Minimum expected delay-based routing protocol (MEDR) for Delay Tolerant Mobile Sensor Networks.
Feng, Yong; Liu, Ming; Wang, Xiaomin; Gong, Haigang
2010-01-01
It is a challenging work to develop efficient routing protocols for Delay Tolerant Mobile Sensor Networks (DTMSNs), which have several unique characteristics such as sensor mobility, intermittent connectivity, energy limit, and delay tolerability. In this paper, we propose a new routing protocol called Minimum Expected Delay-based Routing (MEDR) tailored for DTMSNs. MEDR achieves a good routing performance by finding and using the connected paths formed dynamically by mobile sensors. In MEDR, each sensor maintains two important parameters: Minimum Expected Delay (MED) and its expiration time. According to MED, messages will be delivered to the sensor that has at least a connected path with their hosting nodes, and has the shortest expected delay to communication directly with the sink node. Because of the changing network topology, the path is fragile and volatile, so we use the expiration time of MED to indicate the valid time of the path, and avoid wrong transmissions. Simulation results show that the proposed MEDR achieves a higher message delivery ratio with lower transmission overhead and data delivery delay than other DTMSN routing approaches.
Insensitive dependence of delay-induced oscillation death on complex networks
NASA Astrophysics Data System (ADS)
Zou, Wei; Zheng, Xing; Zhan, Meng
2011-06-01
Oscillation death (also called amplitude death), a phenomenon of coupling induced stabilization of an unstable equilibrium, is studied for an arbitrary symmetric complex network with delay-coupled oscillators, and the critical conditions for its linear stability are explicitly obtained. All cases including one oscillator, a pair of oscillators, regular oscillator networks, and complex oscillator networks with delay feedback coupling, can be treated in a unified form. For an arbitrary symmetric network, we find that the corresponding smallest eigenvalue of the Laplacian λN (0 >λN ≥ -1) completely determines the death island, and as λN is located within the insensitive parameter region for nearly all complex networks, the death island keeps nearly the largest and does not sensitively depend on the complex network structures. This insensitivity effect has been tested for many typical complex networks including Watts-Strogatz (WS) and Newman-Watts (NW) small world networks, general scale-free (SF) networks, Erdos-Renyi (ER) random networks, geographical networks, and networks with community structures and is expected to be helpful for our understanding of dynamics on complex networks.
Zhang, Xian-Ming; Han, Qing-Long; Zeng, Zhigang
2018-05-01
This paper is concerned with global asymptotic stability of delayed neural networks. Notice that a Bessel-Legendre inequality plays a key role in deriving less conservative stability criteria for delayed neural networks. However, this inequality is in the form of Legendre polynomials and the integral interval is fixed on . As a result, the application scope of the Bessel-Legendre inequality is limited. This paper aims to develop the Bessel-Legendre inequality method so that less conservative stability criteria are expected. First, by introducing a canonical orthogonal polynomial sequel, a canonical Bessel-Legendre inequality and its affine version are established, which are not explicitly in the form of Legendre polynomials. Moreover, the integral interval is shifted to a general one . Second, by introducing a proper augmented Lyapunov-Krasovskii functional, which is tailored for the canonical Bessel-Legendre inequality, some sufficient conditions on global asymptotic stability are formulated for neural networks with constant delays and neural networks with time-varying delays, respectively. These conditions are proven to have a hierarchical feature: the higher level of hierarchy, the less conservatism of the stability criterion. Finally, three numerical examples are given to illustrate the efficiency of the proposed stability criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx; Campos-Cantón, I.
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enablemore » future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.« less
Building a Solar System Internet
NASA Technical Reports Server (NTRS)
Clark, Gilbert J.
2018-01-01
This presentation is expected to be given during the scheduled Communications Technology and Development discussion in the University Student Design Challenge (2). It is an introduction to various challenges inherent to the construction of networks in space. The presentation also includes both an overview of networking in general, as well as approaches taken to the construction of delay- and disruption- tolerant networks.
Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols
NASA Technical Reports Server (NTRS)
Schoolcraft, Joshua; Wilson, Keith
2011-01-01
Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of reliably delivering data at relatively high rates. Finally, performance characterizations from this data suggest performance optimizations to configuration and protocols for future optical-specific DTN space link scenarios.
A Simple Network Architecture Accounts for Diverse Reward Time Responses in Primary Visual Cortex
Hussain Shuler, Marshall G.; Shouval, Harel Z.
2015-01-01
Many actions performed by animals and humans depend on an ability to learn, estimate, and produce temporal intervals of behavioral relevance. Exemplifying such learning of cued expectancies is the observation of reward-timing activity in the primary visual cortex (V1) of rodents, wherein neural responses to visual cues come to predict the time of future reward as behaviorally experienced in the past. These reward-timing responses exhibit significant heterogeneity in at least three qualitatively distinct classes: sustained increase or sustained decrease in firing rate until the time of expected reward, and a class of cells that reach a peak in firing at the expected delay. We elaborate upon our existing model by including inhibitory and excitatory units while imposing simple connectivity rules to demonstrate what role these inhibitory elements and the simple architectures play in sculpting the response dynamics of the network. We find that simply adding inhibition is not sufficient for obtaining the different distinct response classes, and that a broad distribution of inhibitory projections is necessary for obtaining peak-type responses. Furthermore, although changes in connection strength that modulate the effects of inhibition onto excitatory units have a strong impact on the firing rate profile of these peaked responses, the network exhibits robustness in its overall ability to predict the expected time of reward. Finally, we demonstrate how the magnitude of expected reward can be encoded at the expected delay in the network and how peaked responses express this reward expectancy. SIGNIFICANCE STATEMENT Heterogeneity in single-neuron responses is a common feature of neuronal systems, although sometimes, in theoretical approaches, it is treated as a nuisance and seldom considered as conveying a different aspect of a signal. In this study, we focus on the heterogeneous responses in the primary visual cortex of rodents trained with a predictable delayed reward time. We describe under what conditions this heterogeneity can arise by self-organization, and what information it can convey. This study, while focusing on a specific system, provides insight onto how heterogeneity can arise in general while also shedding light onto mechanisms of reinforcement learning using realistic biological assumptions. PMID:26377457
Janssen, T W P; Hillebrand, A; Gouw, A; Geladé, K; Van Mourik, R; Maras, A; Oosterlaan, J
2017-11-01
Attention-deficit/hyperactivity disorder (ADHD) has been associated with widespread brain abnormalities in white and grey matter, affecting not only local, but global functional networks as well. In this study, we explored these functional networks using source-reconstructed electroencephalography in ADHD and typically developing (TD) children. We expected evidence for maturational delay, with underlying abnormalities in the default mode network. Electroencephalograms were recorded in ADHD (n=42) and TD (n=43) during rest, and functional connectivity (phase lag index) and graph (minimum spanning tree) parameters were derived. Dependent variables were global and local network metrics in theta, alpha and beta bands. We found evidence for a more centralized functional network in ADHD compared to TD children, with decreased diameter in the alpha band (η p 2 =0.06) and increased leaf fraction (η p 2 =0.11 and 0.08) in the alpha and beta bands, with underlying abnormalities in hub regions of the brain, including default mode network. The finding of a more centralized network is in line with maturational delay models of ADHD and should be replicated in longitudinal designs. This study contributes to the literature by combining high temporal and spatial resolution to construct EEG network topology, and associates maturational-delay and default-mode interference hypotheses of ADHD. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Measuring Information-Transfer Delays
Wibral, Michael; Pampu, Nicolae; Priesemann, Viola; Siebenhühner, Felix; Seiwert, Hannes; Lindner, Michael; Lizier, Joseph T.; Vicente, Raul
2013-01-01
In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only relevant option in keeping with Wiener’s principle of causality. We demonstrate the performance of our approach in detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields dealing with network dynamics. PMID:23468850
BPTAP: A New Approach to IP over DTN
NASA Technical Reports Server (NTRS)
Tsao, Philip; Nguyen, Sam
2012-01-01
Traditional Internet protocols have been widely deployed for a variety of applications. However such protocols generally perform poorly in situations in which, round trip delays are very large (interplanetary distances) or . persistent connectivity is not always available (widely dispersed MANET). Delay/Disruption Tolerant Network (DTN) technology was invented to address these issues: (1) . Relay nodes "take custody" of blocks of network traffic on a hop-by -hop basis and retransmit them in cases of expected or unexpected link outage (2) Bundle lifetime may be configured for long round trip light times. BPTAP is novel by encapsulating Ethernet frames in BP
A Simple Network Architecture Accounts for Diverse Reward Time Responses in Primary Visual Cortex.
Huertas, Marco A; Hussain Shuler, Marshall G; Shouval, Harel Z
2015-09-16
Many actions performed by animals and humans depend on an ability to learn, estimate, and produce temporal intervals of behavioral relevance. Exemplifying such learning of cued expectancies is the observation of reward-timing activity in the primary visual cortex (V1) of rodents, wherein neural responses to visual cues come to predict the time of future reward as behaviorally experienced in the past. These reward-timing responses exhibit significant heterogeneity in at least three qualitatively distinct classes: sustained increase or sustained decrease in firing rate until the time of expected reward, and a class of cells that reach a peak in firing at the expected delay. We elaborate upon our existing model by including inhibitory and excitatory units while imposing simple connectivity rules to demonstrate what role these inhibitory elements and the simple architectures play in sculpting the response dynamics of the network. We find that simply adding inhibition is not sufficient for obtaining the different distinct response classes, and that a broad distribution of inhibitory projections is necessary for obtaining peak-type responses. Furthermore, although changes in connection strength that modulate the effects of inhibition onto excitatory units have a strong impact on the firing rate profile of these peaked responses, the network exhibits robustness in its overall ability to predict the expected time of reward. Finally, we demonstrate how the magnitude of expected reward can be encoded at the expected delay in the network and how peaked responses express this reward expectancy. Heterogeneity in single-neuron responses is a common feature of neuronal systems, although sometimes, in theoretical approaches, it is treated as a nuisance and seldom considered as conveying a different aspect of a signal. In this study, we focus on the heterogeneous responses in the primary visual cortex of rodents trained with a predictable delayed reward time. We describe under what conditions this heterogeneity can arise by self-organization, and what information it can convey. This study, while focusing on a specific system, provides insight onto how heterogeneity can arise in general while also shedding light onto mechanisms of reinforcement learning using realistic biological assumptions. Copyright © 2015 the authors 0270-6474/15/3512659-14$15.00/0.
National Airspace System Delay Estimation Using Weather Weighted Traffic Counts
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.; Sridhar, Banavar
2004-01-01
Assessment of National Airspace System performance, which is usually measured in terms of delays resulting from the application of traffic flow management initiatives in response to weather conditions, volume, equipment outages and runway conditions, is needed both for guiding flow control decisions during the day of operations and for post operations analysis. Comparison of the actual delay, resulting from the traffic flow management initiatives, with the expected delay, based on traffic demand and other conditions, provides the assessment of the National Airspace System performance. This paper provides a method for estimating delay using the expected traffic demand and weather. In order to identify the cause of delays, 517 days of National Airspace System delay data reported by the Federal Aviation Administration s Operations Network were analyzed. This analysis shows that weather is the most important causal factor for delays followed by equipment and runway delays. Guided by these results, the concept of weather weighted traffic counts as a measure of system delay is described. Examples are given to show the variation of these counts as a function of time of the day. The various datasets, consisting of aircraft position data, enroute severe weather data, surface wind speed and visibility data, reported delay data and number of aircraft handled by the Centers data, and their sources are described. The procedure for selecting reference days on which traffic was minimally impacted by weather is described. Different traffic demand on each reference day of the week, determined by analysis of 42 days of traffic and delay data, was used as the expected traffic demand for each day of the week. Next, the method for computing the weather weighted traffic counts using the expected traffic demand, derived from reference days, and the expanded regions around severe weather cells is discussed. It is shown via a numerical example that this approach improves the dynamic range of the weather weighted traffic counts considerably. Time histories of these new weather weighted traffic counts are used for synthesizing two statistical features, six histogram features and six time domain features. In addition to these enroute weather features, two surface weather features of number of major airports in the United States with high mean winds and low mean visibility are also described. A least squares procedure for establishing a functional relation between the features, using combinations of these features, and system delays is explored using 36 days of data. Best correlations between the estimated delays using the functional relation and the actual delays provided by the Operations Network are obtained with two different combinations of features: 1) six time domain features of weather weighted traffic counts plus two surface weather features, and 2) six histogram features and mean of weather weighted traffic counts along with the two surface weather features. Correlation coefficient values of 0.73 and 0.83 were found in these two instances.
On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.
Amanowicz, Marek; Krygier, Jaroslaw
2018-05-26
In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.
Precise estimation of tropospheric path delays with GPS techniques
NASA Technical Reports Server (NTRS)
Lichten, S. M.
1990-01-01
Tropospheric path delays are a major source of error in deep space tracking. However, the tropospheric-induced delay at tracking sites can be calibrated using measurements of Global Positioning System (GPS) satellites. A series of experiments has demonstrated the high sensitivity of GPS to tropospheric delays. A variety of tests and comparisons indicates that current accuracy of the GPS zenith tropospheric delay estimates is better than 1-cm root-mean-square over many hours, sampled continuously at intervals of six minutes. These results are consistent with expectations from covariance analyses. The covariance analyses also indicate that by the mid-1990s, when the GPS constellation is complete and the Deep Space Network is equipped with advanced GPS receivers, zenith tropospheric delay accuracy with GPS will improve further to 0.5 cm or better.
NASA Astrophysics Data System (ADS)
Liu, Jian; Ruan, Xiaoe
2017-07-01
This paper develops two kinds of derivative-type networked iterative learning control (NILC) schemes for repetitive discrete-time systems with stochastic communication delay occurred in input and output channels and modelled as 0-1 Bernoulli-type stochastic variable. In the two schemes, the delayed signal of the current control input is replaced by the synchronous input utilised at the previous iteration, whilst for the delayed signal of the system output the one scheme substitutes it by the synchronous predetermined desired trajectory and the other takes it by the synchronous output at the previous operation, respectively. In virtue of the mathematical expectation, the tracking performance is analysed which exhibits that for both the linear time-invariant and nonlinear affine systems the two kinds of NILCs are convergent under the assumptions that the probabilities of communication delays are adequately constrained and the product of the input-output coupling matrices is full-column rank. Last, two illustrative examples are presented to demonstrate the effectiveness and validity of the proposed NILC schemes.
A time reference distribution concept for a time division communication network
NASA Technical Reports Server (NTRS)
Stover, H. A.
1973-01-01
Starting with an assumed ideal network having perfect clocks at every node and known fixed transmission delays between nodes, the effects of adding tolerances to both transmission delays and nodal clocks is described. The advantages of controlling tolerances on time rather than frequency are discussed. Then a concept is presented for maintaining these tolerances on time throughout the network. This concept, called time reference distribution, is a systematic technique for distributing time reference to all nodes of the network. It is reliable, survivable and possesses many other desirable characteristics. Some of its features such as an excellent self monitoring capability will be pointed out. Some preliminary estimates of the accuracy that might be expected are developed and there is a brief discussion of the impact upon communication system costs. Time reference distribution is a concept that appears very attractive. It has not had experimental evaluation and has not yet been endorsed for use in any communication network.
A Network Selection Algorithm Considering Power Consumption in Hybrid Wireless Networks
NASA Astrophysics Data System (ADS)
Joe, Inwhee; Kim, Won-Tae; Hong, Seokjoon
In this paper, we propose a novel network selection algorithm considering power consumption in hybrid wireless networks for vertical handover. CDMA, WiBro, WLAN networks are candidate networks for this selection algorithm. This algorithm is composed of the power consumption prediction algorithm and the final network selection algorithm. The power consumption prediction algorithm estimates the expected lifetime of the mobile station based on the current battery level, traffic class and power consumption for each network interface card of the mobile station. If the expected lifetime of the mobile station in a certain network is not long enough compared the handover delay, this particular network will be removed from the candidate network list, thereby preventing unnecessary handovers in the preprocessing procedure. On the other hand, the final network selection algorithm consists of AHP (Analytic Hierarchical Process) and GRA (Grey Relational Analysis). The global factors of the network selection structure are QoS, cost and lifetime. If user preference is lifetime, our selection algorithm selects the network that offers longest service duration due to low power consumption. Also, we conduct some simulations using the OPNET simulation tool. The simulation results show that the proposed algorithm provides longer lifetime in the hybrid wireless network environment.
Sidorina, V V; Gerasimova, Yu A; Kuleshova, E P; Merzhanova, G Kh
2015-01-01
During our experiments on cats was investigated the subthalamic neuron activity at different types of behavior in case of reinforcement choice depending on its value and availability. In chronic experiences the multiunit activity in subthalamic nucleus (STN) and orbitofrontal cortex (FC) has been recorded. Multiunit activity was analyzed over frequency and network properties of spikes. It was shown, that STN neurons reaction to different reinforcements and conditional stimulus at short- or long-delay reactions was represented by increasing or decreasing of frequency of single neurons. However the same STN neu- rons responded with increasing of frequency of single neuron during expectation of mix-bread-meat and decreasing--during the meat expectation. It has been revealed, that the number of STN interneuron interactions was authentic more at impulsive behavior than at self-control choice of behavior. The number of interactions between FC and STN neurons within intervals of 0-30 Ms was authentic more at display impulsive than during self-control behavior. These results suppose that FC and STN neurons participate in integration of reinforcement estimation; and distinctions in a choice of behavior are defined by the local and distributed interneuron interactions of STN and FC.
Chaotic simulated annealing by a neural network with a variable delay: design and application.
Chen, Shyan-Shiou
2011-10-01
In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE
Ladwig, Karl-Heinz; Gärtner, Cornelia; Walz, Linda Maria; Smenes, Kerstin Regina; Ronel, Joram
2009-12-01
During onset of an acute myocardial infarction (AMI), less than 20 % of patients reach the hospital within an optimal time window. About 75 % of pre-hospital delay time is caused by deficits in the patients' subjective decision making. To date, little is known about the course of threat appraisal during AMI. We aim to show here that health psychology related concepts offer an attractive conceptual frame to understand paradoxical reactions of AMI patients during this life threatening phase of their life. Only if patients overcome a complex network of barriers in perception and interpretation of symptoms, AMI symptoms will become effective as cues-to-action. Perception of symptoms may be compromised by a wide range of nociceptive stimuli originating from the heart. Symptom vagueness and a mismatch between expected and perceived symptoms may limit interpretation of the threat, yet active misattributing coping strategies may be even more present. Negative outcome expectancies and an impaired perceived self-efficacy, predominately in subjects with co-morbid negative affectivity are likely to contribute to delay.
Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea
2016-11-01
Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors' best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well.
Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea
2016-01-01
Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well. PMID:27809285
Qualitative analysis of Cohen-Grossberg neural networks with multiple delays
NASA Astrophysics Data System (ADS)
Ye, Hui; Michel, Anthony N.; Wang, Kaining
1995-03-01
It is well known that a class of artificial neural networks with symmetric interconnections and without transmission delays, known as Cohen-Grossberg neural networks, possesses global stability (i.e., all trajectories tend to some equilibrium). We demonstrate in the present paper that many of the qualitative properties of Cohen-Grossberg networks will not be affected by the introduction of sufficiently small delays. Specifically, we establish some bound conditions for the time delays under which a given Cohen-Grossberg network with multiple delays is globally stable and possesses the same asymptotically stable equilibria as the corresponding network without delays. An effective method of determining the asymptotic stability of an equilibrium of a Cohen-Grossberg network with multiple delays is also presented. The present results are motivated by some of the authors earlier work [Phys. Rev. E 50, 4206 (1994)] and by some of the work of Marcus and Westervelt [Phys. Rev. A 39, 347 (1989)]. These works address qualitative analyses of Hopfield neural networks with one time delay. The present work generalizes these results to Cohen-Grossberg neural networks with multiple time delays. Hopfield neural networks constitute special cases of Cohen-Grossberg neural networks.
Synchronization in networks with heterogeneous coupling delays
NASA Astrophysics Data System (ADS)
Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor
2018-01-01
Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.
NASA Astrophysics Data System (ADS)
Ma, Huanfei; Leng, Siyang; Tao, Chenyang; Ying, Xiong; Kurths, Jürgen; Lai, Ying-Cheng; Lin, Wei
2017-07-01
Data-based and model-free accurate identification of intrinsic time delays and directional interactions is an extremely challenging problem in complex dynamical systems and their networks reconstruction. A model-free method with new scores is proposed to be generally capable of detecting single, multiple, and distributed time delays. The method is applicable not only to mutually interacting dynamical variables but also to self-interacting variables in a time-delayed feedback loop. Validation of the method is carried out using physical, biological, and ecological models and real data sets. Especially, applying the method to air pollution data and hospital admission records of cardiovascular diseases in Hong Kong reveals the major air pollutants as a cause of the diseases and, more importantly, it uncovers a hidden time delay (about 30-40 days) in the causal influence that previous studies failed to detect. The proposed method is expected to be universally applicable to ascertaining and quantifying subtle interactions (e.g., causation) in complex systems arising from a broad range of disciplines.
Impact of leakage delay on bifurcation in high-order fractional BAM neural networks.
Huang, Chengdai; Cao, Jinde
2018-02-01
The effects of leakage delay on the dynamics of neural networks with integer-order have lately been received considerable attention. It has been confirmed that fractional neural networks more appropriately uncover the dynamical properties of neural networks, but the results of fractional neural networks with leakage delay are relatively few. This paper primarily concentrates on the issue of bifurcation for high-order fractional bidirectional associative memory(BAM) neural networks involving leakage delay. The first attempt is made to tackle the stability and bifurcation of high-order fractional BAM neural networks with time delay in leakage terms in this paper. The conditions for the appearance of bifurcation for the proposed systems with leakage delay are firstly established by adopting time delay as a bifurcation parameter. Then, the bifurcation criteria of such system without leakage delay are successfully acquired. Comparative analysis wondrously detects that the stability performance of the proposed high-order fractional neural networks is critically weakened by leakage delay, they cannot be overlooked. Numerical examples are ultimately exhibited to attest the efficiency of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yao, Chenggui; Zhan, Meng; Shuai, Jianwei; Ma, Jun; Kurths, Jürgen
2017-12-01
It has been generally believed that both time delay and network structure could play a crucial role in determining collective dynamical behaviors in complex systems. In this work, we study the influence of coupling strength, time delay, and network topology on synchronization behavior in delay-coupled networks of chaotic pendulums. Interestingly, we find that the threshold value of the coupling strength for complete synchronization in such networks strongly depends on the time delay in the coupling, but appears to be insensitive to the network structure. This lack of sensitivity was numerically tested in several typical regular networks, such as different locally and globally coupled ones as well as in several complex networks, such as small-world and scale-free networks. Furthermore, we find that the emergence of a synchronous periodic state induced by time delay is of key importance for the complete synchronization.
