold decay rate and strong enough to act on the plasma. The plasma is observed, however, to bypass regions of stronger strapping field and expand into regions of weaker field. Added external inductance slows plasma expansion allowing the strapping coils to hold down the plasma. Different interactions between arched plasma loops and strapping magnetic fields will be presented. Supported by the NSF and AFOSR.

  20. Thrust chamber material technology program

    NASA Astrophysics Data System (ADS)

    Andrus, J. S.; Bordeau, R. G.

    1989-03-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  1. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  2. Expansion: A Plan for Success.

    ERIC Educational Resources Information Center

    Callahan, A.P.

    This report provides selling brokers' guidelines for the successful expansion of their operations outlining a basic method of preparing an expansion plan. Topic headings are: The Pitfalls of Expansion (The Language of Business, Timely Financial Reporting, Regulatory Agencies of Government, Preoccupation with the Facade of Business, A Business Is a…

  3. Comparison of multipole expansion and exact form of the eddy current field of the AGS Booster

    SciTech Connect

    Dell, G.F.; Lee, S.Y.; Parzen, G.

    1990-01-01

    Studies are made on magnetic field representation using a multipole expansion as well as the exact form to calculate the magnetic field produced by eddy currents in the vacuum chamber of the AGS Booster as well as the field produced by three turn correction coils attached to the top and bottom of the vacuum chamber. The multiple representation of the chamber field does not converge to the next field when X > 30mm and limits the particle motion. When the exact form of the chamber field is used, initial amplitudes in the horizontal plane (measured at QF) can be nearly as large as the chamber half aperture. Use of three turn correction coils to compensate the eddy current fields seems to reduce rather than increase the acceptance. 6 figs., 3 tabs.

  4. CSR IMPEDANCE DUE TO A BEND MAGNET OF FINITE LENGTH WITH A VACUUM CHAMBER OF RECTANGULAR CROSS SECTION

    SciTech Connect

    Stupakov, G.; Kotelnikov, I.A.; /Novosibirsk State U.

    2009-06-05

    We study the impedance due to coherent synchrotron radiation (CSR) generated by a short bunch of charged particles passing through a dipole magnet of finite length in a vacuum chamber of a given cross section. Our method represents a further development of the previous studies: we decompose the electromagnetic field of the beam over the eigenmodes of the toroidal chamber and derive a system of equations for the expansion coefficients in the series. We illustrate our general method by calculating the CSR impedance of a beam moving in a toroidal vacuum chamber of rectangular cross section.

  5. Operator product expansion algebra

    SciTech Connect

    Holland, Jan; Hollands, Stefan

    2013-07-15

    We establish conceptually important properties of the operator product expansion (OPE) in the context of perturbative, Euclidean φ{sup 4}-quantum field theory. First, we demonstrate, generalizing earlier results and techniques of hep-th/1105.3375, that the 3-point OPE, =Σ{sub C}C{sub A{sub 1A{sub 2A{sub 3}{sup C}}}}, usually interpreted only as an asymptotic short distance expansion, actually converges at finite, and even large, distances. We further show that the factorization identity C{sub A{sub 1A{sub 2A{sub 3}{sup B}}}}=Σ{sub C}C{sub A{sub 1A{sub 2}{sup C}}}C{sub CA{sub 3}{sup B}} is satisfied for suitable configurations of the spacetime arguments. Again, the infinite sum is shown to be convergent. Our proofs rely on explicit bounds on the remainders of these expansions, obtained using refined versions, mostly due to Kopper et al., of the renormalization group flow equation method. These bounds also establish that each OPE coefficient is a real analytic function in the spacetime arguments for non-coinciding points. Our results hold for arbitrary but finite loop orders. They lend support to proposals for a general axiomatic framework of quantum field theory, based on such “consistency conditions” and akin to vertex operator algebras, wherein the OPE is promoted to the defining structure of the theory.

  6. Expansion in condensates

    SciTech Connect

    Chakrabarti, J.; Sajjad Zahir, M.

    1985-03-01

    We show that the product of local current operators in quantum chromodynamics (QCD), when expanded in terms of condensates, such as psi-barpsi, G/sup a//sub munu/ G/sup a//sub munu/, psi-barGAMMA psipsi-barGAMMApsi, f/sub a/bcG/sup a//sub munu/G/sup b//sub nualpha/ x G/sup c//sub alphamu/, etc., yields a series in Planck's constant. This, however, provides no hint that the higher terms in such an expansion may be less significant.

  7. Load regulating expansion fixture

    DOEpatents

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  8. Load regulating expansion fixture

    DOEpatents

    Wagner, Lawrence M.; Strum, Michael J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  9. Expansible quantum secret sharing network

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Xu, Sheng-Wei; Chen, Xiu-Bo; Niu, Xin-Xin; Yang, Yi-Xian

    2013-08-01

    In the practical applications, member expansion is a usual demand during the development of a secret sharing network. However, there are few consideration and discussion on network expansibility in the existing quantum secret sharing schemes. We propose an expansible quantum secret sharing scheme with relatively simple and economical quantum resources and show how to split and reconstruct the quantum secret among an expansible user group in our scheme. Its trait, no requirement of any agent's assistant during the process of member expansion, can help to prevent potential menaces of insider cheating. We also give a discussion on the security of this scheme from three aspects.

  10. Neutron-chamber detectors and applications

    SciTech Connect

    Fehlau, P.E.; Atwater, H.F.; Coop, K.L.

    1990-01-01

    Detector applications in Nuclear Safeguards and Waste Management have included measuring neutrons from fission and (alpha,n) reactions with well-moderated neutron proportional counters, often embedded in a slab of polyethylene. Other less-moderated geometries are useful for detecting both bare and moderated fission-source neutrons with good efficiency. The neutron chamber is an undermoderated detector design comprising a large, hollow, polyethylene-walled chamber containing one or more proportional counters. Neutron-chamber detectors are relatively inexpensive; can have large apertures, usually through a thin chamber wall; and offer very good detection efficiency per dollar. Neutron-chamber detectors have also been used for monitoring vehicles and for assaying large crates of transuranic waste. Our Monte Carlo calculations for a new application (monitoring low-density waste for concealed plutonium) illustrate the advantages of the hollow-chamber design for detecting moderated fission sources. 9 refs., 6 figs., 2 tabs.

  11. Sequential Notch activation regulates ventricular chamber development

    PubMed Central

    D'Amato, Gaetano; Luxán, Guillermo; del Monte-Nieto, Gonzalo; Martínez-Poveda, Beatriz; Torroja, Carlos; Walter, Wencke; Bochter, Matthew S.; Benedito, Rui; Cole, Susan; Martinez, Fernando; Hadjantonakis, Anna-Katerina; Uemura, Akiyoshi; Jiménez-Borreguero, Luis J.; de la Pompa, José Luis

    2016-01-01

    Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4–Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies. PMID:26641715

  12. Tests of anechoic chamber for aeroacoustics investigations

    NASA Astrophysics Data System (ADS)

    Palchikovskiy, V. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Belyaev, I. V.; Korin, I. A.; Sorokin, E. V.; Khramtsov, I. V.; Kustov, O. Yu.

    2016-10-01

    The paper presents the results of qualification tests in the new anechoic chamber of Perm National Research Polytechnic University (PNRPU) built in 2014-2015 and evaluation of the chamber quality in aeroacoustic experiments. It describes design features of the chamber and its sound-absorption lining. The qualification tests were carried out with tonal and broadband noise sources in the frequency range 100 Hz - 20 kHz for two different cases of the source arrangement. In every case, measurements were performed in three directions by traverse microphones. Qualification tests have determined that in the chamber there is a free acoustic field within radius of 2 m for tonal noise and 3 m for broadband noise. There was also evaluated acoustic quality of the chamber by measurements of the jet noise and vortex ring noise. The results of the experiments demonstrate that PNRPU anechoic chamber allows the aeroacoustic measurements to be performed to obtain quantitative results.

  13. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  14. Drift chamber tracking with neural networks

    SciTech Connect

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  15. IFE Chamber Technology - Status and Future Challenges

    SciTech Connect

    Meier, W R; Raffrary, A R; Abdel-Khalik, S; Kulcinski, G; Latkowski, J F; Najmabadi, F; Olson, C L; Peterson, P F; Ying, A; Yoda, M

    2002-11-15

    Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including dry-wall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall favored by heavy ion and z-pinch drivers. Recent progress and remaining challenges in developing IFE chambers are reviewed.

  16. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  17. Fluidized wall for protecting fusion chamber walls

    DOEpatents

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  18. D0 central tracking chamber performance studies

    SciTech Connect

    Pizzuto, D.

    1991-12-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an R{Phi} tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against {gamma} {yields} e {sup +} e{sup {minus}} events.

  19. Engineering verification of the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.

  20. Cryogenic expansion machine

    DOEpatents

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  1. Optical imaging. Expansion microscopy.

    PubMed

    Chen, Fei; Tillberg, Paul W; Boyden, Edward S

    2015-01-30

    In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable superresolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ~70-nanometer lateral resolution in both cultured cells and brain tissue, performing three-color superresolution imaging of ~10(7) cubic micrometers of the mouse hippocampus with a conventional confocal microscope.

  2. An easy to perform but often counterintuitive demonstration of gas expansion

    NASA Astrophysics Data System (ADS)

    Baker, Brad

    1999-08-01

    During their thermodynamics courses, students learn that the temperature of an ideal gas will drop during an adiabatic reversible expansion. They also usually learn that no change of temperature occurs as a result of a certain free expansion. These results often become intuitively connected with gas expansion. However when air expands freely into an evacuated chamber from a constant pressure atmosphere, its temperature increases. This can be easily demonstrated using only simple equipment and makes for a memorable lesson on the importance of identifying what exactly is the system and then simply applying the first law of thermodynamics.

  3. Burial Ground Expansion Hydrogeologic Characterization

    SciTech Connect

    Gaughan , T.F.

    1999-02-26

    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  4. Studying Phototropism Using a Small Growth Chamber.

    ERIC Educational Resources Information Center

    Fisher, Maryanna, F.; Llewellyn, Gerald C.

    1978-01-01

    Describes a simple and inexpensive way to construct two small growth chambers for studying phototropism in the science classroom. One chamber is designed to illustrate how plants grow around obstacles to reach light and the other to illustrate directional light responses. (HM)

  5. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hyperbaric chamber. 868.5470 Section 868.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5470 Hyperbaric chamber. (a) Identification....

  6. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hyperbaric chamber. 868.5470 Section 868.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5470 Hyperbaric chamber. (a) Identification....

  7. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hyperbaric chamber. 868.5470 Section 868.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5470 Hyperbaric chamber. (a) Identification....

  8. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hyperbaric chamber. 868.5470 Section 868.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5470 Hyperbaric chamber. (a) Identification....

  9. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  10. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  11. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  12. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  13. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  14. Space Power Facility Reverberation Chamber Calibration Report

    NASA Technical Reports Server (NTRS)

    Lewis, Catherine C.; Dolesh, Robert J.; Garrett, Michael J.

    2014-01-01

    This document describes the process and results of calibrating the Space Environmental Test EMI Test facility at NASA Plum Brook Space Power Facility according to the specifications of IEC61000-4-21 for susceptibility testing from 100 MHz to 40 GHz. The chamber passed the field uniformity test, in both the empty and loaded conditions, making it the world's largest Reverberation Chamber.

  15. Chamber Music's Lesson in Performing Confidence.

    ERIC Educational Resources Information Center

    Stubbs, Darrel W.

    1983-01-01

    Chamber music has the advantage of offering the student maximum exposure as an individual performer. The absence of a conductor means that the student assumes the role of interpreter, thereby gaining musical maturity. For these reasons, curriculum hours should be more evenly divided between chamber music and larger ensembles. (CS)

  16. Creating Chamber Music Enthusiasts in High School.

    ERIC Educational Resources Information Center

    Cummiskey, Cynthia

    1999-01-01

    Describes the Fairfield High School Chamber Music Honors Program for students in grades nine through twelve in Fairfield (Connecticut). Explains that the program's goal is to provide students with a positive experience in chamber music. Highlights the creation and the first two years of the program. (CMK)

  17. Promoting "Minds-on" Chamber Music Rehearsals

    ERIC Educational Resources Information Center

    Berg, Margaret H.

    2008-01-01

    Chamber music provides myriad opportunities to develop students' ability to think like professional musicians while engaged in the authentic task of working closely with and learning from peers. However, the potential for musical growth inherent in chamber music participation is often unrealized due to either a lack of teacher guidance and support…

  18. Incinerator system arrangement with dual scrubbing chambers

    SciTech Connect

    Domnitch, I.

    1987-01-13

    An incinerator arrangement is described comprising: an incinerator housing located near the lowest point in a building, the housing containing incinerator elements therein; a chute-flue having a first end in communication with the incinerator housing, a second end at the top of the building for evacuation of combustion gases to the atmosphere therethrough, and at least one intermediately located waste disposal opening through which waste is dropped into the incinerator housing; the incinerator elements including: a main combustion chamber, an opening between the main combustion chamber and the first end of the chute-flue and a flue-damper covering the opening. The flue-damper is biased in a closed position and being operable by the weight of waste to admit the waste into the combustion chamber; a scrubbing chamber located exteriorly along the top of the combustion chamber and having a first opening into the combustion chamber and a second opening into the chute-flue; and water spraying means in the scrubbing chamber for directing a water spray at the combustion gases to wash particulate matter from the gases before the gases enter the chute-flue whereby the water spraying means which are located adjacent the combustion chamber are protected against freezing and the elements.

  19. Reliability assessment of thrust chamber cooling concepts using probabilistic analysis techniques

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1993-01-01

    The reliability of OFHC (Oxygen Free High Conductivity) copper and NARloy-Z thrust chambers is assessed by applying probabilistic structural analysis techniques to incorporate design parameter variability and uncertainty. Thrust chambers specifically evaluated are the cylindrical test fixtures employed in a plug-nozzle configuration at the NASA Lewis Research Center. Direct sampling Monte Carlo simulations based on a simplified life prediction methodology established probability densities of firing cycles to structural failure. Simulated cyclic lives demonstrated modest agreement to experiment. Similarly, regions of high structural failure probability were determined using a limit state approach employing calculated cumulative distribution functions for effective stress response and an assumed material strength distribution. A probability of failure of 0.012 was calculated at the center of the coolant channel hot-gas-side wall for an OFHC milled channel. Structural response was found to be sensitive to the uncertainties in the thrust chamber thermal environment and the material's thermal expansion coefficient.

  20. Experimental investigation of the evacuation effect in expansion deflection nozzles

    NASA Astrophysics Data System (ADS)

    Taylor, N. V.; Hempsell, C. M.; Macfarlane, J.; Osborne, R.; Varvill, R.; Bond, A.; Feast, S.

    2010-02-01

    This paper provides an overview of results generated by the static test expansion-deflection rocket nozzle (STERN) project. The engine propellants were gaseous air and hydrogen, with a design chamber pressure and thrust of 102 bar and 5 kN respectively. The maximum chamber pressure achieved was restricted to 55 bar absolute, due to a conservative approach in the test programme dictated by the uncertainty in heat transfer to the pintle. Despite this, the programme achieved many successes, including the first tests of an ED nozzle in the UK; the production of significant amounts of data for both the analysis of the performance of the nozzle and the verification of analysis codes; and an improved compensation performance over that apparent from earlier work, including demonstration of attached flow to the exit plane for all chamber pressures. Whilst the wake pressure was not as high as hoped, ranging between 70% and 95% of ambient and apparently inversely related to chamber pressure, this result is still sufficiently encouraging to warrant further investigation of the type. As importantly, the data derived from the experiments, including performance analysis and wall pressure variations in time and space, are now being made available to the wider academic community, something which for commercial reasons appears to be a unique occurrence for this type of nozzle.

  1. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  2. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  3. An atmospheric exposure chamber for small animals

    NASA Technical Reports Server (NTRS)

    Glaser, R. M.; Weiss, H. S.; Pitt, J. F.; Grimard, M.

    1982-01-01

    The purpose of this project was to design a long-term environmental exposure chamber for small animals. This chamber is capable of producing hypoxic, normoxic and hyperoxic atmospheres which are closely regulated. The chamber, which is of the recycling type, is fashioned after clear plastic germ-free isolators. Oxygen concentration is set and controlled by a paramagnetic O2 analyzer and a 3-way solenoid valve. In this way either O2 or N2 may be provided to the system by way of negative O2 feedback. Relative humidity is maintained at 40-50 percent by a refrigeration type dryer. Carbon dioxide is absorbed by indicating soda lime. A diaphragm pump continuously circulates chamber gas at a high enough flow rate to prevent buildup of CO2 and humidity. This chamber has been used for numerous studies which involve prolonged exposure of small animals to various O2 concentrations.

  4. Note: Small anaerobic chamber for optical spectroscopy

    SciTech Connect

    Chauvet, Adrien A. P. Chergui, Majed; Agarwal, Rachna; Cramer, William A.

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  5. Thermoelectrically cooled cloud physics expansion chamber. [systems engineering and performance prediction

    NASA Technical Reports Server (NTRS)

    Buist, R. J.

    1977-01-01

    The design and fabrication of a thermoelectric chiller for use in chilling a liquid reservoir is described. Acceptance test results establish the accuracy of the thermal model and predict the unit performance under various conditions required by the overall spacelab program.

  6. On the Bantu expansion.

    PubMed

    Rowold, Daine J; Perez-Benedico, David; Stojkovic, Oliver; Garcia-Bertrand, Ralph; Herrera, Rene J

    2016-11-15

    Here we report the results of fine resolution Y chromosomal analyses (Y-SNP and Y-STR) of 267 Bantu-speaking males from three populations located in the southeast region of Africa. In an effort to determine the relative Y chromosomal affinities of these three genotyped populations, the findings are interpreted in the context of 74 geographically and ethnically targeted African reference populations representing four major ethno-linguistic groups (Afro-Asiatic, Niger Kordofanin, Khoisan and Pygmoid). In this investigation, we detected a general similarity in the Y chromosome lineages among the geographically dispersed Bantu-speaking populations suggesting a shared heritage and the shallow time depth of the Bantu Expansion. Also, micro-variations in the Bantu Y chromosomal composition across the continent highlight location-specific gene flow patterns with non-Bantu-speaking populations (Khoisan, Pygmy, Afro-Asiatic). Our Y chromosomal results also indicate that the three Bantu-speaking Southeast populations genotyped exhibit unique gene flow patterns involving Eurasian populations but fail to reveal a prevailing genetic affinity to East or Central African Bantu-speaking groups. In addition, the Y-SNP data underscores a longitudinal partitioning in sub-Sahara Africa of two R1b1 subgroups, R1b1-P25* (west) and R1b1a2-M269 (east). No evidence was observed linking the B2a haplogroup detected in the genotyped Southeast African Bantu-speaking populations to gene flow from contemporary Khoisan groups. PMID:27451076

  7. On the Bantu expansion.

    PubMed

    Rowold, Daine J; Perez-Benedico, David; Stojkovic, Oliver; Garcia-Bertrand, Ralph; Herrera, Rene J

    2016-11-15

    Here we report the results of fine resolution Y chromosomal analyses (Y-SNP and Y-STR) of 267 Bantu-speaking males from three populations located in the southeast region of Africa. In an effort to determine the relative Y chromosomal affinities of these three genotyped populations, the findings are interpreted in the context of 74 geographically and ethnically targeted African reference populations representing four major ethno-linguistic groups (Afro-Asiatic, Niger Kordofanin, Khoisan and Pygmoid). In this investigation, we detected a general similarity in the Y chromosome lineages among the geographically dispersed Bantu-speaking populations suggesting a shared heritage and the shallow time depth of the Bantu Expansion. Also, micro-variations in the Bantu Y chromosomal composition across the continent highlight location-specific gene flow patterns with non-Bantu-speaking populations (Khoisan, Pygmy, Afro-Asiatic). Our Y chromosomal results also indicate that the three Bantu-speaking Southeast populations genotyped exhibit unique gene flow patterns involving Eurasian populations but fail to reveal a prevailing genetic affinity to East or Central African Bantu-speaking groups. In addition, the Y-SNP data underscores a longitudinal partitioning in sub-Sahara Africa of two R1b1 subgroups, R1b1-P25* (west) and R1b1a2-M269 (east). No evidence was observed linking the B2a haplogroup detected in the genotyped Southeast African Bantu-speaking populations to gene flow from contemporary Khoisan groups.

  8. RADIATION MONITOR CONTAINING TWO CONCENTRIC IONIZATION CHAMBERS AND MEANS FOR INSULATING THE SEPARATE CHAMBERS

    DOEpatents

    Braestrup, C.B.; Mooney, R.T.

