Sample records for expansion study basis

  1. Creative conceptual expansion: A combined fMRI replication and extension study to examine individual differences in creativity.

    PubMed

    Abraham, Anna; Rutter, Barbara; Bantin, Trisha; Hermann, Christiane

    2018-05-05

    The aims of this fMRI study were two-fold. The first objective of the study was to verify whether the findings associated with a previous fMRI study could be replicated in which a novel event-related experimental design was developed which rendered it possible to investigate the brain basis of creative conceptual expansion. The ability to widen the boundaries of conceptual structures is integral to creative idea generation, which makes conceptual expansion a core component of creative cognition. Creative conceptual expansion led to the engagement of brain regions that are known to be involved in the access, storage and relational integration of conceptual knowledge in the original study. These included the anterior inferior frontal gyrus, the temporal poles and the lateral frontal pole. These findings in relation to the brain basis of creative conceptual expansion were replicated in the current study. The second objective of this study was to evaluate the brain basis of individual differences in creative conceptual expansion. The high creative group relative to the low creative group was shown to exhibit greater activity in regions of the semantic cognition network as well as the salience network during creative conceptual expansion. The findings are discussed from the point of view of classical hypotheses about information processing biases that explain individual differences in creativity including flat associative hierarchies, defocused attention and cognitive disinhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Multipole expansion method for supernova neutrino oscillations

    DOE PAGES

    Duan, Huaiyu; Shalgar, Shashank

    2014-10-31

    Here, we demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  3. A two-parameter family of double-power-law biorthonormal potential-density expansions

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-07-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in a closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  4. A two-parameter family of double-power-law biorthonormal potential-density expansions

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-05-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2017a) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  5. A two-parameter family of double-power-law biorthonormal potential-density expansions

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-05-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2018b) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  6. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-01

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  7. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less

  8. Nucleon and Delta axial-vector couplings in 1/N{sub c}-Baryon Chiral Perturbation Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goity, Jose Luis; Calle Cordon, Alvaro

    In this contribution, baryon axial-vector couplings are studied in the framework of the combined 1/N{sub c} and chiral expansions. This framework is implemented on the basis of the emergent spin-flavor symmetry in baryons at large N{sub c} and HBChPT, and linking both expansions ({xi}-expansion), where 1/N{sub c} is taken to be a quantity order p. The study is carried out including one-loop contributions, which corresponds to order xi to the third for baryon masses and order {xi} square for the axial couplings.

  9. Chemical recombination in an expansion tube

    NASA Technical Reports Server (NTRS)

    Bakos, Robert J.; Morgan, Richard G.

    1994-01-01

    The note describes the theoretical basis of chemical recombination in an expansion tube which simulates energy, Reynolds number, and stream chemistry at near-orbital velocities. Expansion tubes can satisfy ground-based hypersonic propulsion and aerothermal testing requirements.

  10. Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.

    PubMed

    Götz, Andreas W; Kollmar, Christian; Hess, Bernd A

    2005-09-01

    We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.

  11. Auxiliary basis expansions for large-scale electronic structure calculations.

    PubMed

    Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin

    2005-05-10

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  12. Basis set study of classical rotor lattice dynamics.

    PubMed

    Witkoskie, James B; Wu, Jianlan; Cao, Jianshu

    2004-03-22

    The reorientational relaxation of molecular systems is important in many phenomenon and applications. In this paper, we explore the reorientational relaxation of a model Brownian rotor lattice system with short range interactions in both the high and low temperature regimes. In this study, we use a basis set expansion to capture collective motions of the system. The single particle basis set is used in the high temperature regime, while the spin wave basis is used in the low temperature regime. The equations of motion derived in this approach are analogous to the generalized Langevin equation, but the equations render flexibility by allowing nonequilibrium initial conditions. This calculation shows that the choice of projection operators in the generalized Langevin equation (GLE) approach corresponds to defining a specific inner-product space, and this inner-product space should be chosen to reveal the important physics of the problem. The basis set approach corresponds to an inner-product and projection operator that maintain the orthogonality of the spherical harmonics and provide a convenient platform for analyzing GLE expansions. The results compare favorably with numerical simulations, and the formalism is easily extended to more complex systems. (c) 2004 American Institute of Physics

  13. Thermal Expansion of Vitrified Blood Vessels Permeated with DP6 and Synthetic Ice Modulators

    PubMed Central

    Eisenberg, David P.; Taylor, Michael J.; Jimenez-Rios, Jorge L.; Rabin, Yoed

    2014-01-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  14. Auxiliary basis expansions for large-scale electronic structure calculations

    PubMed Central

    Jung, Yousung; Sodt, Alex; Gill, Peter M. W.; Head-Gordon, Martin

    2005-01-01

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems. PMID:15845767

  15. Spectral likelihood expansions for Bayesian inference

    NASA Astrophysics Data System (ADS)

    Nagel, Joseph B.; Sudret, Bruno

    2016-03-01

    A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically. The posterior is formally represented as the product of a reference density and a linear combination of polynomial basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple applications from classical statistics and inverse modeling.

  16. Specification of Drosophila Corpora Cardiaca Neuroendocrine Cells from Mesoderm Is Regulated by Notch Signaling

    PubMed Central

    Park, Sangbin; Bustamante, Erika L.; Antonova, Julie; McLean, Graeme W.; Kim, Seung K.

    2011-01-01

    Drosophila neuroendocrine cells comprising the corpora cardiaca (CC) are essential for systemic glucose regulation and represent functional orthologues of vertebrate pancreatic α-cells. Although Drosophila CC cells have been regarded as developmental orthologues of pituitary gland, the genetic regulation of CC development is poorly understood. From a genetic screen, we identified multiple novel regulators of CC development, including Notch signaling factors. Our studies demonstrate that the disruption of Notch signaling can lead to the expansion of CC cells. Live imaging demonstrates localized emergence of extra precursor cells as the basis of CC expansion in Notch mutants. Contrary to a recent report, we unexpectedly found that CC cells originate from head mesoderm. We show that Tinman expression in head mesoderm is regulated by Notch signaling and that the combination of Daughterless and Tinman is sufficient for ectopic CC specification in mesoderm. Understanding the cellular, genetic, signaling, and transcriptional basis of CC cell specification and expansion should accelerate discovery of molecular mechanisms regulating ontogeny of organs that control metabolism. PMID:21901108

  17. Thermal expansion of vitrified blood vessels permeated with DP6 and synthetic ice modulators.

    PubMed

    Eisenberg, David P; Taylor, Michael J; Jimenez-Rios, Jorge L; Rabin, Yoed

    2014-06-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan, E-mail: weixuan.li@usc.edu; Lin, Guang, E-mail: guang.lin@pnnl.gov; Zhang, Dongxiao, E-mail: dxz@pku.edu.cn

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect—except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos basis functions in the expansion helps to capture uncertainty more accurately but increases computational cost. Selection of basis functionsmore » is particularly important for high-dimensional stochastic problems because the number of polynomial chaos basis functions required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE basis functions are pre-set based on users' experience. Also, for sequential data assimilation problems, the basis functions kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE basis functions for different problems and automatically adjusts the number of basis functions in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm was tested with different examples and demonstrated great effectiveness in comparison with non-adaptive PCKF and EnKF algorithms.« less

  19. On the error in the nucleus-centered multipolar expansion of molecular electron density and its topology: A direct-space computational study.

    PubMed

    Michael, J Robert; Koritsanszky, Tibor

    2017-05-28

    The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.

  20. On the error in the nucleus-centered multipolar expansion of molecular electron density and its topology: A direct-space computational study

    NASA Astrophysics Data System (ADS)

    Michael, J. Robert; Koritsanszky, Tibor

    2017-05-01

    The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.

  1. Accurate double many-body expansion potential energy surface for the 2(1)A' state of N2O.

    PubMed

    Li, Jing; Varandas, António J C

    2014-08-28

    An accurate double many-body expansion potential energy surface is reported for the 2(1)A' state of N2O. The new double many-body expansion (DMBE) form has been fitted to a wealth of ab initio points that have been calculated at the multi-reference configuration interaction level using the full-valence-complete-active-space wave function as reference and the cc-pVQZ basis set, and subsequently corrected semiempirically via double many-body expansion-scaled external correlation method to extrapolate the calculated energies to the limit of a complete basis set and, most importantly, the limit of an infinite configuration interaction expansion. The topographical features of the novel potential energy surface are then examined in detail and compared with corresponding attributes of other potential functions available in the literature. Exploratory trajectories have also been run on this DMBE form with the quasiclassical trajectory method, with the thermal rate constant so determined at room temperature significantly enhancing agreement with experimental data.

  2. A subleading power operator basis for the scalar quark current

    NASA Astrophysics Data System (ADS)

    Chang, Cyuan-Han; Stewart, Iain W.; Vita, Gherardo

    2018-04-01

    Factorization theorems play a crucial role in our understanding of the strong interaction. For collider processes they are typically formulated at leading power and much less is known about power corrections in the λ ≪ 1 expansion. Here we present a complete basis of power suppressed operators for a scalar quark current at O({λ}^2) in the amplitude level power expansion in the Soft Collinear Effective Theory, demonstrating that helicity selection rules significantly simplify the construction. This basis applies for the production of any color singlet scalar in q\\overline{q} annihilation (such as b\\overline{b}\\to H ). We also classify all operators which contribute to the cross section at O({λ}^2) and perform matching calculations to determine their tree level Wilson coefficients. These results can be exploited to study power corrections in both resummed and fixed order perturbation theory, and for analyzing the factorization properties of gauge theory amplitudes and cross sections at subleading power.

  3. Quasi Sturmian basis for the two-electon continuum

    NASA Astrophysics Data System (ADS)

    Zaytsev, A. S.; Ancarani, L. U.; Zaytsev, S. A.

    2016-02-01

    A new type of basis functions is proposed to describe a two-electron continuum which arises as a final state in electron-impact ionization and double photoionization of atomic systems. We name these functions, which are calculated in terms of the recently introduced quasi Sturmian functions, Convoluted Quasi Sturmian functions (CQS); by construction, they look asymptotically like a six-dimensional spherical wave. The driven equation describing an ( e, 3 e) process on helium in the framework of the Temkin-Poet model is solved numerically in the entire space (rather than in a finite region of space) using expansions on CQS basis functions. We show that quite rapid convergence of the solution expansion can be achieved by multiplying the basis functions by the logarithmic phase factor corresponding to the Coulomb electron-electron interaction.

  4. Perturbation expansion theory corrected from basis set superposition error. I. Locally projected excited orbitals and single excitations.

    PubMed

    Nagata, Takeshi; Iwata, Suehiro

    2004-02-22

    The locally projected self-consistent field molecular orbital method for molecular interaction (LP SCF MI) is reformulated for multifragment systems. For the perturbation expansion, two types of the local excited orbitals are defined; one is fully local in the basis set on a fragment, and the other has to be partially delocalized to the basis sets on the other fragments. The perturbation expansion calculations only within single excitations (LP SE MP2) are tested for water dimer, hydrogen fluoride dimer, and colinear symmetric ArM+ Ar (M = Na and K). The calculated binding energies of LP SE MP2 are all close to the corresponding counterpoise corrected SCF binding energy. By adding the single excitations, the deficiency in LP SCF MI is thus removed. The results suggest that the exclusion of the charge-transfer effects in LP SCF MI might indeed be the cause of the underestimation for the binding energy. (c) 2004 American Institute of Physics.

  5. Studies of dispersion energy in hydrogen-bonded systems. H2O-HOH, H2O-HF, H3N-HF, HF-HF

    NASA Astrophysics Data System (ADS)

    Szcześniak, M. M.; Scheiner, Steve

    1984-02-01

    Dispersion energy is calculated in the systems H2O-HOH, H2O-HF, H3N-HF, and HF-HF as a function of the intermolecular separation using a variety of methods. M≂ller-Plesset perturbation theory to second and third orders is applied in conjunction with polarized basis sets of 6-311G** type and with an extended basis set including a second set of polarization functions (DZ+2P). These results are compared to a multipole expansion of the dispersion energy, based on the Unsöld approximation, carried out to the inverse tenth power of the intermolecular distance. Pairwise evaluation is also carried out using both atom-atom and bond-bond formulations. The MP3/6-311G** results are in generally excellent accord with the leading R-6 term of the multipole expansion. This expansion, if carried out to the R-10 term, reproduces extremely well previously reported dispersion energies calculated via variation-perturbation theory. Little damping of the expansion is required for intermolecular distances equal to or greater than the equilibrium separation. Although the asymptotic behavior of the MP2 dispersion energy is somewhat different than that of the other methods, augmentation of the basis set by a second diffuse set of d functions leads to quite good agreement in the vicinity of the minima. Both the atom-atom and bond-bond parametrization schemes are in good qualitative agreement with the other methods tested. All approaches produce similar dependence of the dispersion energy upon the angular orientation between the two molecules involved in the H bond.

  6. On the representation of the diffracted field of Hermite-Gaussian modes in an alien basis and the young diffraction principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, V.N.; Strokovskii, G.A.

    An analytical form of expansion coefficients of a diffracted field for an arbitrary Hermite-Gaussian beam in an alien Hermite-Gaussian basis is obtained. A possible physical interpretation of the well-known Young phenomenological diffraction principle and experiments on diffraction of Hermite-Gaussian beams of the lowest types (n = 0 - 5) from half-plane are discussed. The case of nearly homogenous expansion corresponding to misalignment and mismatch of optical systems is also analyzed. 7 refs., 2 figs.

  7. Study of polytropic exponent based on high pressure switching expansion reduction

    NASA Astrophysics Data System (ADS)

    Wang, Xuanyin; Luo, Yuxi; Xu, Zhipeng

    2011-10-01

    Switching expansion reduction (SER) uses a switch valve to substitute the throttle valve to reduce pressure for high pressure pneumatics. The experiments indicate that the simulation model well predicts the actual characteristics. The heat transfers and polytropic exponents of the air in expansion tank and supply tanks of SER have been studied on the basis of the experiments and the simulation model. Through the mathematical reasoning in this paper, the polytropic exponent can be calculated by the air mass, heat, and work exchanges of the pneumatic container. For the air in a constant volume tank, when the heat-absorption is large enough to raise air temperature in discharging process, the polytropic exponent is less than 1; when the air is experiencing a discharging and heat-releasing process, the polytropic exponent exceeds the specific heat ratio (the value of 1.4).

  8. Theoretical basis for design of thermal-stress-free fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.; Mcwithey, R. R.

    1983-01-01

    A theoretical basis was developed for the design of fasteners which are free of thermal stress. A fastener can be shaped to eliminate the thermal stress which would otherwise result from differential thermal expansion between dissimilar fastener and sheet materials for many combinations of isotropic and orthotropic materials. The resulting joint remains snug, yet free of thermal stress at any temperature, if the joint is uniform in temperature, if it is frictionless, and if the coefficients of thermal expansion of the materials do not change with temperature. In general, such a fastener has curved sides; however, if both materials have isotropic coefficients of thermal expansion, a conical fastener is free of thermal stress. Equations are presented for thermal stress free shapes at both initial and final temperature, and typical fastener shapes are shown.

  9. Many-body expansion of the Fock matrix in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Fedorov, Dmitri G.; Kitaura, Kazuo

    2017-09-01

    A many-body expansion of the Fock matrix in the fragment molecular orbital method is derived up to three-body terms for restricted Hartree-Fock and density functional theory in the atomic orbital basis and compared to the expansion in the basis of fragment molecular orbitals (MOs). The physical nature of many-body corrections is revealed in terms of charge transfer terms. An improvement of the fragment MO expansion is proposed by adding exchange to the embedding. The accuracy of all developed methods is demonstrated in comparison to unfragmented results for polyalanines, a water cluster, Trp-cage (PDB: 1L2Y) and crambin (PDB: 1CRN) proteins, a zeolite cluster, a Si nano-wire, and a boron nitride ribbon. The physical nature of metallicity is discussed, and it is shown what kinds of metallic systems can be treated by fragment-based methods. The density of states is calculated for a fully closed and a partially open nano-ring of boron nitride with a diameter of 105 nm.

  10. [Pressure-volume recording of PTCA catheters with balloons of lower and higher compliance].

    PubMed

    Werner, C; Bloss, P; Kiessling, D; Patzschke, H; Unverdorben, M; Vallbracht, C

    1999-11-01

    In this report, the results of complementary studies of pressure-volume (p-V) measurements on balloon catheters with balloons of low (LC) and high compliance (HC) used for percutaneous transluminal coronary angioplasty are discussed. The measurements were performed with balloons unconfined in air (free dilatation) and also confined in different shells. In the case of rigid shells, a surprisingly high self-expansion of the catheters was found. Although this self-expansion does not contribute to the radial dilatation, it cannot be neglected, but must be taken into account when the success of balloon dilatation is determined on the basis of measured p-V curves. The investigations performed using wrapped shells clearly show the different dilatation properties of LC and HC balloons. The results provide important information on the feasibility of controlled balloon dilatation on the basis of p-V measurements performed on-line during PTCA.

  11. On the optimization of Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.

    2003-01-01

    A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.

  12. The mechanics of surface expansion anisotropy in Medicago truncatula root hairs.

    PubMed

    Dumais, Jacques; Long, Sharon R; Shaw, Sidney L

    2004-10-01

    Wall expansion in tip-growing cells shows variations according to position and direction. In Medicago truncatula root hairs, wall expansion exhibits a strong meridional gradient with a maximum near the pole of the cell. Root hair cells also show a striking expansion anisotropy, i.e. over most of the dome surface the rate of circumferential wall expansion exceeds the rate of meridional expansion. Concomitant measurements of expansion rates and wall stresses reveal that the extensibility of the cell wall must vary abruptly along the meridian of the cell to maintain the gradient of wall expansion. To determine the mechanical basis of expansion anisotropy, we compared measurements of wall expansion with expansion patterns predicted from wall structural models that were either fully isotropic, transversely isotropic, or fully anisotropic. Our results indicate that a model based on a transversely isotropic wall structure can provide a good fit of the data although a fully anisotropic model offers the best fit overall. We discuss how such mechanical properties could be controlled at the microstructural level.

  13. PROBING THE EXPANSION HISTORY OF THE UNIVERSE BY MODEL-INDEPENDENT RECONSTRUCTION FROM SUPERNOVAE AND GAMMA-RAY BURST MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Chao-Jun; Li, Xin-Zhou, E-mail: fengcj@shnu.edu.cn, E-mail: kychz@shnu.edu.cn

    To probe the late evolution history of the universe, we adopt two kinds of optimal basis systems. One of them is constructed by performing the principle component analysis, and the other is built by taking the multidimensional scaling approach. Cosmological observables such as the luminosity distance can be decomposed into these basis systems. These basis systems are optimized for different kinds of cosmological models that are based on different physical assumptions, even for a mixture model of them. Therefore, the so-called feature space that is projected from the basis systems is cosmological model independent, and it provides a parameterization for studying and reconstructing themore » Hubble expansion rate from the supernova luminosity distance and even gamma-ray burst (GRB) data with self-calibration. The circular problem when using GRBs as cosmological candles is naturally eliminated in this procedure. By using the Levenberg–Marquardt technique and the Markov Chain Monte Carlo method, we perform an observational constraint on this kind of parameterization. The data we used include the “joint light-curve analysis” data set that consists of 740 Type Ia supernovae and 109 long GRBs with the well-known Amati relation.« less

  14. Galaxy halo expansions: a new biorthogonal family of potential-density pairs

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn; Erkal, Denis

    2018-05-01

    Efficient expansions of the gravitational field of (dark) haloes have two main uses in the modelling of galaxies: first, they provide a compact representation of numerically constructed (or real) cosmological haloes, incorporating the effects of triaxiality, lopsidedness or other distortion. Secondly, they provide the basis functions for self-consistent field expansion algorithms used in the evolution of N-body systems. We present a new family of biorthogonal potential-density pairs constructed using the Hankel transform of the Laguerre polynomials. The lowest order density basis functions are double-power-law profiles cusped like ρ ˜ r-2+1/α at small radii with asymptotic density fall-off like ρ ˜ r-3-1/(2α). Here, α is a parameter satisfying α ≥ 1/2. The family therefore spans the range of inner density cusps found in numerical simulations, but has much shallower - and hence more realistic - outer slopes than the corresponding members of the only previously known family deduced by Zhao and exemplified by Hernquist & Ostriker. When α = 1, the lowest order density profile has an inner density cusp of ρ ˜ r-1 and an outer density slope of ρ ˜ r-3.5, similar to the famous Navarro, Frenk & White (NFW) model. For this reason, we demonstrate that our new expansion provides a more accurate representation of flattened NFW haloes than the competing Hernquist-Ostriker expansion. We utilize our new expansion by analysing a suite of numerically constructed haloes and providing the distributions of the expansion coefficients.

  15. Reduced Wiener Chaos representation of random fields via basis adaptation and projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsilifis, Panagiotis, E-mail: tsilifis@usc.edu; Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089; Ghanem, Roger G., E-mail: ghanem@usc.edu

    2017-07-15

    A new characterization of random fields appearing in physical models is presented that is based on their well-known Homogeneous Chaos expansions. We take advantage of the adaptation capabilities of these expansions where the core idea is to rotate the basis of the underlying Gaussian Hilbert space, in order to achieve reduced functional representations that concentrate the induced probability measure in a lower dimensional subspace. For a smooth family of rotations along the domain of interest, the uncorrelated Gaussian inputs are transformed into a Gaussian process, thus introducing a mesoscale that captures intermediate characteristics of the quantity of interest.

  16. Reduced Wiener Chaos representation of random fields via basis adaptation and projection

    NASA Astrophysics Data System (ADS)

    Tsilifis, Panagiotis; Ghanem, Roger G.

    2017-07-01

    A new characterization of random fields appearing in physical models is presented that is based on their well-known Homogeneous Chaos expansions. We take advantage of the adaptation capabilities of these expansions where the core idea is to rotate the basis of the underlying Gaussian Hilbert space, in order to achieve reduced functional representations that concentrate the induced probability measure in a lower dimensional subspace. For a smooth family of rotations along the domain of interest, the uncorrelated Gaussian inputs are transformed into a Gaussian process, thus introducing a mesoscale that captures intermediate characteristics of the quantity of interest.

  17. Basis set construction for molecular electronic structure theory: natural orbital and Gauss-Slater basis for smooth pseudopotentials.

    PubMed

    Petruzielo, F R; Toulouse, Julien; Umrigar, C J

    2011-02-14

    A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.

  18. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, J. A. F., E-mail: jennifer.kersten@cantab.net; Alavi, Ali, E-mail: a.alavi@fkf.mpg.de; Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart

    2016-08-07

    The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses andmore » compares two contrasting “universal” explicitly correlated approaches that fit into the FCIQMC framework: the [2]{sub R12} method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mE{sub h} to 3-4 mE{sub h}. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.« less

  19. Numerical Simulation of Energy Conversion Mechanism in Electric Explosion

    NASA Astrophysics Data System (ADS)

    Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team

    2017-06-01

    Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.

  20. New Horizontal Inequalities in German Higher Education? Social Selectivity of Studying Abroad between 1991 and 2012

    ERIC Educational Resources Information Center

    Netz, Nicolai; Finger, Claudia

    2016-01-01

    On the basis of theories of cultural reproduction and rational choice, we examine whether access to study-abroad opportunities is socially selective and whether this pattern changed during educational expansion. We test our hypotheses for Germany by combining student survey data and administrative data on higher education entry rates. We find that…

  1. Dynamics of pulsed expansion of polyatomic gas cloud: Internal-translational energy transfer contribution

    NASA Astrophysics Data System (ADS)

    Morozov, A. A.

    2007-08-01

    Polyatomic gas cloud expansion under pulsed laser evaporation is studied on the basis of one-dimensional direct Monte Carlo simulation. The effect of rotational-translational (RT) and vibrational-translational (VT) energy transfer on dynamics of the cloud expansion is considered. Efficiency of VT energy transfer dependence on the amount of evaporated matter is discussed. To analyze VT energy transfer impact, the number of collisions per molecule during the expansion is calculated. The data are generally in good agreement with available analytical and numerical predictions. Dependencies of the effective number of vibrational degrees of freedom on the number of vibrationally inelastic collisions are obtained and generalized. The importance of the consideration of energy transfer from the internal degrees of freedom to the translational ones is illustrated by an example of pulsed laser evaporation of polytetrafluoroethylene (PTFE). Based on the obtained regularities, analysis of experimental data on pulsed laser evaporation of aniline is performed. The calculated aniline vibrational temperature correlates well with the experimentally measured one.

  2. A STUDY OF THE LUMBER INDUSTRY IN IDAHO, PART III.

    ERIC Educational Resources Information Center

    LOUDERMILK, KENNETH M.; AND OTHERS

    DATA COLLECTED FROM 27 LUMBER MILLS THROUGH 131 SUPERVISOR INTERVIEWS AND 1,192 EMPLOYEE QUESTIONNAIRES IDENTIFIED 188 JOB TITLES FOR 3,871 EMPLOYEES. EMPLOYMENT EXPANSION WAS PLANNED BY 36 FIRMS, AND A DECREASE WAS EXPECTED BY 20 FIRMS. MOST FIRMS MADE EMPLOYMENT PROJECTIONS ON AN ANNUAL BASIS, REFLECTING THEIR ANNUAL BUDGET PRACTICES.…

  3. Basis Expansion Approaches for Regularized Sequential Dictionary Learning Algorithms With Enforced Sparsity for fMRI Data Analysis.

    PubMed

    Seghouane, Abd-Krim; Iqbal, Asif

    2017-09-01

    Sequential dictionary learning algorithms have been successfully applied to functional magnetic resonance imaging (fMRI) data analysis. fMRI data sets are, however, structured data matrices with the notions of temporal smoothness in the column direction. This prior information, which can be converted into a constraint of smoothness on the learned dictionary atoms, has seldomly been included in classical dictionary learning algorithms when applied to fMRI data analysis. In this paper, we tackle this problem by proposing two new sequential dictionary learning algorithms dedicated to fMRI data analysis by accounting for this prior information. These algorithms differ from the existing ones in their dictionary update stage. The steps of this stage are derived as a variant of the power method for computing the SVD. The proposed algorithms generate regularized dictionary atoms via the solution of a left regularized rank-one matrix approximation problem where temporal smoothness is enforced via regularization through basis expansion and sparse basis expansion in the dictionary update stage. Applications on synthetic data experiments and real fMRI data sets illustrating the performance of the proposed algorithms are provided.

  4. Numerical Solution of the Problem of the Expansion of the Universe in the Schwarzschild Metric

    NASA Astrophysics Data System (ADS)

    Vasenin, I. M.; Goiko, V. L.

    2018-02-01

    The statement and solution of the problem of the expansion of the Universe in nonstationary spherically-symmetric coordinates in the Schwarzschild metric are considered without pressure taken into account. The observational data of astronomers investigating the rates of recession of distant stars are explained on the basis of the obtained solutions.

  5. The Limitations of Term Co-Occurrence Data for Query Expansion in Document Retrieval Systems.

    ERIC Educational Resources Information Center

    Peat, Helen J.; Willett, Peter

    1991-01-01

    Identifies limitations in the use of term co-occurrence data as a basis for automatic query expansion in natural language document retrieval systems. The use of similarity coefficients to calculate the degree of similarity between pairs of terms is explained, and frequency and discriminatory characteristics for nearest neighbors of query terms are…

  6. Structural reanalysis via a mixed method. [using Taylor series for accuracy improvement

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1975-01-01

    A study is made of the approximate structural reanalysis technique based on the use of Taylor series expansion of response variables in terms of design variables in conjunction with the mixed method. In addition, comparisons are made with two reanalysis techniques based on the displacement method. These techniques are the Taylor series expansion and the modified reduced basis. It is shown that the use of the reciprocals of the sizing variables as design variables (which is the natural choice in the mixed method) can result in a substantial improvement in the accuracy of the reanalysis technique. Numerical results are presented for a space truss structure.

  7. Galaxy bias and primordial non-Gaussianity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian, E-mail: assassi@ias.edu, E-mail: D.D.Baumann@uva.nl, E-mail: fabians@MPA-Garching.MPG.DE

    2015-12-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin ofmore » any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.« less

  8. 3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny

    2018-01-01

    We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.

  9. Unpacking Teacher-Researcher Collaboration with Three Theoretical Frameworks: A Case of Expansive Learning Activity?

    ERIC Educational Resources Information Center

    Gade, Sharada

    2015-01-01

    Long association with a mathematics teacher at a Grade 4-6 school in Sweden, is basis for reporting a case of teacher-researcher collaboration. Three theoretical frameworks used to study its development over time are relational knowing, relational agency and cogenerative dialogue. While relational knowing uses narrative perspectives to explore the…

  10. Impacts of Scarification and Degermination on the Expansion Characteristics of Select Quinoa Varieties during Extrusion Processing.

    PubMed

    Aluwi, Nicole A; Gu, Bon-Jae; Dhumal, Gaurav S; Medina-Meza, Ilce G; Murphy, Kevin M; Ganjyal, Girish M

    2016-12-01

    Extrusion of 2 quinoa varieties, Cherry Vanilla and Black (scarified and unscarified) and a mixed quinoa variety, Bolivian Royal (scarified and degermed) were studied for their extrusion characteristics. A corotating twin-screw extruder with a 3 mm round die was used. Feed moisture contents of 15%, 20%, and 25% (wet basis) were studied. The extruder barrel temperature was kept constant at 140 °C and screw speeds were varied from 100, 150, and 200 revolutions per minutes. Process responses (specific mechanical energy, back pressure, and torque) and product responses (expansion ratio, unit density, and water absorption index/water solubility index) were evaluated. The degermed Bolivian Royal showed the highest expansion in comparison to all other varieties, attributed to its significantly low levels of fat, fiber, and protein. The scarified Cherry Vanilla resulted in the lowest expansion ratio. This was attributed to the increase in the protein content from the removal of the outer layer. The results indicate that all the varieties performed differently in the extrusion process due to their modification processes as well as the individual variety characteristics. © 2016 Institute of Food Technologists®.

  11. Min-Max Spaces and Complexity Reduction in Min-Max Expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaubert, Stephane, E-mail: Stephane.Gaubert@inria.fr; McEneaney, William M., E-mail: wmceneaney@ucsd.edu

    2012-06-15

    Idempotent methods have been found to be extremely helpful in the numerical solution of certain classes of nonlinear control problems. In those methods, one uses the fact that the value function lies in the space of semiconvex functions (in the case of maximizing controllers), and approximates this value using a truncated max-plus basis expansion. In some classes, the value function is actually convex, and then one specifically approximates with suprema (i.e., max-plus sums) of affine functions. Note that the space of convex functions is a max-plus linear space, or moduloid. In extending those concepts to game problems, one finds amore » different function space, and different algebra, to be appropriate. Here we consider functions which may be represented using infima (i.e., min-max sums) of max-plus affine functions. It is natural to refer to the class of functions so represented as the min-max linear space (or moduloid) of max-plus hypo-convex functions. We examine this space, the associated notion of duality and min-max basis expansions. In using these methods for solution of control problems, and now games, a critical step is complexity-reduction. In particular, one needs to find reduced-complexity expansions which approximate the function as well as possible. We obtain a solution to this complexity-reduction problem in the case of min-max expansions.« less

  12. Tolerance analysis of optical telescopes using coherent addition of wavefront errors

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    A near diffraction-limited telescope requires that tolerance analysis be done on the basis of system wavefront error. One method of analyzing the wavefront error is to represent the wavefront error function in terms of its Zernike polynomial expansion. A Ramsey-Korsch ray trace package, a computer program that simulates the tracing of rays through an optical telescope system, was expanded to include the Zernike polynomial expansion up through the fifth-order spherical term. An option to determine a 3 dimensional plot of the wavefront error function was also included in the Ramsey-Korsch package. Several assimulation runs were analyzed to determine the particular set of coefficients in the Zernike expansion that are effected by various errors such as tilt, decenter and despace. A 3 dimensional plot of each error up through the fifth-order spherical term was also included in the study. Tolerance analysis data are presented.

  13. Magic bases, metric ansaetze and generalized graph theories in the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, M.B.; Obers, N.A.

    1991-11-15

    The authors define a class of magic Lie group bases in which the Virasoro master equation admits a class of simple metric ansaetze (g{sub metric}), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of So(n) and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). A new phenomenon is observed in the high-level comparison of SU(n){sub metric}: Due to the trigonometricmore » structure constants of the Pauli-like basis, irrational central charge is clearly visible at finite order of the expansion. They also define the sine-area graphs of SU(n), which label the conformal field theories of SU(n){sub metric} and note that, in a similar fashion, each magic basis of g defines a generalize graph theory on g which labels the conformal field theories of g{sub metric}.« less

  14. Boson expansion based on the extended commutator method in the Tamm-Dancoff representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedrocchi, V.G.; Tamura, T.

    1983-07-01

    Formal aspects of boson expansions in the Tamm-Dancoff representation are investigated in detail. This is carried out in the framework of the extended commutator method by solving in complete generality the coefficient equations, searching for Hermitian as well as non-Hermitian boson expansions. The solutions for the expansion coefficients are obtained in a new form, called the square root realization, which is then applied to carry out an analysis of the relationship between the type of expansion and the boson space in which the expansion is defined. It is shown that this new realization is reduced to various well-known boson theoriesmore » when the boson space is chosen in an appropriate manner. Further discussed, still on the basis of the square root realization, is the equivalence, on a practical level, of a few boson expansion approaches when the Tamm-Dancoff space is truncated to a single quadrupole collective component.« less

  15. Accurate potential energy surface for the 1(2)A' state of NH(2): scaling of external correlation versus extrapolation to the complete basis set limit.

    PubMed

    Li, Y Q; Varandas, A J C

    2010-09-16

    An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system which is suitable for dynamics and kinetics studies of the reactions of N(2D) + H2(X1Sigmag+) NH(a1Delta) + H(2S) and their isotopomeric variants. It is obtained by fitting ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set, after slightly correcting semiempirically the dynamical correlation using the double many-body expansion-scaled external correlation method. The function so obtained is compared in detail with a potential energy surface of the same family obtained by extrapolating the calculated raw energies to the complete basis set limit. The topographical features of the novel global potential energy surface are examined in detail and found to be in general good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel function has been built so as to become degenerate at linear geometries with the ground-state potential energy surface of A'' symmetry reported by our group, where both form a Renner-Teller pair.

  16. Evidence for collective expansion in light-particle emission following Au+Au collisions at 100, 150 and 250 A·MeV

    NASA Astrophysics Data System (ADS)

    Poggi, G.; Pasquali, G.; Bini, M.; Maurenzig, P.; Olmi, A.; Taccetti, N.; Alard, J. P.; Amouroux, V.; Basrak, Z.; Bastid, N.; Belayev, I. M.; Berger, L.; Blaich, Th.; Boussange, S.; Buta, A.; Čaplar, R.; Cerruti, C.; Cindro, N.; Coffin, J. P.; Donà, R.; Dupieux, P.; Dželalija, M.; Erö, J.; Fan, Z. G.; Fintz, P.; Fodor, Z.; Fraysse, L.; Freifelder, R.; Frolov, S.; Gobbi, A.; Grigorian, Y.; Guillaume, G.; Herrmann, N.; Hildenbrand, K. D.; Hölbling, S.; Houari, A.; Jeong, S. C.; Jundt, F.; Kecskemeti, J.; Koncz, P.; Korchagin, Y.; Kotte, R.; Krämer, M.; Kuhn, C.; Ibnouzahir, M.; Legrand, I.; Lebedev, A.; Maguire, C.; Manko, V.; Mgebrishvili, G.; Mösner, J.; Moisa, D.; Montarou, G.; Montbel, I.; Morel, P.; Neubert, W.; Pelte, D.; Petrovici, M.; Rami, F.; Ramillien, V.; Reisdorf, W.; Sadchikov, A.; Schüll, D.; Seres, Z.; Sikora, B.; Simion, V.; Smolyankin, S.; Sodan, U.; The, K.; Tezkratt, R.; Trzaska, M.; Vasiliev, M. A.; Wagner, P.; Wessels, J. P.; Wienold, T.; Wilhelmi, Z.; Wohlfarth, D.; Zhilin, A. V.; Danielewicz, P.; FOPI Collaboration

    1995-02-01

    Light-particle emission from Au+Au collisions has been studied in the bombarding-energy range 100-250 A·MeV, using ΔE- ER telescopes in coincidence with the FOPI detector in its phase I configuration. Center-of-mass energy spectra have been measured for Z = 1,2 isotopes emitted in central collisions at CM polar angles between 60° and 90°. Evidence for a collective expansion is reported, on the basis of the mean kinetic energies of hydrogen isotopes. Comparison is presented with statistical calculations (WIX code). For CM kinetic energy spectra, fair agreement is found between data and a recently developed transport model.

  17. Expansion of all multitrace tree level EYM amplitudes

    NASA Astrophysics Data System (ADS)

    Du, Yi-Jian; Feng, Bo; Teng, Fei

    2017-12-01

    In this paper, we investigate the expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes. First, we propose two types of recursive expansions of tree level EYM amplitudes with an arbitrary number of gluons, gravitons and traces by those amplitudes with fewer traces or/and gravitons. Then we give many support evidence, including proofs using the Cachazo-He-Yuan (CHY) formula and Britto-Cachazo-Feng-Witten (BCFW) recursive relation. As a byproduct, two types of generalized BCJ relations for multitrace EYM are further proposed, which will be useful in the BCFW proof. After one applies the recursive expansions repeatedly, any multitrace EYM amplitudes can be given in the Kleiss-Kuijf (KK) basis of tree level color ordered Yang-Mills (YM) amplitudes. Thus the Bern-Carrasco-Johansson (BCJ) numerators, as the expansion coefficients, for all multitrace EYM amplitudes are naturally constructed.

  18. Educational Planning for the Future Development of Pasco-Hernando Community College.

    ERIC Educational Resources Information Center

    McGuffey, C. W.; And Others

    The purpose of this study was to develop a long-range educational plan for the future development and expansion of the current program and facilities of Pasco-Hernando Community College. An analysis has been made of available data and related information as a basis for the preparation of a generalized plan to guide the future development of the…

  19. EEG-distributed inverse solutions for a spherical head model

    NASA Astrophysics Data System (ADS)

    Riera, J. J.; Fuentes, M. E.; Valdés, P. A.; Ohárriz, Y.

    1998-08-01

    The theoretical study of the minimum norm solution to the MEG inverse problem has been carried out in previous papers for the particular case of spherical symmetry. However, a similar study for the EEG is remarkably more difficult due to the very complicated nature of the expression relating the voltage differences on the scalp to the primary current density (PCD) even for this simple symmetry. This paper introduces the use of the electric lead field (ELF) on the dyadic formalism in the spherical coordinate system to overcome such a drawback using an expansion of the ELF in terms of longitudinal and orthogonal vector fields. This approach allows us to represent EEG Fourier coefficients on a 2-sphere in terms of a current multipole expansion. The choice of a suitable basis for the Hilbert space of the PCDs on the brain region allows the current multipole moments to be related by spatial transfer functions to the PCD spectral coefficients. Properties of the most used distributed inverse solutions are explored on the basis of these results. Also, a part of the ELF null space is completely characterized and those spherical components of the PCD which are possible silent candidates are discussed.

  20. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17.

    PubMed

    Gao, Rui; Matsuura, Tohru; Coolbaugh, Mary; Zühlke, Christine; Nakamura, Koichiro; Rasmussen, Astrid; Siciliano, Michael J; Ashizawa, Tetsuo; Lin, Xi

    2008-02-01

    Trinucleotide repeat expansions are dynamic mutations causing many neurological disorders, and their instability is influenced by multiple factors. Repeat configuration seems particularly important, and pure repeats are thought to be more unstable than interrupted repeats. But direct evidence is still lacking. Here, we presented strong support for this hypothesis from our studies on spinocerebellar ataxia type 17 (SCA17). SCA17 is a typical polyglutamine disease caused by CAG repeat expansion in TBP (TATA binding protein), and is unique in that the pure expanded polyglutamine tract is coded by either a simple configuration with long stretches of pure CAGs or a complex configuration containing CAA interruptions. By small pool PCR (SP-PCR) analysis of blood DNA from SCA17 patients of distinct racial backgrounds, we quantitatively assessed the instability of these two types of expanded alleles coding similar length of polyglutamine expansion. Mutation frequency in patients harboring pure CAG repeats is 2-3 folds of those with CAA interruptions. Interestingly, the pure CAG repeats showed both expansion and deletion while the interrupted repeats exhibited mostly deletion at a significantly lower frequency. These data strongly suggest that repeat configuration is a critical determinant for instability, and CAA interruptions might serve as a limiting element for further expansion of CAG repeats in SCA17 locus, suggesting a molecular basis for lack of anticipation in SCA17 families with interrupted CAG expansion.

  1. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  2. Accurate expansion of cylindrical paraxial waves for its straightforward implementation in electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-01-01

    The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.

  3. A simple procedure for construction of the orthonormal basis vectors of irreducible representations of O(5) in the OT (3) ⊗ON (2) basis

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Draayer, J. P.

    2018-06-01

    A simple and effective algebraic isospin projection procedure for constructing orthonormal basis vectors of irreducible representations of O (5) ⊃OT (3) ⊗ON (2) from those in the canonical O (5) ⊃ SUΛ (2) ⊗ SUI (2) basis is outlined. The expansion coefficients are components of null space vectors of the projection matrix with four nonzero elements in each row in general. Explicit formulae for evaluating OT (3)-reduced matrix elements of O (5) generators are derived.

  4. Investigation of advanced UQ for CRUD prediction with VIPRE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Michael Scott

    2011-09-01

    This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. It demonstrates the application of 'advanced UQ,' in particular dimension-adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk River unidentified deposit), which can lead to CIPS (CRUD induced power shift). Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) in L{sup 2} (i.e., possessing finite variance), exponential convergence rates can be obtained under order refinementmore » for integrated statistical quantities of interest such as mean, variance, and probability. Two stochastic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic collocation (SC), which forms multivariate interpolation polynomials for known coefficients. Within the DAKOTA project, recent research in stochastic expansion methods has focused on automated polynomial order refinement ('p-refinement') of expansions to support scalability to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most important dimensions of the input space, the applicability of these methods can be extended from O(10{sup 0})-O(10{sup 1}) random variables to O(10{sup 2}) and beyond, depending on the degree of anisotropy (i.e., the extent to which randominput variables have differing degrees of influence on the statistical quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation tools for two different plant models of differing random dimension, anisotropy, and smoothness.« less

  5. Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins.

    PubMed

    Li Manni, Giovanni; Smart, Simon D; Alavi, Ali

    2016-03-08

    A novel stochastic Complete Active Space Self-Consistent Field (CASSCF) method has been developed and implemented in the Molcas software package. A two-step procedure is used, in which the CAS configuration interaction secular equations are solved stochastically with the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) approach, while orbital rotations are performed using an approximated form of the Super-CI method. This new method does not suffer from the strong combinatorial limitations of standard MCSCF implementations using direct schemes and can handle active spaces well in excess of those accessible to traditional CASSCF approaches. The density matrix formulation of the Super-CI method makes this step independent of the size of the CI expansion, depending exclusively on one- and two-body density matrices with indices restricted to the relatively small number of active orbitals. No sigma vectors need to be stored in memory for the FCIQMC eigensolver--a substantial gain in comparison to implementations using the Davidson method, which require three or more vectors of the size of the CI expansion. Further, no orbital Hessian is computed, circumventing limitations on basis set expansions. Like the parent FCIQMC method, the present technique is scalable on massively parallel architectures. We present in this report the method and its application to the free-base porphyrin, Mg(II) porphyrin, and Fe(II) porphyrin. In the present study, active spaces up to 32 electrons and 29 orbitals in orbital expansions containing up to 916 contracted functions are treated with modest computational resources. Results are quite promising even without accounting for the correlation outside the active space. The systems here presented clearly demonstrate that large CASSCF calculations are possible via FCIQMC-CASSCF without limitations on basis set size.

  6. Management Advisory Services by CPA’s. A Survey of Current Expansion of Sole Proprietor Professional Practice Units.

    DTIC Science & Technology

    1981-12-01

    where more detailed study is required Accession For NTIS (2A&I DTIC V.BE By, Difit r Ii- uti(III/ @Avm ilabllity Codes Avail and/or VDV Dst Special...public advertizing and enhancement of knowledge skills and areas where more detailed study is required. 4 TABLE OF CONTENTS I. INTRODUCTION...Direction for Academic Development ......... 15 5. Basis for Professional Enhancement ......... 15 6. Replication of Previous Study Questions

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCEmore » allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.« less

  8. State Support of Higher Education: From Expansion to Steady State to Decline, 1969 to 1989, Including an Illinois Case Study. MacArthur/Spencer Series Number 9.

    ERIC Educational Resources Information Center

    Hines, Edward R.; And Others

    Trends in state higher education funding over a 20-year period from 1969 to 1989 were studied. The four analysis objectives were to: examine aggregate state tax appropriations for higher education annually from 1969 to 1989 in the 50 states; analyze state tax appropriations in each state on a per capita basis; compare state tax appropriations per…

  9. Density-functional expansion methods: Grand challenges.

    PubMed

    Giese, Timothy J; York, Darrin M

    2012-03-01

    We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian.

  10. Investigation of timing effects in modified composite quadrupolar echo pulse sequences by mean of average Hamiltonian theory

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane

    2018-01-01

    The utility of the average Hamiltonian theory and its antecedent the Magnus expansion is presented. We assessed the concept of convergence of the Magnus expansion in quadrupolar spectroscopy of spin-1 via the square of the magnitude of the average Hamiltonian. We investigated this approach for two specific modified composite pulse sequences: COM-Im and COM-IVm. It is demonstrated that the size of the square of the magnitude of zero order average Hamiltonian obtained on the appropriated basis is a viable approach to study the convergence of the Magnus expansion. The approach turns to be efficient in studying pulse sequences in general and can be very useful to investigate coherent averaging in the development of high resolution NMR technique in solids. This approach allows comparing theoretically the two modified composite pulse sequences COM-Im and COM-IVm. We also compare theoretically the current modified composite sequences (COM-Im and COM-IVm) to the recently published modified composite pulse sequences (MCOM-I, MCOM-IV, MCOM-I_d, MCOM-IV_d).

  11. Single crystals of (FeIn{sub 2}S{sub 4}){sub x} · (CuIn{sub 5}S{sub 8}){sub 1–x} alloys: Crystal structure, nuclear gamma resonance spectra, and thermal expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodnar, I. V., E-mail: chemzav@bsuir.by; Zhafar, M. A.; Kasyuk, Yu. V.

    FeIn{sub 2}S{sub 4} and CuIn{sub 5}S{sub 8} compounds and (FeIn{sub 2}S{sub 4}){sub x} · (CuIn{sub 5}S{sub 8}){sub 1–x} alloy single crystals are grown by planar crystallization. It is shown that both of the initial FeIn{sub 2}S{sub 4} and CuIn{sub 5}S{sub 8} compounds and alloys on their basis crystallize with the formation of the cubic spinel structure. It is established that the unit-cell parameter a linearly varies with the composition parameter x. By means of nuclear gamma resonance spectroscopy in the transmission mode of measurements, the local states of iron ions in the alloys are studied. For the single crystals grownmore » in the study, thermal expansion is explored using the dilatometry technique, the thermal-expansion coefficients are determined, and the Debye temperature and rms (root-mean-square) dynamic displacements are calculated.« less

  12. Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method.

    PubMed

    Acevedo, Ramiro; Lombardini, Richard; Turner, Matthew A; Kinsey, James L; Johnson, Bruce R

    2008-02-14

    The conjugate symmetric Lanczos (CSL) method is introduced for the solution of the time-dependent Schrodinger equation. This remarkably simple and efficient time-domain algorithm is a low-order polynomial expansion of the quantum propagator for time-independent Hamiltonians and derives from the time-reversal symmetry of the Schrodinger equation. The CSL algorithm gives forward solutions by simply complex conjugating backward polynomial expansion coefficients. Interestingly, the expansion coefficients are the same for each uniform time step, a fact that is only spoiled by basis incompleteness and finite precision. This is true for the Krylov basis and, with further investigation, is also found to be true for the Lanczos basis, important for efficient orthogonal projection-based algorithms. The CSL method errors roughly track those of the short iterative Lanczos method while requiring fewer matrix-vector products than the Chebyshev method. With the CSL method, only a few vectors need to be stored at a time, there is no need to estimate the Hamiltonian spectral range, and only matrix-vector and vector-vector products are required. Applications using localized wavelet bases are made to harmonic oscillator and anharmonic Morse oscillator systems as well as electrodynamic pulse propagation using the Hamiltonian form of Maxwell's equations. For gold with a Drude dielectric function, the latter is non-Hermitian, requiring consideration of corrections to the CSL algorithm.

  13. Variational treatment of electron-polyatomic-molecule scattering calculations using adaptive overset grids

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Lucchese, Robert R.; McCurdy, C. William

    2017-11-01

    The complex Kohn variational method for electron-polyatomic-molecule scattering is formulated using an overset-grid representation of the scattering wave function. The overset grid consists of a central grid and multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated application of the free-particle Green's function and potential Ĝ0+V ̂ on the overset grid in a Born-Arnoldi solution of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and has rapid convergence properties, in both the number of numerical basis functions employed and the number of partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the free-particle Green's function and exchange operators (to which no approximation is made) is also described.

  14. Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated tumor cells for adoptive immunotherapy.

    PubMed

    Lim, Seon Ah; Kim, Tae-Jin; Lee, Jung Eun; Sonn, Chung Hee; Kim, Kwanghee; Kim, Jiyoung; Choi, Jong Gwon; Choi, Il-Kyu; Yun, Chae-Ok; Kim, Jae-Hong; Yee, Cassian; Kumar, Vinay; Lee, Kyung-Mi

    2013-04-15

    Adoptive natural killer (NK) cell therapy may offer an effective treatment regimen for cancer patients whose disease is refractory to conventional therapy. NK cells can kill a wide range of tumor cells by patterned recognition of target ligands. We hypothesized that tumor targets sensitive to NK lysis would drive vigorous expansion of NK cells from human peripheral blood mononuclear cells (PBMC). Here, we provide the basis for developing a novel ex vivo expansion process. By screening class I-negative or -mismatched tumor cell lines we identified a Jurkat T-lymphoblast subline termed KL-1, which was highly effective in specifically expanding NK cells. KL-1 addition to PBMC cultures achieved approximately 100-fold expansion of NK cells with nearly 90% purity, accompanied by reciprocal inhibition of T-cell growth. Marked elevations in expression of activation receptors, natural cytotoxicity receptors (NKp30, NKp44), and adhesion molecules (CD11a, ICAM-1) were associated with high tumor-lytic capacity, in both in vitro and in vivo models. KL-1-mediated expansion of NK cells was contact dependent and required interactions with CD16, the Fcγ receptor on NK cells, with ligands that are expressed on B cells. Indeed, B-cell depletion during culture abrogated selective NK cell expansion, while addition of EBV-transformed B cells further augmented NK expansion to approximately 740-fold. Together, our studies define a novel method for efficient activation of human NK cells that employs KL-1-lysed tumor cells and cocultured B cells, which drive a robust expansion of potent antitumor effector cells that will be useful for clinical evaluation. ©2012 AACR.

  15. Locally smeared operator product expansions in scalar field theory

    DOE PAGES

    Monahan, Christopher; Orginos, Kostas

    2015-04-01

    We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore » operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less

  16. Expansion of Tabulated Scattering Matrices in Generalized Spherical Functions

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Yang, Ping

    2016-01-01

    An efficient way to solve the vector radiative transfer equation for plane-parallel turbid media is to Fourier-decompose it in azimuth. This methodology is typically based on the analytical computation of the Fourier components of the phase matrix and is predicated on the knowledge of the coefficients appearing in the expansion of the normalized scattering matrix in generalized spherical functions. Quite often the expansion coefficients have to be determined from tabulated values of the scattering matrix obtained from measurements or calculated by solving the Maxwell equations. In such cases one needs an efficient and accurate computer procedure converting a tabulated scattering matrix into the corresponding set of expansion coefficients. This short communication summarizes the theoretical basis of this procedure and serves as the user guide to a simple public-domain FORTRAN program.

  17. Incorporating the 'Theory of Planned Behavior' into personalized healthcare behavior change research: a call to action.

    PubMed

    Horne, Justine; Madill, Janet; Gilliland, Jason

    2017-11-01

    The 'Theory of Planned Behavior' (TPB) has been tested and validated in the scientific literature across multiple disciplines and is arguably the most widely accepted theory among behavior change academics. Despite this widespread acceptability, the TPB has yet to be incorporated into personalized healthcare behavior change research. Several prominent personalized healthcare researchers suggest that personalizing healthcare recommendations have a positive impact on changes in lifestyle habits. However, research in this area has demonstrated conflicting findings. We provide a scientific and theoretical basis to support a proposed expansion of the TPB to include personalization, and call to action-personalized healthcare behavior change researchers to test this expansion. Specific recommendations for study design are included.

  18. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage.