NASA Astrophysics Data System (ADS)
Wang, Weiping; Yuan, Manman; Luo, Xiong; Liu, Linlin; Zhang, Yao
2018-01-01
Proportional delay is a class of unbounded time-varying delay. A class of bidirectional associative memory (BAM) memristive neural networks with multiple proportional delays is concerned in this paper. First, we propose the model of BAM memristive neural networks with multiple proportional delays and stochastic perturbations. Furthermore, by choosing suitable nonlinear variable transformations, the BAM memristive neural networks with multiple proportional delays can be transformed into the BAM memristive neural networks with constant delays. Based on the drive-response system concept, differential inclusions theory and Lyapunov stability theory, some anti-synchronization criteria are obtained. Finally, the effectiveness of proposed criteria are demonstrated through numerical examples.
Firing patterns transition and desynchronization induced by time delay in neural networks
NASA Astrophysics Data System (ADS)
Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun
2018-06-01
We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.
Telecommunications Services Required by Distributed and Interconnected Office Centers.
1980-07-20
systems and communications management systems which are on the market . It is expected that these systems and the capabilities they offer will be available...saw the possibilities of marketing the service, but was delayed in its implementation because the high capacity communication network to support the...Jersey 07666. [181 Washburn, C, Unfolding Electronic Mail Market Leads to Integrated Info Systems, Communications News, November 1979, page 56. /191
Separate valuation subsystems for delay and effort decision costs.
Prévost, Charlotte; Pessiglione, Mathias; Météreau, Elise; Cléry-Melin, Marie-Laure; Dreher, Jean-Claude
2010-10-20
Decision making consists of choosing among available options on the basis of a valuation of their potential costs and benefits. Most theoretical models of decision making in behavioral economics, psychology, and computer science propose that the desirability of outcomes expected from alternative options can be quantified by utility functions. These utility functions allow a decision maker to assign subjective values to each option under consideration by weighting the likely benefits and costs resulting from an action and to select the one with the highest subjective value. Here, we used model-based neuroimaging to test whether the human brain uses separate valuation systems for rewards (erotic stimuli) associated with different types of costs, namely, delay and effort. We show that humans devalue rewards associated with physical effort in a strikingly similar fashion to those they devalue that are associated with delays, and that a single computational model derived from economics theory can account for the behavior observed in both delay discounting and effort discounting. However, our neuroimaging data reveal that the human brain uses distinct valuation subsystems for different types of costs, reflecting in opposite fashion delayed reward and future energetic expenses. The ventral striatum and the ventromedial prefrontal cortex represent the increasing subjective value of delayed rewards, whereas a distinct network, composed of the anterior cingulate cortex and the anterior insula, represent the decreasing value of the effortful option, coding the expected expense of energy. Together, these data demonstrate that the valuation processes underlying different types of costs can be fractionated at the cerebral level.
Analysis of Optimal Jitter Buffer Size for VoIP QoS under WiMAX Power-Saving Mode
NASA Astrophysics Data System (ADS)
Kim, Hyungsuk; Kim, Taehyoun
VoIP service is expected as one of the key applications of Mobile WiMAX, but the speech quality of VoIP service often suffers deterioration due to the fluctuating transmission delay called jitter. This is commonly ameliorated by a de-jitter buffer, and we aim to find the optimal size of de-jitter buffer to achieve speech quality comparable to PSTN. We developed a new model of the packet drops at the de-jitter buffer and the end-to-end packet delay which takes account of the additional delay introduced by the WiMAX power-saving mode. Using our model, we analyzed the optimal size of the de-jitter buffer for various network parameters, and showed that the results obtained by analysis accord with simulation results.
Discrete-time BAM neural networks with variable delays
NASA Astrophysics Data System (ADS)
Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi
2007-07-01
This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng
2018-03-01
In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.
Simulation analysis of the effect of initial delay on flight delay diffusion
NASA Astrophysics Data System (ADS)
Que, Zufu; Yao, Hongguang; Yue, Wei
2018-01-01
The initial delay of the flight is an important factor affecting the spread of flight delays, so clarifying their relationship conduces to control flight delays in the aeronautical network. Through establishing a model of the chain aviation network and making simulation analysis of the effects of initial delay on the delay longitudinal diffusion, it’s found that the number of delayed airports in the air network, the total delay time and the average delay time of the delayed airport are generally positively correlated with the initial delay. This indicates that the occurrence of the initial delay should be avoided or reduced as much as possible to improve the punctuality of the flight.
Tseng, Jui-Pin
2017-02-01
This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning. PMID:29209191
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.
Statistical Mechanics of the Delayed Reward-Based Learning with Node Perturbation
NASA Astrophysics Data System (ADS)
Hiroshi Saito,; Kentaro Katahira,; Kazuo Okanoya,; Masato Okada,
2010-06-01
In reward-based learning, reward is typically given with some delay after a behavior that causes the reward. In machine learning literature, the framework of the eligibility trace has been used as one of the solutions to handle the delayed reward in reinforcement learning. In recent studies, the eligibility trace is implied to be important for difficult neuroscience problem known as the “distal reward problem”. Node perturbation is one of the stochastic gradient methods from among many kinds of reinforcement learning implementations, and it searches the approximate gradient by introducing perturbation to a network. Since the stochastic gradient method does not require a objective function differential, it is expected to be able to account for the learning mechanism of a complex system, like a brain. We study the node perturbation with the eligibility trace as a specific example of delayed reward-based learning, and analyzed it using a statistical mechanics approach. As a result, we show the optimal time constant of the eligibility trace respect to the reward delay and the existence of unlearnable parameter configurations.
Modeling and simulation of the data communication network at the ASRM Facility
NASA Technical Reports Server (NTRS)
Nirgudkar, R. P.; Moorhead, R. J.; Smith, W. D.
1994-01-01
This paper describes the modeling and simulation of the communication network for the NASA Advanced Solid Rocket Motor (ASRM) facility under construction at Yellow Creek near Luka, Mississippi. Manufacturing, testing, and operations at the ASRM site will be performed in different buildings scattered over an 1800 acre site. These buildings are interconnected through a local area network (LAN), which will contain one logical Fiber Distributed Data Interface (FDDI) ring acting as a backbone for the whole complex. The network contains approximately 700 multi-vendor workstations, 22 multi-vendor workcells, and 3 VAX clusters interconnected via Ethernet and FDDI. The different devices produce appreciably different traffic patterns, each pattern will be highly variable, and some patterns will be very bursty. Most traffic is between the VAX clusters and the other devices. Comdisco's Block Oriented Network Simulator (BONeS) has been used for network simulation. The two primary evaluation parameters used to judge the expected network performance are throughput and delay.
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks
NASA Astrophysics Data System (ADS)
Yan, Hao; Sun, Xiaojuan
2017-06-01
In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.
Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Longkun, E-mail: tomlk@hqu.edu.cn, E-mail: xqwu@whu.edu.cn; Wu, Xiaoqun, E-mail: tomlk@hqu.edu.cn, E-mail: xqwu@whu.edu.cn; Lu, Jun-an, E-mail: jalu@whu.edu.cn
2015-03-15
Network synchronized regions play an extremely important role in network synchronization according to the master stability function framework. This paper focuses on network synchronous state stability via studying the effects of nodal dynamics, coupling delay, and coupling way on synchronized regions in Logistic map networks. Theoretical and numerical investigations show that (1) network synchronization is closely associated with its nodal dynamics. Particularly, the synchronized region bifurcation points through which the synchronized region switches from one type to another are in good agreement with those of the uncoupled node system, and chaotic nodal dynamics can greatly impede network synchronization. (2) Themore » coupling delay generally impairs the synchronizability of Logistic map networks, which is also dominated by the parity of delay for some nodal parameters. (3) A simple nonlinear coupling facilitates network synchronization more than the linear one does. The results found in this paper will help to intensify our understanding for the synchronous state stability in discrete-time networks with coupling delay.« less
NASA Astrophysics Data System (ADS)
Huang, Chengdai; Cao, Jinde; Xiao, Min; Alsaedi, Ahmed; Hayat, Tasawar
2018-04-01
This paper is comprehensively concerned with the dynamics of a class of high-dimension fractional ring-structured neural networks with multiple time delays. Based on the associated characteristic equation, the sum of time delays is regarded as the bifurcation parameter, and some explicit conditions for describing delay-dependent stability and emergence of Hopf bifurcation of such networks are derived. It reveals that the stability and bifurcation heavily relies on the sum of time delays for the proposed networks, and the stability performance of such networks can be markedly improved by selecting carefully the sum of time delays. Moreover, it is further displayed that both the order and the number of neurons can extremely influence the stability and bifurcation of such networks. The obtained criteria enormously generalize and improve the existing work. Finally, numerical examples are presented to verify the efficiency of the theoretical results.
Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen
2017-10-01
This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Chinmaya; López, José Manuel; Azencott, Robert
Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemicalmore » Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.« less
Economic networks: Heterogeneity-induced vulnerability and loss of synchronization
NASA Astrophysics Data System (ADS)
Colon, Célian; Ghil, Michael
2017-12-01
Interconnected systems are prone to propagation of disturbances, which can undermine their resilience to external perturbations. Propagation dynamics can clearly be affected by potential time delays in the underlying processes. We investigate how such delays influence the resilience of production networks facing disruption of supply. Interdependencies between economic agents are modeled using systems of Boolean delay equations (BDEs); doing so allows us to introduce heterogeneity in production delays and in inventories. Complex network topologies are considered that reproduce realistic economic features, including a network of networks. Perturbations that would otherwise vanish can, because of delay heterogeneity, amplify and lead to permanent disruptions. This phenomenon is enabled by the interactions between short cyclic structures. Difference in delays between two interacting, and otherwise resilient, structures can in turn lead to loss of synchronization in damage propagation and thus prevent recovery. Finally, this study also shows that BDEs on complex networks can lead to metastable relaxation oscillations, which are damped out in one part of a network while moving on to another part.
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
On Delay and Security in Network Coding
ERIC Educational Resources Information Center
Dikaliotis, Theodoros K.
2013-01-01
In this thesis, delay and security issues in network coding are considered. First, we study the delay incurred in the transmission of a fixed number of packets through acyclic networks comprised of erasure links. The two transmission schemes studied are routing with hop-by-hop retransmissions, where every node in the network simply stores and…
Stability analysis of fractional-order Hopfield neural networks with time delays.
Wang, Hu; Yu, Yongguang; Wen, Guoguang
2014-07-01
This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
Study of the GPS inter-frequency calibration of timing receivers
NASA Astrophysics Data System (ADS)
Defraigne, P.; Huang, W.; Bertrand, B.; Rovera, D.
2018-02-01
When calibrating Global Positioning System (GPS) stations dedicated to timing, the hardware delays of P1 and P2, the P(Y)-codes on frequencies L1 and L2, are determined separately. In the international atomic time (TAI) network the GPS stations of the time laboratories are calibrated relatively against reference stations. This paper aims at determining the consistency between the P1 and P2 hardware delays (called dP1 and dP2) of these reference stations, and to look at the stability of the inter-signal hardware delays dP1-dP2 of all the stations in the network. The method consists of determining the dP1-dP2 directly from the GPS pseudorange measurements corrected for the frequency-dependent antenna phase center and the frequency-dependent ionosphere corrections, and then to compare these computed dP1-dP2 to the calibrated values. Our results show that the differences between the computed and calibrated dP1-dP2 are well inside the expected combined uncertainty of the two quantities. Furthermore, the consistency between the calibrated time transfer solution obtained from either single-frequency P1 or dual-frequency P3 for reference laboratories is shown to be about 1.0 ns, well inside the 2.1 ns uB uncertainty of a time transfer link based on GPS P3 or Precise Point Positioning. This demonstrates the good consistency between the P1 and P2 hardware delays of the reference stations used for calibration in the TAI network. The long-term stability of the inter-signal hardware delays is also analysed from the computed dP1-dP2. It is shown that only variations larger than 2 ns can be detected for a particular station, while variations of 200 ps can be detected when differentiating the results between two stations. Finally, we also show that in the differential calibration process as used in the TAI network, using the same antenna phase center or using different positions for L1 and L2 signals gives maximum differences of 200 ps on the hardware delays of the separate codes P1 and P2; however, the final impact on the P3 combination is less than 10 ps.
Estimation and Fusion for Tracking Over Long-Haul Links Using Artificial Neural Networks
Liu, Qiang; Brigham, Katharine; Rao, Nageswara S. V.
2017-02-01
In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as tracking and/or monitoring of one or more dynamic targets. A remote fusion center fuses the information provided by these sensors so that a final estimate of certain target characteristics – such as the position – is expected to possess much improved quality. In this paper, we pursue learning-based approaches for estimation and fusion of target states in longhaul sensor networks. In particular, we consider learning based on various implementations of artificial neural networks (ANNs). Finally, the joint effect of (i)more » imperfect communication condition, namely, link-level loss and delay, and (ii) computation constraints, in the form of low-quality sensor estimates, on ANN-based estimation and fusion, is investigated by means of analytical and simulation studies.« less
Estimation and Fusion for Tracking Over Long-Haul Links Using Artificial Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qiang; Brigham, Katharine; Rao, Nageswara S. V.
In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as tracking and/or monitoring of one or more dynamic targets. A remote fusion center fuses the information provided by these sensors so that a final estimate of certain target characteristics – such as the position – is expected to possess much improved quality. In this paper, we pursue learning-based approaches for estimation and fusion of target states in longhaul sensor networks. In particular, we consider learning based on various implementations of artificial neural networks (ANNs). Finally, the joint effect of (i)more » imperfect communication condition, namely, link-level loss and delay, and (ii) computation constraints, in the form of low-quality sensor estimates, on ANN-based estimation and fusion, is investigated by means of analytical and simulation studies.« less
Modeling of synchronization behavior of bursting neurons at nonlinearly coupled dynamical networks.
Çakir, Yüksel
2016-01-01
Synchronization behaviors of bursting neurons coupled through electrical and dynamic chemical synapses are investigated. The Izhikevich model is used with random and small world network of bursting neurons. Various currents which consist of diffusive electrical and time-delayed dynamic chemical synapses are used in the simulations to investigate the influences of synaptic currents and couplings on synchronization behavior of bursting neurons. The effects of parameters, such as time delay, inhibitory synaptic strengths, and decay time on synchronization behavior are investigated. It is observed that in random networks with no delay, bursting synchrony is established with the electrical synapse alone, single spiking synchrony is observed with hybrid coupling. In small world network with no delay, periodic bursting behavior with multiple spikes is observed when only chemical and only electrical synapse exist. Single-spike and multiple-spike bursting are established with hybrid couplings. A decrease in the synchronization measure is observed with zero time delay, as the decay time is increased in random network. For synaptic delays which are above active phase period, synchronization measure increases with an increase in synaptic strength and time delay in small world network. However, in random network, it increases with only an increase in synaptic strength.
Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results
NASA Astrophysics Data System (ADS)
Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.
The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.
Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong
2017-11-01
In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Delay-aware adaptive sleep mechanism for green wireless-optical broadband access networks
NASA Astrophysics Data System (ADS)
Wang, Ruyan; Liang, Alei; Wu, Dapeng; Wu, Dalei
2017-07-01
Wireless-Optical Broadband Access Network (WOBAN) is capacity-high, reliable, flexible, and ubiquitous, as it takes full advantage of the merits from both optical communication and wireless communication technologies. Similar to other access networks, the high energy consumption poses a great challenge for building up WOBANs. To shot this problem, we can make some load-light Optical Network Units (ONUs) sleep to reduce the energy consumption. Such operation, however, causes the increased packet delay. Jointly considering the energy consumption and transmission delay, we propose a delay-aware adaptive sleep mechanism. Specifically, we develop a new analytical method to evaluate the transmission delay and queuing delay over the optical part, instead of adopting M/M/1 queuing model. Meanwhile, we also analyze the access delay and queuing delay of the wireless part. Based on such developed delay models, we mathematically derive ONU's optimal sleep time. In addition, we provide numerous simulation results to show the effectiveness of the proposed mechanism.
NASA Astrophysics Data System (ADS)
Tang, Guoning; Xu, Kesheng; Jiang, Luoluo
2011-10-01
The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.
Adaptive multi-resolution Modularity for detecting communities in networks
NASA Astrophysics Data System (ADS)
Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He
2018-02-01
Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.
Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun; Zhongyang Fei; Chaoxu Guan; Huijun Gao; Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun
2018-06-01
This paper is concerned with the exponential synchronization for master-slave chaotic delayed neural network with event trigger control scheme. The model is established on a network control framework, where both external disturbance and network-induced delay are taken into consideration. The desired aim is to synchronize the master and slave systems with limited communication capacity and network bandwidth. In order to save the network resource, we adopt a hybrid event trigger approach, which not only reduces the data package sending out, but also gets rid of the Zeno phenomenon. By using an appropriate Lyapunov functional, a sufficient criterion for the stability is proposed for the error system with extended ( , , )-dissipativity performance index. Moreover, hybrid event trigger scheme and controller are codesigned for network-based delayed neural network to guarantee the exponential synchronization between the master and slave systems. The effectiveness and potential of the proposed results are demonstrated through a numerical example.
Experiments with arbitrary networks in time-multiplexed delay systems
NASA Astrophysics Data System (ADS)
Hart, Joseph D.; Schmadel, Don C.; Murphy, Thomas E.; Roy, Rajarshi
2017-12-01
We report a new experimental approach using an optoelectronic feedback loop to investigate the dynamics of oscillators coupled on large complex networks with arbitrary topology. Our implementation is based on a single optoelectronic feedback loop with time delays. We use the space-time interpretation of systems with time delay to create large networks of coupled maps. Others have performed similar experiments using high-pass filters to implement the coupling; this restricts the network topology to the coupling of only a few nearest neighbors. In our experiment, the time delays and coupling are implemented on a field-programmable gate array, allowing the creation of networks with arbitrary coupling topology. This system has many advantages: the network nodes are truly identical, the network is easily reconfigurable, and the network dynamics occur at high speeds. We use this system to study cluster synchronization and chimera states in both small and large networks of different topologies.
NASA Technical Reports Server (NTRS)
Ziegler, C.; Schilling, D. L.
1977-01-01
Two networks consisting of single server queues, each with a constant service time, are considered. The external inputs to each network are assumed to follow some general probability distribution. Several interesting equivalencies that exist between the two networks considered are derived. This leads to the introduction of an important concept in delay decomposition. It is shown that the waiting time experienced by a customer can be decomposed into two basic components called self delay and interference delay.
Smart Collision Avoidance and Hazard Routing Mechanism for Intelligent Transport Network
NASA Astrophysics Data System (ADS)
Singh, Gurpreet; Gupta, Pooja; Wahab, Mohd Helmy Abd
2017-08-01
The smart vehicular ad-hoc network is the network that consists of vehicles for smooth movement and better management of the vehicular connectivity across the given network. This research paper aims to propose a set of solution for the VANETs consisting of the automatic driven vehicles, also called as the autonomous car. Such vehicular networks are always prone to collision due to the natural or un-natural reasons which must be solved before the large-scale deployment of the autonomous transport systems. The newly designed intelligent transport movement control mechanism is based upon the intelligent data propagation along with the vehicle collision and traffic jam prevention schema [8], which may help the future designs of smart cities to become more robust and less error-prone. In the proposed model, the focus is on designing a new dynamic and robust hazard routing protocol for intelligent vehicular networks for improvement of the overall performance in various aspects. It is expected to improve the overall transmission delay as well as the number of collisions or adversaries across the vehicular network zone.
Modular networks with delayed coupling: Synchronization and frequency control
NASA Astrophysics Data System (ADS)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
2014-07-01
We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.
Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.
Liu, Meiqin
2009-09-01
This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
Hybrid function projective synchronization in complex dynamical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng
2014-02-15
This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.
Ratchagit, Kreangkri
2007-10-01
In this paper, we derive a sufficient condition for asymptotic stability of the zero solution of delay-difference system of Hopfield neural networks in terms of certain matrix inequalities by using a discrete version of the Lyapunov second method. The result is applied to obtain new asymptotic stability condition for some class of delay-difference system such as delay-difference system of Hopfield neural networks with multiple delays in terms of certain matrix inequalities. Our results can be well suited for computational purposes.
Synchronization in oscillator networks with delayed coupling: a stability criterion.
Earl, Matthew G; Strogatz, Steven H
2003-03-01
We derive a stability criterion for the synchronous state in networks of identical phase oscillators with delayed coupling. The criterion applies to any network (whether regular or random, low dimensional or high dimensional, directed or undirected) in which each oscillator receives delayed signals from k others, where k is uniform for all oscillators.
How time delay and network design shape response patterns in biochemical negative feedback systems.
Börsch, Anastasiya; Schaber, Jörg
2016-08-24
Negative feedback in combination with time delay can bring about both sustained oscillations and adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative feedback shape characteristic response patterns with special emphasis on the role of time delay. To this end, we analyse generic two-dimensional delay differential equations describing the dynamics of biochemical signal-response networks. We investigate the influence of several design features on the stability of the model equilibrium, i.e., presence of auto-inhibition and/or mass conservation and the kind and/or strength of the delayed negative feedback. We show that auto-inhibition and mass conservation have a stabilizing effect, whereas increasing abruptness and decreasing feedback threshold have a de-stabilizing effect on the model equilibrium. Moreover, applying our theoretical analysis to the mammalian p53 system we show that an auto-inhibitory feedback can decouple period and amplitude of an oscillatory response, whereas the delayed feedback can not. Our theoretical framework provides insight into how time delay and design features of biochemical networks act together to elicit specific characteristic response patterns. Such insight is useful for constructing synthetic networks and controlling their behaviour in response to external stimulation.