    1964-01-21

    This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)

  9. C/C composites for rocket chamber applications. Part 2: Fabrication and evaluation tests of rocket chamber

    NASA Astrophysics Data System (ADS)

    Sato, Masahiro; Tadano, Makoto; Ueda, Shuichi; Kuroda, Yukio; Kusaka, Kazuo; Suemitsu, Takeshi; Hasegawa, Satoshi; Kude, Yukinori

    1995-05-01

    Carbon fiber-reinforced carbon matrix (C/C) composites coated with SiC are promising candidates for use in the main structural materials of the body of spaceplanes and combustion chambers of rocket engines, because of their superior properties of high specific strength, specific modulus, and fracture strength at high temperatures. However, C/C composite has poor resistance to oxidation, and protection from the oxidating environment is crucial. Conventional C/C composites for use in the high-temperature components of rocket engines are coated with SiC. However, due to the difference in the thermal expansion rates of the SiC coating layer and the base materials, cracks occur in the SiC coating layer during the coating process, and oxygen diffuses to the base material through the cracks during repeated temperature cycling in the rocket combustion environment. To protect the base materials from oxidation at high temperatures, we have employed SiC C/C-coated composites with a modified matrix and also developed SiC C/C functionally gradient materials (FGM's). In this test series, three kinds of combustion chambers were constructed for the Reaction Control System (RCS) subscale engine of H-II Orbiting Plane (HOPE): (1) Conventional C/C composites, (2) SiC C/C-coated composites with a modified matrix, and (3) SiC C/C FGM's. Firing tests were performed at sea level at a temperature around 2000 K using nitrogen tetroxide (NTO)/monomethyl hydrazine (MMH) propellant to evaluate the durability of these chambers. This test series showed that conventional C/C composite developed no microcracks and delamination in the coating layer at 1940 K. Modified matrix C/C composite also did not suffer microcracks and delamination at the boundary between the SiC and the base materials when the inner surface temperature was 1875 K. However, microcracks were observed at injector flange surface after these test cycles. In the test series of FGM's chamber, it was shown that coating with FGM

  10. Isotropic Negative Thermal Expansion Metamaterials.

    PubMed

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  11. Isotropic Negative Thermal Expansion Metamaterials.

    PubMed

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale. PMID:27333052

  12. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  13. Investigating 14CO2 chamber methodologies

    NASA Astrophysics Data System (ADS)

    Egan, J. E.; Phillips, C. L.; Nickerson, N. R.; Risk, D. A.

    2012-12-01

    The radiogenic isotope of carbon (14C) is an exceptionally useful tool in studying soil respired CO2, providing information about soil turnover rates, depths of production and the biological sources of production through partitioning. Unfortunately, little work has been done to thoroughly investigate the possibility of inherent biases in the current measurement techniques for 14CO2, caused by disturbances to the soil's natural diffusive regime, because of high costs and sampling logistics. Our aim in this study is to investigate the degree of bias present in the current sampling methodologies using a numerical model and laboratory calibration device. Four chamber techniques were tested numerically with varying fraction modern of production, δ13C of production, collar lengths, flux rates and diffusivities. Two of the chambers were then tested on the lab calibration device. One of these chambers, Iso-FD, has recently been tested for its use as a 13CO2 chamber and it does not induce gas transport fractionation biases present in other 13CO2 sampling methodologies. We then implemented it in the field to test its application as a 14CO2 chamber because of its excellent performance as a 13CO2chamber. Presented here are the results from the numerical modeling experiment, the laboratory calibration experiment and preliminary field results from the Iso-FD chamber.

  14. Vapor wall deposition in Teflon chambers

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Schwantes, R. H.; McVay, R. C.; Lignell, H.; Coggon, M. M.; Flagan, R. C.; Seinfeld, J. H.

    2014-10-01

    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be substantially underestimated owing to deposition of SOA-forming compounds to chamber walls. We present here an experimental protocol to constrain the nature of wall deposition of organic vapors in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, α-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. The dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (αw,i), which can be correlated through its volatility (Ci*) with the number of carbons (nC) and oxygens (nO) in the molecule. Among the 25 compounds studied, the maximum wall deposition rate is approached by the most highly oxygenated and least volatile compounds. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and chamber walls. Gas-particle equilibrium partitioning is established relatively rapidly in the presence of perfect accommodation of organic vapors onto particles or when a sufficiently large concentration of suspended particles is present. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of αw,i. For volatile and intermediate volatility organic compounds (small αw,i), gas-particle partitioning will be dominant for typical particle number concentrations in chamber experiments. For large αw,i, vapor transport to particles is suppressed by competition with the chamber walls even with perfect particle accommodation.

  15. Gas Electron Multiplier (GEM) Chamber Characteristics Test

    SciTech Connect

    Yu, Jaehoon; White, Andy; Park, Seongtae; Hahn, Changhie; Baldeloma, Edwin; Tran, Nam; McIntire, Austin; Soha, Aria; /Fermilab

    2011-01-11

    Gas Electron Multipliers (GEMs) have been used in many HEP experiments as tracking detectors. They are sensitive to X-rays which allows use beyond that of HEP. The UTA High Energy group has been working on using GEMs as the sensitive gap detector in a DHCAL for the ILC. The physics goals at the ILC put a stringent requirement on detector performance. Especially the precision required for jet mass and positions demands an unprecedented jet energy resolution to hadronic calorimeters. A solution to meet this requirement is using the Particle Flow Algorithm (PFA). In order for PFA to work well, high calorimeter granularity is necessary. Previous studies based on GEANT simulations using GEM DHCAL gave confidence on the performance of GEM in the sensitive gap in a sampling calorimeter and its use as a DHCAL in PFA. The UTA HEP team has built several GEM prototype chambers, including the current 30cm x 30cm chamber integrated with the SLAC-developed 64 channel kPiX analog readout chip. This chamber has been tested on the bench using radioactive sources and cosmic ray muons. In order to have fuller understanding of various chamber characteristics, the experiments plan to expose 1-3 GEM chambers of dimension 35cm x 35cm x 5cm with 1cm x 1cm pad granularity with 64 channel 2-D simultaneous readout using the kPiX chip. In this experiment the experiments pan to measure MiP signal height, chamber absolute efficiencies, chamber gain versus high voltage across the GEM gap, the uniformity of the chamber across the 8cm x 8cm area, cross talk and its distance dependence to the triggered pad, chamber rate capabilities, and the maximum pad occupancy rate.

  16. Vapor wall deposition in Teflon chambers

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Schwantes, R. H.; McVay, R. C.; Lignell, H.; Coggon, M. M.; Flagan, R. C.; Seinfeld, J. H.

    2015-04-01

    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be underestimated, owing to deposition of SOA-forming vapors to the chamber wall. We present here an experimental protocol and a model framework to constrain the vapor-wall interactions in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, α-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. Among the 25 compounds studied, the maximum wall deposition rate is exhibited by the most highly oxygenated and least volatile compounds. By optimizing the model output to the observed vapor decay profiles, we identified that the dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (αwi), which can be correlated through its volatility with the number of carbons and oxygens in the molecule. By doing so, the wall-induced deposition rate of intermediate/semi-volatile organic vapors can be reasonably predicted based on their molecular constituency. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and the chamber wall. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of αw,i. For volatile and intermediate volatility organic compounds (small αw,i), gas-particle partitioning will dominate wall deposition for typical particle number concentrations in chamber experiments. For compounds characterized by relatively large αw,i, vapor transport to particles is suppressed by competition with the chamber wall even with perfect particle accommodation.

  17. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  18. APS Storage Ring vacuum chamber fabrication

    SciTech Connect

    Goeppner, G.A.

    1990-01-01

    The 1104-m circumference Advanced Photon Source Storage Ring Vacuum System is composed of 240 individual sections, which are fabricated from a combination of aluminum extrusions and machined components. The vacuum chambers will have 3800 weld joints, each subject to strict vacuum requirements, as well as a variety of related design criteria. The vacuum criteria and chamber design are reviewed, including a discussion of the weld joint geometries. The critical fabrication process parameters for meeting the design requirements are discussed. The experiences of the prototype chamber fabrication program are presented. Finally, the required facilities preparation for construction activity is briefly described. 6 refs., 6 figs., 1 tab.

  19. The Japanese Radon and Thoron Reference Chambers

    SciTech Connect

    Tokonami, Shinji; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Takahashi, Hiroyuki; Miyahara, Nobuyuki

    2008-08-07

    Passive detectors used for large-scale and long-term surveys are generally calibrated in a well-controlled environment such as a radon chamber. It has been also pointed out that some of them are sensitive to thoron. Thus it is necessary to check the thoron contribution to the detector response with the proposed or similar test before practical use. The NIRS accommodates radon/aerosol and thoron chambers for quality assurance and quality control of radon measurements. Thus both chambers work so well that they can supply us with the calibration technique and consequently, a good level of knowledge of the radon and thoron issue.

  20. Performance of NIRS Thoron Chamber System

    NASA Astrophysics Data System (ADS)

    Sorimachi, Atsuyuki; Tokonami, Shinji; Takahashi, Hiroyuki; Kobayashi, Yosuke

    2008-08-01

    In order to carry out thoron sensitivity test for passive radon detectors, a thoron chamber system has been set up at NIRS, Japan. The thoron chamber system consists of four components: the exposure, monitoring, calibration, and humidity control systems, which was mounted in this study due to humidity dependence on the thoron concentration emanated from lantern mantles as the thoron source. The thoron concentration in the thoron chamber is controlled by humidity passed through the thoron source and the weight of the lantern mantle.

  1. Simple cloud chambers using gel ice packs

    NASA Astrophysics Data System (ADS)

    Kamata, Masahiro; Kubota, Miki

    2012-07-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry ice or liquid nitrogen. The gel can be frozen in normal domestic freezers, and can be used repeatedly by re-freezing. The tracks of alpha-ray particles can be observed continuously for about 20 min, and the operation is simple and easy.

  2. Effects of strapping field profiles on plasma loop expansion

    NASA Astrophysics Data System (ADS)

    Ha, Bao Nguyen Quoc; Bellan, Paul

    2013-10-01

    Tokamak-like forces may explain fundamental behaviors of solar plasma arches. The hoop force causes arched, current-carrying plasma loops to expand unless additional forces are applied. This expansion was slowed and even inhibited by a magnetic field of proper polarity in previous solar loop experiments at Caltech but there was no attempt to characterize the strapping field's spatial profile. Kliem and Torok predicted an explosive-like transition from slow expansion to fast eruption if the vertical decay rate of the strapping field exceeds an instability threshold. We have constructed a new set of independently powered auxiliary coils designed to be placed inside the vacuum chamber and closer to the plasma source. The resulting strapping field has a sharper decay rate than with our previous coils and is expected to exceed the instability threshold. Progress on the interaction between arched plasma loops and strapping magnetic fields will be presented. Supported by the NSF and AFOSR.

  3. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers,...

  4. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers,...

  5. Genus expansion of HOMFLY polynomials

    NASA Astrophysics Data System (ADS)

    Mironov, A. D.; Morozov, A. Yu.; Sleptsov, A. V.

    2013-11-01

    In the planar limit of the' t Hooft expansion, the Wilson-loop vacuum average in the three-dimensional Chern-Simons theory (in other words, the HOMFLY polynomial) depends very simply on the representation (Young diagram), HR(A|q)|q=1 = (σ1(A)|R|. As a result, the (knot-dependent) Ooguri-Vafa partition function becomes a trivial τ -function of the Kadomtsev-Petviashvili hierarchy. We study higher-genus corrections to this formula for HR in the form of an expansion in powers of z = q - q-1. The expansion coefficients are expressed in terms of the eigenvalues of cut-and-join operators, i.e., symmetric group characters. Moreover, the z-expansion is naturally written in a product form. The representation in terms of cut-and-join operators relates to the Hurwitz theory and its sophisticated integrability. The obtained relations describe the form of the genus expansion for the HOMFLY polynomials, which for the corresponding matrix model is usually given using Virasoro-like constraints and the topological recursion. The genus expansion differs from the better-studied weak-coupling expansion at a finite number N of colors, which is described in terms of Vassiliev invariants and the Kontsevich integral.

  6. Atom cooling by nonadiabatic expansion

    SciTech Connect

    Chen Xi; Muga, J. G.; Campo, A. del; Ruschhaupt, A.

    2009-12-15

    Motivated by the recent discovery that a reflecting wall moving with a square-root-in-time trajectory behaves as a universal stopper of classical particles regardless of their initial velocities, we compare linear-in-time and square-root-in-time expansions of a box to achieve efficient atom cooling. For the quantum single-atom wave functions studied the square-root-in-time expansion presents important advantages: asymptotically it leads to zero average energy whereas any linear-in-time (constant box-wall velocity) expansion leaves a nonzero residual energy, except in the limit of an infinitely slow expansion. For finite final times and box lengths we set a number of bounds and cooling principles which again confirm the superior performance of the square-root-in-time expansion, even more clearly for increasing excitation of the initial state. Breakdown of adiabaticity is generally fatal for cooling with the linear expansion but not so with the square-root-in-time expansion.

  7. 11. Detail view west from airlock chamber of typical refrigerator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail view west from airlock chamber of typical refrigerator door into Trophic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  8. DETAIL OF THE GROOVED RIM ON TOP FACE OF CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE GROOVED RIM ON TOP FACE OF CHAMBER SHELL, ALTITUDE CHAMBER L, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  9. LDCM TIRS: Cracking open the chamber

    NASA Video Gallery

    Engineers at Goddard Space Flight Center inspect and move the Thermal Infrared Sensor (TIRS) after two months of testing in the thermal vacuum chamber. TIRS completed its first round of thermal vac...

  10. Three dimensional thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Brogren, E. W.

    1976-01-01

    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  11. HYLIFE-II reactor chamber design refinements

    SciTech Connect

    House, P.A.

    1994-06-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li{sub 2}BeF{sub 4}) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (>12 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GWe and 2 GWe reactor chamber are presented.

  12. Developing Cloud Chambers with High School Students

    NASA Astrophysics Data System (ADS)

    Ishizuka, Ryo; Tan, Nobuaki; Sato, Shoma; Zeze, Syoji

    The result and outcome of the cloud chamber project, which aims to develop a cloud chamber useful for science education is reported in detail. A project includes both three high school students and a teacher as a part of Super Science High School (SSH) program in our school. We develop a dry-ice-free cloud chamber using salt and ice (or snow). Technical details of the chamber are described. We also argue how the project have affected student's cognition, motivation, academic skills and behavior. The research project has taken steps of professional researchers, i.e., in planning research, applying fund, writing a paper and giving a talk in conferences. From interviews with students, we have learnt that such style of scientific activity is very effective in promoting student's motivation for learning science.

  13. Effectiveness of Chamber Music Ensemble Experience

    ERIC Educational Resources Information Center

    Zorn, Jay D.

    1973-01-01

    This investigation was concerned with the effectiveness of chamber music ensemble experience for certain members of a ninth grade band and the evaluation of the effectiveness in terms of performing abilities, cognitive learnings, and attitude changes. (Author)

  14. Thermal Expansion of Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  15. Micromechanics of expansive mechanisms in expansive cement concretes

    NASA Astrophysics Data System (ADS)

    Cohen, M. D.

    The kinetics of hydration were studied by monitoring the presence of various compounds by X-ray diffractometer, a chemical extraction method, and scanning electron microscope. These studies indicated that the rates of depletion of the expanding particles and sulfates are higher in the finer blends, which is why expansion stops earlier in these blends. It is shown that the double curvature phenomenon (strength-drop and sudden increase in the rate of expansion) is caused by mechanical failure (e.g., microcracking) of the matrix surrounding the expanding particles that are producing ettringite crystals. The theory of protective and partial protective coating is reviewed. A hypothesis is introduced which assumes that monosulfate is not formed immediately when ettringite stops forming but is preceded by an intermediate phase. Shrinkage studies show that expansive cements shrink more than portland cements. The results of these studies were used to develop a modified model of the expansive process. It was shown theoretically that the time of expansion is inversely proportional to the surface area of the expansive clinker and directly proportional to the amount of sulfate used.

  16. Tracking with wire chambers at the SSC

    SciTech Connect

    Hanson, G.G.; Gundy, M.C.; Palounek, A.P.T.

    1989-07-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tacking systems that meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 13 refs., 11 fig., 1 tab.

  17. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  18. A model to forecast magma chamber rupture

    NASA Astrophysics Data System (ADS)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2016-04-01

    An understanding of the amount of magma available to supply any given eruption is useful for determining the potential eruption magnitude and duration. Geodetic measurements and inversion techniques are often used to constrain volume changes within magma chambers, as well as constrain location and depth, but such models are incapable of calculating total magma storage. For example, during the 2012 unrest period at Santorini volcano, approximately 0.021 km3 of new magma entered a shallow chamber residing at around 4 km below the surface. This type of event is not unusual, and is in fact a necessary condition for the formation of a long-lived shallow chamber. The period of unrest ended without culminating in eruption, i.e the amount of magma which entered the chamber was insufficient to break the chamber and force magma further towards the surface. Using continuum-mechanics and fracture-mechanics principles, we present a model to calculate the amount of magma contained at shallow depth beneath active volcanoes. Here we discuss our model in the context of Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  19. Robust Acoustic Transducers for Bubble Chambers

    NASA Astrophysics Data System (ADS)

    Wells, Jonathan

    2015-04-01

    The PICO collaboration utilizes bubble chambers filled with various superheated liquids as targets for dark matter. Acoustic sensors have proved able to distinguish nuclear recoils from radioactive background on an event-by-event basis. We have recently produced a more robust transducer which should be able to operate for years, rather than months, in the challenging environment of a heated high pressure hydraulic fluid outside these chambers. Indiana University South Bend.

  20. How does a bubble chamber work?

    SciTech Connect

    Konstantinov, D.; Homsi, W.; Luzuriaga, J.; Su, C.K.; Weilert, M.A.; Maris, H.J.

    1998-11-01

    A charged particle passing through a bubble chamber produces a track of bubbles. The way in which these bubbles are produced has been a matter of some controversy. The authors consider the possibility that in helium and hydrogen bubble chambers the production of bubbles is primarily a mechanical process, rather than a thermal process as has often been assumed. The model the authors propose gives results which are in excellent agreement with experiment.

  1. Engine Knock and Combustion Chamber Form

    NASA Technical Reports Server (NTRS)

    Zinner, Karl

    1939-01-01

    The present report is confined to the effect of the combustion chamber shape on engine knock from three angles, namely: 1) The uniformity of flame-front movement as affected by chamber design and position of the spark plug; 2) The speed of advance of the flame as affected by turbulence and vibrations; 3) The reaction processes in the residual charge as affected by the walls.

  2. Tracking with wire chambers at high luminosities

    SciTech Connect

    Hanson, G.G. Stanford Linear Accelerator Center, Menlo Park, CA )

    1989-12-01

    Radiation damage and rate limitations impose severe constraints on wire chambers at the SSC. Possible conceptual designs for wire chamber tracking systems that satisfy these constraints are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 11 refs., 10 figs.

  3. The GODDESS ionization chamber: developing robust windows

    NASA Astrophysics Data System (ADS)

    Blanchard, Rose; Baugher, Travis; Cizewski, Jolie; Pain, Steven; Ratkiewicz, Andrew; Goddess Collaboration

    2015-10-01

    Reaction studies of nuclei far from stability require high-efficiency arrays of detectors and the ability to identify beam-like particles, especially when the beam is a cocktail beam. The Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) is made up of the Oak Ridge-Rutgers University Barrel Array (ORRUBA) of silicon detectors for charged particles inside of the gamma-ray detector array Gammasphere. A high-rate ionization chamber is being developed to identify beam-like particles. Consisting of twenty-one alternating anode and cathode grids, the ionization chamber sits downstream of the target chamber and is used to measure the energy loss of recoiling ions. A critical component of the system is a thin and robust mylar window which serves to separate the gas-filled ionization chamber from the vacuum of the target chamber with minimal energy loss. After construction, windows were tested to assure that they would not break below the required pressure, causing harm to the wire grids. This presentation will summarize the status of the ionization chamber and the results of the first tests with beams. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  4. Upright Imaging of Drosophila Egg Chambers

    PubMed Central

    Manning, Lathiena; Starz-Gaiano, Michelle

    2015-01-01

    Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective. PMID:25867882

  5. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.

    1975-01-01

    Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.

  6. Chamber for Growing and Observing Fungi

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Molina, Thomas C.

    2005-01-01

    A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.

  7. Designing an Active Target Test Projection Chamber

    NASA Astrophysics Data System (ADS)

    Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration

    2015-10-01

    The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.

  8. Expandable Purge Chambers Would Protect Cryogenic Fittings

    NASA Technical Reports Server (NTRS)

    Townsend, Ivan I., III

    2004-01-01

    Expandable ice-prevention and cleanliness-preservation (EIP-CP) chambers have been proposed to prevent the accumulation of ice or airborne particles on quick-disconnect (QD) fittings, or on ducts or tubes that contain cryogenic fluids. In the original application for which the EIP-CP chambers were conceived, there is a requirement to be able to disconnect and reconnect the QD fittings in rapid succession. If ice were to form on the fittings by condensation and freezing of airborne water vapor on the cold fitting surfaces, the ice could interfere with proper mating of the fittings, making it necessary to wait an unacceptably long time for the ice to thaw before attempting reconnection. By keeping water vapor away from the cold fitting surfaces, the EIP-CP chambers would prevent accumulation of ice, preserving the ability to reconnect as soon as required. Basically, the role of an EIP-CP chamber would be to serve as an enclosure for a flow of dry nitrogen gas that would keep ambient air away from QD cryogenic fittings. An EIP-CP chamber would be an inflatable device made of a fabriclike material. The chamber would be attached to an umbilical plate holding a cryogenic QD fitting.

  9. The PEP Quark Search Proportional Chambers

    NASA Astrophysics Data System (ADS)

    Parker, S. I.; Harris, F.; Karliner, I.; Yount, D.; Ely, R.; Hamilton, R.; Pun, T.; Guryn, W.; Miller, D.; Fries, R.