    PubMed

    Chaplin-Kramer, Rebecca; Sharp, Richard P; Mandle, Lisa; Sim, Sarah; Johnson, Justin; Butnar, Isabela; Milà I Canals, Llorenç; Eichelberger, Bradley A; Ramler, Ivan; Mueller, Carina; McLachlan, Nikolaus; Yousefi, Anahita; King, Henry; Kareiva, Peter M

    2015-06-16

    The agricultural expansion and intensification required to meet growing food and agri-based product demand present important challenges to future levels and management of biodiversity and ecosystem services. Influential actors such as corporations, governments, and multilateral organizations have made commitments to meeting future agricultural demand sustainably and preserving critical ecosystems. Current approaches to predicting the impacts of agricultural expansion involve calculation of total land conversion and assessment of the impacts on biodiversity or ecosystem services on a per-area basis, generally assuming a linear relationship between impact and land area. However, the impacts of continuing land development are often not linear and can vary considerably with spatial configuration. We demonstrate what could be gained by spatially explicit analysis of agricultural expansion at a large scale compared with the simple measure of total area converted, with a focus on the impacts on biodiversity and carbon storage. Using simple modeling approaches for two regions of Brazil, we find that for the same amount of land conversion, the declines in biodiversity and carbon storage can vary two- to fourfold depending on the spatial pattern of conversion. Impacts increase most rapidly in the earliest stages of agricultural expansion and are more pronounced in scenarios where conversion occurs in forest interiors compared with expansion into forests from their edges. This study reveals the importance of spatially explicit information in the assessment of land-use change impacts and for future land management and conservation.

  19. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage

    PubMed Central

    Chaplin-Kramer, Rebecca; Sharp, Richard P.; Mandle, Lisa; Sim, Sarah; Johnson, Justin; Butnar, Isabela; Milà i Canals, Llorenç; Eichelberger, Bradley A.; Ramler, Ivan; Mueller, Carina; McLachlan, Nikolaus; Yousefi, Anahita; King, Henry; Kareiva, Peter M.

    2015-01-01

    The agricultural expansion and intensification required to meet growing food and agri-based product demand present important challenges to future levels and management of biodiversity and ecosystem services. Influential actors such as corporations, governments, and multilateral organizations have made commitments to meeting future agricultural demand sustainably and preserving critical ecosystems. Current approaches to predicting the impacts of agricultural expansion involve calculation of total land conversion and assessment of the impacts on biodiversity or ecosystem services on a per-area basis, generally assuming a linear relationship between impact and land area. However, the impacts of continuing land development are often not linear and can vary considerably with spatial configuration. We demonstrate what could be gained by spatially explicit analysis of agricultural expansion at a large scale compared with the simple measure of total area converted, with a focus on the impacts on biodiversity and carbon storage. Using simple modeling approaches for two regions of Brazil, we find that for the same amount of land conversion, the declines in biodiversity and carbon storage can vary two- to fourfold depending on the spatial pattern of conversion. Impacts increase most rapidly in the earliest stages of agricultural expansion and are more pronounced in scenarios where conversion occurs in forest interiors compared with expansion into forests from their edges. This study reveals the importance of spatially explicit information in the assessment of land-use change impacts and for future land management and conservation. PMID:26082547

  20. Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory

    NASA Astrophysics Data System (ADS)

    Usselman, Austin

    We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one and two particles to be created by the new operator and converged to the Fock state expansion results. This showed the LFCC method to be a reliable replacement method for solving quantum field theory problems.

  1. Medical Management of Small Abdominal Aortic Aneurysms

    PubMed Central

    Baxter, B. Timothy; Terrin, Michael C.; Dalman, Ronald L.

    2013-01-01

    Abdominal aortic aneurysm is a common condition that may be lethal when it is unrecognized. Current guidelines suggest repair as the aneurysm diameter reaches 5.0 to 5.5 cm. Most aortic aneurysms are detected incidentally when imaging is done for other purposes or through screening programs. Ninety percent of these aneurysms are below the threshold for intervention at the time of detection. A number of studies have sought to determine factors that lead to progression of aneurysmal disease that might be amenable to intervention during this period of observation. We review these studies and make recommendations for the medical management of small abdominal aortic aneurysms. On the basis of our current knowledge of the causes of aneurysm, a number of approaches have been proposed to prevent progression of aneurysmal disease. These include hemodynamic management, inhibition of inflammation, and protease inhibition. The American College of Cardiology/American Heart Association clinical practice guidelines rules of evidence have helped to define strength of evidence to support these approaches. Level A evidence (from large randomized trials) is available to indicate that observation of small aneurysms in men is safe up to a size of 5.5 cm and that propranolol does not inhibit aneurysm expansion. Level B evidence (from small randomized trials) suggests that roxithromycin or doxycycline will decrease the rate of aneurysm expansion. A number of studies agree that tobacco use is associated with an increased rate of aneurysm expansion. Level B and C evidence is available to suggest that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) may inhibit aneurysm expansion. There are animal data but no human data demonstrating that angiotensin-converting enzyme inhibitors or losartan, an angiotensin receptor blocker, will decrease the rate of AAA expansion. A pharmacological agent without important side effects that inhibited aneurysm expansion could change current approaches to aneurysm treatment. Additional studies are needed to clarify the potential role of doxycycline, roxithromycin, and statin therapy in the progression of aneurysmal disease. PMID:18391122

  2. Dual Visible Light Photoredox and Gold-Catalyzed Arylative Ring Expansion

    PubMed Central

    2015-01-01

    A combination of visible light photocatalysis and gold catalysis is applied to a ring expansion–oxidative arylation reaction. The reaction provides an entry into functionalized cyclic ketones from the coupling reaction of alkenyl and allenyl cycloalkanols with aryl diazonium salts. A mechanism involving generation of an electrophilic gold(III)–aryl intermediate is proposed on the basis of mechanistic studies, including time-resolved FT-IR spectroscopy. PMID:24730447

  3. Early and Definitive Diagnosis of Toxic Shock Syndrome by Detection of Marked Expansion of T-Cell-Receptor Vβ2-Positive T Cells

    PubMed Central

    Kato, Hidehito; Yamada, Ritsuko; Okano, Hiroya; Ohta, Hiroaki; Imanishi, Ken’ichi; Kikuchi, Ken; Totsuka, Kyouichi; Uchiyama, Takehiko

    2003-01-01

    We describe two cases of early toxic shock syndrome, caused by the superantigen produced from methicillin-resistant Staphylococcus aureus and diagnosed on the basis of an expansion of T-cell-receptor Vβ2-positive T cells. One case-patient showed atypical symptoms. Our results indicate that diagnostic systems incorporating laboratory techniques are essential for rapid, definitive diagnosis of toxic shock syndrome. PMID:12643839

  4. The Earth's Magnetic Field: A Simple Measurement of Its Strength

    ERIC Educational Resources Information Center

    Chamberlain, William G., III

    1978-01-01

    This laboratory exercise for junior or senior high school students forms a basis for expansion of concepts, offers opportunities for analytical thinking, and presents possibilities for independent thinking. (BB)

  5. Dynamical eigenfunction decomposition of turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Ball, K. S.; Sirovich, L.; Keefe, L. R.

    1991-01-01

    The results of an analysis of low-Reynolds-number turbulent channel flow based on the Karhunen-Loeve (K-L) expansion are presented. The turbulent flow field is generated by a direct numerical simulation of the Navier-Stokes equations at a Reynolds number Re(tau) = 80 (based on the wall shear velocity and channel half-width). The K-L procedure is then applied to determine the eigenvalues and eigenfunctions for this flow. The random coefficients of the K-L expansion are subsequently found by projecting the numerical flow field onto these eigenfunctions. The resulting expansion captures 90 percent of the turbulent energy with significantly fewer modes than the original trigonometric expansion. The eigenfunctions, which appear either as rolls or shearing motions, possess viscous boundary layers at the walls and are much richer in harmonics than the original basis functions.

  6. Generalization of multifractal theory within quantum calculus

    NASA Astrophysics Data System (ADS)

    Olemskoi, A.; Shuda, I.; Borisyuk, V.

    2010-03-01

    On the basis of the deformed series in quantum calculus, we generalize the partition function and the mass exponent of a multifractal, as well as the average of a random variable distributed over a self-similar set. For the partition function, such expansion is shown to be determined by binomial-type combinations of the Tsallis entropies related to manifold deformations, while the mass exponent expansion generalizes the known relation τq=Dq(q-1). We find the equation for the set of averages related to ordinary, escort, and generalized probabilities in terms of the deformed expansion as well. Multifractals related to the Cantor binomial set, exchange currency series, and porous-surface condensates are considered as examples.

  7. Locally-smeared operator product expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monahan, Christopher; Orginos, Kostantinos

    2014-12-01

    We propose a "locally-smeared Operator Product Expansion" (sOPE) to decompose non-local operators in terms of a basis of locally-smeared operators. The sOPE formally connects nonperturbative matrix elements of smeared degrees of freedom, determined numerically using the gradient flow, to non-local operators in the continuum. The nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale prevents a simple connection to the standard operator product expansion and therefore requires the construction of a two-scale formalism. We demonstrate the feasibility of our approachmore » using the example of real scalar field theory.« less

  8. Communication: Density functional theory embedding with the orthogonality constrained basis set expansion procedure

    NASA Astrophysics Data System (ADS)

    Culpitt, Tanner; Brorsen, Kurt R.; Hammes-Schiffer, Sharon

    2017-06-01

    Density functional theory (DFT) embedding approaches have generated considerable interest in the field of computational chemistry because they enable calculations on larger systems by treating subsystems at different levels of theory. To circumvent the calculation of the non-additive kinetic potential, various projector methods have been developed to ensure the orthogonality of molecular orbitals between subsystems. Herein the orthogonality constrained basis set expansion (OCBSE) procedure is implemented to enforce this subsystem orbital orthogonality without requiring a level shifting parameter. This scheme is a simple alternative to existing parameter-free projector-based schemes, such as the Huzinaga equation. The main advantage of the OCBSE procedure is that excellent convergence behavior is attained for DFT-in-DFT embedding without freezing any of the subsystem densities. For the three chemical systems studied, the level of accuracy is comparable to or higher than that obtained with the Huzinaga scheme with frozen subsystem densities. Allowing both the high-level and low-level DFT densities to respond to each other during DFT-in-DFT embedding calculations provides more flexibility and renders this approach more generally applicable to chemical systems. It could also be useful for future extensions to embedding approaches combining wavefunction theories and DFT.

  9. Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers.

    PubMed

    Lu, H-J; Bernardo, R; Ohm, H W

    2003-02-01

    Popping expansion volume is the most important quality trait in popcorn ( Zea mays L.), but its genetics is not well understood. The objectives of this study were to map quantitative trait loci (QTLs) responsible for popping expansion volume in a popcorn x dent corn cross, and to compare the predicted efficiencies of phenotypic selection, marker-based selection, and marker-assisted selection for popping expansion volume. Of 259 simple sequence repeat (SSR) primer pairs screened, 83 pairs were polymorphic between the H123 (dent corn) and AG19 (popcorn) parental inbreds. Popping test data were obtained for 160 S(1) families developed from the [AG19(H123 x AG19)] BC(1) population. The heritability ( h(2)) for popping expansion volume on an S(1) family mean basis was 0.73. The presence of the gametophyte factor Ga1(s) in popcorn complicates the analysis of popcorn x dent corn crosses. But, from a practical perspective, the linkage between a favorable QTL allele and Ga1(s) in popcorn will lead to selection for the favorable QTL allele. Four QTLs, on chromosomes 1S, 3S, 5S and 5L, jointly explained 45% of the phenotypic variation. Marker-based selection for popping expansion volume would require less time and work than phenotypic selection. But due to the high h(2) of popping expansion volume, marker-based selection was predicted to be only 92% as efficient as phenotypic selection. Marker-assisted selection, which comprises index selection on phenotypic and marker scores, was predicted to be 106% as efficient as phenotypic selection. Overall, our results suggest that phenotypic selection will remain the preferred method for selection in popcorn x dent corn crosses.

  10. Hamiltonian BFV-BRST theory of closed quantum cosmological models

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.; Lyakhovich, S. L.

    1997-02-01

    We introduce and study a new discrete basis of gravity constraints by making use of harmonic expansion for closed cosmological models. The full set of constraints is split into area-preserving spatial diffeomorphisms, forming closed subalgebra, and Virasoro-like generators. Operational Hamiltonian BFV-BRST quantization is performed in the framework of perturbative expansion in the dimensionless parameter, which is a positive power of the ratio of Planckian volume to the volume of the Universe. For the (N + 1)-dimensional generalization of stationary closed Bianchi-I cosmology the nilpotency condition for the BRST operator is examined in the first quantum approximation. It turns out that a certain relationship between the dimensionality of the space and the spectrum of matter fields emerges from the requirement of quantum consistency of the model.

  11. Hamiltonian BFV-BRST theory of closed quantum cosmological models

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.; Lyakhovich, S. L.

    1997-08-01

    We introduce and study a new discrete basis of gravity constraints by making use of the harmonic expansion for closed cosmological models. The full set of constraints is split into area-preserving spatial diffeomorphisms, forming a closed subalgebra, and Virasoro-like generators. The operatorial Hamiltonian BFV-BRST quantization is performed in the framework of a perturbative expansion in the dimensionless parameter which is a positive power of the ratio of the Planck volume to the volume of the Universe. For the (N + 1) - dimensional generalization of a stationary closed Bianchi-I cosmology the nilpotency condition for the BRST operator is examined in the first quantum approximation. It turns out that a relationship between the dimensionality of the space and the spectrum of matter fields emerges from the requirement of quantum consistency of the model.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhoufei; Ouyang, Xiaolong; Gong, Zhihao

    An extended hierarchy equation of motion (HEOM) is proposed and applied to study the dynamics of the spin-boson model. In this approach, a complete set of orthonormal functions are used to expand an arbitrary bath correlation function. As a result, a complete dynamic basis set is constructed by including the system reduced density matrix and auxiliary fields composed of these expansion functions, where the extended HEOM is derived for the time derivative of each element. The reliability of the extended HEOM is demonstrated by comparison with the stochastic Hamiltonian approach under room-temperature classical ohmic and sub-ohmic noises and the multilayermore » multiconfiguration time-dependent Hartree theory under zero-temperature quantum ohmic noise. Upon increasing the order in the hierarchical expansion, the result obtained from the extended HOEM systematically converges to the numerically exact answer.« less

  13. Stress-strain state on non-thin plates and shells. Generalized theory (survey)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemish, Yu.N.; Khoma, I.Yu.

    1994-05-01

    In the first part of this survey, we examined exact and approximate analytic solutions of specific problems for thick shells and plates obtained on the basis of three-dimensional equations of the mathematical theory of elasticity. The second part of the survey, presented here, is devoted to systematization and analysis of studies made in regard to a generalized theory of plates and shells based on expansion of the sought functions into Fourier series in Legendre polynomials of the thickness coordinate. Methods are described for constructing systems of differential equations in the coefficients of the expansions (as functions of two independent variablesmore » and time), along with the corresponding boundary and initial conditions. Matters relating to substantiation of the given approach and its generalizations are also discussed.« less

  14. Suicidal ideation and suicidal behavior according to the C-SSRS in a European cohort of Huntington's disease gene expansion carriers.

    PubMed

    van Duijn, Erik; Vrijmoeth, Eslie M; Giltay, Erik J; Bernhard Landwehrmeyer, G

    2018-03-01

    Huntington's disease (HD) gene expansion carriers are at an increased risk of suicide, but so far, no studies have investigated the full spectrum of suicidality, including suicidal ideation, suicidal behavior and self-injurious behavior. We included 1451 HD gene expansion carriers (age 48.4 years (SD 14.0), 54.8% female) of the REGISTRY study of the European Huntington's Disease Network. Lifetime suicidal ideation and suicidal behavior were assessed with the Columbia-Suicidal Severity Rating Scale. Motor symptoms and disease stage were assessed using subscales of the Unified Huntington's Disease Rating Scale, and depressed mood and irritability were assessed by the Problem Behaviors Assessment. Lifetime passive suicidal ideation was reported by 21.2%. Participants in stage II showed the highest prevalence rate of suicidal ideation, while participants in stage IV/V showed the highest prevalence of suicidal behavior. A lifetime suicide attempt was reported by 6.5% of the HD gene expansion carriers. In multivariate regression analyses, both suicidal ideation and suicidal behavior were associated with a depressed mood, and to a lesser extend to irritability. Results may have been affected by denial or recall bias and no conclusions can be made about the temporal and causal relationships with depressed mood and irritability because of the cross-sectional analyses. Given the high prevalence of suicidal ideation and suicidal behavior in all stages of HD, it is important to screen HD gene expansion carriers for suicidal ideation and suicidal behavior on a regular basis in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A subleading operator basis and matching for gg → H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moult, Ian; Stewart, Iain W.; Vita, Gherardo

    The Soft Collinear Effective Theory (SCET) is a powerful framework for studying factorization of amplitudes and cross sections in QCD. While factorization at leading power has been well studied, much less is known at subleading powers in the λ << 1 expansion. In SCET subleading soft and collinear corrections to a hard scattering process are described by power suppressed operators, which must be fixed case by case, and by well established power suppressed Lagrangians, which correct the leading power dynamics of soft and collinear radiation. Here we present a complete basis of power suppressed operators for gg → H, classifyingmore » all operators which contribute to the cross section at O(λ 2), and showing how helicity selection rules significantly simplify the construction of the operator basis. We perform matching calculations to determine the tree level Wilson coefficients of our operators. These results are useful for studies of power corrections in both resummed and fixed order perturbation theory, and for understanding the factorization properties of gauge theory amplitudes and cross sections at subleading power. As one example, our basis of operators can be used to analytically compute power corrections for N -jettiness subtractions for gg induced color singlet production at the LHC.« less

  16. A subleading operator basis and matching for gg → H

    DOE PAGES

    Moult, Ian; Stewart, Iain W.; Vita, Gherardo

    2017-07-01

    The Soft Collinear Effective Theory (SCET) is a powerful framework for studying factorization of amplitudes and cross sections in QCD. While factorization at leading power has been well studied, much less is known at subleading powers in the λ << 1 expansion. In SCET subleading soft and collinear corrections to a hard scattering process are described by power suppressed operators, which must be fixed case by case, and by well established power suppressed Lagrangians, which correct the leading power dynamics of soft and collinear radiation. Here we present a complete basis of power suppressed operators for gg → H, classifyingmore » all operators which contribute to the cross section at O(λ 2), and showing how helicity selection rules significantly simplify the construction of the operator basis. We perform matching calculations to determine the tree level Wilson coefficients of our operators. These results are useful for studies of power corrections in both resummed and fixed order perturbation theory, and for understanding the factorization properties of gauge theory amplitudes and cross sections at subleading power. As one example, our basis of operators can be used to analytically compute power corrections for N -jettiness subtractions for gg induced color singlet production at the LHC.« less

  17. Nonlinear Reduced-Order Analysis with Time-Varying Spatial Loading Distributions

    NASA Technical Reports Server (NTRS)

    Prezekop, Adam

    2008-01-01

    Oscillating shocks acting in combination with high-intensity acoustic loadings present a challenge to the design of resilient hypersonic flight vehicle structures. This paper addresses some features of this loading condition and certain aspects of a nonlinear reduced-order analysis with emphasis on system identification leading to formation of a robust modal basis. The nonlinear dynamic response of a composite structure subject to the simultaneous action of locally strong oscillating pressure gradients and high-intensity acoustic loadings is considered. The reduced-order analysis used in this work has been previously demonstrated to be both computationally efficient and accurate for time-invariant spatial loading distributions, provided that an appropriate modal basis is used. The challenge of the present study is to identify a suitable basis for loadings with time-varying spatial distributions. Using a proper orthogonal decomposition and modal expansion, it is shown that such a basis can be developed. The basis is made more robust by incrementally expanding it to account for changes in the location, frequency and span of the oscillating pressure gradient.

  18. Calculation of Turbulent Expansion Processes

    NASA Technical Reports Server (NTRS)

    Tollmien, Walter

    1945-01-01

    On the basis of certain formulas recently established by L. Prandtl for the turbulent interchange of momentum in stationary flows, various cases of "free turbulence" - that is, of flows without boundary walls - are treated in the present report. Prandtl puts the apparent shearing stress introduced by the turbulent momentum interchange. This present report deals first with the mixing of an air stream of uniform velocity with the adjacent still air, than with the expansion or diffusion of an air jet in the surrounding air space.

  19. Fort Knox Trend Analysis, Encroachment Study, and Perimeter Expansion Opportunities in Support of Military Training

    DTIC Science & Technology

    2006-03-01

    converters from GIL and many other formats. Other hilites: command line argument parsing, a simple set of routines for de- veloping Xwindows graphical...Ramakrishna Nemani, James E. Vogelmann, V. Ruth Hobson, Benjamin Tuttle, Jeff Safran, Ingrid Nelson. (2001). “Development Sprawl Impacts on the... Sale Prices as a Basis for Farm Land Appraisal,” Technical Bulletin, University of Minnesota. Hosmer, D.W., and S. Lemeshow. (1989). Applied

  20. Changes in blood flow due to stented parent artery expansion in an intracranial aneurysm.

    PubMed

    Mori, Futoshi; Ohta, Makoto; Matsuzawa, Teruo

    2015-01-01

    Stent placement is thought to obstruct the inflow of blood to an aneurysm. However, we introduced parent artery expansion and demonstrated that this may reduce the blood flow by the stent. In our previous study using idealized shapes, the results showed that flow reduction was greater than 22.2%, even if the expansion rate was only 6%. Furthermore, the parent artery expansion is predominantly caused by the effect of flow reduction as compared to that of flow reduction due to the obstruction of flow under stent placement. However, a realistic shape is complex and the blood flow also becomes complex flow. It is not understood whether the results of flow in the idealized shape are reflective of flow from a realistic 3D model. Therefore, we examined the effect of parent artery expansion using a realistic model. The aim is to clarify the effects of parent artery expansion on inflow rate, wall shear stress, and oscillatory shear index. We used a patient-specific geometry of a human internal carotid artery with an aneurysm. The geometry of parent artery expansion due to oversized stent constructed based on the voronoi diagram. We performed calculations in the unsteady-state situations using constructed models. The complexity of the flow in the aneurysm decreases in case of expanded parent artery. The inflow rate decreases by 33.6% immediately after parent artery expansion alone without a stent. The effect of the parent artery expansion on flow reduction is larger than that of the obstruction flow by stent placement. In addition, wall shear stress and oscillatory shear index on the aneurysm wall decrease by change in blood flow due to the parent artery expansion. The effects of the parent artery expansion in a realistic aneurysm model with different stent lengths were evaluated on the basis of a numerical simulation. Although the flow was complex, the parent artery expansion with stent reduces the inflow to the aneurysm and wall shear stress and oscillatory shear index on the aneurysm. Therefore, we suggest that changes in the blood flow because of the parent artery expansion may be identified and, sometimes, is more effective than the obstruction flow due to the stent placement.

  1. Physical evaluation of a maize-based extruded snack with curry powder.

    PubMed

    Christofides, Vassilis; Ainsworth, Paul; Ibanoğlu, Senol; Gomes, Frances

    2004-02-01

    Response surface methodology was used to analyze the effect of screw speed (200-280 rpm), feed moisture (13.0-17.0%, wet basis), and curry powder (6.0-9.0%) on the bulk density, lateral expansion, and firmness of maize-based extruded snack with curry powder. Regression equations describing the effect of each variable on the responses were obtained. Responses were most affected by changes in feed moisture followed by screw speed and curry powder (p < 0.05). Lateral expansion increased linearly as the amount of curry powder added was increased whereas a quadratic increase was obtained in lateral expansion with decreasing feed moisture. The firmness of samples was increased with an increase in feed moisture. The bulk density of samples was increased with increasing feed moisture and screw speeds. Radial expansion was found to be a better index to measure the physical properties of the extruded product indicated by a higher correlation coefficient.

  2. Estimating the intrinsic limit of the Feller-Peterson-Dixon composite approach when applied to adiabatic ionization potentials in atoms and small molecules

    NASA Astrophysics Data System (ADS)

    Feller, David

    2017-07-01

    Benchmark adiabatic ionization potentials were obtained with the Feller-Peterson-Dixon (FPD) theoretical method for a collection of 48 atoms and small molecules. In previous studies, the FPD method demonstrated an ability to predict atomization energies (heats of formation) and electron affinities well within a 95% confidence level of ±1 kcal/mol. Large 1-particle expansions involving correlation consistent basis sets (up to aug-cc-pV8Z in many cases and aug-cc-pV9Z for some atoms) were chosen for the valence CCSD(T) starting point calculations. Despite their cost, these large basis sets were chosen in order to help minimize the residual basis set truncation error and reduce dependence on approximate basis set limit extrapolation formulas. The complementary n-particle expansion included higher order CCSDT, CCSDTQ, or CCSDTQ5 (coupled cluster theory with iterative triple, quadruple, and quintuple excitations) corrections. For all of the chemical systems examined here, it was also possible to either perform explicit full configuration interaction (CI) calculations or to otherwise estimate the full CI limit. Additionally, corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, non-adiabatic effects, and other minor factors were considered. The root mean square deviation with respect to experiment for the ionization potentials was 0.21 kcal/mol (0.009 eV). The corresponding level of agreement for molecular enthalpies of formation was 0.37 kcal/mol and for electron affinities 0.20 kcal/mol. Similar good agreement with experiment was found in the case of molecular structures and harmonic frequencies. Overall, the combination of energetic, structural, and vibrational data (655 comparisons) reflects the consistent ability of the FPD method to achieve close agreement with experiment for small molecules using the level of theory applied in this study.

  3. Approximate techniques of structural reanalysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1974-01-01

    A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.

  4. Atomic Gaussian type orbitals and their Fourier transforms via the Rayleigh expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yükçü, Niyazi

    Gaussian type orbitals (GTOs), which are one of the types of exponential type orbitals (ETOs), are used usually as basis functions in the multi-center atomic and molecular integrals to better understand physical and chemical properties of matter. In the Fourier transform method (FTM), basis functions have not simplicity to make mathematical operations, but their Fourier transforms are easier to use. In this work, with the help of FTM, Rayleigh expansion and some properties of unnormalized GTOs, we present new mathematical results for the Fourier transform of GTOs in terms of Laguerre polynomials, hypergeometric and Whittaker functions. Physical and analytical propertiesmore » of GTOs are discussed and some numerical results have been given in a table. Finally, we compare our mathematical results with the other known literature results by using a computer program and details of evaluation are presented.« less

  5. Combined effects of metal complexation and size expansion in the electronic structure of DNA base pairs

    NASA Astrophysics Data System (ADS)

    Brancolini, Giorgia; Di Felice, Rosa

    2011-05-01

    Novel DNA derivatives have been recently investigated in the pursuit of modified DNA duplexes to tune the electronic structure of DNA-based assemblies for nanotechnology applications. Size-expanded DNAs (e.g., xDNA) and metalated DNAs (M-DNA) may enhance stacking interactions and induce metallic conductivity, respectively. Here we explore possible ways of tailoring the DNA electronic structure by combining the aromatic size expansion with the metal-doping. We select the salient structures from our recent study on natural DNA pairs complexed with transition metal ions and consider the equivalent model configurations for xDNA pairs. We present the results of density functional theory electronic structure calculations of the metalated expanded base-pairs with various localized basis sets and exchange-correlation functionals. Implicit solvent and coordination water molecules are also included. Our results indicate that the effect of base expansion is largest in Ag-xGC complexes, while Cu-xGC complexes are the most promising candidates for nanowires with enhanced electron transfer and also for on-purpose modification of the DNA double-helix for signal detection.

  6. Unified theory of effective interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayanagi, Kazuo, E-mail: k-takaya@sophia.ac.jp

    2016-09-15

    We present a unified description of effective interaction theories in both algebraic and graphic representations. In our previous work, we have presented the Rayleigh–Schrödinger and Bloch perturbation theories in a unified fashion by introducing the main frame expansion of the effective interaction. In this work, we start also from the main frame expansion, and present various nonperturbative theories in a coherent manner, which include generalizations of the Brandow, Brillouin–Wigner, and Bloch–Horowitz theories on the formal side, and the extended Krenciglowa–Kuo and the extended Lee–Suzuki methods on the practical side. We thus establish a coherent and comprehensive description of both perturbativemore » and nonperturbative theories on the basis of the main frame expansion.« less

  7. Accurate Gaussian basis sets for atomic and molecular calculations obtained from the generator coordinate method with polynomial discretization.

    PubMed

    Celeste, Ricardo; Maringolo, Milena P; Comar, Moacyr; Viana, Rommel B; Guimarães, Amanda R; Haiduke, Roberto L A; da Silva, Albérico B F

    2015-10-01

    Accurate Gaussian basis sets for atoms from H to Ba were obtained by means of the generator coordinate Hartree-Fock (GCHF) method based on a polynomial expansion to discretize the Griffin-Wheeler-Hartree-Fock equations (GWHF). The discretization of the GWHF equations in this procedure is based on a mesh of points not equally distributed in contrast with the original GCHF method. The results of atomic Hartree-Fock energies demonstrate the capability of these polynomial expansions in designing compact and accurate basis sets to be used in molecular calculations and the maximum error found when compared to numerical values is only 0.788 mHartree for indium. Some test calculations with the B3LYP exchange-correlation functional for N2, F2, CO, NO, HF, and HCN show that total energies within 1.0 to 2.4 mHartree compared to the cc-pV5Z basis sets are attained with our contracted bases with a much smaller number of polarization functions (2p1d and 2d1f for hydrogen and heavier atoms, respectively). Other molecular calculations performed here are also in very good accordance with experimental and cc-pV5Z results. The most important point to be mentioned here is that our generator coordinate basis sets required only a tiny fraction of the computational time when compared to B3LYP/cc-pV5Z calculations.

  8. Interfacial wave theory for dendritic structure of a growing needle crystal. I - Local instability mechanism. II - Wave-emission mechanism at the turning point

    NASA Technical Reports Server (NTRS)

    Xu, Jian-Jun

    1989-01-01

    The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.

  9. Perturbative Out of Equilibrium Quantum Field Theory beyond the Gradient Approximation and Generalized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Ozaki, H.

    2004-01-01

    Using the closed-time-path formalism, we construct perturbative frameworks, in terms of quasiparticle picture, for studying quasiuniform relativistic quantum field systems near equilibrium and non-equilibrium quasistationary systems. We employ the derivative expansion and take in up to the second-order term, i.e., one-order higher than the gradient approximation. After constructing self-energy resummed propagator, we formulated two kinds of mutually equivalent perturbative frameworks: The first one is formulated on the basis of the ``bare'' number density function, and the second one is formulated on the basis of ``physical'' number density function. In the course of construction of the second framework, the generalized Boltzmann equations directly come out, which describe the evolution of the system.

  10. Solar thermal power plants in small utilities - An economic impact analysis

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Ferber, R. R.; Mayo, L. G.

    1979-01-01

    A study was performed to assess the potential economic impact of small solar thermal electric power systems in statistically representative synthetic small utilities of the Southwestern United States. Power supply expansion plans were compared on the basis of present worth of future revenue requirements for 1980-2000 with and without solar thermal plants. Coal-fired and oil-fired municipal utility expansion plans with 5 percent solar penetration were 0.5 percent and 2.25 percent less expensive, respectively, than the corresponding conventional plan. At $969/kWe, which assumes the same low cost solar equipment but no improvement in site development costs, solar penetration of 5 percent in the oil-fired municipal reduced revenue requirements 0.88 percent. The paper concludes that some solar thermal plants are potentially economic in small community utilities of the Southwest.

  11. Isgur-Karl model revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galeta, Leonardo; Pirjol, Dan; Schat, Carlos

    2009-12-01

    We show how to match the Isgur-Karl model to the spin-flavor quark operator expansion used in the 1/N{sub c} studies of the nonstrange negative parity L=1 excited baryons. Using the transformation properties of states and interactions under the permutation group S{sub 3} we are able to express the operator coefficients as overlap integrals, without making any assumption on the spatial dependence of the quark wave functions. The general mass operator leads to parameter free mass relations and constraints on the mixing angles that are valid beyond the usual harmonic oscillator approximation. The Isgur-Karl model with harmonic oscillator wave functions providesmore » a simple counterexample that demonstrates explicitly that the alternative operator basis for the 1/N{sub c} expansion for excited baryons recently proposed by Matagne and Stancu is incomplete.« less

  12. 47 CFR 97.1 - Basis and purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... skills in both the communication and technical phases of the art. (d) Expansion of the existing reservoir... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... noncommercial communication service, particularly with respect to providing emergency communications. (b...

  13. 47 CFR 97.1 - Basis and purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... skills in both the communication and technical phases of the art. (d) Expansion of the existing reservoir... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... noncommercial communication service, particularly with respect to providing emergency communications. (b...

  14. 47 CFR 97.1 - Basis and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... skills in both the communication and technical phases of the art. (d) Expansion of the existing reservoir... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... noncommercial communication service, particularly with respect to providing emergency communications. (b...

  15. 47 CFR 97.1 - Basis and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... skills in both the communication and technical phases of the art. (d) Expansion of the existing reservoir... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... noncommercial communication service, particularly with respect to providing emergency communications. (b...

  16. 47 CFR 97.1 - Basis and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... skills in both the communication and technical phases of the art. (d) Expansion of the existing reservoir... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... noncommercial communication service, particularly with respect to providing emergency communications. (b...

  17. An evaluation of bridge deck joint sealing systems in Virginia.

    DOT National Transportation Integrated Search

    2003-01-01

    The design and fabrication of bridge expansion joint (or movement) systems comprise a rapidly evolving industry. New designs are constantly being presented for trial, often on a piecemeal basis. Occasionally, failures of products occur without suffic...

  18. JUNCTOPHILIN 3 (JPH3) EXPANSION MUTATIONS CAUSING HUNTINGTON DISEASE LIKE 2 (HDL2) ARE COMMON IN SOUTH AFRICAN PATIENTS WITH AFRICAN ANCESTRY AND A HUNTINGTON DISEASE PHENOTYPE

    PubMed Central

    Krause, A; Mitchell, CL; Essop, F; Tager, S; Temlett, J; Stevanin, G; Ross, CA; Rudnicki, DD; Margolis, RL

    2015-01-01

    Huntington disease (HD) is a progressive autosomal dominant neurodegenerative disorder, characterized by abnormal movements, cognitive decline and psychiatric symptoms, caused by a CAG repeat expansion in the huntingtin (HTT) gene on chromosome 4p. A CAG/CTG repeat expansion in the junctophilin-3 (JPH3) gene on chromosome 16q24.2 causes a Huntington disease-like phenotype (HDL2). All patients to date with HDL2 have some African ancestry. The present study aimed to characterize the genetic basis of the Huntington disease phenotype in South Africans and to investigate the possible origin of the JPH3 mutation. In a sample of unrelated South African individuals referred for diagnostic HD testing, 62% (106/171) of white patients compared to only 36% (47/130) of black patients had an expansion in HTT. However, 15% (20/130) of black South African patients and no white patients (0/171) had an expansion in JPH3, confirming the diagnosis of Huntington disease like 2 (HDL2). Individuals with HDL2 share many clinical features with individuals with HD and are clinically indistinguishable in many cases, although the average age of onset and diagnosis in HDL2 is 5 years later than HD and individual clinical features may be more prominent. HDL2 mutations contribute significantly to the HD phenotype in South Africans with African ancestry. JPH3 haplotype studies in 31 families, mainly from South Africa and North America, provide evidence for a founder mutation and support a common African origin for all HDL2 patients. Molecular testing in individuals with an HD phenotype and African ancestry should include testing routinely for JPH3 mutations. PMID:26079385

  19. Importance of CME Radial Expansion on the Ability of Slow CMEs to Drive Shocks

    NASA Astrophysics Data System (ADS)

    Lugaz, N.; Farrugia, C. J.; Winslow, R. M.; Small, C. R.; Manion, T.; Savani, N.

    2017-12-01

    Coronal mass ejections (CMEs) may disturb the solar wind either by overtaking it, or by expanding into it, or both. CMEs whose front moves faster in the solar wind frame than the fast magnetosonic speed, drive shocks. In general, near 1 AU, CMEs with speed greater than about 500 km s-1 drive shocks, whereas slower CMEs do not. However, CMEs as slow as 350 km s-1 may sometimes, although rarely, drive shocks. Here, we study these slow CMEs with shocks and investigate the importance of CME expansion in contributing to their ability to drive shocks and in enhancing shock strength. Our focus is on CMEs with average speeds under 375 km s-1. From Wind measurements from 1996 to 2016, we find 22 cases of such shock-driving slow CMEs, and, for about half of them, the existence of the shock appears to be strongly related to CME expansion. We also investigate the proportion of all CMEs with speeds under 500 km s-1 with and without shocks in solar cycles 23 and 24, depending on their speed. We find no systematic difference, as might have been expected on the basis of the lower solar wind and Alfven speeds reported for solar cycle 24 vs. 23. The slower expansion speed of CMEs in solar cycle 24 is a reasonable explanation for this lack of increased frequency of shocks, but further studies are required.

  20. The F(N) method for the one-angle radiative transfer equation applied to plant canopies

    NASA Technical Reports Server (NTRS)

    Ganapol, B. D.; Myneni, R. B.

    1992-01-01

    The paper presents a semianalytical solution method, called the F(N) method, for the one-angle radiative transfer equation in slab geometry. The F(N) method is based on two integral equations specifying the intensities exiting the boundaries of the vegetation canopy; the solution is obtained through an expansion in a set of basis functions with expansion coefficients to be determined. The advantage of this method is that it avoids spatial truncation error entirely because it requires discretization only in the angular variable.

  1. Analytical study of exact solutions of the nonlinear Korteweg-de Vries equation with space-time fractional derivatives

    NASA Astrophysics Data System (ADS)

    Liu, Jiangen; Zhang, Yufeng

    2018-01-01

    This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg-de Vries equation with space-time local fractional derivatives. By using the improved (G‧ G )-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.

  2. [Landscape ecological security pattern during urban expansion of Nanchong City].

    PubMed

    Li, Sui; Shi, Tie-mao; Fu, Shi-lei; Zhou, Le; Liu, Miao; Wang, Wei

    2011-03-01

    Based on the theory of landscape ecological security pattern and the RS and GIS techniques, this paper analyzed the distribution of ecological security grades in Nanchong City, taking six elements including terrain condition, flood hazard, soil erosion, vegetation cover, geological disaster, and biological protection as the ecological constraints (or determinants) of urban expansion. According to the minimum cumulative resistance model, the ecological corridors and ecological nodes were built to strengthen the space contact of ecological network, and, on the basis of the protection of ecological safety, the reasonable trend of urban expansion and the optimization of space layout were investigated. The results showed that the ecological security of Nanchong City was quite good, with the regions of low ecological security mainly distributed in the west suburban mountains and the downstream region of Jialing River in the south of the City. Ecological elements were the most important constraints for the future expansion of urban space. There were more spaces for the urban expansion in the southern and northern parts of Nanchong City. To develop satellite towns would be the best selection to guarantee the ecological security of the city.

  3. Structure and thermal expansion of Ca9Gd(VO4)7: A combined powder-diffraction and dilatometric study of a Czochralski-grown crystal

    NASA Astrophysics Data System (ADS)

    Paszkowicz, Wojciech; Shekhovtsov, Alexei; Kosmyna, Miron; Loiko, Pavel; Vilejshikova, Elena; Minikayev, Roman; Romanowski, Przemysław; Wierzchowski, Wojciech; Wieteska, Krzysztof; Paulmann, Carsten; Bryleva, Ekaterina; Belikov, Konstantin; Fitch, Andrew

    2017-11-01

    Materials of the Ca9RE(VO4)7 (CRVO) formula (RE = rare earth) and whitlockite-related structures are considered for applications in optoelectronics, e.g., in white-light emitting diodes and lasers. In the CRVO structure, the RE atoms are known to share the site occupation with Ca atoms at two or three among four Ca sites, with partial occupancy values depending on the choice of the RE atom. In this work, the structure and quality of a Czochralski-grown crystal of this family, Ca9Gd(VO4)7 (CGVO), are studied using X-ray diffraction methods. The room-temperature structure is refined using the powder diffraction data collected at a high-resolution synchrotron beamline ID22 (ESRF, Grenoble); for comparison purposes, a laboratory diffraction pattern was collected and analyzed, as well. The site occupancies are discussed on the basis of comparison with literature data of isostructural synthetic crystals of the CRVO series. The results confirm the previously reported site-occupation scheme and indicate a tendency of the CGVO compound to adopt a Gd-deficient composition. Moreover, the thermal expansion coefficient is determined for CGVO as a function of temperature in the 302-1023 K range using laboratory diffraction data. Additionally, for CGVO and six other single crystals of the same family, thermal expansion is studied in the 298-473 K range, using the dilatometric data. The magnitude and anisotropy of thermal expansion, being of importance for laser applications, are discussed for these materials.

  4. Exploration case studies

    NASA Astrophysics Data System (ADS)

    Underwood, Jimmy M.

    1989-04-01

    NASA's Office of Exploration has undertaken four case studies for prospective expansion of manned space activities beyond earth orbit. The subjects of these studies are (1) an expedition to the Martian moon Phobos; (2) a three-mission expedition to Mars; (3) the construction of a man-tended lunar observatory; and (4) the construction of a lunar outpost to serve as the basis for construction of a Martian outpost. The fourth alternative would follow the recommendation of the National Commission on Space for the creation of a 'bridge between worlds' in which explorers would develop ways in which to 'live off the land' in a space environment.

  5. Feasibility study on the modernization and expansion of the Tema Oil Refinery: Final report. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    The study was undertaken in order to serve the Ministry of Energy of Ghana under the terms of the contract with respect to deliverables, cost and schedule. The objectives of the study were: to evaluate the ability of the proposed refinery configuration to meet the demands for petroleum products through the year 2005; to demonstrate sound economics in order to attract financing from leading international agencies such as the World Bank, African Development Bank and Export-Import Bank; and to serve as a basis for meaningful future work by the Ministry.

  6. Overcomplete compact representation of two-particle Green's functions

    NASA Astrophysics Data System (ADS)

    Shinaoka, Hiroshi; Otsuki, Junya; Haule, Kristjan; Wallerberger, Markus; Gull, Emanuel; Yoshimi, Kazuyoshi; Ohzeki, Masayuki

    2018-05-01

    Two-particle Green's functions and the vertex functions play a critical role in theoretical frameworks for describing strongly correlated electron systems. However, numerical calculations at the two-particle level often suffer from large computation time and massive memory consumption. We derive a general expansion formula for the two-particle Green's functions in terms of an overcomplete representation based on the recently proposed "intermediate representation" basis. The expansion formula is obtained by decomposing the spectral representation of the two-particle Green's function. We demonstrate that the expansion coefficients decay exponentially, while all high-frequency and long-tail structures in the Matsubara-frequency domain are retained. This representation therefore enables efficient treatment of two-particle quantities and opens a route to the application of modern many-body theories to realistic strongly correlated electron systems.

  7. A Simulator for the Respiratory Tree in Healthy Subjects Derived from Continued Fractions Expansions

    NASA Astrophysics Data System (ADS)

    Muntean, Ionuţ; Ionescu, Clara; Naşcu, Ioan

    2009-04-01

    Taking into account the self-similar recurrent geometrical structure of the human respiratory tree, the total respiratory impedance can be represented using an electrical equivalent of a ladder network model. In this paper, the parameters of the respiratory tree are employed in simulation, based on clinical insight and morphology. Once the transfer function of the total input impedance model is calculated, it is further interpreted in its continued fraction expansion form. The purpose is to compare the ladder network structure with the continuous fraction expansion form of the impedance. The results are supporting the theory of fractional-order impedance appearance (also known as constant-phase behaviour) and help understanding the mathematical and morphological basis for constructing a physiology-based simulator of the human lungs.

  8. Cooperative Roles of Charge Transfer and Dispersion Terms in Hydrogen-Bonded Networks of (H2O)n, n = 6, 11, and 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Suehiro; Bandyopadhyay, Pradipta; Xantheas, Sotiris S.

    The perturbation expansion based on the locally-projected molecular orbital (LPMO PT) was applied to the study of the hydrogenbonded networks of water clusters with up to 16 molecules. Utilizing the local nature of the occupied and excited MOs on each monomer, the chargetransfer and dispersion terms are evaluated for every pair of molecules. The two terms are strongly correlated with each other for the hydrogen-bonded pairs. The strength of the hydrogen bonds in the clusters is further classified by the types of the hydrogen donor and acceptor water molecules. The relative energies evaluated with th LPMO PT among the isomersmore » of (H2O)6, (H2O)11, and (H2O)16 agree very well with those obtained from CCSD(T) calculations with large basis sets. The binding energy of the LPMO PT is approximately free of the basis set superposition errors caused both by the orbital basis inconsistency and by the configuration basis inconsistency.« less

  9. The interacting correlated fragments model for weak interactions, basis set superposition error, and the helium dimer potential

    NASA Astrophysics Data System (ADS)

    Liu, B.; McLean, A. D.

    1989-08-01

    We report the LM-2 helium dimer interaction potential, from helium separations of 1.6 Å to dissociation, obtained by careful convergence studies with respect to configuration space, through a sequence of interacting correlated fragment (ICF) wave functions, and with respect to the primitive Slater-type basis used for orbital expansion. Parameters of the LM-2 potential are re=2.969 Å, rm=2.642 Å, and De=10.94 K, in near complete agreement with those of the best experimental potential of Aziz, McCourt, and Wong [Mol. Phys. 61, 1487 (1987)], which are re=2.963 Å, rm=2.637 Å, and De=10.95 K. The computationally estimated accuracy of each point on the potential is given; at re it is 0.03 K. Extrapolation procedures used to produce the LM-2 potential make use of the orbital basis inconsistency (OBI) and configuration base inconsistency (CBI) adjustments to separated fragment energies when computing the interaction energy. These components of basis set superposition error (BSSE) are given a full discussion.

  10. The Hyperfine Structure of the Ground State in the Muonic Helium Atoms

    NASA Astrophysics Data System (ADS)

    Aznabayev, D. T.; Bekbaev, A. K.; Korobov, V. I.

    2018-05-01

    Non-relativistic ionization energies 3He2+μ-e- and 4He2+μ-e- of helium-muonic atoms are calculated for ground states. The calculations are based on the variational method of the exponential expansion. Convergence of the variational energies is studied by an increasing of a number of the basis functions N. This allows to claim that the obtained energy values have 26 significant digits for ground states. With the obtained results we calculate hyperfine splitting of the muonic helium atoms.

  11. Uncertainty Quantification in CO 2 Sequestration Using Surrogate Models from Polynomial Chaos Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yan; Sahinidis, Nikolaos V.

    2013-03-06

    In this paper, surrogate models are iteratively built using polynomial chaos expansion (PCE) and detailed numerical simulations of a carbon sequestration system. Output variables from a numerical simulator are approximated as polynomial functions of uncertain parameters. Once generated, PCE representations can be used in place of the numerical simulator and often decrease simulation times by several orders of magnitude. However, PCE models are expensive to derive unless the number of terms in the expansion is moderate, which requires a relatively small number of uncertain variables and a low degree of expansion. To cope with this limitation, instead of using amore » classical full expansion at each step of an iterative PCE construction method, we introduce a mixed-integer programming (MIP) formulation to identify the best subset of basis terms in the expansion. This approach makes it possible to keep the number of terms small in the expansion. Monte Carlo (MC) simulation is then performed by substituting the values of the uncertain parameters into the closed-form polynomial functions. Based on the results of MC simulation, the uncertainties of injecting CO{sub 2} underground are quantified for a saline aquifer. Moreover, based on the PCE model, we formulate an optimization problem to determine the optimal CO{sub 2} injection rate so as to maximize the gas saturation (residual trapping) during injection, and thereby minimize the chance of leakage.« less

  12. Physicochemical properties of extrudates from white yam and bambara nut blends

    NASA Astrophysics Data System (ADS)

    Oluwole, O. B.; Olapade, A. A.; Awonorin, S. O.; Henshaw, F. O.

    2013-01-01

    This study was conducted to investigate effects of extrusion conditions on physicochemical properties of blend of yam and bambara nut flours. A blend of white yam grit (750 μm) and Bambara nut flour (500 μm) in a ratio of 4:1, respectively was extrusion cooked at varying screw speeds 50-70 r.p.m., feed moisture 12.5-17.5% (dry basis) and barrel temperatures 130-150°C. The extrusion variables employed included barrel temperature, screw speed, and feed moisture content, while the physicochemical properties of the extrudates investigated were the expansion ratio, bulk density, and trypsin inhibition activity. The results revealed that all the extrusion variables had significant effects (p<0.05) on the product properties considered in this study. The expansion ratio values ranged 1.55-2.06, bulk density values ranged 0.76-0.94 g cm-3, while trypsin inhibition activities were 1.01-8.08 mg 100 g-1 sample.

  13. Conformational changes in intact dengue virus reveal serotype-specific expansion

    PubMed Central

    Lim, Xin-Xiang; Chandramohan, Arun; Lim, Xin Ying Elisa; Bag, Nirmalya; Sharma, Kamal Kant; Wirawan, Melissa; Wohland, Thorsten; Lok, Shee-Mei; Anand, Ganesh S.

    2017-01-01

    Dengue virus serotype 2 (DENV2) alone undergoes structural expansion at 37 °C (associated with host entry), despite high sequence and structural homology among the four known serotypes. The basis for this differential expansion across strains and serotypes is unknown and necessitates mapping of the dynamics of dengue whole viral particles to describe their coordinated motions and conformational changes when exposed to host-like environments. Here we capture the dynamics of intact viral particles of two serotypes, DENV1 and DENV2, by amide hydrogen/deuterium exchange mass spectrometry (HDXMS) and time resolved Förster Resonance Energy Transfer. Our results show temperature-dependent dynamics hotspots on DENV2 and DENV1 particles with DENV1 showing expansion at 40 °C but not at 37 °C. HDXMS measurement of virion dynamics in solution offers a powerful approach to identify potential epitopes, map virus-antibody complex structure and dynamics, and test effects of multiple host-specific perturbations on viruses and virus-antibody complexes. PMID:28186093

  14. An approach to the real time risk evaluation system of boreal forest fire

    NASA Astrophysics Data System (ADS)

    Nakau, K.; Fukuda, M.; Kimura, K.; Hayasaka, H.; Tani, H.; Kushida, K.

    2005-12-01

    Huge boreal forest fire may cause massive impacts not only on global warming gas emission but also local communities. Thus, it is important to control forest fire. We collected data about boreal forest fire as satellite imagery and fire observation simultaneously in Alaska and east Siberia in summer fire seasons for these three years. Fire observation data was collected from aircraft flying between Japan and Europe. Fire detection results were compared with observed data to evaluate the accuracy and earliness of automatic detection. NOAA and MODIS satellite images covering Alaska and East Siberia are collected. We are also developing fire expansion simulation model to forecast the possible fire expansion area. On the basis of fire expansion forecast, risk analysis of possible fire expansion for decision aid of fire-fighting activities will be analyzed. To identify the risk of boreal forest fire and public concern about forest fire, we collected local news paper in Fairbanks, AK and discuss the statistics of articles related to forest fire on the newspaper.

  15. Project of space research and technology center in Engelhardt astronomical observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.; Gusev, A.; Sherstukov, O.; Kascheev, R.; Zagretdinov, R.

    2012-09-01

    Today on the basis of Engelhardt astronomical observatory (EAO) is created Space research and technology center as consistent with Program for expansion of the Kazan University. The Centre has the following missions: • EDUCATION • SCIENCE • ASTRONOMICAL TOURISM

  16. New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion.

    PubMed

    Pogosyan, George S; Wolf, Kurt Bernardo; Yakhno, Alexander

    2017-10-01

    The differential equation proposed by Frits Zernike to obtain a basis of polynomial orthogonal solutions on the unit disk to classify wavefront aberrations in circular pupils is shown to have a set of new orthonormal solution bases involving Legendre and Gegenbauer polynomials in nonorthogonal coordinates, close to Cartesian ones. We find the overlaps between the original Zernike basis and a representative of the new set, which turn out to be Clebsch-Gordan coefficients.

  17. Improvements of hybrid PV-T solar energy systems using Amlouk-Boubaker optothermal expansivity optimizing abacus sketch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boubaker, K.; Amlouk, M.

    2010-10-15

    This study is a prelude to the definition of a new synthetic parameter inserted in a 2D abacus. This parameter: the Amlouk-Boubaker optothermal expansivity <{psi}{sub AB}>, is defined, for a given PV-T material, as a thermal diffusivity-to-optical effective absorptivity ratio. This parameter's unit evokes a heat flow velocity inside the material. Consequently, the parameter {psi}{sub AB} could be combined with the already known bandgap energy E{sub g}, in order to establish a 2D abacus. A sketched scheme of the 2D abacus is proposed as a guide for investigation and evaluation of PV-T candidate materials like metal oxides, amorphous silicon, zinc-dopedmore » binary compounds, and hydrogenated amorphous carbon. Using this abacus, designers will be able to compare solar energy-related materials on the basis of conjoint optical and thermal efficiency. (author)« less

  18. Experiments on the applicability of MAE techniques for predicting sound diffraction by irregular terrains. [Matched Asymptotic Expansion

    NASA Technical Reports Server (NTRS)

    Berthelot, Yves H.; Pierce, Allan D.; Kearns, James A.