Ergodic properties of spiking neuronal networks with delayed interactions
NASA Astrophysics Data System (ADS)
Palmigiano, Agostina; Wolf, Fred
The dynamical stability of neuronal networks, and the possibility of chaotic dynamics in the brain pose profound questions to the mechanisms underlying perception. Here we advance on the tractability of large neuronal networks of exactly solvable neuronal models with delayed pulse-coupled interactions. Pulse coupled delayed systems with an infinite dimensional phase space can be studied in equivalent systems of fixed and finite degrees of freedom by introducing a delayer variable for each neuron. A Jacobian of the equivalent system can be analytically obtained, and numerically evaluated. We find that depending on the action potential onset rapidness and the level of heterogeneities, the asynchronous irregular regime characteristic of balanced state networks loses stability with increasing delays to either a slow synchronous irregular or a fast synchronous irregular state. In networks of neurons with slow action potential onset, the transition to collective oscillations leads to an increase of the exponential rate of divergence of nearby trajectories and of the entropy production rate of the chaotic dynamics. The attractor dimension, instead of increasing linearly with increasing delay as reported in many other studies, decreases until eventually the network reaches full synchrony
NASA Astrophysics Data System (ADS)
Gong, Yubing; Xie, Huijuan
2017-09-01
Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.
A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks
NASA Technical Reports Server (NTRS)
Cui, Zhenqian
1999-01-01
With the development of high-speed networking technology, computer networks, including local-area networks (LANs), wide-area networks (WANs) and the Internet, are extending their traditional roles of carrying computer data. They are being used for Internet telephony, multimedia applications such as conferencing and video on demand, distributed simulations, and other real-time applications. LANs are even used for distributed real-time process control and computing as a cost-effective approach. Differing from traditional data transfer, these new classes of high-speed network applications (video, audio, real-time process control, and others) are delay sensitive. The usefulness of data depends not only on the correctness of received data, but also the time that data are received. In other words, these new classes of applications require networks to provide guaranteed services or quality of service (QoS). Quality of service can be defined by a set of parameters and reflects a user's expectation about the underlying network's behavior. Traditionally, distinct services are provided by different kinds of networks. Voice services are provided by telephone networks, video services are provided by cable networks, and data transfer services are provided by computer networks. A single network providing different services is called an integrated-services network.
Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.
Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2017-01-01
Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.
Defining Tolerance: Impacts of Delay and Disruption when Managing Challenged Networks
NASA Technical Reports Server (NTRS)
Birrane, Edward J. III; Burleigh, Scott C.; Cerf, Vint
2011-01-01
Challenged networks exhibit irregularities in their communication performance stemming from node mobility, power constraints, and impacts from the operating environment. These irregularities manifest as high signal propagation delay and frequent link disruption. Understanding those limits of link disruption and propagation delay beyond which core networking features fail is an ongoing area of research. Various wireless networking communities propose tools and techniques that address these phenomena. Emerging standardization activities within the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) look to build upon both this experience and scalability analysis. Successful research in this area is predicated upon identifying enablers for common communication functions (notably node discovery, duplex communication, state caching, and link negotiation) and how increased disruptions and delays affect their feasibility within the network. Networks that make fewer assumptions relating to these enablers provide more universal service. Specifically, reliance on node discovery and link negotiation results in network-specific operational concepts rather than scalable technical solutions. Fundamental to this debate are the definitions, assumptions, operational concepts, and anticipated scaling of these networks. This paper presents the commonalities and differences between delay and disruption tolerance, including support protocols and critical enablers. We present where and how these tolerances differ. We propose a set of use cases that must be accommodated by any standardized delay-tolerant network and discuss the implication of these on existing tool development.
Analysis of a Data Communication Network’s Performance under Varying Retransmission Disciplines
1990-09-01
The routing table is updated using delay information transmitted via congestion/routing up- date packets ( CRUP ) or through delay measurement...previous delay, plus or minus a threshold value, a CRUP is generated and flooded over the network. Upon receipt of a CRUP the ROUTING function up- dates...DDN topology is very large, accounting for the time delay for the full network to be updated, whereas adjacent PSN’s receive CRUP packets virtually
LMI designmethod for networked-based PID control
NASA Astrophysics Data System (ADS)
Souza, Fernando de Oliveira; Mozelli, Leonardo Amaral; de Oliveira, Maurício Carvalho; Palhares, Reinaldo Martinez
2016-10-01
In this paper, we propose a methodology for the design of networked PID controllers for second-order delayed processes using linear matrix inequalities. The proposed procedure takes into account time-varying delay on the plant, time-varying delays induced by the network and packed dropouts. The design is carried on entirely using a continuous-time model of the closed-loop system where time-varying delays are used to represent sampling and holding occurring in a discrete-time digital PID controller.
Expectancy of an open-book test decreases performance on a delayed closed-book test.
Agarwal, Pooja K; Roediger, Henry L
2011-11-01
Two experiments examined the influence of practice with, and the expectancy of, open-book tests (students viewed studied material while taking the test) versus closed-book tests (students completed the test without viewing the studied material) on delayed retention and transfer. Using GRE materials specifically designed for open-book testing, participants studied passages and then took initial open- or closed-book tests. Open-book testing led to better initial performance than closed-book testing, but on a delayed criterial (closed-book) test both types of testing produced similar retention after a two-day delay in Experiment 1. In Experiment 2 participants were informed in advance about the type of delayed criterial test to expect (open- or closed-book). Expecting an open-book test (relative to a closed-book test) decreased participants' time spent studying and their delayed test performance on closed-book comprehension and transfer tests, demonstrating that test expectancy can influence long-term learning. Expectancy of open-book tests may impair long-term retention and transfer compared to closed-book tests, despite superior initial performance on open-book tests and students' preference for open-book tests.
Global exponential stability of BAM neural networks with time-varying delays and diffusion terms
NASA Astrophysics Data System (ADS)
Wan, Li; Zhou, Qinghua
2007-11-01
The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established.
Channel access schemes and fiber optic configurations for integrated-services local area networks
NASA Astrophysics Data System (ADS)
Nassehi, M. Mehdi
1987-03-01
Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.
NASA Technical Reports Server (NTRS)
Nassehi, M. Mehdi
1987-01-01
Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.
Real-time Seismic Alert System of NIED
NASA Astrophysics Data System (ADS)
Horiuchi, S.; Fujinawa, Y.; Negishi, H.; Matsumoto, T.; Fujiwara, H.; Kunugi, T.; Hayashi, Y.
2001-12-01
An extensive seismic network has been constructed nationwide composed of hi-sensitivity seismographic network, broadband seismographic network and strong motion seismographic network. All these data from some 3,000 sites belonging to NIED, JMA and universities are to be accumulated and distributed through NIED to any scientists and engineering through INTERNET under the coordination of the National Seismic Research Committee of MEXT. As a practical application of those data we are now developing a real-time seismic alert information system for the purpose of providing short-term warning of imminent strong grounds motions from major earthquakes from several seconds to a few days. The contents of information are seismic focal parameters (several seconds), seismic fault plane solutions (some 10 seconds), after-shock activities (several minutes-a few days ). The fundamental fault parameters are used to build specific information at sites for particular users for use of triggering automated and /or half-automated responses. The most important application is an immediate estimate of expected shaking distribution and damages in a district using synthetic database and site effects for local governments to initial proper measures of hazard mitigation. Another application is estimation of arrival time and shaking strength at any individual site for human lives to be safeguarded. The system could also start an automatic electrical isolation and protection of computer systems, protection of hazardous chronic systems, transportation systems and so on. The information are corrected successively as seismic ground motion are received at a larger number of sites in time with the result that more accurate and more sophisticated earthquake information is transmitted to any user. Besides the rapid determination of seismic parameters, one of essential items in this alert system is the data transmission means. The data transmission is chosen to assure negligibly small delay of data transmission and inexpensive cost under the condition of very small data quantity. For the imminent information transmission the leased line is the most suitable because of short time delay of less than 0.1 second without any interference from other sources. But it is very expensive because of much infrequent occasions of hazardous earthquakes for particular users. Another means is to use the modified packet transfer communication. It is characterized by reasonable costs and small time delay of order in 1 second. For information transmission to several hundreds thousand of users, the satellite data broadcast would be one of practical solutions. Data are expected to reach with time loss of some 2 seconds including one-hop time delay of some 0.5 second to the satellite. The system will start to be experimented in 2002 for evaluation of the whole system including rapid seismic parameter calculations, data transmissions, automated processes and particular safeguard actions for several chosen users.
NASA Astrophysics Data System (ADS)
Kotegawa, Tatsuya
Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high robustness is achievable only in exchange of lower passenger travel and fuel burn efficiency. However, increase in the network density can mitigate this trade-off.
Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.
Wang, Leimin; Shen, Yi; Zhang, Guodong
Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.
Protocol for a Delay-Tolerant Data-Communication Network
NASA Technical Reports Server (NTRS)
Torgerson, Jordan; Hooke, Adrian; Burleigh, Scott; Fall, Kevin
2004-01-01
As its name partly indicates, the Delay-Tolerant Networking (DTN) Bundle Protocol is a protocol for delay-tolerant transmission of data via communication networks. This protocol was conceived as a result of studies of how to adapt Internet protocols so that Internet-like services could be provided across interplanetary distances in support of deep-space exploration. The protocol, and software to implement the protocol, is being developed in collaboration among experts at NASA's Jet Propulsion Laboratory and other institutions. No current Internet protocols can accommodate long transmission delay times or intermittent link connectivity. The DTN Bundle Protocol represents a departure from the standard Internet assumption that a continuous path is available from a host computer to a client computer: It provides for routing of data through networks that may be disjointed and may be characterized by long transmission delays. In addition to networks that include deepspace communication links, examples of such networks include terrestrial ones within which branches are temporarily disconnected. The protocol is based partly on the definition of a message-based overlay above the transport layers of the networks on which it is hosted.
Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi
2013-12-19
Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation.
Song, Qiang; Liu, Fang; Wen, Guanghui; Cao, Jinde; Yang, Xinsong
2017-04-24
This paper considers the position-based consensus in a network of agents with double-integrator dynamics and directed topology. Two types of distributed observer algorithms are proposed to solve the consensus problem by utilizing continuous and intermittent position measurements, respectively, where each observer does not interact with any other observers. For the case of continuous communication between network agents, some convergence conditions are derived for reaching consensus in the network with a single constant delay or multiple time-varying delays on the basis of the eigenvalue analysis and the descriptor method. When the network agents can only obtain intermittent position data from local neighbors at discrete time instants, the consensus in the network without time delay or with nonuniform delays is investigated by using the Wirtinger's inequality and the delayed-input approach. Numerical examples are given to illustrate the theoretical analysis.
An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation.
Wang, Runchun; Cohen, Gregory; Stiefel, Klaus M; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, André
2013-01-01
We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes.
NASA Astrophysics Data System (ADS)
Xie, Huijuan; Gong, Yubing; Wang, Baoying
In this paper, we numerically study the effect of channel noise on synchronization transitions induced by time delay in adaptive scale-free Hodgkin-Huxley neuronal networks with spike-timing-dependent plasticity (STDP). It is found that synchronization transitions by time delay vary as channel noise intensity is changed and become most pronounced when channel noise intensity is optimal. This phenomenon depends on STDP and network average degree, and it can be either enhanced or suppressed as network average degree increases depending on channel noise intensity. These results show that there are optimal channel noise and network average degree that can enhance the synchronization transitions by time delay in the adaptive neuronal networks. These findings could be helpful for better understanding of the regulation effect of channel noise on synchronization of neuronal networks. They could find potential implications for information transmission in neural systems.
Delay decomposition at a single server queue with constant service time and multiple inputs
NASA Technical Reports Server (NTRS)
Ziegler, C.; Schilling, D. L.
1978-01-01
Two network consisting of single server queues, each with a constant service time, are considered. The external inputs to each network are assumed to follow some general probability distribution. Several interesting equivalencies that exist between the two networks considered are derived. This leads to the introduction of an important concept in delay decomposition. It is shown that the waiting time experienced by a customer can be decomposed into two basic components called self-delay and interference delay.
Systemic delay propagation in the US airport network
Fleurquin, Pablo; Ramasco, José J.; Eguiluz, Victor M.
2013-01-01
Technologically driven transport systems are characterized by a networked structure connecting operation centers and by a dynamics ruled by pre-established schedules. Schedules impose serious constraints on the timing of the operations, condition the allocation of resources and define a baseline to assess system performance. Here we study the performance of an air transportation system in terms of delays. Technical, operational or meteorological issues affecting some flights give rise to primary delays. When operations continue, such delays can propagate, magnify and eventually involve a significant part of the network. We define metrics able to quantify the level of network congestion and introduce a model that reproduces the delay propagation patterns observed in the U.S. performance data. Our results indicate that there is a non-negligible risk of systemic instability even under normal operating conditions. We also identify passenger and crew connectivity as the most relevant internal factor contributing to delay spreading. PMID:23362459
Velmurugan, G; Rakkiyappan, R; Vembarasan, V; Cao, Jinde; Alsaedi, Ahmed
2017-02-01
As we know, the notion of dissipativity is an important dynamical property of neural networks. Thus, the analysis of dissipativity of neural networks with time delay is becoming more and more important in the research field. In this paper, the authors establish a class of fractional-order complex-valued neural networks (FCVNNs) with time delay, and intensively study the problem of dissipativity, as well as global asymptotic stability of the considered FCVNNs with time delay. Based on the fractional Halanay inequality and suitable Lyapunov functions, some new sufficient conditions are obtained that guarantee the dissipativity of FCVNNs with time delay. Moreover, some sufficient conditions are derived in order to ensure the global asymptotic stability of the addressed FCVNNs with time delay. Finally, two numerical simulations are posed to ensure that the attention of our main results are valuable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Source Localization Using Wireless Sensor Networks
2006-06-01
performance of the hybrid SI/ML estimation method. A wireless sensor network is simulated in NS-2 to study the network throughput, delay and jitter...indicate that the wireless sensor network has low delay and can support fast information exchange needed in counter-sniper applications.
A new delay-independent condition for global robust stability of neural networks with time delays.
Samli, Ruya
2015-06-01
This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Li; Zhou, Qinghua
2007-10-01
The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.
Reliability and synchronization in a delay-coupled neuronal network with synaptic plasticity
NASA Astrophysics Data System (ADS)
Pérez, Toni; Uchida, Atsushi
2011-06-01
We investigate the characteristics of reliability and synchronization of a neuronal network of delay-coupled integrate and fire neurons. Reliability and synchronization appear in separated regions of the phase space of the parameters considered. The effect of including synaptic plasticity and different delay values between the connections are also considered. We found that plasticity strongly changes the characteristics of reliability and synchronization in the parameter space of the coupling strength and the drive amplitude for the neuronal network. We also found that delay does not affect the reliability of the network but has a determinant influence on the synchronization of the neurons.
Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay
NASA Astrophysics Data System (ADS)
Yu, Haitao; Guo, Xinmeng; Wang, Jiang
2017-01-01
The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.
Expected Time of Test and the Acquisition of Knowledge.
ERIC Educational Resources Information Center
D'Ydewalle, G.; And Others
1981-01-01
Subjects from four physics or literature classes expected a delayed or an immediate test after their class. All were tested immediately. Male subjects expecting the immediate test performed better than males expecting a delayed test. Absence of interaction effects with personality measurement suggested the inadequacy of the goal gradient…
Event-based simulation of networks with pulse delayed coupling
NASA Astrophysics Data System (ADS)
Klinshov, Vladimir; Nekorkin, Vladimir
2017-10-01
Pulse-mediated interactions are common in networks of different nature. Here we develop a general framework for simulation of networks with pulse delayed coupling. We introduce the discrete map governing the dynamics of such networks and describe the computation algorithm for its numerical simulation.
Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.
Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai
2017-08-01
This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era. © 2016 Society for Risk Analysis.
Integration of FMIPv6 in HMIPv6 to Improve Hand-over Performance
NASA Astrophysics Data System (ADS)
Patil, Dipali P.; Patil, G. A.
2010-11-01
Mobile users move frequently between networks, as they stay connected to the Internet. Thus, as mobility increases across networks, handovers will significantly impact the quality of the connection and user application. Handover performance is very important when evaluating IP mobility protocols. Since handover request are driven by several needs such as cost reduction criteria, network resource optimization and service related requirements. Current works to support seamless mobility in IPv6 network are classified into HMIPv6 and FMIPv6. These two approaches have pros and cons respectively and are being standardized independently in IETF. If one can integrate properly these two approaches, it is expected that the one can get more effective protocols that can provide better handover performance. This paper integrates FHMIPv6 in HMIPv6 (F-HMIPv6) so as to provide effectively fast handover on the hierarchical Mobile IPv6. The simulation performed using Ns-2 extensions to show that a performance of proposed system is better in terms of packet loss and hand-over delay.
Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things.
Liu, Xiao; Liu, Anfeng; Huang, Changqin
2017-01-12
Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%-53.684% for a delay-sensitive event and reduce the communication costs by 5%-22.308% for interesting events, and reduce the network lifetime by about 28.713%.
Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things
Liu, Xiao; Liu, Anfeng; Huang, Changqin
2017-01-01
Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%–53.684% for a delay-sensitive event and reduce the communication costs by 5%–22.308% for interesting events, and reduce the network lifetime by about 28.713%. PMID:28085097
Capacity of Heterogeneous Mobile Wireless Networks with D-Delay Transmission Strategy.
Wu, Feng; Zhu, Jiang; Xi, Zhipeng; Gao, Kai
2016-03-25
This paper investigates the capacity problem of heterogeneous wireless networks in mobility scenarios. A heterogeneous network model which consists of n normal nodes and m helping nodes is proposed. Moreover, we propose a D-delay transmission strategy to ensure that every packet can be delivered to its destination nodes with limited delay. Different from most existing network schemes, our network model has a novel two-tier architecture. The existence of helping nodes greatly improves the network capacity. Four types of mobile networks are studied in this paper: i.i.d. fast mobility model and slow mobility model in two-dimensional space, i.i.d. fast mobility model and slow mobility model in three-dimensional space. Using the virtual channel model, we present an intuitive analysis of the capacity of two-dimensional mobile networks and three-dimensional mobile networks, respectively. Given a delay constraint D, we derive the asymptotic expressions for the capacity of the four types of mobile networks. Furthermore, the impact of D and m to the capacity of the whole network is analyzed. Our findings provide great guidance for the future design of the next generation of networks.
Jeong, J-W; Sundaram, S; Behen, M E; Chugani, H T
2016-06-01
Pure speech delay is a common developmental disorder which, according to some estimates, affects 5%-8% of the population. Speech delay may not only be an isolated condition but also can be part of a broader condition such as global developmental delay. The present study investigated whether diffusion tensor imaging tractography-based connectome can differentiate global developmental delay from speech delay in young children. Twelve children with pure speech delay (39.1 ± 20.9 months of age, 9 boys), 14 children with global developmental delay (39.3 ± 18.2 months of age, 12 boys), and 10 children with typical development (38.5 ± 20.5 months of age, 7 boys) underwent 3T DTI. For each subject, whole-brain connectome analysis was performed by using 116 cortical ROIs. The following network metrics were measured at individual regions: strength (number of the shortest paths), efficiency (measures of global and local integration), cluster coefficient (a measure of local aggregation), and betweeness (a measure of centrality). Compared with typical development, global and local efficiency were significantly reduced in both global developmental delay and speech delay (P < .0001). The nodal strength of the cognitive network is reduced in global developmental delay, whereas the nodal strength of the language network is reduced in speech delay. This finding resulted in a high accuracy of >83% ± 4% to discriminate global developmental delay from speech delay. The network abnormalities identified in the present study may underlie the neurocognitive and behavioral consequences commonly identified in children with global developmental delay and speech delay. Further validation studies in larger samples are required. © 2016 by American Journal of Neuroradiology.
Discrete-time bidirectional associative memory neural networks with variable delays
NASA Astrophysics Data System (ADS)
Liang, variable delays [rapid communication] J.; Cao, J.; Ho, D. W. C.
2005-02-01
Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks.
Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction
NASA Astrophysics Data System (ADS)
Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar
2016-07-01
We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey-Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart-Landau and Van der Pol oscillators.
Passivity analysis of memristor-based impulsive inertial neural networks with time-varying delays.
Wan, Peng; Jian, Jigui
2018-03-01
This paper focuses on delay-dependent passivity analysis for a class of memristive impulsive inertial neural networks with time-varying delays. By choosing proper variable transformation, the memristive inertial neural networks can be rewritten as first-order differential equations. The memristive model presented here is regarded as a switching system rather than employing the theory of differential inclusion and set-value map. Based on matrix inequality and Lyapunov-Krasovskii functional method, several delay-dependent passivity conditions are obtained to ascertain the passivity of the addressed networks. In addition, the results obtained here contain those on the passivity for the addressed networks without impulse effects as special cases and can also be generalized to other neural networks with more complex pulse interference. Finally, one numerical example is presented to show the validity of the obtained results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.
1993-08-01
Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.
Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi
2014-01-01
Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation. PMID:24451455
Pattern reverberation in networks of excitable systems with connection delays
NASA Astrophysics Data System (ADS)
Lücken, Leonhard; Rosin, David P.; Worlitzer, Vasco M.; Yanchuk, Serhiy
2017-01-01
We consider the recurrent pulse-coupled networks of excitable elements with delayed connections, which are inspired by the biological neural networks. If the delays are tuned appropriately, the network can either stay in the steady resting state, or alternatively, exhibit a desired spiking pattern. It is shown that such a network can be used as a pattern-recognition system. More specifically, the application of the correct pattern as an external input to the network leads to a self-sustained reverberation of the encoded pattern. In terms of the coupling structure, the tolerance and the refractory time of the individual systems, we determine the conditions for the uniqueness of the sustained activity, i.e., for the functionality of the network as an unambiguous pattern detector. We point out the relation of the considered systems with cyclic polychronous groups and show how the assumed delay configurations may arise in a self-organized manner when a spike-time dependent plasticity of the connection delays is assumed. As excitable elements, we employ the simplistic coincidence detector models as well as the Hodgkin-Huxley neuron models. Moreover, the system is implemented experimentally on a Field-Programmable Gate Array.
Passivity of memristive BAM neural networks with leakage and additive time-varying delays
NASA Astrophysics Data System (ADS)
Wang, Weiping; Wang, Meiqi; Luo, Xiong; Li, Lixiang; Zhao, Wenbing; Liu, Linlin; Ping, Yuan
2018-02-01
This paper investigates the passivity of memristive bidirectional associate memory neural networks (MBAMNNs) with leakage and additive time-varying delays. Based on some useful inequalities and appropriate Lyapunov-Krasovskii functionals (LKFs), several delay-dependent conditions for passivity performance are obtained in linear matrix inequalities (LMIs). Moreover, the leakage delays as well as additive delays are considered separately. Finally, numerical simulations are provided to demonstrate the feasibility of the theoretical results.