    1981-04-01

    Proportional chambers are used in the PEP Free Quark Search to identify and remove possible background sources such as particles traversing the edges of counters, to permit geometric corrections to the dE/dx and TOF information from the scintillator and Cerenkov counters, and to look for possible high cross section quarks. The present beam pipe has a thickness of 0.007 interaction lengths (λi) and is followed in both arms (each with 45° <= θ <= 135°. Δphi = 90°) by 5 proportional chambers, each 0.0008 λi thick with 32 channels of pulse height readout, and by 3 thin scintillator planes, each 0.003 λi thick. Following this thin front end, each arm of the detector has 8 layers of scintillator (one with scintillating light pipes) interspersed with 4 proportional chambers and a layer of lucite Cerenkov counters. Both the calculated ion statistics and measurements using He-CH4 gas in a test chamber indicate that the chamber efficiencies should be > 98% for q = 1/3. The Landau spread measured in the test was equal to that observed for normal q = 1 traversals. One scintillator plane and thin chamber in each arm will have an extra set of ADC's with a wide gate bracketing the normal one so timing errors and tails of earlier pulses should not produce fake quarks.

  10. Upright imaging of Drosophila egg chambers.

    PubMed

    Manning, Lathiena; Starz-Gaiano, Michelle

    2015-03-13

    Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective.

  11. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  12. 12. View north of Tropic Chamber. Natick Research & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View north of Tropic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  13. 13. View south of Arctic Chamber. Natick Research & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View south of Arctic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  14. Range expansion of heterogeneous populations.

    PubMed

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations. PMID:24766021

  15. Warp drive with zero expansion

    NASA Astrophysics Data System (ADS)

    Natário, José

    2002-03-01

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed.

  16. Range Expansion of Heterogeneous Populations

    NASA Astrophysics Data System (ADS)

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-01

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  17. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  18. [Inhospital thrombolism of right cardiac chambers].

    PubMed

    Vasil'tseva, O Ia; Vorozhtsova, I N; Karpov, R S

    2013-01-01

    Veins of lower extremities are classic sources of pulmonary artery thromboembolism (PATE). But one should not underestimate presence of thrombi in other potential sources - veins of small pelvis, superior vena cava, and chambers of the heart. We analyzed 652 case histories and autopsy data of patients in whom PATE had been revealed at pathological anatomical investigation and selected 157 cases in which right heart chambers were sources of emboli (right atrium in 83.5% and right ventricle - in 13.7% of cases). According to autopsy data average mass of the heart was 512.5+/-36.1 g. In most patients it exceeded norm. Thrombi in both right and left cardiac chambers were found in 52.3% of cases. Eighty three patients had history of myocardial infarction or were treated for MI during last hospitalization; 52.3% of patients had atrial fibrillation. After detailed study of all anamnestic, clinical, instrumental, and pathologic-anatomic data we selected 69 factors which according to contemporary views could facilitate formation of thrombus in the right cardiac chambers. Using these factors and method of logistic regression we created a mathematical model for assessment of probability of the presence of thrombi in right cardiac chambers.

  19. Chamber, Target and Final Focus Integrated Design

    SciTech Connect

    Moir, R.W

    2000-03-22

    Liquid wall protection, which challenges chamber clearing, has such advantages it's Heavy Ion Fusion's (HIF) main line chamber design. Thin liquid protection from x rays is necessary to avoid erosion of structural surfaces and thick liquid makes structures behind 0.5 m of Flibe (7 mean free paths for 14 MeV neutrons), last the life of the plant. Liquid wall protection holds the promise of greatly increased economic competitiveness. Driver designers require {approx}200 beams to illuminate recent target designs from two sides. The illumination must be compatible with liquid wall protection. The ''best'' values for driver energy, gain, yield and pulse rate comes out of well-known trade-off studies. An integrated chamber design, yet to be made, depends on several key assumptions, which are to be proven before HIF can be shown to be feasible. The chamber R&D needed to reduce the unknowns and risks depend on resolving a few technical issues such as jet surface smoothness and rapid chamber clearing.

  20. Chamber, Target and Final Focus Integrated Design

    SciTech Connect

    Moir, R.W.

    2000-03-03

    Liquid wall protection, which challenges chamber clearing, has such advantages it's Heavy Ion Fusion's (HIF) main line chamber design. Thin liquid protection from x rays is necessary to avoid erosion of structural surfaces and thick liquid makes structures behind 0.5 m of Flibe (7 mean free paths for 14 MeV neutrons), last the life of the plant. Liquid wall protection holds the promise of greatly increased economic competitiveness. Driver designers require {approx}200 beams to illuminate recent target designs from two sides. The illumination must be compatible with liquid wall protection. The ''best'' values for driver energy, gain, yield and pulse rate comes out of well-known trade-off studies. The chamber design is based on several key assumptions, which are to be proven before HIF can be shown to be feasible. The chamber R&D needed to reduce the unknowns and risks depend on resolving a few technical issues such as jet surface smoothness and rapid chamber clearing.

  1. Aging effect in the BESIII drift chamber

    NASA Astrophysics Data System (ADS)

    Dong, Ming-Yi; Xiu, Qing-Lei; Wu, Ling-Hui; Wu, Zhi; Qin, Zhong-Hua; Shen, Pin; An, Fen-Fen; Ju, Xu-Dong; Liu, Yi; Zhu, Kai; Qun, Ou-Yang; Chen, Yuan-Bo

    2016-01-01

    As the main tracking detector of BESIII, the drift chamber provides accurate measurements of the position and the momentum of the charged particles produced in e+e- collisions at BEPCII. After six years of operation, the drift chamber is suffering from aging problems due to huge beam-related background. The gains of the cells in the first ten layers show an obvious decrease, reaching a maximum decrease of about 29% for the first layer cells. Two calculation methods for the gain change (Bhabha events and accumulated charges with 0.3% aging ratio for inner chamber cells) give almost the same results. For the Malter effect encountered by the inner drift chamber in January 2012, about 0.2% water vapor was added to the MDC gas mixture to solve this cathode aging problem. These results provide an important reference for MDC operating high voltage settings and the upgrade of the inner drift chamber. Supported by the CAS Center for Excellence in Particle Physics (CCEPP)

  2. The Mark III vertex chamber and prototype test results

    SciTech Connect

    Grab, C.

    1987-07-01

    A vertex chamber has been constructed for use in the Mark III experiment. The chamber is positioned inside the current main drift chamber and will be used to trigger data collection, to aid in vertex reconstruction, and to improve the momentum resolution. This paper discusses the chamber's construction and performance and tests of the prototype.

  3. On genus expansion of superpolynomials

    NASA Astrophysics Data System (ADS)

    Mironov, Andrei; Morozov, Alexei; Sleptsov, Alexei; Smirnov, Andrey

    2014-12-01

    Recently it was shown that the (Ooguri-Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero-Moser-Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.

  4. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  5. Thermal Vacuum Chamber Repressurization with Instrument Purging

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  6. Thermal Vacuum Chamber Repressurization with Instrument Purging

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2014-01-01

    At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center’s (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  7. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  8. Simulation of BaBar Drift Chamber

    SciTech Connect

    Anderson, Rachel; /Wisconsin U., Eau Claire /SLAC

    2006-09-27

    The BaBar drift chamber (DCH) is used to measure the properties of charged particles created from e{sup +}e{sup -} collisions in the PEP-II asymmetric-energy storage rings by making precise measurements of position, momentum and ionization energy loss (dE/dx). In October of 2005, the PEP-II storage rings operated with a luminosity of 10 x 10{sup 33} cm{sup -2}s{sup -1}; the goal for 2007 is a luminosity of 20 x 10{sup 33} cm{sup -2}s{sup -1}, which will increase the readout dead time, causing uncertainty in drift chamber measurements to become more significant in physics results. The research described in this paper aims to reduce position and dE/dx uncertainties by improving our understanding of the BaBar drift chamber performance. A simulation program--called GARFIELD--is used to model the behavior of the drift chamber with adjustable parameters such as gas mixture, wire diameter, voltage, and magnetic field. By exploring the simulation options offered in GARFIELD, we successfully produced a simulation model of the BaBar drift chamber. We compared the time-to-distance calibration from BaBar to that calculated by GARFIELD to validate our model as well as check for discrepancies between the simulated and calibrated time-to-distance functions, and found that for a 0{sup o} entrance angle there is a very good match between calibrations, but at an entrance angle of 90{sup o} the calibration breaks down. Using this model, we also systematically varied the gas mixture to find one that would optimize chamber operation, which showed that the gas mixture of 80:20 Helium:isobutane is a good operating point, though more calculations need to be done to confirm that it is the optimal mixture.

  9. Lightweight Chambers for Thrust Cell Applications

    NASA Technical Reports Server (NTRS)

    Elam, S.; Effinger, M.; Holmes, R.; Lee, J.; Jaskowiak, M.

    2000-01-01

    Traditional metals like steel and copper alloys have been used for many years to fabricate injector and chamber components of thruster assemblies. While the materials perform well, reducing engine weights would help existing and future vehicles gain performance and payload capability. It may now be possible to reduce current thruster weights up to 50% by applying composite materials. In this task, these materials are being applied to an existing thrust cell design to demonstrate new fabrication processes and potential weight savings. Two ceramic matrix composite (CMC) designs, three polymer matrix composite (PMC) designs, and two metal matrix composite (MMC) designs are being fabricated as small chamber demonstration units. In addition, a new alloy of copper, chrome, and niobium (Cu-8Cr-4Nb) is being investigated for thrust chamber liners since it offers higher strength and increased cycle life over traditional alloys. This new alloy is being used for the liner in each MMC and PMC demonstration unit. During June-August of 2000, hot-fire testing of each unit is planned to validate designs in an oxygen/hydrogen environment at chamber pressures around 850 psi. Although the weight savings using CMC materials is expected to be high, they have proven to be much harder to incorporate into chamber designs based on current fabrication efforts. However, the PMC & MMC concepts using the Cu-8Cr-4Nb liner are nearly complete and ready for testing. Additional efforts intend to use the PMC & MMC materials to fabricate a full size thrust chamber (60K lb(sub f) thrust class). The fabrication of this full size unit is expected to be complete by October 2000, followed by hot-fire testing in November-December 2000.

  10. Thermal Expansion of Hafnium Carbide

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  11. Nonicosahedral pathways for capsid expansion

    NASA Astrophysics Data System (ADS)

    Cermelli, Paolo; Indelicato, Giuliana; Twarock, Reidun

    2013-09-01

    For a significant number of viruses a structural transition of the protein container that encapsulates the viral genome forms an important part of the life cycle and is a prerequisite for the particle becoming infectious. Despite many recent efforts the mechanism of this process is still not fully understood, and a complete characterization of the expansion pathways is still lacking. We present here a coarse-grained model that captures the essential features of the expansion process and allows us to investigate the conditions under which a viral capsid becomes unstable. Based on this model we demonstrate that the structural transitions in icosahedral viral capsids are likely to occur through a low-symmetry cascade of local expansion events spreading in a wavelike manner over the capsid surface.

  12. Sealed Plant-Growth Chamber For Clinostat

    NASA Technical Reports Server (NTRS)

    Brown, Christopher S.; Dreschel, Thomas W.

    1993-01-01

    Laboratory chamber for growing plants used to measure photosynthesis and respiration in simulated microgravity. Holds plant specimens while rotated on clinostat, see article, "Clinostat Delivers Power To Plant-Growth Cabinets" (KSC-11537). Provides way of comparing gas-exchange rates of plants rotated horizontally on clinostat with those of stationary or vertically rotated plants. Gas extracted for analysis without stopping clinostat. Chamber includes potlike base and cylindrical cover, both made of transparent acrylic pipe. Gasket forms seal between cover and bottom plate of base. Cover bolted to pot baseplate, which in turn bolted to clinostat.

  13. Almond test body. [for microwave anechoic chambers

    NASA Technical Reports Server (NTRS)

    Dominek, Allen K. (Inventor); Wood, Richard M. (Inventor); Gilreath, Melvin C. (Inventor)

    1989-01-01

    The invention is an almond shaped test body for use in measuring the performance characteristics of microwave anechoic chambers and for use as a support for components undergoing radar cross-section measurements. The novel aspect of this invention is its shape, which produces a large dynamic scattered field over large angular regions making the almond valuable for verifying the performance of microwave anechoic chambers. As a component mount, the almond exhibits a low return that does not perturb the measurement of the component and it simulates the backscatter characteristics of the component as if over an infinite ground plane.

  14. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    This paper describes a new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they have been used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts--as well as the other parameters--can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline resulting in a proportionately higher depth accuracy.

  15. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    A new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases is described. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they were used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts - as well as the other parameters - can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline - resulting in a proportionately higher depth accuracy.

  16. The JPL Cryogenic Dilatometer: Measuring the Thermal Expansion Coefficient of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Dudick, Matthew J.; Karlmann, Paul; Klein, Kerry J.; Levine, Marie; Marcin, Martin; Parker, Tyler J.; Peters, Robert D.; Shaklan, Stuart; VanBuren, David

    2007-01-01

    This slide presentation details the cryogenic dilatometer, which is used by JPL to measure the thermal expansion coefficient of materials used in Aerospace. Included is a system diagram, a picture of the dilatometer chamber and the laser source, a description of the laser source, pictures of the interferometer, block diagrams of the electronics and software and a picture of the electronics, and software. Also there is a brief review of the accurace.error budget. The materials tested are also described, and the results are shown in strain curves, JPL measured strain fits are described, and the coefficient of thermal expansion (CTE) is also shown for the materials tested.

  17. Cosmological expansion and local physics

    SciTech Connect

    Faraoni, Valerio; Jacques, Audrey

    2007-09-15

    The interplay between cosmological expansion and local attraction in a gravitationally bound system is revisited in various regimes. First, weakly gravitating Newtonian systems are considered, followed by various exact solutions describing a relativistic central object embedded in a Friedmann universe. It is shown that the 'all or nothing' behavior recently discovered (i.e., weakly coupled systems are comoving while strongly coupled ones resist the cosmic expansion) is limited to the de Sitter background. New exact solutions are presented which describe black holes perfectly comoving with a generic Friedmann universe. The possibility of violating cosmic censorship for a black hole approaching the big rip is also discussed.

  18. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  19. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  20. 48 CFR 570.403 - Expansion requests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Expansion requests. 570... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease,...

  1. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  2. 48 CFR 570.403 - Expansion requests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Expansion requests. 570... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease,...

  3. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  4. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  5. 48 CFR 570.403 - Expansion requests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Expansion requests. 570... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease,...

  6. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  7. 48 CFR 570.403 - Expansion requests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Expansion requests. 570... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease,...

  8. Influence of ovarian muscle contraction and oocyte growth on egg chamber elongation in Drosophila.

    PubMed

    Andersen, Darcy; Horne-Badovinac, Sally

    2016-04-15

    Organs are formed from multiple cell types that make distinct contributions to their shape. The Drosophila egg chamber provides a tractable model to dissect such contributions during morphogenesis. Egg chambers consist of 16 germ cells (GCs) surrounded by a somatic epithelium. Initially spherical, these structures elongate as they mature. This morphogenesis is thought to occur through a 'molecular corset' mechanism, whereby structural elements within the epithelium become circumferentially organized perpendicular to the elongation axis and resist the expansive growth of the GCs to promote elongation. Whether this epithelial organization provides the hypothesized constraining force has been difficult to discern, however, and a role for GC growth has not been demonstrated. Here, we provide evidence for this mechanism by altering the contractile activity of the tubular muscle sheath that surrounds developing egg chambers. Muscle hypo-contraction indirectly reduces GC growth and shortens the egg, which demonstrates the necessity of GC growth for elongation. Conversely, muscle hyper-contraction enhances the elongation program. Although this is an abnormal function for this muscle, this observation suggests that a corset-like force from the egg chamber's exterior could promote its lengthening. These findings highlight how physical contributions from several cell types are integrated to shape an organ.

  9. The Thermal Expansion Of Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  10. Removable Type Expansion Bolt Innovative Design

    NASA Astrophysics Data System (ADS)

    Wang, Feng-Lan; Zhang, Bo; Gao, Bo; Liu, Yan-Xin; Gao, Bo

    2016-05-01

    Expansion bolt is a kind of the most common things in our daily life. Currently, there are many kinds of expansion bolts in the market. However, they have some shortcomings that mainly contain underuse and unremovement but our innovation of design makes up for these shortcomings very well. Principle of working follows this: expansion tube is fixed outside of bolt, steel balls and expansion covers are fixed inside. Meanwhile, the steel balls have 120° with each other. When using it ,expansion cover is moved in the direction of its internal part. So the front part of expansion bolt cover is increasingly becoming big and steel halls is moved outside. Only in this way can it be fixed that steel balls make expansion tube expand. When removing them, expansion bolt is moved outside. So the front part of expansion bolt cover is gradually becoming small and steel balls moves inside, after expansion tube shrinks, we can detach them.

  11. SOYCHMBR.I - A model designed for the study of plant growth in a closed chamber

    NASA Technical Reports Server (NTRS)

    Reinhold, C.

    1982-01-01

    The analytical model SOYCHMBER.I, an update and alteration of the SOYMOD/OARDC model, for describing the total processes experienced by a plant in a controlled mass environment is outlined. The model is intended for use with growth chambers for examining plant growth in a completely controlled environment, leading toward a data base for the design of spacecraft food supply systems. SOYCHMBER.I accounts for the assimilation, respiration, and partitioning of photosynthate and nitrogen compounds among leaves, stems, roots, and potentially, flowers of the soybean plant. The derivation of the governing equations is traced, and the results of the prediction of CO2 dynamics for a seven day experiment with rice in a closed chamber are reported, together with data from three model runs for soybean. It is concluded that the model needs expansion to account for factors such as relative humidity.

  12. SEPAC system test in NASDA space chamber

    NASA Astrophysics Data System (ADS)

    Obayashi, T.; Kuriki, K.; Kawashima, N.; Nagatomo, M.; Kudo, I.; Ninomiya, K.; Ushirokawa, A.; Ejiri, M.; Sasaki, S.

    1980-01-01

    Test results of the second NASDA space chamber test using SEPAC (Space Experiment with Particle Acceleration) prototype models are reviewed. A safety level of electrical charge is determined, the electromagnetic interference effect caused by an electron beam and MPD arcjet firing is evaluated, and beam spread for EBA software mask design is measured.

  13. A reusable prepositioned ATP reaction chamber

    NASA Technical Reports Server (NTRS)

    Hoffman, D. G.

    1972-01-01

    Luminescence biometer detects presence of life by means of light-emitting chemical reaction of luciferin and luciferase with adenosine triphosphate (ATP) that occurs in all living cells. Amount of light in reaction chamber is measured to determine presence and extent of life.

  14. Lifetime tests for MAC vertex chamber

    SciTech Connect

    Nelson, H.N.

    1986-07-01

    A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions. (LEW)

  15. Detecting dark matter with scintillating bubble chambers

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjie; Dahl, C. Eric; Jin, Miaotianzi; Baxter, Daniel

    2016-03-01

    Threshold based direct WIMP dark matter detectors such as the superheated bubble chambers developed by the PICO experiment have demonstrated excellent electron-recoil and alpha discrimination, excellent scalability, ease of change of target fluid, and low cost. However, the nuclear-recoil like backgrounds have been a limiting factor in their dark matter sensitivity. We present a new type of detector, the scintillating bubble chamber, which reads out the scintillation pulse of the scattering events as well as the pressure, temperature, acoustic traces, and bubble images as a conventional bubble chamber does. The event energy provides additional handle to discriminate against the nuclear-recoil like backgrounds. Liquid xenon is chosen as the target fluid in our prototyping detector for its high scintillation yield and suitable vapor pressure which simplifies detector complexity. The detector can be used as an R&D tool to study the backgrounds present in the current PICO bubble chambers or as a prototype for standalone dark matter detectors in the future. Supported by DOE Grant DE-SC0012161.

  16. Miniature reaction chamber and devices incorporating same

    DOEpatents

    Mathies, Richard A.; Woolley, Adam T.

    2000-10-17

    The present invention generally relates to miniaturized devices for carrying out and controlling chemical reactions and analyses. In particular, the present invention provides devices which have miniature temperature controlled reaction chambers for carrying out a variety of synthetic and diagnostic applications, such as PCR amplification, nucleic acid hybridization, chemical labeling, nucleic acid fragmentation and the like.

  17. Anterior Chamber Live Loa loa: Case Report.

    PubMed

    Kagmeni, G; Cheuteu, R; Bilong, Y; Wiedemann, P

    2016-01-01

    We reported a case of unusual intraocular Loa loa in a 27-year-old patient who presented with painful red eye. Biomicroscopy revealed a living and active adult worm in the anterior chamber of the right eye. After surgical extraction under local anesthesia, parasitological identification confirmed L. loa filariasis. PMID:27441005

  18. Acoustical-Levitation Chamber for Metallurgy

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E.; Wang, T. G.; Elleman, D. D.; Jacobi, N.

    1983-01-01

    Sample moved to different positions for heating and quenching. Acoustical levitation chamber selectively excited in fundamental and second-harmonic longitudinal modes to hold sample at one of three stable postions: A, B, or C. Levitated object quickly moved from one of these positions to another by changing modes. Object rapidly quenched at A or C after heating in furnace region at B.

  19. Chamber transport for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.

  20. Simple chamber facilitates chemiluminescent detection of bacteria

    NASA Technical Reports Server (NTRS)

    Marts, E. C.; Wilkins, J. R.

    1970-01-01

    Test chamber enables rapid estimation of bacteria in a test sample through the reaction of luminol and an oxidant with the cytochrome C portion of certain species of bacteria. Intensity of the light emitted in the reaction is a function of the specific bacteria in the test sample.

  1. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  2. Anterior Chamber Live Loa loa: Case Report

    PubMed Central

    Kagmeni, G.; Cheuteu, R.; Bilong, Y.; Wiedemann, P.