    1987-01-01

    The sound field diffracted by a single smooth hill of finite impedance is studied both analytically, within the context of the theory of Matched Asymptotic Expansions (MAE), and experimentally, under laboratory scale modeling conditions. Special attention is given to the sound field on the diffracting surface and throughout the transition region between the illuminated and the shadow zones. The MAE theory yields integral equations that are amenable to numerical computations. Experimental results are obtained with a spark source producing a pulse of 42 microsec duration and about 130 Pa at 1 m. The insertion loss of the hill is inferred from measurements of the acoustic signals at two locations in the field, with subsequent Fourier analysis on an IBM PC/AT. In general, experimental results support the predictions of the MAE theory, and provide a basis for the analysis of more complicated geometries.

  19. Participation in higher education: A geodemographic perspective on the potential for further expansion in student numbers

    NASA Astrophysics Data System (ADS)

    Batey, Peter; Brown, Peter; Corver, Mark

    Higher education in England has expanded rapidly in the last ten years with the result that currently more than 30% of young people go on to university. Expansion is likely to continue following the recommendations of a national committee of inquiry (the Dearing Committee). The participation rate is known to vary substantially among social groups and between geographical areas. In this paper the participation rate is calculated using a new measure, the Young Entrants Index (YEI), and the extent of variation by region, gender and residential neighbourhood type established. The Super Profiles geodemographic system is used to facilitate the latter. This is shown to be a powerful discriminator and to offer great potential as an alternative analytical approach to the conventional social class categories, based on parental occupation, that have formed the basis of most participation studies to date.

  20. The three-dimensional steady radial expansion of a viscous gas from a sonic source into a vacuum.

    NASA Technical Reports Server (NTRS)

    Bush, W. B.; Rosen, R.

    1971-01-01

    The three-dimensional steady radial expansion of a viscous, heat-conducting, compressible fluid from a spherical sonic source into a vacuum is analyzed using the Navier-Stokes equations as a basis. It is assumed that the model fluid is a perfect gas having constant specific heats, a constant Prandtl number of order unity, and viscosity coefficients varying as a power of the absolute temperature. Limiting forms for the flow variable solutions are studied for the Reynolds number based on the sonic source conditions, going to infinity and the Newtonian parameter both fixed and going to zero. For the case of the viscosity-temperature exponent between .5 and 1, it is shown that the velocity as well as the pressure approach zero as the radial distance goes to infinity. The formulations of the distinct regions that span the domain extending from the sonic source to the vacuum are presented.

  1. Dynamic sensitivity analysis of long running landslide models through basis set expansion and meta-modelling

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy

    2016-04-01

    Predicting the temporal evolution of landslides is typically supported by numerical modelling. Dynamic sensitivity analysis aims at assessing the influence of the landslide properties on the time-dependent predictions (e.g., time series of landslide displacements). Yet two major difficulties arise: 1. Global sensitivity analysis require running the landslide model a high number of times (> 1000), which may become impracticable when the landslide model has a high computation time cost (> several hours); 2. Landslide model outputs are not scalar, but function of time, i.e. they are n-dimensional vectors with n usually ranging from 100 to 1000. In this article, I explore the use of a basis set expansion, such as principal component analysis, to reduce the output dimensionality to a few components, each of them being interpreted as a dominant mode of variation in the overall structure of the temporal evolution. The computationally intensive calculation of the Sobol' indices for each of these components are then achieved through meta-modelling, i.e. by replacing the landslide model by a "costless-to-evaluate" approximation (e.g., a projection pursuit regression model). The methodology combining "basis set expansion - meta-model - Sobol' indices" is then applied to the La Frasse landslide to investigate the dynamic sensitivity analysis of the surface horizontal displacements to the slip surface properties during the pore pressure changes. I show how to extract information on the sensitivity of each main modes of temporal behaviour using a limited number (a few tens) of long running simulations. In particular, I identify the parameters, which trigger the occurrence of a turning point marking a shift between a regime of low values of landslide displacements and one of high values.

  2. Theoretical performance of some rocket propellants containing hydrogen, nitrogen, and oxygen

    NASA Technical Reports Server (NTRS)

    Miller, Riley O; Ordin, Paul M

    1948-01-01

    Theoretical performance data including nozzle-exit temperature, specific impulse, volume specific impulse and composition, temperature, and mean molecular weight of reaction products based on frozen equilibrium and isentropic expansion are presented for 13 propellant combinations at reaction pressure of 300 pounds per square inch absolute and expansion ratio of 20.4. On basis of maximum specific impulse alone, five fuels had the following order for any given oxidant: liquid hydrogen, hydrazine, liquid ammonia, and either hydrazine hydrate or hydroxylamine. Three oxidants with a given fuel had the following order: liquid ozone, liquid oxygen, and 100-percent hydrogen peroxide.

  3. Distribution of Chern number by Landau level broadening in Hofstadter butterfly

    NASA Astrophysics Data System (ADS)

    Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao

    2015-04-01

    We discuss the relationship between the quantum Hall conductance and a fractal energy band structure, Hofstadter butterfly, on a square lattice under a magnetic field. At first, we calculate the Hall conductance of Hofstadter butterfly on the basis of the linear responce theory. By classifying the bands into some groups with a help of continued fraction expansion, we find that the conductance at the band gaps between the groups accord with the denominators of fractions obtained by aborting the expansion halfway. The broadening of Landau levels is given as an account of this correspondance.

  4. Enhancing sparsity of Hermite polynomial expansions by iterative rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu; Lei, Huan; Baker, Nathan A.

    2016-02-01

    Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.

  5. End-of-life care at academic medical centers: implications for future workforce requirements.

    PubMed

    Goodman, David C; Stukel, Thérèse A; Chang, Chiang-hua; Wennberg, John E

    2006-01-01

    The expansion of U.S. physician workforce training has been justified on the basis of population growth, technological innovation, and economic expansion. Our analyses found threefold differences in physician full-time-equivalent (FTE) inputs for Medicare cohorts cared for at academic medical centers (AMCs); AMC inputs were highly correlated with the number of physician FTEs per Medicare beneficiary in AMC regions. Given the apparent inefficiency of current physician practices, the supply pipeline is sufficient to meet future needs through 2020, with adoption of the workforce deployment patterns now seen among AMCs and regions dominated by large group practices.

  6. What Went Wrong, If Anything, Since Copernicus?

    ERIC Educational Resources Information Center

    Boulding, Kenneth E.

    1974-01-01

    Discusses the history of the inequality of world incomes on the basis of a four-fold classification of societies. Indicates that a zero-growth, industrial, ontological, non-destructive society is predictable in the future due to man's expansion from isolated ecosystems into one single world. (CC)

  7. Basis convergence of range-separated density-functional theory.

    PubMed

    Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.

  8. Exploring biorthonormal transformations of pair-correlation functions in atomic structure variational calculations

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Jönsson, P.; Gaigalas, G.; Godefroid, M.; Froese Fischer, C.

    2010-04-01

    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree-Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.

  9. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface.

    PubMed

    McKenna, Duane D; Scully, Erin D; Pauchet, Yannick; Hoover, Kelli; Kirsch, Roy; Geib, Scott M; Mitchell, Robert F; Waterhouse, Robert M; Ahn, Seung-Joon; Arsala, Deanna; Benoit, Joshua B; Blackmon, Heath; Bledsoe, Tiffany; Bowsher, Julia H; Busch, André; Calla, Bernarda; Chao, Hsu; Childers, Anna K; Childers, Christopher; Clarke, Dave J; Cohen, Lorna; Demuth, Jeffery P; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Duan, Jian J; Dugan, Shannon; Friedrich, Markus; Glastad, Karl M; Goodisman, Michael A D; Haddad, Stephanie; Han, Yi; Hughes, Daniel S T; Ioannidis, Panagiotis; Johnston, J Spencer; Jones, Jeffery W; Kuhn, Leslie A; Lance, David R; Lee, Chien-Yueh; Lee, Sandra L; Lin, Han; Lynch, Jeremy A; Moczek, Armin P; Murali, Shwetha C; Muzny, Donna M; Nelson, David R; Palli, Subba R; Panfilio, Kristen A; Pers, Dan; Poelchau, Monica F; Quan, Honghu; Qu, Jiaxin; Ray, Ann M; Rinehart, Joseph P; Robertson, Hugh M; Roehrdanz, Richard; Rosendale, Andrew J; Shin, Seunggwan; Silva, Christian; Torson, Alex S; Jentzsch, Iris M Vargas; Werren, John H; Worley, Kim C; Yocum, George; Zdobnov, Evgeny M; Gibbs, Richard A; Richards, Stephen

    2016-11-11

    Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.

  10. Agricultural Resources: Program Planning Guide: Volume 6.

    ERIC Educational Resources Information Center

    German, Carl; And Others

    The program planning guide for agricultural resources was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of forests, recreation, soil, wildlife, and other agricultural…

  11. Forestry: Program Planning Guide: Volume 7.

    ERIC Educational Resources Information Center

    Roth, Paul L.; And Others

    The program planning guide for forestry was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of forests, forest protection, logging, wood utilization, recreation, and special…

  12. [Ex vivo expansion and clonal variation of CD34(+)CD59(+) cells from bone marrow in children with paroxysmal nocturnal hemoglobinuria].

    PubMed

    Xiao, Juan; Wu, Yong-Ji; Han, Bing; Dong, Hong-Yan; Chen, Shi-Ping

    2013-08-01

    To investigate the isolation, purification and ex vivo expansion of CD34(+)CD59(+) cells from the bone marrow of children with paroxysmal nocturnal hemoglobinuria (PNH), to evaluate the capability of long-term hematopoietic reconstruction of the expanded CD34(+)CD59(+) cells, and to provide a laboratory basis for novel treatment of PNH. CD34(+)CD59(+) cells were isolated from the bone marrow mononuclear cells of children with PNH using immunomagnetic beads and flow cytometer in sequence. The isolated cells were subjected to ex vivo expansion in the presence of different combinations of hematopoietic growth factors for two weeks. The colony-forming cells and long-term culture-initiating cells (LTC-ICs) were cultured and counted. The optimal combination of hematopoietic growth factors for ex vivo expansion was stem cell factor+interleukin (IL)-3+IL-6+FLT3 ligand+thrombopoietin+ery-thropoietin, and maximum expansion (30.4 ± 6.7 folds) was seen on day 7 of days 4 to 14 of ex vivo expansion. After ex vivo expansion, CD34(+)CD59(+) cells remained CD59-positive, retained strong capability of forming colony-forming units, and could still form LTC-ICs. There was no significant difference in capability of forming LTC-ICs between CD34(+)CD59(+) cells before and after expansion. The expansion capability of CD34(+)CD59(+) cells from children with PNH was significantly lower than that of CD34(+) cells from normal controls (P<0.01). The CD34(+)CD59(+) cells from children with PNH can be expanded in vitro. Post-expansion CD34(+)CD59(+) cells retain capability of long-term hematopoietic reconstruction. CD34(+)CD59(+) cells showed no trend towards PNH clone during culture. Ex vivo expansion of CD34(+)CD59(+) cells from children with PNH might be practical in performing autologous transplantation clinically for these children.

  13. Variational Calculations of Ro-Vibrational Energy Levels and Transition Intensities for Tetratomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    A description is given of an algorithm for computing ro-vibrational energy levels for tetratomic molecules. The expressions required for evaluating transition intensities are also given. The variational principle is used to determine the energy levels and the kinetic energy operator is simple and evaluated exactly. The computational procedure is split up into the determination of one dimensional radial basis functions, the computation of a contracted rotational-bending basis, followed by a final variational step coupling all degrees of freedom. An angular basis is proposed whereby the rotational-bending contraction takes place in three steps. Angular matrix elements of the potential are evaluated by expansion in terms of a suitable basis and the angular integrals are given in a factorized form which simplifies their evaluation. The basis functions in the final variational step have the full permutation symmetries of the identical particles. Sample results are given for HCCH and BH3.

  14. Rapid iterative reanalysis for automated design

    NASA Technical Reports Server (NTRS)

    Bhatia, K. G.

    1973-01-01

    A method for iterative reanalysis in automated structural design is presented for a finite-element analysis using the direct stiffness approach. A basic feature of the method is that the generalized stiffness and inertia matrices are expressed as functions of structural design parameters, and these generalized matrices are expanded in Taylor series about the initial design. Only the linear terms are retained in the expansions. The method is approximate because it uses static condensation, modal reduction, and the linear Taylor series expansions. The exact linear representation of the expansions of the generalized matrices is also described and a basis for the present method is established. Results of applications of the present method to the recalculation of the natural frequencies of two simple platelike structural models are presented and compared with results obtained by using a commonly applied analysis procedure used as a reference. In general, the results are in good agreement. A comparison of the computer times required for the use of the present method and the reference method indicated that the present method required substantially less time for reanalysis. Although the results presented are for relatively small-order problems, the present method will become more efficient relative to the reference method as the problem size increases. An extension of the present method to static reanalysis is described, ana a basis for unifying the static and dynamic reanalysis procedures is presented.

  15. Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Frisch, Michael J.; Binkley, J. Stephen; Schaefer, Henry F., III

    1984-08-01

    The relative energies of the stationary points on the FH2 and H2CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Møller-Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H2→FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol-1 of the experimental value using the largest basis set considered. The qualitative features of the H2CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended.

  16. How has climate change altered network connectivity in a mountain stream network?

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.; Johnson, S.

    2017-12-01

    Connectivity along river networks is broadly recognized as dynamic, with seasonal and event-based expansion and contraction of the network extent. Intermittently flowing streams are particularly important as they define a crucial threshold for continuously connected waters that enable migration by aquatic species. In the Pacific northwestern U.S., changes in atmospheric circulation have been found to alter rainfall patterns and result in decreased summer low-flows in the region. However, the impact of this climate dynamic on network connectivity is heretofore unstudied. Thus, we ask: How has connectivity in the riparian corridor changed in response to observed changes in climate? In this study we take the well-studied H.J. Andrews Experimental Forest as representative of mountain river networks in the Pacific northwestern U.S. First, we analyze 63 years of stream gauge information from a network of 11 gauges to document observed changes in timing and magnitude of stream discharge. We found declining magnitudes of seasonal low-flows and shifting seasonality of water export from the catchment, both of which we attribute to changes in precipitation timing and storage as snow vs. rainfall. Next, we use these discharge data to drive a reduced-complexity model of the river network to simulate network connectivity over 63 years. Model results show that network contraction (i.e., minimum network extent) has decreased over the past 63 years. Unexpectedly, the increasing winter peak flows did not correspond with increasing network expansion, suggesting a geologic control on maximum flowing network extent. We find dynamic expansion and contraction of the network primarily occurs during period of catchment discharge less than about 1 m3/s at the outlet, whereas the network extent is generally constant for discharges from 1 to 300 m3/s. Results of our study are of interest to scientists focused on connectivity as a control on ecological processes both directly (e.g., fish migration) and indirectly (e.g., stream temperature modeling). Additionally, our results inform management and regulatory needs such as estimating connectivity for entire river networks as a basis for regulation, and identifying the complexity of a shifting baseline in identifying a regulatory basis.

  17. Parametrization of fermion mixing matrices in Kobayashi-Maskawa form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Nan; Ma Boqiang; Center for High Energy Physics, Peking University, Beijing 100871

    2011-02-01

    Recent works show that the original Kobayashi-Maskawa (KM) form of fermion mixing matrix exhibits some advantages, especially when discussing problems such as unitarity boomerangs and maximal CP violation hypothesis. Therefore, the KM form of fermion mixing matrix is systematically studied in this paper. Starting with a general triminimal expansion of the KM matrix, we discuss the triminimal and Wolfenstein-like parametrizations with different basis matrices in detail. The quark-lepton complementarity relations play an important role in our discussions on describing quark mixing and lepton mixing in a unified way.

  18. Many-body-localization: strong disorder perturbative approach for the local integrals of motion

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2018-05-01

    For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.

  19. Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval

    NASA Technical Reports Server (NTRS)

    Alford, John A., II

    2012-01-01

    We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.

  20. Agricultural Production: Program Planning Guide: Volume 1.

    ERIC Educational Resources Information Center

    Rich, William; Wood, Eugene

    The program planning guide for agricultural production was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of animal science, plant science, farm mechanics, and farm business…

  1. Postgraduate Students as OER Capacitators

    ERIC Educational Resources Information Center

    King, Thomas William

    2017-01-01

    A comprehensive theoretical, legal and practical basis for OER has been developed over the past fifteen years, supported by the expansion of open source curation platforms and the work of advocacy groups and international bodies. OER's potential has been sufficiently documented; the question remains how best to support, integrate and normalise OER…

  2. CARD 2017: expansion and model-centric curation of the Comprehensive Antibiotic Resistance Database

    USDA-ARS?s Scientific Manuscript database

    The Comprehensive Antibiotic Resistance Database (CARD; http://arpcard.mcmaster.ca) is a manually curated resource containing high quality reference data on the molecular basis of antimicrobial resistance (AMR), with an emphasis on the genes, proteins, and mutations involved in AMR. CARD is ontologi...

  3. Agricultural Supplies and Services. Program Planning Guide: Volume 2.

    ERIC Educational Resources Information Center

    Welton, Richard; Marks, Michael

    The program planning guide for agricultural supplies and services was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of agricultural chemicals, feeds, seeds, fertilizers, and…

  4. Problems of Equity in the Reconstituted Family: A Social Exchange Analysis.

    ERIC Educational Resources Information Center

    Nelson, Margaret; Nelson, Gordon K.

    1982-01-01

    Applies social exchange principles to the difficulties of setting up a stepfamily. Discusses obstacles to role adjustment and maintenance of equity among members. Concludes that if the reconstituting family can establish a basis of trust, the stepfamily can merge as a developmental unit toward expansion and commitment. (Author)

  5. Agricultural Mechanics: Program Planning Guide: Volume 3.

    ERIC Educational Resources Information Center

    Bristol, Benton K.

    The program planning guide for agricultural mechanics was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of agricultural power and machinery, structural and conveniences,…

  6. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konakli, Katerina, E-mail: konakli@ibk.baug.ethz.ch; Sudret, Bruno

    2016-09-15

    The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely themore » exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input dimension, a situation that is often encountered in real-life problems. By introducing the conditional generalization error, we further demonstrate that canonical LRA tend to outperform sparse PCE in the prediction of extreme model responses, which is critical in reliability analysis.« less

  7. Articulatory changes in muscle tension dysphonia: evidence of vowel space expansion following manual circumlaryngeal therapy.

    PubMed

    Roy, Nelson; Nissen, Shawn L; Dromey, Christopher; Sapir, Shimon

    2009-01-01

    In a preliminary study, we documented significant changes in formant transitions associated with successful manual circumlaryngeal treatment (MCT) of muscle tension dysphonia (MTD), suggesting improvement in speech articulation. The present study explores further the effects of MTD on vowel articulation by means of additional vowel acoustic measures. Pre- and post-treatment audio recordings of 111 women with MTD were analyzed acoustically using two measures: vowel space area (VSA) and vowel articulation index (VAI), constructed using the first (F1) and second (F2) formants of 4 point vowels/ a, i, ae, u/, extracted from eight words within a standard reading passage. Pairwise t-tests revealed significant increases in both VSA and VAI, confirming that successful treatment of MTD is associated with vowel space expansion. Although MTD is considered a voice disorder, its treatment with MCT appears to positively affect vocal tract dynamics. While the precise mechanism underlying vowel space expansion remains unknown, improvements may be related to lowering of the larynx, expanding oropharyngeal space, and improving articulatory movements. The reader will be able to: (1) describe possible articulatory changes associated with successful treatment of muscle tension dysphonia; (2) describe two acoustic methods to assess vowel centralization and decentralization, and; (3) understand the basis for viewing muscle tension dysphonia as a disorder not solely confined to the larynx.

  8. Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Fallon, C.; Hayden, P.; Mujawar, M.; Yeates, P.; Costello, J. T.

    2014-09-01

    Ion signals from laser produced plasmas (LPPs) generated inside aluminum rectangular cavities at a fixed depth d = 2 mm and varying width, x = 1.0, 1.6, and 2.75 mm were obtained by spatially varying the position of a negatively biased Langmuir probe. Damped oscillatory features superimposed on Maxwellian distributed ion signals were observed. Depending on the distance of the probe from the target surface, three to twelve fold enhancements in peak ion density were observed via confinement of the LPP, generated within rectangular cavities of varying width which constrained the plasma plume to near one dimensional expansion in the vertical plane. The effects of lateral spatial confinement on the expansion velocity of the LPP plume front, the temperature, density and expansion velocity of ions, enhancement of ion flux, and ion energy distribution were recorded. The periodic behavior of ion signals was analyzed and found to be related to the electron plasma frequency and electron-ion collision frequency. The effects of confinement and enhancement of various ion parameters and expansion velocities of the LPP ion plume are explained on the basis of shock wave theory.

  9. Enhancing the engineering properties of expansive soil using bagasse ash

    NASA Astrophysics Data System (ADS)

    Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah

    2017-11-01

    This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.

  10. Variational Dirac-Hartree-Fock calculation of the Breit interaction

    NASA Astrophysics Data System (ADS)

    Goldman, S. P.

    1988-04-01

    The calculation of the retarded version of the Breit interaction in the context of the VDHF method is discussed. With the use of Slater-type basis functions, all the terms involved can be calculated in closed form. The results are expressed as an expansion in powers of one-electron energy differences and linear combinations of hypergeometric functions. Convergence is fast and high accuracy is obtained with a small number of terms in the expansion even for high values of the nuclear charge. An added advantage is that the lowest order cancellations occurring in the retardation terms are accounted for exactly a priori. A comparison of the number of terms in the total expansion needed for an accuracy of 12 significant digits in the total energy, as well as a comparison of the results with an without retardation and in the local potential approximation, are presented for the carbon isoelectronic sequence.

  11. Marginal evidence for cosmic acceleration from Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Nielsen, J. T.; Guffanti, A.; Sarkar, S.

    2016-10-01

    The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.

  12. Marginal evidence for cosmic acceleration from Type Ia supernovae

    PubMed Central

    Nielsen, J. T.; Guffanti, A.; Sarkar, S.

    2016-01-01

    The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion. PMID:27767125

  13. The thermal expansion of ScAlO3 — A silicate perovskite analogue

    NASA Astrophysics Data System (ADS)

    Hill, R. J.; Jackson, Ian

    1990-01-01

    The crystal structure of ScAlO3 has been refined at temperatures up to 1100° C on the basis of x-ray powder diffraction data. The thermal expansion is adequately described by a Grüneisen-Debye model with the elastic Debye temperature and an effective Grüneisen parameter of 1.6. The volumetric thermal expansion of 3.0% between 10 and 1100° C, corresponding to a mean thermal expansion coefficient of 2.7 × 10-5 K-1, is entirely attributable to the expansion of the AlO6 octahedra. The interoctahedral angles, though not fixed by symmetry, do not vary significantly with temperature —indicating that the expansivities of the constituent AlO6 and distorted ScO8 polyhedra are well matched. Similar considerations of polyhedral expansivity suggest thermal expansion coefficients of ˜2 × 10-5K-1 for cubic CaSiO3 perovskite and a value between 2 × 10-5 K-1 and 4 × 10-5 K-1 for MgSiO3 perovskite. The lower value is consistent with the reconnaissance measurements for Mg0.9Fe0.1SiO3 (Knittle et al. 1986) below 350° C, with low-temperature measurements of single-crystal MgSiO3 (Ross and Hazen 1989), and with the results of some recent calculations. The markedly greater expansivity ˜4 × 10-5 K-1 measured at higher temperatures (350 570° C) by Knittle et al. is inconsistent with the simple Grüneisen-Debye quasiharmonic model and may reflect the marginal metastability of the orthorhombic perovskite phase. Under these circumstances, extrapolation of the measured expansivity is hazardous and may result in the under-estimation of lower mantle densities and the drawing of inappropriate inferences concerning the need for chemical stratification of the Earth's mantle.

  14. Basis convergence of range-separated density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less

  15. Importance of CME Radial Expansion on the Ability of Slow CMEs to Drive Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lugaz, Noé; Farrugia, Charles J.; Winslow, Reka M.

    Coronal mass ejections (CMEs) may disturb the solar wind by overtaking it or expanding into it, or both. CMEs whose front moves faster in the solar wind frame than the fast magnetosonic speed drive shocks. Such shocks are important contributors to space weather, by triggering substorms, compressing the magnetosphere, and accelerating particles. In general, near 1 au, CMEs with speed greater than about 500 km s{sup −1} drive shocks, whereas slower CMEs do not. However, CMEs as slow as 350 km s{sup −1} may sometimes, although rarely, drive shocks. Here we study these slow CMEs with shocks and investigate themore » importance of CME expansion in contributing to their ability to drive shocks and in enhancing shock strength. Our focus is on CMEs with average speeds under 375 km s{sup −1}. From Wind measurements from 1996 to 2016, we find 22 cases of such shock-driving slow CMEs, and for about half of them (11 out of the 22), the existence of the shock appears to be strongly related to CME expansion. We also investigate the proportion of all CMEs with speeds under 500 km s{sup −1} with and without shocks in solar cycles 23 and 24, depending on their speed. We find no systematic difference, as might have been expected on the basis of the lower solar wind and Alfvén speeds reported for solar cycle 24 versus 23. The slower expansion speed of CMEs in solar cycle 24 might be an explanation for this lack of increased frequency of shocks, but further studies are required.« less

  16. Ab initio calculations for non-strange and strange few-baryon systems

    NASA Astrophysics Data System (ADS)

    Leidemann, Winfried

    2018-03-01

    Concerning the non-strange particle systems the low-energy excitation spectra of the three- and four-body helium isotopes are studied. Objects of the study are the astrophysical S-factor S12 of the radiative proton deuteron capture d(p, )3He and the width of the 4He isoscalar monopole resonance. Both observables are calculated using the Lorentz integral transform (LIT) method. The LIT equations are solved via expansions of the LIT states on a specifically modified hyperspherical harmonics (HH) basis. It is illustrated that at low energies such a modification allows to work with much higher LIT resolutions than with an unmodified HH basis. It is discussed that this opens up the possibility to determine astrophysical S-factors as well as the width of low-lying resonances with the LIT method. In the sector of strange baryon systems binding energies of the hypernucleus _Λ ^3{{H}} H are calculated using a nonsymmetrized HH basis. The results are compared with those calculated by various other groups with different methods. For all the considered non-strange and strange baryon systems it is shown that high-precision results are obtained.

  17. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2015-01-01

    Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ{sub 1}-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence onmore » the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.« less

  18. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study.

    PubMed

    Majounie, Elisa; Renton, Alan E; Mok, Kin; Dopper, Elise G P; Waite, Adrian; Rollinson, Sara; Chiò, Adriano; Restagno, Gabriella; Nicolaou, Nayia; Simon-Sanchez, Javier; van Swieten, John C; Abramzon, Yevgeniya; Johnson, Janel O; Sendtner, Michael; Pamphlett, Roger; Orrell, Richard W; Mead, Simon; Sidle, Katie C; Houlden, Henry; Rohrer, Jonathan D; Morrison, Karen E; Pall, Hardev; Talbot, Kevin; Ansorge, Olaf; Hernandez, Dena G; Arepalli, Sampath; Sabatelli, Mario; Mora, Gabriele; Corbo, Massimo; Giannini, Fabio; Calvo, Andrea; Englund, Elisabet; Borghero, Giuseppe; Floris, Gian Luca; Remes, Anne M; Laaksovirta, Hannu; McCluskey, Leo; Trojanowski, John Q; Van Deerlin, Vivianna M; Schellenberg, Gerard D; Nalls, Michael A; Drory, Vivian E; Lu, Chin-Song; Yeh, Tu-Hsueh; Ishiura, Hiroyuki; Takahashi, Yuji; Tsuji, Shoji; Le Ber, Isabelle; Brice, Alexis; Drepper, Carsten; Williams, Nigel; Kirby, Janine; Shaw, Pamela; Hardy, John; Tienari, Pentti J; Heutink, Peter; Morris, Huw R; Pickering-Brown, Stuart; Traynor, Bryan J

    2012-04-01

    We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years. A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases. Full funding sources listed at end of paper (see Acknowledgments). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Genotoxicity of retroviral hematopoietic stem cell gene therapy

    PubMed Central

    Trobridge, Grant D

    2012-01-01

    Introduction Retroviral vectors have been developed for hematopoietic stem cell (HSC) gene therapy and have successfully cured X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy, and Wiskott-Aldrich syndrome. However, in HSC gene therapy clinical trials, genotoxicity mediated by integrated vector proviruses has led to clonal expansion, and in some cases frank leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity with the aim of developing safer vectors and safer gene therapy protocols. These genotoxicity studies are critical to advancing HSC gene therapy. Areas covered This review provides an introduction to the mechanisms of retroviral vector genotoxicity. It also covers advances over the last 20 years in designing safer gene therapy vectors, and in integration site analysis in clinical trials and large animal models. Mechanisms of retroviral-mediated genotoxicity, and the risk factors that contribute to clonal expansion and leukemia in HSC gene therapy are introduced. Expert opinion Continued research on virus–host interactions and next-generation vectors should further improve the safety of future HSC gene therapy vectors and protocols. PMID:21375467

  20. Divergence of activity expansions: Is it actually a problem?

    NASA Astrophysics Data System (ADS)

    Ushcats, M. V.; Bulavin, L. A.; Sysoev, V. M.; Ushcats, S. Yu.

    2017-12-01

    For realistic interaction models, which include both molecular attraction and repulsion (e.g., Lennard-Jones, modified Lennard-Jones, Morse, and square-well potentials), the asymptotic behavior of the virial expansions for pressure and density in powers of activity has been studied taking power terms of high orders into account on the basis of the known finite-order irreducible integrals as well as the recent approximations of infinite irreducible series. Even in the divergence region (at subcritical temperatures), this behavior stays thermodynamically adequate (in contrast to the behavior of the virial equation of state with the same set of irreducible integrals) and corresponds to the beginning of the first-order phase transition: the divergence yields the jump (discontinuity) in density at constant pressure and chemical potential. In general, it provides a statistical explanation of the condensation phenomenon, but for liquid or solid states, the physically proper description (which can turn the infinite discontinuity into a finite jump of density) still needs further study of high-order cluster integrals and, especially, their real dependence on the system volume (density).

  1. Spinocerebellar ataxia type 1 and Machado-Joseph disease: Incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranum, L.P.W.; Gomez, C.; Orr, H.T.

    1995-09-01

    The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia, we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 andmore » MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% have SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively. 30 refs., 1 fig., 3 tabs.« less

  2. The Value in Evaluating and Communicating Program Impact: The Ohio BR&E Program

    ERIC Educational Resources Information Center

    Daivs, Gregory

    2012-01-01

    Assessing program impact can provide useful program evaluation data. It also provides a basis for program development, marketing, and justification. This article discusses recent impact evaluation efforts and findings of a long-time Extension program; referred to as Business Retention and Expansion (BR&E). How such information can be…

  3. Academic Integrity: A Review of the Literature

    ERIC Educational Resources Information Center

    Macfarlane, Bruce; Zhang, Jingjing; Pun, Annie

    2014-01-01

    This article provides a literature review on academic integrity, which encompasses the values, behaviour and conduct of academics in all aspects of their practice. This is a growing area of academic research as a result of the expansion of higher education on a global basis and concerns about standards of professional conduct. The article maps the…

  4. Characterizing Atomistic Geometries and Potential Functions Using Strain Functionals

    NASA Astrophysics Data System (ADS)

    Kober, Edward; Mathew, Nithin; Rudin, Sven

    2017-06-01

    We demonstrate the use of strain tensor functionals for characterizing arbitrarily ordered atomistic structures. This approach defines a Gaussian-weighted neighborhood around each atom and characterizes that local geometry in terms of n-th order strain tensors, which are equivalent to the n-th order moments/derivatives of the neighborhood. Fourth order expansions can distinguish the cubic structures (and deformations thereof), but sixth order expansions are required to fully characterize hexagonal structures. These functions are continuous and smooth and much less sensitive to thermal fluctuations than other descriptors based on discrete neighborhoods. Reducing these metrics to rotational invariant descriptors allows a large number of defect structures to be readily identified and forms the basis of a classification scheme that allows molecular dynamics simulations to be readily analyzed. Applications to the analysis of shock waves impinging on samples of Cu, Ta and Ti will be presented. The method has been extended to vector fields as well, enabling the local stress to be cast in terms of rotationally invariant functions as well. The stress-strain correlations can then be used as the basis for developing and analyzing potential functions.

  5. Testing Gravity and Cosmic Acceleration with Galaxy Clustering

    NASA Astrophysics Data System (ADS)

    Kazin, Eyal; Tinker, J.; Sanchez, A. G.; Blanton, M.

    2012-01-01

    The large-scale structure contains vast amounts of cosmological information that can help understand the accelerating nature of the Universe and test gravity on large scales. Ongoing and future sky surveys are designed to test these using various techniques applied on clustering measurements of galaxies. We present redshift distortion measurements of the Sloan Digital Sky Survey II Luminous Red Galaxy sample. We find that when combining the normalized quadrupole Q with the projected correlation function wp(rp) along with cluster counts (Rapetti et al. 2010), results are consistent with General Relativity. The advantage of combining Q and wp is the addition of the bias information, when using the Halo Occupation Distribution framework. We also present improvements to the standard technique of measuring Hubble expansion rates H(z) and angular diameter distances DA(z) when using the baryonic acoustic feature as a standard ruler. We introduce clustering wedges as an alternative basis to the multipole expansion and show that it yields similar constraints. This alternative basis serves as a useful technique to test for systematics, and ultimately improve measurements of the cosmic acceleration.

  6. Search for the magnetic neutral line in the near-earth plasma sheet 3. An extensive study of magnetic field observations at the lunar distance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lui, A.T.Y.; Meng, C.; Akasofu, S.

    1977-09-01

    In this paper we have extended our search for the magnetic neutral line in the magnetotail to the lunar distance on the basis of the Explorer 35 magnetic field observations from July 1967 to December 1970. The sign of the B/sub z/ component is found to be predominantly positive during satellite crossings of the midplane (or the so-called neutral sheet) during the substorm expansive phase. Thus combining the present and the earlier results, we conclude that there is no supporting evidence for the formation of a neutral line within the lunar distance during the expansive phase of most substorms. Wemore » also discuss in detail a rare event during the geomagnetic storm of February 2-4, 1969 (Dstapprox.-180 ..gamma..). The magnetic field was observed to be pointing nearly 90/sup 0/ southward with a magnitude of 20-32 ..gamma.. for an extended period.« less

  7. Two dimensional J-matrix approach to quantum scattering

    NASA Astrophysics Data System (ADS)

    Olumegbon, Ismail Adewale

    We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.

  8. Two dimensional J-matrix approach to quantum scattering

    NASA Astrophysics Data System (ADS)

    Olumegbon, Ismail Adewale

    2013-01-01

    We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.

  9. Brain basis of self: self-organization and lessons from dreaming

    PubMed Central

    Kahn, David

    2013-01-01

    Through dreaming, a different facet of the self is created as a result of a self-organizing process in the brain. Self-organization in biological systems often happens as an answer to an environmental change for which the existing system cannot cope; self-organization creates a system that can cope in the newly changed environment. In dreaming, self-organization serves the function of organizing disparate memories into a dream since the dreamer herself is not able to control how individual memories become weaved into a dream. The self-organized dream provides, thereby, a wide repertoire of experiences; this expanded repertoire of experience results in an expansion of the self beyond that obtainable when awake. Since expression of the self is associated with activity in specific areas of the brain, the article also discusses the brain basis of the self by reviewing studies of brain injured patients, discussing brain imaging studies in normal brain functioning when focused, when daydreaming and when asleep and dreaming. PMID:23882232

  10. Orbital transfer vehicle concept definition and systems analysis study. Volume 11: Study extension 2 results

    NASA Technical Reports Server (NTRS)

    Willcockson, W. H.

    1988-01-01

    Work conducted in the second extension of the Phase A Orbit Transfer Vehicle Concept Definition and Systems Analysis Study is summarized. Four major tasks were identified: (1) define an initial OTV program consistent with near term Civil Space Leadership Initiative missions; (2) develop program evolution to long term advanced missions; (3) investigate the implications of current STS safety policy on an Aft Cargo Carrier based OTV; and (4) expand the analysis of high entry velocity aeroassist. An increased emphasis on the breath of OTV applications was undertaken to show the need for the program on the basis of the expansion of the nation's capabilities in space.

  11. Isentropic expansion and related thermodynamic properties of non-ionic amphiphile-water mixtures.

    PubMed

    Reis, João Carlos R; Douhéret, Gérard; Davis, Michael I; Fjellanger, Inger Johanne; Høiland, Harald

    2008-01-28

    A concise thermodynamic formalism is developed for the molar isentropic thermal expansion, ES,m = ( partial differential Vm/ partial differential T)(Sm,x), and the ideal and excess quantities for the molar, apparent molar and partial molar isentropic expansions of binary liquid mixtures. Ultrasound speeds were determined by means of the pulse-echo-overlap method in aqueous mixtures of 2-methylpropan-2-ol at 298.15 K over the entire composition range. These data complement selected extensive literature data on density, isobaric heat capacity and ultrasound speed for 9 amphiphile (methanol, ethanol, propan-1-ol, propan-2-ol, 2-methylpropan-2-ol, ethane-1,2-diol, 2-methoxyethanol, 2-ethoxyethanol or 2-butoxyethanol)-water binary systems, which form the basis of tables listing molar and excess molar isobaric expansions and heat capacities, and molar and excess molar isentropic compressions and expansions at 298.15 K and at 65 fixed mole fractions spanning the entire composition range and fine-grained in the water-rich region. The dependence on composition of these 9 systems is graphically depicted for the excess molar isobaric and isentropic expansions and for the excess partial molar isobaric and isentropic expansions of the amphiphile. The analysis shows that isentropic thermal expansion properties give a much stronger response to amphiphile-water molecular interactions than do their isobaric counterparts. Depending on the pair property-system, the maximum excess molar isentropic value is generally twenty- to a hundred-fold greater than the corresponding maximum isobaric value, and occurs at a lower mole fraction of the amphiphile. Values at infinite dilution of the 9 amphiphiles in water are given for the excess partial molar isobaric heat capacity, isentropic compression, isobaric expansion and isentropic expansion. These values are interpreted in terms of the changes occurring when amphiphile molecules cluster into an oligomeric form. Present results are discussed from theoretical and experimental thermodynamic viewpoints. It is concluded that isentropic thermal expansion properties constitute a new distinct resource for revealing particular features and trends in complex mixing processes, and that analyses using these new properties compare favourably with conventional approaches.

  12. Eigenmodes of Multilayer Slit Structures

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. N.

    2017-12-01

    We generalize the high-efficiency numerical-analytical method of calculating the eigenmodes of a microstrip line, which was proposed in [1], to multilayer slit structures. The obtained relationships make it possible to allow for the multilayer nature of the medium on the basis of solving the electrodynamic problem for a two-layer structure. The algebraic models of a single line and coupled slit lines in a multilayer dielectric medium are constructed. The matrix elements of the system of linear algebraic equations, which is used to determine the expansion coefficients of the electric field inside the slits in a Chebyshev basis, are converted to rapidly convergent series. The constructed models allow one to use computer simulation to obtain numerical results with high speed and accuracy, regardless of the number of dielectric layers. The presented results of a numerical study of the method convergence confirm high efficiency of the method.

  13. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe.

    PubMed

    Plumb, Jenny; Pigat, Sandrine; Bompola, Foteini; Cushen, Maeve; Pinchen, Hannah; Nørby, Eric; Astley, Siân; Lyons, Jacqueline; Kiely, Mairead; Finglas, Paul

    2017-03-23

    eBASIS (Bioactive Substances in Food Information Systems), a web-based database that contains compositional and biological effects data for bioactive compounds of plant origin, has been updated with new data on fruits and vegetables, wheat and, due to some evidence of potential beneficial effects, extended to include meat bioactives. eBASIS remains one of only a handful of comprehensive and searchable databases, with up-to-date coherent and validated scientific information on the composition of food bioactives and their putative health benefits. The database has a user-friendly, efficient, and flexible interface facilitating use by both the scientific community and food industry. Overall, eBASIS contains data for 267 foods, covering the composition of 794 bioactive compounds, from 1147 quality-evaluated peer-reviewed publications, together with information from 567 publications describing beneficial bioeffect studies carried out in humans. This paper highlights recent updates and expansion of eBASIS and the newly-developed link to a probabilistic intake model, allowing exposure assessment of dietary bioactive compounds to be estimated and modelled in human populations when used in conjunction with national food consumption data. This new tool could assist small- and medium-sized enterprises (SMEs) in the development of food product health claim dossiers for submission to the European Food Safety Authority (EFSA).

  14. GENETICS AND NEUROPATHOLOGY OF HUNTINGTON’S DISEASE

    PubMed Central

    Reiner, Anton; Dragatsis, Ioannis; Dietrich, Paula

    2015-01-01

    Huntington’s disease (HD) is an autosomal dominant progressive neurodegenerative disorder that prominently affects the basal ganglia, leading to affective, cognitive, behavioral and motor decline. The basis of HD is a CAG repeat expansion to >35 CAG in a gene that codes for a ubiquitous protein known as huntingtin, resulting in an expanded N-terminal polyglutamine tract. The size of the expansion is correlated with disease severity, with increasing CAG accelerating the age of onset. A variety of possibilities have been proposed as to the mechanism by which the mutation causes preferential injury to the basal ganglia. The present chapter provides a basic overview of the genetics and pathology of HD. PMID:21907094

  15. Observations on the Proper Orthogonal Decomposition

    NASA Technical Reports Server (NTRS)

    Berkooz, Gal

    1992-01-01

    The Proper Orthogonal Decomposition (P.O.D.), also known as the Karhunen-Loeve expansion, is a procedure for decomposing a stochastic field in an L(2) optimal sense. It is used in diverse disciplines from image processing to turbulence. Recently the P.O.D. is receiving much attention as a tool for studying dynamics of systems in infinite dimensional space. This paper reviews the mathematical fundamentals of this theory. Also included are results on the span of the eigenfunction basis, a geometric corollary due to Chebyshev's inequality and a relation between the P.O.D. symmetry and ergodicity.

  16. Many-body-theory study of lithium photoionization

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Poe, R. T.

    1975-01-01

    A detailed theoretical calculation is carried out for the photoionization of lithium at low energies within the framework of Brueckner-Goldstone perturbational approach. In this calculation extensive use is made of the recently developed multiple-basis-set technique. Through this technique all second-order perturbation terms, plus a number of important classes of terms to infinite order, have been taken into account. Analysis of the results enables one to resolve the discrepancies between two previous works on this subject. The detailed calculation also serves as a test on the convergence of the many-body perturbation-expansion approach.

  17. DCOMP Award Lecture (Metropolis): A 3D Spectral Anelastic Hydrodynamic Code for Shearing, Stratified Flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph

    2006-03-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.

  18. A 3D spectral anelastic hydrodynamic code for shearing, stratified flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph A.; Marcus, Philip S.

    2006-11-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.

  19. Projecting the Unmet Need and Costs for Contraception Services After the Affordable Care Act

    PubMed Central

    Steinmetz, Erika; Gavin, Lorrie; Rivera, Maria I.; Pazol, Karen; Moskosky, Susan; Weik, Tasmeen; Ku, Leighton

    2016-01-01

    Objectives. We estimated the number of women of reproductive age in need who would gain coverage for contraceptive services after implementation of the Affordable Care Act, the extent to which there would remain a need for publicly funded programs that provide contraceptive services, and how that need would vary on the basis of state Medicaid expansion decisions. Methods. We used nationally representative American Community Survey data (2009), to estimate the insurance status for women in Massachusetts and derived the numbers of adult women at or below 250% of the federal poverty level and adolescents in need of confidential services. We extrapolated findings to simulate the impact of the Affordable Care Act nationally and by state, adjusting for current Medicaid expansion and state Medicaid Family Planning Expansion Programs. Results. The number of low-income women at risk for unintended pregnancy is expected to decrease from 5.2 million in 2009 to 2.5 million in 2016, based on states’ current Medicaid expansion plans. Conclusions. The Affordable Care Act increases women’s insurance coverage and improves access to contraceptive services. However, for women who remain uninsured, publicly funded family planning programs may still be needed. PMID:26691128

  20. Preliminary Plans. A Senior High School in the Bailey Hill Area, Eugene, Oregon.

    ERIC Educational Resources Information Center

    Lutes and Amundson, Architects and Community Planners, Springfield, OR.

    The design of this high school is explained by outlining the decision making process used by the architects. The following design criteria form the basis of this process--(1) design for expansion, (2) design for team teaching, (3) organized by function, (4) space for teachers, (5) space for instructional materials, (6) audio-visual communication…

  1. 7 CFR 226.4 - Payments to States and use of funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... are available for that State or on the basis of estimates by FNS. (h) Funding assurance. FNS shall... providing start-up, expansion and advance payments in accordance with this part. (i) Rate adjustments. FNS.... (j) Audit funds. For the expense of conducting audits and reviews under § 226.8, funds shall be made...

  2. Solution of the Schrodinger Equation for One-Dimensional Anharmonic Potentials: An Undergraduate Computational Experiment

    ERIC Educational Resources Information Center

    Beddard, Godfrey S.

    2011-01-01

    A method of solving the Schrodinger equation using a basis set expansion is described and used to calculate energy levels and wavefunctions of the hindered rotation of ethane and the ring puckering of cyclopentene. The calculations were performed using a computer algebra package and the calculations are straightforward enough for undergraduates to…

  3. The Zero to Three Diagnostic System: A Framework for Considering Emotional and Behavioral Problems in Young Children

    ERIC Educational Resources Information Center

    Evangelista, Nancy; McLellan, Mary J.

    2004-01-01

    The expansion of early childhood services has brought increasing recognition of the need to address mental health disorders in young children. The transactional perspective of developmental psychopathology is the basis for review of diagnostic frameworks for young children. The Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) is…

  4. Mitochondrial Genetic Diversity and Phylogeography of Mus musculus castaneus in Northern Punjab, Pakistan.

    PubMed

    Bibi, Shahnaz; Nadeem, Muhammad Sajid; Wiewel, Andrew Stephen; Beg, Mirza Azhar; Hameed, Khalid; Jabeen, Musarrat; Raja, Ghazala Kaukab

    2017-12-01

    Regions of Iran, Afghanistan, Pakistan and northwestern India have been proposed as the place of origin of Mus musculus castaneus. But despite the fact that Pakistan encompasses an important part of its range, M. m. castaneus populations in Pakistan have not been the subject of intensive genetic and biogeographic studies, except for a very small number of samples included in past studies. We studied genetic variation in M. m. castaneus (CAS) from northern Punjab Province, Pakistan, by using cytochrome b (Cytb) analysis in a sample of 98 individuals. Median-joining network revealed four well differentiated CAS sub-lineages coexisting within a small geographical region; these had previously been thought to have largely non-overlapping geographic distributions. Moreover, haplotypes from Pakistan occupied a central position in the network and all identified global haplotypes were also present in Pakistan. All identified CAS sub-lineages proved to be highly diverse on the basis of haplotype and nucleotide diversity indices. Tajima's D test and Fu's Fs tests of neutrality suggest recent population expansions in all sub-lineages. Expansion times were estimated as 21,760-134,930, 10,800-64,400 and 4950-30,665 ybp using substitution rates of 2.5%, 5% and 11%, respectively. Our results support the hypothesis that northern Punjab Province in Pakistan is the most likely source area for M. m. castaneus, and that the CAS sub-lineages in this region have undergone rapid population expansion events at different time periods, which appear to have benefitted from human-mediated transport, although one of them clearly predates the establishment of human settlements in this region.

  5. Explicitly correlated coupled-cluster theory using cusp conditions. II. Treatment of connected triple excitations.

    PubMed

    Köhn, Andreas

    2010-11-07

    The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.

  6. Weighted Iterative Bayesian Compressive Sensing (WIBCS) for High Dimensional Polynomial Surrogate Construction

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.

    2016-12-01

    Surrogate construction has become a routine procedure when facing computationally intensive studies requiring multiple evaluations of complex models. In particular, surrogate models, otherwise called emulators or response surfaces, replace complex models in uncertainty quantification (UQ) studies, including uncertainty propagation (forward UQ) and parameter estimation (inverse UQ). Further, surrogates based on Polynomial Chaos (PC) expansions are especially convenient for forward UQ and global sensitivity analysis, also known as variance-based decomposition. However, the PC surrogate construction strongly suffers from the curse of dimensionality. With a large number of input parameters, the number of model simulations required for accurate surrogate construction is prohibitively large. Relatedly, non-adaptive PC expansions typically include infeasibly large number of basis terms far exceeding the number of available model evaluations. We develop Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth and PC surrogate construction leading to a sparse, high-dimensional PC surrogate with a very few model evaluations. The surrogate is then readily employed for global sensitivity analysis leading to further dimensionality reduction. Besides numerical tests, we demonstrate the construction on the example of Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Genome-Wide Identification and Expression Analysis of NBS-Encoding Genes in Malus x domestica and Expansion of NBS Genes Family in Rosaceae

    PubMed Central

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1∶1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838

  8. Fast evaluation of scaled opposite spin second-order Møller-Plesset correlation energies using auxiliary basis expansions and exploiting sparsity.

    PubMed

    Jung, Yousung; Shao, Yihan; Head-Gordon, Martin

    2007-09-01

    The scaled opposite spin Møller-Plesset method (SOS-MP2) is an economical way of obtaining correlation energies that are computationally cheaper, and yet, in a statistical sense, of higher quality than standard MP2 theory, by introducing one empirical parameter. But SOS-MP2 still has a fourth-order scaling step that makes the method inapplicable to very large molecular systems. We reduce the scaling of SOS-MP2 by exploiting the sparsity of expansion coefficients and local integral matrices, by performing local auxiliary basis expansions for the occupied-virtual product distributions. To exploit sparsity of 3-index local quantities, we use a blocking scheme in which entire zero-rows and columns, for a given third global index, are deleted by comparison against a numerical threshold. This approach minimizes sparse matrix book-keeping overhead, and also provides sufficiently large submatrices after blocking, to allow efficient matrix-matrix multiplies. The resulting algorithm is formally cubic scaling, and requires only moderate computational resources (quadratic memory and disk space) and, in favorable cases, is shown to yield effective quadratic scaling behavior in the size regime we can apply it to. Errors associated with local fitting using the attenuated Coulomb metric and numerical thresholds in the blocking procedure are found to be insignificant in terms of the predicted relative energies. A diverse set of test calculations shows that the size of system where significant computational savings can be achieved depends strongly on the dimensionality of the system, and the extent of localizability of the molecular orbitals. Copyright 2007 Wiley Periodicals, Inc.

  9. Evolution of Gustatory Receptor Gene Family Provides Insights into Adaptation to Diverse Host Plants in Nymphalid Butterflies.

    PubMed

    Suzuki, Hiromu C; Ozaki, Katsuhisa; Makino, Takashi; Uchiyama, Hironobu; Yajima, Shunsuke; Kawata, Masakado

    2018-06-01

    The host plant range of herbivorous insects is a major aspect of insect-plant interaction, but the genetic basis of host range expansion in insects is poorly understood. In butterflies, gustatory receptor genes (GRs) play important roles in host plant selection by ovipositing females. Since several studies have shown associations between the repertoire sizes of chemosensory gene families and the diversity of resource use, we hypothesized that the increase in the number of genes in the GR family is associated with host range expansion in butterflies. Here, we analyzed the evolutionary dynamics of GRs among related species, including the host generalist Vanessa cardui and three specialists. Although the increase of the GR repertoire itself was not observed, we found that the gene birth rate of GRs was the highest in the lineage leading to V. cardui compared with other specialist lineages. We also identified two taxon-specific subfamilies of GRs, characterized by frequent lineage-specific duplications and higher non-synonymous substitution rates. Together, our results suggest that frequent gene duplications in GRs, which might be involved in the detection of plant secondary metabolites, were associated with host range expansion in the V. cardui lineage. These evolutionary patterns imply that the capability to perceive various compounds during host selection was favored during adaptation to diverse host plants.

  10. The effects of thermospheric winds and chemistry in the diurnal variations of thermospheric species

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.

    1977-01-01

    The reported investigation considers on the basis of a theoretical model, the diurnal variations of the thermospheric composition (H, He, O, O2, and Ar) in terms of thermal expansion with diffusive equilibrium and transport effects associated with thermospheric winds, chemistry, and exospheric flow. The theoretical results are compared with satellite composition data which indicate that the fundamental diurnal tide can be reasonably well understood. It is found that winds are only important for molecular oxygen below 180 km, while thermal expansion due to the larger mass is relatively more important for O2 than for O. Distinct from O, photodissociation and in particular photoionization of O2 are very significant for molecular oxygen.