Stability analysis and synchronization in discrete-time complex networks with delayed coupling
NASA Astrophysics Data System (ADS)
Cheng, Ranran; Peng, Mingshu; Yu, Weibin; Sun, Bo; Yu, Jinchen
2013-12-01
A new network of coupled maps is proposed in which the connections between units involve no delays but the intra-neural communication does, whereas in the work of Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], the focus is on information processing delayed by the inter-neural communication. We show that the synchronization of the network depends on not only the intrinsic dynamical features and inter-connection topology (characterized by the spectrum of the graph Laplacian) but also the delays and the coupling strength. There are two main findings: (i) the more neighbours, the easier to be synchronized; (ii) odd delays are easier to be synchronized than even ones. In addition, compared with those discussed by Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], our model has a better synchronizability for regular networks and small-world variants.
Capacity-Delay Trade-Off in Collaborative Hybrid Ad-Hoc Networks with Coverage Sensing.
Chen, Lingyu; Luo, Wenbin; Liu, Chen; Hong, Xuemin; Shi, Jianghong
2017-01-26
The integration of ad hoc device-to-device (D2D) communications and open-access small cells can result in a networking paradigm called hybrid the ad hoc network, which is particularly promising in delivering delay-tolerant data. The capacity-delay performance of hybrid ad hoc networks has been studied extensively under a popular framework called scaling law analysis. These studies, however, do not take into account aspects of interference accumulation and queueing delay and, therefore, may lead to over-optimistic results. Moreover, focusing on the average measures, existing works fail to give finer-grained insights into the distribution of delays. This paper proposes an alternative analytical framework based on queueing theoretic models and physical interference models. We apply this framework to study the capacity-delay performance of a collaborative cellular D2D network with coverage sensing and two-hop relay. The new framework allows us to fully characterize the delay distribution in the transform domain and pinpoint the impacts of coverage sensing, user and base station densities, transmit power, user mobility and packet size on the capacity-delay trade-off. We show that under the condition of queueing equilibrium, the maximum throughput capacity per device saturates to an upper bound of 0.7239 λ b / λ u bits/s/Hz, where λ b and λ u are the densities of base stations and mobile users, respectively.
Capacity-Delay Trade-Off in Collaborative Hybrid Ad-Hoc Networks with Coverage Sensing
Chen, Lingyu; Luo, Wenbin; Liu, Chen; Hong, Xuemin; Shi, Jianghong
2017-01-01
The integration of ad hoc device-to-device (D2D) communications and open-access small cells can result in a networking paradigm called hybrid the ad hoc network, which is particularly promising in delivering delay-tolerant data. The capacity-delay performance of hybrid ad hoc networks has been studied extensively under a popular framework called scaling law analysis. These studies, however, do not take into account aspects of interference accumulation and queueing delay and, therefore, may lead to over-optimistic results. Moreover, focusing on the average measures, existing works fail to give finer-grained insights into the distribution of delays. This paper proposes an alternative analytical framework based on queueing theoretic models and physical interference models. We apply this framework to study the capacity-delay performance of a collaborative cellular D2D network with coverage sensing and two-hop relay. The new framework allows us to fully characterize the delay distribution in the transform domain and pinpoint the impacts of coverage sensing, user and base station densities, transmit power, user mobility and packet size on the capacity-delay trade-off. We show that under the condition of queueing equilibrium, the maximum throughput capacity per device saturates to an upper bound of 0.7239 λb/λu bits/s/Hz, where λb and λu are the densities of base stations and mobile users, respectively. PMID:28134769
Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua
2011-01-01
Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.
Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua
2011-01-01
Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay. PMID:22319385
NASA Astrophysics Data System (ADS)
Huang, Jinhui; Liu, Wenxiang; Su, Yingxue; Wang, Feixue
2018-02-01
Space networks, in which connectivity is deterministic and intermittent, can be modeled by delay/disruption tolerant networks. In space delay/disruption tolerant networks, a packet is usually transmitted from the source node to the destination node indirectly via a series of relay nodes. If anyone of the nodes in the path becomes congested, the packet will be dropped due to buffer overflow. One of the main reasons behind congestion is the unbalanced network traffic distribution. We propose a load balancing strategy which takes the congestion status of both the local node and relay nodes into account. The congestion status, together with the end-to-end delay, is used in the routing selection. A lookup-table enhancement is also proposed. The off-line computation and the on-line adjustment are combined together to make a more precise estimate of the end-to-end delay while at the same time reducing the onboard computation. Simulation results show that the proposed strategy helps to distribute network traffic more evenly and therefore reduces the packet drop ratio. In addition, the average delay is also decreased in most cases. The lookup-table enhancement provides a compromise between the need for better communication performance and the desire for less onboard computation.
Synchronization properties of network motifs: Influence of coupling delay and symmetry
NASA Astrophysics Data System (ADS)
D'Huys, O.; Vicente, R.; Erneux, T.; Danckaert, J.; Fischer, I.
2008-09-01
We investigate the effect of coupling delays on the synchronization properties of several network motifs. In particular, we analyze the synchronization patterns of unidirectionally coupled rings, bidirectionally coupled rings, and open chains of Kuramoto oscillators. Our approach includes an analytical and semianalytical study of the existence and stability of different in-phase and out-of-phase periodic solutions, complemented by numerical simulations. The delay is found to act differently on networks possessing different symmetries. While for the unidirectionally coupled ring the coupling delay is mainly observed to induce multistability, its effect on bidirectionally coupled rings is to enhance the most symmetric solution. We also study the influence of feedback and conclude that it also promotes the in-phase solution of the coupled oscillators. We finally discuss the relation between our theoretical results on delay-coupled Kuramoto oscillators and the synchronization properties of networks consisting of real-world delay-coupled oscillators, such as semiconductor laser arrays and neuronal circuits.
Fluegge, Kyle; Malone, LaShaunda L; Nsereko, Mary; Okware, Brenda; Wejse, Christian; Kisingo, Hussein; Mupere, Ezekiel; Boom, W Henry; Stein, Catherine M
2018-06-26
Appraisal delay is the time a patient takes to consider a symptom as not only noticeable, but a sign of illness. The study's objective was to determine the association between appraisal delay in seeking tuberculosis (TB) treatment and geographic distance measured by network travel (driving and pedestrian) time (in minutes) and distance (Euclidean and self-reported) (in kilometers) and to identify other risk factors from selected covariates and how they modify the core association between delay and distance. This was part of a longitudinal cohort study known as the Kawempe Community Health Study based in Kampala, Uganda. The study enrolled households from April 2002 to July 2012. Multivariable interval regression with multiplicative heteroscedasticity was used to assess the impact of time and distance on delay. The delay interval outcome was defined using a comprehensive set of 28 possible self-reported symptoms. The main independent variables were network travel time (in minutes) and Euclidean distance (in kilometers). Other covariates were organized according to the Andersen utilization conceptual framework. A total of 838 patients with both distance and delay data were included in the network analysis. Bivariate analyses did not reveal a significant association of any distance metric with the delay outcome. However, adjusting for patient characteristics and cavitary disease status, the multivariable model indicated that each minute of driving time to the clinic significantly (p = 0.02) and positively predicted 0.25 days' delay. At the median distance value of 47 min, this represented an additional delay of about 12 (95% CI: [3, 21]) days to the mean of 40 days (95% CI: [25, 56]). Increasing Euclidean distance significantly predicted (p = 0.02) reduced variance in the delay outcome, thereby increasing precision of the mean delay estimate. At the median Euclidean distance of 2.8 km, the variance in the delay was reduced by more than 25%. Of the four geographic distance measures, network travel driving time was a better and more robust predictor of mean delay in this setting. Including network travel driving time with other risk factors may be important in identifying populations especially vulnerable to delay.
Wu, Wei; Chen, Tianping
2009-12-01
Fireflies, as one of the most spectacular examples of synchronization in nature, have been investigated widely. In 1990, Mirollo and Strogatz proposed a pulse-coupled oscillator model to explain the synchronization of South East Asian fireflies (Pteroptyx malaccae). However, transmission delays were not considered in their model. In fact, when transmission delays are introduced, the dynamic behaviors of pulse-coupled networks change a lot. In this paper, pulse-coupled oscillator networks with delayed excitatory coupling are studied. A concept of synchronization, named weak asymptotic synchronization, which is weaker than asymptotic synchronization, is proposed. We prove that for pulse-coupled oscillator networks with delayed excitatory coupling, weak asymptotic synchronization cannot occur.
NASA Technical Reports Server (NTRS)
Luck, R.; Ray, A.
1988-01-01
A method for compensating the effects of network-induced delays in integrated communication and control systems (ICCS) is proposed, and a finite-dimensional time-invariant ICCS model is developed. The problem of analyzing systems with time-varying and stochastic delays is circumvented by the application of a deterministic observer. For the case of controller-to-actuator delays, the observed design must rely on an extended model which represents the delays as additional states.
Complex Dynamics of Delay-Coupled Neural Networks
NASA Astrophysics Data System (ADS)
Mao, Xiaochen
2016-09-01
This paper reveals the complicated dynamics of a delay-coupled system that consists of a pair of sub-networks and multiple bidirectional couplings. Time delays are introduced into the internal connections and network-couplings, respectively. The stability and instability of the coupled network are discussed. The sufficient conditions for the existence of oscillations are given. Case studies of numerical simulations are given to validate the analytical results. Interesting and complicated neuronal activities are observed numerically, such as rest states, periodic oscillations, multiple switches of rest states and oscillations, and the coexistence of different types of oscillations.
Adaptive logical stochastic resonance in time-delayed synthetic genetic networks
NASA Astrophysics Data System (ADS)
Zhang, Lei; Zheng, Wenbin; Song, Aiguo
2018-04-01
In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.
High efficiency video coding for ultrasound video communication in m-health systems.
Panayides, A; Antoniou, Z; Pattichis, M S; Pattichis, C S; Constantinides, A G
2012-01-01
Emerging high efficiency video compression methods and wider availability of wireless network infrastructure will significantly advance existing m-health applications. For medical video communications, the emerging video compression and network standards support low-delay and high-resolution video transmission, at the clinically acquired resolution and frame rates. Such advances are expected to further promote the adoption of m-health systems for remote diagnosis and emergency incidents in daily clinical practice. This paper compares the performance of the emerging high efficiency video coding (HEVC) standard to the current state-of-the-art H.264/AVC standard. The experimental evaluation, based on five atherosclerotic plaque ultrasound videos encoded at QCIF, CIF, and 4CIF resolutions demonstrates that 50% reductions in bitrate requirements is possible for equivalent clinical quality.
Time signal distribution in communication networks based on synchronous digital hierarchy
NASA Technical Reports Server (NTRS)
Imaoka, Atsushi; Kihara, Masami
1993-01-01
A new method that uses round-trip paths to accurately measure transmission delay for time synchronization is proposed. The performance of the method in Synchronous Digital Hierarchy networks is discussed. The feature of this method is that it separately measures the initial round trip path delay and the variations in round-trip path delay. The delay generated in SDH equipment is determined by measuring the initial round-trip path delay. In an experiment with actual SDH equipment, the error of initial delay measurement was suppressed to 30ns.
Xiao, Min; Zheng, Wei Xing; Cao, Jinde
2013-01-01
Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.
Kerr, Robert R; Burkitt, Anthony N; Thomas, Doreen A; Gilson, Matthieu; Grayden, David B
2013-01-01
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.
Kerr, Robert R.; Burkitt, Anthony N.; Thomas, Doreen A.; Gilson, Matthieu; Grayden, David B.
2013-01-01
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem. PMID:23408878
Cai, Zuowei; Huang, Lihong; Zhang, Lingling
2015-05-01
This paper investigates the problem of exponential synchronization of time-varying delayed neural networks with discontinuous neuron activations. Under the extended Filippov differential inclusion framework, by designing discontinuous state-feedback controller and using some analytic techniques, new testable algebraic criteria are obtained to realize two different kinds of global exponential synchronization of the drive-response system. Moreover, we give the estimated rate of exponential synchronization which depends on the delays and system parameters. The obtained results extend some previous works on synchronization of delayed neural networks not only with continuous activations but also with discontinuous activations. Finally, numerical examples are provided to show the correctness of our analysis via computer simulations. Our method and theoretical results have a leading significance in the design of synchronized neural network circuits involving discontinuous factors and time-varying delays. Copyright © 2015 Elsevier Ltd. All rights reserved.
Back-propagation learning of infinite-dimensional dynamical systems.
Tokuda, Isao; Tokunaga, Ryuji; Aihara, Kazuyuki
2003-10-01
This paper presents numerical studies of applying back-propagation learning to a delayed recurrent neural network (DRNN). The DRNN is a continuous-time recurrent neural network having time delayed feedbacks and the back-propagation learning is to teach spatio-temporal dynamics to the DRNN. Since the time-delays make the dynamics of the DRNN infinite-dimensional, the learning algorithm and the learning capability of the DRNN are different from those of the ordinary recurrent neural network (ORNN) having no time-delays. First, two types of learning algorithms are developed for a class of DRNNs. Then, using chaotic signals generated from the Mackey-Glass equation and the Rössler equations, learning capability of the DRNN is examined. Comparing the learning algorithms, learning capability, and robustness against noise of the DRNN with those of the ORNN and time delay neural network, advantages as well as disadvantages of the DRNN are investigated.
Convergence behavior of delayed discrete cellular neural network without periodic coefficients.
Wang, Jinling; Jiang, Haijun; Hu, Cheng; Ma, Tianlong
2014-05-01
In this paper, we study convergence behaviors of delayed discrete cellular neural networks without periodic coefficients. Some sufficient conditions are derived to ensure all solutions of delayed discrete cellular neural network without periodic coefficients converge to a periodic function, by applying mathematical analysis techniques and the properties of inequalities. Finally, some examples showing the effectiveness of the provided criterion are given. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robust stability for stochastic bidirectional associative memory neural networks with time delays
NASA Astrophysics Data System (ADS)
Shu, H. S.; Lv, Z. W.; Wei, G. L.
2008-02-01
In this paper, the asymptotic stability is considered for a class of uncertain stochastic bidirectional associative memory neural networks with time delays and parameter uncertainties. The delays are time-invariant and the uncertainties are norm-bounded that enter into all network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov-Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed criteria.
Incorporating time-delays in S-System model for reverse engineering genetic networks.
Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan
2013-06-18
In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in Escherichia coli show a significant improvement compared with other state-of-the-art approaches for GRN modeling.
NASA Astrophysics Data System (ADS)
Wei, Pei; Gu, Rentao; Ji, Yuefeng
2014-06-01
As an innovative and promising technology, network coding has been introduced to passive optical networks (PON) in recent years to support inter optical network unit (ONU) communication, yet the signaling process and dynamic bandwidth allocation (DBA) in PON with network coding (NC-PON) still need further study. Thus, we propose a joint signaling and DBA scheme for efficiently supporting differentiated services of inter ONU communication in NC-PON. In the proposed joint scheme, the signaling process lays the foundation to fulfill network coding in PON, and it can not only avoid the potential threat to downstream security in previous schemes but also be suitable for the proposed hybrid dynamic bandwidth allocation (HDBA) scheme. In HDBA, a DBA cycle is divided into two sub-cycles for applying different coding, scheduling and bandwidth allocation strategies to differentiated classes of services. Besides, as network traffic load varies, the entire upstream transmission window for all REPORT messages slides accordingly, leaving the transmission time of one or two sub-cycles to overlap with the bandwidth allocation calculation time at the optical line terminal (the OLT), so that the upstream idle time can be efficiently eliminated. Performance evaluation results validate that compared with the existing two DBA algorithms deployed in NC-PON, HDBA demonstrates the best quality of service (QoS) support in terms of delay for all classes of services, especially guarantees the end-to-end delay bound of high class services. Specifically, HDBA can eliminate queuing delay and scheduling delay of high class services, reduce those of lower class services by at least 20%, and reduce the average end-to-end delay of all services over 50%. Moreover, HDBA also achieves the maximum delay fairness between coded and uncoded lower class services, and medium delay fairness for high class services.
Compensation of distributed delays in integrated communication and control systems
NASA Technical Reports Server (NTRS)
Ray, Asok; Luck, Rogelio
1991-01-01
The concept, analysis, implementation, and verification of a method for compensating delays that are distributed between the sensors, controller, and actuators within a control loop are discussed. With the objective of mitigating the detrimental effects of these network induced delays, a predictor-controller algorithm was formulated and analyzed. Robustness of the delay compensation algorithm was investigated relative to parametric uncertainties in plant modeling. The delay compensator was experimentally verified on an IEEE 802.4 network testbed for velocity control of a DC servomotor.
Space Link Extension Protocol Emulation for High-Throughput, High-Latency Network Connections
NASA Technical Reports Server (NTRS)
Tchorowski, Nicole; Murawski, Robert
2014-01-01
New space missions require higher data rates and new protocols to meet these requirements. These high data rate space communication links push the limitations of not only the space communication links, but of the ground communication networks and protocols which forward user data to remote ground stations (GS) for transmission. The Consultative Committee for Space Data Systems, (CCSDS) Space Link Extension (SLE) standard protocol is one protocol that has been proposed for use by the NASA Space Network (SN) Ground Segment Sustainment (SGSS) program. New protocol implementations must be carefully tested to ensure that they provide the required functionality, especially because of the remote nature of spacecraft. The SLE protocol standard has been tested in the NASA Glenn Research Center's SCENIC Emulation Lab in order to observe its operation under realistic network delay conditions. More specifically, the delay between then NASA Integrated Services Network (NISN) and spacecraft has been emulated. The round trip time (RTT) delay for the continental NISN network has been shown to be up to 120ms; as such the SLE protocol was tested with network delays ranging from 0ms to 200ms. Both a base network condition and an SLE connection were tested with these RTT delays, and the reaction of both network tests to the delay conditions were recorded. Throughput for both of these links was set at 1.2Gbps. The results will show that, in the presence of realistic network delay, the SLE link throughput is significantly reduced while the base network throughput however remained at the 1.2Gbps specification. The decrease in SLE throughput has been attributed to the implementation's use of blocking calls. The decrease in throughput is not acceptable for high data rate links, as the link requires constant data a flow in order for spacecraft and ground radios to stay synchronized, unless significant data is queued a the ground station. In cases where queuing the data is not an option, such as during real time transmissions, the SLE implementation cannot support high data rate communication.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
Jin, Zhigang; Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei
2017-07-19
Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20-25% compared with a classic lifetime-extended routing protocol (QELAR).
Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei
2017-01-01
Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20–25% compared with a classic lifetime-extended routing protocol (QELAR). PMID:28753951
NASA Astrophysics Data System (ADS)
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Thangaraj, P.
2013-02-01
This paper addresses the problem of passivity analysis issue for a class of fuzzy bidirectional associative memory (BAM) neural networks with Markovian jumping parameters and time varying delays. A set of sufficient conditions for the passiveness of the considered fuzzy BAM neural network model is derived in terms of linear matrix inequalities by using the delay fractioning technique together with the Lyapunov function approach. In addition, the uncertainties are inevitable in neural networks because of the existence of modeling errors and external disturbance. Further, this result is extended to study the robust passivity criteria for uncertain fuzzy BAM neural networks with time varying delays and uncertainties. These criteria are expressed in the form of linear matrix inequalities (LMIs), which can be efficiently solved via standard numerical software. Two numerical examples are provided to demonstrate the effectiveness of the obtained results.
Research on low-latency MAC protocols for wireless sensor networks
NASA Astrophysics Data System (ADS)
He, Chenguang; Sha, Xuejun; Lee, Chankil
2007-11-01
Energy-efficient should not be the only design goal in MAC protocols for wireless sensor networks, which involve the use of battery-operated computing and sensing devices. Low-latency operation becomes the same important as energy-efficient in the case that the traffic load is very heavy or the real-time constrain is used in applications like tracking or locating. This paper introduces some causes of traditional time delays which are inherent in a multi-hops network using existing WSN MAC protocols, illuminates the importance of low-latency MAC design for wireless sensor networks, and presents three MACs as examples of low-latency protocols designed specially for sleep delay, wait delay and wakeup delay in wireless sensor networks, respectively. The paper also discusses design trade-offs with emphasis on low-latency and points out their advantages and disadvantages, together with some design considerations and suggestions for MAC protocols for future applications and researches.
Wang, Dongshu; Huang, Lihong
2014-03-01
In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Arik, Sabri
2006-02-01
This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.
NASA Astrophysics Data System (ADS)
Wu, Wei; Cui, Bao-Tong
2007-07-01
In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.
NASA Astrophysics Data System (ADS)
Irmeilyana, Puspita, Fitri Maya; Indrawati
2016-02-01
The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, R.G.
Much controversy surrounds government regulation of routing and scheduling of Hazardous Materials Transportation (HMT). Increases in operating costs must be balanced against expected benefits from local HMT bans and curfews when promulgating or preempting HMT regulations. Algorithmic approaches for evaluating HMT routing and scheduling regulatory policy are described. A review of current US HMT regulatory policy is presented to provide a context for the analysis. Next, a multiobjective shortest path algorithm to find the set of efficient routes under conflicting objectives is presented. This algorithm generates all efficient routes under any partial ordering in a single pass through the network.more » Also, scheduling algorithms are presented to estimate the travel time delay due to HMT curfews along a route. Algorithms are presented assuming either deterministic or stochastic travel times between curfew cities and also possible rerouting to avoid such cities. These algorithms are applied to the case study of US highway transport of spent nuclear fuel from reactors to permanent repositories. Two data sets were used. One data set included the US Interstate Highway System (IHS) network with reactor locations, possible repository sites, and 150 heavily populated areas (HPAs). The other data set contained estimates of the population residing with 0.5 miles of the IHS and the Eastern US. Curfew delay is dramatically reduced by optimally scheduling departure times unless inter-HPA travel times are highly uncertain. Rerouting shipments to avoid HPAs is a less efficient approach to reducing delay.« less
NASA Astrophysics Data System (ADS)
Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.
2018-04-01
The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.
Feng, Cun-Fang; Xu, Xin-Jian; Wang, Sheng-Jun; Wang, Ying-Hai
2008-06-01
We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.