    2016-01-01

    We reported a case of unusual intraocular Loa loa in a 27-year-old patient who presented with painful red eye. Biomicroscopy revealed a living and active adult worm in the anterior chamber of the right eye. After surgical extraction under local anesthesia, parasitological identification confirmed L. loa filariasis. PMID:27441005

  3. Presenting Chamber Music to Young Children

    ERIC Educational Resources Information Center

    Smith, Terry Fonda

    2011-01-01

    The number of professional ensembles and organizations with dedicated outreach concerts has been steadily increasing over the past decade. More recently, educational concerts pairing chamber music with young children have been documented. The work presented in this article is a study in the efficacy and feasibility of this format. Various music…

  4. Try Chamber Music--Here's How.

    ERIC Educational Resources Information Center

    Rudaitis, Cheryl

    1995-01-01

    Profiles four middle school teachers maintaining early chamber music programs. The teachers advise varying degrees of musical competency before students begin the program, but all of them caution against starting too soon. They also stress the importance of purchasing early music scores and establishing rehearsal times. (MJP)

  5. Blood, blebs and lumen expansion.

    PubMed

    Reichman-Fried, Michal; Raz, Erez

    2016-04-01

    A powerful combination of cell labelling, genetic tools and rapid imaging techniques in vivo has now led to a high-resolution description of lumen formation during angiogenesis in zebrafish. The study reveals a haemodynamic-force-driven and myosin-II-dependent cellular mechanism (termed inverse membrane blebbing) as the basis for lumen expansion in unicellular and multicellular angiogenic sprouts. PMID:27027487

  6. French Expansion in North America.

    ERIC Educational Resources Information Center

    Jaenen, Cornelius J.

    2001-01-01

    Explores the French colonization in North America. Presents background information on New France, focusing on the French in Canada. Covers topics, such as how the French became interested in North American expansion, the French in Louisiana, colonial economics, and the reasons for the collapse of New France. Includes a bibliography. (CMK)

  7. An automated gas expansion system

    SciTech Connect

    Abercrombie, K.

    1993-01-01

    The Metrology Laboratory at the Rocky Flats Plant has constructed a new Vacuum Gauge Calibration System based on gas expansion. The system is used to calibrate vacuum pressure gauges between 1 mTorr and 1000 mTorr. The paper discusses an overview of the system including layout, software, testing and performance.

  8. An automated gas expansion system

    SciTech Connect

    Abercrombie, K.

    1993-05-01

    The Metrology Laboratory at the Rocky Flats Plant has constructed a new Vacuum Gauge Calibration System based on gas expansion. The system is used to calibrate vacuum pressure gauges between 1 mTorr and 1000 mTorr. The paper discusses an overview of the system including layout, software, testing and performance.

  9. Mahler's Expansion and Boolean Functions

    NASA Astrophysics Data System (ADS)

    Michon, Jean-Francis; Valarcher, Pierre; YunÈs, Jean-Baptiste

    2007-03-01

    The substitution of X by X^2 in binomial polynomials generates sequences of integers by Mahler's expansion. We give some properties of these integers and a combinatorial interpretation with covers by projection. We also give applications to the classification of boolean functions. This sequence arose from our previous research on classification and complexity of Binary Decision Diagrams (BDD) associated with boolean functions.

  10. Educational Expansion and Economic Crisis.

    ERIC Educational Resources Information Center

    Klemm, Klaus

    1987-01-01

    Summarizes the expansion of education in the West Germany up to 1980. Examines the progress of the 1980s in view of unemployment and growing difficulties on entering a profession. Among the findings are a decline in enrollment of 20-24 year olds and a growth in opportunities for the children of immigrants. (Author/GEA)

  11. Blood, blebs and lumen expansion.

    PubMed

    Reichman-Fried, Michal; Raz, Erez

    2016-04-01

    A powerful combination of cell labelling, genetic tools and rapid imaging techniques in vivo has now led to a high-resolution description of lumen formation during angiogenesis in zebrafish. The study reveals a haemodynamic-force-driven and myosin-II-dependent cellular mechanism (termed inverse membrane blebbing) as the basis for lumen expansion in unicellular and multicellular angiogenic sprouts.

  12. Chamber for Aerosol Deposition of Bioparticles

    NASA Technical Reports Server (NTRS)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent

  13. Effective Expansion: Balance between Shrinkage and Hygroscopic Expansion.

    PubMed

    Suiter, E A; Watson, L E; Tantbirojn, D; Lou, J S B; Versluis, A

    2016-05-01

    The purpose of this study was to investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a restored tooth. One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), 2 compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal resin-based composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization ("total shrinkage") and during 4 wk of water storage at 37°C was measured using an optical method (n= 10). Post-gel shrinkage was measured during polymerization using a strain gauge method (n= 10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 wk of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (n= 8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using analysis of variance and post hoc tests (significance level 0.05). All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water but had not completely compensated polymerization shrinkage after 4 wk. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (-6.4 µm) than with the other materials (-12.1 to -14.1 µm). After 1 d, cuspal flexure reversed to +5.0 µm cuspal expansion with the RMGI and increased to +9.3 µm at 4 wk. After 4 wk, hygroscopic expansion compensated cuspal flexure in a compomer (Compoglass) and reduced flexure with Dyract and resin-based composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations. Hygroscopic

  14. Effective Expansion: Balance between Shrinkage and Hygroscopic Expansion.

    PubMed

    Suiter, E A; Watson, L E; Tantbirojn, D; Lou, J S B; Versluis, A

    2016-05-01

    The purpose of this study was to investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a restored tooth. One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), 2 compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal resin-based composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization ("total shrinkage") and during 4 wk of water storage at 37°C was measured using an optical method (n= 10). Post-gel shrinkage was measured during polymerization using a strain gauge method (n= 10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 wk of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (n= 8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using analysis of variance and post hoc tests (significance level 0.05). All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water but had not completely compensated polymerization shrinkage after 4 wk. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (-6.4 µm) than with the other materials (-12.1 to -14.1 µm). After 1 d, cuspal flexure reversed to +5.0 µm cuspal expansion with the RMGI and increased to +9.3 µm at 4 wk. After 4 wk, hygroscopic expansion compensated cuspal flexure in a compomer (Compoglass) and reduced flexure with Dyract and resin-based composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations. Hygroscopic

  15. Four chamber pacing in dilated cardiomyopathy.

    PubMed

    Cazeau, S; Ritter, P; Bakdach, S; Lazarus, A; Limousin, M; Henao, L; Mundler, O; Daubert, J C; Mugica, J

    1994-11-01

    A 54-year-old man received a four chamber pacing system for severe congestive heart failure (NYHA functional Class IV). His ECG showed a left bundle branch block (200-msec QRS duration) with 200-msec PR interval, normal QRS axis, and 90-msec interatrial interval. An acute hemodynamic study with insertion of four temporary leads was performed prior to the implant, which demonstrated a significant increase in cardiac output and decrease of pulmonary capillary wedge pressure. A permanent pacemaker was implanted based on the encouraging results of the acute study. The right chamber leads were introduced by cephalic and subclavian approaches. The left atrium was paced with a coronary sinus lead, Medtronic SP 2188-58 model. An epicardial Medtronic 5071 lead was placed on the LV free wall. The four leads were connected to a standard bipolar DDD pacemaker, Chorus 6234. The two atrial leads were connected via a Y-connector to the atrial channel of the pacemaker with a bipolar pacing configuration. The two ventricular leads were connected in a similar fashion to the ventricular channel of the device. The right chamber leads were connected to the distal poles. The left chamber leads were connected to the proximal poles of the pacemaker. Six weeks later, the patient's clinical status improved markedly with a weight loss of 17 kg and disappearance of peripheral edema. His functional class was reduced to NYHA II. Four chamber pacing is technically feasible. In patients with evidence of interventricular dyssynchrony, this original pacing mode probably provides a mechanical activation sequence closer to the natural one.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Test plan pressure fed thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Dunn, Glenn

    1990-01-01

    Aerojet is developing the technology for the design of a reliable, low cost, efficient, and lightweight LOX/RP-1 pressure fed engine. This technology program is a direct result of Aerojet's liquid rocket booster (LRB) study and previous NASA studies that identified liquid engines using high bulk density hydrocarbon fuels as very attractive for a space transportation system (STS). Previous large thrust LOX/RP-1 engine development programs were characterized by costly development problems due to combustion instability damage. The combustion stability solution was typically obtained through trial and error methods of minimizing instability damage by degrading engine performance. The approach to this program was to utilize existing and newly developed combustion analysis models and design methodology to create a thrust chamber design with features having the potential of producing reliable and efficient operation. This process resulted in an engine design with a unique high thrust-per-element OFO triplet injector utilizing a low cost modular approach. Cost efficient ablative materials are baselined for the injector face and chamber. Technology demonstration will be accomplished through a hot fire test program using appropriately sized subscale hardware. This subscale testing will provide a data base to supplement the current industry data bank and to anchor and validate the applied analysis models and design methodology. Once anchored and validated, these analysis models and design methodology can be applied with greatly increased confidence to design and characterize a large scale pressure fed LOX/RP-1 thrust chamber. The objective of this test program is to generate a data base that can be used to anchor and validate existing analysis models and design methodologies and to provide early concept demonstration of a low cost, efficient LOX/RP-1 thrust chamber. Test conditions and hardware instrumentation were defined to provide data sufficient to characterize combustion

  17. Calculation of Coherent Synchrotron Radiation Impedance Using the Mode Expansion Method

    SciTech Connect

    Stupakov, G.V.; Kotelnikov, I.A.; /Novosibirsk, IYF

    2009-12-09

    We study an impedance due to coherent synchrotron radiation (CSR) generated by a short bunch of charged particles passing through a dipole magnet of finite length in a vacuum chamber of a given cross section. In our method we decompose the electromagnetic field of the beam over the eigenmodes of the toroidal chamber and derive a system of equations for the expansion coefficients in the series. The general method is further specialized for a toroidal vacuum chamber of a rectangular cross section where the eigenmodes can be computed analytically. We also develop a computer code that calculates the CSR impedance for a toroid of rectangular cross section. Numerical results obtained with the code are presented in the paper.

  18. The STREON Recirculation Chamber: An Advanced Tool to Quantify Stream Ecosystem Metabolism in the Benthic Zone

    NASA Astrophysics Data System (ADS)

    Brock, J. T.; Utz, R.; McLaughlin, B.

    2013-12-01

    ) under various velocity settings. The extent of exchange with the sediment was assessed by means of a saline tracer injection and adjustment using flow-regulating components was explored. Performance under a broad range of temperatures (1 to 30 °C) was assessed. Finally, a novel heat-exchange mechanism meant to minimize warming during operations was evaluated. All prototype assessments demonstrate the applicability of the STREON chamber under a broad range of conditions. Though the STREON recirculation chamber has been designed to satisfy the specific needs of the STREON program, the open-access nature of the NEON network should facilitate scope expansion in the coming decades. The STREON recirculation chamber design and all prototype testing data will be accessible to facilitate chamber use elsewhere. The large number of chamber assemblies required for STREON operations should facilitate the acquisition of units by researchers working outside of the NEON network. Furthermore, the current scope of STREON includes the use of the chambers only once annually, thus a valuable tool for stream ecosystem measurements will be readily available at STREON sites for potential use by researchers interested in such measurements.

  19. Experimental performance of a high-area-ratio rocket nozzle at high combustion chamber pressure

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Kazaroff, John M.; Pavli, Albert J.

    1996-01-01

    An experimental investigation was conducted to determine the thrust coefficient of a high-area-ratio rocket nozzle at combustion chamber pressures of 12.4 to 16.5 MPa (1800 to 2400 psia). A nozzle with a modified Rao contour and an expansion area ratio of 1025:1 was tested with hydrogen and oxygen at altitude conditions. The same nozzle, truncated to an area ratio of 440:1, was also tested. Values of thrust coefficient are presented along with characteristic exhaust velocity efficiencies, nozzle wall temperatures, and overall thruster specific impulse.

  20. Efficient computation of coherent synchrotron radiation in a rectangular chamber

    NASA Astrophysics Data System (ADS)

    Warnock, Robert L.; Bizzozero, David A.

    2016-09-01

    We study coherent synchrotron radiation (CSR) in a perfectly conducting vacuum chamber of rectangular cross section, in a formalism allowing an arbitrary sequence of bends and straight sections. We apply the paraxial method in the frequency domain, with a Fourier development in the vertical coordinate but with no other mode expansions. A line charge source is handled numerically by a new method that rids the equations of singularities through a change of dependent variable. The resulting algorithm is fast compared to earlier methods, works for short bunches with complicated structure, and yields all six field components at any space-time point. As an example we compute the tangential magnetic field at the walls. From that one can make a perturbative treatment of the Poynting flux to estimate the energy deposited in resistive walls. The calculation was motivated by a design issue for LCLS-II, the question of how much wall heating from CSR occurs in the last bend of a bunch compressor and the following straight section. Working with a realistic longitudinal bunch form of r.m.s. length 10.4 μ m and a charge of 100 pC we conclude that the radiated power is quite small (28 W at a 1 MHz repetition rate), and all radiated energy is absorbed in the walls within 7 m along the straight section.

  1. The membrane chamber: a new type of in vitro recording chamber.

    PubMed

    Hill, M R H; Greenfield, S A

    2011-01-30

    In vitro brain slice electrophysiology is a powerful and highly successful technique where a thin slice is cut from the brain and kept alive artificially in a recording chamber. The design of this recording chamber is pivotal to the success and the quality of such experiments. Most often one of two types of chambers is used today, the interface chamber or the submerged chamber. These chambers, however, have the disadvantage that they are limited in either their experimental or their physiological properties respectively. Here we present a new working principle for an in vitro chamber design which aims at combining the advantages of the classical designs whilst overcoming their disadvantages. This is achieved by using a semipermeable membrane on which the slice is placed. The membrane allows for a fast flow of artificial cerebrospinal fluid of up to at least 17 ml/min. Due to a Bernoulli effect, this high speed flow also causes a 64% increase in flow of solution across the membrane on which the slice rests. The fact that the membrane is transparent introduces the possibility of wide field inverted optical imaging to brain slice electrophysiology. The utility of this setup was demonstrated in the recording of local field potential, single cell and voltage sensitive dye imaging data simultaneously from an area smaller then 1/8mm(2). The combination of all these features in the membrane chamber make it a versatile and promising device for many current and future in vitro applications, especially in the regard to optical imaging. PMID:21075142

  2. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  3. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  4. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  5. Multipole expansions and intense fields

    NASA Astrophysics Data System (ADS)

    Reiss, Howard R.

    1984-02-01

    In the context of two-body bound-state systems subjected to a plane-wave electromagnetic field, it is shown that high field intensity introduces a distinction between long-wavelength approximation and electric dipole approximation. This distinction is gauge dependent, since it is absent in Coulomb gauge, whereas in "completed" gauges of Göppert-Mayer type the presence of high field intensity makes electric quadrupole and magnetic dipole terms of importance equal to electric dipole at long wavelengths. Another consequence of high field intensity is that multipole expansions lose their utility in view of the equivalent importance of a number of low-order multipole terms and the appearance of large-magnitude terms which defy multipole categorization. This loss of the multipole expansion is gauge independent. Also gauge independent is another related consequence of high field intensity, which is the intimate coupling of center-of-mass and relative coordinate motions in a two-body system.

  6. Optical processing of bubble chamber photographs.

    PubMed

    Falconer, D G

    1966-09-01

    The processing of bubble chamber photographs has emerged as a major task in the experimental study of sub-atomic decays and interactions. Although electronic computer techniques have proved useful in reconstructing the geometry and ascertaining the kinematics of high-energy events, the scanning and measuring of bubble chamber photographs has remained for the most part unautomated. An alternate approach to the computerization of the scan-measure task is through the newly developed optical computer, a device which accepts input data on photographic film and thus obviates the need for digitizing photographs before processing. The optical computer can aid the scan-measure task by suppressing beam tracks, measuring track widths, and determining scattering angles.

  7. Method of electroforming a rocket chamber

    NASA Technical Reports Server (NTRS)

    Fortini, A. (Inventor)

    1974-01-01

    A transpiration cooled rocket chamber is made by forming a porous metal wall on a suitably shaped mandrel. The porous wall may be made of sintered powdered metal, metal fibers sintered on the mandrel or wires woven onto the mandrel and then sintered to bond the interfaces of the wires. Intersecting annular and longitudinal ribs are then electroformed on the porous wall. An interchamber wall having orifices therein is then electroformed over the annular and longitudinal ribs. Parallel longitudinal ribs are then formed on the outside surface of the interchamber wall after which an annular jacket is electroformed over the parallel ribs to form distribution passages therewith. A feed manifold communicating with the distribution passages may be fabricated and welded to the rocket chamber or the feed manifold may be electroformed in place.

  8. Bubble chamber as a trace chemical detector

    SciTech Connect

    Luo, X.; McCreary, E.I.; Atencio, J.H.; McCown, A.W.; Sander, R.K.

    1998-08-01

    A novel concept for trace chemical analysis in liquid has been demonstrated. The technique utilizes light absorption in a superheated liquid. Although a superheated liquid is thermodynamically unstable, a high degree of superheating can be dynamically achieved for a short period of time. During this time the superheated liquid is extremely sensitive to boiling at nucleation sites produced by energy deposition. Observation of bubbles in the superheated liquid in some sense provides amplification of the initial energy deposition. Bubble chambers containing superheated liquids have been used to detect energetic particles; now a bubble chamber is used to detect a trace chemical in superheated liquid propane by observing bubble formation initiated by optical absorption. Crystal violet is used as a test case and can be detected at the subpart-per-10{sup 12} level by using a Nd:YAG laser. The mechanism for bubble formation and ideas for further improvement are discussed. {copyright} 1998 Optical Society of America

  9. Bubble chamber as a trace chemical detector.

    PubMed

    Luo, X; McCreary, E I; Atencio, J H; McCown, A W; Sander, R K

    1998-08-20

    A novel concept for trace chemical analysis in liquids has been demonstrated. The technique utilizes light absorption in a superheated liquid. Although a superheated liquid is thermodynamically unstable, a high degree of superheating can be dynamically achieved for a short period of time. During this time the superheated liquid is extremely sensitive to boiling at nucleation sites produced by energy deposition. Observation of bubbles in the superheated liquid in some sense provides amplification of the initial energy deposition. Bubble chambers containing superheated liquids have been used to detect energetic particles; now a bubble chamber is used to detect a trace chemical in superheated liquid propane by observing bubble formation initiated by optical absorption. Crystal violet is used as a test case and can be detected at the subpart-per-10(12) level by using a Nd:YAG laser. The mechanism for bubble formation and ideas for further improvement are discussed.

  10. Space station auxiliary thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1987-01-01

    A program to design, fabricate, and test a 50 lb sub f (222 N) thruster was undertaken to demonstrate the applicability of the reverse flow concept as an item of auxillary propulsion for the Space Station. The thruster was to operate at a mixture ratio (O/F) of 4, be capable of operating for 2 million lb sub f-seconds (8.896 million N-seconds) impulse with a chamber pressure of 75 psia (52N/sq cm) and a nozzle area ratio of 40. A successful demonstration of an (0/F) of 4 thruster, was followed by the design objective of operating at (O/F) of 8. The demonstration of this thruster resulted in the order of and additional (O/F) of 8 thruster chamber under the present NAS 3-24883 contract. The effort to fabricate and test the second (0/F) of 8 thruster is documented.

  11. Combustion interaction with radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Rosenberg, S. D.; Jassowski, D. M.; Barlow, R.; Lucht, R.; Mccarty, K.

    1990-01-01

    Over 15 hours of thruster operation at temperatures between 1916 and 2246 C without failure or erosion has been demonstrated using iridium-coated rhenium chamber materials with nitrogen tetroxide/monomethylhydrazine propellants operating over a mixture ratio range of 1.60-2.05. Research is now under way to provide a basic understanding of the mechanisms which make high-temperature operation possible and to extend the capability to a wider range of conditions, including other propellant combinations and chamber materials. Techniques have been demonstrated for studying surface fracture phenomena. These include surface Raman and Auger for study of oxide formation, surface Raman and X-ray diffraction to determine the oxide phase, Auger to study oxide stoichiometry, and sputter Auger to study interdiffusion of alloy species.

  12. Clinical grade expansion of MSCs.

    PubMed

    Capelli, C; Pedrini, O; Valgardsdottir, R; Da Roit, F; Golay, J; Introna, M

    2015-12-01

    Producing advanced therapy medicinal products (ATMP) according to Good Manufacturing Practice (GMP) guidelines represents a global challenge for the expansion of cells intended for human use. Mesenchymal stromal cells (MSCs) from different sources are one of the most actively developed cell type for a variety of clinical applications in cellular therapy. Complying with GMP means defining accurately both the production process and the release criteria required for a final safe product. We have here reported our manufacturing experience on 103 consecutive clinical-grade in vitro expansions of both bone marrow-derived and umbilical cord-derived mesenchymal stromal cells together with description of methods and reagents utilized in our Cell Factory. The same animal- and serum-free medium, additioned with human platelet lysate, has been used for all the expansions performed. This is the largest experience published so far with this alternative and clinical-grade reagent (compared to the traditional fetal bovine serum) and shows the feasibility and the reproducibility of the method. Indeed, we have been able to produce a sufficient number of MSCs to treat 57 patients so far, enrolled in 7 different experimental phase I/II protocols. PMID:26092523

  13. Femtosecond dynamics of cluster expansion

    NASA Astrophysics Data System (ADS)

    Gao, Xiaohui; Wang, Xiaoming; Shim, Bonggu; Arefiev, Alexey; Tushentsov, Mikhail; Breizman, Boris; Downer, Mike

    2010-03-01

    Noble gas clusters irradiated by intense ultrafast laser expand quickly and become typical plasma in picosecond time scale. During the expansion, the clustered plasma demonstrates unique optical properties such as strong absorption and positive contribution to the refractive index. Here we studied cluster expansion dynamics by fs-time-resolved refractive index and absorption measurements in cluster gas jets after ionization and heating by an intense pump pulse. The refractive index measured by frequency domain interferometry (FDI) shows the transient positive peak of refractive index due to clustered plasma. By separating it from the negative contribution of the monomer plasma, we are able to determine the cluster fraction. The absorption measured by a delayed probe shows the contribution from clusters of various sizes. The plasma resonances in the cluster explain the enhancement of the absorption in our isothermal expanding cluster model. The cluster size distribution can be determined. A complete understanding of the femtosecond dynamics of cluster expansion is essential in the accurate interpretation and control of laser-cluster experiments such as phase-matched harmonic generation in cluster medium.