  11. Expanding Access to Quality Pre-K Is Sound Public Policy

    ERIC Educational Resources Information Center

    Barnett, W. Steven

    2013-01-01

    In 2013, preschool education received more attention in the media and public policy circles than it has for some time, in part because of a series of high-profile proposals to expand access to quality pre-K. The scientific basis for these proposed expansions of quality pre-K is impressive. This paper brings to bear the full weight of the evidence…

  12. A goal-based angular adaptivity method for thermal radiation modelling in non grey media

    NASA Astrophysics Data System (ADS)

    Soucasse, Laurent; Dargaville, Steven; Buchan, Andrew G.; Pain, Christopher C.

    2017-10-01

    This paper investigates for the first time a goal-based angular adaptivity method for thermal radiation transport, suitable for non grey media when the radiation field is coupled with an unsteady flow field through an energy balance. Anisotropic angular adaptivity is achieved by using a Haar wavelet finite element expansion that forms a hierarchical angular basis with compact support and does not require any angular interpolation in space. The novelty of this work lies in (1) the definition of a target functional to compute the goal-based error measure equal to the radiative source term of the energy balance, which is the quantity of interest in the context of coupled flow-radiation calculations; (2) the use of different optimal angular resolutions for each absorption coefficient class, built from a global model of the radiative properties of the medium. The accuracy and efficiency of the goal-based angular adaptivity method is assessed in a coupled flow-radiation problem relevant for air pollution modelling in street canyons. Compared to a uniform Haar wavelet expansion, the adapted resolution uses 5 times fewer angular basis functions and is 6.5 times quicker, given the same accuracy in the radiative source term.

  13. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe

    PubMed Central

    Plumb, Jenny; Pigat, Sandrine; Bompola, Foteini; Cushen, Maeve; Pinchen, Hannah; Nørby, Eric; Astley, Siân; Lyons, Jacqueline; Kiely, Mairead; Finglas, Paul

    2017-01-01

    eBASIS (Bioactive Substances in Food Information Systems), a web-based database that contains compositional and biological effects data for bioactive compounds of plant origin, has been updated with new data on fruits and vegetables, wheat and, due to some evidence of potential beneficial effects, extended to include meat bioactives. eBASIS remains one of only a handful of comprehensive and searchable databases, with up-to-date coherent and validated scientific information on the composition of food bioactives and their putative health benefits. The database has a user-friendly, efficient, and flexible interface facilitating use by both the scientific community and food industry. Overall, eBASIS contains data for 267 foods, covering the composition of 794 bioactive compounds, from 1147 quality-evaluated peer-reviewed publications, together with information from 567 publications describing beneficial bioeffect studies carried out in humans. This paper highlights recent updates and expansion of eBASIS and the newly-developed link to a probabilistic intake model, allowing exposure assessment of dietary bioactive compounds to be estimated and modelled in human populations when used in conjunction with national food consumption data. This new tool could assist small- and medium-sized enterprises (SMEs) in the development of food product health claim dossiers for submission to the European Food Safety Authority (EFSA). PMID:28333085

  14. Discussion on the Criterion for the Safety Certification Basis Compilation - Brazilian Space Program Case

    NASA Astrophysics Data System (ADS)

    Niwa, M.; Alves, N. C.; Caetano, A. O.; Andrade, N. S. O.

    2012-01-01

    The recent advent of the commercial launch and re- entry activities, for promoting the expansion of human access to space for tourism and hypersonic travel, in the already complex ambience of the global space activities, brought additional difficulties over the development of a harmonized framework of international safety rules. In the present work, with the purpose of providing some complementary elements for global safety rule development, the certification-related activities conducted in the Brazilian space program are depicted and discussed, focusing mainly on the criterion for certification basis compilation. The results suggest that the composition of a certification basis with the preferential use of internationally-recognized standards, as is the case of ISO standards, can be a first step toward the development of an international safety regulation for commercial space activities.

  15. Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.

    PubMed

    Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E

    2018-03-01

    Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.

  16. An ab initio benchmark study of the H + CO --> HCO reaction

    NASA Technical Reports Server (NTRS)

    Woon, D. E.

    1996-01-01

    The H + CO --> HCO reaction has been characterized with correlation consistent basis sets at five levels of theory in order to benchmark the sensitivities of the barrier height and reaction ergicity to the one-electron and n-electron expansions of the electronic wave function. Single and multireference methods are compared and contrasted. The coupled cluster method RCCSD(T) was found to be in very good agreement with Davidson-corrected internally-contracted multireference configuration interaction (MRCI+Q). Second-order Moller-Plesset perturbation theory (MP2) was also employed. The estimated complete basis set (CBS) limits for the barrier height (in kcal/mol) for the five methods, including harmonic zero-point energy corrections, are MP2, 4.66; RCCSD, 4.78; RCCSD(T), 4.15; MRCI, 5.10; and MRCI+Q, 4.07. Similarly, the estimated CBS limits for the ergicity of the reaction are: MP2, -17.99; RCCSD, -13.34; RCCSD(T), -13.79; MRCI, -11.46; and MRCI+Q, -13.70. Additional basis set explorations for the RCCSD(T) method demonstrate that aug-cc-pVTZ sets, even with some functions removed, are sufficient to reproduce the CBS limits to within 0.1-0.3 kcal/mol.

  17. The two-electron atomic systems. S-states

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.; Barnea, Nir

    2010-01-01

    A simple Mathematica program for computing the S-state energies and wave functions of two-electron (helium-like) atoms (ions) is presented. The well-known method of projecting the Schrödinger equation onto the finite subspace of basis functions was applied. The basis functions are composed of the exponentials combined with integer powers of the simplest perimetric coordinates. No special subroutines were used, only built-in objects supported by Mathematica. The accuracy of results and computation time depend on the basis size. The precise energy values of 7-8 significant figures along with the corresponding wave functions can be computed on a single processor within a few minutes. The resultant wave functions have a simple analytical form consisting of elementary functions, that enables one to calculate the expectation values of arbitrary physical operators without any difficulties. Program summaryProgram title: TwoElAtom-S Catalogue identifier: AEFK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 185 No. of bytes in distributed program, including test data, etc.: 495 164 Distribution format: tar.gz Programming language: Mathematica 6.0; 7.0 Computer: Any PC Operating system: Any which supports Mathematica; tested under Microsoft Windows XP and Linux SUSE 11.0 RAM:⩾10 bytes Classification: 2.1, 2.2, 2.7, 2.9 Nature of problem: The Schrödinger equation for atoms (ions) with more than one electron has not been solved analytically. Approximate methods must be applied in order to obtain the wave functions or other physical attributes from quantum mechanical calculations. Solution method: The S-wave function is expanded into a triple basis set in three perimetric coordinates. Method of projecting the two-electron Schrödinger equation (for atoms/ions) onto a subspace of the basis functions enables one to obtain the set of homogeneous linear equations F.C=0 for the coefficients C of the above expansion. The roots of equation det(F)=0 yield the bound energies. Restrictions: First, the too large length of expansion (basis size) takes the too large computation time giving no perceptible improvement in accuracy. Second, the order of polynomial Ω (input parameter) in the wave function expansion enables one to calculate the excited nS-states up to n=Ω+1 inclusive. Additional comments: The CPC Program Library includes "A program to calculate the eigenfunctions of the random phase approximation for two electron systems" (AAJD). It should be emphasized that this fortran code realizes a very rough approximation describing only the averaged electron density of the two electron systems. It does not characterize the properties of the individual electrons and has a number of input parameters including the Roothaan orbitals. Running time: ˜10 minutes (depends on basis size and computer speed)

  18. Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkó, Zoltán, E-mail: Z.Perko@tudelft.nl; Gilli, Luca, E-mail: Gilli@nrg.eu; Lathouwers, Danny, E-mail: D.Lathouwers@tudelft.nl

    2014-03-01

    The demand for accurate and computationally affordable sensitivity and uncertainty techniques is constantly on the rise and has become especially pressing in the nuclear field with the shift to Best Estimate Plus Uncertainty methodologies in the licensing of nuclear installations. Besides traditional, already well developed methods – such as first order perturbation theory or Monte Carlo sampling – Polynomial Chaos Expansion (PCE) has been given a growing emphasis in recent years due to its simple application and good performance. This paper presents new developments of the research done at TU Delft on such Polynomial Chaos (PC) techniques. Our work ismore » focused on the Non-Intrusive Spectral Projection (NISP) approach and adaptive methods for building the PCE of responses of interest. Recent efforts resulted in a new adaptive sparse grid algorithm designed for estimating the PC coefficients. The algorithm is based on Gerstner's procedure for calculating multi-dimensional integrals but proves to be computationally significantly cheaper, while at the same it retains a similar accuracy as the original method. More importantly the issue of basis adaptivity has been investigated and two techniques have been implemented for constructing the sparse PCE of quantities of interest. Not using the traditional full PC basis set leads to further reduction in computational time since the high order grids necessary for accurately estimating the near zero expansion coefficients of polynomial basis vectors not needed in the PCE can be excluded from the calculation. Moreover the sparse PC representation of the response is easier to handle when used for sensitivity analysis or uncertainty propagation due to the smaller number of basis vectors. The developed grid and basis adaptive methods have been implemented in Matlab as the Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm and were tested on four analytical problems. These show consistent good performance both in terms of the accuracy of the resulting PC representation of quantities and the computational costs associated with constructing the sparse PCE. Basis adaptivity also seems to make the employment of PC techniques possible for problems with a higher number of input parameters (15–20), alleviating a well known limitation of the traditional approach. The prospect of larger scale applicability and the simplicity of implementation makes such adaptive PC algorithms particularly appealing for the sensitivity and uncertainty analysis of complex systems and legacy codes.« less

  19. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    PubMed

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  20. Relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian: Relativistic pair correlation energies of the Xe atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliav, E.; Kaldor, U.; Ishikawa, Y.

    1994-12-31

    Relativistic pair correlation energies of Xe were computed by employing a recently developed relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian. The matrix Dirac-Fock-Breit SCF and relativistic coupled cluster calculations were performed by means of expansion in basis sets of well-tempered Gaussian spinors. A detailed study of the pair correlation energies in Xe is performed, in order to investigate the effects of the low-frequency Breit interaction on the correlation energies of Xe. Nonadditivity of correlation and relativistic (particularly Breit) effects is discussed.

  1. Melonic Phase Transition in Group Field Theory

    NASA Astrophysics Data System (ADS)

    Baratin, Aristide; Carrozza, Sylvain; Oriti, Daniele; Ryan, James; Smerlak, Matteo

    2014-08-01

    Group field theories have recently been shown to admit a 1/N expansion dominated by so-called `melonic graphs', dual to triangulated spheres. In this note, we deepen the analysis of this melonic sector. We obtain a combinatorial formula for the melonic amplitudes in terms of a graph polynomial related to a higher-dimensional generalization of the Kirchhoff tree-matrix theorem. Simple bounds on these amplitudes show the existence of a phase transition driven by melonic interaction processes. We restrict our study to the Boulatov-Ooguri models, which describe topological BF theories and are the basis for the construction of 4-dimensional models of quantum gravity.

  2. Analyzing the Fierz rearrangement freedom for local chiral two-nucleon potentials

    NASA Astrophysics Data System (ADS)

    Huth, L.; Tews, I.; Lynn, J. E.; Schwenk, A.

    2017-11-01

    Chiral effective field theory is a framework to derive systematic nuclear interactions. It is based on the symmetries of quantum chromodynamics and includes long-range pion physics explicitly, while shorter-range physics is expanded in a general operator basis. The number of low-energy couplings at a particular order in the expansion can be reduced by exploiting the fact that nucleons are fermions and therefore obey the Pauli exclusion principle. The antisymmetry permits the selection of a subset of the allowed contact operators at a given order. When local regulators are used for these short-range interactions, however, this "Fierz rearrangement freedom" is violated. In this paper, we investigate the impact of this violation at leading order (LO) in the chiral expansion. We construct LO and next-to-leading order (NLO) potentials for all possible LO-operator pairs and study their reproduction of phase shifts, the 4He ground-state energy, and the neutron-matter energy at different densities. We demonstrate that the Fierz rearrangement freedom is partially restored at NLO where subleading contact interactions enter. We also discuss implications for local chiral three-nucleon interactions.

  3. MEANS: python package for Moment Expansion Approximation, iNference and Simulation

    PubMed Central

    Fan, Sisi; Geissmann, Quentin; Lakatos, Eszter; Lukauskas, Saulius; Ale, Angelique; Babtie, Ann C.; Kirk, Paul D. W.; Stumpf, Michael P. H.

    2016-01-01

    Motivation: Many biochemical systems require stochastic descriptions. Unfortunately these can only be solved for the simplest cases and their direct simulation can become prohibitively expensive, precluding thorough analysis. As an alternative, moment closure approximation methods generate equations for the time-evolution of the system’s moments and apply a closure ansatz to obtain a closed set of differential equations; that can become the basis for the deterministic analysis of the moments of the outputs of stochastic systems. Results: We present a free, user-friendly tool implementing an efficient moment expansion approximation with parametric closures that integrates well with the IPython interactive environment. Our package enables the analysis of complex stochastic systems without any constraints on the number of species and moments studied and the type of rate laws in the system. In addition to the approximation method our package provides numerous tools to help non-expert users in stochastic analysis. Availability and implementation: https://github.com/theosysbio/means Contacts: m.stumpf@imperial.ac.uk or e.lakatos13@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153663

  4. MEANS: python package for Moment Expansion Approximation, iNference and Simulation.

    PubMed

    Fan, Sisi; Geissmann, Quentin; Lakatos, Eszter; Lukauskas, Saulius; Ale, Angelique; Babtie, Ann C; Kirk, Paul D W; Stumpf, Michael P H

    2016-09-15

    Many biochemical systems require stochastic descriptions. Unfortunately these can only be solved for the simplest cases and their direct simulation can become prohibitively expensive, precluding thorough analysis. As an alternative, moment closure approximation methods generate equations for the time-evolution of the system's moments and apply a closure ansatz to obtain a closed set of differential equations; that can become the basis for the deterministic analysis of the moments of the outputs of stochastic systems. We present a free, user-friendly tool implementing an efficient moment expansion approximation with parametric closures that integrates well with the IPython interactive environment. Our package enables the analysis of complex stochastic systems without any constraints on the number of species and moments studied and the type of rate laws in the system. In addition to the approximation method our package provides numerous tools to help non-expert users in stochastic analysis. https://github.com/theosysbio/means m.stumpf@imperial.ac.uk or e.lakatos13@imperial.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  5. Relationship of starch changes to puffing expansion of parboiled rice.

    PubMed

    Mahanta, Charu Lata; Bhattacharya, K R

    2010-03-01

    'Intan' variety of paddy (Oryza sativa) was tested for puffing. It was parboiled under a wide range of paddy moisture content, steaming pressure and time, as also temperature and time of sand heating. The resulting milled rices were studied for their diverse properties including puffing. Indices of starch changes in the samples were calculated as: (1) gelatinisation index from the solubility of amylose in 0.2 N KOH; (2) amylopectin retrogradation from the post-production drop in room-temperature hydration power of the parboiled paddy during air-drying, (3) thermal breakdown of starch from the drop in gel permeation chromatographic fraction I of starch; lipid-amylose complexation indirectly from (4) drop in rate of water uptake during cooking and (5) cooked-rice firmness. It was found that the puffing expansion was very highly correlated with the combined above 5 indices of starch changes, as much as 90% of the variation in puffing being explainable on that basis. Puffing was promoted by gelatinisation as well as lipid-amylose complexation, but was retarded by amylopectin retrogradation and probably starch breakdown.

  6. The research agenda for improving health policy, systems performance, and service delivery for tuberculosis control: a WHO perspective.

    PubMed Central

    Nunn, Paul; Harries, Anthony; Godfrey-Faussett, Peter; Gupta, Raj; Maher, Dermot; Raviglione, Mario

    2002-01-01

    The development of WHO's DOTS strategy for the control of tuberculosis (TB) in 1995 led to the expansion, adaptation and improvement of operational research in this area. From being a patchwork of small-scale studies concerned with aspects of service delivery, TB operational research shifted to larger-scale, often multicountry projects that were also concerned with health policy and the needs of health systems. The results are now being put into practice by national TB control programmes. In 1998 an ad hoc committee identified the chief factors inhibiting the expansion of DOTS: lack of political will and commitment, poor financial support for TB control, poor organization and management of health services, inadequate human resources, irregular drug supplies, the HIV epidemic, and the rise of multidrug resistance. An analysis of current operational research on TB is presented on the basis of these constraints, and examples of successful projects are outlined in the article. We discuss the prerequisites for success, the shortcomings of this WHO- supported programme, and future challenges and needs. PMID:12132005

  7. Estimation of thermodynamic parameters for Au- and Mg-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Gaur, Jitendra; Mishra, R. K.

    2017-10-01

    The study of temperature dependent thermodynamic parameters; Gibb's free energy difference (ΔG), entropy difference (ΔS) and enthalpy difference (ΔH) between the undercooled liquid and the corresponding equilibrium solid phases has been proved to be extremely advantageous in the study of the thermodynamic behaviour of Metallic glass (MG) forming melts. In last two decades, Au- and Mg-based alloys were found to form glass phases. In present study, the three thermodynamic parameters viz., ΔG, ΔS and ΔH are calculated theoretically in the entire temperature range Tm (melting temperature) to Tg (glass transition temperature) for both Au- and Mg-based five samples of MGs; Au77Ge13.6Si9.4, Au53.2Pb27.5Sb19.3, Au81.4Si18.6, Mg85.5Cu14.5 and Mg81.6Ga18.4 on the basis of Taylor's series expansion. A relative study is also made between the present result and the result obtained experimentally as well as on the basis of expressions projected by the earlier researchers. An attempt is also been made to narrate the reduced glass transition temperature with glass forming ability for all five MGs.

  8. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    PubMed

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  9. Identifying Genetic Traces of Historical Expansions: Phoenician Footprints in the Mediterranean

    PubMed Central

    Zalloua, Pierre A.; Platt, Daniel E.; El Sibai, Mirvat; Khalife, Jade; Makhoul, Nadine; Haber, Marc; Xue, Yali; Izaabel, Hassan; Bosch, Elena; Adams, Susan M.; Arroyo, Eduardo; López-Parra, Ana María; Aler, Mercedes; Picornell, Antònia; Ramon, Misericordia; Jobling, Mark A.; Comas, David; Bertranpetit, Jaume; Wells, R. Spencer; Tyler-Smith, Chris

    2008-01-01

    The Phoenicians were the dominant traders in the Mediterranean Sea two thousand to three thousand years ago and expanded from their homeland in the Levant to establish colonies and trading posts throughout the Mediterranean, but then they disappeared from history. We wished to identify their male genetic traces in modern populations. Therefore, we chose Phoenician-influenced sites on the basis of well-documented historical records and collected new Y-chromosomal data from 1330 men from six such sites, as well as comparative data from the literature. We then developed an analytical strategy to distinguish between lineages specifically associated with the Phoenicians and those spread by geographically similar but historically distinct events, such as the Neolithic, Greek, and Jewish expansions. This involved comparing historically documented Phoenician sites with neighboring non-Phoenician sites for the identification of weak but systematic signatures shared by the Phoenician sites that could not readily be explained by chance or by other expansions. From these comparisons, we found that haplogroup J2, in general, and six Y-STR haplotypes, in particular, exhibited a Phoenician signature that contributed > 6% to the modern Phoenician-influenced populations examined. Our methodology can be applied to any historically documented expansion in which contact and noncontact sites can be identified. PMID:18976729

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recordedmore » vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.« less

  11. Genome-wide identification, expansion, and evolution analysis of homeobox genes and their expression profiles during root development in carrot.

    PubMed

    Que, Feng; Wang, Guang-Long; Li, Tong; Wang, Ya-Hui; Xu, Zhi-Sheng; Xiong, Ai-Sheng

    2018-06-16

    The homeobox gene family, a large family represented by transcription factors, has been implicated in secondary growth, early embryo patterning, and hormone response pathways in plants. However, reports about the information and evolutionary history of the homeobox gene family in carrot are limited. In the present study, a total of 130 homeobox family genes were identified in the carrot genome. Specific codomain and phylogenetic analyses revealed that the genes were classified into 14 subgroups. Whole genome and proximal duplication participated in the homeobox gene family expansion in carrot. Purifying selection also contributed to the evolution of carrot homeobox genes. In Gene Ontology (GO) analysis, most members of the HD-ZIP III and IV subfamilies were found to have a lipid binding (GO:0008289) term. Most HD-ZIP III and IV genes also harbored a steroidogenic acute regulatory protein-related lipid transfer (START) domain. These results suggested that the HD-ZIP III and IV subfamilies might be related to lipid transfer. Transcriptome and quantitative real-time PCR (RT-qPCR) data indicated that members of the WOX and KNOX subfamilies were likely implicated in carrot root development. Our study provided a useful basis for further studies on the complexity and function of the homeobox gene family in carrot.

  12. Orbital Expansion for Congenital Anophthalmia May Be Achievable in Infancy But Not in Childhood.

    PubMed

    Morrow, Brad T; Albright, William B; Neves, Rogerio I; Wilkinson, Michael J; Samson, Thomas D

    2016-10-01

    Congenital anophthalmia is a rare anomaly that results in micro-orbitism and craniofacial microsomia. Treatment with static conformers is labor-intensive and provides minimal stimulation for orbital growth that requires eventual reconstruction with orbital osteotomies after skeletal maturity. A protocol for the treatment of congenital anophthalmia is presented. Patients underwent a preoperative low-dose radiation computed tomography (CT) scan of the facial bones to assess orbital volume. An intraorbital expander was placed and was filled on a monthly basis. Quantitative changes in the affected and unaffected orbits were assessed by a repeat CT scan obtained 1 year postoperatively. Two patients with left unilateral congenital anophthalmia were prospectively followed. In a 4-month-old, the affected orbital width and height increased by 171.6% and 116.7% respectively compared with the unaffected orbit. In a 4-year-old, the affected orbital width increased by 36.1% but the height decreased by 35.3% compared with the unaffected orbit. At 18 months follow-up, no complications, ruptures, infections, or extrusions have been observed. Our results support that accelerated expansion can be achieved in a 4-month-old orbit reversing the effects of anophthalmia. However, in a 4-year-old, minimal growth was observed. The lack of accelerated growth in this study may be explained by synostosis of the orbital sutures. As such, expansion should be initiated at the earliest age possible. Further longitudinal study is ongoing to determine if sustained catch-up growth will obviate or reduce the complexity of a secondary correction.

  13. Agricultural landscapes: Can they support healthy bird populations as well as farm products?

    USGS Publications Warehouse

    Peterjohn, B.G.

    2003-01-01

    At the beginning of the twentieth century, prospects for bird populations occupying farmlands were promising. Agricultural expansion and the resulting deforestation produced wholesale changes to the landscape of eastern North America (Trautman 1977, Zeranski and Baptist 1990, Nicholson 1997). Regional avifaunas were transformed as Horned Larks (Eremophila alpestris), Dickcissels (Spiza americana), and other farmland birds undertook range expansions (Hurley and Franks 1976, Askins 1999). Those farmland birds became conspicuous, frequently in numbers that are hard to imagine today (Trautman 1940).One hundred years later, many of those once plentiful species experienced dramatic population declines (Askins 1993, Peterjohn and Sauer 1999). Those trends were evident for many decades, although pre-1965 trends were largely based on anecdotal accounts and were frequently attributed to changing regional landscapes due to urban expansion, farm abandonment resulting in increased forest cover, and the more intensive use of remaining agricultural fields (Trautman 1940, Herkert 1991, Askins 2000). However, numerous specific factors were implicated in local declines of individual species (Kantrud 1981, Bollinger et al. 1990, Lymn and Temple 1991, Bowen and Kruse 1993, Herkert 1994, Houston and Schmutz 1999, Blackwell and Dolbeer 2001).Understanding factors responsible for population changes can be approached at various geographic scales. Local studies identify specific factors influencing small populations, but the applicability of those results across broad geographic areas is often uncertain. Studies conducted at large geographic scales identify broad patterns of change, but those patterns frequently involve interrelated factors that may be only loosely related to the actual causes of population change. However, correlations between broad patterns of changes in bird populations and land-use characteristics provide a basis for directing future studies conducted at smaller geographic scales.

  14. Next generation dilatometer for highest accuracy thermal expansion measurement of ZERODUR®

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Engel, Axel; Kunisch, Clemens; Westenberger, Gerhard; Fischer, Peter; Westerhoff, Thomas

    2015-09-01

    In the recent years, the ever tighter tolerance for the Coefficient of thermal expansion (CTE) of IC Lithography component materials is requesting significant progress in the metrology accuracy to determine this property as requested. ZERODUR® is known for its extremely low CTE between 0°C to 50°C. The current measurement of the thermal expansion coefficient is done using push rod dilatometer measurement systems developed at SCHOTT. In recent years measurements have been published showing the excellent CTE homogeneity of ZERODUR® in the one-digit ppb/K range using these systems. The verifiable homogeneity was limited by the CTE(0°C, 50°C) measurement repeatability in the range of ± 1.2 ppb/K of the current improved push rod dilatometer setup using an optical interferometer as detector instead of an inductive coil. With ZERODUR® TAILORED, SCHOTT introduced a low thermal expansion material grade that can be adapted to individual customer application temperature profiles. The basis for this product is a model that has been developed in 2010 for better understanding of the thermal expansion behavior under given temperature versus time conditions. The CTE behavior predicted by the model has proven to be in very good alignment with the data determined in the thermal expansions measurements. The measurements to determine the data feeding the model require a dilatometer setup with excellent stability and accuracy for long measurement times of several days. In the past few years SCHOTT spent a lot of effort to drive a dilatometer measurement technology based on the push rod setup to its limit, to fulfill the continuously demand for higher CTE accuracy and deeper material knowledge of ZERODUR®. This paper reports on the status of the dilatometer technology development at SCHOTT.

  15. Repopulating hematopoietic stem cells from steady-state blood before and after ex vivo culture are enriched in CD34+CD133+CXCR4low fraction.

    PubMed

    Lapostolle, Véronique; Chevaleyre, Jean; Duchez, Pascale; Rodriguez, Laura; Vlaski-Lafarge, Marija; Sandvig, Ioanna; Brunet de la Grange, Philippe; Ivanovic, Zoran

    2018-06-01

    Feasibility of ex vivo expansion allows us to consider the steady-state peripheral blood as an alternative source of hematopoietic stem progenitor cells for transplantation when growth factor-induced cell mobilization is contraindicated or inapplicable. Ex vivo expansion dramatically enhances the in vivo reconstituting cell population from steady-state blood. In order to investigate phenotype and the expression of homing molecules, CD34, CD133, CD90, CD45RA, CD26 and CD9 expression was determined on sorted CD34+ cells according to CXCR4 (neg, low, bright) and CD133 expression before and after ex vivo expansion. Hematopoietic stem cell activity was determined in vivo on the basis of hematopoietic repopulation of primary and secondary recipients - NSG immuno-deficient mice. In vivo reconstituting cells in steady-state blood CD34+ cell fraction before expansion belong to the CD133+ population and are CXCR4low or, to a lesser extent, CXCR4neg, while after ex vivo expansion they are contained in only the CD133+CXCR4low cells. The failure of CXCR4bright population to engraft is probably due to the exclusive expression of CD26 by these cells. The limiting-dilution analysis showed that both repopulating cell number and individual proliferative capacity were enhanced by ex vivo expansion. Thus, steady-state peripheral blood cells exhibit a different phenotype compared to mobilized and cord blood ones, as well as to those issued from the bone marrow. This data represent the first phenotypic characterization of steady-state blood cells exhibiting short and long term hematopoietic reconstituting potential, which can be expanded ex vivo, a sine qua non for their subsequent use for transplantation. Copyright © 2018, Ferrata Storti Foundation.

  16. Munitions Classification Library Update and Expansion Blossom Point Data Collection Report

    DTIC Science & Technology

    2015-02-10

    ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 10-02-2015 2 . REPORT TYPE Technical 3. DATES COVERED (From - To) July 2014 – February 2015 4. TITLE AND...Denver, CO 80203 Naval Research Laboratory Code 6110 4555 Overlook Avenue, SW Washington, DC 20375-5320 N/A 9... 2   Figure 2 -1 – TX/RX coil combination that forms the basis for both the

  17. Fast function-on-scalar regression with penalized basis expansions.

    PubMed

    Reiss, Philip T; Huang, Lei; Mennes, Maarten

    2010-01-01

    Regression models for functional responses and scalar predictors are often fitted by means of basis functions, with quadratic roughness penalties applied to avoid overfitting. The fitting approach described by Ramsay and Silverman in the 1990 s amounts to a penalized ordinary least squares (P-OLS) estimator of the coefficient functions. We recast this estimator as a generalized ridge regression estimator, and present a penalized generalized least squares (P-GLS) alternative. We describe algorithms by which both estimators can be implemented, with automatic selection of optimal smoothing parameters, in a more computationally efficient manner than has heretofore been available. We discuss pointwise confidence intervals for the coefficient functions, simultaneous inference by permutation tests, and model selection, including a novel notion of pointwise model selection. P-OLS and P-GLS are compared in a simulation study. Our methods are illustrated with an analysis of age effects in a functional magnetic resonance imaging data set, as well as a reanalysis of a now-classic Canadian weather data set. An R package implementing the methods is publicly available.

  18. Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate?

    NASA Astrophysics Data System (ADS)

    Tinner, Willy; Lotter, André F.

    2006-03-01

    During the past eight decades contrasting hypotheses have been put forward to explain the Holocene expansions of Fagus silvatica (beech) and Abies alba (fir) in Central Europe. The hypotheses can be referred to as: (1) climatic change; (2) migrational lag; (3) delay in population increase; (4) human disturbance; and (5) fire disturbance. High-resolution pollen and charcoal records from three sites in lowland Switzerland and southern Germany allow testing the human vs. fire-disturbance hypotheses by means of time-series analysis. Cross-correlations between pairs of pollen as well as between microscopic charcoal and pollen suggest that neither human nor fire disturbance substantially promoted the expansion of Fagus and Abies. We address the remaining hypotheses (climatic change, migrational lag, delay of population increase) by a combined interpretation of our data with independent climatic records and other evidence of past environmental dynamics (e.g. dynamic vegetation modelling) for southern Central Europe. Rapid population expansions in response to cooling and precipitation increase suggest that climatic change was the main forcing factor and that migrational lags were not effective since at least 8200 cal. yr ago. On the basis of this conclusion we propose an explanatory model for the Holocene expansion of Fagus and Abies in Central Europe: Both trees expanded stepwise across the continent during favourable 8200-type events, which were characterized by changes towards wetter and cooler conditions and corresponded to previously recognized Holocene cold phases in Central Europe as well as in the North Atlantic realm. Asynchronous expansions across continental Europe are explained by analogy to today's precipitation gradients resulting from orographic effects. Response lags of Fagus and Abies to climatic change reached a few decades at most, whereas population expansion in response to climatic change lasted for several centuries, probably as a consequence of intrinsic rates of population increase as well as competition with previously established forest communities. This model is in agreement with recent data from northern Central Europe, where large-scale expansion pulses of Fagus coincided with 8200-type events (e.g. 3800-3400 and 2750-2350 cal. BP). In addition to climatic change, human impact influenced the expansions of Fagus in northern Central Europe. We suggest that Abies expansions across Europe after 5000 cal. BP were inhibited by human and/or fire disturbance.

  19. Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy.

    PubMed

    Pérez, Cristóbal; Muckle, Matt T; Zaleski, Daniel P; Seifert, Nathan A; Temelso, Berhane; Shields, George C; Kisiel, Zbigniew; Pate, Brooks H

    2012-05-18

    Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18-substituted water (H(2)(18)O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.

  20. Roothaan-Hartree-Fock ground-state atomic wave functions: Slater-type orbital expansions and expectation values for Z = 2-54

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunge, C.F.; Barrientos, J.A.; Bunge, A.V.

    1993-01-01

    Roothaan-Hartree-Fock orbitals expressed in a Slater-type basis are reported for the ground states of He through Xe. Energy accuracy ranges between 8 and 10 significant figures, reducing by between 21 and 2,770 times the energy errors of the previous such compilation (E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 14, 177, 1974). For each atom, the total energy, kinetic energy, potential energy, virial ratio, electron density at the nucleus, and the Kato cusp are given together with radial expectation values [l angle]r[sup n][r angle] with n from [minus]3 to 2 for each orbital, orbital energies, and orbitalmore » expansion coefficients. 29 refs., 1 tab.« less

  1. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism.

    PubMed

    Spanu, Pietro D; Abbott, James C; Amselem, Joelle; Burgis, Timothy A; Soanes, Darren M; Stüber, Kurt; Ver Loren van Themaat, Emiel; Brown, James K M; Butcher, Sarah A; Gurr, Sarah J; Lebrun, Marc-Henri; Ridout, Christopher J; Schulze-Lefert, Paul; Talbot, Nicholas J; Ahmadinejad, Nahal; Ametz, Christian; Barton, Geraint R; Benjdia, Mariam; Bidzinski, Przemyslaw; Bindschedler, Laurence V; Both, Maike; Brewer, Marin T; Cadle-Davidson, Lance; Cadle-Davidson, Molly M; Collemare, Jerome; Cramer, Rainer; Frenkel, Omer; Godfrey, Dale; Harriman, James; Hoede, Claire; King, Brian C; Klages, Sven; Kleemann, Jochen; Knoll, Daniela; Koti, Prasanna S; Kreplak, Jonathan; López-Ruiz, Francisco J; Lu, Xunli; Maekawa, Takaki; Mahanil, Siraprapa; Micali, Cristina; Milgroom, Michael G; Montana, Giovanni; Noir, Sandra; O'Connell, Richard J; Oberhaensli, Simone; Parlange, Francis; Pedersen, Carsten; Quesneville, Hadi; Reinhardt, Richard; Rott, Matthias; Sacristán, Soledad; Schmidt, Sarah M; Schön, Moritz; Skamnioti, Pari; Sommer, Hans; Stephens, Amber; Takahara, Hiroyuki; Thordal-Christensen, Hans; Vigouroux, Marielle; Wessling, Ralf; Wicker, Thomas; Panstruga, Ralph

    2010-12-10

    Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.

  2. Gaussian polarizable-ion tight binding.

    PubMed

    Boleininger, Max; Guilbert, Anne Ay; Horsfield, Andrew P

    2016-10-14

    To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).

  3. Gaussian polarizable-ion tight binding

    NASA Astrophysics Data System (ADS)

    Boleininger, Max; Guilbert, Anne AY; Horsfield, Andrew P.

    2016-10-01

    To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).

  4. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.

    PubMed

    Beran, Gregory J O; Hartman, Joshua D; Heit, Yonaton N

    2016-11-15

    Molecular crystals occur widely in pharmaceuticals, foods, explosives, organic semiconductors, and many other applications. Thanks to substantial progress in electronic structure modeling of molecular crystals, attention is now shifting from basic crystal structure prediction and lattice energy modeling toward the accurate prediction of experimentally observable properties at finite temperatures and pressures. This Account discusses how fragment-based electronic structure methods can be used to model a variety of experimentally relevant molecular crystal properties. First, it describes the coupling of fragment electronic structure models with quasi-harmonic techniques for modeling the thermal expansion of molecular crystals, and what effects this expansion has on thermochemical and mechanical properties. Excellent agreement with experiment is demonstrated for the molar volume, sublimation enthalpy, entropy, and free energy, and the bulk modulus of phase I carbon dioxide when large basis second-order Møller-Plesset perturbation theory (MP2) or coupled cluster theories (CCSD(T)) are used. In addition, physical insight is offered into how neglect of thermal expansion affects these properties. Zero-point vibrational motion leads to an appreciable expansion in the molar volume; in carbon dioxide, it accounts for around 30% of the overall volume expansion between the electronic structure energy minimum and the molar volume at the sublimation point. In addition, because thermal expansion typically weakens the intermolecular interactions, neglecting thermal expansion artificially stabilizes the solid and causes the sublimation enthalpy to be too large at higher temperatures. Thermal expansion also frequently weakens the lower-frequency lattice phonon modes; neglecting thermal expansion causes the entropy of sublimation to be overestimated. Interestingly, the sublimation free energy is less significantly affected by neglecting thermal expansion because the systematic errors in the enthalpy and entropy cancel somewhat. Second, because solid state nuclear magnetic resonance (NMR) plays an increasingly important role in molecular crystal studies, this Account discusses how fragment methods can be used to achieve higher-accuracy chemical shifts in molecular crystals. Whereas widely used plane wave density functional theory models are largely restricted to generalized gradient approximation (GGA) functionals like PBE in practice, fragment methods allow the routine use of hybrid density functionals with only modest increases in computational cost. In extensive molecular crystal benchmarks, hybrid functionals like PBE0 predict chemical shifts with 20-30% higher accuracy than GGAs, particularly for 1 H, 13 C, and 15 N nuclei. Due to their higher sensitivity to polarization effects, 17 O chemical shifts prove slightly harder to predict with fragment methods. Nevertheless, the fragment model results are still competitive with those from GIPAW. The improved accuracy achievable with fragment approaches and hybrid density functionals increases discrimination between different potential assignments of individual shifts or crystal structures, which is critical in NMR crystallography applications. This higher accuracy and greater discrimination are highlighted in application to the solid state NMR of different acetaminophen and testosterone crystal forms.

  5. Magnetic Properties of Strongly Correlated Hubbard Model and Quantum Spin-One Ferromagnets with Arbitrary Crystal-Field Potential: Linked Cluster Series Expansion Approach

    NASA Astrophysics Data System (ADS)

    Pan, Kok-Kwei

    We have generalized the linked cluster expansion method to solve more many-body quantum systems, such as quantum spin systems with crystal-field potentials and the Hubbard model. The technique sums up all connected diagrams to a certain order of the perturbative Hamiltonian. The modified multiple-site Wick reduction theorem and the simple tau dependence of the standard basis operators have been used to facilitate the evaluation of the integration procedures in the perturbation expansion. Computational methods are developed to calculate all terms in the series expansion. As a first example, the perturbation series expansion of thermodynamic quantities of the single-band Hubbard model has been obtained using a linked cluster series expansion technique. We have made corrections to all previous results of several papers (up to fourth order). The behaviors of the three dimensional simple cubic and body-centered cubic systems have been discussed from the qualitative analysis of the perturbation series up to fourth order. We have also calculated the sixth-order perturbation series of this model. As a second example, we present the magnetic properties of spin-one Heisenberg model with arbitrary crystal-field potential using a linked cluster series expansion. The calculation of the thermodynamic properties using this method covers the whole range of temperature, in both magnetically ordered and disordered phases. The series for the susceptibility and magnetization have been obtained up to fourth order for this model. The method sums up all perturbation terms to certain order and estimates the result using a well -developed and highly successful extrapolation method (the standard ratio method). The dependence of critical temperature on the crystal-field potential and the magnetization as a function of temperature and crystal-field potential are shown. The critical behaviors at zero temperature are also shown. The range of the crystal-field potential for Ni(2+) compounds is roughly estimated based on this model using known experimental results.

  6. Analysis of the impacts of horizontal translation and scaling on wavefront approximation coefficients with rectangular pupils for Chebyshev and Legendre polynomials.

    PubMed

    Sun, Wenqing; Chen, Lei; Tuya, Wulan; He, Yong; Zhu, Rihong

    2013-12-01

    Chebyshev and Legendre polynomials are frequently used in rectangular pupils for wavefront approximation. Ideally, the dataset completely fits with the polynomial basis, which provides the full-pupil approximation coefficients and the corresponding geometric aberrations. However, if there are horizontal translation and scaling, the terms in the original polynomials will become the linear combinations of the coefficients of the other terms. This paper introduces analytical expressions for two typical situations after translation and scaling. With a small translation, first-order Taylor expansion could be used to simplify the computation. Several representative terms could be selected as inputs to compute the coefficient changes before and after translation and scaling. Results show that the outcomes of the analytical solutions and the approximated values under discrete sampling are consistent. With the computation of a group of randomly generated coefficients, we contrasted the changes under different translation and scaling conditions. The larger ratios correlate the larger deviation from the approximated values to the original ones. Finally, we analyzed the peak-to-valley (PV) and root mean square (RMS) deviations from the uses of the first-order approximation and the direct expansion under different translation values. The results show that when the translation is less than 4%, the most deviated 5th term in the first-order 1D-Legendre expansion has a PV deviation less than 7% and an RMS deviation less than 2%. The analytical expressions and the computed results under discrete sampling given in this paper for the multiple typical function basis during translation and scaling in the rectangular areas could be applied in wavefront approximation and analysis.

  7. About a flame propagation by a premixed gas mixture at high turbulence

    NASA Astrophysics Data System (ADS)

    Gaponov, Sergey A.

    2018-03-01

    In the paper the new model of the turbulent flame propagation in a premixed gas is offered. In its basis the diffusion equation of combustion products with a source, which is proportional to the contact surface of combustion products with a fresh mixture and an expansion coefficient is put. It is shown that the dependence of the generation rate of combustion products on their mass concentration satisfies conditions of the KPP (Kolmogorov, Petrovsky, Piskounov). In this case, the flame propagation speed depends on the flame surface in a unit volume near the leading front. But at turbulent motion the isolated fragments of combustion products surrounded with fresh mix can be formed on the forward front. It is assumed that the isolated fragments are the sphere shape at the weak turbulence, and with increase in intensity of turbulent pulsations the flame surface of each center is proportional to the pulsations velocity and inversely proportional to the flame speed relatively combustion products, i.e. it is inversely proportional to the product of normal flame speed and expansion coefficient. As a result the formula for the propagation speed calculation of the turbulent flame is proposed which includes not only traditional values of a pulsations velocity and normal flame speed, but also values of an expansion coefficient. On its basis it is explained why the turbulent flame speed exceeds the pulsations velocity by many times at moderate turbulence. It is shown that at the power dependence the turbulent flame speed on the pulsation velocity exponent can vary from 0.5 to unit. The received dependence can be improved if to replace the flat laminar flame with average on the surface of the curved flame, i.e. to take into account the Markstein theory.

  8. Yangians and Yang-Baxter R-operators for ortho-symplectic superalgebras

    NASA Astrophysics Data System (ADS)

    Fuksa, J.; Isaev, A. P.; Karakhanyan, D.; Kirschner, R.

    2017-04-01

    Yang-Baxter relations symmetric with respect to the ortho-symplectic superalgebras are studied. We start with the formulation of graded algebras and the linear superspace carrying the vector (fundamental) representation of the ortho-symplectic supergroup. On this basis we study the analogy of the Yang-Baxter operators considered earlier for the cases of orthogonal and symplectic symmetries: the vector (fundamental) R-matrix, the L-operator defining the Yangian algebra and its first and second order evaluations. We investigate the condition for L (u) in the case of the truncated expansion in inverse powers of u and give examples of Lie algebra representations obeying these conditions. We construct the R-operator intertwining two superspinor representations and study the fusion of L-operators involving the tensor product of such representations.

  9. A current disruption mechanism in the neutral sheet - A possible trigger for substorm expansions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.

    1990-01-01

    A linear analysis is performed to investigate the kinetic cross-field streaming instability in the earth's magnetotail neutral sheet region. Numerical solution of the dispersion equation shows that the instability can occur under conditions expected for the neutral sheet just prior to the onset of substorm expansion. The excited waves are obliquely propagating whistlers with a mixed polarization in the lower hybrid frequency range. The ensuing turbulence of this instability can lead to a local reduction of the cross-tail current causing it to continue through the ionosphere to form a substorm current wedge. A substorm expansion onset scenario is proposed based on this instability in which the relative drift between ions and electrons is primarily due to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is within the range of electric field values detected in the neutral sheet region during substorm intervals. The skew in local time of substorm onset location and the three conditions under which substorm onset is observed can be understood on the basis of the proposed scenario.

  10. Modifications of a Composite-Material Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; McNeal, Shawn R.

    2005-01-01

    Two short reports discuss modifications of a small, lightweight combustion chamber that comprises a carbon/carbon composite outer shell and an iridium/ rhenium inner liner. The first report discusses chamber design modifications made as results of hot-fire tests and post-test characterization. The Books & Reports 32 NASA Tech Briefs, June 2005 modifications were intended to serve a variety of purposes, including improving fabrication, reducing thermal-expansion mismatch stresses, increasing strength-to-weight ratios of some components, and improving cooling of some components. The second report discusses (1) the origin of stress in the mismatch between the thermal expansions of the Ir/Re liner and a niobium sleeve and flange attached to the carbon/ carbon shell and (2) a modification intended to relieve the stress. The modification involves the redesign of an inlet connection to incorporate a compressible seal between the Ir/Re liner and the Nb flange. A nickel alloy was selected as the seal material on the basis of its thermal-expansion properties and its ability to withstand the anticipated stresses, including the greatest stresses caused by the high temperatures to be used in brazing during fabrication.

  11. Maximum likelihood orientation estimation of 1-D patterns in Laguerre-Gauss subspaces.

    PubMed

    Di Claudio, Elio D; Jacovitti, Giovanni; Laurenti, Alberto

    2010-05-01

    A method for measuring the orientation of linear (1-D) patterns, based on a local expansion with Laguerre-Gauss circular harmonic (LG-CH) functions, is presented. It lies on the property that the polar separable LG-CH functions span the same space as the 2-D Cartesian separable Hermite-Gauss (2-D HG) functions. Exploiting the simple steerability of the LG-CH functions and the peculiar block-linear relationship among the two expansion coefficients sets, maximum likelihood (ML) estimates of orientation and cross section parameters of 1-D patterns are obtained projecting them in a proper subspace of the 2-D HG family. It is shown in this paper that the conditional ML solution, derived by elimination of the cross section parameters, surprisingly yields the same asymptotic accuracy as the ML solution for known cross section parameters. The accuracy of the conditional ML estimator is compared to the one of state of art solutions on a theoretical basis and via simulation trials. A thorough proof of the key relationship between the LG-CH and the 2-D HG expansions is also provided.

  12. Approach to the origin of turbulence on the basis of two-point kinetic theory

    NASA Technical Reports Server (NTRS)

    Tsuge, S.

    1974-01-01

    Equations for the fluctuation correlation in an incompressible shear flow are derived on the basis of kinetic theory, utilizing the two-point distribution function which obeys the BBGKY hierarchy equation truncated with the hypothesis of 'ternary' molecular chaos. The step from the molecular to the hydrodynamic description is accomplished by a moment expansion which is a two-point version of the thirteen-moment method, and which leads to a series of correlation equations, viz., the two-point counterparts of the continuity equation, the Navier-Stokes equation, etc. For almost parallel shearing flows the two-point equation is separable and reduces to two Orr-Sommerfeld equations with different physical implications.

  13. Subgrid-scale physical parameterization in atmospheric modeling: How can we make it consistent?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2016-07-01

    Approaches to subgrid-scale physical parameterization in atmospheric modeling are reviewed by taking turbulent combustion flow research as a point of reference. Three major general approaches are considered for its consistent development: moment, distribution density function (DDF), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in geophysics and engineering. The DDF (commonly called PDF) approach is intuitively appealing as it deals with a distribution of variables in subgrid scale in a more direct manner. Mode decomposition was originally applied by Aubry et al (1988 J. Fluid Mech. 192 115-73) in the context of wall boundary-layer turbulence. It is specifically designed to represent coherencies in compact manner by a low-dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (empirical orthogonal functions) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. Among those, wavelet is a particularly attractive alternative. The mass-flux formulation that is currently adopted in the majority of atmospheric models for parameterizing convection can also be considered a special case of mode decomposition, adopting segmentally constant modes for the expansion basis. This perspective further identifies a very basic but also general geometrical constraint imposed on the massflux formulation: the segmentally-constant approximation. Mode decomposition can, furthermore, be understood by analogy with a Galerkin method in numerically modeling. This analogy suggests that the subgrid parameterization may be re-interpreted as a type of mesh-refinement in numerical modeling. A link between the subgrid parameterization and downscaling problems is also pointed out.

  14. The Evolution of Universe as Splitting of the ``Non Existing'' and Space-Time Expansion

    NASA Astrophysics Data System (ADS)

    Nassikas, A. A.

    2010-09-01

    The purpose of this paper is to show that the creation of Universe can be regarded as a splitting process of the ``non existing'', ``where'' there is no space-time and that the expansion of Universe is due to the compatibility between the stochastic-quantum space-time created and the surrounding ``non existing''. In this way it is not required that space time should pre-exist in contrast, as it can be shown, to the Universe creation from vacuum theory. The present point of view can be derived on the basis of a Minimum Contradictions Physics according to which stochastic-quantum space-time is matter itself; there are (g)-mass and (em)-charge space-time which interact-communicate through photons [(g) or (em) particles with zero rest mass]. This point of view is compatible to the present knowledge of CERN and Fermi Lab experiments as well as to the neutron synthesis according to Rutherford, experimentally verified and theoretically explained through Hadronic Mechanics by R. M. Santilli. On the basis of the Minimum Contradictions Physics a quantum gravity formula is derived which implies either positive or negative gravitational acceleration; thus, bodies can be attracted while Universe can be expanded. Minimum Contradictions Physics, under certain simplifications, is compatible to Newton Mechanics, Relativity Theory and QM. This physics is compatible to language through which it is stated. On this basis the physical laws are the principles of language i.e.: the Classical Logic, the Sufficient Reason Principle the Communication Anterior-Posterior Axiom and the Claim for Minimum Contradictions; according to a theorem contradictions cannot be vanished.

  15. Polyatomic molecular Dirac-Hartree-Fock calculations with Gaussian basis sets

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.; Taylor, Peter R.

    1990-01-01

    Numerical methods have been used successfully in atomic Dirac-Hartree-Fock (DHF) calculations for many years. Some DHF calculations using numerical methods have been done on diatomic molecules, but while these serve a useful purpose for calibration, the computational effort in extending this approach to polyatomic molecules is prohibitive. An alternative more in line with traditional quantum chemistry is to use an analytical basis set expansion of the wave function. This approach fell into disrepute in the early 1980's due to problems with variational collapse and intruder states, but has recently been put on firm theoretical foundations. In particular, the problems of variational collapse are well understood, and prescriptions for avoiding the most serious failures have been developed. Consequently, it is now possible to develop reliable molecular programs using basis set methods. This paper describes such a program and reports results of test calculations to demonstrate the convergence and stability of the method.

  16. The expansion of the metazoan microRNA repertoire

    PubMed Central

    Hertel, Jana; Lindemeyer, Manuela; Missal, Kristin; Fried, Claudia; Tanzer, Andrea; Flamm, Christoph; Hofacker, Ivo L; Stadler, Peter F

    2006-01-01

    Background MicroRNAs have been identified as crucial regulators in both animals and plants. Here we report on a comprehensive comparative study of all known miRNA families in animals. We expand the MicroRNA Registry 6.0 by more than 1000 new homologs of miRNA precursors whose expression has been verified in at least one species. Using this uniform data basis we analyze their evolutionary history in terms of individual gene phylogenies and in terms of preservation of genomic nearness across species. This allows us to reliably identify microRNA clusters that are derived from a common transcript. Results We identify three episodes of microRNA innovation that correspond to major developmental innovations: A class of about 20 miRNAs is common to protostomes and deuterostomes and might be related to the advent of bilaterians. A second large wave of innovations maps to the branch leading to the vertebrates. The third significant outburst of miRNA innovation coincides with placental (eutherian) mammals. In addition, we observe the expected expansion of the microRNA inventory due to genome duplications in early vertebrates and in an ancestral teleost. The non-local duplications in the vertebrate ancestor are predated by local (tandem) duplications leading to the formation of about a dozen ancient microRNA clusters. Conclusion Our results suggest that microRNA innovation is an ongoing process. Major expansions of the metazoan miRNA repertoire coincide with the advent of bilaterians, vertebrates, and (placental) mammals. PMID:16480513

  17. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening

    PubMed Central

    Harada, Taro; Torii, Yuka; Morita, Shigeto; Onodera, Reiko; Hara, Yoshinao; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Satoh, Shigeru

    2011-01-01

    Growth of petal cells is a basis for expansion and morphogenesis (outward bending) of petals during opening of carnation flowers (Dianthus caryophyllus L.). Petal growth progressed through elongation in the early stage, expansion with outward bending in the middle stage, and expansion of the whole area in the late stage of flower opening. In the present study, four cDNAs encoding xyloglucan endotransglucosylase/hydrolase (XTH) (DcXTH1–DcXTH4) and three cDNAs encoding expansin (DcEXPA1–DcEXPA3) were cloned from petals of opening carnation flowers and characterized. Real-time reverse transcription-PCR analyses showed that transcript levels of XTH and expansin genes accumulated differently in floral and vegetative tissues of carnation plants with opening flowers, indicating regulated expression of these genes. DcXTH2 and DcXTH3 transcripts were detected in large quantities in petals as compared with other tissues. DcEXPA1 and DcEXPA2 transcripts were markedly accumulated in petals of opening flowers. The action of XTH in growing petal tissues was confirmed by in situ staining of xyloglucan endotransglucosylase (XET) activity using a rhodamine-labelled xyloglucan nonasaccharide as a substrate. Based on the present findings, it is suggested that two XTH genes (DcXTH2 and DcXTH3) and two expansin genes (DcEXPA1 and DcEXPA2) are associated with petal growth and development during carnation flower opening. PMID:20959626

  18. The availability of filament ends modulates actin stochastic dynamics in live plant cells

    PubMed Central

    Li, Jiejie; Staiger, Benjamin H.; Henty-Ridilla, Jessica L.; Abu-Abied, Mohamad; Sadot, Einat; Blanchoin, Laurent; Staiger, Christopher J.