1989-01-01
Errors from a number of sources in astrometric very long baseline interferometry (VLBI) have been reduced in recent years through a variety of methods of calibration and modeling. Such reductions have led to a situation in which the extended structure of the natural radio sources used in VLBI is a significant error source in the effort to improve the accuracy of the radio reference frame. In the past, work has been done on individual radio sources to establish the magnitude of the errors caused by their particular structures. The results of calculations on 26 radio sources are reported in which an effort is made to determine the typical delay and delay-rate errors for a number of sources having different types of structure. It is found that for single observations of the types of radio sources present in astrometric catalogs, group-delay and phase-delay scatter in the 50 to 100 psec range due to source structure can be expected at 8.4 GHz on the intercontinental baselines available in the Deep Space Network (DSN). Delay-rate scatter of approx. 5 x 10(exp -15) sec sec(exp -1) (or approx. 0.002 mm sec (exp -1) is also expected. If such errors mapped directly into source position errors, they would correspond to position uncertainties of approx. 2 to 5 nrad, similar to the best position determinations in the current JPL VLBI catalog. With the advent of wider bandwidth VLBI systems on the large DSN antennas, the system noise will be low enough so that the structure-induced errors will be a significant part of the error budget. Several possibilities for reducing the structure errors are discussed briefly, although it is likely that considerable effort will have to be devoted to the structure problem in order to reduce the typical error by a factor of two or more.
Control of epidemics on complex networks: Effectiveness of delayed isolation
NASA Astrophysics Data System (ADS)
Pereira, Tiago; Young, Lai-Sang
2015-08-01
We study isolation as a means to control epidemic outbreaks in complex networks, focusing on the consequences of delays in isolating infected nodes. Our analysis uncovers a tipping point: if infected nodes are isolated before a critical day dc, the disease is effectively controlled, whereas for longer delays the number of infected nodes climbs steeply. We show that dc can be estimated explicitly in terms of network properties and disease parameters, connecting lowered values of dc explicitly to heterogeneity in degree distribution. Our results reveal also that initial delays in the implementation of isolation protocols can have catastrophic consequences in heterogeneous networks. As our study is carried out in a general framework, it has the potential to offer insight and suggest proactive strategies for containing outbreaks of a range of serious infectious diseases.
Accuracy analysis of TDRSS demand forecasts
NASA Technical Reports Server (NTRS)
Stern, Daniel C.; Levine, Allen J.; Pitt, Karl J.
1994-01-01
This paper reviews Space Network (SN) demand forecasting experience over the past 16 years and describes methods used in the forecasts. The paper focuses on the Single Access (SA) service, the most sought-after resource in the Space Network. Of the ten years of actual demand data available, only the last five years (1989 to 1993) were considered predictive due to the extensive impact of the Challenger accident of 1986. NASA's Space Network provides tracking and communications services to user spacecraft such as the Shuttle and the Hubble Space Telescope. Forecasting the customer requirements is essential to planning network resources and to establishing service commitments to future customers. The lead time to procure Tracking and Data Relay Satellites (TDRS's) requires demand forecasts ten years in the future a planning horizon beyond the funding commitments for missions to be supported. The long range forecasts are shown to have had a bias toward underestimation in the 1991 -1992 period. The trend of underestimation can be expected to be replaced by overestimation for a number of years starting with 1998. At that time demand from new missions slated for launch will be larger than the demand from ongoing missions, making the potential for delay the dominant factor. If the new missions appear as scheduled, the forecasts are likely to be moderately underestimated. The SN commitment to meet the negotiated customer's requirements calls for conservatism in the forecasting. Modification of the forecasting procedure to account for a delay bias is, therefore, not advised. Fine tuning the mission model to more accurately reflect the current actual demand is recommended as it may marginally improve the first year forecasting.
Wang, Leimin; Zeng, Zhigang; Ge, Ming-Feng; Hu, Junhao
2018-05-02
This paper deals with the stabilization problem of memristive recurrent neural networks with inertial items, discrete delays, bounded and unbounded distributed delays. First, for inertial memristive recurrent neural networks (IMRNNs) with second-order derivatives of states, an appropriate variable substitution method is invoked to transfer IMRNNs into a first-order differential form. Then, based on nonsmooth analysis theory, several algebraic criteria are established for the global stabilizability of IMRNNs under proposed feedback control, where the cases with both bounded and unbounded distributed delays are successfully addressed. Finally, the theoretical results are illustrated via the numerical simulations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chimera states in complex networks: interplay of fractal topology and delay
NASA Astrophysics Data System (ADS)
Sawicki, Jakub; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard
2017-06-01
Chimera states are an example of intriguing partial synchronization patterns emerging in networks of identical oscillators. They consist of spatially coexisting domains of coherent (synchronized) and incoherent (desynchronized) dynamics. We analyze chimera states in networks of Van der Pol oscillators with hierarchical connectivities, and elaborate the role of time delay introduced in the coupling term. In the parameter plane of coupling strength and delay time we find tongue-like regions of existence of chimera states alternating with regions of existence of coherent travelling waves. We demonstrate that by varying the time delay one can deliberately stabilize desired spatio-temporal patterns in the system.
Senan, Sibel; Arik, Sabri
2007-10-01
This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.
Inhibition delay increases neural network capacity through Stirling transform.
Nogaret, Alain; King, Alastair
2018-03-01
Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2)^{-N}-fold increase in capacity for an N-neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.
Inhibition delay increases neural network capacity through Stirling transform
NASA Astrophysics Data System (ADS)
Nogaret, Alain; King, Alastair
2018-03-01
Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2) -N-fold increase in capacity for an N -neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.
Qian, Yu
2014-01-01
The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay τ and long-range connection (LRC) probability P have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability P = 1.0 as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability P is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs.
Qian, Yu
2014-01-01
The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595
Dimensionality of brain networks linked to life-long individual differences in self-control.
Berman, Marc G; Yourganov, Grigori; Askren, Mary K; Ayduk, Ozlem; Casey, B J; Gotlib, Ian H; Kross, Ethan; McIntosh, Anthony R; Strother, Stephen; Wilson, Nicole L; Zayas, Vivian; Mischel, Walter; Shoda, Yuichi; Jonides, John
2013-01-01
The ability to delay gratification in childhood has been linked to positive outcomes in adolescence and adulthood. Here we examine a subsample of participants from a seminal longitudinal study of self-control throughout a subject's life span. Self-control, first studied in children at age 4 years, is now re-examined 40 years later, on a task that required control over the contents of working memory. We examine whether patterns of brain activation on this task can reliably distinguish participants with consistently low and high self-control abilities (low versus high delayers). We find that low delayers recruit significantly higher-dimensional neural networks when performing the task compared with high delayers. High delayers are also more homogeneous as a group in their neural patterns compared with low delayers. From these brain patterns, we can predict with 71% accuracy, whether a participant is a high or low delayer. The present results suggest that dimensionality of neural networks is a biological predictor of self-control abilities.
Liu, Hongjian; Wang, Zidong; Shen, Bo; Huang, Tingwen; Alsaadi, Fuad E
2018-06-01
This paper is concerned with the globally exponential stability problem for a class of discrete-time stochastic memristive neural networks (DSMNNs) with both leakage delays as well as probabilistic time-varying delays. For the probabilistic delays, a sequence of Bernoulli distributed random variables is utilized to determine within which intervals the time-varying delays fall at certain time instant. The sector-bounded activation function is considered in the addressed DSMNN. By taking into account the state-dependent characteristics of the network parameters and choosing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are established under which the underlying DSMNN is globally exponentially stable in the mean square. The derived conditions are made dependent on both the leakage and the probabilistic delays, and are therefore less conservative than the traditional delay-independent criteria. A simulation example is given to show the effectiveness of the proposed stability criterion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model
NASA Astrophysics Data System (ADS)
Qin, Ying-Mei; Men, Cong; Zhao, Jia; Han, Chun-Xiao; Che, Yan-Qiu
2018-01-01
We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.
2012-01-01
Background Understanding gene interactions is a fundamental question in systems biology. Currently, modeling of gene regulations using the Bayesian Network (BN) formalism assumes that genes interact either instantaneously or with a certain amount of time delay. However in reality, biological regulations, both instantaneous and time-delayed, occur simultaneously. A framework that can detect and model both these two types of interactions simultaneously would represent gene regulatory networks more accurately. Results In this paper, we introduce a framework based on the Bayesian Network (BN) formalism that can represent both instantaneous and time-delayed interactions between genes simultaneously. A novel scoring metric having firm mathematical underpinnings is also proposed that, unlike other recent methods, can score both interactions concurrently and takes into account the reality that multiple regulators can regulate a gene jointly, rather than in an isolated pair-wise manner. Further, a gene regulatory network (GRN) inference method employing an evolutionary search that makes use of the framework and the scoring metric is also presented. Conclusion By taking into consideration the biological fact that both instantaneous and time-delayed regulations can occur among genes, our approach models gene interactions with greater accuracy. The proposed framework is efficient and can be used to infer gene networks having multiple orders of instantaneous and time-delayed regulations simultaneously. Experiments are carried out using three different synthetic networks (with three different mechanisms for generating synthetic data) as well as real life networks of Saccharomyces cerevisiae, E. coli and cyanobacteria gene expression data. The results show the effectiveness of our approach. PMID:22691450
Robust stability of bidirectional associative memory neural networks with time delays
NASA Astrophysics Data System (ADS)
Park, Ju H.
2006-01-01
Based on the Lyapunov Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms.
Source-Adaptation-Based Wireless Video Transport: A Cross-Layer Approach
NASA Astrophysics Data System (ADS)
Qu, Qi; Pei, Yong; Modestino, James W.; Tian, Xusheng
2006-12-01
Real-time packet video transmission over wireless networks is expected to experience bursty packet losses that can cause substantial degradation to the transmitted video quality. In wireless networks, channel state information is hard to obtain in a reliable and timely manner due to the rapid change of wireless environments. However, the source motion information is always available and can be obtained easily and accurately from video sequences. Therefore, in this paper, we propose a novel cross-layer framework that exploits only the motion information inherent in video sequences and efficiently combines a packetization scheme, a cross-layer forward error correction (FEC)-based unequal error protection (UEP) scheme, an intracoding rate selection scheme as well as a novel intraframe interleaving scheme. Our objective and subjective results demonstrate that the proposed approach is very effective in dealing with the bursty packet losses occurring on wireless networks without incurring any additional implementation complexity or delay. Thus, the simplicity of our proposed system has important implications for the implementation of a practical real-time video transmission system.
Sheng, Yin; Zhang, Hao; Zeng, Zhigang
2017-10-01
This paper is concerned with synchronization for a class of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite discrete time-varying delays. By utilizing theories of partial differential equations, Green's formula, inequality techniques, and the concept of comparison, algebraic criteria are presented to guarantee master-slave synchronization of the underlying reaction-diffusion neural networks via a designed controller. Additionally, sufficient conditions on exponential synchronization of reaction-diffusion neural networks with finite time-varying delays are established. The proposed criteria herein enhance and generalize some published ones. Three numerical examples are presented to substantiate the validity and merits of the obtained theoretical results.
Xu, Changjin; Li, Peiluan; Pang, Yicheng
2016-12-01
In this letter, we deal with a class of memristor-based neural networks with distributed leakage delays. By applying a new Lyapunov function method, we obtain some sufficient conditions that ensure the existence, uniqueness, and global exponential stability of almost periodic solutions of neural networks. We apply the results of this solution to prove the existence and stability of periodic solutions for this delayed neural network with periodic coefficients. We then provide an example to illustrate the effectiveness of the theoretical results. Our results are completely new and complement the previous studies Chen, Zeng, and Jiang ( 2014 ) and Jiang, Zeng, and Chen ( 2015 ).
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
NASA Astrophysics Data System (ADS)
Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin
2009-01-01
Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.
On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.
Feng, Zhiguang; Zheng, Wei Xing
2015-12-01
In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.
Wave-variable framework for networked robotic systems with time delays and packet losses
NASA Astrophysics Data System (ADS)
Puah, Seng-Ming; Liu, Yen-Chen
2017-05-01
This paper investigates the problem of networked control system for nonlinear robotic manipulators under time delays and packet loss by using passivity technique. With the utilisation of wave variables and a passive remote controller, the networked robotic system is demonstrated to be stable with guaranteed position regulation. For the input/output signals of robotic systems, a discretisation block is exploited to convert continuous-time signals to discrete-time signals, and vice versa. Subsequently, we propose a packet management, called wave-variable modulation, to cope with the proposed networked robotic system under time delays and packet losses. Numerical examples and experimental results are presented to demonstrate the performance of the proposed wave-variable-based networked robotic systems.
Development of a decentralized multi-axis synchronous control approach for real-time networks.
Xu, Xiong; Gu, Guo-Ying; Xiong, Zhenhua; Sheng, Xinjun; Zhu, Xiangyang
2017-05-01
The message scheduling and the network-induced delays of real-time networks, together with the different inertias and disturbances in different axes, make the synchronous control of the real-time network-based systems quite challenging. To address this challenge, a decentralized multi-axis synchronous control approach is developed in this paper. Due to the limitations of message scheduling and network bandwidth, error of the position synchronization is firstly defined in the proposed control approach as a subset of preceding-axis pairs. Then, a motion message estimator is designed to reduce the effect of network delays. It is proven that position and synchronization errors asymptotically converge to zero in the proposed controller with the delay compensation. Finally, simulation and experimental results show that the developed control approach can achieve the good position synchronization performance for the multi-axis motion over the real-time network. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Reviving oscillations in coupled nonlinear oscillators.
Zou, Wei; Senthilkumar, D V; Zhan, Meng; Kurths, Jürgen
2013-07-05
By introducing a processing delay in the coupling, we find that it can effectively annihilate the quenching of oscillation, amplitude death (AD), in a network of coupled oscillators by switching the stability of AD. It revives the oscillation in the AD regime to retain sustained rhythmic functioning of the networks, which is in sharp contrast to the propagation delay with the tendency to induce AD. This processing delay-induced phenomenon occurs both with and without the propagation delay. Further this effect is rather general from two coupled to networks of oscillators in all known scenarios that can exhibit AD, and it has a wide range of applications where sustained oscillations should be retained for proper functioning of the systems.
NASA Astrophysics Data System (ADS)
Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok
2013-09-01
The combined effects of the information transmission delay and the ratio of the electrical and chemical synapses on the synchronization transitions in the hybrid modular neuronal network are investigated in this paper. Numerical results show that the synchronization of neuron activities can be either promoted or destroyed as the information transmission delay increases, irrespective of the probability of electrical synapses in the hybrid-synaptic network. Interestingly, when the number of the electrical synapses exceeds a certain level, further increasing its proportion can obviously enhance the spatiotemporal synchronization transitions. Moreover, the coupling strength has a significant effect on the synchronization transition. The dominated type of the synapse always has a more profound effect on the emergency of the synchronous behaviors. Furthermore, the results of the modular neuronal network structures demonstrate that excessive partitioning of the modular network may result in the dramatic detriment of neuronal synchronization. Considering that information transmission delays are inevitable in intra- and inter-neuronal networks communication, the obtained results may have important implications for the exploration of the synchronization mechanism underlying several neural system diseases such as Parkinson's Disease.
A hop count based heuristic routing protocol for mobile delay tolerant networks.
You, Lei; Li, Jianbo; Wei, Changjiang; Dai, Chenqu; Xu, Jixing; Hu, Lejuan
2014-01-01
Routing in delay tolerant networks (DTNs) is a challenge since it must handle network partitioning, long delays, and dynamic topology. Meanwhile, routing protocols of the traditional mobile ad hoc networks (MANETs) cannot work well due to the failure of its assumption that most network connections are available. In this paper, we propose a hop count based heuristic routing protocol by utilizing the information carried by the peripatetic packets in the network. A heuristic function is defined to help in making the routing decision. We formally define a custom operation for square matrices so as to transform the heuristic value calculation into matrix manipulation. Finally, the performance of our proposed algorithm is evaluated by the simulation results, which show the advantage of such self-adaptive routing protocol in the diverse circumstance of DTNs.
A Hop Count Based Heuristic Routing Protocol for Mobile Delay Tolerant Networks
Wei, Changjiang; Dai, Chenqu; Xu, Jixing; Hu, Lejuan
2014-01-01
Routing in delay tolerant networks (DTNs) is a challenge since it must handle network partitioning, long delays, and dynamic topology. Meanwhile, routing protocols of the traditional mobile ad hoc networks (MANETs) cannot work well due to the failure of its assumption that most network connections are available. In this paper, we propose a hop count based heuristic routing protocol by utilizing the information carried by the peripatetic packets in the network. A heuristic function is defined to help in making the routing decision. We formally define a custom operation for square matrices so as to transform the heuristic value calculation into matrix manipulation. Finally, the performance of our proposed algorithm is evaluated by the simulation results, which show the advantage of such self-adaptive routing protocol in the diverse circumstance of DTNs. PMID:25110736
You, Ilsun; Sharma, Vishal; Atiquzzaman, Mohammed; Choo, Kim-Kwang Raymond
2016-01-01
With a more Internet-savvy and sophisticated user base, there are more demands for interactive applications and services. However, it is a challenge for existing radio access networks (e.g. 3G and 4G) to cope with the increasingly demanding requirements such as higher data rates and wider coverage area. One potential solution is the inter-collaborative deployment of multiple radio devices in a 5G setting designed to meet exacting user demands, and facilitate the high data rate requirements in the underlying networks. These heterogeneous 5G networks can readily resolve the data rate and coverage challenges. Networks established using the hybridization of existing networks have diverse military and civilian applications. However, there are inherent limitations in such networks such as irregular breakdown, node failures, and halts during speed transmissions. In recent years, there have been attempts to integrate heterogeneous 5G networks with existing ad hoc networks to provide a robust solution for delay-tolerant transmissions in the form of packet switched networks. However, continuous connectivity is still required in these networks, in order to efficiently regulate the flow to allow the formation of a robust network. Therefore, in this paper, we present a novel network formation consisting of nodes from different network maneuvered by Unmanned Aircraft (UA). The proposed model utilizes the features of a biological aspect of genomes and forms a delay tolerant network with existing network models. This allows us to provide continuous and robust connectivity. We then demonstrate that the proposed network model has an efficient data delivery, lower overheads and lesser delays with high convergence rate in comparison to existing approaches, based on evaluations in both real-time testbed and simulation environment.
GDTN: Genome-Based Delay Tolerant Network Formation in Heterogeneous 5G Using Inter-UA Collaboration
2016-01-01
With a more Internet-savvy and sophisticated user base, there are more demands for interactive applications and services. However, it is a challenge for existing radio access networks (e.g. 3G and 4G) to cope with the increasingly demanding requirements such as higher data rates and wider coverage area. One potential solution is the inter-collaborative deployment of multiple radio devices in a 5G setting designed to meet exacting user demands, and facilitate the high data rate requirements in the underlying networks. These heterogeneous 5G networks can readily resolve the data rate and coverage challenges. Networks established using the hybridization of existing networks have diverse military and civilian applications. However, there are inherent limitations in such networks such as irregular breakdown, node failures, and halts during speed transmissions. In recent years, there have been attempts to integrate heterogeneous 5G networks with existing ad hoc networks to provide a robust solution for delay-tolerant transmissions in the form of packet switched networks. However, continuous connectivity is still required in these networks, in order to efficiently regulate the flow to allow the formation of a robust network. Therefore, in this paper, we present a novel network formation consisting of nodes from different network maneuvered by Unmanned Aircraft (UA). The proposed model utilizes the features of a biological aspect of genomes and forms a delay tolerant network with existing network models. This allows us to provide continuous and robust connectivity. We then demonstrate that the proposed network model has an efficient data delivery, lower overheads and lesser delays with high convergence rate in comparison to existing approaches, based on evaluations in both real-time testbed and simulation environment. PMID:27973618
Delay-induced Turing-like waves for one-species reaction-diffusion model on a network
NASA Astrophysics Data System (ADS)
Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio
2015-09-01
A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.
NASA Astrophysics Data System (ADS)
Guo, Chenyu; Zhang, Weidong; Bao, Jie
2012-02-01
This article is concerned with the problem of robust H ∞ output feedback control for a kind of networked control systems with time-varying network-induced delays. Instead of using boundaries of time delays to represent all time delays, the occurrence probability of each time delay is considered in H∞ stability analysis and stabilisation. The problem addressed is the design of an output feedback controller such that, for all admissible uncertainties, the resulting closed-loop system is stochastically stable for the zero disturbance input and also simultaneously achieves a prescribed H∞ performance level. It is shown that less conservativeness is obtained. A set of linear matrix inequalities is given to solve the corresponding controller design problem. An example is provided to show the effectiveness and applicability of the proposed method.
Global Hopf bifurcation analysis on a BAM neural network with delays
NASA Astrophysics Data System (ADS)
Sun, Chengjun; Han, Maoan; Pang, Xiaoming
2007-01-01
A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large.
Endpoint Naming for Space Delay/Disruption Tolerant Networking
NASA Technical Reports Server (NTRS)
Clare, Loren; Burleigh, Scott; Scott, Keith
2010-01-01
Delay/Disruption Tolerant Networking (DTN) provides solutions to space communication challenges such as disconnections when orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other operational constraints. DTN is critical to enabling the future space internetworking envisioned by NASA. Interoperability with international partners is essential and standardization is progressing through both the CCSDS and the IETF.
NASA Astrophysics Data System (ADS)
Cheng, Lin; Yang, Yongqing; Li, Li; Sui, Xin
2018-06-01
This paper studies the finite-time hybrid projective synchronization of the drive-response complex networks. In the model, general transmission delays and distributed delays are also considered. By designing the adaptive intermittent controllers, the response network can achieve hybrid projective synchronization with the drive system in finite time. Based on finite-time stability theory and several differential inequalities, some simple finite-time hybrid projective synchronization criteria are derived. Two numerical examples are given to illustrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Park, Ju H.; Kwon, O. M.
In the letter, the global asymptotic stability of bidirectional associative memory (BAM) neural networks with delays is investigated. The delay is assumed to be time-varying and belongs to a given interval. A novel stability criterion for the stability is presented based on the Lyapunov method. The criterion is represented in terms of linear matrix inequality (LMI), which can be solved easily by various optimization algorithms. Two numerical examples are illustrated to show the effectiveness of our new result.
Delay-induced cluster patterns in coupled Cayley tree networks
NASA Astrophysics Data System (ADS)
Singh, A.; Jalan, S.
2013-07-01
We study effects of delay in diffusively coupled logistic maps on the Cayley tree networks. We find that smaller coupling values exhibit sensitiveness to value of delay, and lead to different cluster patterns of self-organized and driven types. Whereas larger coupling strengths exhibit robustness against change in delay values, and lead to stable driven clusters comprising nodes from last generation of the Cayley tree. Furthermore, introduction of delay exhibits suppression as well as enhancement of synchronization depending upon coupling strength values. To the end we discuss the importance of results to understand conflicts and cooperations observed in family business.