  14. High pressure hydrogen time projection chamber

    SciTech Connect

    Goulianos, K.

    1983-01-01

    We describe a high pressure hydrogen gas time projection chamber which consists of two cylindrical drift regions each 45 cm in diameter and 75 cm long. Typically, at 15 atm of H/sub 2/ with 2 kV/cm drift field and 7 kV on the 35..mu.. sense wires, the drift velocity is about 0.5 cm/..mu..sec and the spatial resolution +-200..mu...

  15. Compact Vapor Chamber Cools Critical Components

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Advancements in the production of proton exchange membrane fuel cells have NASA considering their use as a power source for spacecraft and robots in future space missions. With SBIR funding from Glenn Research Center, Lancaster, Pennsylvania-based Thermacore Inc. developed strong, lightweight titanium vapor chambers to keep the fuel cells operating at optimum temperatures. The company is now selling the technology for cooling electronic components.

  16. Comment on 'Proton beam monitor chamber calibration'.

    PubMed

    Palmans, Hugo; Vatnitsky, Stanislav M

    2016-09-01

    We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that [Formula: see text]-values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication

  17. CFD Code Survey for Thrust Chamber Application

    NASA Technical Reports Server (NTRS)

    Gross, Klaus W.

    1990-01-01

    In the quest fo find analytical reference codes, responses from a questionnaire are presented which portray the current computational fluid dynamics (CFD) program status and capability at various organizations, characterizing liquid rocket thrust chamber flow fields. Sample cases are identified to examine the ability, operational condition, and accuracy of the codes. To select the best suited programs for accelerated improvements, evaluation criteria are being proposed.

  18. Magma chamber dynamics and Vesuvius eruption forecasting

    NASA Astrophysics Data System (ADS)

    Dobran, F.

    2003-04-01

    Magma is continuously or periodically refilling an active volcano and its eruption depends on the mechanical, fluid, thermal, and chemical aspects of the magma storage region and its surroundings. A cyclically loaded and unloaded system can fail from a weakness in the system or its surroundings, and the fluctuating stresses can produce system failures at stress levels that are considerably below the yield strength of the material. Magma in a fractured rock system within a volcano is unstable and propagates toward the surface with the rate depending on the state of the system defined by the inertia, gravity, friction, and permeability parameters of magma and its source region. Cyclic loading and unloading of magma from a reservoir caused by small- or medium-scale eruptions of Vesuvius can produce catastrophic plinian eruptions because of the structural failure of the system and the quiescent periods between these eruptions increase with time until the next eruption cycle which will be plinian or subplinian and will occur with a very high probability this century. Such a system behavior is predicted by a Global Volcanic Simulator of Vesuvius developed for simulating different eruption scenarios for the purpose of urban planning the territory, reducing the number of people residing too close to the cone of the volcano, and providing safety to those beyond about 5 km radius of the crater. The magma chamber model of the simulator employs a thermomechanical model that includes magma inflow and outflow from the chamber, heat and mass transfer between the chamber and its surroundings, and thermoelastoplastic deformation of the shell surrounding the magma source region. These magma chamber, magma ascent, and pyroclastic dispersion models and Vesuvius eruption forecasting are described in Dobran, F., VOLCANIC PROCESSES, Kluwer Academic/Plenum Publishers, 2001, 590 pp.

  19. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  20. SONTRAC: A solar neutron track chamber detector

    NASA Technical Reports Server (NTRS)

    Frye, G. M., Jr.; Jenkins, T. L.; Owens, A.

    1985-01-01

    The recent detection on the solar maximum mission (SMM) satellite of high energy neutrons emitted during large solar flares has provided renewed incentive to design a neutron detector which has the sensitivity, energy resolution, and time resolution to measure the neutron time and energy spectra with sufficient precision to improve our understanding of the basic flare processes. Over the past two decades a variety of neutron detectors has been flown to measure the atmospheric neutron intensity above 10 MeV and to search for solar neutrons. The SONTRAC (Solar Neutron Track Chamber) detector, a new type of neutron detector which utilizes n-p scattering and has a sensitivity 1-3 orders of magnitude greater than previous instruments in the 20-200 MeV range is described. The energy resolution is 1% for neutron kinetic energy, T sub n 50 MeV. When used with a coded aperture mask at 50 m (as would be possible on the space station) an angular resolution of approx. 4 arc sec could be achieved, thereby locating the sites of high energy nuclear interactions with an angular precision comparable to the existing x-ray experiments on SMM. The scintillation chamber is investigated as a track chamber for high energy physics, either by using arrays of scintillating optical fibers or by optical imaging of particle trajectories in a block of scintillator.

  1. Sperm Cell Dynamics in Shallow Chambers

    NASA Astrophysics Data System (ADS)

    Condat, Carlos; Marconi, Veronica; Guidobaldi, Alejandro; Giojalas, Laura; Silhanek, Alejandro; Jeyaram, Yogesh; Moshchalkov, Victor

    2015-03-01

    Self-propelled microorganisms are attracted to surfaces. This makes their dynamic behavior in restricted geometries very different from that observed in the bulk. Here we analyze the motion of spermatozoids confined to shallow chambers, investigating the nature of the cell trajectories and their accumulation near the side boundaries. Observed cell trajectories are composed of a succession of quasi-circular and quasi-linear segments. This suggests that the cells follow a path of intermittent trappings near the top and down surfaces separated by stretches of quasi-free motion near the center of the gap. Use of microstructured petal-shaped edges limits accumulation near the borders and contributes to increase the concentration in the chamber interior. System stabilization occurs over times of the order of minutes, which agrees well with a theoretical estimate that assumes that the cell mean-square displacement is largely due to the quasi-linear segments. Pure quasi-circular trajectories would require several hours to stabilize. Our estimates also indicate that stabilization proceeds 2.5 times faster in the rosette geometries than in the smooth-edged chambers, which is another practical reason to prefer the former.

  2. 23. PHOTOCOPY OF PHOTOGRAPH. View west of Tropic Chamber refrigeration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. PHOTOCOPY OF PHOTOGRAPH. View west of Tropic Chamber refrigeration equipment, ca. 1955. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  3. 1. View southeast of Climatic Chambers Building from roof of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View southeast of Climatic Chambers Building from roof of Research Building. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  4. 7. Detail view west of Arctic Chamber wind tunnel shell ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view west of Arctic Chamber wind tunnel shell (typical) in east elevation. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  5. 21. PHOTOCOPY OF PHOTOGRAPH. view north of Tropic Chamber, ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. PHOTOCOPY OF PHOTOGRAPH. view north of Tropic Chamber, ca. 1955. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  6. EXTERIOR VIEW OF AIRLOCK FOR ALTITUDE CHAMBER R, FACING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW OF AIRLOCK FOR ALTITUDE CHAMBER R, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  7. DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER R, FACING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER R, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  8. VIEW OF PUMP ROOM FOR ALTITUDE CHAMBERS, FACING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PUMP ROOM FOR ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  9. INTERIOR OF AIRLOCK FROM INTERIOR OF ALTITUDE CHAMBER R, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF AIRLOCK FROM INTERIOR OF ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  10. DETAIL OF THE INTERIOR OF THE DOMED LID, ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE INTERIOR OF THE DOMED LID, ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  11. DETAIL OF PLATFORM SUPPORT BRACKET, ALTITUDE CHAMBER L, FACING NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF PLATFORM SUPPORT BRACKET, ALTITUDE CHAMBER L, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  12. DETAIL OF WALLMOUNTED STAIRS ON INTERIOR OF ALTITUDE CHAMBER L, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF WALL-MOUNTED STAIRS ON INTERIOR OF ALTITUDE CHAMBER L, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  13. EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO RIGHT), FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  14. EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO RIGHT), FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  15. EXTERIOR AND INTERIOR VIEW OF AIRLOCK FOR ALTITUDE CHAMBER R, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR AND INTERIOR VIEW OF AIRLOCK FOR ALTITUDE CHAMBER R, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  16. BOTTOM LEVEL OF ALTITUDE CHAMBER L, FACING SOUTHWEST Cape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOTTOM LEVEL OF ALTITUDE CHAMBER L, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  17. UPPER HALF OF THE INTERIOR OF ALTITUDE CHAMBER R, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UPPER HALF OF THE INTERIOR OF ALTITUDE CHAMBER R, LOOKING UP FROM BOTTOM LEVEL, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  18. INTERIOR OF ALTITUDE CHAMBER R, LOOKING DOWN FROM AIRLOCK, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF ALTITUDE CHAMBER R, LOOKING DOWN FROM AIRLOCK, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  19. VIEW OF THE CONTROL ROOM FOR THE ALTITUDE CHAMBERS, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE CONTROL ROOM FOR THE ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  20. DETAIL OF THE EXTERIOR OF THE DOMED LID, ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE EXTERIOR OF THE DOMED LID, ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  1. DETAIL OF REPRESSURIZATION AIR PIPE, ALTITUDE CHAMBER L, FACING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF RE-PRESSURIZATION AIR PIPE, ALTITUDE CHAMBER L, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  2. INTERIOR OF ALTITUDE CHAMBER L FROM TOP LEVEL OF ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF ALTITUDE CHAMBER L FROM TOP LEVEL OF ACCESS PLATFORMS, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  3. DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER L, FACING NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER L, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  4. LOWER HALF OF THE INTERIOR OF ALTITUDE CHAMBER R, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOWER HALF OF THE INTERIOR OF ALTITUDE CHAMBER R, LOOKING UP FROM BOTTOM LEVEL, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  5. INTERIOR OF ALTITUDE CHAMBER L, LOOKING UP FROM BOTTOM LEVEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF ALTITUDE CHAMBER L, LOOKING UP FROM BOTTOM LEVEL OF INTERNAL PLATFORMS, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  6. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall...

  7. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall...

  8. 30 CFR 56.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be flushed with...

  9. 30 CFR 56.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be flushed with...

  10. Space Station Live: Historic Vacuum Chamber to Test Webb Telescope

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot recently visited Johnson Space Center’s 400,000 cubic foot vacuum chamber, Chamber A, and spoke with Mary Cerimele, the lab manager for this historic facility.

  11. DETAIL OF VACUUM PIPE OPENING WITHIN ALTITUDE CHAMBER R, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF VACUUM PIPE OPENING WITHIN ALTITUDE CHAMBER R, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  12. Andy Chambers Homestead, Chicken Coop, Saddle Shop, and Granary, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Andy Chambers Homestead, Chicken Coop, Saddle Shop, and Granary, looking northeast - Andy Chambers Homestead, 0.4 mile south of Antelope Flats Road on the east side of Mormon Row Road, Kelly, Teton County, WY

  13. Chamber Design For Slow Nucleation Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee

    1995-01-01

    Multiple-chamber dialysis apparatus grows protein crystals on Earth or in microgravity with minimum of intervention by technician. Use of multiple chambers provides gradation of nucleation and growth rates.

  14. 11. Second floor, northwest chamber, south wall. Former passage to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Second floor, northwest chamber, south wall. Former passage to southwest chamber (door blocked off on far side) on left; closet on right. - Conner Homestead, House, Epping Road (State Route 101), Exeter, Rockingham County, NH

  15. CONTAINMENT SYSTEM, SPRAY CHAMBER, LOOKING NORTH WITH MIST COOLING MOLTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTAINMENT SYSTEM, SPRAY CHAMBER, LOOKING NORTH WITH MIST COOLING MOLTEN STEEL SLABS AS THEY PROGRESS THROUGH THIS CHAMBER. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  16. DESIGN, CONSTRUCTION, AND EVALUATION OF A CHAMBER FOR AEROBIOLOGY

    EPA Science Inventory

    A chamber was designed and constructed for aeromicrobiology applications. An ultraviolet (UV) radiation source was incorporated to sterilize the chamber between trials. Twelve bacterial species originally isolated from air samples and obtained from the American Type Culture Colle...

  17. Utilizing Chamber Data for Developing and Validating Climate Change Models

    NASA Technical Reports Server (NTRS)

    Monje, Oscar

    2012-01-01

    Controlled environment chambers (e.g. growth chambers, SPAR chambers, or open-top chambers) are useful for measuring plant ecosystem responses to climatic variables and CO2 that affect plant water relations. However, data from chambers was found to overestimate responses of C fluxes to CO2 enrichment. Chamber data may be confounded by numerous artifacts (e.g. sidelighting, edge effects, increased temperature and VPD, etc) and this limits what can be measured accurately. Chambers can be used to measure canopy level energy balance under controlled conditions and plant transpiration responses to CO2 concentration can be elucidated. However, these measurements cannot be used directly in model development or validation. The response of stomatal conductance to CO2 will be the same as in the field, but the measured response must be recalculated in such a manner to account for differences in aerodynamic conductance, temperature and VPD between the chamber and the field.

  18. 58. Interior view, porch chamber, south elevation. The room door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Interior view, porch chamber, south elevation. The room door is open allowing a view into the study chamber. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  19. 19. View northwest of Tropic Chamber reciprocal compressors (typical), in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View northwest of Tropic Chamber reciprocal compressors (typical), in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  20. 16. View northwest of Arctic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View northwest of Arctic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  1. 18. View north of Tropic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View north of Tropic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  2. 17. View northwest of Tropic Chamber refrigeration equipment, in machine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. View northwest of Tropic Chamber refrigeration equipment, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  3. 78 FR 36165 - Reorganization/Expansion of Foreign-Trade Zone 104; (Expansion of Service Area and Expansion of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Federal Register (77 FR 43047, 07/23/12) and the application has been processed pursuant to the FTZ Act... Foreign-Trade Zones Board Reorganization/Expansion of Foreign-Trade Zone 104; (Expansion of Service Area and Expansion of Zone); Under Alternative Site Framework, Savannah, Georgia Pursuant to its...

  4. Phloem unloading and cell expansion in pea stems

    SciTech Connect

    Schmalstig, J.G.; Cosgrove, D.J. )

    1989-04-01

    Phloem unloading into elongating stems of dark-grown pea seedlings was greater in regions with higher relative growth rates. Phloem transport was monitored over 1 h by measuring accumulation of radiolabel from {sup 14}C-sucrose added between the cotyledons. The apical hook and plumule and 8 mm of the growing region of an intact plant were sealed in a pressure chamber and the pressure was raised to stop elongation. Phloem unloading was inhibited in the pressurized zone of elongation and accelerated in the apical hook and plumule, with the result that the magnitude of phloem transport into the stem was unchanged. The results demonstrate a coupling between cell expansion and phloem unloading.

  5. 51. UPPER CHAMBER OF BISCUIT KILN No. 4, FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. UPPER CHAMBER OF BISCUIT KILN No. 4, FROM THE SECOND FLOOR. ALL BRICK KILNS AT THE MORAVIAN POTTERY AND TILE WORKS HAD TWO CHAMBERS. WARE WAS STACKED IN THE LOWER CHAMBERS FOR FIRING AND THE UPPER CHAMBERS PROVIDED ACCESS TO FLUES AND DAMPERS FROM THE SECOND FLOOR. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  6. Nonlinear effects on composite laminate thermal expansion

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Rosen, B. W.; Pipes, R. B.

    1979-01-01

    Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.

  7. Chemical recombination in an expansion tube

    NASA Technical Reports Server (NTRS)

    Bakos, Robert J.; Morgan, Richard G.

    1994-01-01

    The note describes the theoretical basis of chemical recombination in an expansion tube which simulates energy, Reynolds number, and stream chemistry at near-orbital velocities. Expansion tubes can satisfy ground-based hypersonic propulsion and aerothermal testing requirements.

  8. A Power Series Expansion and Its Applications

    ERIC Educational Resources Information Center

    Chen, Hongwei

    2006-01-01

    Using the power series solution of a differential equation and the computation of a parametric integral, two elementary proofs are given for the power series expansion of (arcsin x)[squared], as well as some applications of this expansion.

  9. Herds of methane chambers grazing bubbles

    NASA Astrophysics Data System (ADS)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  10. Layer Formation in Convective Magma Chambers

    NASA Astrophysics Data System (ADS)

    Höink, T.; Schmalzl, J.; Hansen, U.

    2004-12-01

    The dynamics of a convective magma chamber is crucially influenced by the competetion between sedimentation and convective suspension of crystals. Crystal settling combined with the crystal's density contribution is a possible mechanism leading to differentiation and layer formation. Here we address the question whether crystals can remain suspended or whether they are able to dynamically form a layered structure within the convective lifetime of a magma chamber. We employ an existing numerical method that, by means of a finite volume scheme, discretizes the equations for thermally driven convection in an infinite Prandtl-number Boussinesq fluid in Cartesian geometry. We implement a newly developed settling algorithm for the numerical study of finite-sized-particle settling in a non-dilute convective suspension. Our approach considers a consistent settling velocity and the density contribution due to particle mass. The buoyancy ratio B, which is the ratio of the density variation due to crystal mass to the thermal density variation, is varied for five different Rayleigh numbers, covering a range of four orders of magnitude. We find B to be a critical parameter and its critical value to depend on the Rayleigh number. For subcritical values we observe that the presence of a crystal phase reduces convective vigor and most crystals stay suspended. When a critical buoyancy ratio is exceeded, the presence of crystals can significantly alter convective motion. For all investigated Rayleigh numbers we find a critical buoyancy ratio, above which layering can be achieved from an initially unstratified fluid. Most of the crystal mass collects in the dynamically created bottom layer, even for cases where the average settling velocity is three orders of magnitude smaller than the root mean square convective velocity. The time it takes a crystal to travel across the height of the cell with the full settling velocity in the absence of a thermal gradient defines the settling

  11. Investigation of an anomalous flow condition of the Langley pilot model expansion tube

    NASA Technical Reports Server (NTRS)

    Friesen, W. J.

    1974-01-01

    Free-stream flow velocity measurements were made in the Langley pilot model expansion tube during the test flow interval. During this interval, an anomalous dip in pitot pressure occurs for the expansion tube operating conditions employed. Within the test flow interval, the main conclusions reached from comparison of the measured flow velocity, pitot pressure, and tube wall pressure are: the variations which occur in velocity and wall pressure are small compared with the variations in pitot pressure; a corresponding dip in the derived flow density is associated with the dip in pitot pressure; and the value of the average density over the interval, which results from the expansion from the shocked intermediate chamber condition, is approximately one-half of the value that can result from only an isentropic process.

  12. Characterization of a homemade ionization chamber for radiotherapy beams.

    PubMed

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams.

  13. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  14. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  15. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  16. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  17. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  18. VIEW OF THE TOPS OF ALTITUDE CHAMBER R (TO LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE TOPS OF ALTITUDE CHAMBER R (TO LEFT) AND ALTITUDE CHAMBER L (TO RIGHT) FROM THE 42’-0” LEVEL OF ACCESS PLATFORMS, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  19. Engineering analyses of large precision cathode strip chambers for GEM

    SciTech Connect

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.; Wuest, C.R.; Mitselmakher, G.; Gordeev, A.; Johnson, C.V. |; Polychronakos, V.A.; Golutvin, I.A.

    1993-10-21

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  20. Cloud Chamber Activities for the High School Classroom.

    ERIC Educational Resources Information Center

    Perry, John Timothy; Sankey, Mary Ann

    1995-01-01

    Presents the idea that cloud chambers can be used by students as an experimental tool enabling them to conduct their own investigations on radiation. Provides detail regarding the construction of a cloud chamber and suggestions for student assignments that involve the cloud chamber. (DDR)

  1. Anechoic chamber in industrial plants. [construction materials and structural design

    NASA Technical Reports Server (NTRS)

    Halpert, E.; Juncu, O.; Lorian, R.; Marfievici, D.; Mararu, I.

    1974-01-01

    A light anechoic chamber for routine acoustical measurements in the machine building industry is reported. The outer housing of the chamber consists of modules cast in glass fiber reinforced polyester resin; the inner housing consists of pyramidal modules cut out of sound absorbing slates. The parameters of this anechoic chamber facilitate acoustical measurements according to ISO and CAEM recommendations.

  2. 21 CFR 884.5225 - Abdominal decompression chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Abdominal decompression chamber. 884.5225 Section... Devices § 884.5225 Abdominal decompression chamber. (a) Identification. An abdominal decompression chamber is a hoodlike device used to reduce pressure on the pregnant patient's abdomen for the relief...

  3. 46 CFR 197.332 - PVHO-Decompression chambers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false PVHO-Decompression chambers. 197.332 Section 197.332... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.332 PVHO—Decompression chambers. Each decompression chamber must— (a) Meet the requirements of § 197.328; (b) Have internal...

  4. Detail of interior of compressed air chamber showing top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of interior of compressed air chamber showing top of working chamber and tie rods that strengthen the outer shell plates of the compression chamber. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  5. Evaluation of Carbon Dioxide Dissipation within a Euthanasia Chamber

    PubMed Central

    Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P

    2014-01-01

    CO2 euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO2 to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO2 levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO2 dropped to below 10% CO2 within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO2 dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO2 dissipation. We recommend that users allow 2 min for CO2 to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate. PMID:25199098

  6. Coking oven with horizontal chambers for producing coke

    SciTech Connect

    Jakobi, W.