    2014-01-01

    A network of individual filaments that undergoes incessant remodeling through a process known as stochastic dynamics comprises the cortical actin cytoskeleton in plant epidermal cells. From images at high spatial and temporal resolution, it has been inferred that the regulation of filament barbed ends plays a central role in choreographing actin organization and turnover. How this occurs at a molecular level, whether different populations of ends exist in the array, and how individual filament behavior correlates with the overall architecture of the array are unknown. Here we develop an experimental system to modulate the levels of heterodimeric capping protein (CP) and examine the consequences for actin dynamics, architecture, and cell expansion. Significantly, we find that all phenotypes are the opposite for CP-overexpression (OX) cells compared with a previously characterized cp-knockdown line. Specifically, CP OX lines have fewer filament–filament annealing events, as well as reduced filament lengths and lifetimes. Further, cp-knockdown and OX lines demonstrate the existence of a subpopulation of filament ends sensitive to CP concentration. Finally, CP levels correlate with the biological process of axial cell expansion; for example, epidermal cells from hypocotyls with reduced CP are longer than wild-type cells, whereas CP OX lines have shorter cells. On the basis of these and other genetic studies in this model system, we hypothesize that filament length and lifetime positively correlate with the extent of axial cell expansion in dark-grown hypocotyls. PMID:24523291

  19. Reduced-order modeling with sparse polynomial chaos expansion and dimension reduction for evaluating the impact of CO2 and brine leakage on groundwater

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zheng, L.; Pau, G. S. H.

    2016-12-01

    A careful assessment of the risk associated with geologic CO2 storage is critical to the deployment of large-scale storage projects. While numerical modeling is an indispensable tool for risk assessment, there has been increasing need in considering and addressing uncertainties in the numerical models. However, uncertainty analyses have been significantly hindered by the computational complexity of the model. As a remedy, reduced-order models (ROM), which serve as computationally efficient surrogates for high-fidelity models (HFM), have been employed. The ROM is constructed at the expense of an initial set of HFM simulations, and afterwards can be relied upon to predict the model output values at minimal cost. The ROM presented here is part of National Risk Assessment Program (NRAP) and intends to predict the water quality change in groundwater in response to hypothetical CO2 and brine leakage. The HFM based on which the ROM is derived is a multiphase flow and reactive transport model, with 3-D heterogeneous flow field and complex chemical reactions including aqueous complexation, mineral dissolution/precipitation, adsorption/desorption via surface complexation and cation exchange. Reduced-order modeling techniques based on polynomial basis expansion, such as polynomial chaos expansion (PCE), are widely used in the literature. However, the accuracy of such ROMs can be affected by the sparse structure of the coefficients of the expansion. Failing to identify vanishing polynomial coefficients introduces unnecessary sampling errors, the accumulation of which deteriorates the accuracy of the ROMs. To address this issue, we treat the PCE as a sparse Bayesian learning (SBL) problem, and the sparsity is obtained by detecting and including only the non-zero PCE coefficients one at a time by iteratively selecting the most contributing coefficients. The computational complexity due to predicting the entire 3-D concentration fields is further mitigated by a dimension reduction procedure-proper orthogonal decomposition (POD). Our numerical results show that utilizing the sparse structure and POD significantly enhances the accuracy and efficiency of the ROMs, laying the basis for further analyses that necessitate a large number of model simulations.

  20. Use of asymptotic analysis of the large activation-energy limit to compare graphical methods of treating thermogravimetry data

    Treesearch

    A. Broido; F.A. Williams

    1973-01-01

    An earIier numerical analysis showed that the second approximate method of Horotitz and Metzger can be rendered exceedingly accurate for reduction of thermo-gravimetry data. It is demonstrated here that this result can be justified on the basis of an asymptotic expansion with a nondimensional activation energy as the large parameter. The order of magnitude of the error...

  1. Adaptive polynomial chaos techniques for uncertainty quantification of a gas cooled fast reactor transient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perko, Z.; Gilli, L.; Lathouwers, D.

    2013-07-01

    Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used techniquemore » proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)« less

  2. Geometric Energy Derivatives at the Complete Basis Set Limit: Application to the Equilibrium Structure and Molecular Force Field of Formaldehyde.

    PubMed

    Morgan, W James; Matthews, Devin A; Ringholm, Magnus; Agarwal, Jay; Gong, Justin Z; Ruud, Kenneth; Allen, Wesley D; Stanton, John F; Schaefer, Henry F

    2018-03-13

    Geometric energy derivatives which rely on core-corrected focal-point energies extrapolated to the complete basis set (CBS) limit of coupled cluster theory with iterative and noniterative quadruple excitations, CCSDTQ and CCSDT(Q), are used as elements of molecular gradients and, in the case of CCSDT(Q), expansion coefficients of an anharmonic force field. These gradients are used to determine the CCSDTQ/CBS and CCSDT(Q)/CBS equilibrium structure of the S 0 ground state of H 2 CO where excellent agreement is observed with previous work and experimentally derived results. A fourth-order expansion about this CCSDT(Q)/CBS reference geometry using the same level of theory produces an exceptional level of agreement to spectroscopically observed vibrational band origins with a MAE of 0.57 cm -1 . Second-order vibrational perturbation theory (VPT2) and variational discrete variable representation (DVR) results are contrasted and discussed. Vibration-rotation, anharmonicity, and centrifugal distortion constants from the VPT2 analysis are reported and compared to previous work. Additionally, an initial application of a sum-over-states fourth-order vibrational perturbation theory (VPT4) formalism is employed herein, utilizing quintic and sextic derivatives obtained with a recursive algorithmic approach for response theory.

  3. Nonperturbative Time Dependent Solution of a Simple Ionization Model

    NASA Astrophysics Data System (ADS)

    Costin, Ovidiu; Costin, Rodica D.; Lebowitz, Joel L.

    2018-02-01

    We present a non-perturbative solution of the Schrödinger equation {iψ_t(t,x)=-ψ_{xx}(t,x)-2(1 +α sinω t) δ(x)ψ(t,x)} , written in units in which \\hbar=2m=1, describing the ionization of a model atom by a parametric oscillating potential. This model has been studied extensively by many authors, including us. It has surprisingly many features in common with those observed in the ionization of real atoms and emission by solids, subjected to microwave or laser radiation. Here we use new mathematical methods to go beyond previous investigations and to provide a complete and rigorous analysis of this system. We obtain the Borel-resummed transseries (multi-instanton expansion) valid for all values of α, ω, t for the wave function, ionization probability, and energy distribution of the emitted electrons, the latter not studied previously for this model. We show that for large t and small α the energy distribution has sharp peaks at energies which are multiples of ω, corresponding to photon capture. We obtain small α expansions that converge for all t, unlike those of standard perturbation theory. We expect that our analysis will serve as a basis for treating more realistic systems revealing a form of universality in different emission processes.

  4. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae).

    PubMed

    Eckert, Andrew J; van Heerwaarden, Joost; Wegrzyn, Jill L; Nelson, C Dana; Ross-Ibarra, Jeffrey; González-Martínez, Santíago C; Neale, David B

    2010-07-01

    Natural populations of forest trees exhibit striking phenotypic adaptations to diverse environmental gradients, thereby making them appealing subjects for the study of genes underlying ecologically relevant phenotypes. Here, we use a genome-wide data set of single nucleotide polymorphisms genotyped across 3059 functional genes to study patterns of population structure and identify loci associated with aridity across the natural range of loblolly pine (Pinus taeda L.). Overall patterns of population structure, as inferred using principal components and Bayesian cluster analyses, were consistent with three genetic clusters likely resulting from expansions out of Pleistocene refugia located in Mexico and Florida. A novel application of association analysis, which removes the confounding effects of shared ancestry on correlations between genetic and environmental variation, identified five loci correlated with aridity. These loci were primarily involved with abiotic stress response to temperature and drought. A unique set of 24 loci was identified as F(ST) outliers on the basis of the genetic clusters identified previously and after accounting for expansions out of Pleistocene refugia. These loci were involved with a diversity of physiological processes. Identification of nonoverlapping sets of loci highlights the fundamental differences implicit in the use of either method and suggests a pluralistic, yet complementary, approach to the identification of genes underlying ecologically relevant phenotypes.

  5. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke

    2018-02-01

    Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.

  6. The nature of the redshift and directly observed quasar statistics.

    PubMed

    Segal, I E; Nicoll, J F; Wu, P; Zhou, Z

    1991-07-01

    The nature of the cosmic redshift is one of the most fundamental questions in modern science. Hubble's discovery of the apparent Expansion of the Universe is derived from observations on a small number of galaxies at very low redshifts. Today, quasar redshifts have a range more than 1000 times greater than those in Hubble's sample, and represent more than 100 times as many objects. A recent comprehensive compilation of published measurements provides the basis for a study indicating that quasar observations are not in good agreement with the original predictions of the Expanding Universe theory, but are well fit by the predictions of an alternative theory having fewer adjustable parameters.

  7. Validation of the replica trick for simple models

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2018-04-01

    We discuss the replica analytic continuation using several simple models in order to prove mathematically the validity of the replica analysis, which is used in a wide range of fields related to large-scale complex systems. While replica analysis consists of two analytical techniques—the replica trick (or replica analytic continuation) and the thermodynamical limit (and/or order parameter expansion)—we focus our study on replica analytic continuation, which is the mathematical basis of the replica trick. We apply replica analysis to solve a variety of analytical models, and examine the properties of replica analytic continuation. Based on the positive results for these models we propose that replica analytic continuation is a robust procedure in replica analysis.

  8. Small-Scale Surface (Tank) Irrigation in Asia

    NASA Astrophysics Data System (ADS)

    Palanisami, K.; Easter, K. William

    1987-05-01

    Tank irrigation is an ancient tradition in Asia which is now being reviewed as a potential model for future irrigation expansion. South India has thousands of tanks which are in need of rehabilitation after being in operation for over a century. This study evaluates tank irrigation in an area of south India which has the greatest concentration of tanks. Constraints and unique characteristics of tank irrigation are analyzed to provide a basis for devising strategies for improving tank irrigation. A combination of public and private investments along with institutional changes are recommended to help farmers organize to improve irrigation. Yet, only if public investment is carefully integrated with existing private efforts will farmers have incentives to maintain the irrigation systems.

  9. Antihydrogen-hydrogen elastic scattering at thermal energies using an atomic-orbital technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Prabal K.; Chaudhuri, Puspitapallab; Ghosh, A.S.

    2003-05-01

    In view of the recent interest in the trapping of antihydrogen atom H(bar sign), at very low temperatures, H-bar-H scattering has been investigated at low incident energies using a close-coupling model with the basis set H-bar(1s,2s,2p-bar)+H(1s,2s,2p-bar). The predicted s-wave elastic phase shifts, scattering length, and effective range are in a good agreement with the other recent predictions of Jonsell et al. and of Armour and Chamberlain. The results indicate that the atomic orbital expansion model is suitable to study the H-bar-H scattering at ultracold temperatures.

  10. Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington’s Disease Knock-In Mice

    PubMed Central

    Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R.; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C.; Pinto, Ricardo Mouro

    2017-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. PMID:27913616

  11. Evaluation of load flow and grid expansion in a unit-commitment and expansion optimization model SciGRID International Conference on Power Grid Modelling

    NASA Astrophysics Data System (ADS)

    Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven

    2018-02-01

    Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.

  12. Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington's Disease Knock-In Mice.

    PubMed

    Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C; Pinto, Ricardo Mouro

    2017-02-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. Copyright © 2017 by the Genetics Society of America.

  13. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior.

    PubMed

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-21

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young's modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  14. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar

    The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured.more » The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.« less

  16. A Computer Code for Swirling Turbulent Axisymmetric Recirculating Flows in Practical Isothermal Combustor Geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Rhode, D. L.

    1982-01-01

    A primitive pressure-velocity variable finite difference computer code was developed to predict swirling recirculating inert turbulent flows in axisymmetric combustors in general, and for application to a specific idealized combustion chamber with sudden or gradual expansion. The technique involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation k-epsilon turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. A user's manual, dealing with the computational problem, showing how the mathematical basis and computational scheme may be translated into a computer program is presented. A flow chart, FORTRAN IV listing, notes about various subroutines and a user's guide are supplied as an aid to prospective users of the code.

  17. The super-NFW model: an analytic dynamical model for cold dark matter haloes and elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Evans, N. Wyn; Sanders, Jason L.

    2018-05-01

    An analytic galaxy model with ρ ˜ r-1 at small radii and ρ ˜ r-3.5 at large radii is presented. The asymptotic density fall-off is slower than the Hernquist model, but faster than the Navarro-Frenk-White (NFW) profile for dark matter haloes, and so in accord with recent evidence from cosmological simulations. The model provides the zeroth-order term in a biorthornomal basis function expansion, meaning that axisymmetric, triaxial, and lopsided distortions can easily be added (much like the Hernquist model itself which is the zeroth-order term of the Hernquist-Ostriker expansion). The properties of the spherical model, including analytic distribution functions which are either isotropic, radially anisotropic, or tangentially anisotropic, are discussed in some detail. The analogue of the mass-concentration relation for cosmological haloes is provided.

  18. Basis set expansion for inverse problems in plasma diagnostic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.; Ruiz, C. L.

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20–25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M.more » Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.« less

  19. Basis set expansion for inverse problems in plasma diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Jones, B.; Ruiz, C. L.

    2013-07-01

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)], 10.1063/1.1482156 is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  20. Development of a conjunctival tissue substitute on the basis of plastic compressed collagen.

    PubMed

    Drechsler, C C; Kunze, A; Kureshi, A; Grobe, G; Reichl, S; Geerling, G; Daniels, J T; Schrader, S

    2017-03-01

    Ocular surface disorders, such as pterygium, cicatricial pemphigoid and external disruptions, can cause severe inflammation, scarring, fornix shortening as well as ankyloblepharon. Current treatments do not resolve these conditions sufficiently. The aim of this study was to evaluate clinical applicability and suitability of plastic compressed collagen to serve as a substrate for the expansion of human conjunctival epithelial cells in order to develop an epithelialized conjunctival substitute for fornix reconstruction. Human conjunctival epithelial cells were expanded on plastic compressed collagen gels. Epithelial cell characteristics were evaluated by haematoxylin and eosin staining, electron microscopy and cytokeratin expression. The expression of putative epithelial progenitor cell markers p63α, ABCG2 and CK15 was assessed by immunostaining. The proliferative capacity and clonal growth of the cells was evaluated before (P0) and after expansion (P1) on the plastic compressed collagen gels by colony forming efficiency assay. The potential clinical applicability of this gel substitutes was evaluated by assessment of their biomechanical properties as well as their surgical handling. Human conjunctival epithelial cells cultured on plastic and plastic compressed collagen gels formed a confluent cell layer and expressed CK19. The cells showed expression of the putative epithelial progenitor cell markers p63α, ABCG2 and CK15 and sustained colony forming ability. The compressed collagen gels showed a high ultimate tensile strength and elasticity and the surgical handling of gels was comparable to amniotic membrane. An epithelialized conjunctival tissue construct on the basis of compressed collagen might therefore be a promising alternative bioartificial tissue substitute for conjunctival reconstruction. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. The solitary wave solution of coupled Klein-Gordon-Zakharov equations via two different numerical methods

    NASA Astrophysics Data System (ADS)

    Dehghan, Mehdi; Nikpour, Ahmad

    2013-09-01

    In this research, we propose two different methods to solve the coupled Klein-Gordon-Zakharov (KGZ) equations: the Differential Quadrature (DQ) and Globally Radial Basis Functions (GRBFs) methods. In the DQ method, the derivative value of a function with respect to a point is directly approximated by a linear combination of all functional values in the global domain. The principal work in this method is the determination of weight coefficients. We use two ways for obtaining these coefficients: cosine expansion (CDQ) and radial basis functions (RBFs-DQ), the former is a mesh-based method and the latter categorizes in the set of meshless methods. Unlike the DQ method, the GRBF method directly substitutes the expression of the function approximation by RBFs into the partial differential equation. The main problem in the GRBFs method is ill-conditioning of the interpolation matrix. Avoiding this problem, we study the bases introduced in Pazouki and Schaback (2011) [44]. Some examples are presented to compare the accuracy and easy implementation of the proposed methods. In numerical examples, we concentrate on Inverse Multiquadric (IMQ) and second-order Thin Plate Spline (TPS) radial basis functions. The variable shape parameter (exponentially and random) strategies are applied in the IMQ function and the results are compared with the constant shape parameter.

  2. Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in Drosophila.

    PubMed

    Castillo, Dean M; Barbash, Daniel A

    2017-11-01

    The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster , will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved. Copyright © 2017 by the Genetics Society of America.

  3. A partitioned correlation function interaction approach for describing electron correlation in atoms

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.

  4. Mapped grid methods for long-range molecules and cold collisions

    NASA Astrophysics Data System (ADS)

    Willner, K.; Dulieu, O.; Masnou-Seeuws, F.

    2004-01-01

    The paper discusses ways of improving the accuracy of numerical calculations for vibrational levels of diatomic molecules close to the dissociation limit or for ultracold collisions, in the framework of a grid representation. In order to avoid the implementation of very large grids, Kokoouline et al. [J. Chem. Phys. 110, 9865 (1999)] have proposed a mapping procedure through introduction of an adaptive coordinate x subjected to the variation of the local de Broglie wavelength as a function of the internuclear distance R. Some unphysical levels ("ghosts") then appear in the vibrational series computed via a mapped Fourier grid representation. In the present work the choice of the basis set is reexamined, and two alternative expansions are discussed: Sine functions and Hardy functions. It is shown that use of a basis set with fixed nodes at both grid ends is efficient to eliminate "ghost" solutions. It is further shown that the Hamiltonian matrix in the sine basis can be calculated very accurately by using an auxiliary basis of cosine functions, overcoming the problems arising from numerical calculation of the Jacobian J(x) of the R→x coordinate transformation.

  5. The convergence of complete active space self-consistent-field configuration interaction including all single and double excitation energies to the complete basis set limit

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Malick, David K.; Frisch, Michael J.; Braunstein, Matthew

    2006-07-01

    Examination of the convergence of full valence complete active space self-consistent-field configuration interaction including all single and double excitation (CASSCF-CISD) energies with expansion of the one-electron basis set reveals a pattern very similar to the convergence of single determinant energies. Calculations on the lowest four singlet states and the lowest four triplet states of N2 with the sequence of n-tuple-ζ augmented polarized (nZaP) basis sets (n =2, 3, 4, 5, and 6) are used to establish the complete basis set limits. Full configuration-interaction (CI) and core electron contributions must be included for very accurate potential energy surfaces. However, a simple extrapolation scheme that has no adjustable parameters and requires nothing more demanding than CAS(10e -,8orb)-CISD/3ZaP calculations gives the Re, ωe, ωeXe, Te, and De for these eight states with rms errors of 0.0006Å, 4.43cm-1, 0.35cm-1, 0.063eV, and 0.018eV, respectively.

  6. Resolution of identity approximation for the Coulomb term in molecular and periodic systems.

    PubMed

    Burow, Asbjörn M; Sierka, Marek; Mohamed, Fawzi

    2009-12-07

    A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 muhartree per atom, for both molecular and periodic systems.

  7. Resolution of identity approximation for the Coulomb term in molecular and periodic systems

    NASA Astrophysics Data System (ADS)

    Burow, Asbjörn M.; Sierka, Marek; Mohamed, Fawzi

    2009-12-01

    A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 μhartree per atom, for both molecular and periodic systems.

  8. Understanding the many-body expansion for large systems. II. Accuracy considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Ka Un; Liu, Kuan-Yu; Richard, Ryan M.

    2016-04-28

    To complement our study of the role of finite precision in electronic structure calculations based on a truncated many-body expansion (MBE, or “n-body expansion”), we examine the accuracy of such methods in the present work. Accuracy may be defined either with respect to a supersystem calculation computed at the same level of theory as the n-body calculations, or alternatively with respect to high-quality benchmarks. Both metrics are considered here. In applications to a sequence of water clusters, (H{sub 2}O){sub N=6−55} described at the B3LYP/cc-pVDZ level, we obtain mean absolute errors (MAEs) per H{sub 2}O monomer of ∼1.0 kcal/mol for two-bodymore » expansions, where the benchmark is a B3LYP/cc-pVDZ calculation on the entire cluster. Three- and four-body expansions exhibit MAEs of 0.5 and 0.1 kcal/mol/monomer, respectively, without resort to charge embedding. A generalized many-body expansion truncated at two-body terms [GMBE(2)], using 3–4 H{sub 2}O molecules per fragment, outperforms all of these methods and affords a MAE of ∼0.02 kcal/mol/monomer, also without charge embedding. GMBE(2) requires significantly fewer (although somewhat larger) subsystem calculations as compared to MBE(4), reducing problems associated with floating-point roundoff errors. When compared to high-quality benchmarks, we find that error cancellation often plays a critical role in the success of MBE(n) calculations, even at the four-body level, as basis-set superposition error can compensate for higher-order polarization interactions. A many-body counterpoise correction is introduced for the GMBE, and its two-body truncation [GMBCP(2)] is found to afford good results without error cancellation. Together with a method such as ωB97X-V/aug-cc-pVTZ that can describe both covalent and non-covalent interactions, the GMBE(2)+GMBCP(2) approach provides an accurate, stable, and tractable approach for large systems.« less

  9. Propulsion/flight control integration technology (PROFIT) design analysis status

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.; Hastings, W. J.

    1978-01-01

    The propulsion flight control integration technology (PROFIT) program was designed to develop a flying testbed dedicated to controls research. The preliminary design, analysis, and feasibility studies conducted in support of the PROFIT program are reported. The PROFIT system was built around existing IPCS hardware. In order to achieve the desired system flexibility and capability, additional interfaces between the IPCS hardware and F-15 systems were required. The requirements for additions and modifications to the existing hardware were defined. Those interfaces involving the more significant changes were studied. The DCU memory expansion to 32K with flight qualified hardware was completed on a brassboard basis. The uplink interface breadboard and a brassboard of the central computer interface were also tested. Two preliminary designs and corresponding program plans are presented.

  10. Photoperiodic Diapause and the Establishment of Aedes albopictus (Diptera: Culicidae) in North America

    PubMed Central

    2016-01-01

    The invasion and range expansion of Aedes albopictus (Skuse) in North America represents an outstanding opportunity to study processes of invasion, range expansion, and climatic adaptation. Furthermore, knowledge obtained from such research is relevant to developing novel strategies to control this important vector species. Substantial evidence indicates that the photoperiodic diapause response is an important adaptation to climatic variation across the range of Ae. albopictus in North America. Photoperiodic diapause is a key determinant of abundance in both space and time, and the timing of entry into and exit out of diapause strongly affects seasonal population dynamics and thus the potential for arbovirus transmission. Emerging genomic technologies are making it possible to develop high-resolution, genome-wide genetic markers that can be used for genetic mapping of traits relevant to disease transmission and phylogeographic studies to elucidate invasion history. Recent work using next-generation sequencing technologies (e.g., RNA-seq), combined with physiological experiments, has provided extensive insight into the transcriptional basis of the diapause response in Ae. albopictus. Applying this knowledge to identify novel targets for vector control represents an important future challenge. Finally, recent studies have begun to identify traits other than diapause that are affected by photoperiodism. Extending this work to identify additional traits influenced by photoperiod should produce important insights into the seasonal biology of Ae. albopictus. PMID:27354438

  11. [Clinical orientation and thought on several problems in post-marketed reassessment of traditional Chinese medicine].

    PubMed

    Wang, Xin; Su, Xia; Yu, Jie; Xie, Yanming; Wang, Yongyan

    2011-10-01

    The post-marketed reassessment is an important link to ensure the safety and effectiveness of traditional chinese medicine. It is also the expansion and stretch of new drug evaluation. Through the systematic, standard, rigorous post-marketed reassessment, the enterprise can full access to drugs after listing the efficacy and safety information, evaluate the interests and risk of the drug and provide the scientific basis for the drug use. It can also provide timely, scientific technology basis for government health decisions, the enterprise marketing decision and public health security. This paper mainly discussed the thought on clinical orientation of traditional chinese medicine in the post-marketed reassessment and how to reach the goal through systematic consideration and overall plan.

  12. Tratamiento formal de imágenes astronómicas con PSF espacialmente variable

    NASA Astrophysics Data System (ADS)

    Sánchez, B. O.; Domínguez, M. J.; Lares, M.

    2017-10-01

    We present a python implementation of a method for PSF determination in the context of optimal subtraction of astronomical images. We introduce an expansion of the spatially variant point spread function (PSF) in terms of the Karhunen Loève basis. The advantage of this approach is that the basis is able to naturally adapt to the data, instead of imposing a fixed ad-hoc analytic form. Simulated image reconstruction was analyzed, by using the measured PSF, with good agreement in terms of sky background level between the reconstructed and original images. The technique is simple enough to be implemented on more sophisticated image subtraction methods, since it improves its results without extra computational cost in a spatially variant PSF environment.

  13. Graph theory and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obers, N.A.J.

    1991-04-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equations is given. By studying ansaetze of the master equation, we obtain exact solutions and gain insight in the structure of large slices of affine-Virasoro space. We find an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabelled graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. We also define a class of magic'' Lie group bases in which themore » Virasoro master equation admits a simple metric ansatz (gmetric), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, we define the sine-area graphs'' of SU(n), which label the conformal field theories of SU(n){sub metric}, and we note that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}. 24 figs., 4 tabs.« less

  14. Influence of Annealing on the Depth Microstructure of the Shot Peened Duplex Stainless Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Feng, Qiang; She, Jia; Xiang, Yong; Wu, Xianyun; Wang, Chengxi; Jiang, Chuanhai

    The depth profiles of residual stresses and lattice parameters in the surface layers of shot peened duplex stainless steel at elevated temperature were investigated utilizing X-ray diffraction analysis. At each deformation depth, residual stress distributions in both ferrite and austenite were studied by X-ray diffraction stress analysis which is performed on the basis of the sin2ψ method and the lattice parameters were explored by Rietveld method. The results reveal that difference changes of depth residual compressive stress profiles between ferrite and austenite under the same annealing condition are resulted from the diverse coefficient of thermal expansion, dislocation density, etc. for different phases in duplex stainless steel. The relaxations of depth residual stresses in austenite are more obvious than those in ferrite. The lattice parameters decrease in the surface layer with the extending of annealing time, however, they increase along the depth after annealing for 16min. The change of the depth lattice parameters can be ascribed to both thermal expansion and the relaxation of residual stress. The different changes of microstructure at elevated temperature between ferrite and austenite are discussed.

  15. Poro-elasto-capillary wicking of cellulose sponges

    PubMed Central

    Kim, Do-Nyun

    2018-01-01

    We mundanely observe cellulose (kitchen) sponges swell while absorbing water. Fluid flows in deformable porous media, such as soils and hydrogels, are classically described on the basis of the theories of Darcy and poroelasticity, where the expansion of media arises due to increased pore pressure. However, the situation is qualitatively different in cellulosic porous materials like sponges because the pore expansion is driven by wetting of the surrounding cellulose walls rather than by increase of the internal pore pressure. We address a seemingly so simple but hitherto unanswered question of how fast water wicks into the swelling sponge. Our experiments uncover a power law of the wicking height versus time distinct from that for nonswelling materials. The observation using environmental scanning electron microscopy reveals the coalescence of microscale wall pores with wetting, which allows us to build a mathematical model for pore size evolution and the consequent wicking dynamics. Our study sheds light on the physics of water absorption in hygroscopically responsive multiscale porous materials, which have far more implications than everyday activities (for example, cleaning, writing, and painting) carried out with cellulosic materials (paper and sponge), including absorbent hygiene products, biomedical cell cultures, building safety, and cooking. PMID:29682606

  16. Hyperspherical close-coupling calculations for charge-transfer cross sections in He2++H(1s) collisions at low energies

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Nan; Le, Anh-Thu; Morishita, Toru; Esry, B. D.; Lin, C. D.

    2003-05-01

    A theory for ion-atom collisions at low energies based on the hyperspherical close-coupling (HSCC) method is presented. In hyperspherical coordinates the wave function is expanded in analogy to the Born-Oppenheimer approximation where the adiabatic channel functions are calculated with B-spline basis functions while the coupled hyperradial equations are solved by a combination of R-matrix propagation and the slow/smooth variable discretization method. The HSCC method is applied to calculate charge-transfer cross sections for He2++H(1s)→He+(n=2)+H+ reactions at center-of-mass energies from 10 eV to 4 keV. The results are shown to be in general good agreement with calculations based on the molecular orbital (MO) expansion method where electron translation factors (ETF’s) or switching functions have been incorporated in each MO. However, discrepancies were found at very low energies. It is shown that the HSCC method can be used to study low-energy ion-atom collisions without the need to introduce the ad hoc ETF’s, and the results are free from ambiguities associated with the traditional MO expansion approach.

  17. A new Caenorhabditis elegans model of human huntingtin 513 aggregation and toxicity in body wall muscles.

    PubMed

    Lee, Amy L; Ung, Hailey M; Sands, L Paul; Kikis, Elise A

    2017-01-01

    Expanded polyglutamine repeats in different proteins are the known determinants of at least nine progressive neurodegenerative disorders whose symptoms include cognitive and motor impairment that worsen as patients age. One such disorder is Huntington's Disease (HD) that is caused by a polyglutamine expansion in the human huntingtin protein (htt). The polyglutamine expansion destabilizes htt leading to protein misfolding, which in turn triggers neurodegeneration and the disruption of energy metabolism in muscle cells. However, the molecular mechanisms that underlie htt proteotoxicity have been somewhat elusive, and the muscle phenotypes have not been well studied. To generate tools to elucidate the basis for muscle dysfunction, we engineered Caenorhabditis elegans to express a disease-associated 513 amino acid fragment of human htt in body wall muscle cells. We show that this htt fragment aggregates in C. elegans in a polyglutamine length-dependent manner and is toxic. Toxicity manifests as motor impairment and a shortened lifespan. Compared to previous models, the data suggest that the protein context in which a polyglutamine tract is embedded alters aggregation propensity and toxicity, likely by affecting interactions with the muscle cell environment.

  18. Projection of global terrestrial nitrous oxide emission using future scenarios of climate and land-use management

    NASA Astrophysics Data System (ADS)

    Inatomi, M. I.; Ito, A.

    2016-12-01

    Nitrous oxide (N2O), with a centennial mean residence time in the atmosphere, is one of the most remarkable greenhouse gases. Because natural and anthropogenic emissions make comparable contributions, we need to take account of different sources of N2O such as natural soils and fertilizer in croplands to predict the future emission change and to discuss its mitigation. In this study, we conduct a series of simulations of future change in nitrous oxide emission from terrestrial ecosystems using a process-based model, VISIT. We assume a couple of scenarios of future climate change, atmospheric nitrogen deposition, fertilizer input, and land-use change. In particular, we develop a new scenario of cropland fertilizer input on the basis of changes in crop productivity and fertilizer production cost. Expansion of biofuel crop production is considered but in a simplified manner (e.g., a specific fraction of pasture conversion to biofuel cultivation). Regional and temporal aspects of N2O emission are investigated and compared with previous studies. Finally, we make discussions, on the basis of simulated results, about the high-end of N2O emission, mitigation options, and impact of fertilizer input.

  19. Theoretical study of hyperfine coupling constants and electron spin g factors for X2Σ diatomics from Groups 1 and 2

    NASA Astrophysics Data System (ADS)

    Bruna, Pablo J.; Grein, Friedrich

    The ESR parameters of the cations Be 2 + , Mg 2 + , Ca 2 + , BeMg + , BeCa + , MgCa + and the mixed radicals ZBe, ZMg, ZCa (Z = Li, Na, K), all having a X 2 Σu + (1 σg 2 1 σu )/X 2 Sigma + (1 σ2 2 σ) ground state, have been studied theoretically. The A iso and A dip constants have been calculated with UHF, CISD, MP2, B3LYP, PW91PW91 wavefunctions, and 6-311+G(2df) basis sets. The electron spin g factors (magnetic moment μs) have been evaluated from correlated (MRDCI) wavefunctions, using a Hamiltonian based on Breit-Pauli theory with perturbation expansions up to second order, and 6-311+ G(2d) basis sets. As expected for s-rich radicals, the hyperfine spectra are governed by the A iso terms. Both Δg|| and Δg Υ̂values are negative, but Δg|| lies close to zero. For Δg Υ̂, the coupling with 1 2 Π(u) dominates the sum-over-states expansions. Although the singly occupied MOs (SOMO) are mostly of s character, the | Δg Υ̂| are relatively large, up to 5200 ppm for cationic, and up to 7850 ppm for neutral radicals. These large values are caused by low excitation energies and high magnetic transition moments, the latter due to the fact that the σ*( s - s ) SOMO has the same nodal properties as a p σorbital. Of the radicals considered here, an ESR spectrum is available only for Mg2+. Our theoretical A iso of-287 MHz reproduces well the matrix result (-291 MHz). Calculated values of-10 ppm for Deltag|| and of-1280 ppm for Deltag Υ̂give an average < Δg> =-860 ppm that lies within the experimental range of-600( ±300) ppm in Ne, and of-1300( ±500) ppm in Ar matrices.

  20. Overcoming an obstacle in expanding a UMLS semantic type extent.

    PubMed

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James

    2012-02-01

    This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Overcoming an Obstacle in Expanding a UMLS Semantic Type Extent

    PubMed Central

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James

    2011-01-01

    This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. PMID:21925287

  2. Rigorous modal analysis of plasmonic nanoresonators

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Faggiani, Rémi; Lalanne, Philippe

    2018-05-01

    The specificity of modal-expansion formalisms is their capabilities to model the physical properties in the natural resonance-state basis of the system in question, leading to a transparent interpretation of the numerical results. In electromagnetism, modal-expansion formalisms are routinely used for optical waveguides. In contrast, they are much less mature for analyzing open non-Hermitian systems, such as micro- and nanoresonators. Here, by accounting for material dispersion with auxiliary fields, we considerably extend the capabilities of these formalisms, in terms of computational effectiveness, number of states handled, and range of validity. We implement an efficient finite-element solver to compute the resonance states, and derive closed-form expressions of the modal excitation coefficients for reconstructing the scattered fields. Together, these two achievements allow us to perform rigorous modal analysis of complicated plasmonic resonators, being not limited to a few resonance states, with straightforward physical interpretations and remarkable computation speeds. We particularly show that, when the number of states retained in the expansion increases, convergence toward accurate predictions is achieved, offering a solid theoretical foundation for analyzing important issues, e.g., Fano interference, quenching, and coupling with the continuum, which are critical in nanophotonic research.

  3. Application of matched asymptotic expansions to lunar and interplanetary trajectories. Volume 2: Derivations of second-order asymptotic boundary value solutions

    NASA Technical Reports Server (NTRS)

    Lancaster, J. E.

    1973-01-01

    Previously published asymptotic solutions for lunar and interplanetery trajectories have been modified and combined to formulate a general analytical solution to the problem of N-bodies. The earlier first-order solutions, derived by the method of matched asymptotic expansions, have been extended to second order for the purpose of obtaining increased accuracy. The complete derivation of the second-order solution, including the application of a regorous matching principle, is given. It is shown that the outer and inner expansions can be matched in a region of order mu to the alpha power, where 2/5 alpha 1/2, and mu (the moon/earth or planet/sun mass ratio) is much less than one. The second-order asymptotic solution has been used as a basis for formulating a number of analytical two-point boundary value solutions. These include earth-to-moon, one- and two-impulse moon-to-Earth, and interplanetary solutions. Each is presented as an explicit analytical solution which does not require iterative steps to satisfy the boundary conditions. The complete derivation of each solution is shown, as well as instructions for numerical evaluation. For Vol. 1, see N73-27738.

  4. Thermal expansion of the nuclear fuel-sodium reaction product Na3(U0.84(2),Na0.16(2))O4 - Structural mechanism and comparison with related sodium-metal ternary oxides

    NASA Astrophysics Data System (ADS)

    Illy, Marie-Claire; Smith, Anna L.; Wallez, Gilles; Raison, Philippe E.; Caciuffo, Roberto; Konings, Rudy J. M.

    2017-07-01

    Na3.16(2)UV,VI0.84(2)O4 is obtained from the reaction of sodium with uranium dioxide under oxygen potential conditions typical of a sodium-cooled fast nuclear reactor. In the event of a breach of the steel cladding, it would be the dominant reaction product forming at the rim of the mixed (U,Pu)O2 fuel pellets. High-temperature X-ray diffraction measurements show that a distortion of the uranium environment in Na3.16(2)UV,VI0.84(2)O4 results in a strongly anisotropic thermal expansion. A comparison with several related sodium metallates Nan-2Mn+On-1 - including Na3SbO4 and Na3TaO4, whose crystal structures are reported for the first time - has allowed us to assess the role played in the lattice expansion by the Mn+ cation radius and the Na/M ratio. On this basis, the thermomechanical behavior of the title compound is discussed, along with those of several related double oxides of sodium and actinide elements, surrogate elements, or fission products.

  5. Migration Patterns of Subgenus Alnus in Europe since the Last Glacial Maximum: A Systematic Review

    PubMed Central

    Douda, Jan; Doudová, Jana; Drašnarová, Alena; Kuneš, Petr; Hadincová, Věroslava; Krak, Karol; Zákravský, Petr; Mandák, Bohumil

    2014-01-01

    Background/Aims Recently, new palaeoecological records supported by molecular analyses and palaeodistributional modelling have provided more comprehensive insights into plant behaviour during the last Quaternary cycle. We reviewed the migration history of species of subgenus Alnus during the last 50,000 years in Europe with a focus on (1) a general revision of Alnus history since the Last Glacial Maximum (LGM), (2) evidence of northern refugia of Alnus populations during the LGM and (3) the specific history of Alnus in particular European regions. Methodology We determined changes in Alnus distribution on the basis of 811 and 68 radiocarbon-dated pollen and macrofossil sites, respectively. We compiled data from the European Pollen Database, the Czech Quaternary Palynological Database, the Eurasian Macrofossil Database and additional literature. Pollen percentage thresholds indicating expansions or retreats were used to describe patterns of past Alnus occurrence. Principal Findings An expansion of Alnus during the Late Glacial and early Holocene periods supports the presence of alders during the LGM in southern peninsulas and northerly areas in western Europe, the foothills of the Alps, the Carpathians and northeastern Europe. After glaciers withdrew, the ice-free area of Europe was likely colonized from several regional refugia; the deglaciated area of Scandinavia was likely colonized from a single refugium in northeastern Europe. In the more northerly parts of Europe, we found a scale-dependent pattern of Alnus expansion characterised by a synchronous increase of Alnus within individual regions, though with regional differences in the times of the expansion. In southern peninsulas, the Alps and the Carpathians, by contrast, it seems that Alnus expanded differently at individual sites rather than synchronously in whole regions. Conclusions Our synthesis supports the idea that northern LGM populations were important sources of postglacial Alnus expansion. The delayed Alnus expansion apparent in some regions was likely a result of environmental limitations. PMID:24586374

  6. A cross-field current instability for substorm expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lui, A.T.Y.; Chang, C.L.; Mankofsky, A.

    1991-07-01

    The authors investigate a cross-field current instability (CFCI) as a candidate for current disruption during substorm expansions. The numerical solution of the linear dispersion equation indicates that (1) the proposed instability can occur at the inner edge or the midsection of the neutral sheet just prior to the substorm expansion onset although the former environment is found more favorable at the same drift speed scaled to the ion thermal speed, (2) the computed growth time is comparable to the substorm onset time, and (3) the excited waves have a mixed polarization with frequencies near the ion gyrofrequency at the innermore » edge and near the lower hybrid frequency in the midtail region. On the basis of this analysis, they propose a substorm development scenario in which plasma sheet thinning during the substorm growth phase leads to an enhancement in the relative drift between ions and electrons. This results in the neutral sheet being susceptible to the CHCI and initiates the diversion of the cross-tail current through the ionosphere. Whether or not a substorm current wedge is ultimately formed is regulated by the ionospheric condition. A large number of substorm features can be readily understood with the proposed scheme. These include (1) precursory activities (pseudobreakups) prior to substorm onset, (2) substorm initiation region to be spatially localized, (3) three different solar wind conditions for substorm occurence, (4) skew towards evening local times for substorm onset locations, (5) different acceleration characteristics between ions and electrons, (6) tailward spreading of current disruption region after substorm onset, and (7) local time expansion of substorm current wedge with possible discrete westward jump for the evening expansion.« less

  7. Short-term exposure of umbilical cord blood CD34+ cells to granulocyte-macrophage colony-stimulating factor early in culture improves ex vivo expansion of neutrophils.

    PubMed

    Marturana, Flavia; Timmins, Nicholas E; Nielsen, Lars K

    2011-03-01

    Despite the availability of modern antibiotics/antimycotics and cytokine support, neutropenic infection accounts for the majority of chemotherapy-associated deaths. While transfusion support with donor neutrophils is possible, cost and complicated logistics make such an option unrealistic on a routine basis. A manufactured neutrophil product could enable routine prophylactic administration of neutrophils, preventing the onset of neutropenia and substantially reducing the risk of infection. We examined the use of pre-culture strategies and various cytokine/modulator combinations to improve neutrophil expansion from umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HPC). Enriched UCB HPC were cultured using either two-phase pre-culture strategies or a single phase using various cytokine/modulator combinations. Outcome was assessed with respect to numerical expansion, cell morphology, granulation and respiratory burst activity. Pre-culture in the absence of strong differentiation signals (e.g. granulocyte colony-stimulating factor; G-CSF) failed to provide any improvement to final neutrophil yields. Similarly, removal of differentiating cells during pre-culture failed to improve neutrophil yields to an appreciable extent. Of the cytokine/modulator combinations, the addition of granulocyte-macrophage (GM)-colony-stimulating factor (CSF) alone gave the greatest increase. In order to avoid production of monocytes, it was necessary to remove GM-CSF on day 5. Using this strategy, neutrophil expansion improved 2.7-fold. Although all cytokines and culture strategies employed have been reported previously to enhance HPC expansion, we found that the addition of GM-CSF alone was sufficient to improve total cell yields maximally. The need to remove GM-CSF on day 5 to avoid monocyte differentiation highlights the context and time-dependent complexity of exogenous signaling in hematopoietic cell differentiation and growth.

  8. Dating the origin and dispersal of Human Papillomavirus type 16 on the basis of ancestral human migrations.

    PubMed

    Zehender, Gianguglielmo; Frati, Elena Rosanna; Martinelli, Marianna; Bianchi, Silvia; Amendola, Antonella; Ebranati, Erika; Ciccozzi, Massimo; Galli, Massimo; Lai, Alessia; Tanzi, Elisabetta

    2016-04-01

    A major limitation when reconstructing the origin and evolution of HPV-16 is the lack of reliable substitution rate estimates for the viral genes. On the basis of the hypothesis of human HPV-16 co-divergence, we estimated a mean evolutionary rate of 1.47×10(-7) (95% HPD=0.64-2.47×10(-7)) subs/site/year for the viral LCR region. The results of a Bayesian phylogeographical analysis suggest that the currently circulating HPV-16 most probably originated in Africa about 110 thousand years ago (Kya), before giving rise to four known geographical lineages: the Asian/European lineage, which most probably originated in Asia a mean 38 Kya, and the Asian/American and two African lineages, which probably respectively originated about 33 and 27 Kya. These data closely reflect current hypotheses concerning modern human expansion based on studies of mitochondrial DNA phylogeny. The correlation between ancient human migration and the present HPV phylogeny may be explained by the co-existence of modes of transmission other than sexual transmission. Copyright © 2016. Published by Elsevier B.V.

  9. Convoluted Quasi Sturmian basis for the two-electron continuum

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo; Zaytsev, A. S.; Zaytsev, S. A.

    2016-09-01

    In the construction of solutions for the Coulomb three-body scattering problem one encounters a series of mathematical and numerical difficulties, one of which are the cumbersome boundary conditions the wave function should obey. We propose to describe a Coulomb three-body system continuum with a set of two-particle functions, named Convoluted Quasi Sturmian (CQS) in. They are built using recently introduced Quasi Sturmian (QS) functions which have the merit of possessing a closed form. Unlike a simple product of two one-particle functions, by construction, the CQS functions look asymptotically like a six-dimensional outgoing spherical wave. The proposed CQS basis is tested through the study of the double ionization of helium by high-energy electron impact in the framework of the Temkin-Poet model. An adequate logarithmic-like phase factor is further included in order to take into account the Coulomb interelectronic interaction and formally build the correct asymptotic behavior when all interparticle distances are large. With such a phase-factor (that can be easily extended to take into account higher partial waves) rapid convergence of the expansion can be obtained.

  10. Accurate double many-body expansion potential energy surface of HS2A2A‧) by scaling the external correlation

    NASA Astrophysics Data System (ADS)

    Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng

    2016-05-01

    A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol-1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).

  11. Optimization design of energy deposition on single expansion ramp nozzle

    NASA Astrophysics Data System (ADS)

    Ju, Shengjun; Yan, Chao; Wang, Xiaoyong; Qin, Yupei; Ye, Zhifei

    2017-11-01

    Optimization design has been widely used in the aerodynamic design process of scramjets. The single expansion ramp nozzle is an important component for scramjets to produces most of thrust force. A new concept of increasing the aerodynamics of the scramjet nozzle with energy deposition is presented. The essence of the method is to create a heated region in the inner flow field of the scramjet nozzle. In the current study, the two-dimensional coupled implicit compressible Reynolds Averaged Navier-Stokes and Menter's shear stress transport turbulence model have been applied to numerically simulate the flow fields of the single expansion ramp nozzle with and without energy deposition. The numerical results show that the proposal of energy deposition can be an effective method to increase force characteristics of the scramjet nozzle, the thrust coefficient CT increase by 6.94% and lift coefficient CN decrease by 26.89%. Further, the non-dominated sorting genetic algorithm coupled with the Radial Basis Function neural network surrogate model has been employed to determine optimum location and density of the energy deposition. The thrust coefficient CT and lift coefficient CN are selected as objective functions, and the sampling points are obtained numerically by using a Latin hypercube design method. The optimized thrust coefficient CT further increase by 1.94%, meanwhile, the optimized lift coefficient CN further decrease by 15.02% respectively. At the same time, the optimized performances are in good and reasonable agreement with the numerical predictions. The findings suggest that scramjet nozzle design and performance can benefit from the application of energy deposition.

  12. Photonic band structures solved by a plane-wave-based transfer-matrix method.

    PubMed

    Li, Zhi-Yuan; Lin, Lan-Lan

    2003-04-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.

  13. Long-term effects of health factor modification in Milwaukee County.

    PubMed

    Shi, Lu; van Meijgaard, Jeroen; Fielding, Jonathan E

    2013-01-01

    We use the UCLA Health Forecasting Tool to forecast the 2011-2050 health trends in Milwaukee County. We first simulate a baseline scenario (S-1) that assumes no health behavior change, and compare this with three simulated intervention scenarios: expansion of Quitline reach to enhance smoking cessation (S-2), an increased penetration of diabetes screening (S-3) and construction of additional recreational facilities (S-4). We compared the disease-free life years (DFLY) gained from each intervention scenario by 2050 on a year-by-year and cumulative basis. Simulation results show that increasing access to recreational facilities achieves the greatest gain in DFLYs for every year from 2011 to 2050. By 2050, the cumulative DFLY gain is 22 393, 5956 and 41 396 for S-2, S-3, and S-4, respectively. The cost-effectiveness ratios for Quitline expansion, diabetes screening, and recreational facility construction are $1802, $1285, and $1322, per DFLY gained, respectively.

  14. iQIST v0.7: An open source continuous-time quantum Monte Carlo impurity solver toolkit

    NASA Astrophysics Data System (ADS)

    Huang, Li

    2017-12-01

    In this paper, we present a new version of the iQIST software package, which is capable of solving various quantum impurity models by using the hybridization expansion (or strong coupling expansion) continuous-time quantum Monte Carlo algorithm. In the revised version, the software architecture is completely redesigned. New basis (intermediate representation or singular value decomposition representation) for the single-particle and two-particle Green's functions is introduced. A lot of useful physical observables are added, such as the charge susceptibility, fidelity susceptibility, Binder cumulant, and autocorrelation time. Especially, we optimize measurement for the two-particle Green's functions. Both the particle-hole and particle-particle channels are supported. In addition, the block structure of the two-particle Green's functions is exploited to accelerate the calculation. Finally, we fix some known bugs and limitations. The computational efficiency of the code is greatly enhanced.

  15. Developing Interpretive Turbulence Models from a Database with Applications to Wind Farms and Shipboard Operations

    NASA Astrophysics Data System (ADS)

    Schau, Kyle A.

    This thesis presents a complete method of modeling the autospectra of turbulence in closed form via an expansion series using the von Karman model as a basis function. It is capable of modeling turbulence in all three directions of fluid flow: longitudinal, lateral, and vertical, separately, thus eliminating the assumption of homogeneous, isotropic flow. A thorough investigation into the expansion series is presented, with the strengths and weaknesses highlighted. Furthermore, numerical aspects and theoretical derivations are provided. This method is then tested against three highly complex flow fields: wake turbulence inside wind farms, helicopter downwash, and helicopter downwash coupled with turbulence shed from a ship superstructure. These applications demonstrate that this method is remarkably robust, that the developed autospectral models are virtually tailored to the design of white noise driven shaping filters, and that these models in closed form facilitate a greater understanding of complex flow fields in wind engineering.

  16. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass

    NASA Astrophysics Data System (ADS)

    Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro

    2017-05-01

    Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnOx (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.

  17. A direct method to transform between expansions in the configuration state function and Slater determinant bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Jeppe, E-mail: jeppe@chem.au.dk

    2014-07-21

    A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10{sup 6} coefficients in the CSF basismore » is obtained from the 150 × 10{sup 6} coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require.« less

  18. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass.

    PubMed

    Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro

    2017-05-31

    Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnO x (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.

  19. Design of a linear projector for use with the normal modes of the GLAS 4th order GCM

    NASA Technical Reports Server (NTRS)

    Bloom, S. C.

    1984-01-01

    The design of a linear projector for use with the normal modes of a model of atmospheric circulation is discussed. A central element in any normal mode initialization scheme is the process by which a set of data fields - winds, temperatures or geopotentials, and surface pressures - are expressed ("projected') in terms of the coefficients of a model's normal modes. This process is completely analogous to the Fourier decomposition of a single field (indeed a FFT applied in the zonal direction is a part of the process). Complete separability in all three spatial dimensions is assumed. The basis functions for the modal expansion are given. An important feature of the normal modes is their coupling of the structures of different fields, thus a coefficient in a normal mode expansion would contain both mass and momentum information.

  20. Strong correlation in incremental full configuration interaction

    NASA Astrophysics Data System (ADS)

    Zimmerman, Paul M.

    2017-06-01

    Incremental Full Configuration Interaction (iFCI) reaches high accuracy electronic energies via a many-body expansion of the correlation energy. In this work, the Perfect Pairing (PP) ansatz replaces the Hartree-Fock reference of the original iFCI method. This substitution captures a large amount of correlation at zero-order, which allows iFCI to recover the remaining correlation energy with low-order increments. The resulting approach, PP-iFCI, is size consistent, size extensive, and systematically improvable with increasing order of incremental expansion. Tests on multiple single bond, multiple double bond, and triple bond dissociations of main group polyatomics using double and triple zeta basis sets demonstrate the power of the method for handling strong correlation. The smooth dissociation profiles that result from PP-iFCI show that FCI-quality ground state computations are now within reach for systems with up to about 10 heavy atoms.

  1. Data preparation for functional data analysis of PM10 in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Shaadan, Norshahida; Jemain, Abdul Aziz; Deni, Sayang Mohd

    2014-07-01

    The use of curves or functional data in the study analysis is increasingly gaining momentum in the various fields of research. The statistical method to analyze such data is known as functional data analysis (FDA). The first step in FDA is to convert the observed data points which are repeatedly recorded over a period of time or space into either a rough (raw) or smooth curve. In the case of the smooth curve, basis functions expansion is one of the methods used for the data conversion. The data can be converted into a smooth curve either by using the regression smoothing or roughness penalty smoothing approach. By using the regression smoothing approach, the degree of curve's smoothness is very dependent on k number of basis functions; meanwhile for the roughness penalty approach, the smoothness is dependent on a roughness coefficient given by parameter λ Based on previous studies, researchers often used the rather time-consuming trial and error or cross validation method to estimate the appropriate number of basis functions. Thus, this paper proposes a statistical procedure to construct functional data or curves for the hourly and daily recorded data. The Bayesian Information Criteria is used to determine the number of basis functions while the Generalized Cross Validation criteria is used to identify the parameter λ The proposed procedure is then applied on a ten year (2001-2010) period of PM10 data from 30 air quality monitoring stations that are located in Peninsular Malaysia. It was found that the number of basis functions required for the construction of the PM10 daily curve in Peninsular Malaysia was in the interval of between 14 and 20 with an average value of 17; the first percentile is 15 and the third percentile is 19. Meanwhile the initial value of the roughness coefficient was in the interval of between 10-5 and 10-7 and the mode was 10-6. An example of the functional descriptive analysis is also shown.