Wu, Minrui; Wu, Yanhui; Liu, Chuyao; Cai, Zhiping; Ma, Ming
2018-01-01
For Industrial Wireless Sensor Networks (IWSNs), sending data with timely style to the stink (or control center, CC) that is monitored by sensor nodes is a challenging issue. However, in order to save energy, wireless sensor networks based on a duty cycle are widely used in the industrial field, which can bring great delay to data transmission. We observe that if the duty cycle of a small number of nodes in the network is set to 1, the sleep delay caused by the duty cycle can be effectively reduced. Thus, in this paper, a novel Portion of Nodes with Larger Duty Cycle (PNLDC) scheme is proposed to reduce delay and optimize energy efficiency for IWSNs. In the PNLDC scheme, a portion of nodes are selected to set their duty cycle to 1, and the proportion of nodes with the duty cycle of 1 is determined according to the energy abundance of the area in which the node is located. The more the residual energy in the region, the greater the proportion of the selected nodes. Because there are a certain proportion of nodes with the duty cycle of 1 in the network, the PNLDC scheme can effectively reduce delay in IWSNs. The performance analysis and experimental results show that the proposed scheme significantly reduces the delay for forwarding data by 8.9~26.4% and delay for detection by 2.1~24.6% without reducing the network lifetime when compared with the fixed duty cycle method. Meanwhile, compared with the dynamic duty cycle strategy, the proposed scheme has certain advantages in terms of energy utilization and delay reduction. PMID:29757236
Wu, Minrui; Wu, Yanhui; Liu, Chuyao; Cai, Zhiping; Xiong, Neal N; Liu, Anfeng; Ma, Ming
2018-05-12
For Industrial Wireless Sensor Networks (IWSNs), sending data with timely style to the stink (or control center, CC) that is monitored by sensor nodes is a challenging issue. However, in order to save energy, wireless sensor networks based on a duty cycle are widely used in the industrial field, which can bring great delay to data transmission. We observe that if the duty cycle of a small number of nodes in the network is set to 1, the sleep delay caused by the duty cycle can be effectively reduced. Thus, in this paper, a novel Portion of Nodes with Larger Duty Cycle (PNLDC) scheme is proposed to reduce delay and optimize energy efficiency for IWSNs. In the PNLDC scheme, a portion of nodes are selected to set their duty cycle to 1, and the proportion of nodes with the duty cycle of 1 is determined according to the energy abundance of the area in which the node is located. The more the residual energy in the region, the greater the proportion of the selected nodes. Because there are a certain proportion of nodes with the duty cycle of 1 in the network, the PNLDC scheme can effectively reduce delay in IWSNs. The performance analysis and experimental results show that the proposed scheme significantly reduces the delay for forwarding data by 8.9~26.4% and delay for detection by 2.1~24.6% without reducing the network lifetime when compared with the fixed duty cycle method. Meanwhile, compared with the dynamic duty cycle strategy, the proposed scheme has certain advantages in terms of energy utilization and delay reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D.; Lohmann, Johannes
Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delaysmore » between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.« less
Modeling of workflow-engaged networks on radiology transfers across a metro network.
Camorlinga, Sergio; Schofield, Bruce
2006-04-01
Radiology metro networks bear the challenging proposition of interconnecting several hospitals in a region to provide a comprehensive diagnostic imaging service. Consequences of a poorly designed and implemented metro network could cause delays or no access at all when health care providers try to retrieve medical cases across the network. This could translate into limited diagnostic services to patients, resulting in negative impacts to the patients' medical treatment. A workflow-engaged network (WEN) is a new network paradigm. A WEN appreciates radiology workflows and priorities in using the network. A WEN greatly improves the network performance by guaranteeing that critical image transfers experience minimal delay. It adjusts network settings to ensure the application's requirements are met. This means that high-priority image transfers will have guaranteed and known delay times, whereas lower-priority traffic will have increased delays. This paper introduces a modeling to understand the benefits that WEN brings to a radiology metro network. The modeling uses actual data patterns and flows found in a hospital metro region. The workflows considered are based on the Integrating the Healthcare Enterprise profiles. This modeling has been applied to metropolitan workflows of a health region. The modeling helps identify the kind of metro network that supports data patterns and flows in a metro area. The results of the modeling show that a 155-Mb/s metropolitan area network (MAN) with WEN operates virtually equal to a normal 622-Mb/s MAN without WEN, with potential cost savings for leased line services measured in the millions of dollars per year.
Analysis of adaptive algorithms for an integrated communication network
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim
1985-01-01
Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.
Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.
Wang, Zhen; Campbell, Sue Ann
2017-11-01
We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.
Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System
NASA Technical Reports Server (NTRS)
Wang, Shin-Ywan
2012-01-01
The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.
Collective motion patterns of swarms with delay coupling: Theory and experiment.
Szwaykowska, Klementyna; Schwartz, Ira B; Mier-Y-Teran Romero, Luis; Heckman, Christoffer R; Mox, Dan; Hsieh, M Ani
2016-03-01
The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm.
Dharani, S; Rakkiyappan, R; Cao, Jinde; Alsaedi, Ahmed
2017-08-01
This paper explores the problem of synchronization of a class of generalized reaction-diffusion neural networks with mixed time-varying delays. The mixed time-varying delays under consideration comprise of both discrete and distributed delays. Due to the development and merits of digital controllers, sampled-data control is a natural choice to establish synchronization in continuous-time systems. Using a newly introduced integral inequality, less conservative synchronization criteria that assure the global asymptotic synchronization of the considered generalized reaction-diffusion neural network and mixed delays are established in terms of linear matrix inequalities (LMIs). The obtained easy-to-test LMI-based synchronization criteria depends on the delay bounds in addition to the reaction-diffusion terms, which is more practicable. Upon solving these LMIs by using Matlab LMI control toolbox, a desired sampled-data controller gain can be acuqired without any difficulty. Finally, numerical examples are exploited to express the validity of the derived LMI-based synchronization criteria.
Collective motion patterns of swarms with delay coupling: Theory and experiment
NASA Astrophysics Data System (ADS)
Szwaykowska, Klementyna; Schwartz, Ira B.; Mier-y-Teran Romero, Luis; Heckman, Christoffer R.; Mox, Dan; Hsieh, M. Ani
2016-03-01
The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm.
Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays.
Sheng, Yin; Zeng, Zhigang
2018-07-01
This paper discusses impulsive synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and hybrid time delays. By virtue of inequality techniques, theories of stochastic analysis, linear matrix inequalities, and the contradiction method, sufficient criteria are proposed to ensure exponential synchronization of the addressed stochastic reaction-diffusion neural networks with mixed time delays via a designed impulsive controller. Compared with some recent studies, the neural network models herein are more general, some restrictions are relaxed, and the obtained conditions enhance and generalize some published ones. Finally, two numerical simulations are performed to substantiate the validity and merits of the developed theoretical analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Global exponential stability for switched memristive neural networks with time-varying delays.
Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia
2016-08-01
This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sao Sabbas, F. T.
2012-12-01
This project has the goal of establishing the Collaborative Network LEONA, to study the electrodynamical coupling of the atmospheric layers signaled by Transient Luminous Events - TLEs and high energy emissions from thunderstorms. We will develop and install a remotely controlled network of cameras to perform TLE observations in different locations in South America and one neutron detector in southern Brazil. The camera network will allow building a continuous data set of the phenomena studied in this continent. The first two trial units of the camera network are already installed, in Brazil and Peru, and two more will be installed until December 2012, in Argentina and Brazil. We expect to determine the TLE geographic distribution, occurrence rate, morphology, and possible coupling with other geophysical phenomena in South America, such as the South Atlantic Magnetic Anomaly - SAMA. We also expect to study thunderstorm neutron emissions in a region of intense electrical activity, measuring neutron fluxes with high time resolution simultaneously with TLEs and lightning for the first time in South America. Using an intensified high-speed camera for TLE observation during 2 campaigns we expect to be able to determine the duration and spatial- temporal development of the TLEs observed, to study the structure and initiation of sprites and to measure the velocity of development of sprite structures and the sprite delay. The camera was acquired via the FAPESP project DEELUMINOS (2005-2010), which also nucleated our research group Atmospheric Electrodynamical Coupling - ACATMOS. LEONA will nucleate this research in other institutions in Brazil and other countries in South America, providing continuity for this important research in our region. The camera network will be an unique tool to perform consistent long term TLE observation, and in fact is the only way to accumulate a data set for a climatological study of South America, since satellite instrumentation turns off in this region to avoid damages due to the South Atlantic Magnetic Anomaly - SAMA. Thus this project is not only a potential benchmark in TLE research by creating a collaborative network in Latin America and nucleating this research locally, it is also strategic since LEONA's camera network will be able to provide extremely valuable information to fill up this gap that most satellite measurements have.
Both trace and delay conditioned eyeblink responding can be dissociated from outcome expectancy.
Weidemann, Gabrielle; Broderick, Joshua; Lovibond, Peter F; Mitchell, Christopher J
2012-01-01
Squire and colleagues have proposed that trace and delay eyeblink conditioning are fundamentally different kinds of learning: trace conditioning requires acquisition of a conscious declarative memory for the stimulus contingencies whereas delay conditioning does not. Declarative memory in trace conditioning is thought to generate conditioned responding through the activation of a conscious expectancy for when the unconditioned stimulus (US) is going to occur. Perruchet (1985) has previously shown that in a 50% partial reinforcement design it is possible to dissociate single cue delay eyeblink conditioning from conscious expectancy for the US by examining performance over runs of reinforced and nonreinforced trials. Clark, Manns, and Squire (2001) claim that this dissociation does not occur in trace eyeblink conditioning. In the present experiment we examined the Perruchet effect for short, moderate, and long trace intervals (600, 1000, and 1400 ms) and for the equivalent interstimulus intervals (ISIs) in a delay conditioning procedure. We found evidence for a dissociation of eyeblink CRs and US expectancy over runs regardless of whether there was a delay or a trace arrangement of cues. The reasons for the Perruchet effect are still unclear, but the present data suggest that it does not depend on a separate nondeclarative system of the type proposed by Squire and colleagues. (c) 2012 APA, all rights reserved.
Neural node network and model, and method of teaching same
Parlos, A.G.; Atiya, A.F.; Fernandez, B.; Tsai, W.K.; Chong, K.T.
1995-12-26
The present invention is a fully connected feed forward network that includes at least one hidden layer. The hidden layer includes nodes in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device occurring in the feedback path (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit from all the other nodes within the same layer. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing. 21 figs.
Organization of Anti-Phase Synchronization Pattern in Neural Networks: What are the Key Factors?
Li, Dong; Zhou, Changsong
2011-01-01
Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the mechanism underlying the organization of anti-phase pattern is of significance for better understanding more complicated pattern formations in brain networks. In dynamical systems theory, the organization of anti-phase oscillation pattern has usually been considered to relate to time delay in coupling. This is consistent to conduction delays in real neural networks in the brain due to finite propagation velocity of action potentials. However, other structural factors in cortical neural network, such as modular organization (connection density) and the coupling types (excitatory or inhibitory), could also play an important role. In this work, we investigate the anti-phase oscillation pattern organized on a two-module network of either neuronal cell model or neural mass model, and analyze the impact of the conduction delay times, the connection densities, and coupling types. Our results show that delay times and coupling types can play key roles in this organization. The connection densities may have an influence on the stability if an anti-phase pattern exists due to the other factors. Furthermore, we show that anti-phase synchronization of slow oscillations can be achieved with small delay times if there is interaction between slow and fast oscillations. These results are significant for further understanding more realistic spatiotemporal dynamics of cortico-cortical communications. PMID:22232576
Neural node network and model, and method of teaching same
Parlos, Alexander G.; Atiya, Amir F.; Fernandez, Benito; Tsai, Wei K.; Chong, Kil T.
1995-01-01
The present invention is a fully connected feed forward network that includes at least one hidden layer 16. The hidden layer 16 includes nodes 20 in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device 24 occurring in the feedback path 22 (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit 36 from all the other nodes within the same layer 16. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing.
Finite-time stability of neutral-type neural networks with random time-varying delays
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Saravanan, S.; Zhu, Quanxin
2017-11-01
This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.
Synchronization of fractional-order complex-valued neural networks with time delay.
Bao, Haibo; Park, Ju H; Cao, Jinde
2016-09-01
This paper deals with the problem of synchronization of fractional-order complex-valued neural networks with time delays. By means of linear delay feedback control and a fractional-order inequality, sufficient conditions are obtained to guarantee the synchronization of the drive-response systems. Numerical simulations are provided to show the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bio-Inspired Computation: Clock-Free, Grid-Free, Scale-Free and Symbol Free
2015-06-11
for Prediction Tasks in Spiking Neural Networks ." Artificial Neural Networks and Machine Learning–ICANN 2014. Springer, 2014. pp 635-642. Gibson, T...Henderson, JA and Wiles, J. "Predicting temporal sequences using an event-based spiking neural network incorporating learnable delays." IEEE...Adelaide (2014 Jan). Gibson, T and Wiles, J "Predicting temporal sequences using an event-based spiking neural network incorporating learnable delays" at
Transmission Scheduling and Routing Algorithms for Delay Tolerant Networks
NASA Technical Reports Server (NTRS)
Dudukovich, Rachel; Raible, Daniel E.
2016-01-01
The challenges of data processing, transmission scheduling and routing within a space network present a multi-criteria optimization problem. Long delays, intermittent connectivity, asymmetric data rates and potentially high error rates make traditional networking approaches unsuitable. The delay tolerant networking architecture and protocols attempt to mitigate many of these issues, yet transmission scheduling is largely manually configured and routes are determined by a static contact routing graph. A high level of variability exists among the requirements and environmental characteristics of different missions, some of which may allow for the use of more opportunistic routing methods. In all cases, resource allocation and constraints must be balanced with the optimization of data throughput and quality of service. Much work has been done researching routing techniques for terrestrial-based challenged networks in an attempt to optimize contact opportunities and resource usage. This paper examines several popular methods to determine their potential applicability to space networks.
Traffic Management in ATM Networks Over Satellite Links
NASA Technical Reports Server (NTRS)
Goyal, Rohit; Jain, Raj; Goyal, Mukul; Fahmy, Sonia; Vandalore, Bobby; vonDeak, Thomas
1999-01-01
This report presents a survey of the traffic management Issues in the design and implementation of satellite Asynchronous Transfer Mode (ATM) networks. The report focuses on the efficient transport of Transmission Control Protocol (TCP) traffic over satellite ATM. First, a reference satellite ATM network architecture is presented along with an overview of the service categories available in ATM networks. A delay model for satellite networks and the major components of delay and delay variation are described. A survey of design options for TCP over Unspecified Bit Rate (UBR), Guaranteed Frame Rate (GFR) and Available Bit Rate (ABR) services in ATM is presented. The main focus is on traffic management issues. Several recommendations on the design options for efficiently carrying data services over satellite ATM networks are presented. Most of the results are based on experiments performed on Geosynchronous (GEO) latencies. Some results for Low Earth Orbits (LEO) and Medium Earth Orbit (MEO) latencies are also provided.
Magnusson, Dawn M; Minkovitz, Cynthia S; Kuhlthau, Karen A; Caballero, Tania M; Mistry, Kamila B
2017-11-01
Understand the role of health beliefs in shaping maternal decisions regarding help-seeking for children with developmental delay (DD) and explore differences between African American and Hispanic mothers. Open-ended, semistructured interviews were conducted with African American and Hispanic mothers of children aged 0 to 36 months with DD. Interviews were recorded, transcribed, and analyzed by using inductive content analysis. Mothers ( n = 22) were African American (36%) or Hispanic (64%), 25 to 34 years old (64%), had less than a high school education (59%), and had children receiving public insurance (95%). Five major themes emerged describing the role of maternal health beliefs in shaping key stages of the help-seeking pathway for children with DD: (1) "I can see" (observing other children and making comparisons); (2) "Children are different and develop in their own time" (perceiving that their child might be different, but not necessarily delayed); (3) "It's not that I don't trust the doctor" (relying on social networks rather than pediatricians to inform the help-seeking pathway); (4) "I got so much going on" (difficulty prioritizing early intervention [EI] because of competing stressors); and (5) limited and conflicting information (delaying or forgoing EI because of limited or conflicting information). Differences between African American and Hispanic mothers are also described. Understanding maternal health beliefs and expectations regarding DD and EI, acknowledging the influence of social networks on help-seeking, and addressing social and financial stressors are critical to ensuring that children with DD are identified and supported at an early age. Copyright © 2017 by the American Academy of Pediatrics.
Arik, Sabri
2005-05-01
This paper presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all continuous nonmonotonic neuron activation functions. It is shown that in some special cases of the results, the stability criteria can be easily checked. Some examples are also given to compare the results with the previous results derived in the literature.
Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions
NASA Astrophysics Data System (ADS)
Bick, Christian; Sebek, Michael; Kiss, István Z.
2017-10-01
We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.
Santos, Carlos; Espinosa, Felipe; Santiso, Enrique; Mazo, Manuel
2015-05-27
One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.
Gong, Yubing; Wang, Baoying; Xie, Huijuan
2016-12-01
In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on synchronization transitions induced by autaptic activity in adaptive Newman-Watts Hodgkin-Huxley neuron networks. It is found that synchronization transitions induced by autaptic delay vary with the adjusting rate A p of STDP and become strongest at a certain A p value, and the A p value increases when network randomness or network size increases. It is also found that the synchronization transitions induced by autaptic delay become strongest at a certain network randomness and network size, and the values increase and related synchronization transitions are enhanced when A p increases. These results show that there is optimal STDP that can enhance the synchronization transitions induced by autaptic delay in the adaptive neuronal networks. These findings provide a new insight into the roles of STDP and autapses for the information transmission in neural systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dynamics of delay-coupled FitzHugh-Nagumo neural rings.
Mao, Xiaochen; Sun, Jianqiao; Li, Shaofan
2018-01-01
This paper studies the dynamical behaviors of a pair of FitzHugh-Nagumo neural networks with bidirectional delayed couplings. It presents a detailed analysis of delay-independent and delay-dependent stabilities and the existence of bifurcated oscillations. Illustrative examples are performed to validate the analytical results and to discover interesting phenomena. It is shown that the network exhibits a variety of complicated activities, such as multiple stability switches, the coexistence of periodic and quasi-periodic oscillations, the coexistence of periodic and chaotic orbits, and the coexisting chaotic attractors.
Dynamics of delay-coupled FitzHugh-Nagumo neural rings
NASA Astrophysics Data System (ADS)
Mao, Xiaochen; Sun, Jianqiao; Li, Shaofan
2018-01-01
This paper studies the dynamical behaviors of a pair of FitzHugh-Nagumo neural networks with bidirectional delayed couplings. It presents a detailed analysis of delay-independent and delay-dependent stabilities and the existence of bifurcated oscillations. Illustrative examples are performed to validate the analytical results and to discover interesting phenomena. It is shown that the network exhibits a variety of complicated activities, such as multiple stability switches, the coexistence of periodic and quasi-periodic oscillations, the coexistence of periodic and chaotic orbits, and the coexisting chaotic attractors.
Group consensus control for networked multi-agent systems with communication delays.
An, Bao-Ran; Liu, Guo-Ping; Tan, Chong
2018-05-01
This paper investigates group consensus problems in networked multi-agent systems (NMAS) with communication delays. Based on the sed state prediction scheme, the group consensus control protocol is designed to compensate the communication delay actively. In light of algebraic graph theories and matrix theories, necessary and(or) sufficient conditions of group consensus with respect to a given admissible control set are obtained for the NMAS with communication delays under mild assumptions. Finally, simulations are performed to demonstrate the effectiveness of the theoretical results. Copyright © 2018 ISA. All rights reserved.
Delay-slope-dependent stability results of recurrent neural networks.
Li, Tao; Zheng, Wei Xing; Lin, Chong
2011-12-01
By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.
Wang, Leimin; Shen, Yi; Sheng, Yin
2016-04-01
This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exponentially convergent state estimation for delayed switched recurrent neural networks.
Ahn, Choon Ki
2011-11-01
This paper deals with the delay-dependent exponentially convergent state estimation problem for delayed switched neural networks. A set of delay-dependent criteria is derived under which the resulting estimation error system is exponentially stable. It is shown that the gain matrix of the proposed state estimator is characterised in terms of the solution to a set of linear matrix inequalities (LMIs), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.
Data Auditor: Analyzing Data Quality Using Pattern Tableaux
NASA Astrophysics Data System (ADS)
Srivastava, Divesh
Monitoring databases maintain configuration and measurement tables about computer systems, such as networks and computing clusters, and serve important business functions, such as troubleshooting customer problems, analyzing equipment failures, planning system upgrades, etc. These databases are prone to many data quality issues: configuration tables may be incorrect due to data entry errors, while measurement tables may be affected by incorrect, missing, duplicate and delayed polls. We describe Data Auditor, a tool for analyzing data quality and exploring data semantics of monitoring databases. Given a user-supplied constraint, such as a boolean predicate expected to be satisfied by every tuple, a functional dependency, or an inclusion dependency, Data Auditor computes "pattern tableaux", which are concise summaries of subsets of the data that satisfy or fail the constraint. We discuss the architecture of Data Auditor, including the supported types of constraints and the tableau generation mechanism. We also show the utility of our approach on an operational network monitoring database.
Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.
Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica
2018-01-01
The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and implicit temporal orienting processes was considered at the long interval, we found that explicit processes were related to centrality measures of the bilateral inferior parietal lobule. Degree centrality of the same region in the left hemisphere covaried with behavioral measures indexing the process of attentional re-orienting. These results represent a crucial step forward the ordinary predictive processing description, as we identified the patterns of connectivity characterizing the brain organization associated with the ability to generate and update temporal expectancies in case of contextual violations.
NASA Astrophysics Data System (ADS)
Soelistijanto, B.; Muliadi, V.
2018-03-01
Diffie-Hellman (DH) provides an efficient key exchange system by reducing the number of cryptographic keys distributed in the network. In this method, a node broadcasts a single public key to all nodes in the network, and in turn each peer uses this key to establish a shared secret key which then can be utilized to encrypt and decrypt traffic between the peer and the given node. In this paper, we evaluate the key transfer delay and cost performance of DH in opportunistic mobile networks, a specific scenario of MANETs where complete end-to-end paths rarely exist between sources and destinations; consequently, the end-to-end delays in these networks are much greater than typical MANETs. Simulation results, driven by a random node movement model and real human mobility traces, showed that DH outperforms a typical key distribution scheme based on the RSA algorithm in terms of key transfer delay, measured by average key convergence time; however, DH performs as well as the benchmark in terms of key transfer cost, evaluated by total key (copies) forwards.