    1984-06-26

    In a coking oven with a horizontal chamber the chamber is provided with a filling hole having a cylindrical portion with the diameter D and a reduced portion downwardly extending therefrom into the chamber over the height H. The ratio between D and H 1.5.

  7. Semiclosed-circuit atmosphere control in a portable recompression chamber

    NASA Technical Reports Server (NTRS)

    Riegel, P. S.; Caudy, D. W.

    1972-01-01

    A small portable recompression chamber is described that can be used both to treat a diver for decompression sickness or to transport him to a larger chamber complex. The device can be operated in either open circuit or semiclosed circuit atmospheres, permits two way conversation between patient and attendant, and uses an air injector for circulation of the chamber atmosphere.

  8. The impact of organic vapours on warm cloud formation; characterisation of chamber setup and first experimental results

    NASA Astrophysics Data System (ADS)

    Frey, Wiebke; Connolly, Paul; Dorsey, James; Hu, Dawei; Alfarra, Rami; McFiggans, Gordon

    2016-04-01

    The Manchester Ice Cloud Chamber (MICC), consisting of a 10m high stainless steel tube and 1m in diameter, can be used to study cloud processes. MICC is housed in three separate cold rooms stacked on top of each other and warm pseudo-adiabatic expansion from controlled initial temperature and pressure is possible through chamber evacuation. Further details about the facility can be found at http://www.cas.manchester.ac.uk/restools/cloudchamber/index.html. MICC can be connected to the Manchester Aerosol Chamber (MAC, http://www.cas.manchester.ac.uk/restools/aerosolchamber/), which allows to inject specified aerosol particles into the cloud chamber for nucleation studies. The combination of MAC and MICC will be used in the CCN-Vol project, which seeks to bring the experimental evidence for co-condensation of organic and water vapour in cloud formation which leads to an increase in cloud particle numbers (see Topping et al., 2013, Nature Geoscience Letters, for details). Here, we will show a characterisation of the cloud and aerosol chamber coupling in regard to background aerosol particles and nucleation. Furthermore, we will show preliminary results from the warm CCN-Vol experiment, investigating the impact of co-condensation of organic vapours and water vapour on warm cloud droplet formation.

  9. 32 CFR 169a.11 - Expansions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Expansions. 169a.11 Section 169a.11 National... PROGRAM PROCEDURES Procedures § 169a.11 Expansions. In cases where expansion of an in-house commercial activity is anticipated, a review of the entire commercial activity, including the proposed...

  10. 32 CFR 169a.11 - Expansions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Expansions. 169a.11 Section 169a.11 National... PROGRAM PROCEDURES Procedures § 169a.11 Expansions. In cases where expansion of an in-house commercial activity is anticipated, a review of the entire commercial activity, including the proposed...

  11. 32 CFR 169a.11 - Expansions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Expansions. 169a.11 Section 169a.11 National... PROGRAM PROCEDURES Procedures § 169a.11 Expansions. In cases where expansion of an in-house commercial activity is anticipated, a review of the entire commercial activity, including the proposed...

  12. 32 CFR 169a.11 - Expansions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Expansions. 169a.11 Section 169a.11 National... PROGRAM PROCEDURES Procedures § 169a.11 Expansions. In cases where expansion of an in-house commercial activity is anticipated, a review of the entire commercial activity, including the proposed...

  13. 32 CFR 169a.11 - Expansions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Expansions. 169a.11 Section 169a.11 National... PROGRAM PROCEDURES Procedures § 169a.11 Expansions. In cases where expansion of an in-house commercial activity is anticipated, a review of the entire commercial activity, including the proposed...

  14. A combination drift chamber/pad chamber for very high readout rates

    SciTech Connect

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W. ); Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J. ); Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P. Istituto Nazionale di Fisica Nucleare, Rome ); Arenton, M.; Conetti, S.

    1991-11-01

    Six medium-sized ({approx}1 {times} 2 m{sup 2}) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers.

  15. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    NASA Astrophysics Data System (ADS)

    Wang, J.; Doussin, J.-F.; Perrier, S.; Perraudin, E.; Katrib, Y.; Pangui, E.; Picquet-Varrault, B.

    2011-01-01

    A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA). The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) is designed to allow research in multiphase atmospheric (photo-)chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290-297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10-3 s-1) for JNO2 and (1.4 × 10-5 s-1) for J O1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber clouds by fast expansion or saturation with or without the presence of pre-existing particles, which will provide a multiphase environment for aerosol-droplet interaction.

  16. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    NASA Astrophysics Data System (ADS)

    Wang, J.; Doussin, J. F.; Perrier, S.; Perraudin, E.; Katrib, Y.; Pangui, E.; Picquet-Varrault, B.

    2011-11-01

    A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA). The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) is designed to allow research in multiphase atmospheric (photo-) chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290-297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10-3 s-1) for JNO2 and (1.4 × 10-5 s-1) for JO1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-Air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber clouds by fast expansion or saturation with or without the presence of pre-existing particles, which will provide a multiphase environment for aerosol-droplet interaction.

  17. Management of unconverted light for the National Ignition Facility target chamber

    SciTech Connect

    Anderson, A. T.; Bletzer, K.; Burnham, A. K.; Dixit, S; Genin, F. Y.; Hibbard, W.; Norton, J.; Scott, J. M.; Whitman, P. K.

    1998-07-08

    The NIF target chamber beam dumps must survive high x-ray, laser, ion, and shrapnel exposures without excessive generation of vapors or particulate that will contaminate the final optics debris shields, thereby making the debris shields susceptible to subsequent laser damage. The beam dumps also must be compatible with attaining and maintaining the required target chamber vacuum and must not activate significantly under high neutron fluxes. Finally, they must be developed, fabricated, and maintained for a reasonable cost. The primary challenge for the beam dump is to survive up to 20 J/cm{sup 2} of lpm light and 1 - 2 J/cm{sup 2} of nominally 200 - 350 eV blackbody temperature x rays. Additional threats include target shrapnel, and other contamination issues. Designs which have been evaluated include louvered hot-pressed boron carbide (B{sub 4}C) or stainless steel (SS) panels, in some cases covered with transparent Teflon film, and various combinations of inexpensive low thermal expansion glasses backed by inexpensive absorbing glass. Louvered designs can recondense a significant amount of ablated material that would otherwise escape into the target chamber. Transparent Teflon was evaluated as an alternative way to capture ablated material. The thin Teflon sheet would need to be replaced after each shot since it exhibits both laser damage and considerable x- ray ablation with each shot. Uncontaminated B{sub 4}C, SS, and low thermal expansion glasses have reasonably small x-ray and laser ablation rates, although the glasses begin to fail catastrophically after 100 high fluence shots. Commercially available absorbing glasses require a pre-shield of either Teflon or low thermal expansion glass to prevent serious degradation by the x-ray fluence. Advantages of the hot-pressed B{sub 4}C and SS over glass are their performance against microshrapnel, their relative indifference to contamination, and their ability to be refurbished by aggressive cleaning using CO{sub 2

  18. Space nuclear system expansion joints

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazki, T. T.

    1973-01-01

    The engineering, design, and fabrication status of the expansion joint unit (EJU) to be employed in the NaK primary coolant piping loop of the 5-kwe Reactor thermoelectric system are described. Four EJU's are needed in the NaK primary coolant piping loop. The four EJU's which will be identical, utilize bellows as the flexing member, are hermetically sealed, and provide double containment. The bellows are of a nested-formed design, and are to be constructed of 1-ply thickness of 0.010-in. Inconel 718. The EJU's provide a minimum piping load margin of safety of +0.22.

  19. Calculation of Turbulent Expansion Processes

    NASA Technical Reports Server (NTRS)

    Tollmien, Walter

    1945-01-01

    On the basis of certain formulas recently established by L. Prandtl for the turbulent interchange of momentum in stationary flows, various cases of "free turbulence" - that is, of flows without boundary walls - are treated in the present report. Prandtl puts the apparent shearing stress introduced by the turbulent momentum interchange. This present report deals first with the mixing of an air stream of uniform velocity with the adjacent still air, than with the expansion or diffusion of an air jet in the surrounding air space.

  20. Plant growth chamber based on space proven controlled environment technology

    NASA Astrophysics Data System (ADS)

    Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.

    1997-01-01

    Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.

  1. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  2. New drift chamber for the Mark II at SLC

    SciTech Connect

    Hanson, G.G.

    1984-04-01

    A new cylindrical drift chamber is being constructed for the Mark II detector for use at the new SLAC Linear Collider. The design of the new chamber is based on a multi-sense-wire cell of the jet-chamber type. In addition to drift-time measurements, pulse height measurements from the sense wires will provide electron-hadron separation by dE/dx. The design and construction of the chamber, tests of prototypes, and chamber electronics are discussed. 7 references, 12 figures.

  3. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  4. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  5. Vapor chamber fin radiator study for the potassium Rankine cycle.

    NASA Technical Reports Server (NTRS)

    Gerrels, E. E.; Killen, R. E.; Couch, J. P.

    1972-01-01

    A structurally integrated vapor chamber fin (heat pipe) radiator is defined and evaluated as a potential candidate for rejecting waste heat from the potassium Rankine cycle powerplant. Several vapor chamber fin geometries, using stainless steel construction, are evaluated and an optimum is selected. A comparison is made with an operationally equivalent conduction fin radiator. Both radiators employ NaK-78 in the primary coolant loop. In addition, the Vapor Chamber Fin (VCF) radiator utilizes sodium in the vapor chambers. Preliminary designs are developed for the conduction fin and VCF concepts. Performance tests on a single vapor chamber were conducted to verify the VCF design.

  6. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    SciTech Connect

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH{sub 4} (10%) and He-C{sub 2}H{sub 6} (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C{sub 2}H{sub 6} (50%) and Ar-C{sub 2}H{sub 6}(50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability.

  7. STE thrust chamber technology: Main injector technology program and nozzle Advanced Development Program (ADP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose of the STME Main Injector Program was to enhance the technology base for the large-scale main injector-combustor system of oxygen-hydrogen booster engines in the areas of combustion efficiency, chamber heating rates, and combustion stability. The initial task of the Main Injector Program, focused on analysis and theoretical predictions using existing models, was complemented by the design, fabrication, and test at MSFC of a subscale calorimetric, 40,000-pound thrust class, axisymmetric thrust chamber operating at approximately 2,250 psi and a 7:1 expansion ratio. Test results were used to further define combustion stability bounds, combustion efficiency, and heating rates using a large injector scale similar to the Pratt & Whitney (P&W) STME main injector design configuration including the tangential entry swirl coaxial injection elements. The subscale combustion data was used to verify and refine analytical modeling simulation and extend the database range to guide the design of the large-scale system main injector. The subscale injector design incorporated fuel and oxidizer flow area control features which could be varied; this allowed testing of several design points so that the STME conditions could be bracketed. The subscale injector design also incorporated high-reliability and low-cost fabrication techniques such as a one-piece electrical discharged machined (EDMed) interpropellant plate. Both subscale and large-scale injectors incorporated outer row injector elements with scarfed tip features to allow evaluation of reduced heating rates to the combustion chamber.

  8. The evolution of a detonation wave in a variable cross-sectional chamber

    NASA Astrophysics Data System (ADS)

    Qu, Qing; Khoo, Boo Cheong; Dou, Hua-Shu; Tsai, Her Mann

    2008-08-01

    A two-dimensional numerical simulation has been performed to study the interaction of a gaseous detonation wave with obliquely inclined surfaces in a variable cross-sectional chamber. The weighted essentially non-oscillatory (WENO) numerical scheme with a relatively low resolution grid is employed. A detailed elementary chemical reaction model with 9 species and 19 elementary reactions is used for a stoichiometric oxy-hydrogen mixture diluted with argon. In this work, we study the effect of area expansion and contraction on the main/gross features of the detonation cellular structures in the presence of detonation reflection, diffraction and localized explosion. The result shows that there exists a transition region as the detonation wave propagates through the converging/diverging chamber. Within the transition region, the initial regular detonation cells become distorted and irregular before they re-obtain their regularity. While the ultimate regular cell size and the length of the transition region are strongly affected by the converging/diverging angle, the width/length ratio of the cells is fairly independent of it. A localized explosion near the wall is found as the detonation wave propagates in the diverging chamber.

  9. Finite Element Analysis of Reverberation Chambers

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Nguyen, Duc T.

    2000-01-01

    The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.

  10. Liquid rocket engine self-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Self-cooled combustion chambers are chambers in which the chamber wall temperature is controlled by methods other than fluid flow within the chamber wall supplied from an external source. In such chambers, adiabatic wall temperature may be controlled by use of upstream fluid components such as the injector or a film-coolant ring, or by internal flow of self-contained materials; e.g. pyrolysis gas flow in charring ablators, and the flow of infiltrated liquid metals in porous matrices. Five types of self-cooled chambers are considered in this monograph. The name identifying the chamber is indicative of the method (mechanism) by which the chamber is cooled, as follows: ablative; radiation cooled; internally regenerative (Interegen); heat sink; adiabatic wall. Except for the Interegen and heat sink concepts, each chamber type is discussed separately. A separate and final section of the monograph deals with heat transfer to the chamber wall and treats Stanton number evaluation, film cooling, and film-coolant injection techniques, since these subjects are common to all chamber types. Techniques for analysis of gas film cooling and liquid film cooling are presented.

  11. The Evolution and Development of Cephalopod Chambers and Their Shape.

    PubMed

    Lemanis, Robert; Korn, Dieter; Zachow, Stefan; Rybacki, Erik; Hoffmann, René

    2016-01-01

    The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth.

  12. Right/left assignment in drift chambers and proportional multiwire chambers (PWC's) using induced signals

    DOEpatents

    Walenta, Albert H.

    1979-01-01

    Improved multiwire chamber having means for resolving the left/right ambiguity in the location of an ionizing event. The chamber includes a plurality of spaced parallel anode wires positioned between spaced planar cathodes. Associated with each of the anode wires are a pair of localizing wires, one positioned on either side of the anode wire. The localizing wires are connected to a differential amplifier whose output polarity is determined by whether the ionizing event occurs to the right or left of the anode wire.

  13. Review of isothermal haze chamber performance

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J. W.; Rogers, C. F.; Hudson, J. G.

    1981-01-01

    The theory of this method of characterizing cloud condensation nuclei (CCN) over the critical supersaturation range of about 0.01% to 0.2% was reviewed, and guidelines for the design and operation of IHC's are given. IHC data are presented and critically analyzed. Two of the four IHC's agree to about 40% over the entire range of critical. a third chamber shows similar agreement with the first two over the lower part of the critical supersaturation range but only a factor of two agreement at higher supersaturation. Some reasons for the discrepancies are given.

  14. Drift Chamber Alignment using Cosmic Rays

    SciTech Connect

    Kotwal, Ashutosh V.; Hays, Christopher P.

    2014-05-07

    The Collider Detector at Fermilab (CDF) is a general-purpose experimental apparatus with an inner tracking detector for measuring charged particles, surrounded by a calorimeter for measurements of electromagnetic and hadronic showers, and a muon detector system. We present a technique for, and results of, a precise relative alignment of the drift chamber wires of the CDF tracker. This alignment has been an important component of the track momentum calibration, which is the basis for the charged-lepton calibration for the measurement of the W boson mass at CDF.

  15. Indian LSSC (Large Space Simulation Chamber) facility

    NASA Technical Reports Server (NTRS)

    Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.

    1988-01-01

    The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.

  16. Condensate Recycling in Closed Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Bledsoe, J. O.; Sager, J. C.; Fortson, R. E.

    1994-01-01

    Water used in the the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.

  17. Carbon copy deaths: carbon monoxide gas chamber.

    PubMed

    Patel, F

    2008-08-01

    The news media can exert a powerful influence over suicidal behaviour. It has been observed that like-minded individuals are able to preplan a group suicide method using modern communication technology in the form of websites and online chatrooms and mobile phone texting. A case of carbon monoxide (CO) poisoning is presented to illustrate the recent phenomenon of cyber suicides by suffocation from a burning barbecue (charcoal burner) in 'gas chamber' conversions. Although barbecues (BBQ) are very popular in Britain and widely available, there have been relatively few reported cases of copycat deaths from CO gas suffocation. PMID:18586213

  18. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, A.

    1985-11-26

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

  19. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, Alexander

    1987-01-01

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer, such as nickel can be coated on the inside of the pipe.

  20. Investigation on temperature separation and flow behaviour in vortex chamber

    NASA Astrophysics Data System (ADS)

    Matsuno, Yuhi; Fukushima, Yusuke; Matsuo, Shigeru; Hashimoto, Tokitada; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.

  1. Vacuum chamber with a supersonic-flow aerodynamic window

    DOEpatents

    Hanson, C.L.

    1980-10-14

    A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  2. Vacuum chamber with a supersonic flow aerodynamic window

    DOEpatents

    Hanson, Clark L.

    1982-01-01

    A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  3. Pulse-Expansion Wave Tube Experiments on Nucleation

    NASA Astrophysics Data System (ADS)

    van Dongen, Marinus E. H.

    1998-03-01

    A wave driven expansion cloud chamber is described to determine nucleation rates: the pulse-expansion wave tube. The tube is based on the nucleation pulse principle of Allard and Kassner and is a modification of the wave tube designed by F. Peters. The tube operates in the nucleation pressure range of 0.5-50 bar. The effect of nitrogen on water nucleation at high pressures is discussed. There are two opposing effects: the equilibrium vapour pressure of water is enhanced by the presence of nitrogen and the surface tension of water decreases due to nitrogen adsorption at the water surface. Similar and even stronger effects are shown for the clearly non-ideal mixture n-nonane/methane. With helium as a carrier gas, pressure effects on nucleation are much smaller, both for water and n-nonane nucleation. An example is shown of multi-component nucleation in a very complicated gas mixture: natural gas. Natural gas contains numerous heavy hydrocarbons and shows retrograde phase behaviour. Experimental lines of constant nucleation rates are shown in the p-T phase diagram of natural gas and are compared with BCNT calculations for the binary model system n-octane/methane.

  4. Expansion techniques for collisionless stellar dynamical simulations

    NASA Astrophysics Data System (ADS)

    Meiron, Yohai

    2016-02-01

    We present ETICS, a collisionless N-body code based on two kinds of series expansions of the Poisson equation, implemented for graphics processing units (GPUs). The code is publicly available and can be used as a standalone program or as a library (an AMUSE plugin is included). One of the two expansion methods available is the self-consistent field (SCF) method, which is a Fourier-like expansion of the density field in some basis set; the other is the multipole expansion (MEX) method, which is a Taylor-like expansion of the Green's function. MEX, which has been advocated in the past, has not gained as much popularity as SCF. Both are particle-field methods and optimized for collisionless galactic dynamics, but while SCF is a ``pure'' expansion, MEX is an expansion in just the angular part; thus, MEX is capable of capturing radial structure easily, while SCF needs a large number of radial terms.

  5. Imagination as expansion of experience.

    PubMed

    Zittoun, Tania; Cerchia, Frédéric

    2013-09-01

    This paper proposes a developmental view on imagination: from this perspective, imagination can be seen as triggered by some disrupting event, which generates a disjunction from the person's unfolding experience of the "real" world, and as unfolding as a loop, which eventually comes back to the actual experience. Examining recent and classical theorization of imagination in psychology, the paper opposes a deficitary view of imagination to an expansive notion of imagination. The paper explores Piaget, Vygotsky, Harris and Pelaprat & Cole consider: 1) What does provoke a "rupture" or disjunction? 2) What are the psychological processes involved in the imaginary loop? 3) What nourishes such processes? 4) What are the consequences of such imaginary loop, or what does it enable doing? The paper proposes to adopt an expansive view of imagination, as Vygotsky proposed-a perspective that has been under-explored empirically since his seminal work. To stimulate such sociocultural psychology of imagination, two empirical examples are provided, one showing how children make sense of metaphor in an experimental setting, the other showing a young person using a novel met at school as symbolic resource. PMID:23625542

  6. Evolutionary expansion of the Monogenea.

    PubMed

    Kearn, G C

    1994-12-01

    The evolutionary expansion of the monogeneans has taken place in parallel with the diversification of the fish-like vertebrates. In this article the main trends in monogenean evolution are traced from a hypothetical skin-parasitic ancestor on early vertebrates. Special consideration is given to the following topics: early divergence between skin feeders and blood feeders; diversification and specialization of the haptor for attachment to skin; transfer from host to host, viviparity and the success of the gyrodactylids; predation on skin parasites and camouflage; colonization of the buccal and branchial cavities; diversification and specialization of the haptor for attachment to the gills; phoresy in gill parasites; the development of endoparasitism and the origin of the cestodes; the success of dactylogyroidean gill parasites; the uniqueness of the polyopisthocotyleans; ovoviviparity and the colonization of the tetrapods. Host specificity has been the guiding force of coevolution between monogeneans and their vertebrate hosts, but the establishment of monogeneans on unrelated hosts sharing the same environment (host-switching) may have been underestimated. Host-switching has provided significant opportunities for evolutionary change of direction and is probably responsible for the establishment of monogeneans on cephalopod molluscs, on the hippopotamus and possibly on chelonians. There are indications that host-switching may be more common in monogeneans that spread by direct transfer of adults/juveniles from host to host. A limitation on the further expansion of monogeneans is the need for water for the dispersal of the infective larva (oncomiracidium).