  2. Chemistry/Hematology Reporting Via the File Manager

    PubMed Central

    Tatarczuk, J. R.; Ginsburg, R. E.; Wu, A.; Schauble, M.

    1981-01-01

    A computerized reporting system was implemented to replace a simple manual cumulative laboratory chemistry report. Modification and expansion of the system was carried out with user participation, and the system now forms the nucleus for a complete automated laboratory system. It is linked to a master patient file which when fully developed will provide a suitable basis for a complete patient clinical information system. ANSI standard MUMPS was utilized and modules were developed and implemented in a serial fashion.

  3. Hidden asymmetry and long range rapidity correlations

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Bzdak, A.; Zalewski, K.

    2012-04-01

    Interpretation of long-range rapidity correlations in terms of the fluctuating rapidity density distribution of the system created in high-energy collisions is proposed. When applied to recent data of the STAR Collaboration, it shows a substantial asymmetric component in the shape of this system in central Au-Au collisions, implying that boost invariance is violated on the event-by-event basis even at central rapidity. This effect may seriously influence the hydrodynamic expansion of the system.

  4. Helicopter rotor loads using a matched asymptotic expansion technique

    NASA Technical Reports Server (NTRS)

    Pierce, G. A.; Vaidyanathan, A. R.

    1981-01-01

    The theoretical basis and computational feasibility of the Van Holten method, and its performance and range of validity by comparison with experiment and other approximate methods was examined. It is found that within the restrictions of incompressible, potential flow and the assumption of small disturbances, the method does lead to a valid description of the flow. However, the method begins to break down under conditions favoring nonlinear effects such as wake distortion and blade/rotor interaction.

  5. An electroweak basis for neutrinoless double β decay

    NASA Astrophysics Data System (ADS)

    Graesser, Michael L.

    2017-08-01

    A discovery of neutrinoless double- β decay would be profound, providing the first direct experimental evidence of Δ L = 2 lepton number violating processes. While a natural explanation is provided by an effective Majorana neutrino mass, other new physics interpretations should be carefully evaluated. At low-energies such new physics could man-ifest itself in the form of color and SU(2) L × U(1) Y invariant higher dimension operators. Here we determine a complete set of electroweak invariant dimension-9 operators, and our analysis supersedes those that only impose U(1) em invariance. Imposing electroweak invariance implies: 1) a significantly reduced set of leading order operators compared to only imposing U(1) em invariance; and 2) other collider signatures. Prior to imposing electroweak invariance we find a minimal basis of 24 dimension-9 operators, which is reduced to 11 electroweak invariant operators at leading order in the expansion in the Higgs vacuum expectation value. We set up a systematic analysis of the hadronic realization of the 4-quark operators using chiral perturbation theory, and apply it to determine which of these operators have long-distance pion enhancements at leading order in the chiral expansion. We also find at dimension-11 and dimension-13 the electroweak invariant operators that after electroweak symmetry breaking produce the remaining Δ L = 2 operators that would appear at dimension-9 if only U(1) em is imposed.

  6. Lift and moment coefficients expanded to the seventh power of frequency for oscillating rectangular wings in supersonic flow and applied to a specific flutter problem

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Rainey, Ruby A; Watkins, Charles E

    1954-01-01

    Linearized theory for compressible unsteady flow is used to derive the velocity potential and lift and moment coefficients in the form of oscillating rectangular wing moving at a constant supersonic speed. Closed expressions for the velocity potential and lift and moment coefficients associated with pitching and translation are given to seventh power of the frequency. These expressions extend the range of usefulness of NACA report 1028 in which similar expressions were derived to the third power of the frequency of oscillation. For example, at a Mach number of 10/9 the expansion of the potential to the third power is an accurate representation of the potential for values of the reduced frequency only up to about 0.08; whereas the expansion of the potential to the seventh power is an accurate representation for values of the reduced frequency up to about 0.2. The section and total lift and moment coefficients are discussed with the aid of several figures. In addition, flutter speeds obtained in the Mach number range from 10/9 to 10/6 for a rectangular wing of aspect ratio 4.53 by using section coefficients derived on the basis of three-dimensional flow are compared with flutter speeds for this wing obtained by using coefficients derived on the basis of two-dimensional flow.

  7. Polychromatic sparse image reconstruction and mass attenuation spectrum estimation via B-spline basis function expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Renliang, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu; Dogandžić, Aleksandar, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu

    2015-03-31

    We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of themore » density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.« less

  8. A 4D Hyperspherical Interpretation of q-Space

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Bendlin, Barbara B.; Alexander, Andrew L.

    2015-01-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive several well-established q-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in all, this work provides a new way of looking at q-space. PMID:25624043

  9. A 4D hyperspherical interpretation of q-space.

    PubMed

    Pasha Hosseinbor, A; Chung, Moo K; Wu, Yu-Chien; Bendlin, Barbara B; Alexander, Andrew L

    2015-04-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive several well-established q-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in all, this work provides a new way of looking at q-space. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality

    PubMed Central

    Schneidawind, Dominik; Baker, Jeanette; Pierini, Antonio; Buechele, Corina; Luong, Richard H.; Meyer, Everett H.

    2015-01-01

    Graft-versus-host disease (GVHD) is driven by extensive activation and proliferation of alloreactive donor T cells causing significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are a potent immunoregulatory T-cell subset in both humans and mice. Here, we explored the role of adoptively transferred third-party CD4+ iNKT cells for protection from lethal GVHD in a murine model of allogeneic HCT across major histocompatibility barriers. We found that low numbers of CD4+ iNKT cells from third-party mice resulted in a significant survival benefit with retained graft-versus-tumor effects. In vivo expansion of alloreactive T cells was diminished while displaying a T helper cell 2-biased phenotype. Notably, CD4+ iNKT cells from third-party mice were as protective as CD4+ iNKT cells from donor mice although third-party CD4+ iNKT cells were rejected early after allogeneic HCT. Adoptive transfer of third-party CD4+ iNKT cells resulted in a robust expansion of donor CD4+CD25+FoxP3+ regulatory T cells (Tregs) that were required for protection from lethal GVHD. However, in vivo depletion of myeloid-derived suppressor cells abrogated both Treg expansion and protection from lethal GVHD. Despite the fact that iNKT cells are a rare cell population, the almost unlimited third-party availability and feasibility of in vitro expansion provide the basis for clinical translation. PMID:25795920

  11. Crystal growth, crystal structure of new polymorphic modification, β-Bi 2B 8O 15 and thermal expansion of α-Bi 2B 8O 15

    NASA Astrophysics Data System (ADS)

    Bubnova, R. S.; Alexandrova, J. V.; Krivovichev, S. V.; Filatov, S. K.; Egorysheva, A. V.

    2010-02-01

    Single crystals of α- and β-polymorphs of Bi 2B 8O 15 were grown by Czochralski method from a charge of the stoichiometric composition. The crystal structure of β-Bi 2B 8O 15 was solved by direct methods from a twinned crystal and refined to R1=0.081 (w R=0.198) on the basis of 1584 unique observed reflections ( I>2 σ( I)). The compound is triclinic, space group P1¯, a=4.3159(8), b=6. 4604(12), c=22.485(4) Å, α=87.094(15)°, β=86.538(15)°, γ=74.420(14)°, V=602.40(19) Å 3, Z=2. The B-O layered anion of β-Bi 2B 8O 15 is topologically identical to the anion of α-Bi 2B 8O 15 but the orientation of neighboring layers is different. Thermal expansion of α-Bi 2B 8O 15 has been investigated by X-ray powder diffraction in air in temperature range from 20 to 700 °C. It is strongly anisotropic, which can be explained by the hinge mechanism applied to chains of Bi-O polyhedra. While the anisotropy of thermal expansion is rather high, the volume thermal expansion coefficient α V=40×10 6 °C -1 for α-Bi 2B 8O 15 is close to those of other bismuth borates.

  12. Serial Tissue Expansion at the Same Site in Pediatric Patients: Is the Subsequent Expansion Faster?

    PubMed Central

    Lee, Moon Ki; Park, Seong Oh; Choi, Tae Hyun

    2017-01-01

    Background Serial tissue expansion is performed to remove giant congenital melanocytic nevi. However, there have been no studies comparing the expansion rate between the subsequent and preceding expansions. In this study, we analyzed the rate of expansion in accordance with the number of surgeries, expander location, expander size, and sex. Methods A retrospective analysis was performed in pediatric patients who underwent tissue expansion for giant congenital melanocytic nevi. We tested four factors that may influence the expansion rate: The number of surgeries, expander location, expander size, and sex. The rate of expansion was calculated by dividing the ‘inflation amount’ by the ‘expander size’. Results The expansion rate, compared with the first-time group, was 1.25 times higher in the second-or-more group (P=0.04) and 1.84 times higher in the third-or-more group (P<0.01). The expansion rate was higher at the trunk than at other sites (P<0.01). There was a tendency of lower expansion rate for larger expanders (P=0.03). Sex did not affect the expansion rate. Conclusions There was a positive correlation between the number of surgeries and the expansion rate, a positive correlation between the expander location and the expansion rate, and a negative correlation between the expander size and the expansion rate. PMID:29076319

  13. Exact relations between homoclinic and periodic orbit actions in chaotic systems

    NASA Astrophysics Data System (ADS)

    Li, Jizhou; Tomsovic, Steven

    2018-02-01

    Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulas expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This enables an explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.

  14. Numerical Analysis of Surge Phenomena, Currents, and Pollution Transport in the Sea of Azov

    NASA Astrophysics Data System (ADS)

    Ivanov, V. A.; Shul'ga, T. Ya.

    2018-04-01

    Dynamic processes and features of transformation of pollution in the Sea of Azov, caused by the action of a real wind and atmospheric pressure in the presence of stationary currents, are studied using a three-dimensional nonlinear hydrodynamic model. On the basis of numerical calculations, conclusions are reached about the influence of the velocities of stationary background currents on maximal deviations and the velocities of nonstationary currents generated by wind fields in the SKIRON model. It is shown that the combined effect of the constant wind and wind in the SKIRON atmospheric model leads to a significant expansion of the polluted area and to a longer dispersion time compared to the effects of solely stationary currents.

  15. Computational investigation of rearrangements in huisgen cycloadducts of azolium N-dicyanomethanide 1,3-dipoles with alkynes: a mechanistic panoply.

    PubMed

    Burke, Luke A; Butler, Richard N

    2009-08-07

    The reaction surfaces leading to rearrangements and ring expansions of azapentalene cycloadducts of imidazolo- and triazolodicyanomethanide 1,3-dipoles with alkynes are studied with the B3LYP DFT method using the 6-31G(d) and 6-311+G(2d,p) basis sets. The surprisingly complex surface involves (1) consecutive but not combined pericyclic steps, a coarctate TS, and pseudopericyclic mechanisms, (2) anchimerically assisted H-atom transfer competing effectively with concerted symmetry-allowed sigmatropic steps, and (3) azolium methanide zwitterions and ketenimines as key intermediates. The azolium methanide is identified as the intermediate detected previously in a variable-temperature NMR experiment that converted the unstable cycloadduct to product imine.

  16. Villification of the gut

    NASA Astrophysics Data System (ADS)

    Tallinen, Tuomas; Shyer, Amy E.; Tabin, Clifford J.; Mahadevan, L.

    2014-03-01

    The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We combine biological manipulations and quantitative modeling to show that these steps of villification depend on the sequential differentiation of the distinct smooth muscle layers of the gut, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. Our computational model incorporates measured elastic properties and growth rates in the developing gut, recapitulating the morphological patterns seen during villification in a variety of species. Our study provides a mechanical basis for the genesis of these epithelial protrusions that are essential for providing sufficient surface area for nutrient absorption.

  17. Nonadiabatic effects in periodically driven dissipative open quantum systems

    NASA Astrophysics Data System (ADS)

    Reimer, Viktor; Pedersen, Kim G. L.; Tanger, Niklas; Pletyukhov, Mikhail; Gritsev, Vladimir

    2018-04-01

    We present a general method to calculate the periodic steady state of a driven-dissipative system coupled to a transmission line (and more generally, to a reservoir) under periodic modulation of its parameters. Using Floquet's theorem, we formulate the differential equation for the system's density operator which has to be solved for a single period of modulation. On this basis we also provide systematic expansions in both the adiabatic and high-frequency regime. Applying our method to three different systems—two- and three-level models as well as the driven nonlinear cavity—we propose periodic modulation protocols of parameters leading to a temporary suppression of effective dissipation rates, and study the arising nonadiabatic features in the response of these systems.

  18. [Early decentralization of health services in Argentina: the construction of the health system in Córdoba, 1930-1955].

    PubMed

    Ortiz Bergia, María José

    2015-01-01

    This paper analyzes the process of construction of the Argentine public health system, highlighting the limitations that occurred in the proposed nationalization of health policy in the postwar period and the central role played by subnational jurisdictions, making the provision of services rendered on a provincial basis. More precisely, in this respect it is seen how the expansion of health services in some provinces shows us how, in the second quarter of the twentieth century, it was primarily the result of the action of local rather than national departments. In order to better elucidate this process, the trajectory of public healthcare facilities in the province of Córdoba between 1930 and 1955 was studied.

  19. Neutron Compton scattering from selectively deuterated acetanilide

    NASA Astrophysics Data System (ADS)

    Wanderlingh, U. N.; Fielding, A. L.; Middendorf, H. D.

    With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential.

  20. Numerical implementation of the S-matrix algorithm for modeling of relief diffraction gratings

    NASA Astrophysics Data System (ADS)

    Yaremchuk, Iryna; Tamulevičius, Tomas; Fitio, Volodymyr; Gražulevičiūte, Ieva; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2013-11-01

    A new numerical implementation is developed to calculate the diffraction efficiency of relief diffraction gratings. In the new formulation, vectors containing the expansion coefficients of electric and magnetic fields on boundaries of the grating layer are expressed by additional constants. An S-matrix algorithm has been systematically described in detail and adapted to a simple matrix form. This implementation is suitable for the study of optical characteristics of periodic structures by using modern object-oriented programming languages and different standard mathematical software. The modeling program has been developed on the basis of this numerical implementation and tested by comparison with other commercially available programs and experimental data. Numerical examples are given to show the usefulness of the new implementation.

  1. Work capacity and anticipation in A.A. Ukhtomsky's concept of dominance

    NASA Astrophysics Data System (ADS)

    Pavlova, L. P.

    2015-08-01

    This paper presents the results of theoretical and experimental investigations of human activity and anticipation based on A.A. Ukhtomsky's concept of brain dominance - a non-equilibrium system-forming factor in living systems. Facts on the stages of dominance formation are presented in relation to the creative abilities of the human brain and the role of fatigue as a "lever" for increasing systems' work capacity on the basis of "trace exaltation". Individually, specific features of dominantogenesis are compared with variations in behavioural types. On the basis of chronotopic EEG analysis, we delineate cortical dominants that underlie individual specifics of cognitive processes. The relation is shown between anticipation and the "expansion of dominants" - the broadening of "distal perception" in time and space, as framed by A.A. Ukhtomsky.

  2. Accurate Induction Energies for Small Organic Molecules. 2. Development and Testing of Distributed Polarizability Models against SAPT(DFT) Energies.

    PubMed

    Misquitta, Alston J; Stone, Anthony J; Price, Sarah L

    2008-01-01

    In part 1 of this two-part investigation we set out the theoretical basis for constructing accurate models of the induction energy of clusters of moderately sized organic molecules. In this paper we use these techniques to develop a variety of accurate distributed polarizability models for a set of representative molecules that include formamide, N-methyl propanamide, benzene, and 3-azabicyclo[3.3.1]nonane-2,4-dione. We have also explored damping, penetration, and basis set effects. In particular, we have provided a way to treat the damping of the induction expansion. Different approximations to the induction energy are evaluated against accurate SAPT(DFT) energies, and we demonstrate the accuracy of our induction models on the formamide-water dimer.

  3. Inclusive breakup calculations in angular momentum basis: Application to 7Li+58Ni

    NASA Astrophysics Data System (ADS)

    Lei, Jin

    2018-03-01

    The angular momentum basis method is introduced to solve the inclusive breakup problem within the model proposed by Ichimura, Austern, and Vincent [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431]. This method is based on the geometric transformation between different Jacobi coordinates, in which the particle spins can be included in a natural and efficient way. To test the validity of this partial wave expansion method, a benchmark calculation is done comparing with the one given by Lei and Moro [Phys. Rev. C 92, 044616 (2015), 10.1103/PhysRevC.92.044616]. In addition, using the distorted-wave Born approximation version of the IAV model, applications to 7Li+58Ni reactions at energies around Coulomb barrier are presented and compared with available data.

  4. The molecular basis of plant cell wall extension.

    PubMed

    Darley, C P; Forrester, A M; McQueen-Mason, S J

    2001-09-01

    In all terrestrial and aquatic plant species the primary cell wall is a dynamic structure, adjusted to fulfil a diversity of functions. However a universal property is its considerable mechanical and tensile strength, whilst being flexible enough to accommodate turgor and allow for cell elongation. The wall is a composite material consisting of a framework of cellulose microfibrils embedded in a matrix of non-cellulosic polysaccharides, interlaced with structural proteins and pectic polymers. The assembly and modification of these polymers within the growing cell wall has, until recently, been poorly understood. Advances in cytological and genetic techniques have thrown light on these processes and have led to the discovery of a number of wall-modifying enzymes which, either directly or indirectly, play a role in the molecular basis of cell wall expansion.

  5. Quantitative analysis of urban sprawl in Tripoli using Pearson's Chi-Square statistics and urban expansion intensity index

    NASA Astrophysics Data System (ADS)

    Al-sharif, Abubakr A. A.; Pradhan, Biswajeet; Zulhaidi Mohd Shafri, Helmi; Mansor, Shattri

    2014-06-01

    Urban expansion is a spatial phenomenon that reflects the increased level of importance of metropolises. The remotely sensed data and GIS have been widely used to study and analyze the process of urban expansions and their patterns. The capital of Libya (Tripoli) was selected to perform this study and to examine its urban growth patterns. Four satellite imageries of the study area in different dates (1984, 1996, 2002 and 2010) were used to conduct this research. The main goal of this work is identification and analyzes the urban sprawl of Tripoli metropolitan area. Urban expansion intensity index (UEII) and degree of freedom test were used to analyze and assess urban expansions in the area of study. The results show that Tripoli has sprawled urban expansion patterns; high urban expansion intensity index; and its urban development had high degree of freedom according to its urban expansion history during the time period (1984-2010). However, the novel proposed hypothesis used for zones division resulted in very good insight understanding of urban expansion direction and the effect of the distance from central business of district (CBD).

  6. Experimental study on surface wrinkling of silicon monoxide film on compliant substrate under thermally induced loads

    NASA Astrophysics Data System (ADS)

    Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin

    2017-06-01

    The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.

  7. In-situ investigation of humidity-induced changes on human hair and antennae of the honey bee, Apis mellifera L., by scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Resch, R.; Ehn, R.; Tichy, H.; Friedbacher, G.

    Atomic force microscopy has already proven its large potential for in-situ investigation of a wide variety of materials under ambient conditions. In the present work our methodological developments have been utilized for in-situ studies of morphological changes on biological material under atmospheres of defined humidity. The observed changes have been evaluated on a quantitative basis through calculation of the correlation between images taken under different conditions. By using female hair as a well-known model sample it could be shown that expansions in the order of 1% or less are accessible. The analytical figures of merit will be discussed. The described technique has also been applied to study hygroreceptors of the honey bee. The promising potential of the method for studying the mechanism of humidity transduction of such organs will be addressed, too.

  8. Patterns of Population Structure and Environmental Associations to Aridity Across the Range of Loblolly Pine (Pinus taeda L., Pinaceae)

    PubMed Central

    Eckert, Andrew J.; van Heerwaarden, Joost; Wegrzyn, Jill L.; Nelson, C. Dana; Ross-Ibarra, Jeffrey; González-Martínez, Santíago C.; Neale, David. B.

    2010-01-01

    Natural populations of forest trees exhibit striking phenotypic adaptations to diverse environmental gradients, thereby making them appealing subjects for the study of genes underlying ecologically relevant phenotypes. Here, we use a genome-wide data set of single nucleotide polymorphisms genotyped across 3059 functional genes to study patterns of population structure and identify loci associated with aridity across the natural range of loblolly pine (Pinus taeda L.). Overall patterns of population structure, as inferred using principal components and Bayesian cluster analyses, were consistent with three genetic clusters likely resulting from expansions out of Pleistocene refugia located in Mexico and Florida. A novel application of association analysis, which removes the confounding effects of shared ancestry on correlations between genetic and environmental variation, identified five loci correlated with aridity. These loci were primarily involved with abiotic stress response to temperature and drought. A unique set of 24 loci was identified as FST outliers on the basis of the genetic clusters identified previously and after accounting for expansions out of Pleistocene refugia. These loci were involved with a diversity of physiological processes. Identification of nonoverlapping sets of loci highlights the fundamental differences implicit in the use of either method and suggests a pluralistic, yet complementary, approach to the identification of genes underlying ecologically relevant phenotypes. PMID:20439779

  9. Urban Expansion Modeling Approach Based on Multi-Agent System and Cellular Automata

    NASA Astrophysics Data System (ADS)

    Zeng, Y. N.; Yu, M. M.; Li, S. N.

    2018-04-01

    Urban expansion is a land-use change process that transforms non-urban land into urban land. This process results in the loss of natural vegetation and increase in impervious surfaces. Urban expansion also alters the hydrologic cycling, atmospheric circulation, and nutrient cycling processes and generates enormous environmental and social impacts. Urban expansion monitoring and modeling are crucial to understanding urban expansion process, mechanism, and its environmental impacts, and predicting urban expansion in future scenarios. Therefore, it is important to study urban expansion monitoring and modeling approaches. We proposed to simulate urban expansion by combining CA and MAS model. The proposed urban expansion model based on MSA and CA was applied to a case study area of Changsha-Zhuzhou-Xiangtan urban agglomeration, China. The results show that this model can capture urban expansion with good adaptability. The Kappa coefficient of the simulation results is 0.75, which indicated that the combination of MAS and CA offered the better simulation result.

  10. Shadow poles in coupled-channel problems calculated with the Berggren basis

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; Kruppa, A. T.; Vertse, T.

    2018-02-01

    Background: In coupled-channels models the poles of the scattering S matrix are located on different Riemann sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow poles have considerable effect too. Purpose: The purpose of this paper is to show that in coupled-channels problems all poles of the S matrix can be located by an expansion in terms of a properly constructed complex-energy basis. Method: The Berggren basis is used for expanding the coupled-channels solutions. Results: The locations of the poles of the S matrix for the Cox potential, constructed for coupled-channels problems, were numerically calculated and compared with the exact ones. In a nuclear physics application the Jπ=3 /2+ resonant poles of 5He were calculated in a phenomenological two-channel model. The properties of both the normal and shadow resonances agree with previous findings. Conclusions: We have shown that, with an appropriately chosen Berggren basis, all poles of the S matrix including the shadow poles can be determined. We have found that the shadow pole of 5He migrates between Riemann sheets if the coupling strength is varied.

  11. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    PubMed

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  12. Graph theory and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obers, N.A.J.

    1991-01-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graphmore » of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {l brace}g{sub metric}{r brace}, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, he defines the sine-area graphs' of SU(n), which label the conformal field theories of SU(n){sub metric}, and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}.« less

  13. Spatial Linkage and Urban Expansion: AN Urban Agglomeration View

    NASA Astrophysics Data System (ADS)

    Jiao, L. M.; Tang, X.; Liu, X. P.

    2017-09-01

    Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.

  14. Light Quark Mass Ratios (mu:md:ms) from Meson and Baryon Mass Splittings

    NASA Astrophysics Data System (ADS)

    Minkowski, Peter

    2013-08-01

    The basis of the material discussed is our work in collaboration with Arnulfo Zepeda from 1979 [Nucl. Phys. B164, 25 (1980)]. The ingredients and consequences of this work will be presented, and compared with results obtained from QCD sum rules and lattice simulations of QCD in accordance with chiral expansions. An up-to-date conclusion will not be possible in this paper, but some comments towards such goal will be given in a concluding section.

  15. Establishing the Basis for Validated Predictions of Highly Non-Equilibrium Flows. (With 9 Attachments)

    DTIC Science & Technology

    1993-10-14

    expansion in Figure 8, a finite rate chemistry, inviscid flow solution was calculated using a One Dimensional Kinetics ( ODK ) computer program2 0...T Temperature range (K) 300 < T < 2000 Units cm3 mo-L’ sec-, [able 2: Reaction rate used in ODK compuiations. Working Gas 12 Stagnation pressure (atm...and proceeding to shorter wavelengths. The laser beam was focused on the probed volume with a 30 cm focal length lens. The LIF signal was collected in

  16. Tunable PhoXonic Band Gap Materials from Self-Assembly of Block Copolymers and Colloidal Nanocrystals (NBIT Phase II)

    DTIC Science & Technology

    2013-12-12

    their application in sensors and as displays. We found that the thermochromic behavior of a lamellar block copolymer poly(styrene-b-2-vinylpyridine...the solution pH. The findings of this work provide the basis for understanding and controlling the properties of thermochromic block copolymers...by the glassy PS layers . The glassy layers completely constrain the lateral expansion of the P2VP gel block and the dislocation defect network that

  17. Simplified Helium Refrigerator Cycle Analysis Using the `Carnot Step'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Knudsen; V. Ganni

    2006-05-01

    An analysis of the Claude form of an idealized helium liquefier for the minimum input work reveals the ''Carnot Step'' for helium refrigerator cycles. As the ''Carnot Step'' for a multi-stage polytropic compression process consists of equal pressure ratio stages; similarly for an idealized helium liquefier the ''Carnot Step'' consists of equal temperature ratio stages for a given number of expansion stages. This paper presents the analytical basis and some useful equations for the preliminary examination of existing and new Claude helium refrigeration cycles.

  18. Sexual learning, sexual experience, and healthy adolescent sex.

    PubMed

    Fortenberry, J Dennis

    2014-01-01

    This chapter is organized around the question "How do adolescents learn to have healthy sex?" The chapter assumes that sexual learning derives from a broad range of both informal and formal sources that contribute to learning within the context of neurocognitive brain systems that modulate sexual motivations and self-regulation. The overall objective is to consider how adolescents become sexually functional and healthy and to provide a conceptual basis for expansion of sexual learning to better support healthy sexual functioning. © 2014 Wiley Periodicals, Inc.

  19. Thermal-vacuum response of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    This report describes a thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites. Experimental results derived from 'control' samples are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples. Coefficient of thermal expansion (CTE) data are also presented. In addition, an example is given illustrating the dimensional change of a 'zero' CTE laminate due to moisture outgassing.

  20. Theoretical Limits of Damping Attainable by Smart Beams with Rate Feedback

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1997-01-01

    Using a generally accepted model we present a comprehensive analysis (within the page limitation) of an Euler- Bernoulli beam with PZT sensor-actuator and pure rate feedback. The emphasis is on the root locus - the dependence of the attainable damping on the feedback gain. There is a critical value of the gain beyond which the damping decreases to zero. We construct the time-domain response using semigroup theory, and show that the eigenfunctions form a Riesz basis, leading to a 'modal' expansion.

  1. Borescope Inspection Management for Engine

    NASA Astrophysics Data System (ADS)

    Zhongda, Yuan

    2018-03-01

    In this paper, we try to explain the problems need to be improved from the two perspectives of maintenance program management and maintenance human risk control. On the basis of optimization analysis of borescope inspection maintenance scheme, the defect characteristics and expansion rules of engine heat terminal components are summarized, and some optimization measures are introduced. This paper analyses human risk problem of engine hole from the aspects of qualification management, training requirements and perfection of system, and puts forward some suggestions on management.

  2. LED phototherapy on midpalatal suture after rapid maxilla expansion: a Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Rosa, Cristiane B.; Habib, Fernando Antonio L.; de Araújo, Telma M.; dos Santos, Jean N.; Cangussu, Maria Cristina T.; Barbosa, Artur Felipe S.; de Castro, Isabele Cardoso V.; Soares, Luiz Guilherme P.; Pinheiro, Antonio L. B.

    2015-03-01

    A quick bone formation after maxillary expansion would reduce treatment timeand the biomodulating effects of LED light could contribute for it. The aim of this study was to analyze the effect of LED phototherapy on the acceleration of bone formation at the midpalatal suture after maxilla expansion. Thirty rats divided into 6 groups were used on the study at 2 time points - 7 days: Control; Expansion; and Expansion + LED; and 14 days: Expansion; Expansion + LED in the first week; Expansion and LED in the first and second weeks. LED irradiation occurred at every 48 h during 2 weeks. Expansion was accomplished using a spatula and maintained with a triple helicoid of 0.020" stainless steel orthodontic wire. A LED light (λ850 ± 10nm, 150mW ± 10mW, spot of 0.5cm2, t=120 sec, SAEF of 18J/cm2) was applied in one point in the midpalatal suture immediately behind the upper incisors. Near infrared Raman spectroscopic analysis of the suture region was carried and data submitted to statistical analyzes (p≤0.05). Raman spectrum analysis demonstrated that irradiation increased hydroxyapatite in the midpalatal suture after expansion. The results of this indicate that LED irradiation; have a positive biomodulation contributing to the acceleration of bone formation in the midpalatal suture after expansion procedure.

  3. Performance of blend sign in predicting hematoma expansion in intracerebral hemorrhage: A meta-analysis.

    PubMed

    Yu, Zhiyuan; Zheng, Jun; Guo, Rui; Ma, Lu; Li, Mou; Wang, Xiaoze; Lin, Sen; Li, Hao; You, Chao

    2017-12-01

    Hematoma expansion is independently associated with poor outcome in intracerebral hemorrhage (ICH). Blend sign is a simple predictor for hematoma expansion on non-contrast computed tomography. However, its accuracy for predicting hematoma expansion is inconsistent in previous studies. This meta-analysis is aimed to systematically assess the performance of blend sign in predicting hematoma expansion in ICH. A systematic literature search was conducted. Original studies about predictive accuracy of blend sign for hematoma expansion in ICH were included. Pooled sensitivity, specificity, positive and negative likelihood ratios were calculated. Summary receiver operating characteristics curve was constructed. Publication bias was assessed by Deeks' funnel plot asymmetry test. A total of 5 studies with 2248 patients were included in this meta-analysis. The pooled sensitivity, specificity, positive and negative likelihood ratios of blend sign for predicting hematoma expansion were 0.28, 0.92, 3.4 and 0.78, respectively. The area under the curve (AUC) was 0.85. No significant publication bias was found. This meta-analysis demonstrates that blend sign is a useful predictor with high specificity for hematoma expansion in ICH. Further studies with larger sample size are still necessary to verify the accuracy of blend sign for predicting hematoma expansion. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Effects of Expansions, Questions and Cloze Procedures on Children's Conversational Skills

    ERIC Educational Resources Information Center

    Wong, Tze-Peng; Moran, Catherine; Foster-Cohen, Susan

    2012-01-01

    The effectiveness of expansion as a technique for facilitating children's language and conversational skills is well known (Scherer and Olswang, 1984). Expansion, however, can appear alone or in combination with other techniques. Using a repeated measures design, this study aimed to compare the effects of expansion alone (EA); expansion combined…

  5. New methods for time-resolved fluorescence spectroscopy data analysis based on the Laguerre expansion technique--applications in tissue diagnosis.

    PubMed

    Jo, J A; Marcu, L; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J

    2007-01-01

    A new deconvolution method for the analysis of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data is introduced and applied for tissue diagnosis. The intrinsic TR-LIFS decays are expanded on a Laguerre basis, and the computed Laguerre expansion coefficients (LEC) are used to characterize the sample fluorescence emission. The method was applied for the diagnosis of atherosclerotic vulnerable plaques. At a first stage, using a rabbit atherosclerotic model, 73 TR-LIFS in-vivo measurements from the normal and atherosclerotic aorta segments of eight rabbits were taken. The Laguerre deconvolution technique was able to accurately deconvolve the TR-LIFS measurements. More interesting, the LEC reflected the changes in the arterial biochemical composition and provided discrimination of lesions rich in macrophages/foam-cells with high sensitivity (> 85%) and specificity (> 95%). At a second stage, 348 TR-LIFS measurements were obtained from the explanted carotid arteries of 30 patients. Lesions with significant inflammatory cells (macrophages/foam-cells and lymphocytes) were detected with high sensitivity (> 80%) and specificity (> 90%), using LEC-based classifiers. This study has demonstrated the potential of using TR-LIFS information by means of LEC for in vivo tissue diagnosis, and specifically for detecting inflammation in atherosclerotic lesions, a key marker of plaque vulnerability.

  6. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms

    PubMed Central

    Gasc, Cyrielle; Peyretaillade, Eric

    2016-01-01

    Abstract The recent expansion of next-generation sequencing has significantly improved biological research. Nevertheless, deep exploration of genomes or metagenomic samples remains difficult because of the sequencing depth and the associated costs required. Therefore, different partitioning strategies have been developed to sequence informative subsets of studied genomes. Among these strategies, hybridization capture has proven to be an innovative and efficient tool for targeting and enriching specific biomarkers in complex DNA mixtures. It has been successfully applied in numerous areas of biology, such as exome resequencing for the identification of mutations underlying Mendelian or complex diseases and cancers, and its usefulness has been demonstrated in the agronomic field through the linking of genetic variants to agricultural phenotypic traits of interest. Moreover, hybridization capture has provided access to underexplored, but relevant fractions of genomes through its ability to enrich defined targets and their flanking regions. Finally, on the basis of restricted genomic information, this method has also allowed the expansion of knowledge of nonreference species and ancient genomes and provided a better understanding of metagenomic samples. In this review, we present the major advances and discoveries permitted by hybridization capture and highlight the potency of this approach in all areas of biology. PMID:27105841

  7. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms.

    PubMed

    Gasc, Cyrielle; Peyretaillade, Eric; Peyret, Pierre

    2016-06-02

    The recent expansion of next-generation sequencing has significantly improved biological research. Nevertheless, deep exploration of genomes or metagenomic samples remains difficult because of the sequencing depth and the associated costs required. Therefore, different partitioning strategies have been developed to sequence informative subsets of studied genomes. Among these strategies, hybridization capture has proven to be an innovative and efficient tool for targeting and enriching specific biomarkers in complex DNA mixtures. It has been successfully applied in numerous areas of biology, such as exome resequencing for the identification of mutations underlying Mendelian or complex diseases and cancers, and its usefulness has been demonstrated in the agronomic field through the linking of genetic variants to agricultural phenotypic traits of interest. Moreover, hybridization capture has provided access to underexplored, but relevant fractions of genomes through its ability to enrich defined targets and their flanking regions. Finally, on the basis of restricted genomic information, this method has also allowed the expansion of knowledge of nonreference species and ancient genomes and provided a better understanding of metagenomic samples. In this review, we present the major advances and discoveries permitted by hybridization capture and highlight the potency of this approach in all areas of biology. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. FGF2 and insulin signaling converge to regulate cyclin D expression in multipotent neural stem cells.

    PubMed

    Adepoju, Adedamola; Micali, Nicola; Ogawa, Kazuya; Hoeppner, Daniel J; McKay, Ronald D G

    2014-03-01

    The ex vivo expansion of stem cells is making major contribution to biomedical research. The multipotent nature of neural precursors acutely isolated from the developing central nervous system has been established in a series of studies. Understanding the mechanisms regulating cell expansion in tissue culture would support their expanded use either in cell therapies or to define disease mechanisms. Basic fibroblast growth factor (FGF2) and insulin, ligands for tyrosine kinase receptors, are sufficient to sustain neural stem cells (NSCs) in culture. Interestingly, real-time imaging shows that these cells become multipotent every time they are passaged. Here, we analyze the role of FGF2 and insulin in the brief period when multipotent cells are present. FGF2 signaling results in the phosphorylation of Erk1/2, and activation of c-Fos and c-Jun that lead to elevated cyclin D mRNA levels. Insulin signals through the PI3k/Akt pathway to regulate cyclins at the post-transcriptional level. This precise Boolean regulation extends our understanding of the proliferation of multipotent NSCs and provides a basis for further analysis of proliferation control in the cell states defined by real-time mapping of the cell lineages that form the central nervous system. © 2013 AlphaMed Press.

  9. Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped Nd0.5Ba0.5FeO3-δ.

    PubMed

    Lyagaeva, Julia; Danilov, Nilolay; Tarutin, Arthem; Vdovin, Gennady; Medvedev, Dmitry; Demin, Anatoly; Tsiakaras, Panagiotis

    2018-06-19

    The Fe-based perovskite-structured Nd0.5Ba0.5FeO3-δ (NBF) system represents the basis for developing promising electrode materials for solid oxide fuel cells with proton-conducting electrolytes. This study aims at investigating the strategy of slight doping of neodymium-barium ferrite with some transition metals (M = Ni, Cu, Co) and examining the effect of this doping on the functional characteristics, such as phase structure, thermal expansion, total and ionic conductivity as well as electrochemical behavior, of Nd0.5Ba0.5Fe0.9M0.1O3-δ (NBFM) under testing in symmetrical cell (SC) and fuel cell (FC) modes of operation. Among the investigated dopants, cobalt (Co) is found to be the optimal dopant, resulting in an enhancement of transport properties and avoiding an undesirable increase in the thermal expansion coefficient. As a result, the electrode material made of NBFCo exhibits highest ionic conductivity and lowest polarization resistance in the SC mode of operation. Electrochemical characterization of the NBFCo cathode material in a protonic ceramic fuel cell (PCFC) followed by comparison of the obtained results with literature data demonstrates that NBFCo is an attractive cathode candidate for PCFC applications.

  10. When enough is enough: how the decision was made to stop the FEAST trial: data and safety monitoring in an African trial of Fluid Expansion As Supportive Therapy (FEAST) for critically ill children

    PubMed Central

    2013-01-01

    In resource-rich countries, bolus fluid expansion is routinely used for the treatment of poor perfusion and shock, but is less commonly used in many African settings. Controversial results from the recently completed FEAST (Fluid Expansion As Supportive Therapy) trial in African children have raised questions about the use of intravenous bolus fluid for the treatment of shock. Prior to the start of the trial, the Independent data monitoring committee (IDMC) developed stopping rules for the proof of benefit that bolus fluid resuscitation would bring. Although careful safety monitoring was put in place, there was less expectation that bolus fluid expansion would be harmful and differential stopping rules for harm were not formulated. In July 2010, two protocol amendments were agreed to increase the sample size from 2,880 to 3,600 children, and to increase bolus fluid administration. There was a non-significant trend against bolus treatment, but although the implications were discussed, the IDMC did not comment on the results, or on the amendments, in order to avoid inadvertent partial unblinding of the study. In January 2011, the trial was stopped for futility, as the combined intervention arms had significantly higher mortality (relative risk 1.46, 95% CI 1.13 to 1.90, P = 0.004) than the control arm. The stopping rule for proof of benefit was not achieved, and the IDMC stopped the trial with a lower level of significance (P = 0.01) due to futility and an increased risk of mortality from bolus fluid expansion in children enrolled in the trial. The basis for this decision was that the local standard of care was not to use bolus fluid for the care of children with shock in these African countries, and this was a different standard of care to that used in the UK. These decisions emphasize two important principles: firstly, the IDMC should avoid inadvertent unblinding of the trial by commenting on amendments, and secondly, when considering stopping a trial, the IDMC should be guided by the local standard of care rather than standards of care in other parts of the world. PMID:23531379

  11. When enough is enough: how the decision was made to stop the FEAST trial: data and safety monitoring in an African trial of Fluid Expansion As Supportive Therapy (FEAST) for critically ill children.

    PubMed

    Todd, Jim; Heyderman, Robert S; Musoke, Philippa; Peto, Tim

    2013-03-26

    In resource-rich countries, bolus fluid expansion is routinely used for the treatment of poor perfusion and shock, but is less commonly used in many African settings. Controversial results from the recently completed FEAST (Fluid Expansion As Supportive Therapy) trial in African children have raised questions about the use of intravenous bolus fluid for the treatment of shock. Prior to the start of the trial, the Independent data monitoring committee (IDMC) developed stopping rules for the proof of benefit that bolus fluid resuscitation would bring. Although careful safety monitoring was put in place, there was less expectation that bolus fluid expansion would be harmful and differential stopping rules for harm were not formulated.In July 2010, two protocol amendments were agreed to increase the sample size from 2,880 to 3,600 children, and to increase bolus fluid administration. There was a non-significant trend against bolus treatment, but although the implications were discussed, the IDMC did not comment on the results, or on the amendments, in order to avoid inadvertent partial unblinding of the study.In January 2011, the trial was stopped for futility, as the combined intervention arms had significantly higher mortality (relative risk 1.46, 95% CI 1.13 to 1.90, P = 0.004) than the control arm. The stopping rule for proof of benefit was not achieved, and the IDMC stopped the trial with a lower level of significance (P = 0.01) due to futility and an increased risk of mortality from bolus fluid expansion in children enrolled in the trial. The basis for this decision was that the local standard of care was not to use bolus fluid for the care of children with shock in these African countries, and this was a different standard of care to that used in the UK. These decisions emphasize two important principles: firstly, the IDMC should avoid inadvertent unblinding of the trial by commenting on amendments, and secondly, when considering stopping a trial, the IDMC should be guided by the local standard of care rather than standards of care in other parts of the world.

  12. Transverse Expansion and Stability after Segmental Le Fort I Osteotomy versus Surgically Assisted Rapid Maxillary Expansion: a Systematic Review

    PubMed Central

    Blæhr, Tue Lindberg

    2016-01-01

    ABSTRACT Objectives The objective of the present systematic review was to test the hypothesis of no difference in transverse skeletal and dental arch expansion and relapse after segmental Le Fort I osteotomy versus surgically assisted rapid maxillary expansion. Material and Methods A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted by including human studies published in English from January 1, 2000 to June 1, 2016. Results The search provided 130 titles and four studies fulfilled the inclusion criteria. All the included studies were characterized by high risk of bias and meta-analysis was not possible due to considerable variation. Both treatment modalities significantly increase the transverse maxillary skeletal and dental arch width. The transverse dental arch expansion and relapse seems to be substantial higher with tooth-borne surgically assisted rapid maxillary expansion compared to segmental Le Fort I osteotomy. The ratio of dental to skeletal relapse was significantly higher in the posterior maxilla with tooth-borne surgically assisted rapid maxillary expansion. Moreover, a parallel opening without segment tilting was observed after segmental Le Fort I osteotomy. Conclusions Maxillary transverse deficiency in adults can be treated successfully with both treatment modalities, although surgically assisted rapid maxillary expansion seems more effective when large transverse maxillary skeletal and dental arch expansion is required. However, considering the methodological limitations of the included studies, long-term randomized studies assessing transverse skeletal and dental expansion and relapse with the two treatment modalities are needed before definite conclusions can be provided. PMID:28154745

  13. Expansion joint for guideway for magnetic levitation transportation system

    DOEpatents

    Rossing, Thomas D.

    1993-01-01

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.

  14. (40)Ar/(39)Ar dating of Bed I, Olduvai Gorge, Tanzania, and the chronology of early Pleistocene climate change.

    PubMed

    Deino, Alan L

    2012-08-01

    (40)Ar/(39)Ar dating of tuffs and lavas of the late Pleistocene volcanic and sedimentary sequence of Olduvai Gorge, north-central Tanzania, provides the basis for a revision of Bed I chronostratigraphy. Bed I extends from immediately above the Naabi Ignimbrite at 2.038 ± 0.005 Ma to Tuff IF at 1.803 ± 0.002 Ma. Tuff IB, a prominent widespread marker tuff in the basin and a key to understanding hominin evolutionary chronologies and paleoclimate histories, has an age of 1.848 ± 0.003 Ma. The largest lake expansion event in the closed Olduvai lake basin during Bed I times encompassed the episode of eruption and emplacement of this tuff. This lake event is nearly coincident with the maximum precessional insolation peak of the entire Bed I/Lower Bed II interval, calculated from an astronomical model of the boreal summer orbital insolation time-series. The succeeding precessional peak also apparently coincides with the next youngest expansion of paleo-Lake Olduvai. The extreme wet/dry climate shifts seen in the upper part of Bed I occur during an Earth-orbital eccentricity maximum, similar to episodic lake expansions documented elsewhere in the East African Rift during the Neogene. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A Boussinesq-scaled, pressure-Poisson water wave model

    NASA Astrophysics Data System (ADS)

    Donahue, Aaron S.; Zhang, Yao; Kennedy, Andrew B.; Westerink, Joannes J.; Panda, Nishant; Dawson, Clint

    2015-02-01

    Through the use of Boussinesq scaling we develop and test a model for resolving non-hydrostatic pressure profiles in nonlinear wave systems over varying bathymetry. A Green-Nagdhi type polynomial expansion is used to resolve the pressure profile along the vertical axis, this is then inserted into the pressure-Poisson equation, retaining terms up to a prescribed order and solved using a weighted residual approach. The model shows rapid convergence properties with increasing order of polynomial expansion which can be greatly improved through the application of asymptotic rearrangement. Models of Boussinesq scaling of the fully nonlinear O (μ2) and weakly nonlinear O (μN) are presented, the analytical and numerical properties of O (μ2) and O (μ4) models are discussed. Optimal basis functions in the Green-Nagdhi expansion are determined through manipulation of the free-parameters which arise due to the Boussinesq scaling. The optimal O (μ2) model has dispersion accuracy equivalent to a Padé [2,2] approximation with one extra free-parameter. The optimal O (μ4) model obtains dispersion accuracy equivalent to a Padé [4,4] approximation with two free-parameters which can be used to optimize shoaling or nonlinear properties. In comparison to experimental results the O (μ4) model shows excellent agreement to experimental data.

  16. Expansion joint for guideway for magnetic levitation transportation system

    DOEpatents

    Rossing, T.D.

    1993-02-09

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.

  17. What determines organ size differences between species? A meta-analysis of the cellular basis.

    PubMed

    Gázquez, Ayelén; Beemster, Gerrit T S

    2017-07-01

    Little is known about how the characteristic differences in organ size between species are regulated. At the cellular level, the size of an organ is strictly regulated by cell division and expansion during its development. We performed a meta-analysis of the growth parameters of roots, and Graminae and eudicotyledonous leaves, to address the question of how quantitative variation in these two processes contributes to size differences across a range of species. We extracted or derived cellular parameters from published kinematic growth analyses. These data were subjected to linear regression analyses to identify the parameters that determine differences in organ growth. Our results demonstrate that, across all species and organs, similar conclusions can be made: cell number rather than cell size determines the final size of plant organs; cell number is determined by meristem size rather than the rate at which cells divide; cells that are small when leaving the meristem compensate by expanding for longer; mature cell size is primarily determined by the duration of cell expansion. These results identify the regulation of the transition from cell division to expansion as the key cellular mechanism targeted by the evolution of organ size. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Development and community-based validation of eight item banks to assess mental health.

    PubMed

    Batterham, Philip J; Sunderland, Matthew; Carragher, Natacha; Calear, Alison L

    2016-09-30

    There is a need for precise but brief screening of mental health problems in a range of settings. The development of item banks to assess depression and anxiety has resulted in new adaptive and static screeners that accurately assess severity of symptoms. However, expansion to a wider array of mental health problems is required. The current study developed item banks for eight mental health problems: social anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive-compulsive disorder, adult attention-deficit hyperactivity disorder, drug use, psychosis and suicidality. The item banks were calibrated in a population-based Australian adult sample (N=3175) by administering large item pools (45-75 items) and excluding items on the basis of local dependence or measurement non-invariance. Item Response Theory parameters were estimated for each item bank using a two-parameter graded response model. Each bank consisted of 19-47 items, demonstrating excellent fit and precision across a range of -1 to 3 standard deviations from the mean. No previous study has developed such a broad range of mental health item banks. The calibrated item banks will form the basis of a new system of static and adaptive measures to screen for a broad array of mental health problems in the community. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis.

    PubMed

    Bernardi, Mauro; Moreau, Richard; Angeli, Paolo; Schnabl, Bernd; Arroyo, Vicente

    2015-11-01

    The peripheral arterial vasodilation hypothesis has been most influential in the field of cirrhosis and its complications. It has given rise to hundreds of pathophysiological studies in experimental and human cirrhosis and is the theoretical basis of life-saving treatments. It is undisputed that splanchnic arterial vasodilation contributes to portal hypertension and is the basis for manifestations such as ascites and hepatorenal syndrome, but the body of research generated by the hypothesis has revealed gaps in the original pathophysiological interpretation of these complications. The expansion of our knowledge on the mechanisms regulating vascular tone, inflammation and the host-microbiota interaction require a broader approach to advanced cirrhosis encompassing the whole spectrum of its manifestations. Indeed, multiorgan dysfunction and failure likely result from a complex interplay where the systemic spread of bacterial products represents the primary event. The consequent activation of the host innate immune response triggers endothelial molecular mechanisms responsible for arterial vasodilation, and also jeopardizes organ integrity with a storm of pro-inflammatory cytokines and reactive oxygen and nitrogen species. Thus, the picture of advanced cirrhosis could be seen as the result of an inflammatory syndrome in contradiction with a simple hemodynamic disturbance. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Sparse regularization for force identification using dictionaries

    NASA Astrophysics Data System (ADS)

    Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng

    2016-04-01

    The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.

  1. The Cancer Stem Cell Fraction in Hierarchically Organized Tumors Can Be Estimated Using Mathematical Modeling and Patient-Specific Treatment Trajectories.

    PubMed

    Werner, Benjamin; Scott, Jacob G; Sottoriva, Andrea; Anderson, Alexander R A; Traulsen, Arne; Altrock, Philipp M

    2016-04-01

    Many tumors are hierarchically organized and driven by a subpopulation of tumor-initiating cells (TIC), or cancer stem cells. TICs are uniquely capable of recapitulating the tumor and are thought to be highly resistant to radio- and chemotherapy. Macroscopic patterns of tumor expansion before treatment and tumor regression during treatment are tied to the dynamics of TICs. Until now, the quantitative information about the fraction of TICs from macroscopic tumor burden trajectories could not be inferred. In this study, we generated a quantitative method based on a mathematical model that describes hierarchically organized tumor dynamics and patient-derived tumor burden information. The method identifies two characteristic equilibrium TIC regimes during expansion and regression. We show that tumor expansion and regression curves can be leveraged to infer estimates of the TIC fraction in individual patients at detection and after continued therapy. Furthermore, our method is parameter-free; it solely requires the knowledge of a patient's tumor burden over multiple time points to reveal microscopic properties of the malignancy. We demonstrate proof of concept in the case of chronic myeloid leukemia (CML), wherein our model recapitulated the clinical history of the disease in two independent patient cohorts. On the basis of patient-specific treatment responses in CML, we predict that after one year of targeted treatment, the fraction of TICs increases 100-fold and continues to increase up to 1,000-fold after 5 years of treatment. Our novel framework may significantly influence the implementation of personalized treatment strategies and has the potential for rapid translation into the clinic. Cancer Res; 76(7); 1705-13. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. The archaeobotany of Asian rice expansion and the development of wet-field cultivation

    NASA Astrophysics Data System (ADS)

    Fuller, D.

    2008-12-01

    Archaeobotanical evidence provides direct data on past human diet and agriculture, including a geographical and chronological framework for studying the expansion of rice agriculture. The growth of systematic archaeobotanical sampling in recent years has allowed for the past presence of rice to be seen in relation to cultivation of other crops and associated weeds. The weed flora provides a basis for inferring the nature of cultivation systems, whether rain-fed dry rice or wetland "paddy" rice, a key distinction for considerations of past methane production. Nevertheless, current data is very unevenly distributed. This poster will summarize available evidence for the origins and spread of rice in South Asia (India and Pakistan), and mainland and Island Southeast Asia deriving from an earlier Chinese domestication. Where possible, such as in India or China, the potential of the weed flora remains for distinguishing wetland rice crops will be summarized. In broad terms, although the origins of rice use and cultivation begins by or during the Middle Holocene (6000- 3000 BC), rice cultivation spread outside the regions of the wild progenitor after this time. Two phases of rice expansion can be distinguished. Phase 1, between 3000 and 1500 BC, introduced rice to Southeast Asia, probably under wetland cultivation, and the spread of dry rice over northern India and Pakistan. Phase 2, taking place between 1000 and 0 BC, sees the spread of rice throughout the Southern Indian Peninsula, with weed evidence suggesting irrigated wetland rice. Similarly, this period sees the spread of intensive paddy agriculture through Korea and Japan, but in Southeast Asia is probably related to a spread of rice in upland, dry field systems.

  3. Self-mating in the definitive host potentiates clonal outbreaks of the apicomplexan parasites Sarcocystis neurona and Toxoplasma gondii.

    PubMed

    Wendte, Jered M; Miller, Melissa A; Lambourn, Dyanna M; Magargal, Spencer L; Jessup, David A; Grigg, Michael E

    2010-12-23

    Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks.