  7. Gyrification from constrained cortical expansion

    PubMed Central

    Tallinen, Tuomas; Chung, Jun Young; Biggins, John S.; Mahadevan, L.

    2014-01-01

    The exterior of the mammalian brain—the cerebral cortex—has a conserved layered structure whose thickness varies little across species. However, selection pressures over evolutionary time scales have led to cortices that have a large surface area to volume ratio in some organisms, with the result that the brain is strongly convoluted into sulci and gyri. Here we show that the gyrification can arise as a nonlinear consequence of a simple mechanical instability driven by tangential expansion of the gray matter constrained by the white matter. A physical mimic of the process using a layered swelling gel captures the essence of the mechanism, and numerical simulations of the brain treated as a soft solid lead to the formation of cusped sulci and smooth gyri similar to those in the brain. The resulting gyrification patterns are a function of relative cortical expansion and relative thickness (compared with brain size), and are consistent with observations of a wide range of brains, ranging from smooth to highly convoluted. Furthermore, this dependence on two simple geometric parameters that characterize the brain also allows us to qualitatively explain how variations in these parameters lead to anatomical anomalies in such situations as polymicrogyria, pachygyria, and lissencephalia. PMID:25136099

  8. Imagination as expansion of experience.

    PubMed

    Zittoun, Tania; Cerchia, Frédéric

    2013-09-01

    This paper proposes a developmental view on imagination: from this perspective, imagination can be seen as triggered by some disrupting event, which generates a disjunction from the person's unfolding experience of the "real" world, and as unfolding as a loop, which eventually comes back to the actual experience. Examining recent and classical theorization of imagination in psychology, the paper opposes a deficitary view of imagination to an expansive notion of imagination. The paper explores Piaget, Vygotsky, Harris and Pelaprat & Cole consider: 1) What does provoke a "rupture" or disjunction? 2) What are the psychological processes involved in the imaginary loop? 3) What nourishes such processes? 4) What are the consequences of such imaginary loop, or what does it enable doing? The paper proposes to adopt an expansive view of imagination, as Vygotsky proposed-a perspective that has been under-explored empirically since his seminal work. To stimulate such sociocultural psychology of imagination, two empirical examples are provided, one showing how children make sense of metaphor in an experimental setting, the other showing a young person using a novel met at school as symbolic resource.

  9. High thermal expansion, sealing glass

    DOEpatents

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  10. High thermal expansion, sealing glass

    DOEpatents

    Brow, Richard K.; Kovacic, Larry

    1993-01-01

    A glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 5 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5 and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe.sub.2 O.sub.3 and between 0 and about 10 mole percent B.sub.2 O.sub.3, has a thermal expansion coefficient in a range of between about 160 and 210.times.10-7/.degree.C. and a dissolution rate in a range of between about 2.times.10.sup.- 7 and 2.times.10.sup.-9 g/cm.sup.2 -min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  11. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Batakis, A. P.; Vogan, J. W.

    1985-01-01

    A research program was conducted to generate data and develop analytical techniques to predict the performance and reliability of ceramic thermal barrier coatings in high heat flux environments. A finite element model was used to analyze the thermomechanical behavior of coating systems in rocket thrust chambers. Candidate coating systems (using a copper substrate, NiCrAlY bond coat and ZrO2.8Y2O3 ceramic overcoat) were selected for detailed study based on photomicrographic evaluations of experimental test specimens. The effects of plasma spray application parameters on the material properties of these coatings were measured and the effects on coating performance evaluated using the finite element model. Coating design curves which define acceptable operating envelopes for seleted coating systems were constructed based on temperature and strain limitations. Spray gun power levels was found to have the most significant effect on coating structure. Three coating systems were selected for study using different power levels. Thermal conductivity, strain tolerance, density, and residual stress were measured for these coatings. Analyses indicated that extremely thin coatings ( 0.02 mm) are required to accommodate the high heat flux of a rocket thrust chamber and ensure structural integrity.

  12. Space station auxiliary thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1986-01-01

    A program to design, fabricate and test a 50 lb sub f (222 N) thruster was undertaken (Contract NAS 3-24656) to demonstrate the applicability of the reverse flow concept as an item of auxiliary propulsion for the space station. The thruster was to operate at a mixture ratio (O/F) of 4, be capable of operating for 2 million lb sub f- seconds (8.896 million N-seconds) impulse with a chamber pressure of 75 psia (52 N/square cm) and a nozzle area ratio of 40. Superimposed was also the objective of operating with a strainless steel spherical combustion chamber, which limited the wall temperature to 1700 F (1200 K), an objective specific impulse of 400 lb sub f sec/lbm (3923 N-seconds/Kg), and a demonstration of 500,000 lb sub f-seconds (2,224,000 N-seconds) of impulse. The demonstration of these objectives required a number of design iterations which eventually culminated in a very successful 1000 second demonstration, almost immediately followed by a changed program objective imposed to redesign and demonstrate at a mixture ratio (O/F) of 8. This change was made and more then 250,000 lb sub f seconds (1,112,000 N-seconds) of impulse was successfully demonstrated at a mixture ratio of 8. This document contains a description of the effort conducted during the program to design and demonstrate the thrusters involved.

  13. Bubble chamber as a trace chemical detector

    SciTech Connect

    Luo, Xin; McCreary, E.I.; Atencio, J.H.

    1996-12-31

    We have developed a novel concept of trace chemical analysis by detecting optical absorption in superheated liquid. The technique exploits the fact that many common solvents can be extensively superheated for a short period of time while maintaining their liquid state. During this time, the superheated liquid is extremely sensitive to boiling at nucleation sites produced by energy deposition. A small energy deposition can initiate nucleation within the superheated liquid. The nucleation center of critical size or larger will spontaneously grow through evaporation of the superheated liquid. Observation of bubbles in the superheated liquid in some sense provides `amplification` for the initial energy deposition. Bubble chambers containing superheated liquids have been used to detect energetic particles, now we demonstrate that we can use a bubble chamber to detect trace species in superheated liquid propane by observing the bubble formation initiated by optical absorption. Crystal violet used as an initial test case can be detected at the sub-per-trillion level. The mechanism for bubble formation and ideas for further improvement will also be discussed.

  14. Bubble chambers for experiments in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    DiGiovine, B.; Henderson, D.; Holt, R. J.; Raut, R.; Rehm, K. E.; Robinson, A.; Sonnenschein, A.; Rusev, G.; Tonchev, A. P.; Ugalde, C.

    2015-05-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with γ-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross-sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross-sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross-sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the γ-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.

  15. Vacuum-cleaning System for Isolation Chambers

    PubMed Central

    Yale, Charles E.

    1969-01-01

    To encourage the utilization of the isolation chamber as a research tool, the cost of its use should be lowered. Methods and devices must be developed which make more efficient use of the space within the isolator and allow the operator to work more effectively in this confined area. A simple vacuum-cleaning system is described; it consists of a nozzle and flexible hose which connect through the isolator wall to an externally placed waste tank, attached by way of its outlet filter to a source of vacuum. The cylindrical waste tank [48 inches (1.219 m) high and 36 inches (0.914 m) in diameter] was sterilized in a large autoclave. During a 9-month test period, the system was used to remove soiled corncob bedding from a large isolator containing 90 adult monocontaminated rats. During this period, the microbial flora of the isolator was unchanged, and the time required to clean the cages was reduced by 50%. This vacuum-cleaning system is a safe, convenient, and economical means of increasing the efficiency of an isolation chamber. Images PMID:5775913

  16. Cardiac ventricular chambers are epigenetically distinguishable.

    PubMed

    Mathiyalagan, Prabhu; Chang, Lisa; Du, Xiao-Jun; El-Osta, Assam

    2010-02-01

    The left and right ventricles are muscular chambers of the heart that differ significantly in the extent of pressure work-load. The regional and differential distribution of gene expression patterns is critical not only for heart development, but, also in the establishment of cardiac hypertrophy phenotypes. the cells of the myocardium employ elaborate regulatory mechanisms to establish changes in chromatin structure and function, yet, the role of epigenetic modifications and specific gene expression patterns in cardiac ventricles remains poorly understood. We have examined gene expression changes and studied histone H3 and H4 acetylation as well as dimethylation of lysine 4 on histone H3 on promoters of alpha-Myosin heavy chain gene (alpha-MHC), beta-Myosin heavy chain gene (beta-MHC), Atrial natriuretic peptide gene (ANp), B-type natriuretic peptide gene (BNP) and Sarcoplasmic reticulum Ca(2+) ATPase gene (SERCA2a). The recruitment of histone acetyltransferase (HAT) enzyme p300, which is a transcriptional coactivator, was also studied on the hyperacetylated promoters using immunopurification of soluble chromatin in the left and right ventricles of the mouse. We present evidence for the first time that the pattern of gene expression is closely linked with histone modifications and propose the left and right chambers of the heart are epigenetically distinguishable. PMID:20090419

  17. Wire chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, Victor; Mulera, Terrence A.

    1984-01-01

    A wire chamber radiation detector (11) has spaced apart parallel electrodes (16) and grids (17, 18, 19) defining an ignition region (21) in which charged particles (12) or other ionizing radiations initiate brief localized avalanche discharges (93) and defining an adjacent memory region (22) in which sustained glow discharges (94) are initiated by the primary discharges (93). Conductors (29, 32) of the grids (18, 19) at each side of the memory section (22) extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles (12) were detected by sequentially transmitting pulses to the conductors (29) of one grid (18) while detecting transmissions of the pulses to the orthogonal conductors (36) of the other grid (19) through glow discharges (94). One of the grids (19) bounding the memory region (22) is defined by an array of conductive elements (32) each of which is connected to the associated readout conductor (36) through a separate resistance (37). The wire chamber (11) avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles (12) have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  18. Bilinear Expansion For Redistribution Functions

    NASA Astrophysics Data System (ADS)

    Harutyunian, Haik; Alecian, Georges; Khachatryan, Knarik; Vardanyan, Ani

    2016-11-01

    We suggest here a method for construction of a bilinear expansion for an angle-averaged redistribution function. This function describes the elementary act of a photon scattering by a model two-level atom with the upper level broadened due to radiation damping. An eigenvalue and eigenvector determination problem is formulated and the relevant matrices are found analytically. Numerical procedures for their computations are elaborated as well. A simple method for the numerical calculations accuracy evaluation is suggested. It is shown that a family of redistribution functions describing the light scattering process within the spectral line frequencies can be constructed if the eigenvalue problem for the considered function is solved. It becomes possible if the eigenvalues and eigenvectors with the appropriate basic functions are used. The Voigt function and its derivatives used as basic functions are studied in detail as well.

  19. Pressurized electrolysis stack with thermal expansion capability

    SciTech Connect

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  20. Effects of carbon dioxide enrichment on the expansion and size of kudzu (pueraria lobata) leaves

    SciTech Connect

    Sasek, T.W.; Strain, B.R.

    1989-01-01

    Seedlings of kudzu were grown at 350, 675, or 1000 ..mu..l/L CO/sub 2/ in controlled-environment chambers. At elevated CO/sub 2/ in controlled-environment chambers. At elevated CO/sub 2/ concentrations, maximum leaf expansion rates were approximately 40% greater, leaves were fully expanded several days sooner, fully expanded leaves were larger at each leaf position, and leaf production rates were increased 12%. Peak starch accumulation was much greater in plants grown at elevated CO/sub 2/ concentrations. Total xylem water potentials were higher (less negative) at full hydration, and osmotic potentials were decreased (more negative) by CO/sub 2/ enrichment. At 1000 ..mu..l/L CO/sub 2/, leaf trigger pressure was twice that at 350 ..mu..l/L CO/sub 2/. Results suggest that leaf expansion rates and leaf expansivity may have been increased due to higher trigger pressure at the higher CO/sub 2/ concentrations. The potential for successful seedling establishment may be enhanced as the atmospheric CO/sub 2/ concentration continues to rise, increasing kudzu invasiveness.

  1. Preliminary studies of a new monitor ionization chamber.

    PubMed

    Yoshizumi, Maíra T; Vivolo, Vitor; Caldas, Linda V E

    2010-01-01

    A new monitor ionization chamber was developed at Instituto de Pesquisas Energéticas e Nucleares (IPEN) in order to monitor X-ray beams. The main difference of this monitor ionization chamber in relation to other monitor chambers is its geometry, which consists of a ring-shaped sensitive volume. Because of this geometry, the monitor chamber has a central hole through which the direct radiation beam passes. The operational characteristics of the monitor chamber were evaluated: saturation, ion collection efficiency and polarity effect. Besides these tests, the short- and medium-term stabilities of its response were also evaluated. During the tests the leakage current was always negligible. All results showed values within those recommended internationally (IEC, 1997. Medical electrical equipment-dosimeters with ionization chambers and/or semi-conductor detectors as used in X-ray diagnostic imaging. IEC 61674. International Electrotechnical Commission, Genève).

  2. A Muon Exposure in the Tohoku High Resolution Bubble Chamber

    SciTech Connect

    Chen, A.; Shapire, A.; Widgoff, M.; Childress, S.; Murphy, T.; Alyea, E.D.; Mao, C.; Tai, Y.; Wang, S.; Wu, Y.; Xu, S.W.; /IHEP /MIT /Tohoku U. /Tohoku Gakuin U.

    1986-01-01

    The authors would like to propose an experiment to investigate muon induced interactions in the Tohoku freon bubble chamber, a high resolution 4{pi} detector. The Tohoku bubble chamber is located in Lab F on the neutrino beam line. The NT test beam line, which passes 4.5 meters east of the bubble chamber, has carried a muon beam to Lab F in the past. it appears possible to bend this beam to the west sufficiently to send muons of approximately 200 GeV to the present position of the Tohoku chamber. A bubble chamber experiment will have better systematics than a comparable muons cattering experiment using counters, but will have lower statistics. With the chamber, direct observation of neutral strange particle and charm particle production will make possible a unique clean study of the virtual photon interactions involved.

  3. The coated cathode conductive layer chamber

    NASA Astrophysics Data System (ADS)

    Bouclier, R.; Gaudaen, J.; Sauli, F.

    1991-12-01

    We describe a gaseous detector consisting of thin anode strips vacuum-evaporated on one side of a 100 μm thick plastic layer, alternating on the back side of the same foil with wider parallel cathode strips. Ionization released in a drift space on the anode side is amplified and detected much in the same way as in the microstrip gas chamber; in our detector however spontaneous breakdown due to surface currents is completely avoided by the presence of the insulating layer between anodes and cathodes. To reduce surface and volume charging up, we have used polymer foils with a moderate volume resistivity. The first results show good efficiency, good plateaux and time resolution in detecting low-rate minimum ionizing electrons. Although not suited for high rate or good energy resolution applications, this kind of detector seems rather promising for realizing cheaply large active surfaces.

  4. Plasma arc heated secondary combustion chamber

    SciTech Connect

    Haun, R.; Paulson, B.; Schlienger, M.; Goerz, D.; Kerns, J.; Vernazza, J.

    1995-02-01

    This paper describes a secondary combustion chamber (SCC) for hazardous waste treatment systems that uses a plasma arc torch as the heat source. Developed under a cooperative research and development agreement (CRADA) between Retech, Inc. and Lawrence Livermore National Laboratory (LLNL), the unit is intended primarily to handle the off-gas from a Plasma Arc Centrifugal Treatment (PACT) system. ft is designed to heat the effluent gas which may contain volatile organic compounds, and maintain the gas temperature above 1000 C for two seconds or more. The benefits of using a plasma arc gas heater are described in comparison to a conventional fossil fuel heated SCC. Thermal design considerations are discussed. Analysis and experimental results are presented to show the effectiveness in destroying hazardous compounds and reducing the total volume of gaseous emissions.

  5. Emulsion chamber observations and interpretation (HE 3)

    NASA Technical Reports Server (NTRS)

    Shibata, M.

    1986-01-01

    Experimental results from Emulsion Chamber (EC) experiments at mountain altitudes or at higher levels using flying carriers are examined. The physical interest in this field is concentrated on the strong interaction at the very high energy region exceeding the accelerator energy, also on the primary cosmic ray intensity and its chemical composition. Those experiments which observed cosmic ray secondaries gave information on high energy interaction characteristics through the analyses of secondary spectra, gamma-hadron families and C-jets (direct observation of the particle production occuring at the carbon target). Problems of scaling violation in fragmentation region, interaction cross section, transverse momentum of produced secondaries, and some peculiar features of exotic events are discussed.

  6. Water vapor recovery from plant growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Newbold, D. D.; Colton, R. H.; Mccray, S. B.

    1991-01-01

    NASA is investigating the use of plant growth chambers (PGCs) for space missions and for bases on the moon and Mars. Key to successful development of PGCs is a system to recover and reuse the water vapor that is transpired from the leaves of the plants. A design is presented for a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in PGCs. The system is based on two membrane technologies: (1) dehumidification membrane modules to remove water vapor from the air, and (2) membrane contactors to return water vapor to the PGC (and, in doing so, to control the humidity and temperature within the PGC). The membrane-based system promises to provide an ideal, stable growth environment for a variety of plants, through a design that minimizes energy usage, volume, and mass, while maximizing simplicity and reliability.

  7. Fabrication of GRCop-84 Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2005-01-01

    GRCop-84, a copper alloy, Cu-8 at% Cr-4 at% Nb developed at NASA Glenn Research Center for regeneratively cooled rocket engine liners has excellent combinations of elevated temperature strength, creep resistance, thermal conductivity and low cycle fatigue. GRCop-84 is produced from prealloyed atomized powder and has been fabricated into plate, sheet and tube forms as well as near net shapes. Fabrication processes to produce demonstration rocket combustion chambers will be presented and includes powder production, extruding, rolling, forming, friction stir welding, and metal spinning. GRCop-84 has excellent workability and can be readily fabricated into complex components using conventional powder and wrought metallurgy processes. Rolling was examined in detail for process sensitivity at various levels of total reduction, rolling speed and rolling temperature representing extremes of commercial processing conditions. Results indicate that process conditions can range over reasonable levels without any negative impact to properties.

  8. Plant exposure laboratory and chambers. Volume 1

    SciTech Connect

    McFarlane, C.; Pfleeger, T.

    1986-01-01

    The research is to learn the factors that control plant uptake, translocation, and metabolism of anthropogenic organic chemicals. Understanding these processes is essential to predict food contamination and environmental damage from various agricultural and industrial pollutants. Contamination of plants is only one component, but since plants are the fulcrum upon which all nourishment systems depend, understanding the ways they become contaminated is critical to prudent production, transportation, and use of organic chemicals. These efforts to identify the controlling mechanisms of these phenomena require an understanding of the physiological parameters of the plants during uptake and translocation of the extraneous chemicals. Since the chemicals of interest are toxic and studies generally include /sup 14/C as a label for monitoring chemical kinetics, containment is an important criterion. The paper describes the laboratory and support system, the exposure chambers, the computer system, and the plant hydroponic nursery built to accomplish this research.

  9. Resistive Plate Chambers: electron transport and modeling

    NASA Astrophysics Data System (ADS)

    Bošnjaković, D.; Petrović, Z. Lj; Dujko, S.

    2014-12-01

    We study the electron transport in gas mixtures used by Resistive Plate Chambers (RPCs) in high energy physics experiments at CERN. Calculations are performed using a multi term theory for solving the Boltzmann equation. We identify the effects induced by non-conservative nature of electron attachment, including attachment heating of electrons and negative differential conductivity (NDC). NDC was observed only in the bulk component of drift velocity. Using our Monte Carlo technique, we calculate the spatially resolved transport properties in order to investigate the origin of these effects. We also present our microscopic approach to modeling of RPCs which is based on Monte Carlo method. Calculated results for a timing RPC show good agreement with an analytical model and experimental data. Different cross section sets for electron scattering in C2H2F4 are used for comparison and analysis.

  10. Improving rate capability of Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Abbrescia, Marcello

    2016-10-01

    The High Luminosity phase of Large Hadron Collider, foreseen to start in less then ten years from now, has triggered the development of a new generation of gaseous detectors with much improved performance with respect to the present ones. For what concerns Resistive Plate Chambers (RPCs), research is focusing on the methods to increase their rate capability, i.e. the maximum flux of impinging particles that these devices can stand without losing efficiency for a prolonged period of time. Different solutions are being proposed and extensively investigated upon. Here a brief overview of the physics processes taking place in RPCs at high rate is presented. The fundamental parameters that influence rate capability are taken into exam and the way how they can be optimized in order to increase rate capability is outlined. A comparison between the models used and experimental data confirms the goodness of the approach and the validity of results obtained.

  11. Performance of the TOPAZ time projection chamber

    SciTech Connect

    Shirahashi, A.; Aihara, H.; Itoh, R.; Kamae, T.; Kusuki, N.; Tanaka, M.; Fujii, H.; Fujii, K.; Ikeda, H.; Iwasaki, H.

    1988-02-01

    The TOPAZ detector has began taking data at the TRISTAN e/sup +/e/sup -/ colliding beam ring in May 1987. The major detector elements including the time projection chamber (TPC) have been working quite satisfactorily. The authors report here the performance of TPC based on real e/sup +/e/sup -/ events and cosmic ray events. They measure spatial resolution of sigma/sub xy/ = 185..mu..m and sigma/sub z/ = 335..mu..m, momentum resolution of sigma/sub PT//P/sub T/ = ..sqrt..(1.5P/sub T/)/sup 2/ + (1.6)/sup 2%/ and dE/dx resolution of 4.6%.

  12. Phoenix Lowered into Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander was lowered into a thermal vacuum chamber at Lockheed Martin Space Systems, Denver, in December 2006.