  4. Altitudinal dynamics of glacial lakes under changing climate in the Hindu Kush, Karakoram, and Himalaya ranges

    NASA Astrophysics Data System (ADS)

    Ashraf, Arshad; Naz, Rozina; Iqbal, Muhammad Bilal

    2017-04-01

    The environmental challenges posed by global warming in the Himalayan region include early and rapid melting of snow and glaciers, creation of new lakes, and expansion of old ones posing a high risk of glacial lakes outburst flood (GLOF) hazard for downstream communities. According to various elevation ranges, 3044 lakes were analyzed basinwide in the Hindu Kush-Karakoram-Himalaya (HKH) ranges of Pakistan using multisensor remote sensing data of the 2001-2013 period. An overall increase in glacial lakes was observed at various altitudinal ranges between 2500 and 5500, m out of which noticeable change by number was within the 4000-4500 m range. The analysis carried out by glacial-fed lakes and nonglacial-fed lakes in different river basins indicated variable patterns depending on the geographic location in the HKH region. The correlation analysis of parameters like lake area, expansion rate, and elevation was performed with 617 glacial lakes distributed in various river basins of the three HKH ranges. Lake area (2013) and elevation showed a negative relationship for all basins except Hunza, Shigar, and Shyok. The correlation between the expansion rate of lakes and elevation was on the positive side for Swat, Gilgit, Shigar, and Shingo basins-a situation that may be attributed to the variable altitudinal pattern of temperature and precipitation. In order to explore such diverse patterns of lake behavior and relationship with influential factors in the HKH, detailed studies based on using high resolution image data coupled with in situ information are a prerequisite. Although an increase in lake area observed below 3500 m would be favorable for water resource management, but could be alarming in context of glacial flood hazards that need to be monitored critically on a long-term basis.

  5. Calibrated Multi-Temporal Edge Images for City Infrastructure Growth Assessment and Prediction

    NASA Astrophysics Data System (ADS)

    Al-Ruzouq, R.; Shanableh, A.; Boharoon, Z.; Khalil, M.

    2018-03-01

    Urban Growth or urbanization can be defined as the gradual process of city's population growth and infrastructure development. It is typically demonstrated by the expansion of a city's infrastructure, mainly development of its roads and buildings. Uncontrolled urban Growth in cities has been responsible for several problems that include living environment, drinking water, noise and air pollution, waste management, traffic congestion and hydraulic processes. Accurate identification of urban growth is of great importance for urban planning and water/land management. Recent advances in satellite imagery, in terms of improved spatial and temporal resolutions, allows for efficient identification of change patterns and the prediction of built-up areas. In this study, two approaches were adapted to quantify and assess the pattern of urbanization, in Ajman City at UAE, during the last three decades. The first approach relies on image processing techniques and multi-temporal Landsat satellite images with ground resolution varying between 15 to 60 meters. In this approach, the derived edge images (roads and buildings) were used as the basis of change detection. The second approach relies on digitizing features from high-resolution images captured at different years. The latest approach was adopted, as a reference and ground truth, to calibrate extracted edges from Landsat images. It has been found that urbanized area almost increased by 12 folds during the period 1975-2015 where the growth of buildings and roads were almost parallel until 2005 when the roads spatial expansion witnessed a steep increase due to the vertical expansion of the City. Extracted Edges features, were successfully used for change detection and quantification in term of buildings and roads.

  6. Bayesian estimation of Karhunen–Loève expansions; A random subspace approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhary, Kenny; Najm, Habib N.

    One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less

  7. Bayesian estimation of Karhunen–Loève expansions; A random subspace approach

    DOE PAGES

    Chowdhary, Kenny; Najm, Habib N.

    2016-04-13

    One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less

  8. Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.

    PubMed

    Alzahrani, Mohammed A; Gauthier, Robert C

    2015-10-05

    Maxwell's vector wave equations are solved for dielectric configurations that match the symmetry of a spherical computational domain. The electric or magnetic field components and the inverse of the dielectric profile are series expansion defined using basis functions composed of the lowest order spherical Bessel function, polar angle single index dependant Legendre polynomials and azimuthal complex exponential (BLF). The series expressions and non-traditional form of the basis functions result in an eigenvalue matrix formulation of Maxwell's equations that are relatively compact and accurately solvable on a desktop PC. The BLF matrix returns the frequencies and field profiles for steady states modes. The key steps leading to the matrix populating expressions are provided. The validity of the numerical technique is confirmed by comparing the results of computations to those published using complementary techniques.

  9. Local discretization method for overdamped Brownian motion on a potential with multiple deep wells.

    PubMed

    Nguyen, P T T; Challis, K J; Jack, M W

    2016-11-01

    We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.

  10. Local discretization method for overdamped Brownian motion on a potential with multiple deep wells

    NASA Astrophysics Data System (ADS)

    Nguyen, P. T. T.; Challis, K. J.; Jack, M. W.

    2016-11-01

    We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.

  11. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  12. Retrieval feedback in MEDLINE.

    PubMed Central

    Srinivasan, P

    1996-01-01

    OBJECTIVE: To investigate a new approach for query expansion based on retrieval feedback. The first objective in this study was to examine alternative query-expansion methods within the same retrieval-feedback framework. The three alternatives proposed are: expansion on the MeSH query field alone, expansion on the free-text field alone, and expansion on both the MeSH and the free-text fields. The second objective was to gain further understanding of retrieval feedback by examining possible dependencies on relevant documents during the feedback cycle. DESIGN: Comparative study of retrieval effectiveness using the original unexpanded and the alternative expanded user queries on a MEDLINE test collection of 75 queries and 2,334 MEDLINE citations. MEASUREMENTS: Retrieval effectivenesses of the original unexpanded and the alternative expanded queries were compared using 11-point-average precision scores (11-AvgP). These are averages of precision scores obtained at 11 standard recall points. RESULTS: All three expansion strategies significantly improved the original queries in terms of retrieval effectiveness. Expansion on MeSH alone was equivalent to expansion on both MeSH and the free-text fields. Expansion on the free-text field alone improved the queries significantly less than did the other two strategies. The second part of the study indicated that retrieval-feedback-based expansion yields significant performance improvements independent of the availability of relevant documents for feedback information. CONCLUSIONS: Retrieval feedback offers a robust procedure for query expansion that is most effective for MEDLINE when applied to the MeSH field. PMID:8653452

  13. The Mechanical Response of Advanced Claddings during Proposed Reactivity Initiated Accident Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut N; Brown, Nicholas R; Terrani, Kurt A

    2017-01-01

    This study investigates the failure mechanisms of advanced nuclear fuel cladding of FeCrAl at high-strain rates, similar to design basis reactivity initiated accidents (RIA). During RIA, the nuclear fuel cladding was subjected to the plane-strain to equibiaxial tension strain states. To achieve those accident conditions, the samples were deformed by the expansion of high strength Inconel alloy tube under pre-specified pressure pulses as occurring RIA. The mechanical response of the advanced claddings was compared to that of hydrided zirconium-based nuclear fuel cladding alloy. The hoop strain evolution during pressure pulses were collected in situ; the permanent diametral strains of bothmore » accident tolerant fuel (ATF) claddings and the current nuclear fuel alloys were determined after rupture.« less

  14. Conventional and Explicitly Correlated ab Initio Benchmark Study on Water Clusters: Revision of the BEGDB and WATER27 Data Sets.

    PubMed

    Manna, Debashree; Kesharwani, Manoj K; Sylvetsky, Nitai; Martin, Jan M L

    2017-07-11

    Benchmark ab initio energies for BEGDB and WATER27 data sets have been re-examined at the MP2 and CCSD(T) levels with both conventional and explicitly correlated (F12) approaches. The basis set convergence of both conventional and explicitly correlated methods has been investigated in detail, both with and without counterpoise corrections. For the MP2 and CCSD-MP2 contributions, rapid basis set convergence observed with explicitly correlated methods is compared to conventional methods. However, conventional, orbital-based calculations are preferred for the calculation of the (T) term, since it does not benefit from F12. CCSD(F12*) converges somewhat faster with the basis set than CCSD-F12b for the CCSD-MP2 term. The performance of various DFT methods is also evaluated for the BEGDB data set, and results show that Head-Gordon's ωB97X-V and ωB97M-V functionals outperform all other DFT functionals. Counterpoise-corrected DSD-PBEP86 and raw DSD-PBEPBE-NL also perform well and are close to MP2 results. In the WATER27 data set, the anionic (deprotonated) water clusters exhibit unacceptably slow basis set convergence with the regular cc-pVnZ-F12 basis sets, which have only diffuse s and p functions. To overcome this, we have constructed modified basis sets, denoted aug-cc-pVnZ-F12 or aVnZ-F12, which have been augmented with diffuse functions on the higher angular momenta. The calculated final dissociation energies of BEGDB and WATER27 data sets are available in the Supporting Information. Our best calculated dissociation energies can be reproduced through n-body expansion, provided one pushes to the basis set and electron correlation limit for the two-body term; for the three-body term, post-MP2 contributions (particularly CCSD-MP2) are important for capturing the three-body dispersion effects. Terms beyond four-body can be adequately captured at the MP2-F12 level.

  15. The co-occurrence of Alzheimer's disease and Huntington's disease: a neuropathological study of 15 elderly Huntington's disease subjects.

    PubMed

    Davis, Marie Y; Keene, C Dirk; Jayadev, Suman; Bird, Thomas

    2014-01-01

    Dementia is a common feature in both Huntington's disease (HD) and Alzheimer's disease (AD), as well as in the general elderly population. Few studies have examined elderly HD patients with dementia for neuropathologic evidence of both HD and AD. We present neuropathological findings in a retrospective case series of 15 elderly HD patients (ages 60-91 years), 11 of whom had prominent clinical dementia. Post-mortem brain tissue was examined and stained for evidence of both HD and AD including Vonsattel grading and Htt-repeat expansion, Bielskowsky, tau, β amyloid, and TDP43 immunostaining. Mean age at death was 76.8 years, mean disease duration was 18.6 years, and mean CAG repeat expansion was 42. Evidence of AD in addition to HD pathology was present in 9 of 11 (82%) patients with prominent dementia, suggesting that AD may be more commonly co-occurring with HD than previously appreciated. Two patients had only HD as the basis of dementia and four patients did not have prominent dementia. One patient with marked parkinsonian features was not L-dopa responsive and had no substantia nigra Lewy bodies at autopsy. Our study suggests that AD may frequently contribute to cognitive decline in elderly HD patients which complicates the assessment and management of such individuals. Further study is needed to determine if there is a higher incidence of AD in persons with HD compared to the general population. In addition, our series includes one HD patient whose clinical features masqueraded as Parkinson's disease but was not responsive to levodopa therapy.

  16. An electroweak basis for neutrinoless double β decay

    DOE PAGES

    Graesser, Michael L.

    2017-08-23

    Here, a discovery of neutrinoless double-β decay would be profound, providing the first direct experimental evidence of ΔL = 2 lepton number violating processes. While a natural explanation is provided by an effective Majorana neutrino mass, other new physics interpretations should be carefully evaluated. At low-energies such new physics could man-ifest itself in the form of color and SU(2) L × U(1)Y invariant higher dimension operators. Here we determine a complete set of electroweak invariant dimension-9 operators, and our analysis supersedes those that only impose U(1) em invariance. Imposing electroweak invariance implies: 1) a significantly reduced set of leading ordermore » operators compared to only imposing U(1) em invariance; and 2) other collider signatures. Prior to imposing electroweak invariance we find a minimal basis of 24 dimension-9 operators, which is reduced to 11 electroweak invariant operators at leading order in the expansion in the Higgs vacuum expectation value. We set up a systematic analysis of the hadronic realization of the 4-quark operators using chiral perturbation theory, and apply it to determine which of these operators have long-distance pion enhancements at leading order in the chiral expansion. We also find at dimension-11 and dimension-13 the electroweak invariant operators that after electroweak symmetry breaking produce the remaining ΔL = 2 operators that would appear at dimension-9 if only U(1) em is imposed.« less

  17. The influence of interspecific interactions on species range expansion rates

    USGS Publications Warehouse

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E.M.S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.

  18. The influence of interspecific interactions on species range expansion rates.

    PubMed

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D; Schurr, Frank M; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H; Dullinger, Stefan; Edwards, Thomas C; Hickler, Thomas; Higgins, Steven I; Nabel, Julia E M S; Pagel, Jörn; Normand, Signe

    2014-12-01

    Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.

  19. The influence of interspecific interactions on species range expansion rates

    PubMed Central

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E. M. S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species. PMID:25722537

  20. The hippocampal system as the cortical resource manager: a model connecting psychology, anatomy and physiology.

    PubMed

    Coward, L Andrew

    2010-01-01

    A model is described in which the hippocampal system functions as resource manager for the neocortex. This model is developed from an architectural concept for the brain as a whole within which the receptive fields of neocortical columns can gradually expand but with some limited exceptions tend not to contract. The definition process for receptive fields is constrained so that they overlap as little as possible, and change as little as possible, but at least a minimum number of columns detect their fields within every sensory input state. Below this minimum, the receptive fields of some columns are expanded slightly until the minimum level is reached. The columns in which this expansion occurs are selected by a competitive process in the hippocampal system that identifies those in which only a relatively small expansion is required, and sends signals to those columns that trigger the expansion. These expansions in receptive fields are the information record that forms the declarative memory of the input state. Episodic memory activates a set of columns in which receptive fields expanded simultaneously at some point in the past, and the hippocampal system is therefore the appropriate source for information guiding access to such memories. Semantic memory associates columns that are often active (with or without expansions in receptive fields) simultaneously. Initially, the hippocampus can guide access to such memories on the basis of initial information recording, but to avoid corruption of the information needed for ongoing resource management, access control shifts to other parts of the neocortex. The roles of the mammillary bodies, amygdala and anterior thalamic nucleus can be understood as modulating information recording in accordance with various behavioral priorities. During sleep, provisional physical connectivity is created that supports receptive field expansions in the subsequent wake period, but previously created memories are not affected. This model matches a wide range of neuropsychological observation better than alternative hippocampal models. The information mechanisms required by the model are consistent with known brain anatomy and neuron physiology.

  1. Human management and landscape changes at Palaikastro (Eastern Crete) from the Late Neolithic to the Early Minoan period

    NASA Astrophysics Data System (ADS)

    Cañellas-Boltà, N.; Riera-Mora, S.; Orengo, H. A.; Livarda, A.; Knappett, C.

    2018-03-01

    On the east Mediterranean island of Crete, a hierarchical society centred on large palatial complexes emerges during the Bronze Age. The economic basis for this significant social change has long been debated, particularly concerning the role of olive cultivation in the island's agricultural system. With the aim of studying vegetation changes and human management to understand the landscape history from Late Neolithic to Bronze Age, two palaeoenvironmental records have been studied at Kouremenos marsh, near the site of Palaikastro (Eastern Crete). Pollen, NPP and charcoal particles analyses evidenced seven phases of landscape change, resulting from different agricultural and pastoral practices and the use of fire probably to manage vegetation. Moreover, the Kouremenos records show the importance of the olive tree in the area. They reflect a clear trend for its increasing use and exploitation from 3600 cal yr BC (Final Neolithic) to the Early Minoan period, that is coeval with an opening of the landscape. The increase of Olea pollen was due to the expansion of the tree and its management using pruning and mechanical cleaning. The onset of olive expansion at c. 3600 cal yr BC places Crete among the first locales in the eastern Mediterranean in the management of this tree. Between c. 2780 and 2525 cal yr BC the landscape was largely occupied by olive and grasslands, coinciding with an increase in grazing practices. The high Olea pollen percentages (40-45%) suggest an intensive and large-scale exploitation of the olive tree. The results suggest that a complex and organized landscape with complementary land uses and activities was already in place since the Final Neolithic. The notable expansion of olive trees suggests the relevance of olive exploitation in the socio-economic development of Minoan towns of eastern Crete. Other crops, such as cereals and vine, and activities such as grazing have also played an important role in the configuration of the past landscape.

  2. High moisture corn stover pelleting in a flat die pellet mill fitted with a 6 mm die: physical properties and specific energy consumption

    DOE PAGES

    Tumuluru, Jaya Shankar

    2015-06-15

    The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured.more » The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.« less

  3. Development of the Near-Earth Magnetotail and the Auroral Arc Associated with Substorm Onset: Evidence for a New Model

    NASA Astrophysics Data System (ADS)

    Miyashita, Y.; Hiraki, Y.; Angelopoulos, V.; Ieda, A.; Machida, S.

    2015-12-01

    We have studied the time sequence of the development of the near-Earth magnetotail and the auroral arc associated with a substorm onset, using the data from the THEMIS spacecraft and ground-based observatories at high temporal and spatial resolutions. We discuss four steps of the auroral development, linking them to magnetotail changes: the auroral fading, the initial brightening of an auroral onset arc, the enhancement of the wave-like structure, and the poleward expansion. A case study shows that near-Earth magnetic reconnection began at X~-17 RE at least ~3 min before the auroral initial brightening and ~1 min before the auroral fading. Ionospheric large-scale convection also became enhanced just before the auroral fading and before the auroral initial brightening. Then low-frequency waves were amplified in the plasma sheet at X~-10 RE, with the pressure increase due to the arrival of the earthward flow from the near-Earth reconnection site ~20 s before the enhancement of the auroral wave-like structure. Finally, the dipolarization began ~30 s before the auroral poleward expansion. On the basis of the present observations, we suggest that near-Earth magnetic reconnection plays two roles in the substorm triggering. First, it generates a fast earthward flow and Alfvén waves. When the Alfvén waves which propagate much faster than the fast flow reach the ionosphere, large-scale ionospheric convection is enhanced, leading to the auroral initial brightening and subsequent gradual growth of the auroral wave-like structure. Second, when the reconnection-initiated fast flow reaches the near-Earth magnetotail, it promotes rapid growth of an instability, such as the ballooning instability, and the auroral wave-like structure is further enhanced. When the instability grows sufficiently, the dipolarization and the auroral poleward expansion are initiated.

  4. Studies of electron-molecule collisions - Applications to e-H2O

    NASA Technical Reports Server (NTRS)

    Brescansin, L. M.; Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.

    1986-01-01

    Elastic differential and momentum transfer cross sections for the elastic scattering of electrons by H2O are reported for collision energies from 2 to 20 eV. These fixed-nuclei static-exchange cross sections were obtained using the Schwinger variational approach. In these studies the exchange potential is directly evaluated and not approximated by local models. The calculated differential cross sections, obtained with a basis set expansion of the scattering wave function, agree well with available experimental data at intermediate and larger angles. As used here, the results cannot adequately describe the divergent cross sections at small angles. An interesting feature of the calculated cross sections, particularly at 15 and 20 eV, is their significant backward peaking. This peaking occurs in the experimentally inaccessible region beyond a scattering angle of 120 deg. The implication of this feature for the determination of momentum transfer cross sections is described.

  5. Significance tests for functional data with complex dependence structure.

    PubMed

    Staicu, Ana-Maria; Lahiri, Soumen N; Carroll, Raymond J

    2015-01-01

    We propose an L 2 -norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment.

  6. Laboratory testing of a building envelope segment based on cellular concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2016-07-01

    Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.

  7. Data availability and feasibility of various techniques to predict response to volume expansion in critically ill patients

    PubMed Central

    Lanspa, Michael J.; Briggs, Benjamin J.; Hirshberg, Eliotte L.; Pratt, Cristina M.; Grissom, Colin K.; Brown, Samuel M.

    2017-01-01

    Objective: The accuracy of various techniques to predict response to volume expansion in shock has been studied, but less well known is how feasible these techniques are in the ICU. Methods: This is a prospective observation single-center study of inpatients from a mixed profile ICU who received volume expansion. At time of volume expansion, we determined whether a particular technique to predict response was feasible, according to rules developed from available literature and nurse assessment. Results: We studied 214 volume expansions in 97 patients. The most feasible technique was central venous pressure (50%), followed by vena cava collapsibility, (47%) passive leg raise (42%), and stroke volume variation (22%). Aortic velocity variation, and pulse pressure variation, and were rarely feasible (1% each). In 37% of volume expansions, no technique that we assessed was feasible. Conclusions: Techniques to predict response to volume expansion are infeasible in many patients in shock. PMID:28971030

  8. Following Surgically Assisted Rapid Palatal Expansion, Do Tooth-Borne or Bone-Borne Appliances Provide More Skeletal Expansion and Dental Expansion?

    PubMed

    Hamedi-Sangsari, Adrien; Chinipardaz, Zahra; Carrasco, Lee

    2017-10-01

    The aim of this study was to compare outcome measurements of skeletal and dental expansion with bone-borne (BB) versus tooth-borne (TB) appliances after surgically assisted rapid palatal expansion (SARPE). This study was performed to provide quantitative measurements that will help the oral surgeon and orthodontist in selecting the appliance with, on average, the greatest amount of skeletal expansion and the least amount of dental expansion. A computerized database search was performed using PubMed, EBSCO, Cochrane, Scopus, Web of Science, and Google Scholar on publications in reputable oral surgery and orthodontic journals. A systematic review and meta-analysis was completed with the predictor variable of expansion appliance (TB vs BB) and outcome measurement of expansion (in millimeters). Of 487 articles retrieved from the 6 databases, 5 articles were included, 4 with cone-beam computed tomographic (CBCT) data and 1 with non-CBCT 3-dimensional cast data. There was a significant difference in skeletal expansion (standardized mean difference [SMD], 0.92; 95% confidence interval [CI], 0.54-1.30; P < .001) in favor of BB rather than TB appliances. However, there was no significant difference in dental expansion (SMD, 0.05; 95% CI, -0.24 to 0.34; P = .03). According to the literature, to achieve more effective skeletal expansion and minimize dental expansion after SARPE, a BB appliance should be favored. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Rapid replacement of bridge deck expansion joints study - phase I.

    DOT National Transportation Integrated Search

    2014-12-01

    Bridge deck expansion joints are used to allow for movement of the bridge deck due to thermal expansion, dynamics loading, and : other factors. More recently, expansion joints have also been utilized to prevent the passage of winter de-icing chemical...

  10. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite.

    PubMed

    Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-03-15

    Tetragonal PbTiO(3)-BiFeO(3) exhibits a strong negative thermal expansion in the PbTiO(3)-based ferroelectrics that consist of one branch in the family of negative thermal expansion materials. Its strong negative thermal expansion is much weakened, and then unusually transforms into positive thermal expansion as the particle size is slightly reduced. This transformation is a new phenomenon in the negative termal expansion materials. The detailed structure, temperature dependence of unit cell volume, and lattice dynamics of PbTiO(3)-BiFeO(3) samples were studied by means of high-energy synchrotron powder diffraction and Raman spectroscopy. Such unusual transformation from strong negative to positive thermal expansion is highly associated with ferroelectricity weakening. An interesting zero thermal expansion is achieved in a wide temperature range (30-500 °C) by adjusting particle size due to the negative-to-positive transformation character. The present study provides a useful method to control the negative thermal expansion not only for ferroelectrics but also for those functional materials such as magnetics and superconductors.

  11. Materials Safety Data Sheets: the basis for control of toxic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketchen, E.E.; Porter, W.E.

    1979-09-01

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The datamore » sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.« less

  12. Materials Safety Data Sheets: the basis for control of toxic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketchen, E.E.; Porter, W.E.

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The datamore » sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.« less

  13. Ceratocystis cacaofunesta genome analysis reveals a large expansion of extracellular phosphatidylinositol-specific phospholipase-C genes (PI-PLC).

    PubMed

    Molano, Eddy Patricia Lopez; Cabrera, Odalys García; Jose, Juliana; do Nascimento, Leandro Costa; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Alvarez, Javier Correa; Tiburcio, Ricardo Augusto; Tokimatu Filho, Paulo Massanari; de Lima, Gustavo Machado Alvares; Guido, Rafael Victório Carvalho; Corrêa, Thamy Lívia Ribeiro; Leme, Adriana Franco Paes; Mieczkowski, Piotr; Pereira, Gonçalo Amarante Guimarães

    2018-01-17

    The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity.

  14. Hyoid expansion with titanium plate and screw: a human cadaveric study using computer-assisted airway measurement.

    PubMed

    Toh, Song-Tar; Hsu, Pon-Poh; Tan, Kah Leong Alvin; Lu, Kuo-Sun Peter; Han, Hong-Juan

    2013-08-01

    Hyoid expansion with suspension can potentially increase the upper airway at the hypopharyngeal level, benefitting patients with sleep-related breathing disorder. To document the effect of hyoid expansion using titanium plate and screw on retrolingual hypopharyngeal airway dimension and to compare the airway dimension after isolated hyoid expansion with hyoid expansion + hyomandibular suspension. Anatomical cadaveric dissection study. This study was performed in a laboratory setting using human cadavers. This is an anatomical feasibility study of hyoid expansion using titanium plate and screw on 10 cadaveric human heads and necks. The hyoid bone is trifractured with bony cuts made just medial to the lesser cornu. The freed hyoid body and lateral segments are expanded and stabilized to a titanium adaptation plate. Computer-assisted airway measurement (CAM) was used to measure the airway dimension at the hypopharynx at the level of the tongue base before and after the hyoid expansion. The expanded hyoid bone was then suspended to the mandible, and the airway dimension was measured again with CAM. Airway dimension after isolated hyoid expansion with hyoid expansion with hyomandibular suspension. RESULTS Hyoid expansion with titanium plate and screw resulted in statistical significant increase in the retrolingual hypopharyngeal airway space in all of the 10 human cadavers. The mean (SD) increase in retroglossal area was 33.4 (13.2) mm² (P < .005) (range, 6.0-58.7 mm²). Hyoid expansion with hyomandibular suspension resulted in a greater degree of airway enlargement. The mean (SD) increase in retroglossal area was 99.4 (15.0) mm² (P < .005) (range, 81.9-127.5 mm²). The retrolingual hypopharyngeal airway space increased with hyoid expansion using titanium plate and screw in our human cadaveric study, measured using CAM. The degree of increase is further augmented with hyomandibular suspension.

  15. Electric Grid Expansion Planning with High Levels of Variable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; You, Shutang; Shankar, Mallikarjun

    2016-02-01

    Renewables are taking a large proportion of generation capacity in U.S. power grids. As their randomness has increasing influence on power system operation, it is necessary to consider their impact on system expansion planning. To this end, this project studies the generation and transmission expansion co-optimization problem of the US Eastern Interconnection (EI) power grid with a high wind power penetration rate. In this project, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. This study analyzed a time series creation method to capture the diversity of load and wind powermore » across balancing regions in the EI system. The obtained time series can be easily introduced into the MIP co-optimization problem and then solved robustly through available MIP solvers. Simulation results show that the proposed time series generation method and the expansion co-optimization model and can improve the expansion result significantly after considering the diversity of wind and load across EI regions. The improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare. This study shows that modelling load and wind variations and diversities across balancing regions will produce significantly different expansion result compared with former studies. For example, if wind is modeled in more details (by increasing the number of wind output levels) so that more wind blocks are considered in expansion planning, transmission expansion will be larger and the expansion timing will be earlier. Regarding generation expansion, more wind scenarios will slightly reduce wind generation expansion in the EI system and increase the expansion of other generation such as gas. Also, adopting detailed wind scenarios will reveal that it may be uneconomic to expand transmission networks for transmitting a large amount of wind power through a long distance in the EI system. Incorporating more details of renewables in expansion planning will inevitably increase the computational burden. Therefore, high performance computing (HPC) techniques are urgently needed for power system operation and planning optimization. As a scoping study task, this project tested some preliminary parallel computation techniques such as breaking down the simulation task into several sub-tasks based on chronology splitting or sample splitting, and then assigning these sub-tasks to different cores. Testing results show significant time reduction when a simulation task is split into several sub-tasks for parallel execution.« less

  16. Polynomial Chaos Based Acoustic Uncertainty Predictions from Ocean Forecast Ensembles

    NASA Astrophysics Data System (ADS)

    Dennis, S.

    2016-02-01

    Most significant ocean acoustic propagation occurs at tens of kilometers, at scales small compared basin and to most fine scale ocean modeling. To address the increased emphasis on uncertainty quantification, for example transmission loss (TL) probability density functions (PDF) within some radius, a polynomial chaos (PC) based method is utilized. In order to capture uncertainty in ocean modeling, Navy Coastal Ocean Model (NCOM) now includes ensembles distributed to reflect the ocean analysis statistics. Since the ensembles are included in the data assimilation for the new forecast ensembles, the acoustic modeling uses the ensemble predictions in a similar fashion for creating sound speed distribution over an acoustically relevant domain. Within an acoustic domain, singular value decomposition over the combined time-space structure of the sound speeds can be used to create Karhunen-Loève expansions of sound speed, subject to multivariate normality testing. These sound speed expansions serve as a basis for Hermite polynomial chaos expansions of derived quantities, in particular TL. The PC expansion coefficients result from so-called non-intrusive methods, involving evaluation of TL at multi-dimensional Gauss-Hermite quadrature collocation points. Traditional TL calculation from standard acoustic propagation modeling could be prohibitively time consuming at all multi-dimensional collocation points. This method employs Smolyak order and gridding methods to allow adaptive sub-sampling of the collocation points to determine only the most significant PC expansion coefficients to within a preset tolerance. Practically, the Smolyak order and grid sizes grow only polynomially in the number of Karhunen-Loève terms, alleviating the curse of dimensionality. The resulting TL PC coefficients allow the determination of TL PDF normality and its mean and standard deviation. In the non-normal case, PC Monte Carlo methods are used to rapidly establish the PDF. This work was sponsored by the Office of Naval Research

  17. Dual indices for prioritizing investment in decentralized HIV services at Nigerian primary health care facilities

    PubMed Central

    Oyediran, Kola’ A; Mullen, Stephanie; Kolapo, Usman M

    2016-01-01

    Decentralizing health services, including those for HIV prevention and treatment, is one strategy for maximizing the use of limited resources and expanding treatment options; yet few methods exist for systematically identifying where investments for service expansion might be most effective, in terms of meeting needs and rapid availability of improved services. The Nigerian Government, the United States Government under the President's Emergency Plan for AIDS Relief (PEPFAR) program and other donors are expanding services for prevention of mother-to-child transmission (PMTCT) of HIV to primary health care facilities in Nigeria. Nigerian primary care facilities vary greatly in their readiness to deliver HIV/AIDS services. In 2012, MEASURE Evaluation assessed 268 PEPFAR-supported primary health care facilities in Nigeria and developed a systematic method for prioritizing these facilities for expansion of PMTCT services. Each assessed facility was scored based on two indices with multiple, weighted variables: one measured facility readiness to provide PMTCT services, the other measured local need for the services and feasibility of expansion. These two scores were compiled and the summary score used as the basis for prioritizing facilities for PMTCT service expansion. The rationale was that using need and readiness to identify where to expand PMTCT services would result in more efficient allocation of resources. A review of the results showed that the indices achieved the desired effect—that is prioritizing facilities with high need even when readiness was problematic and also prioritizing facilities where rapid scale-up was feasible. This article describes the development of the two-part index and discusses advantages of using this approach when planning service expansion. The authors' objective is to contribute to development of methodologies for prioritizing investments in HIV, as well as other public health arenas, that should improve cost-effectiveness and strengthen services and systems in resource-limited countries. PMID:26363172

  18. Dual indices for prioritizing investment in decentralized HIV services at Nigerian primary health care facilities.

    PubMed

    Fronczak, Nancy; Oyediran, Kola' A; Mullen, Stephanie; Kolapo, Usman M

    2016-04-01

    Decentralizing health services, including those for HIV prevention and treatment, is one strategy for maximizing the use of limited resources and expanding treatment options; yet few methods exist for systematically identifying where investments for service expansion might be most effective, in terms of meeting needs and rapid availability of improved services. The Nigerian Government, the United States Government under the President's Emergency Plan for AIDS Relief (PEPFAR) program and other donors are expanding services for prevention of mother-to-child transmission (PMTCT) of HIV to primary health care facilities in Nigeria. Nigerian primary care facilities vary greatly in their readiness to deliver HIV/AIDS services. In 2012, MEASURE Evaluation assessed 268 PEPFAR-supported primary health care facilities in Nigeria and developed a systematic method for prioritizing these facilities for expansion of PMTCT services. Each assessed facility was scored based on two indices with multiple, weighted variables: one measured facility readiness to provide PMTCT services, the other measured local need for the services and feasibility of expansion. These two scores were compiled and the summary score used as the basis for prioritizing facilities for PMTCT service expansion. The rationale was that using need and readiness to identify where to expand PMTCT services would result in more efficient allocation of resources. A review of the results showed that the indices achieved the desired effect-that is prioritizing facilities with high need even when readiness was problematic and also prioritizing facilities where rapid scale-up was feasible. This article describes the development of the two-part index and discusses advantages of using this approach when planning service expansion. The authors' objective is to contribute to development of methodologies for prioritizing investments in HIV, as well as other public health arenas, that should improve cost-effectiveness and strengthen services and systems in resource-limited countries. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  19. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs.

    PubMed

    Liu, Kuan-Yu; Herbert, John M

    2017-10-28

    Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affecting the many-body expansion (MBE), which only manifest in larger systems and thus have received scant attention in the literature. Many-body counterpoise (CP) corrections are shown to accelerate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set superposition error affects subsystem versus supersystem calculations. In water clusters ranging in size up to (H 2 O) 37 , four-body terms prove necessary to achieve accurate results for both total interaction energies and relative isomer energies, but the sheer number of tetramers makes the use of cutoff schemes essential. To predict relative energies of (H 2 O) 20 isomers, two approximations based on a lower level of theory are introduced and an ONIOM-type procedure is found to be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme suggest that if reasonable approximations to the subsystem energies are available (based on classical multipoles, say), then the number of requisite subsystem calculations can be reduced even more dramatically than when distance-based thresholds are employed. The end result is several accurate four-body methods that do not require charge embedding, and which are stable in large basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quantum chemistry methods. Even with aggressive thresholding, however, the four-body approach at the self-consistent field level still requires roughly ten times more processors to outmatch the performance of the corresponding supersystem calculation, in test cases involving 1500-1800 basis functions.

  20. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs

    NASA Astrophysics Data System (ADS)

    Liu, Kuan-Yu; Herbert, John M.

    2017-10-01

    Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affecting the many-body expansion (MBE), which only manifest in larger systems and thus have received scant attention in the literature. Many-body counterpoise (CP) corrections are shown to accelerate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set superposition error affects subsystem versus supersystem calculations. In water clusters ranging in size up to (H2O)37, four-body terms prove necessary to achieve accurate results for both total interaction energies and relative isomer energies, but the sheer number of tetramers makes the use of cutoff schemes essential. To predict relative energies of (H2O)20 isomers, two approximations based on a lower level of theory are introduced and an ONIOM-type procedure is found to be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme suggest that if reasonable approximations to the subsystem energies are available (based on classical multipoles, say), then the number of requisite subsystem calculations can be reduced even more dramatically than when distance-based thresholds are employed. The end result is several accurate four-body methods that do not require charge embedding, and which are stable in large basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quantum chemistry methods. Even with aggressive thresholding, however, the four-body approach at the self-consistent field level still requires roughly ten times more processors to outmatch the performance of the corresponding supersystem calculation, in test cases involving 1500-1800 basis functions.

  1. Implicitly causality enforced solution of multidimensional transient photon transport equation.

    PubMed

    Handapangoda, Chintha C; Premaratne, Malin

    2009-12-21

    A novel method for solving the multidimensional transient photon transport equation for laser pulse propagation in biological tissue is presented. A Laguerre expansion is used to represent the time dependency of the incident short pulse. Owing to the intrinsic causal nature of Laguerre functions, our technique automatically always preserve the causality constrains of the transient signal. This expansion of the radiance using a Laguerre basis transforms the transient photon transport equation to the steady state version. The resulting equations are solved using the discrete ordinates method, using a finite volume approach. Therefore, our method enables one to handle general anisotropic, inhomogeneous media using a single formulation but with an added degree of flexibility owing to the ability to invoke higher-order approximations of discrete ordinate quadrature sets. Therefore, compared with existing strategies, this method offers the advantage of representing the intensity with a high accuracy thus minimizing numerical dispersion and false propagation errors. The application of the method to one, two and three dimensional geometries is provided.

  2. T Lymphocyte Activation Threshold is Increased in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Adams, Charley L.; Gonzalez, M.; Sams, C. F.

    2000-01-01

    There have been substantial advances in molecular and cellular biology that have provided new insight into the biochemical and genetic basis of lymphocyte recognition, activation and expression of distinct functional phenotypes. It has now become evident that for both T and B cells, stimuli delivered through their receptors can result in either clonal expansion or apoptosis. In the case of T cells, clonal expansion of helper cells is accompanied by differentiation into two major functional subsets which regulate the immune response. The pathways between the membrane and the nucleus and their molecular components are an area of very active investigation. This meeting will draw together scientists working on diverse aspects of this problem, including receptor ligand interactions, intracellular pathways that transmit receptor mediated signals and the effect of such signal transduction pathways on gene regulation. The aim of this meeting is to integrate the information from these various experimental approaches into a new synthesis and molecular explanation of T cell activation, differentiation and death.

  3. Efficient propagation-inside-layer expansion algorithm for solving the scattering from three-dimensional nested homogeneous dielectric bodies with arbitrary shape.

    PubMed

    Bellez, Sami; Bourlier, Christophe; Kubické, Gildas

    2015-03-01

    This paper deals with the evaluation of electromagnetic scattering from a three-dimensional structure consisting of two nested homogeneous dielectric bodies with arbitrary shape. The scattering problem is formulated in terms of a set of Poggio-Miller-Chang-Harrington-Wu integral equations that are afterwards converted into a system of linear equations (impedance matrix equation) by applying the Galerkin method of moments (MoM) with Rao-Wilton-Glisson basis functions. The MoM matrix equation is then solved by deploying the iterative propagation-inside-layer expansion (PILE) method in order to obtain the unknown surface current densities, which are thereafter used to handle the radar cross-section (RCS) patterns. Some numerical results for various structures including canonical geometries are presented and compared with those of the FEKO software in order to validate the PILE-based approach as well as to show its efficiency to analyze the full-polarized RCS patterns.

  4. Correlation energy extrapolation by many-body expansion

    DOE PAGES

    Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus; ...

    2017-01-09

    Accounting for electron correlation is required for high accuracy calculations of molecular energies. The full configuration interaction (CI) approach can fully capture the electron correlation within a given basis, but it does so at a computational expense that is impractical for all but the smallest chemical systems. In this work, a new methodology is presented to approximate configuration interaction calculations at a reduced computational expense and memory requirement, namely, the correlation energy extrapolation by many-body expansion (CEEMBE). This method combines a MBE approximation of the CI energy with an extrapolated correction obtained from CI calculations using subsets of the virtualmore » orbitals. The extrapolation approach is inspired by, and analogous to, the method of correlation energy extrapolation by intrinsic scaling. Benchmark calculations of the new method are performed on diatomic fluorine and ozone. Finally, the method consistently achieves agreement with CI calculations to within a few mhartree and often achieves agreement to within ~1 millihartree or less, while requiring significantly less computational resources.« less

  5. Correlation energy extrapolation by many-body expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus

    Accounting for electron correlation is required for high accuracy calculations of molecular energies. The full configuration interaction (CI) approach can fully capture the electron correlation within a given basis, but it does so at a computational expense that is impractical for all but the smallest chemical systems. In this work, a new methodology is presented to approximate configuration interaction calculations at a reduced computational expense and memory requirement, namely, the correlation energy extrapolation by many-body expansion (CEEMBE). This method combines a MBE approximation of the CI energy with an extrapolated correction obtained from CI calculations using subsets of the virtualmore » orbitals. The extrapolation approach is inspired by, and analogous to, the method of correlation energy extrapolation by intrinsic scaling. Benchmark calculations of the new method are performed on diatomic fluorine and ozone. Finally, the method consistently achieves agreement with CI calculations to within a few mhartree and often achieves agreement to within ~1 millihartree or less, while requiring significantly less computational resources.« less

  6. Dual chain perturbation theory: A new equation of state for polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Bennett D., E-mail: bennett.d.marshall@exxonmobil.com

    In the development of equations of state for polyatomic molecules, thermodynamic perturbation theory (TPT) is widely used to calculate the change in free energy due to chain formation. TPT is a simplification of a more general and exact multi-density cluster expansion for associating fluids. In TPT, all contributions to the cluster expansion which contain chain–chain interactions are neglected. That is, all inter-chain interactions are treated at the reference fluid level. This allows for the summation of the cluster theory in terms of reference system correlation functions only. The resulting theory has been shown to be accurate and has been widelymore » employed as the basis of many engineering equations of state. While highly successful, TPT has many handicaps which result from the neglect of chain–chain contributions. The subject of this document is to move beyond the limitations of TPT and include chain–chain contributions to the equation of state.« less

  7. Density-functional expansion methods: evaluation of LDA, GGA, and meta-GGA functionals and different integral approximations.

    PubMed

    Giese, Timothy J; York, Darrin M

    2010-12-28

    We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.

  8. A parallel computer implementation of fast low-rank QR approximation of the Biot-Savart law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D A; Fasenfest, B J; Stowell, M L

    2005-11-07

    In this paper we present a low-rank QR method for evaluating the discrete Biot-Savart law on parallel computers. It is assumed that the known current density and the unknown magnetic field are both expressed in a finite element expansion, and we wish to compute the degrees-of-freedom (DOF) in the basis function expansion of the magnetic field. The matrix that maps the current DOF to the field DOF is full, but if the spatial domain is properly partitioned the matrix can be written as a block matrix, with blocks representing distant interactions being low rank and having a compressed QR representation.more » The matrix partitioning is determined by the number of processors, the rank of each block (i.e. the compression) is determined by the specific geometry and is computed dynamically. In this paper we provide the algorithmic details and present computational results for large-scale computations.« less

  9. Microfinance investments in quality at private clinics in Uganda: a case-control study.

    PubMed

    Seiber, Eric E; Robinson, Amara L

    2007-10-18

    Small private-sector health care providers can play an important role in meeting the developing country health care needs, but a lack of credit can prove major constraint to small-provider expansion. This study examines the potential of small, microfinance loans to strengthen the private health sector and improve access to quality preventive and curative health services in Uganda. This study estimates logistic regressions using 2,387 client exit interviews to assess the impact of microfinance loans on perceived quality and the viability and sustainability of small, private clinics. The study finds perceived quality improved with loan recipients' clients being more likely to choose clinics on the basis of drug availability, fair charges, cleanliness, and confidentiality. In addition, the assessment found evidence of increased client flows, but the changes produced mixed results for sustainability with respondents being only half as likely to "always" visit a particular clinic. The results indicate that the microfinance program improved perceived quality at loan recipient clinics, especially as reliable drug outlets.

  10. Prescription Drug Utilization and Reimbursement Increased Following State Medicaid Expansion in 2014.

    PubMed

    Mahendraratnam, Nirosha; Dusetzina, Stacie B; Farley, Joel F

    2017-03-01

    The Affordable Care Act (ACA) expanded health care and medication insurance coverage through Medicaid expansion in select states. Expansion has the potential to increase the availability of health services to patients, including prescription medications. However, limited studies have examined how expansion affected prescription drug utilization and reimbursement. To compare prescription drug utilization (number of prescriptions filled) and reimbursement trends between states that did and did not expand Medicaid coverage in 2014, while accounting for known effects of expansion on Medicaid enrollment. We conducted a comparative interrupted time series using retrospective Medicaid state drug utilization data from 2011 to 2014. After inclusion/exclusion criteria, 8 states that expanded Medicaid in 2014 and 10 states that did not expand Medicaid were studied. Primary outcomes were changes in quarterly prescription drug utilization and quarterly total prescription drug reimbursement before and after expansion. To account for increases in enrollment in expansion states, secondary outcomes were per-member-per-quarter (PMPQ) utilization and reimbursement before and after expansion. Expansion states experienced a 1.4 million prescriptions per quarter and $163 million per quarter increase in utilization and reimbursement above the change in rates observed in nonexpansion states after expansion (P < 0.001). Specifically, 1 year after ACA implementation, expansion states used 17.0% more prescriptions and spent 36.1% more in reimbursement than the quarter preceding expansion. Expansion and nonexpansion states experienced significant drops in PMPQ prescriptions immediately after expansion (P < 0.001), but PMPQ prescriptions and reimbursement trends increased by the end of the postexpansion period in expansion states (P < 0.029 and P < 0.001, respectively). Study results suggest that Medicaid expansion offers vulnerable patients who were previously uninsured increased access to health care resources, specifically prescription drugs. Although this hypothesis would benefit from further testing, it aligns with previous studies that have shown that Medicaid expansion has led to increased access to coverage and care. While enrollment contributes to the increase in prescription utilization and reimbursement, the drop in PMPQ utilization suggests that the patients entering the program are healthier than existing patients. This shows that risk pooling is working. However, the increase in PMPQ reimbursement suggests that new enrollment may not be the only factor driving reimbursement changes. Factors such as changes in product mix, risk pool composition, and drug pricing and their effects on total and per-member reimbursement should be evaluated in future studies. No outside funding supported this study. Mahendraratnam is currently a Worldwide Health Economics and Outcomes Research Pre-doctoral Fellow at Bristol-Myers Squibb and previously provided advisory services to public and private sector clients while employed at Avalere Health, an Inovalon Company, as well as completed an internship at Genentech, a member of the Roche Group. Farley and Dusetzina have no conflicts of interest to report. Preliminary results of this study were presented at the 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 21st Annual Meeting in Washington, DC, on May 21-25, 2016, and the 2016 AcademyHealth Annual Research Meeting (ARM) in Boston, Massachusetts, on June 26-28, 2016. Study concept and design were contributed by Farley, Mahendraratnam, and Dusetzina. Mahendraratnam, Farley, and Dusetzina collected the data, and data interpretation was performed by all the authors. The manuscript was written by Mahendraratnam, Farley, and Dusetzina and revised by Farley, Dusetzina, and Mahendraratnam.

  11. [Tissular expansion in giant congenital nevi treatment].

    PubMed

    Nguyen Van Nuoi, V; Francois-Fiquet, C; Diner, P; Sergent, B; Zazurca, F; Franchi, G; Buis, J; Vazquez, M-P; Picard, A; Kadlub, N

    2014-08-01

    Surgical management of giant melanotic naevi remains a surgical challenge. Tissue expansion provides tissue of the same quality for the repair of defects. The aim of this study is to review tissular expansion for giant melanotic naevi. We conducted a retrospective study from 2000 to 2012. All children patients who underwent a tissular expansion for giant congenital naevi had been included. Epidemiological data, surgical procedure, complication rate and results had been analysed. Thirty-tree patients had been included; they underwent 61 procedures with 79 tissular-expansion prosthesis. Previous surgery, mostly simple excision had been performed before tissular expansion. Complete naevus excision had been performed in 63.3% of the cases. Complications occurred in 45% of the cases, however in 50% of them were minor. Iterative surgery increased the complication rate. Tissular expansion is a valuable option for giant congenital naevus. However, complication rate remained high, especially when iterative surgery is needed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Steerable Principal Components for Space-Frequency Localized Images*

    PubMed Central

    Landa, Boris; Shkolnisky, Yoel

    2017-01-01

    As modern scientific image datasets typically consist of a large number of images of high resolution, devising methods for their accurate and efficient processing is a central research task. In this paper, we consider the problem of obtaining the steerable principal components of a dataset, a procedure termed “steerable PCA” (steerable principal component analysis). The output of the procedure is the set of orthonormal basis functions which best approximate the images in the dataset and all of their planar rotations. To derive such basis functions, we first expand the images in an appropriate basis, for which the steerable PCA reduces to the eigen-decomposition of a block-diagonal matrix. If we assume that the images are well localized in space and frequency, then such an appropriate basis is the prolate spheroidal wave functions (PSWFs). We derive a fast method for computing the PSWFs expansion coefficients from the images' equally spaced samples, via a specialized quadrature integration scheme, and show that the number of required quadrature nodes is similar to the number of pixels in each image. We then establish that our PSWF-based steerable PCA is both faster and more accurate then existing methods, and more importantly, provides us with rigorous error bounds on the entire procedure. PMID:29081879

  13. Gender, migration and urban development in Costa Rica: the case of Guanacaste.

    PubMed

    Chant, S

    1991-01-01

    Factors fueling urbanization in Guanacaste province, Costa Rica are explored and how the pattern of urban growth reflects gender divisions of labor is considered. Urbanization in Latin America has been due largely to the expansion of economic activities in urban centers, but in Guanacaste, rural employment persists among the poor. Towns in this peripheral province have witnessed no major expansion in urban-based employment opportunities. On the basis of an in-depth survey of urban dwellers in the province's 3 leading towns (Liberia, Canas, and Santa Cruz), an attempt is made to explain Guanacaste's urbanization. The 1st section discusses the migration, urbanization, and economic development in Costa Rica, as well as Guanacaste. The 2nd section provides the findings of the survey of 350 low-income, urban households in Guanacaste, focusing on the households' reported reasons for moving. Section 3 examines household survival strategies in the areas surveyed, paying close attention to gender and age selectivity of short-term out-migration to external labor markets. Section 4 interprets the apparent connection between gender-differentiated labor migration and the dominance of reproductive factors in household decisions to move to urban centers. Section 5 considers the implications of the migration patterns on women, while section 6 discusses the wider implications of the study. The study reveals that in Guanacaste, urbanization is more strongly linked to the reproductive (e.g., housing and welfare) needs of household survival than to productive (employment and income) needs.

  14. Surgical Injury to the Mouse Pancreas through Ligation of the Pancreatic Duct as a Model for Endocrine and Exocrine Reprogramming and Proliferation

    PubMed Central

    De Groef, Sofie; Leuckx, Gunter; Van Gassen, Naomi; Staels, Willem; Cai, Ying; Yuchi, Yixing; Coppens, Violette; De Leu, Nico; Heremans, Yves; Baeyens, Luc; Van de Casteele, Mark; Heimberg, Harry

    2015-01-01

    Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories. PMID:26273954

  15. PCR-RFLP analysis of mitochondrial DNA cytochrome b gene among Haruan (Channa striatus) in Malaysia.

    PubMed

    Rahim, Mohamamd Hafiz Abdul; Ismail, Patimah; Alias, Rozila; Muhammad, Norwati; Mat Jais, Abdul Manan

    2012-02-15

    Haruan (Channa striatus) is in great demand in the Malaysian domestic fish market. In the present study, mtDNA cyt b was used to investigate genetic variation of C. striatus among populations in Peninsular Malaysia. The overall population of C. striatus demonstrated a high level of haplotype diversity (h) and a low-to-moderate level of nucleotide diversity (π). Analysis of molecular variance (AMOVA) results showed a significantly different genetic differentiation among 6 populations (F(ST)=0.37566, P=0.01). Gene flow (Nm) was high and ranged from 0.32469 to infinity (∞). No significant relationship between genetic distance and geographic distance was detected. A UPGMA tree based on the distance matrix of net interpopulation nucleotide divergence (d(A)) and haplotype network of mtDNA cyt b revealed that C. striatus is divided into 2 major clades. The neutrality and mismatch distribution tests for all populations suggested that C. striatus in the study areas had undergone population expansion. The estimated time of population expansion in the mtDNA cyt b of C. striatus populations occurred 0.72-6.19 million years ago. Genetic diversity of mtDNA cyt b and population structure among Haruan populations in Peninsular Malaysia will be useful in fisheries management for standardization for Good Agriculture Practices (GAP) in fish-farming technology, as well as providing the basis for Good Manufacturing Practices (GMP). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. On skin expansion.

    PubMed

    Pamplona, Djenane C; Velloso, Raquel Q; Radwanski, Henrique N

    2014-01-01

    This article discusses skin expansion without considering cellular growth of the skin. An in vivo analysis was carried out that involved expansion at three different sites on one patient, allowing for the observation of the relaxation process. Those measurements were used to characterize the human skin of the thorax during the surgical process of skin expansion. A comparison between the in vivo results and the numerical finite elements model of the expansion was used to identify the material elastic parameters of the skin of the thorax of that patient. Delfino's constitutive equation was chosen to model the in vivo results. The skin is considered to be an isotropic, homogeneous, hyperelastic, and incompressible membrane. When the skin is extended, such as with expanders, the collagen fibers are also extended and cause stiffening in the skin, which results in increasing resistance to expansion or further stretching. We observed this phenomenon as an increase in the parameters as subsequent expansions continued. The number and shape of the skin expanders used in expansions were also studied, both mathematically and experimentally. The choice of the site where the expansion should be performed is discussed to enlighten problems that can lead to frustrated skin expansions. These results are very encouraging and provide insight into our understanding of the behavior of stretched skin by expansion. To our knowledge, this study has provided results that considerably improve our understanding of the behavior of human skin under expansion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Elucidating women's (hetero)sexual desire: definitional challenges and content expansion.

    PubMed

    Meana, Marta

    2010-03-01

    The literature on women's sexual desire is reviewed with an emphasis on definitional challenges, an assessment of the empirical basis for the distinction between spontaneous and responsive desire, a reconsideration of the extent to which women's sexual desire is relational in nature, and an exploration of the incentive value of sex for women as a factor partially independent from the experience of sexual desire. Nine recommendations are made regarding research and diagnostic directions. The article concludes with an appeal for the inclusion of eroticism in research and clinical work on sexual desire.