    The spacecraft was folded in its aeroshell and underwent environmental testing that simulated the extreme conditions the spacecraft will see during its nine-and-a-half-month cruse to Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  13. Measuring Total Flux of Organic Vapors From the Unsaturated Zone Under Natural Conditions: Design, Laboratory and Field Testing of a Flux Chamber Device

    NASA Astrophysics Data System (ADS)

    Tillman, F. D.; Choi, J.; Smith, J. A.

    2002-05-01

    A simple, easy-to-use, and inexpensive device for measuring VOC flux under natural conditions was designed and tested both in a controlled laboratory environment and in a natural field setting. The chamber consists of a stainless-steel right circular cylinder open on one end with a flexible, impermeable membrane allowing for chamber expansion and contraction. Air is pumped from inside the chamber through activated carbon traps and returned to the chamber maintaining a net zero pressure gradient from the inside to the outside of the chamber. The traps are analyzed using thermal desorption/GC-FID and the mass of contaminant is divided by the product of the sampled area and sample time to give VOC flux measured by the chamber. Design parameters for the chamber were selected using continuously stirred tank reactor (CSTR)-equation based modeling under step, sinusoidal and transport-model simulation flux inputs. Laboratory testing of the flux chamber under both diffusion and advection dominated conditions was performed in a device constructed to simulate unsaturated zone transport. Aqueous trichloroethene (TCE) solution was pumped through the bottom of a steel drum inside which 50-cm of fine sand was suspended. For diffusion-dominated transport experiments, the chamber was installed in the sand at the top of the simulator and operated in the same manner as would occur in the field. The flux measurement of the chamber was then compared to flux prediction based on measured linear concentration data from the simulator and Fick's law. Advective transport is initiated in the vadose zone simulator by flowing humidified, pressurized air into an input port in the bottom of the simulator below the suspended porous media. Soil-gas velocity is calculated by dividing the airflow input by the surface area of the simulator. Flux was measured with the chamber and compared to flux predicted using airflow and concentration data from the simulator. Results from both the diffusion-only and

  14. Main Chamber and Preburner Injector Technology

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Merkle, Charles L.

    1999-01-01

    This document reports the experimental and analytical research carried out at the Penn State Propulsion Engineering Research Center in support of NASA's plan to develop advanced technologies for future single stage to orbit (SSTO) propulsion systems. The focus of the work is on understanding specific technical issues related to bi-propellant and tri-propellant thrusters. The experiments concentrate on both cold flow demonstrations and hot-fire uni-element tests to demonstrate concepts that can be incorporated into hardware design and development. The analysis is CFD-based and is intended to support the design and interpretation of the experiments and to extrapolate findings to full-scale designs. The research is divided into five main categories that impact various SSTO development scenarios. The first category focuses on RP-1/gaseous hydrogen (GH2)/gaseous oxygen (GO2) tri-propellant combustion with specific emphasis on understanding the benefits of hydrogen addition to RP-1/oxygen combustion and in developing innovative injector technology. The second category investigates liquid oxygen (LOX)/GH2 combustion at main chamber near stoichiometric conditions to improve understanding of existing LOX/GH2 rocket systems. The third and fourth categories investigate the technical issues related with oxidizer-rich and fuel-rich propulsive concepts, issues that are necessary for developing the full-flow engine cycle. Here, injector technology issues for both LOX/GH2 and LOX/RP-1 propellants are examined. The last category, also related to the full-flow engine cycle, examines injector technology needs for GO2/GH2 propellant combustion at near-stoichiometric conditions for main chamber application.

  15. EXAFS studies of local thermal expansion

    SciTech Connect

    Beccara, S.; Dalba, G.; Fornasini, P.; Grisenti, R.; Sanson, A.; Rocca, F.; Purans, J.; Diop, D.

    2003-01-24

    Original information on local thermal expansion can be obtained through a cumulant analysis of EXAFS. The difference between first and third EXAFS cumulants, and the comparison with Bragg diffraction results, can help in disentangling the contributions to thermal expansion of potential anharmonicity and geometrical effects. In germanium, the perpendicular Mean Square Relative Displacement has been obtained from EXAFS. In Ag2O, whose framework structure exhibits negative thermal expansion, a positive expansion of the Ag-O bond has been measured and the deformation of the Ag4O structural units monitored.

  16. BOREAS TGB-1 NSA SF6 Chamber Flux Data

    NASA Technical Reports Server (NTRS)

    Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 team made several chamber and tower measurements of trace gases at sites in the BOREAS NSA. This data set contains sulfur hexafluoride (SF6) dark chamber flux measurements at the NSA-OJP and NSA-YJP sites from 16-May through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  17. 8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). BOX FLUME DROPS SLIGHTLY INTO CHAMBER ON LEFT SIDE. CHAMBER IS A SERIES OF BAFFLES DESIGNED TO SLOW THE FLOW OF WATER. FLOW IS REDUCED TO ALLOW PARTICULATES TO SETTLE TO THE BOTTOM. TWO SCREENS (NOT SHOWN) FILTER LARGER DEBRIS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  18. Experience with the jet chamber of the JADE-experiment

    SciTech Connect

    Heuer, R.D.

    1984-01-01

    The jet chamber, a pictorial drift chamber used as the central track detector of the JADE experiment at PETRA, is briefly described. The present status of the spatial and dE/dx resolutions and the experience during 4 years of operation is reported. Improvement plans for the readout electronics are described and a short review of the jet chamber designed for the proposed LEP experiment OPAL is given.

  19. NASA Teams With Army in Vortex Combustion Chamber Engine Test

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photograph depicts one of over thirty tests conducted on the Vortex Combustion Chamber Engine at Marshall Space Flight Center's (MSFC) test stand 115, a joint effort between NASA's MSFC and the U.S. Army AMCOM of Redstone Arsenal. The engine tests were conducted to evaluate an irnovative, 'self-cooled', vortex combustion chamber, which relies on tangentially injected propellants from the chamber wall producing centrifugal forces that keep the relatively cold liquid propellants near the wall.

  20. Effects of open-top chambers on 'Valencia' orange trees

    SciTech Connect

    Olszyk, D.M.; Takemoto, B.K.; Kats, G.; Dawson, P.J.; Morrison, C.L.

    1992-01-01

    Young 'Valencia' orange trees (Citrus sinensis(L) Osbeck) were grown for four years in large open-top chambers with ambient (nonfiltered) air or in outside air to determine any effects of the chambers on the air pollutant susceptibility of the trees. Long-term ozone average concentrations (12 hours, growing season) were 8% lower, and cumulative ozone dose (hourly values >0.1 microL/L) was 29% lower in ambient chambers compared to outside air. Fruit yields were much higher (>39%) for ambient chamber trees than for outside trees over three harvests, due at least partly to less fruit drop during the growing season for ambient chamber trees. Ambient chamber trees were much larger than outside trees and produced over twice as much leaf material over four years of study. Leaves on ambient chamber trees were larger and less dense than on outside trees. Leaves on ambient chamber trees were under more stress than leaves on outside trees during summer months; with lower stomatal conductances (14% average) and transpiration rates (12%), and more negative leaf water pressure potentials (28%). In contrast, leaves on ambient chamber trees had higher net photosynthetic rates (13%) and higher leaf starch concentrations prior to tree flowering (31%), than leaves on outside trees. While these results indicated large long-term impacts on tree growth which must be considered when using open-top chambers, they did not indicate any net effect of chambers on the air pollutant susceptibility of trees which would limit the usefulness of chamber tree data for air quality impact assessment purposes.

  1. Space Station auxiliary thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.

    1990-01-01

    The objective was to establish a technical data base to support future development of GO2/GH2 flight thrusters for a Space Station Auxiliary Propulsion System. Specific issues of concern were thruster performance and cycle life. To address these issues, NASA funded Aerojet to design, fabricate, and altitude test two 25-lbf GO2/GH2 thrusters. The first thruster was designed to operate at a nominal mixture ratio (O/F) of 4.0 and expansion area ratio (epsilon) of 100:1. It was tested over a range of O/F from 2.0 to 8.0, achieving a range of specific impulse (Isp) from 440 to 310 lbf-sec/Ibm. The second thruster was optimized for a nominal O/F of 8.0 at a lower nozzle expansion area ratio, epsilon, of 30:1. This second thruster was tested over an O/F range of 3.0 to 9.5, achieving an Isp range of 416 to 3323 lbf-sec/Ibm, respectively. At O/F = 8.0, the Isp was 360 lbf-sec/Ibm, as predicted.

  2. 49. AUXILARY CHAMBER, EAST SIDE AIRLOCK LOOKING SOUTHEAST FROM INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. AUXILARY CHAMBER, EAST SIDE AIRLOCK LOOKING SOUTHEAST FROM INTERIOR (LOCATION HHH) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  3. Explosive Containment Chamber Vulnerability to Chemical Munition Fragment Impact

    SciTech Connect

    Benham, R.A.; Fischer, S.H.; Kipp, M.E.; Martinez, R.R.

    1999-02-01

    Scenarios in which the explosive burster charge in a chemical munition accidentally detonates inside demilitarization containment chambers are analyzed. The vulnerability of an inner Auxiliary Pressure Vessel and the primary Explosive Containment Chamber to impact by fragments from the largest explosive charge expected to be placed in these chambers (M426, 8 inch, chemical, 7 lbs Comp B) is evaluated. Numerical (CTH) and empirical (ConWep) codes are used to characterize the munition fragments, and assess the consequences of their impact and penetration on the walls of these vessels. Both pristine and corroded configurations of the munition have been considered, with and without liquid agent fill. When the munition burster charge detonates, munition case fragments impact and perforate the Auxiliary Pressure Vessel wall, resulting in extensive breakup of this inner chamber and the formation of additional fragments. These residual munition case and Auxiliary Pressure Vessel fragments have sufficient mass and velocity to crater the Explosive Containment Chamber inner wall layer, with accompanying localized permanent deformation (bulging) of both the inner and outer chamber walls. The integrity of the Explosive Containment Chamber was retained under all of the APV / munition configurations considered in this study, with no evidence that primary (munition) or secondary (munition and Auxiliary Pressure Vessel) fragments will perforate the inner chamber wall. Limited analyses of munition detonation without the Auxiliary Pressure Vessel present indicate that some munition span fragments could form under those conditions that have sufficient mass and velocity to perforate the inner wall of the Explosive Containment Chamber.

  4. The Other Shoe: An Early Operant Conditioning Chamber for Pigeons.

    PubMed

    Sakagami, Takayuki; Lattal, Kennon A

    2016-05-01

    We describe an early operant conditioning chamber fabricated by Harvard University instrument maker Ralph Gerbrands and shipped to Japan in 1952 in response to a request of Professor B. F. Skinner by Japanese psychologists. It is a rare example, perhaps the earliest still physically existing, of such a chamber for use with pigeons. Although the overall structure and many of the components are similar to contemporary pigeon chambers, several differences are noted and contrasted to evolutionary changes in this most important laboratory tool in the experimental analysis of behavior. The chamber also is testimony to the early internationalization of behavior analysis.

  5. Determination of molecular contamination performance for space chamber tests

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1973-01-01

    The limitations of chamber tests with regard to the molecular contamination of a spacecraft undergoing vacuum test were examined. The molecular flow conditions existing in the chamber and the parameters dictating the degree of contamination were analyzed. Equations and graphs were developed to show the fraction of molecules returning to the spacecraft out of those emitted and to show other chamber flow parameters as a function of chamber and spacecraft surface molecular pumping and geometric configuration. Type and location of instruments required to measure the outgassing, the degree of contamination, and the returning flows are also discussed.

  6. Cooling of rocket thrust chambers with liquid oxygen

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Schlumberger, Julie A.

    1990-01-01

    Rocket engines using high pressure liquid oxygen (LOX) and kerosene (RP-1) as the propellants have been considered for future launch vehicle propulsion. Generaly, in regeneratively cooled engines, thefuel is used to cool the combustion chamber. However, hydrocarbons such as RP-1 are limited in their cooling capability at high temperatures and pressures. Therefore, LOX is being considered as an alternative coolant. However, there has been concern as to the effect on the integrity of the chamber liner if oxygen leaks into the combustion zone through fatigue cracks that may develop between the cooling passages and the hot-gas side wall. To address this concern, an investigation was previously conducted with simulated fatigue cracks upstream of the thrust chamber throat. When these chambers were tested, an unexpected melting in the throat region developed which was not in line with the simulated fatigue cracks. The current experimental program was conducted in order to determine the cause for the failure in the earlier thrust chambers and to further investigate the effects of cracks in the thrust chamber liner upstream of the throat. The thrust chambers were tested at oxygen-to-fuel mixture ratios from 1.5 to 2.86 at a nominal chamber pressure of 8.6 MPa. As a result of the test series, the reason for the failure occurring in the earlier work was determined to be injector anomalies. The LOX leaking through the simulated fatigue cracks did not affect the integrity of the chambers.

  7. Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Steuber, Thomas J.

    2004-01-01

    Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.

  8. The Other Shoe: An Early Operant Conditioning Chamber for Pigeons.

    PubMed

    Sakagami, Takayuki; Lattal, Kennon A

    2016-05-01

    We describe an early operant conditioning chamber fabricated by Harvard University instrument maker Ralph Gerbrands and shipped to Japan in 1952 in response to a request of Professor B. F. Skinner by Japanese psychologists. It is a rare example, perhaps the earliest still physically existing, of such a chamber for use with pigeons. Although the overall structure and many of the components are similar to contemporary pigeon chambers, several differences are noted and contrasted to evolutionary changes in this most important laboratory tool in the experimental analysis of behavior. The chamber also is testimony to the early internationalization of behavior analysis. PMID:27606188

  9. Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)

    2000-01-01

    Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.

  10. Electrodeless drift chambers with 50-cm drift distance

    SciTech Connect

    Ayres, D.S.; Price, L.E.

    1982-08-01

    The electrodeless drift-chamber technique is potentially very useful in applications requiring the drifting of ionization in gas over long distances in narrow channels. Chamber construction is simple and cheap; the technique is well suited to very large detectors operating in low-rate environments. Prototype tests on planar chambers reveal excellent drifting characteristics after the initial charging, but show a substantial degradation of pulse height from cosmic rays over a two-week period. The loss of efficiency appears to be caused by excess charge buildup on the dielectric surfaces of the chamber. Several solutions are suggested.

  11. Performance of a transpiration-regenerative cooled rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Valler, H. W.

    1979-01-01

    The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.

  12. Comsol Simulations as a Tool in Validating a Measurement Chamber

    NASA Astrophysics Data System (ADS)

    Lakka, Antti; Sairanen, Hannu; Heinonen, Martti; Högström, Richard

    2015-12-01

    The Centre for Metrology and Accreditation (MIKES) is developing a temperature-humidity calibration system for radiosondes. The target minimum air temperature and dew-point temperature are -80° C and -90° C, respectively. When operating in this range, a major limiting factor is the time of stabilization which is mainly affected by the design of the measurement chamber. To find an optimal geometry for the chamber, we developed a numerical simulation method taking into account heat and mass transfer in the chamber. This paper describes the method and its experimental validation using two stainless steel chambers with different geometries. The numerical simulation was carried out using Comsol Multiphysics simulation software. Equilibrium states of dry air flow at -70° C with different inlet air flow rates were used to determine the geometry of the chamber. It was revealed that the flow is very unstable despite having relatively small Reynolds number values. Humidity saturation abilities of the new chamber were studied by simulating water vapor diffusion in the chamber in time-dependent mode. The differences in time of humidity stabilization after a step change were determined for both the new chamber model and the MIKES Relative Humidity Generator III (MRHG) model. These simulations were used as a validation of the simulation method along with experimental measurements using a spectroscopic hygrometer. Humidity saturation stabilization simulations proved the new chamber to be the faster of the two, which was confirmed by experimental measurements.

  13. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    The feasibility of potential reusable thrust chamber concepts is studied. Propellant condidates were examined and analytically combined with potential cooling schemes. A data base of engine data which would assist in a configuration selection was produced. The data base verification was performed by the demonstration of a thrust chamber of a selected coolant scheme design. A full scale insulated columbium thrust chamber was used for propellant coolant configurations. Combustion stability of the injectors and a reduced size thrust chamber were experimentally verified as proof of concept demonstrations of the design and study results.

  14. Cooling of rocket thrust chambers with liquid oxygen

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Schlumberger, Julie A.

    1990-01-01

    Rocket engines using high pressure liquid oxygen (LOX) and kerosene (RP-1) as the propellants have been considered for future launch vehicle propulsion. Generally, in regeneratively cooled engines, the fuel is used to cool the combustion chamber. However, hydrocarbons such as RP-1 are limited in their cooling capability at high temperatures and pressures. Therefore, LOX is being considered as an alternative coolant. However, there has been concern as to the effect on the integrity of the chamber liner if oxygen leaks into the combustion zone through fatigue cracks that may develop between the cooling passages and the hot-gas side wall. To address this concern, an investigation was previously conducted with simulated fatigue cracks upstream of the thrust chamber throat. When these chambers were tested, an unexpected melting in the throat region developed which was not in line with the simulated fatigue cracks. The current experimental program was conducted in order to determine the cause for the failure in the earlier thrust chambers and to further investigate the effects of cracks in the thrust chamber liner upstream of the throat. The thrust chambers were tested at oxygen-to-fuel mixture ratios from 1.5 to 2.86 at a nominal chamber pressure of 8.6 MPa. As a result of the test series, the reason for the failure occurring in the earlier work was determined to be injector anomalies. The LOX leaking through the simulated fatigue cracks did not affect the integrity of the chambers.

  15. Psychotherapist and expansion of awareness.

    PubMed

    Chung, C Y

    1990-01-01

    The author emphasizes the therapist's well-integrated and matured personality as the crucial element for being a good psychotherapist; therefore, it is essential for a psychotherapist to make ceaseless efforts regarding his own personality growth with his ongoing therapeutic experiences. Nevertheless, nowadays students are apt to satisfy themselves with or cling to the theories and techniques of psychotherapy, neglecting their own personality growth. The author attributes such a tendency, on the one hand, to the contemporary thought of 'technology first and convenience first', on the other, to the current system of medical education which is extremely faithful to scientism. He warns that concepts or theories sometimes serve as a barrier in one's mind and falsify the reality. He reiterates the importance of the therapist's own maturity and expansion of awareness. In this context, the author recommends Zen meditation or Theravada meditation as one of the advanced courses of training for psychotherapists. He elucidates a way of promoting one's awareness in Zen meditation and what the ultimate state of "no-self" of Zen should be, based on his own experience of Zen practices.

  16. Lifetimes and heavy quark expansion

    NASA Astrophysics Data System (ADS)

    Lenz, Alexander

    2015-04-01

    Kolya Uraltsev was one of the inventors of the Heavy Quark Expansion (HQE), that describes inclusive weak decays of hadrons containing heavy quarks and in particular lifetimes. Besides giving a pedagogic introduction to the subject, we review the development and the current status of the HQE, which just recently passed several non-trivial experimental tests with an unprecedented precision. In view of many new experimental results for lifetimes of heavy hadrons, we also update several theory predictions: τ (B+)/τ (Bd) = 1.04+0.05-0.01 ± 0.02 ± 0.01, τ(Bs)/τ(Bd) = 1.001 ±0.002, τ(Λb)/τ(Bd) = 0.935 ±0.054 and \\bar {τ } (Ξ b0)/\\bar {τ } (Ξ b+) = 0.95 ± 0.06. The theoretical precision is currently strongly limited by the unknown size of the non-perturbative matrix elements of four-quark operators, which could be determined with lattice simulations.

  17. The Evolution and Development of Cephalopod Chambers and Their Shape

    PubMed Central

    Lemanis, Robert; Korn, Dieter; Zachow, Stefan; Rybacki, Erik; Hoffmann, René

    2016-01-01

    The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth. PMID:26963712

  18. Quantifying the "chamber effect" in CO2 flux measurements

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Childs, Amy; Long, Hazel; Waldron, Susan

    2014-05-01

    The significance of aquatic CO2 emissions has received attention in recent years. For example annual aquatic emissions in the Amazon basin have been estimated as 500 Mt of carbon1. Methods for determining the flux rates include eddy covariance flux tower measurements, flux estimates calculated from partial pressure of CO2 (pCO2) in water and the use floating flux chambers connected to an infra-red gas analyser. The flux chamber method is often used because it is portable, cheaper and allows smaller scale measurements. It is also a direct method and hence avoids problems related to the estimation of the gas transfer coefficient that is required when fluxes are calculated from pCO2. However, the use of a floating chamber may influence the flux measurements obtained. The chamber shields the water underneath from effects of wind which could lead to lower flux estimates. Wind increases the flux rate by i) causing waves which increase the surface area for efflux, and ii) removing CO2 build up above the water surface, hence maintaining a higher concentration gradient. Many floating chambers have an underwater extension of the chamber below the float to ensure better seal to water surface and to prevent any ingress of atmospheric air when waves rock the chamber. This extension may cause additional turbulence in flowing water and hence lead to overestimation of flux rates. Some groups have also used a small fan in the chamber headspace to ensure thorough mixing of air in the chamber. This may create turbulence inside the chamber which could increase the flux rate. Here we present results on the effects of different chamber designs on the detected flux rates. 1Richey et al. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617-620.

  19. The heavy quark expansion of QCD

    SciTech Connect

    Falk, A.F.

    1997-06-01

    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs.

  20. Expansive Learning as Production of Community

    ERIC Educational Resources Information Center

    Morck, Line Lerche

    2010-01-01

    This article contributes a framework for analyzing learning as an expansive process in which persons come to partly transcend marginalization. Expansive learning is a kind of learning that partly transcends marginalization through changed participation and recognition by others of participants in their changed communities. This article draws on…