  18. Monte Carlo simulation of nonadiabatic expansion in cometary atmospheres - Halley

    NASA Astrophysics Data System (ADS)

    Hodges, R. R.

    1990-02-01

    Monte Carlo methods developed for the characterization of velocity-dependent collision processes and ballistic transports in planetary exospheres form the basis of the present computer simulation of icy comet atmospheres, which iteratively undertakes the simultaneous determination of velocity distribution for five neutral species (water, together with suprathermal OH, H2, O, and H) in a flow regime varying from the hydrodynamic to the ballistic. Experimental data from the neutral mass spectrometer carried by Giotto for its March, 1986 encounter with Halley are compared with a model atmosphere.

  19. A call center primer.

    PubMed

    Durr, W

    1998-01-01

    Call centers are strategically and tactically important to many industries, including the healthcare industry. Call centers play a key role in acquiring and retaining customers. The ability to deliver high-quality and timely customer service without much expense is the basis for the proliferation and expansion of call centers. Call centers are unique blends of people and technology, where performance indicates combining appropriate technology tools with sound management practices built on key operational data. While the technology is fascinating, the people working in call centers and the skill of the management team ultimately make a difference to their companies.

  20. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range.

    PubMed

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion.

  1. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range

    PubMed Central

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion. PMID:23949238

  2. Rocket nozzle expansion ratio analysis for dual-fuel earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1989-01-01

    Results are reported from a recent study of the effects of Space Shuttle Main Engine expansion ratio modifications, in the cases of both single-stage and two-stage systems. Two-position nozzles were employed; after varying the lower expansion ratio while the higher was held constant at 120, the lower expansion ratio was held constant at 40 or 60 while the higher expansion ratio was varied. The expansion ratios for minimum vehicle dry mass are different for single-stage and two-stage systems. For two-stage systems, a single expansion ratio of 77.5 provides a lower dry mass than any two-position nozzle.

  3. An unscaled quantum mechanical harmonic force field for p-benzoquinone

    NASA Astrophysics Data System (ADS)

    Nonella, Marco; Tavan, Paul

    1995-10-01

    Structure and harmonic vibrational frequencies of p-benzoquinone have been calculated using quantum chemical ab initio and density functional methods. Our calculations show that a satisfactory description of fundamentals and normal mode compositions is achieved upon consideration of correlation effects by means of Møller-Plesset perturbation expansion (MP2) or by density functional theory (DFT). Furthermore, for correct prediction of CO bondlength and force constant, basis sets augmented by polarization functions are required. Applying such basis sets, MP2 and DFT calculations both give results which are generally in reasonable agreement with experimental data. The quantitatively better agreement, however, is achieved with the computationally less demanding DFT method. This method particularly allows very precise prediction of the experimentally important absorptions in the frequency region between 1500 and 1800 cm -1 and of the isotopic shifts of these vibrations due to 13C or 18O substitution.

  4. Variational nonadiabatic dynamics in the moving crude adiabatic representation: Further merging of nuclear dynamics and electronic structure

    NASA Astrophysics Data System (ADS)

    Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2018-03-01

    A new methodology of simulating nonadiabatic dynamics using frozen-width Gaussian wavepackets within the moving crude adiabatic representation with the on-the-fly evaluation of electronic structure is presented. The main feature of the new approach is the elimination of any global or local model representation of electronic potential energy surfaces; instead, the electron-nuclear interaction is treated explicitly using the Gaussian integration. As a result, the new scheme does not introduce any uncontrolled approximations. The employed variational principle ensures the energy conservation and leaves the number of electronic and nuclear basis functions as the only parameter determining the accuracy. To assess performance of the approach, a model with two electronic and two nuclear spacial degrees of freedom containing conical intersections between potential energy surfaces has been considered. Dynamical features associated with nonadiabatic transitions and nontrivial geometric (or Berry) phases were successfully reproduced within a limited basis expansion.

  5. Prospective of 68Ga-Radiopharmaceutical Development

    PubMed Central

    Velikyan, Irina

    2014-01-01

    Positron Emission Tomography (PET) experienced accelerated development and has become an established method for medical research and clinical routine diagnostics on patient individualized basis. Development and availability of new radiopharmaceuticals specific for particular diseases is one of the driving forces of the expansion of clinical PET. The future development of the 68Ga-radiopharmaceuticals must be put in the context of several aspects such as role of PET in nuclear medicine, unmet medical needs, identification of new biomarkers, targets and corresponding ligands, production and availability of 68Ga, automation of the radiopharmaceutical production, progress of positron emission tomography technologies and image analysis methodologies for improved quantitation accuracy, PET radiopharmaceutical regulations as well as advances in radiopharmaceutical chemistry. The review presents the prospects of the 68Ga-based radiopharmaceutical development on the basis of the current status of these aspects as well as wide range and variety of imaging agents. PMID:24396515

  6. Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients.

    PubMed

    Siegler, Uwe; Meyer-Monard, Sandrine; Jörger, Simon; Stern, Martin; Tichelli, André; Gratwohl, Alois; Wodnar-Filipowicz, Aleksandra; Kalberer, Christian P

    2010-10-01

    Alloreactive natural killer (NK) cells are potent effectors of innate anti-tumor defense. The introduction of NK cell-based immunotherapy to current treatment options in acute myeloid leukemia (AML) requires NK cell products with high anti-leukemic efficacy optimized for clinical use. We describe a good manufacturing practice (GMP)-compliant protocol of large-scale ex vivo expansion of alloreactive NK cells suitable for multiple donor lymphocyte infusions (NK-DLI) in AML. CliniMACS-purified NK cells were cultured in closed air-permeable culture bags with certified culture medium and components approved for human use [human serum, interleukin (IL)-2, IL-15 and anti-CD3 antibody] and with autologous irradiated feeder cells. NK cells (6.0 ± 1.2 x 10(8)) were purified from leukaphereses (8.1 ± 0.8 L) of six healthy donors and cultured under GMP conditions. NK cell numbers increased 117.0 ± 20.0-fold in 19 days. To reduce the culture volume associated with expansion of bulk NK cells and to expand selectively the alloreactive NK cell subsets, GMP-certified cell sorting was introduced to obtain cells with single killer immunoglobulin-like receptor (KIR) specificities. The subsequent GMP-compliant expansion of single KIR+ cells was 268.3 ± 66.8-fold, with a contaminating T-cell content of only 0.006 ± 0.002%. The single KIR-expressing NK cells were cytotoxic against HLA-mismatched primary AML blasts in vitro and effectively reduced tumor cell load in vivo in NOD/SCID mice transplanted with human AML. The approach to generating large numbers of GMP-grade alloreactive NK cells described here provides the basis for clinical efficacy trials of NK-DLI to complement and advance therapeutic strategies against human AML.

  7. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy.

    PubMed

    Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J; Rivière, Isabelle

    2009-01-01

    On the basis of promising preclinical data demonstrating the eradication of systemic B-cell malignancies by CD19-targeted T lymphocytes in vivo in severe combined immunodeficient-beige mouse models, we are launching phase I clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia. We present here the validation of the bioprocess which we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semiclosed culture system using the Wave Bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in severe combined immunodeficient-beige mice bearing disseminated tumors. The validation requirements in terms of T-cell expansion, T-cell transduction with the 1928z CAR, biologic activity, quality control testing, and release criteria were met for all 4 validation runs using apheresis products from patients with CLL. Additionally, after expansion of the T cells, the diversity of the skewed Vbeta T-cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemorefractory CLL and in patients with relapsed acute lymphoblastic leukemia. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any CAR or T-cell receptor.

  8. Electron correlation within the relativistic no-pair approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr; Knecht, Stefan

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within themore » no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the underlying minmax principle and our theoretical analysis. We also show that the relativistic correlation energy, obtained from no-pair full MCSCF calculations, scales at worst as X{sup −2} with respect to the cardinal number X of our correlation-consistent basis sets optimized for the two-electron atoms. This is better than the X{sup −1} scaling suggested by previous studies, but worse than the X{sup −3} scaling observed in the nonrelativistic domain. The well-known 1/Z- expansion in nonrelativistic atomic theory follows from coordinate scaling. We point out that coordinate scaling for consistency should be accompanied by velocity scaling. In the nonrelativistic domain this comes about automatically, whereas in the relativistic domain an explicit scaling of the speed of light is required. This in turn explains why the relativistic correlation energy to the lowest order is not independent of nuclear charge, in contrast to nonrelativistic theory.« less

  9. Biomechanical effects of maxillary expansion on a patient with cleft palate: A finite element analysis

    PubMed Central

    Lee, Haofu; Nguyen, Alan; Hong, Christine; Hoang, Paul; Pham, John; Ting, Kang

    2017-01-01

    Introduction The aims of this study were to evaluate the effects of rapid palatal expansion on the craniofacial skeleton of a patient with unilateral cleft lip and palate (UCLP) and to predict the points of force application for optimal expansion using a 3-dimensional finite element model. Methods A 3-dimensional finite element model of the craniofacial complex with UCLP was generated from spiral computed tomographic scans with imaging software (Mimics, version 13.1; Materialise, Leuven, Belgium). This model was imported into the finite element solver (version 12.0; ANSYS, Canonsburg, Pa) to evaluate transverse expansion forces from rapid palatal expansion. Finite element analysis was performed with transverse expansion to achieve 5 mm of anterolateral expansion of the collapsed minor segment to simulate correction of the anterior crossbite in a patient with UCLP. Results High-stress concentrations were observed at the body of the sphenoid, medial to the orbit, and at the inferior area of the zygomatic process of the maxilla. The craniofacial stress distribution was asymmetric, with higher stress levels on the cleft side. When forces were applied more anteriorly on the collapsed minor segment and more posteriorly on the major segment, there was greater expansion of the anterior region of the minor segment with minimal expansion of the major segment. Conclusions The transverse expansion forces from rapid palatal expansion are distributed to the 3 maxillary buttresses. Finite element analysis is an appropriate tool to study and predict the points of force application for better controlled expansion in patients with UCLP. PMID:27476365

  10. Biomechanical effects of maxillary expansion on a patient with cleft palate: A finite element analysis.

    PubMed

    Lee, Haofu; Nguyen, Alan; Hong, Christine; Hoang, Paul; Pham, John; Ting, Kang

    2016-08-01

    The aims of this study were to evaluate the effects of rapid palatal expansion on the craniofacial skeleton of a patient with unilateral cleft lip and palate (UCLP) and to predict the points of force application for optimal expansion using a 3-dimensional finite element model. A 3-dimensional finite element model of the craniofacial complex with UCLP was generated from spiral computed tomographic scans with imaging software (Mimics, version 13.1; Materialise, Leuven, Belgium). This model was imported into the finite element solver (version 12.0; ANSYS, Canonsburg, Pa) to evaluate transverse expansion forces from rapid palatal expansion. Finite element analysis was performed with transverse expansion to achieve 5 mm of anterolateral expansion of the collapsed minor segment to simulate correction of the anterior crossbite in a patient with UCLP. High-stress concentrations were observed at the body of the sphenoid, medial to the orbit, and at the inferior area of the zygomatic process of the maxilla. The craniofacial stress distribution was asymmetric, with higher stress levels on the cleft side. When forces were applied more anteriorly on the collapsed minor segment and more posteriorly on the major segment, there was greater expansion of the anterior region of the minor segment with minimal expansion of the major segment. The transverse expansion forces from rapid palatal expansion are distributed to the 3 maxillary buttresses. Finite element analysis is an appropriate tool to study and predict the points of force application for better controlled expansion in patients with UCLP. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  11. Barriers and facilitators to implementation of VA home-based primary care on American Indian reservations: a qualitative multi-case study.

    PubMed

    Kramer, B Josea; Cote, Sarah D; Lee, Diane I; Creekmur, Beth; Saliba, Debra

    2017-09-02

    Veterans Health Affairs (VA) home-based primary care (HBPC) is an evidence-based interdisciplinary approach to non-institutional long-term care that was developed in urban settings to provide longitudinal care for vulnerable older patients. Under the authority of a Memorandum of Understanding between VA and Indian Health Service (IHS) to improve access to healthcare, 14 VA medical centers (VAMC) independently initiated plans to expand HBPC programs to rural American Indian reservations and 12 VAMC successfully implemented programs. The purpose of this study is to describe barriers and facilitators to implementation in rural Native communities with the aim of informing planners and policy-makers for future program expansions. A qualitative comparative case study approach was used, treating each of the 14 VAMC as a case. Using the Consolidated Framework for Implementation Research (CFIR) to inform an open-ended interview guide, telephone interviews (n = 37) were conducted with HBPC staff and clinicians and local/regional managers, who participated or oversaw implementation. The interviews were transcribed, coded, and then analyzed using CFIR domains and constructs to describe and compare experiences and to identify facilitators, barriers, and adaptations that emerged in common across VAMC and HBPC programs. There was considerable variation in local contexts across VAMC. Nevertheless, implementation was typically facilitated by key individuals who were able to build trust and faith in VA healthcare among American Indian communities. Policy promoted clinical collaboration but collaborations generally occurred on an ad hoc basis between VA and IHS clinicians to optimize patient resources. All programs required some adaptations to address barriers in rural areas, such as distances, caseloads, or delays in hiring additional clinicians. VA funding opportunities facilitated expansion and sustainment of these programs. Since program expansion is a responsibility of the HBPC program director, there is little sharing of lessons learned across VA facilities. Opportunities for shared learning would benefit federal healthcare organizations to expand other medical services to additional American Indian communities and other rural and underserved communities, as well as to coordinate with other healthcare organizations. The CFIR structure was an effective analytic tool to compare programs addressing multiple inner and outer settings.

  12. Effects of Small Polar Molecules (MA+ and H2O) on Degradation Processes of Perovskite Solar Cells.

    PubMed

    Ma, Chunqing; Shen, Dong; Qing, Jian; Thachoth Chandran, Hrisheekesh; Lo, Ming-Fai; Lee, Chun-Sing

    2017-05-03

    Degradation mechanisms of methylammonium lead halide perovskite solar cells (PSCs) have drawn much attention recently. Herein, the bulk and surface degradation processes of the perovskite were differentiated for the first time by employing combinational studies using electrochemical impedance spectroscopy (EIS), capacitance frequency (CF), and X-ray diffraction (XRD) studies with particular attention on the roles of small polar molecules (MA + and H 2 O). CF study shows that short-circuit current density of the PSCs is increased by H 2 O at the beginning of the degradation process coupled with an increased surface capacitance. On the basis of EIS and XRD analysis, we show that the bulk degradation of PSCs involves a lattice expansion process, which facilitates MA + ion diffusion by creating more efficient channels. These results provide a better understanding of the roles of small polar molecules on degradation processes in the bulk and on the surface of the perovskite film.

  13. Dimensional changes of upper airway after rapid maxillary expansion: a prospective cone-beam computed tomography study.

    PubMed

    Chang, Yoon; Koenig, Lisa J; Pruszynski, Jessica E; Bradley, Thomas G; Bosio, Jose A; Liu, Dawei

    2013-04-01

    The aim of this prospective study was to use cone-beam computed tomography to assess the dimensional changes of the upper airway in orthodontic patients with maxillary constriction treated by rapid maxillary expansion. Fourteen orthodontic patients (mean age, 12.9 years; range, 9.7-16 years) were recruited. The patients with posterior crossbite and constricted maxilla were treated with rapid maxillary expansion as the initial part of their comprehensive orthodontic treatments. Before and after rapid maxillary expansion cone-beam computed tomography scans were taken to measure the retropalatal and retroglossal airway changes in terms of volume, and sagittal and cross-sectional areas. The transverse expansions by rapid maxillary expansion were assessed between the midlingual alveolar bone plates at the maxillary first molar and first premolar levels. The measurements of the before and after rapid maxillary expansion scans were compared by using paired t tests with the Bonferroni adjustment for multiple comparisons. After rapid maxillary expansion, significant and equal amounts of 4.8 mm of expansion were observed at the first molar (P = 0.0000) and the first premolar (P = 0.0000) levels. The width increase at the first premolar level (20.0%) was significantly greater than that at the first molar level (15.0%) (P = 0.035). As the primary outcome variable, the cross-sectional airway measured from the posterior nasal spine to basion level was the only parameter showing a significant increase of 99.4 mm(2) (59.6%) after rapid maxillary expansion (P = 0.0004). These results confirm the findings of previous studies of the effect of rapid maxillary expansion on the maxilla. Additionally, we found that only the cross-sectional area of the upper airway at the posterior nasal spine to basion level significantly gains a moderate increase after rapid maxillary expansion. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Perspective: fostering biomedical literacy among America's youth: how medical simulation reshapes the strategy.

    PubMed

    Gordon, James A; Oriol, Nancy E

    2008-05-01

    Medicine is a uniquely powerful platform for teaching science and ethics, technology and humanity, life and death. Yet, society has historically limited medical education to a select few, and only after an advanced course of premedical studies. In an era when biomedical literacy is increasingly viewed as a national imperative, the authors hypothesized that advanced instruction in medicine could be intellectually transformative among a broad range of young people. Using high-fidelity patient simulators, a group of college and high school students was immersed in a weeklong course designed to replicate the practice of modern medicine. On the basis of the students' reported experiences, the authors feel that patient simulation can foster forceful interest in the life sciences at an early age. Such efforts could catalyze a significant expansion of interest in biomedical science among students nationwide.

  15. Wave-packet continuum-discretization approach to ion-atom collisions including rearrangement: Application to differential ionization in proton-hydrogen scattering

    NASA Astrophysics Data System (ADS)

    Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.

    2018-03-01

    In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.

  16. Space-Pseudo-Time Method: Application to the One-Dimensional Coulomb Potential and Density Funtional Theory

    NASA Astrophysics Data System (ADS)

    Weatherford, Charles; Gebremedhin, Daniel

    2016-03-01

    A new and efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step size choice for each element that is based on a Taylor series expansion. The method is applied to solve for the eigenpairs of the one-dimensional soft-coulomb potential and the hard-coulomb limit is studied. The method is then used to calculate a numerical solution of the Kohn-Sham differential equation within the local density approximation is presented and is applied to the helium atom. Supported by the National Nuclear Security Agency, the Nuclear Regulatory Commission, and the Defense Threat Reduction Agency.

  17. [Acute cholangitis in interstenosis space accompanied by two-component unit of the main bile duct].

    PubMed

    Yurchenko, V V

    2016-02-01

    Palliative treatment of obstructive jaundice with the help of biliary endoprosthesis due to the possible complication of post-intervention in the form of insolvency stent deformation or dislocation. The study features in the postoperative period of the main bile duct endoprosthesis about their two-component unit, described the syndrome of the closed space of the bile ducts. On the basis of observation of 14 patients with the given anatomical feature of endoscopic, who were underwent stenting, was assessed frequency of the syndrome and possibilities of its prevention. Interstenosis space expansion of the main bile duct can be a reason for local cholangitis. For the prevention of cholangitis, it should be carried out a separate drainage of interstenosis space with the help of endoprosthesis or by proximal supra-stenotic extension of two or more stents.

  18. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer.

    PubMed

    Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin

    2013-02-28

    The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.

  19. C9orf72 repeat expansions in rapid eye movement sleep behaviour disorder.

    PubMed

    Daoud, Hussein; Postuma, Ronald B; Bourassa, Cynthia V; Rochefort, Daniel; Gauthier, Maude Turcotte; Montplaisir, Jacques; Gagnon, Jean-Francois; Arnulf, Isabelle; Dauvilliers, Yves; Charley, Christelle Monaca; Inoue, Yuichi; Sasai, Taeko; Högl, Birgit; Desautels, Alex; Frauscher, Birgit; Cochen De Cock, Valérie; Rouleau, Guy A; Dion, Patrick A

    2014-11-01

    A large hexanucleotide repeat expansion in C9orf72 has been identified as the most common genetic cause in familial amyotrophic lateral sclerosis and frontotemporal dementia. Rapid Eye Movement Sleep Behavior Disorder (RBD) is a sleep disorder that has been strongly linked to synuclein-mediated neurodegeneration. The aim of this study was to evaluate the role of the C9orf72 expansions in the pathogenesis of RBD. We amplified the C9orf72 repeat expansion in 344 patients with RBD by a repeat-primed polymerase chain reaction assay. We identified two RBD patients carrying the C9orf72 repeat expansion. Most interestingly, these patients have the same C9orf72 associated-risk haplotype identified in 9p21-linked amyotrophic lateral sclerosis and frontotemporal dementia families. Our study enlarges the phenotypic spectrum associated with the C9orf72 hexanucleotide repeat expansions and suggests that, although rare, this expansion may play a role in the pathogenesis of RBD.

  20. Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2 and SF6-Air Mixtures Using Boltzmann Analysis

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong

    2014-10-01

    The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.

  1. Supercritical flow characteristics at abrupt expansion structure

    NASA Astrophysics Data System (ADS)

    Lim, Jia Jun; Puay, How Tion; Zakaria, Nor Azazi

    2017-10-01

    When dealing with the design of a hydraulic structure, lateral expansion is often necessary for flow emerging at high velocity served as a cross-sectional transition. If the abrupt expansion structure is made to diverge rapidly, it will cause the major part of the flow fail to follow the boundaries. If the transition is too gradual, it will result in a waste of structural material. A preliminary study on the flow structure near the expansion and its relationship with flow parameter is carried out in this study. A two-dimensional depth-averaged model is developed to simulate the supercritical flow at the abrupt expansion structure. Constrained Interpolation Profile (CIP) scheme (which is of third order accuracy) is adopted in the numerical model. Results show that the flow structure and flow characteristics at the abrupt expansion can be reproduced numerically. The validation of numerical result is done against analytical studies. The result from numerical simulation showed good agreement with the analytical solution.

  2. Expansive Learning in a Library: Actions, Cycles and Deviations from Instructional Intentions

    ERIC Educational Resources Information Center

    Engestrom, Yrjo; Rantavuori, Juhana; Kerosuo, Hannele

    2013-01-01

    The theory of expansive learning has been applied in a large number of studies on workplace learning and organizational change. However, detailed comprehensive analyses of entire developmental interventions based on the theory of expansive learning do not exist. Such a study is needed to examine the empirical usability and methodological rigor…

  3. An X-ray Expansion and Proper Motion Study of the Magellanic Cloud Supernova Remnant J0509-6731 with the Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Roper, Quentin; Filipovi, Miroslav; Allen, Glenn E.; Sano, Hidetoshi; Park, Laurence; Pannuti, Thomas G.; Sasaki, Manami; Haberl, Frank; Kavanagh, Patrick J.; Yamane, Yumiko; Yoshiike, Satoshi; Fujii, Kosuke; Fukui, Yasuo; Seitenzahl, Ivo R.

    2018-05-01

    Using archival Chandra data consisting of a total of 78.46 ksec over two epochs seven years apart, we have measured the expansion of the young (˜400 years old) type Ia Large Magellanic Cloud supernova remnant (SNR) J0509-6731. In addition, we use radial brightness profile matching to detect proper-motion expansion of this SNR, and estimate an speed of 7 500±1 700 km s-1. This is one of the only proper motion studies of extragalactic SNRs expansion that is able to derive an expansion velocity, and one of only two such studies of an extragalactic SNR to yield positive results in the X-rays. We find that this expansion velocity is consistent with an optical expansion study on this object. In addition, we examine the medium into which the SNR is expanding by examining the CO and neutral H I gas using radio data obtained from Mopra, the Australia Telescope Compact Array and Parkes radio telescopes. We also briefly compare this result with a recent radio survey, and find that our results predict a radio spectral index α of -0.67±0.07. This value is consistent with high frequency radio observations of MCSNR J0509-6731.

  4. Efficient modeling of photonic crystals with local Hermite polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, C. R.; Li, Zehao; Albrecht, J. D.

    2014-04-21

    Developing compact algorithms for accurate electrodynamic calculations with minimal computational cost is an active area of research given the increasing complexity in the design of electromagnetic composite structures such as photonic crystals, metamaterials, optical interconnects, and on-chip routing. We show that electric and magnetic (EM) fields can be calculated using scalar Hermite interpolation polynomials as the numerical basis functions without having to invoke edge-based vector finite elements to suppress spurious solutions or to satisfy boundary conditions. This approach offers several fundamental advantages as evidenced through band structure solutions for periodic systems and through waveguide analysis. Compared with reciprocal space (planemore » wave expansion) methods for periodic systems, advantages are shown in computational costs, the ability to capture spatial complexity in the dielectric distributions, the demonstration of numerical convergence with scaling, and variational eigenfunctions free of numerical artifacts that arise from mixed-order real space basis sets or the inherent aberrations from transforming reciprocal space solutions of finite expansions. The photonic band structure of a simple crystal is used as a benchmark comparison and the ability to capture the effects of spatially complex dielectric distributions is treated using a complex pattern with highly irregular features that would stress spatial transform limits. This general method is applicable to a broad class of physical systems, e.g., to semiconducting lasers which require simultaneous modeling of transitions in quantum wells or dots together with EM cavity calculations, to modeling plasmonic structures in the presence of EM field emissions, and to on-chip propagation within monolithic integrated circuits.« less

  5. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    NASA Astrophysics Data System (ADS)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  6. Thermal Expansion of the Cryoprotectant Cocktail DP6 Combined with Synthetic Ice Modulators in Presence and Absence of Biological Tissues

    PubMed Central

    Eisenberg, David P.; Taylor, Michael J.; Rabin, Yoed

    2012-01-01

    This study explores physical effects associated with the application of cryopreservation via vitrification using a class of compounds which are defined here as synthetic ice modulators (SIMs). The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. A subcategory of SIMs, referred to in the literature as synthetic ice blockers (SIBs), are compounds that interact directly with ice nuclei or crystals to modify their structure and/or rate of growth. The current study is part of an ongoing effort to characterize thermo-mechanical effects during vitrification, with emphasis on measuring the physical property of thermal expansion—the driving mechanism to thermo-mechanical stress. Materials under investigation are the cryoprotective agent (CPA) cocktail DP6 in combination with one of the following SIMs: 12% polyethylene glycol 400, 6% 1,3 cyclohexanediol, and 6% 2,3 butanediol. Results are presented for the CPA-SIM cocktail in the absence and presence of bovine muscle and goat artery specimens. This study focuses on the upper part of the cryogenic temperature range, where the CPA behaves as a fluid for all practical applications. Results of this study indicate that the addition of SIMs to DP6 allows lower cooling rates to ensure vitrification and extends the range of measurements. It is demonstrated that the combination of SIM with DP6 increases the thermal expansion of the cocktail, with implications for the likelihood of fracture formation—the most dramatic outcome of thermo-mechanical stress. PMID:22579521

  7. DGDFT: A massively parallel method for large scale density functional theory calculations.

    PubMed

    Hu, Wei; Lin, Lin; Yang, Chao

    2015-09-28

    We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10(-4) Hartree/atom in terms of the error of energy and 6.2 × 10(-4) Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.

  8. A preliminary study of differentially expressed genes in expanded skin and normal skin: implications for adult skin regeneration.

    PubMed

    Yang, Mei; Liang, Yimin; Sheng, Lingling; Shen, Guoxiong; Liu, Kai; Gu, Bin; Meng, Fanjun; Li, Qingfeng

    2011-03-01

    In adults, severely damaged skin heals by scar formation and cannot regenerate to the original skin structure. However, tissue expansion is an exception, as normal skin regenerates under the mechanical stretch resulting from tissue expansion. This technique has been used clinically for defect repair and organ reconstruction for decades. However, the phenomenon of adult skin regeneration during tissue expansion has caused little attention, and the mechanism of skin regeneration during tissue expansion has not been fully understood. In this study, microarray analysis was performed on expanded human skin and normal human skin. Significant difference was observed in 77 genes, which suggest a network of several integrated cascades, including cytokines, extracellular, cytoskeletal, transmembrane molecular systems, ion or ion channels, protein kinases and transcriptional systems, is involved in the skin regeneration during expansion. Among these, the significant expression of some regeneration related genes, such as HOXA5, HOXB2 and AP1, was the first report in tissue expansion. Data in this study suggest a list of candidate genes, which may help to elucidate the fundamental mechanism of skin regeneration during tissue expansion and which may have implications for postnatal skin regeneration and therapeutic interventions in wound healing.

  9. Self-expansion is associated with better adherence and obesity treatment outcomes in adults

    PubMed Central

    Xu, Xiaomeng; Leahey, Tricia M.; Boguszewski, Katherine; Krupel, Katie; Mailloux, Kimberly A.; Wing, Rena R.

    2016-01-01

    Background Previous studies have shown that self-expansion (e.g., increasing positive self-content via engaging in novel, rewarding activities) is associated with smoking cessation and attenuated cigarette cue-reactivity. Purpose This study examined whether self-expansion is associated with better adherence, weight loss, and physical activity (PA) outcomes within a weight loss intervention. Methods Participants from Shape Up Rhode Island 2012, a Web-based community wellness initiative, took part in a randomized controlled trial that involved a 12-week behavioral weight loss intervention (1). At baseline and post-intervention, objective weights and self-reported self-expansion and PA were obtained from 239 participants. Treatment adherence was assessed objectively. Results Self-expansion during treatment was significantly associated with percent weight loss including clinically significant weight loss (i.e. 5%), minutes of PA, and treatment adherence. These results held after controlling for relevant covariates. Conclusions This is the first study to show that self-expansion is associated with better behavioral weight loss outcomes including weight loss, adherence, and PA. These results suggest that self-expansion is a promising novel target for future research which could inform health interventions. PMID:27436226

  10. Analysis of Biomechanical Effects of Different Sites and Modes of Orthodontic Loading On Arch Expansion in a Preadolescent Mandible: An FEA Study.

    PubMed

    Haresh, Ajmera Deepal; Pradeep, Singh; Song, Jinlin; Wang, Chao; Fan, Yubo

    2018-05-11

    The aim of commencing treatment in younger age is to rectify the developing dento-alveolar, skeletal and muscular imbalances. With growing dependence on arch development and expansion, the pendulum is oscillating more towards the non-extraction treatment lately, in resolving constriction and crowding issues. Since, a limited number of attempts have been made for mandibular expansion, this study aimes to evaluate the effect of different modes and sites of loading on the expansion of preadolescent mandible using biomechanics. To address the research purpose, a total of 9 Finite Element models were simulated. Biomechanical response of the mandibular bone and dentition was analyzed under different loading conditions including site and mode, using the simulated FE models. The values of displacement envisaged by the FE models, predict hybrid mode to offer substantial expansion of the mandibular bone as compared to tooth borne and bone borne. In addition, biomechanical effect of site II on mandibular expansion in terms of displacement on X-axis, was significant. In conclusion, the results of our study suggest hybrid mode at site II to be better option for true bony expansion in preadolescent mandible.

  11. Investigation of the expansion rate scaling of plasmas in the Electron Diffusion Gauge experiment

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle A.; Davidson, Ronald C.; Paul, Stephen F.; Jenkins, Thomas G.

    2002-01-01

    The expansion of the Electron Diffusion Gauge (EDG) pure electron plasma due to collisions with background neutral gas atoms is characterized by the pressure and magnetic field scaling of the profile expansion rate (d/dt). Data obtained at higher background gas pressures [1] than previously studied [2] is presented. The measured expansion rate in the higher pressure regime is found to be in good agreement with the classical estimate of the expansion rate [3].

  12. Derivative expansion of wave function equivalent potentials

    NASA Astrophysics Data System (ADS)

    Sugiura, Takuya; Ishii, Noriyoshi; Oka, Makoto

    2017-04-01

    Properties of the wave function equivalent potentials introduced by the HAL QCD collaboration are studied in a nonrelativistic coupled-channel model. The derivative expansion is generalized, and then applied to the energy-independent and nonlocal potentials. The expansion coefficients are determined from analytic solutions to the Nambu-Bethe-Salpeter wave functions. The scattering phase shifts computed from these potentials are compared with the exact values to examine the convergence of the expansion. It is confirmed that the generalized derivative expansion converges in terms of the scattering phase shift rather than the functional structure of the non-local potentials. It is also found that the convergence can be improved by tuning either the choice of interpolating fields or expansion scale in the generalized derivative expansion.

  13. Fine-scale genetic structure arises during range expansion of an invasive gecko.

    PubMed

    Short, Kristen Harfmann; Petren, Kenneth

    2011-01-01

    Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts.

  14. Kowalevski's analysis of the swinging Atwood's machine

    NASA Astrophysics Data System (ADS)

    Babelon, O.; Talon, M.; Capdequi Peyranère, M.

    2010-02-01

    We study the Kowalevski expansions near singularities of the swinging Atwood's machine. We show that there is an infinite number of mass ratios M/m where such expansions exist with the maximal number of arbitrary constants. These expansions are of the so-called weak Painlevé type. However, in view of these expansions, it is not possible to distinguish between integrable and nonintegrable cases.

  15. Can Distance Education Increase Educational Equality? Evidence from the Expansion of Chinese Higher Education

    ERIC Educational Resources Information Center

    Li, Fengliang; Zhou, Mengying; Fan, Baolong

    2014-01-01

    Since China decided to expand its higher education, we have seen an increasing number of discussions of the relationship between educational expansion and equality. However, few studies have examined whether the expansion of distance higher education will improve educational equality among different regions. In this study, we analyzed the changes…

  16. Simplifying Bridge Expansion Joint Design and Maintenance

    DOT National Transportation Integrated Search

    2011-10-19

    This report presents a study focused on identifying the most durable expansion joints for the South : Carolina Department of Transportation. This is performed by proposing a degradation model for the : expansion joints and updating it based on bridge...

  17. Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions.

    PubMed

    Chamberlain, Dan; Brambilla, Mattia; Caprio, Enrico; Pedrini, Paolo; Rolando, Antonio

    2016-08-01

    Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.

  18. Thermal expansion in the nickel-chromium-aluminum and cobalt-chromium-aluminum systems to 1200 degrees C

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Garlick, R. G.; Henry, B.

    1975-01-01

    Thermal expansion data were obtained on 12 Ni-Cr-Al and 9 Co-Cr-Al alloys by high temperature X-ray diffraction. The data were computer fit to an empirical thermal expansion equation developed in the study. It is shown that the fit is excellent to good, and that the expansion constants depend on phase but not on composition. Phases for the Ni-Cr-Al system and Co-Cr-Al system are given. Results indicate that only alpha Cr has an expansion constant low enough to minimize oxide spalling or coating cracking induced by thermal expansion mismatch.

  19. Temporal Hyporheic Zone Response to Water Table Fluctuations.

    PubMed

    Malzone, Jonathan M; Anseeuw, Sierra K; Lowry, Christopher S; Allen-King, Richelle

    2016-03-01

    Expansion and contraction of the hyporheic zone due to temporal hydrologic changes between stream and riparian aquifer influence the biogeochemical cycling capacity of streams. Theoretical studies have quantified the control of groundwater discharge on the depth of the hyporheic zone; however, observations of temporal groundwater controls are limited. In this study, we develop the concept of groundwater-dominated differential hyporheic zone expansion to explain the temporal control of groundwater discharge on the hyporheic zone in a third-order stream reach flowing through glacially derived terrain typical of the Great Lakes region. We define groundwater-dominated differential expansion of the hyporheic zone as: differing rates and magnitudes of hyporheic zone expansion in response to seasonal vs. storm-related water table fluctuation. Specific conductance and vertical hydraulic gradient measurements were used to map changes in the hyporheic zone during seasonal water table decline and storm events. Planar and riffle beds were monitored in order to distinguish the cause of increasing hyporheic zone depth. Planar bed seasonal expansion of the hyporheic zone was of a greater magnitude and longer in duration (weeks to months) than storm event expansion (hours to days). In contrast, the hyporheic zone beneath the riffle bed exhibited minimal expansion in response to seasonal groundwater decline compared to storm related expansion. Results indicated that fluctuation in the riparian water table controlled seasonal expansion of the hyporheic zone along the planar bed. This groundwater induced hyporheic zone expansion could increase the potential for biogeochemical cycling and natural attenuation. © 2015, National Ground Water Association.

  20. Do Intracerebral Hemorrhage Nonexpanders Actually Expand Into the Ventricular Space?

    PubMed

    Dowlatshahi, Dar; Deshpande, Anirudda; Aviv, Richard I; Rodriguez-Luna, David; Molina, Carlos A; Blas, Yolanda Silva; Dzialowski, Imanuel; Kobayashi, Adam; Boulanger, Jean-Martin; Lum, Cheemun; Gubitz, Gordon J; Padma, Vasantha; Roy, Jayanta; Kase, Carlos S; Bhatia, Rohit; Hill, Michael D; Demchuk, Andrew M

    2018-01-01

    The computed tomographic angiography spot sign as a predictor of hematoma expansion is limited by its modest sensitivity and positive predictive value. It is possible that hematoma expansion in spot-positive patients is missed because of decompression of intracerebral hemorrhage (ICH) into the ventricular space. We hypothesized that revising hematoma expansion definitions to include intraventricular hemorrhage (IVH) expansion will improve the predictive performance of the spot sign. Our objectives were to determine the proportion of ICH nonexpanders who actually have IVH expansion, determine the proportion of false-positive spot signs that have IVH expansion, and compare the known predictive performance of the spot sign to a revised definition incorporating IVH expansion. We analyzed patients from the multicenter PREDICT ICH spot sign study. We defined hematoma expansion as ≥6 mL or ≥33% ICH expansion or >2 mL IVH expansion and compared spot sign performance using this revised definition with the conventional 6 mL/33% definition using receiver operating curve analysis. Of 311 patients, 213 did not meet the 6-mL/33% expansion definition (nonexpanders). Only 13 of 213 (6.1%) nonexpanders had ≥2 mL IVH expansion. Of the false-positive spot signs, 4 of 40 (10%) had >2 mL ventricular expansion. The area under the curve for spot sign to predict significant ICH expansion was 0.65 (95% confidence interval, 0.58-0.72), which was no different than when IVH expansion was added to the definition (area under the curve, 0.66; 95% confidence interval, 0.58-0.71). Although IVH expansion does indeed occur in a minority of ICH nonexpanders, its inclusion into a revised hematoma expansion definition does not alter the predictive performance of the spot sign. © 2017 American Heart Association, Inc.

  1. Progress in calculating the potential energy surface of H3+.

    PubMed

    Adamowicz, Ludwik; Pavanello, Michele

    2012-11-13

    The most accurate electronic structure calculations are performed using wave function expansions in terms of basis functions explicitly dependent on the inter-electron distances. In our recent work, we use such basis functions to calculate a highly accurate potential energy surface (PES) for the H(3)(+) ion. The functions are explicitly correlated Gaussians, which include inter-electron distances in the exponent. Key to obtaining the high accuracy in the calculations has been the use of the analytical energy gradient determined with respect to the Gaussian exponential parameters in the minimization of the Rayleigh-Ritz variational energy functional. The effective elimination of linear dependences between the basis functions and the automatic adjustment of the positions of the Gaussian centres to the changing molecular geometry of the system are the keys to the success of the computational procedure. After adiabatic and relativistic corrections are added to the PES and with an effective accounting of the non-adiabatic effects in the calculation of the rotational/vibrational states, the experimental H(3)(+) rovibrational spectrum is reproduced at the 0.1 cm(-1) accuracy level up to 16,600 cm(-1) above the ground state.

  2. Accelerating wavefunction in density-functional-theory embedding by truncating the active basis set

    NASA Astrophysics Data System (ADS)

    Bennie, Simon J.; Stella, Martina; Miller, Thomas F.; Manby, Frederick R.

    2015-07-01

    Methods where an accurate wavefunction is embedded in a density-functional description of the surrounding environment have recently been simplified through the use of a projection operator to ensure orthogonality of orbital subspaces. Projector embedding already offers significant performance gains over conventional post-Hartree-Fock methods by reducing the number of correlated occupied orbitals. However, in our first applications of the method, we used the atomic-orbital basis for the full system, even for the correlated wavefunction calculation in a small, active subsystem. Here, we further develop our method for truncating the atomic-orbital basis to include only functions within or close to the active subsystem. The number of atomic orbitals in a calculation on a fixed active subsystem becomes asymptotically independent of the size of the environment, producing the required O ( N 0 ) scaling of cost of the calculation in the active subsystem, and accuracy is controlled by a single parameter. The applicability of this approach is demonstrated for the embedded many-body expansion of binding energies of water hexamers and calculation of reaction barriers of SN2 substitution of fluorine by chlorine in α-fluoroalkanes.

  3. Volume and density changes of biological fluids with temperature

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.

    1985-01-01

    The thermal expansion of human blood, plasma, ultrafiltrate, and erythrocycte concentration at temperatures in the range of 4-48 C is studied. The mechanical oscillator technique which has an accuracy of 1 x 10 to the -5 th g/ml is utilized to measure fluid density. The relationship between thermal expansion, density, and temperature is analyzed. The study reveals that: (1) thermal expansion increases with increasing temperature; (2) the magnitude of the increase declines with increasing temperature; (3) thermal expansion increases with density at temperatures below 40 C; and (4) the thermal expansion of intracellular fluid is greater than that of extracellular fluid in the temperature range of 4-10 C, but it is equal at temperatures greater than or equal to 40 C.

  4. [Spatiotemporal characteristics of urban land expansion in central area of Shanghai, China].

    PubMed

    Hu, Han-Wen; Wei, Ben-Sheng; Shen, Xing-Hua; Li, Jun-Xiang

    2013-12-01

    Using the high spatial resolution (2.5 m) color-infrared aerial photos acquired in 1989, 1994, 2000 and 2005, this paper analyzed the spatiotemporal characteristics of rapid urban expansion in central Shanghai with urban expansion intensity index and gradient analysis. Results showed that urban land use in Shanghai increased rapidly in a "pancake" style during the study period, and the anisotropic urban expansion moved the urban center 2.62 km toward southwest. The urban land use expansion intensity doubled and showed a rural-urban gradient. The most intensive urban expansion zone fell in the rural-urban transition zone, indicating the dominance of peripheral expansion as the primary urban expansion mode in Shanghai. However, the urban land use intensity decreased with time at the urban center. The primary driving forces of urban expansion included support from government policies and decision-making, enhanced economic activities, societal fixed assets investment, urban infrastructure investment, extension of transportation routes, as well as increase in urban population.

  5. A technique for the optical analysis of deformed telescope mirrors

    NASA Technical Reports Server (NTRS)

    Bolton, John F.

    1986-01-01

    The NASTRAN-ACCOS V programs' interface merges structural and optical analysis capabilities in order to characterize the performance of the NASA Goddard Space Flight Center's Solar Optical Telescope primary mirror, which has a large diameter/thickness ratio. The first step in the optical analysis is to use NASTRAN's FEM to model the primary mirror, simulating any distortions due to gravitation, thermal gradients, and coefficient of thermal expansion nonuniformities. NASTRAN outputs are then converted into an ACCOS V-acceptable form; ACCOS V generates the deformed optical surface on the basis of these inputs, and imaging qualities can be determined.

  6. SCF and CI calculations of the dipole moment function of ozone. [Self-Consistent Field and Configuration-Interaction

    NASA Technical Reports Server (NTRS)

    Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.

    1979-01-01

    The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.

  7. Rank-based decompositions of morphological templates.

    PubMed

    Sussner, P; Ritter, G X

    2000-01-01

    Methods for matrix decomposition have found numerous applications in image processing, in particular for the problem of template decomposition. Since existing matrix decomposition techniques are mainly concerned with the linear domain, we consider it timely to investigate matrix decomposition techniques in the nonlinear domain with applications in image processing. The mathematical basis for these investigations is the new theory of rank within minimax algebra. Thus far, only minimax decompositions of rank 1 and rank 2 matrices into outer product expansions are known to the image processing community. We derive a heuristic algorithm for the decomposition of matrices having arbitrary rank.

  8. Shock waves and the Ffowcs Williams-Hawkings equation

    NASA Technical Reports Server (NTRS)

    Isom, Morris P.; Yu, Yung H.

    1991-01-01

    The expansion of the double divergence of the generalized Lighthill stress tensor, which is the basis of the concept of the role played by shock and contact discontinuities as sources of dipole and monopole sound, is presently applied to the simplest transonic flows: (1) a fixed wing in steady motion, for which there is no sound field, and (2) a hovering helicopter blade that produces a sound field. Attention is given to the contribution of the shock to sound from the viewpoint of energy conservation; the shock emerges as the source of only the quantity of entropy.

  9. Parity-expanded variational analysis for nonzero momentum

    NASA Astrophysics Data System (ADS)

    Stokes, Finn M.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. Selim; Menadue, Benjamin J.; Owen, Benjamin J.

    2015-12-01

    In recent years, the use of variational analysis techniques in lattice QCD has been demonstrated to be successful in the investigation of the rest-mass spectrum of many hadrons. However, due to parity mixing, more care must be taken for investigations of boosted states to ensure that the projected correlation functions provided by the variational analysis correspond to the same states at zero momentum. In this paper we present the parity-expanded variational analysis (PEVA) technique, a novel method for ensuring the successful and consistent isolation of boosted baryons through a parity expansion of the operator basis used to construct the correlation matrix.

  10. Perturbation theory of nuclear matter with a microscopic effective interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhar, Omar; Lovato, Alessandro

    Here, an updated and improved version of the effective interaction based on the Argonne-Urbana nuclear Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique, is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the formalism of many-body perturbation theory. The numerical results, including the ground-state energy per nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion collisions.

  11. Perturbation theory of nuclear matter with a microscopic effective interaction

    DOE PAGES

    Benhar, Omar; Lovato, Alessandro

    2017-11-01

    Here, an updated and improved version of the effective interaction based on the Argonne-Urbana nuclear Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique, is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the formalism of many-body perturbation theory. The numerical results, including the ground-state energy per nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion collisions.

  12. A note on the problem of choosing a model of the universe. II

    NASA Astrophysics Data System (ADS)

    Skalsky, Vladimir

    1989-05-01

    The value of the mean mass density (rho) of the universe is examined. It is shown that there is a difference between the present terrestrial conditions and the initial conditions of the universe expansion and that, for the sphere of the physical boundary conditions represented by Planck's values (when the present evolution phase of the universe was probably decided), there are serious limitations for the value of rho. It is postulated on the basis of these limiting conditions that some cause may exist for which the condition corresponding to the critical mass density of the universe was realized.

  13. Vibration monitoring of Kraftwerk Union pressurized water reactors - Review, present status, and further development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolben, H.; Wehling, H.J.

    Incipient damage to mechanical structure may be detected early in time by deviations from normal dynamic behavior. For vibration monitoring of coupled systems, only a small number of transducers are necessary, in general. On the basis, Kraftwerk Union has been involved in the development and construction of vibration monitoring systems for pressurized water reactors over the last 20 yr. The current state of the art permits vibration monitoring during normal operation by reactor personnel without expert assistance. The new SUS-86 microprocessor-based system allows further expansion toward an expert system.

  14. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    PubMed

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  15. Atmospheric guidance law for planar skip trajectories

    NASA Technical Reports Server (NTRS)

    Mease, K. D.; Mccreary, F. A.

    1985-01-01

    The applicability of an approximate, closed-form, analytical solution to the equations of motion, as a basis for a deterministic guidance law for controlling the in-plane motion during a skip trajectory, is investigated. The derivation of the solution by the method of matched asymptotic expansions is discussed. Specific issues that arise in the application of the solution to skip trajectories are addressed. Based on the solution, an explicit formula for the approximate energy loss due to an atmospheric pass is derived. A guidance strategy is proposed that illustrates the use of the approximate solution. A numerical example shows encouraging performance.

  16. Does Educational Expansion Encourage Female Workforce Participation? A Study of the 1968 Reform in Taiwan

    ERIC Educational Resources Information Center

    Tsai, Wehn-Jyuan; Liu, Jin-Tan; Chou, Shin-Yi; Thornton, Robert

    2009-01-01

    Between 1968 and 1973 the Taiwanese government undertook the most extensive expansion on record of the public junior high school system in Taiwan. This study analyzes the effects of the 1968 education reform and subsequent high school expansion on gender disparities in employment generally, as well in different sectors and classes of employment.…

  17. Assessing the costs and benefits of US renewable portfolio standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Mai, Trieu T.; Millstein, Dev

    In this study, renewable portfolio standards (RPS) exist in 29 US states and the District of Columbia. This article summarizes the first national-level, integrated assessment of the future costs and benefits of existing RPS policies; the same metrics are evaluated under a second scenario in which widespread expansion of these policies is assumed to occur. Depending on assumptions about renewable energy technology advancement and natural gas prices, existing RPS policies increase electric system costs by as much as 31 billion dollars, on a present-value basis over 2015-2050. The expanded renewable deployment scenario yields incremental costs that range from 23 billionmore » to 194 billion dollars, depending on the assumptions employed. The monetized value of improved air quality and reduced climate damages exceed these costs. Using central assumptions, existing RPS policies yield 97 billion dollars in air-pollution health benefits and 161 billion dollars in climate damage reductions. Under the expanded RPS case, health benefits total 558 billion dollars and climate benefits equal 599 billion dollars. These scenarios also yield benefits in the form of reduced water use. RPS programs are not likely to represent the most cost effective path towards achieving air quality and climate benefits. Nonetheless, the findings suggest that US RPS programs are, on a national basis, cost effective when considering externalities.« less

  18. Synthesis, Characterization and Antifertility Activity of New Unsymmetrical Macrocyclic Complexes of Tin(II)

    PubMed Central

    Sharma, Kripa; Joshi, S. C.

    2000-01-01

    A new series of unsymmetrical macrocyclic complexes of tin(ll) has been prepared by the template process using bis(3-oxo-2-butylidene)propane-1,3-diamine as precursor. This affords a method to synthesize these complexes with various ring sizes. The tetradentate macrocyclic precursor [N4mL] reacts with SnCl2 and different diamines in a 1:1:1 molar ratio in refluxing methanol to give complexes of the type [Sn(N4mL)Cl2]. The ring expansion has been achieved by varying the diamine between the two diacetyl amino nitrogen atoms. The macrocyclic precursor and its metal complexes have been characterized on the basis of elemental analysis, molar conductance, molecular weight determinations, IR, 1H NMR,13C NMR, 119Sn NMR and electronic spectral studies. An octahedral geometry around the metal ion is suggested for these complexes. On the basis of molecular weights and conductivity measurements, their monomeric and non-electrolytic nature has been confirmed. The precursor and complexes have been screened in vitro against a number of pathogenic fungi and bacteria to assess their growth inhibiting potential. The testicular sperm density and testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemicals parameters of reproductive organs have been examined and discussed. PMID:18475951

  19. Assessing the costs and benefits of US renewable portfolio standards

    DOE PAGES

    Wiser, Ryan; Mai, Trieu T.; Millstein, Dev; ...

    2017-09-26

    In this study, renewable portfolio standards (RPS) exist in 29 US states and the District of Columbia. This article summarizes the first national-level, integrated assessment of the future costs and benefits of existing RPS policies; the same metrics are evaluated under a second scenario in which widespread expansion of these policies is assumed to occur. Depending on assumptions about renewable energy technology advancement and natural gas prices, existing RPS policies increase electric system costs by as much as 31 billion dollars, on a present-value basis over 2015-2050. The expanded renewable deployment scenario yields incremental costs that range from 23 billionmore » to 194 billion dollars, depending on the assumptions employed. The monetized value of improved air quality and reduced climate damages exceed these costs. Using central assumptions, existing RPS policies yield 97 billion dollars in air-pollution health benefits and 161 billion dollars in climate damage reductions. Under the expanded RPS case, health benefits total 558 billion dollars and climate benefits equal 599 billion dollars. These scenarios also yield benefits in the form of reduced water use. RPS programs are not likely to represent the most cost effective path towards achieving air quality and climate benefits. Nonetheless, the findings suggest that US RPS programs are, on a national basis, cost effective when considering externalities.« less

  20. Genes implicated in the pathogenesis of spinocerebellar ataxias.

    PubMed

    Wüllner, Ullrich

    2003-12-01

    The degenerative ataxias comprise a number of heterogeneous diseases, many of which are genetically determined. Loss of cerebellar Purkinje and brainstem neurons as well as degeneration of spinal pathways are the major morphological findings of most ataxias, but neuronal loss may also affect the basal ganglia and the retina. While the degenerative ataxias initially were classified on a neuropathological basis, more recent classifications focused on clinical hallmarks and the mode of inheritance, separating inherited, sporadic and symptomatic ataxias. Genetic linkage analysis and molecular genetic studies identified various genotypes and revealed genetic heterogeneity of the autosomal dominant ataxias (ADCA), which on the basis of the genotypes are now classified as spinocerebellar ataxias (SCA1-22). Based on pathogenesis these disorders fall into three discrete groups: the polyglutamine disorders, SCA1-3, 7 and 17; the channelopathies, SCA6 and episodic ataxia types 1 and 2 (EA1-2); and SCA8, 10 and 12, which result from repeat expansions outside the coding regions and reduce gene expression. The etiologies of SCAs 4, 5, 9, 11, 13-16, 19, 21 and 22 remain unknown as of today. The recent advances in the identification of the underlying gene defects of most of the inherited ataxias have opened new avenues to a better understanding of the molecular mechanisms leading to cellular dysfunction and cell death.

Top