Li, Peng; Huang, Chuanhe; Liu, Qin
2014-01-01
In vehicular ad hoc networks, roadside units (RSUs) placement has been proposed to improve the the overall network performance in many ITS applications. This paper addresses the budget constrained and delay-bounded placement problem (BCDP) for roadside units in vehicular ad hoc networks. There are two types of RSUs: cable connected RSU (c-RSU) and wireless RSU (w-RSU). c-RSUs are interconnected through wired lines, and they form the backbone of VANETs, while w-RSUs connect to other RSUs through wireless communication and serve as an economical extension of the coverage of c-RSUs. The delay-bounded coverage range and deployment cost of these two cases are totally different. We are given a budget constraint and a delay bound, the problem is how to find the optimal candidate sites with the maximal delay-bounded coverage to place RSUs such that a message from any c-RSU in the region can be disseminated to the more vehicles within the given budget constraint and delay bound. We first prove that the BCDP problem is NP-hard. Then we propose several algorithms to solve the BCDP problem. Simulation results show the heuristic algorithms can significantly improve the coverage range and reduce the total deployment cost, compared with other heuristic methods. PMID:25436656
Autonomous Congestion Control in Delay-Tolerant Networks
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.; Jennings, Esther H.
2005-01-01
Congestion control is an important feature that directly affects network performance. Network congestion may cause loss of data or long delays. Although this problem has been studied extensively in the Internet, the solutions for Internet congestion control do not apply readily to challenged network environments such as Delay Tolerant Networks (DTN) where end-to-end connectivity may not exist continuously and latency can be high. In DTN, end-to-end rate control is not feasible. This calls for congestion control mechanisms where the decisions can be made autonomously with local information only. We use an economic pricing model and propose a rule-based congestion control mechanism where each router can autonomously decide on whether to accept a bundle (data) based on local information such as available storage and the value and risk of accepting the bundle (derived from historical statistics).
Li, Xiaofan; Fang, Jian-An; Li, Huiyuan
2017-09-01
This paper investigates master-slave exponential synchronization for a class of complex-valued memristor-based neural networks with time-varying delays via discontinuous impulsive control. Firstly, the master and slave complex-valued memristor-based neural networks with time-varying delays are translated to two real-valued memristor-based neural networks. Secondly, an impulsive control law is constructed and utilized to guarantee master-slave exponential synchronization of the neural networks. Thirdly, the master-slave synchronization problems are transformed into the stability problems of the master-slave error system. By employing linear matrix inequality (LMI) technique and constructing an appropriate Lyapunov-Krasovskii functional, some sufficient synchronization criteria are derived. Finally, a numerical simulation is provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Network complexity and synchronous behavior--an experimental approach.
Neefs, P J; Steur, E; Nijmeijer, H
2010-06-01
We discuss synchronization in networks of Hindmarsh-Rose neurons that are interconnected via gap junctions, also known as electrical synapses. We present theoretical results for interactions without time-delay. These results are supported by experiments with a setup consisting of sixteen electronic equivalents of the Hindmarsh-Rose neuron. We show experimental results of networks where time-delay on the interaction is taken into account. We discuss in particular the influence of the network topology on the synchronization.
An iteration algorithm for optimal network flows
NASA Astrophysics Data System (ADS)
Woong, C. J.
1983-09-01
A packet switching network has the desirable feature of rapidly handling short (bursty) messages of the type often found in computer communication systems. In evaluating packet switching networks, the average time delay per packet is one of the most important measures of performance. The problem of message routing to minimize time delay is analyzed here using two approaches, called "successive saturation' and "max-slack', for various traffic requirement matrices and networks with fixed topology and link capacities.
NASA Astrophysics Data System (ADS)
Wang, Qingyun; Zhang, Honghui; Chen, Guanrong
2012-12-01
We study the effect of heterogeneous neuron and information transmission delay on stochastic resonance of scale-free neuronal networks. For this purpose, we introduce the heterogeneity to the specified neuron with the highest degree. It is shown that in the absence of delay, an intermediate noise level can optimally assist spike firings of collective neurons so as to achieve stochastic resonance on scale-free neuronal networks for small and intermediate αh, which plays a heterogeneous role. Maxima of stochastic resonance measure are enhanced as αh increases, which implies that the heterogeneity can improve stochastic resonance. However, as αh is beyond a certain large value, no obvious stochastic resonance can be observed. If the information transmission delay is introduced to neuronal networks, stochastic resonance is dramatically affected. In particular, the tuned information transmission delay can induce multiple stochastic resonance, which can be manifested as well-expressed maximum in the measure for stochastic resonance, appearing every multiple of one half of the subthreshold stimulus period. Furthermore, we can observe that stochastic resonance at odd multiple of one half of the subthreshold stimulus period is subharmonic, as opposed to the case of even multiple of one half of the subthreshold stimulus period. More interestingly, multiple stochastic resonance can also be improved by the suitable heterogeneous neuron. Presented results can provide good insights into the understanding of the heterogeneous neuron and information transmission delay on realistic neuronal networks.
Robust stability bounds for multi-delay networked control systems
NASA Astrophysics Data System (ADS)
Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza
2018-04-01
In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.
Huang, Haiying; Du, Qiaosheng; Kang, Xibing
2013-11-01
In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results. © 2013 ISA. Published by ISA. All rights reserved.
Impact of window decrement rate on TCP performance in an adhoc network
NASA Astrophysics Data System (ADS)
Suherman; Hutasuhut, Arief T. W.; Badra, Khaldun; Al-Akaidi, Marwan
2017-09-01
Transmission control protocol (TCP) is a reliable transport protocol handling end to end connection in TCP/IP stack. It works well in copper or optical fibre link, but experiences increasing delay in wireless network. Further, TCP experiences multiple retransmissions due to higher collision probability within wireless network. The situation may get worsen in an ad hoc network. This paper examines the impact half window or window reduction rate to the overall TCP performances. The evaluation using NS-2 simulator shows that the smaller the window decrement rate results the smaller end to end delay. Delay is reduced to 17.05% in average when window decrement rate decreases. Average jitter also decreases 4.15%, while packet loss is not affected.
Synchronization in node of complex networks consist of complex chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
Polling-Based High-Bit-Rate Packet Transfer in a Microcellular Network to Allow Fast Terminals
NASA Astrophysics Data System (ADS)
Hoa, Phan Thanh; Lambertsen, Gaute; Yamada, Takahiko
A microcellular network will be a good candidate for the future broadband mobile network. It is expected to support high-bit-rate connection for many fast mobile users if the handover is processed fast enough to lessen its impact on QoS requirements. One of the promising techniques is believed to use for the wireless interface in such a microcellular network is the WLAN (Wireless LAN) technique due to its very high wireless channel rate. However, the less capability of mobility support of this technique must be improved to be able to expand its utilization for the microcellular environment. The reason of its less support mobility is large handover latency delay caused by contention-based handover to the new BS (base station) and delay of re-forwarding data from the old to new BS. This paper presents a proposal of multi-polling and dynamic LMC (Logical Macro Cell) to reduce mentioned above delays. Polling frame for an MT (Mobile Terminal) is sent from every BS belonging to the same LMC — a virtual single macro cell that is a multicast group of several adjacent micro-cells in which an MT is communicating. Instead of contending for the medium of a new BS during handover, the MT responds to the polling sent from that new BS to enable the transition. Because only one BS of the LMC receives the polling ACK (acknowledgement) directly from the MT, this ACK frame has to be multicast to all BSs of the same LMC through the terrestrial network to continue sending the next polling cycle at each BS. Moreover, when an MT hands over to a new cell, its current LMC is switched over to a newly corresponding LMC to prevent the future contending for a new LMC. By this way, an MT can do handover between micro-cells of an LMC smoothly because the redundant resource is reserved for it at neighboring cells, no need to contend with others. Our simulation results using the OMNeT++ simulator illustrate the performance achievements of the multi-polling and dynamic LMC scheme in eliminating handover latency, packet loss and keeping mobile users' throughput stable in the high traffic load condition though it causes somewhat overhead on the neighboring cells.
Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin
2010-08-01
This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.
An Empirical Study of Synchrophasor Communication Delay in a Utility TCP/IP Network
NASA Astrophysics Data System (ADS)
Zhu, Kun; Chenine, Moustafa; Nordström, Lars; Holmström, Sture; Ericsson, Göran
2013-07-01
Although there is a plethora of literature dealing with Phasor Measurement Unit (PMU) communication delay, there has not been any effort made to generalize empirical delay results by identifying the distribution with the best fit. The existing studies typically assume a distribution or simply build on analogies to communication network routing delay. Specifically, this study provides insight into the characterization of the communication delay of both unprocessed PMU data and synchrophasors sorted by a Phasor Data Concentrator (PDC). The results suggest that a bi-modal distribution containing two normal distributions offers the best fit of the delay of the unprocessed data, whereas the delay profile of the sorted synchrophasors resembles a normal distribution based on these results, the possibility of evaluating the reliability of a synchrophasor application with respect to a particular choice of PDC timeout is discussed.
Control of amplitude chimeras by time delay in oscillator networks
NASA Astrophysics Data System (ADS)
Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna
2017-04-01
We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.
NASA Astrophysics Data System (ADS)
Kumar, Love; Sharma, Vishal; Singh, Amarpal
2018-02-01
Wireless sensor networks have tremendous applications, such as civil, military, and environmental monitoring. In most of the applications, sensor data are required to be propagated over the internet/core networks, which result in backhaul setback. Subsequently, there is a necessity to backhaul the sensed information of such networks together with prolonging of the transmission link. Passive optical network (PON) is next-generation access technology emerging as a potential candidate for convergence of the sensed data to the core system. Earlier, the work with single-optical line terminal-PON was demonstrated and investigated merely analytically. This work is an attempt to demonstrate a practical model of a bidirectional single-sink wireless sensor network-PON converged network in which the collected data from cluster heads are transmitted over PON networks. Further, modeled converged structure has been investigated under the influence of double, single, and tandem sideband modulation schemes incorporating a corresponding phase-delay to the sensor data entities that have been overlooked in the past. The outcome illustrates the successful fusion of the sensor data entities over PON with acceptable bit error rate and signal to noise ratio serving as a potential development in the sphere of such converged networks. It has also been revealed that the data entities treated with tandem side band modulation scheme help in improving the performance of the converged structure. Additionally, analysis for uplink transmission reported with queue theory in terms of time cycle, average time delay, data packet generation, and bandwidth utilization. An analytical analysis of proposed converged network shows that average time delay for data packet transmission is less as compared with time cycle delay.
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Zhu, Quanxin; Pavithra, S.; Gunasekaran, N.
2018-03-01
This study examines the problem of dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays. This paper proposes a complex dynamical network consisting of N linearly and diffusively coupled identical reaction-diffusion neural networks. By constructing a suitable Lyapunov-Krasovskii functional (LKF), utilisation of Jensen's inequality and reciprocally convex combination (RCC) approach, strictly ?-dissipative conditions of the addressed systems are derived. Finally, a numerical example is given to show the effectiveness of the theoretical results.
Applying Kalman filtering to investigate tropospheric effects in VLBI
NASA Astrophysics Data System (ADS)
Soja, Benedikt; Nilsson, Tobias; Karbon, Maria; Heinkelmann, Robert; Liu, Li; Lu, Cuixian; Andres Mora-Diaz, Julian; Raposo-Pulido, Virginia; Xu, Minghui; Schuh, Harald
2014-05-01
Very Long Baseline Interferometry (VLBI) currently provides results, e.g., estimates of the tropospheric delays, with a delay of more than two weeks. In the future, with the coming VLBI2010 Global Observing System (VGOS) and increased usage of electronic data transfer, it is planned that the time between observations and results is decreased. This may, for instance, allow the integration of VLBI-derived tropospheric delays into numerical weather prediction models. Therefore, future VLBI analysis software packages need to be able to process the observational data autonomously in near real-time. For this purpose, we have extended the Vienna VLBI Software (VieVS) by a Kalman filter module. This presentation describes the filter and discusses its application for tropospheric studies. Instead of estimating zenith wet delays as piece-wise linear functions in a least-squares adjustment, the Kalman filter allows for more sophisticated stochastic modeling. We start with a random walk process to model the time-dependent behavior of the zenith wet delays. Other possible approaches include the stochastic model described by turbulence theory, e.g. the model by Treuhaft and Lanyi (1987). Different variance-covariance matrices of the prediction error, depending on the time of the year and the geographic latitude, have been tested. In winter and closer to the poles, lower variances and covariances are appropriate. The horizontal variations in tropospheric delays have been investigated by comparing three different strategies: assumption of a horizontally stratified troposphere, using north and south gradients modeled, e.g., as Gauss-Markov processes, and applying a turbulence model assuming correlations between observations in different azimuths. By conducting Monte-Carlo simulations of current standard VLBI networks and of future VGOS networks, the different tropospheric modeling strategies are investigated. For this purpose, we use the simulator module of VieVS which takes into account the errors due to the atomic clocks at the stations, the troposphere, and white noise processes. The simulated data as well as actual observational data from the two-week CONT11 campaign are analyzed using the Kalman filter, focusing on the tropospheric effects. The results of the different strategies are compared with solutions applying the classical least-squares method. An advantage of the Kalman filter is the possibility of easily integrating additional external information. It is expected that by including tropospheric delays from GNSS, water vapor radiometers, or ray-traced delays from numerical weather prediction models, the accuracy of the VLBI solution could be improved.
Robust stability of interval bidirectional associative memory neural network with time delays.
Liao, Xiaofeng; Wong, Kwok-wo
2004-04-01
In this paper, the conventional bidirectional associative memory (BAM) neural network with signal transmission delay is intervalized in order to study the bounded effect of deviations in network parameters and external perturbations. The resultant model is referred to as a novel interval dynamic BAM (IDBAM) model. By combining a number of different Lyapunov functionals with the Razumikhin technique, some sufficient conditions for the existence of unique equilibrium and robust stability are derived. These results are fairly general and can be verified easily. To go further, we extend our investigation to the time-varying delay case. Some robust stability criteria for BAM with perturbations of time-varying delays are derived. Besides, our approach for the analysis allows us to consider several different types of activation functions, including piecewise linear sigmoids with bounded activations as well as the usual C1-smooth sigmoids. We believe that the results obtained have leading significance in the design and application of BAM neural networks.
Improved result on stability analysis of discrete stochastic neural networks with time delay
NASA Astrophysics Data System (ADS)
Wu, Zhengguang; Su, Hongye; Chu, Jian; Zhou, Wuneng
2009-04-01
This Letter investigates the problem of exponential stability for discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. Numerical example is given to illustrate the effectiveness and the benefits of the proposed method.
Topology design and performance analysis of an integrated communication network
NASA Technical Reports Server (NTRS)
Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.
1985-01-01
A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.
Time and outcome framing in intertemporal tradeoffs.
Scholten, Marc; Read, Daniel
2013-07-01
A robust anomaly in intertemporal choice is the delay-speedup asymmetry: Receipts are discounted more, and payments are discounted less, when delayed than when expedited over the same interval. We developed 2 versions of the tradeoff model (Scholten & Read, 2010) to address such situations, in which an outcome is expected at a given time but then its timing is changed. The outcome framing model generalizes the approach taken by the hyperbolic discounting model (Loewenstein & Prelec, 1992): Not obtaining a positive outcome when expected is a worse than expected state, to which people are over-responsive, or hypersensitive, and not incurring a negative outcome when expected is a better than expected state, to which people are under-responsive, or hyposensitive. The time framing model takes a new approach: Delaying a positive outcome or speeding up a negative one involves a loss of time to which people are hypersensitive, and speeding up a positive outcome or delaying a negative one involves a gain of time to which people are hyposensitive. We compare the models on their quantitative predictions of indifference data from matching and preference data from choice. The time framing model systematically outperforms the outcome framing model. PsycINFO Database Record (c) 2013 APA, all rights reserved.
A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks
Costa, Daniel G.; Guedes, Luiz Affonso
2011-01-01
Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908
Wu, Geng-De; Huang, Chun-Ju
2017-01-01
The Internet of Underwater Things (IoUT) is a novel class of Internet of Things (IoT), and is defined as the network of smart interconnected underwater objects. IoUT is expected to enable various practical applications, such as environmental monitoring, underwater exploration, and disaster prevention. With these applications, IoUT is regarded as one of the potential technologies toward developing smart cities. To support the concept of IoUT, Underwater Wireless Sensor Networks (UWSNs) have emerged as a promising network system. UWSNs are different from the traditional Territorial Wireless Sensor Networks (TWSNs), and have several unique properties, such as long propagation delay, narrow bandwidth, and low reliability. These unique properties would be great challenges for IoUT. In this paper, we provide a comprehensive study of IoUT, and the main contributions of this paper are threefold: (1) we introduce and classify the practical underwater applications that can highlight the importance of IoUT; (2) we point out the differences between UWSNs and traditional TWSNs, and these differences are the main challenges for IoUT; and (3) we investigate and evaluate the channel models, which are the technical core for designing reliable communication protocols on IoUT. PMID:28640220
Kao, Chien-Chi; Lin, Yi-Shan; Wu, Geng-De; Huang, Chun-Ju
2017-06-22
The Internet of Underwater Things (IoUT) is a novel class of Internet of Things (IoT), and is defined as the network of smart interconnected underwater objects. IoUT is expected to enable various practical applications, such as environmental monitoring, underwater exploration, and disaster prevention. With these applications, IoUT is regarded as one of the potential technologies toward developing smart cities. To support the concept of IoUT, Underwater Wireless Sensor Networks (UWSNs) have emerged as a promising network system. UWSNs are different from the traditional Territorial Wireless Sensor Networks (TWSNs), and have several unique properties, such as long propagation delay, narrow bandwidth, and low reliability. These unique properties would be great challenges for IoUT. In this paper, we provide a comprehensive study of IoUT, and the main contributions of this paper are threefold: (1) we introduce and classify the practical underwater applications that can highlight the importance of IoUT; (2) we point out the differences between UWSNs and traditional TWSNs, and these differences are the main challenges for IoUT; and (3) we investigate and evaluate the channel models, which are the technical core for designing reliable communication protocols on IoUT.
Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach
Khan, Jawaad Ullah; Cho, Ho-Shin
2016-01-01
In this paper, we propose a data-gathering scheme for hierarchical underwater sensor networks, where multiple Autonomous Underwater Vehicles (AUVs) are deployed over large-scale coverage areas. The deployed AUVs constitute an intermittently connected multihop network through inter-AUV synchronization (in this paper, synchronization means an interconnection between nodes for communication) for forwarding data to the designated sink. In such a scenario, the performance of the multihop communication depends upon the synchronization among the vehicles. The mobility parameters of the vehicles vary continuously because of the constantly changing underwater currents. The variations in the AUV mobility parameters reduce the inter-AUV synchronization frequency contributing to delays in the multihop communication. The proposed scheme improves the AUV synchronization frequency by permitting neighboring AUVs to share their status information via a pre-selected node called an agent-node at the static layer of the network. We evaluate the proposed scheme in terms of the AUV synchronization frequency, vertical delay (node→AUV), horizontal delay (AUV→AUV), end-to-end delay, and the packet loss ratio. Simulation results show that the proposed scheme significantly reduces the aforementioned delays without the synchronization time-out process employed in conventional works. PMID:27706042
Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach.
Khan, Jawaad Ullah; Cho, Ho-Shin
2016-09-30
In this paper, we propose a data-gathering scheme for hierarchical underwater sensor networks, where multiple Autonomous Underwater Vehicles (AUVs) are deployed over large-scale coverage areas. The deployed AUVs constitute an intermittently connected multihop network through inter-AUV synchronization (in this paper, synchronization means an interconnection between nodes for communication) for forwarding data to the designated sink. In such a scenario, the performance of the multihop communication depends upon the synchronization among the vehicles. The mobility parameters of the vehicles vary continuously because of the constantly changing underwater currents. The variations in the AUV mobility parameters reduce the inter-AUV synchronization frequency contributing to delays in the multihop communication. The proposed scheme improves the AUV synchronization frequency by permitting neighboring AUVs to share their status information via a pre-selected node called an agent-node at the static layer of the network. We evaluate the proposed scheme in terms of the AUV synchronization frequency, vertical delay (node→AUV), horizontal delay (AUV→AUV), end-to-end delay, and the packet loss ratio. Simulation results show that the proposed scheme significantly reduces the aforementioned delays without the synchronization time-out process employed in conventional works.
Tang, Ze; Park, Ju H; Feng, Jianwen
2018-04-01
This paper is concerned with the exponential synchronization issue of nonidentically coupled neural networks with time-varying delay. Due to the parameter mismatch phenomena existed in neural networks, the problem of quasi-synchronization is thus discussed by applying some impulsive control strategies. Based on the definition of average impulsive interval and the extended comparison principle for impulsive systems, some criteria for achieving the quasi-synchronization of neural networks are derived. More extensive ranges of impulsive effects are discussed so that impulse could either play an effective role or play an adverse role in the final network synchronization. In addition, according to the extended formula for the variation of parameters with time-varying delay, precisely exponential convergence rates and quasi-synchronization errors are obtained, respectively, in view of different types impulsive effects. Finally, some numerical simulations with different types of impulsive effects are presented to illustrate the effectiveness of theoretical analysis.
Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.
He, Ping; Ma, Shu-Hua; Fan, Tao
2012-12-01
This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.
Extreme fluctuations in stochastic network coordination with time delays
NASA Astrophysics Data System (ADS)
Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.
2015-12-01
We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
Autonomous Congestion Control in Delay-Tolerant Networks
NASA Technical Reports Server (NTRS)
Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua
2006-01-01
Congestion control is an important feature that directly affects network performance. Network congestion may cause loss of data or long delays. Although this problem has been studied extensively in the Internet, the solutions for Internet congestion control do not apply readily to challenged network environments such as Delay Tolerant Networks (DTN) where end-to-end connectivity may not exist continuously and latency can be high. In DTN, end-to-end rate control is not feasible. This calls for congestion control mechanisms where the decisions can be made autonomously with local information only. We use an economic pricing model and propose a rule-based congestion control mechanism where each router can autonomously decide on whether to accept a bundle (data) based on local information such as available storage and the value and risk of accepting the bundle (derived from historical statistics). Preliminary experimental results show that this congestion control mechanism can protect routers from resource depletion without loss of data.
Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng
2015-03-01
This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Kato, Hideyuki; Ikeguchi, Tohru
2016-01-01
Specific memory might be stored in a subnetwork consisting of a small population of neurons. To select neurons involved in memory formation, neural competition might be essential. In this paper, we show that excitable neurons are competitive and organize into two assemblies in a recurrent network with spike timing-dependent synaptic plasticity (STDP) and axonal conduction delays. Neural competition is established by the cooperation of spontaneously induced neural oscillation, axonal conduction delays, and STDP. We also suggest that the competition mechanism in this paper is one of the basic functions required to organize memory-storing subnetworks into fine-scale cortical networks. PMID:26840529
Mišić, Jelena; (Sherman) Shen, Xuemin
2009-01-01
We consider interconnection of IEEE 802.15.4 beacon-enabled network cluster with IEEE 802.11b network. This scenario is important in healthcare applications where IEEE 802.15.4 nodes comprise patient's body area network (BAN) and are involved in sensing some health-related data. BAN nodes have very short communication range in order to avoid harming patient's health and save energy. Sensed data needs to be transmitted to an access point in the ward room using wireless technology with higher transmission range and rate such as IEEE 802.11b. We model the interconnected network where IEEE 802.15.4-based BAN operates in guaranteed time slot (GTS) mode, and IEEE 802.11b part of the bridge conveys GTS superframe to the 802.11b access point. We then analyze the network delays. Performance analysis is performed using EKG traffic from continuous telemetry, and we discuss the delays of communication due the increasing number of patients. PMID:19107184
Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay.
Zhong, Xuefeng; Chen, Fangjiong; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua
2018-01-16
Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter-receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter-receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity.
Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay
Zhong, Xuefeng; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua
2018-01-01
Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter–receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter–receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity. PMID:29337911
Misić, Jelena; Sherman Shen, Xuemin
2009-01-01
We consider interconnection of IEEE 802.15.4 beacon-enabled network cluster with IEEE 802.11b network. This scenario is important in healthcare applications where IEEE 802.15.4 nodes comprise patient's body area network (BAN) and are involved in sensing some health-related data. BAN nodes have very short communication range in order to avoid harming patient's health and save energy. Sensed data needs to be transmitted to an access point in the ward room using wireless technology with higher transmission range and rate such as IEEE 802.11b. We model the interconnected network where IEEE 802.15.4-based BAN operates in guaranteed time slot (GTS) mode, and IEEE 802.11b part of the bridge conveys GTS superframe to the 802.11b access point. We then analyze the network delays. Performance analysis is performed using EKG traffic from continuous telemetry, and we discuss the delays of communication due the increasing number of patients.
Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks.
Chen, Wu-Hua; Lu, Xiaomei; Zheng, Wei Xing
2015-04-01
This paper investigates the problems of impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks (DDNNs). Two types of DDNNs with stabilizing impulses are studied. By introducing the time-varying Lyapunov functional to capture the dynamical characteristics of discrete-time impulsive delayed neural networks (DIDNNs) and by using a convex combination technique, new exponential stability criteria are derived in terms of linear matrix inequalities. The stability criteria for DIDNNs are independent of the size of time delay but rely on the lengths of impulsive intervals. With the newly obtained stability results, sufficient conditions on the existence of linear-state feedback impulsive controllers are derived. Moreover, a novel impulsive synchronization scheme for two identical DDNNs is proposed. The novel impulsive synchronization scheme allows synchronizing two identical DDNNs with unknown delays. Simulation results are given to validate the effectiveness of the proposed criteria of impulsive stabilization and impulsive synchronization of DDNNs. Finally, an application of the obtained impulsive synchronization result for two identical chaotic DDNNs to a secure communication scheme is presented.
Revathi, V M; Balasubramaniam, P
2016-04-01
In this paper, the [Formula: see text] filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov-Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed [Formula: see text] performance. Second, based on the above analysis, the existence of the designed [Formula: see text] filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.
State feedback controller design for the synchronization of Boolean networks with time delays
NASA Astrophysics Data System (ADS)
Li, Fangfei; Li, Jianning; Shen, Lijuan
2018-01-01
State feedback control design to make the response Boolean network synchronize with the drive Boolean network is far from being solved in the literature. Motivated by this, this paper studies the feedback control design for the complete synchronization of two coupled Boolean networks with time delays. A necessary condition for the existence of a state feedback controller is derived first. Then the feedback control design procedure for the complete synchronization of two coupled Boolean networks is provided based on the necessary condition. Finally, an example is given to illustrate the proposed design procedure.
Performative family: homosexuality, marriage and intergenerational dynamics in China.
Choi, Susanne Yp; Luo, Ming
2016-06-01
Using in-depth interview data on nominal marriages - legal marriages between a gay man and a lesbian to give the appearance of heterosexuality - this paper develops the concept of performative family to explain the processes through which parents and their adult children negotiate and resolve disagreements in relation to marriage decisions in post-socialist China. We identify three mechanisms - network pressure, a revised discourse of filial piety and resource leverage - through which parents influence their gay offspring's decision to turn to nominal marriage. We also delineate six strategies, namely minimizing network participation, changing expectations, making partial concessions, drawing the line, delaying decisions and ending the marriage, by which gay people in nominal marriages attempt to meet parental expectations while simultaneously retaining a degree of autonomy. Through these interactions, we argue that Chinese parents and their gay adult children implicitly and explicitly collaborate to perform family, emphasizing the importance of formally meeting society's expectations about marriage rather than substantively yielding to its demands. We also argue that the performative family is a pragmatic response to the tension between the persistent centrality of family and marriage and the rising tide of individualism in post-socialist China. We believe that our findings highlight the specific predicament of homosexual people. They also shed light on the more general dynamics of intergenerational negotiation because there is evidence that the mechanisms used by parents to exert influence may well be similar between gay and non-gay people. © London School of Economics and Political Science 2016.
Performance Evaluation of Telemedicine System based on multicasting over Heterogeneous Network.
Yun, H Y; Yoo, S K; Kim, D K; Rim Kim, Sung
2005-01-01
For appropriate diagnosis, medical image such as high quality image of patient's affected part and vital signal, patient information, and teleconferencing data for communication between specialists will be transmitted. After connecting patient and specialist the center, sender acquires patient data and transmits to the center through TCP/IP protocol. Data that is transmitted to center is retransmitted to each specialist side that accomplish connection after being copied according to listener's number from transmission buffer. At transmission of medical information data in network, transmission delay and loss occur by the change of buffer size, packet size, number of user and kind of networks. As there lies the biggest delay possibility in ADSL, buffer Size should be established by 1Mbytes first to minimize transmission regionalism and each packet's size must be set accordingly to MTU Size in order to improve network efficiency by maximum. Also, listener's number should be limited by less than 6 people. Data transmission consisted smoothly all in experiment result in common use network- ADSL, VDSL, WLAN, LAN-. But, possibility of delay appeared most greatly in ADSL that has the most confined bandwidth. To minimize the possibility of delay, some adjustment is needed such as buffer size, number of receiver, packet size.
SDN based millimetre wave radio over fiber (RoF) network
NASA Astrophysics Data System (ADS)
Amate, Ahmed; Milosavljevic, Milos; Kourtessis, Pandelis; Robinson, Matthew; Senior, John M.
2015-01-01
This paper introduces software-defined, millimeter Wave (mm-Wave) networks with Radio over Fiber (RoF) for the delivery of gigabit connectivity required to develop fifth generation (5G) mobile. This network will enable an effective open access system allowing providers to manage and lease the infrastructure to service providers through unbundling new business models. Exploiting the inherited benefits of RoF, complete base station functionalities are centralized at the edges of the metro and aggregation network, leaving remote radio heads (RRHs) with only tunable filtering and amplification. A Software Defined Network (SDN) Central Controller (SCC) is responsible for managing the resource across several mm-Wave Radio Access Networks (RANs) providing a global view of the several network segments. This ensures flexible resource allocation for reduced overall latency and increased throughput. The SDN based mm-Wave RAN also allows for inter edge node communication. Therefore, certain packets can be routed between different RANs supported by the same edge node, reducing latency. System level simulations of the complete network have shown significant improvement of the overall throughput and SINR for wireless users by providing effective resource allocation and coordination among interfering cells. A new Coordinated Multipoint (CoMP) algorithm exploiting the benefits of the SCC global network view for reduced delay in control message exchange is presented, accounting for a minimum packet delay and limited Channel State Information (CSI) in a Long Term Evolution-Advanced (LTE-A), Cloud RAN (CRAN) configuration. The algorithm does not require detailed CSI feedback from UEs but it rather considers UE location (determined by the eNB) as the required parameter. UE throughput in the target sector is represented using a Cumulative Distributive Function (CDF). The drawn characteristics suggest that there is a significant 60% improvement in UE cell edge throughput following the application, in the coordinating cells, of the new CoMP algorithm. Results also show a further improvement of 36% in cell edge UE throughput when eNBs are centralized in a CRAN backhaul architecture. The SINR distribution of UEs in the cooperating cells has also been evaluated using a box plot. As expected, UEs with CoMP perform better demonstrating an increase of over 2 dB at the median between the transmission scenarios.
Time-delayed directional beam phased array antenna
Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron
2004-10-19
An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.
Security-Enhanced Autonomous Network Management
NASA Technical Reports Server (NTRS)
Zeng, Hui
2015-01-01
Ensuring reliable communication in next-generation space networks requires a novel network management system to support greater levels of autonomy and greater awareness of the environment and assets. Intelligent Automation, Inc., has developed a security-enhanced autonomous network management (SEANM) approach for space networks through cross-layer negotiation and network monitoring, analysis, and adaptation. The underlying technology is bundle-based delay/disruption-tolerant networking (DTN). The SEANM scheme allows a system to adaptively reconfigure its network elements based on awareness of network conditions, policies, and mission requirements. Although SEANM is generically applicable to any radio network, for validation purposes it has been prototyped and evaluated on two specific networks: a commercial off-the-shelf hardware test-bed using Institute of Electrical Engineers (IEEE) 802.11 Wi-Fi devices and a military hardware test-bed using AN/PRC-154 Rifleman Radio platforms. Testing has demonstrated that SEANM provides autonomous network management resulting in reliable communications in delay/disruptive-prone environments.
Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr. (Inventor)
2002-01-01
A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause the voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. The method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.
Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr. (Inventor)
2002-01-01
A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause tile voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. A method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
NASA Astrophysics Data System (ADS)
Syed Ali, M.; Balasubramaniam, P.
2008-07-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.
Synchronization stability of memristor-based complex-valued neural networks with time delays.
Liu, Dan; Zhu, Song; Ye, Er
2017-12-01
This paper focuses on the dynamical property of a class of memristor-based complex-valued neural networks (MCVNNs) with time delays. By constructing the appropriate Lyapunov functional and utilizing the inequality technique, sufficient conditions are proposed to guarantee exponential synchronization of the coupled systems based on drive-response concept. The proposed results are very easy to verify, and they also extend some previous related works on memristor-based real-valued neural networks. Meanwhile, the obtained sufficient conditions of this paper may be conducive to qualitative analysis of some complex-valued nonlinear delayed systems. A numerical example is given to demonstrate the effectiveness of our theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adaptive Control of Synchronization in Delay-Coupled Heterogeneous Networks of FitzHugh-Nagumo Nodes
NASA Astrophysics Data System (ADS)
Plotnikov, S. A.; Lehnert, J.; Fradkov, A. L.; Schöll, E.
We study synchronization in delay-coupled neural networks of heterogeneous nodes. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. We show that an adaptive tuning of the overall coupling strength can be used to counteract the effect of the heterogeneity. Our adaptive controller is demonstrated on ring networks of FitzHugh-Nagumo systems which are paradigmatic for excitable dynamics but can also — depending on the system parameters — exhibit self-sustained periodic firing. We show that the adaptively tuned time-delayed coupling enables synchronization even if parameter heterogeneities are so large that excitable nodes coexist with oscillatory ones.
Bipartite consensus for multi-agent systems with antagonistic interactions and communication delays
NASA Astrophysics Data System (ADS)
Guo, Xing; Lu, Jianquan; Alsaedi, Ahmed; Alsaadi, Fuad E.
2018-04-01
This paper studies the consensus problems over signed digraphs with arbitrary finite communication delays. For the considered system, the information flow is directed and only locally delayed information can be used for each node. We derive that bipartite consensus of this system can be realized when the associated signed digraph is strongly connected. Furthermore, for structurally balanced networks, this paper studies the pinning partite consensus for the considered system. we design a pinning scheme to pin any one agent in the signed network, and obtain that the network achieves pinning bipartite consensus with any initial conditions. Finally, two examples are provided to demonstrate the effectiveness of our main results.
Large File Transfers from Space Using Multiple Ground Terminals and Delay-Tolerant Networking
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Paulsen, Phillip; Stewart, Dave; Eddy, Wesley; McKim, James; Taylor, John; Lynch, Scott; Heberle, Jay; Northam, James; Jackson, Chris;
2010-01-01
We use Delay-Tolerant Networking (DTN) to break control loops between space-ground communication links and ground-ground communication links to increase overall file delivery efficiency, as well as to enable large files to be proactively fragmented and received across multiple ground stations. DTN proactive fragmentation and reactive fragmentation were demonstrated from the UK-DMC satellite using two independent ground stations. The files were reassembled at a bundle agent, located at Glenn Research Center in Cleveland Ohio. The first space-based demonstration of this occurred on September 30 and October 1, 2009. This paper details those experiments. Communication, delay-tolerant networking, DTN, satellite, Internet, protocols, bundle, IP, TCP.
Network Configuration Analysis for Formation Flying Satellites
NASA Technical Reports Server (NTRS)
Knoblock, Eric J.; Wallett, Thomas M.; Konangi, Vijay K.; Bhasin, Kul B.
2001-01-01
The performance of two networks to support autonomous multi-spacecraft formation flying systems is presented. Both systems are comprised of a ten-satellite formation, with one of the satellites designated as the central or 'mother ship.' All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/EP over ATM protocol architecture within the formation, and the second system uses the IEEE 802.11 protocol architecture within the formation. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IP queuing delay, IP queue size and IP processing delay at the mother ship as well as end-to-end delay for both systems. In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile
2015-02-01
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.
Understanding the T2 traffic in CMS during Run-1
NASA Astrophysics Data System (ADS)
T, Wildish
2015-12-01
In the run-up to Run-1 CMS was operating its facilities according to the MONARC model, where data-transfers were strictly hierarchical in nature. Direct transfers between Tier-2 nodes was excluded, being perceived as operationally intensive and risky in an era where the network was expected to be a major source of errors. By the end of Run-1 wide-area networks were more capable and stable than originally anticipated. The original data-placement model was relaxed, and traffic was allowed between Tier-2 nodes. Tier-2 to Tier-2 traffic in 2012 already exceeded the amount of Tier-2 to Tier-1 traffic, so it clearly has the potential to become important in the future. Moreover, while Tier-2 to Tier-1 traffic is mostly upload of Monte Carlo data, the Tier-2 to Tier-2 traffic represents data moved in direct response to requests from the physics analysis community. As such, problems or delays there are more likely to have a direct impact on the user community. Tier-2 to Tier-2 traffic may also traverse parts of the WAN that are at the 'edge' of our network, with limited network capacity or reliability compared to, say, the Tier-0 to Tier-1 traffic which goes the over LHCOPN network. CMS is looking to exploit technologies that allow us to interact with the network fabric so that it can manage our traffic better for us, this we hope to achieve before the end of Run-2. Tier-2 to Tier-2 traffic would be the most interesting use-case for such traffic management, precisely because it is close to the users' analysis and far from the 'core' network infrastructure. As such, a better understanding of our Tier-2 to Tier-2 traffic is important. Knowing the characteristics of our data-flows can help us place our data more intelligently. Knowing how widely the data moves can help us anticipate the requirements for network capacity, and inform the dynamic data placement algorithms we expect to have in place for Run-2. This paper presents an analysis of the CMS Tier-2 traffic during Run 1.
ERIC Educational Resources Information Center
Bembenutty, Hefer
2009-01-01
Academic delay of gratification is a significant and positive predictor of students' final course grades, even after controlling for the effect of their rating of the course, expected grade, and degree of interest, importance, and utility of the academic task. Students' expected course grades are by far the strongest predictor of their final…
Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.
Wan, Ying; Cao, Jinde; Wen, Guanghui
In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.
VSAT communications networks - An overview
NASA Astrophysics Data System (ADS)
Chakraborty, D.
1988-05-01
The very-small-aperture-terminal (VSAT) fixed satellite communication network is a star network in which many dispersed micro terminals attempt to send data in a packet form through a random access/time-division multiple-access (RA/TDMA) satellite channel with transmission delay. The basic concept of the VSAT and its service potential are discussed. Two classes of traffic are addressed, namely, business-oriented low-rate-data traffic and bulk data traffic of corporate networks. Satellite access, throughput, and delay are considered. The size of the network population that can be served in an RA/TDMA environment is calculated. User protocols are examined. A typical VSAT business scenario is described.
New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images
NASA Astrophysics Data System (ADS)
Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas
2016-10-01
Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay-Doppler images.This work was supported by NASA Ames, NVIDIA, Autodesk and the SETI Institute as part of the NASA Frontier Development Lab program.
Dynamics of brain networks in the aesthetic appreciation
Cela-Conde, Camilo J.; García-Prieto, Juan; Ramasco, José J.; Mirasso, Claudio R.; Bajo, Ricardo; Munar, Enric; Flexas, Albert; del-Pozo, Francisco; Maestú, Fernando
2013-01-01
Neuroimage experiments have been essential for identifying active brain networks. During cognitive tasks as in, e.g., aesthetic appreciation, such networks include regions that belong to the default mode network (DMN). Theoretically, DMN activity should be interrupted during cognitive tasks demanding attention, as is the case for aesthetic appreciation. Analyzing the functional connectivity dynamics along three temporal windows and two conditions, beautiful and not beautiful stimuli, here we report experimental support for the hypothesis that aesthetic appreciation relies on the activation of two different networks, an initial aesthetic network and a delayed aesthetic network, engaged within distinct time frames. Activation of the DMN might correspond mainly to the delayed aesthetic network. We discuss adaptive and evolutionary explanations for the relationships existing between the DMN and aesthetic networks and offer unique inputs to debates on the mind/brain interaction. PMID:23754437
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Lu, Lan; Cao, Ke-Cai; Zhang, Si-Ying
2010-04-01
In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration.
OTACT: ONU Turning with Adaptive Cycle Times in Long-Reach PONs
NASA Astrophysics Data System (ADS)
Zare, Sajjad; Ghaffarpour Rahbar, Akbar
2015-01-01
With the expansion of PON networks as Long-Reach PON (LR-PON) networks, the problem of degrading the efficiency of centralized bandwidth allocation algorithms threatens this network due to high propagation delay. This is because these algorithms are based on bandwidth negotiation messages frequently exchanged between the optical line terminal (OLT) in the Central Office and optical network units (ONUs) near the users, which become seriously delayed when the network is extended. To solve this problem, some decentralized algorithms are proposed based on bandwidth negotiation messages frequently exchanged between the Remote Node (RN)/Local Exchange (LX) and ONUs near the users. The network has a relatively high delay since there are relatively large distances between RN/LX and ONUs, and therefore, control messages should travel twice between ONUs and RN/LX in order to go from one ONU to another ONU. In this paper, we propose a novel framework, called ONU Turning with Adaptive Cycle Times (OTACT), that uses Power Line Communication (PLC) to connect two adjacent ONUs. Since there is a large population density in urban areas, ONUs are closer to each other. Thus, the efficiency of the proposed method is high. We investigate the performance of the proposed scheme in contrast with other decentralized schemes under the worst case conditions. Simulation results show that the average upstream packet delay can be decreased under the proposed scheme.
NASA Astrophysics Data System (ADS)
Tsuda, T.; Ito, N.; Takeda, Y.; Realini, E.; Shinbori, A.
2016-12-01
We employ the GNSS meteorology technique to measure precipitable water vapor (PWV) from the propagation delay of GNSS signal in the atmosphere. We installed a hyper-dense GNSS network using 15 receivers with a horizontal spacing of 1-2 km in Uji, Japan (Uji network). We also obtained precipitation with a rain gauge at a nearby operational weather station and rain cloud distribution by an X-band radar. We selected 40 days from April 2011 to March 2013, when considerable precipitation was detected. Difference in PWV within 10 km was 3-10 mm during a heavy rain. We found PWV increased 10-20 minutes before a passage of a rain cloud. The maximum value of PWV correlated well with the amount of precipitation on the ground. The variance of PWV between the GNSS sites was enhanced during a heavy rain. For a future practical hyper-dense GNSS network system with many receivers, we consider to use inexpensive single frequency (SF) receivers. Because SF receiver cannot eliminate the ionospheric delay by itself, we interpolate the delay referring the delay measured by the nearby dual frequency (DF) receivers. We investigated ionospheric delay by the Uji network, taking advantages of Quasi-Zenith Satellite System (QZSS) that gives signals at high elevation angles. During a travelling ionospheric disturbance (TID), a wavy structure with a horizontal scale of several tens km was recognized. The ionospheric delay was compensated by a linear and quadratic interpolation, then the resulting error of PWV compared with DF solution was about 1.50 mm in RMS. For a real-time estimation of PWV, we used real-time satellite clock information corrected by GEONET. Difference of PWV between the real-time analysis and the post processing with the final orbit was 0.7 mm in RMS. We estimated an overall error of PWV with a dense SF-receiver network on a real-time basis was 1.7 mm in RMS.
Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad
2014-11-01
This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Fuchs, Erich; Gruber, Christian; Reitmaier, Tobias; Sick, Bernhard
2009-09-01
Neural networks are often used to process temporal information, i.e., any kind of information related to time series. In many cases, time series contain short-term and long-term trends or behavior. This paper presents a new approach to capture temporal information with various reference periods simultaneously. A least squares approximation of the time series with orthogonal polynomials will be used to describe short-term trends contained in a signal (average, increase, curvature, etc.). Long-term behavior will be modeled with the tapped delay lines of a time-delay neural network (TDNN). This network takes the coefficients of the orthogonal expansion of the approximating polynomial as inputs such considering short-term and long-term information efficiently. The advantages of the method will be demonstrated by means of artificial data and two real-world application examples, the prediction of the user number in a computer network and online tool wear classification in turning.
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation
Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.
Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.
Optimal design of mixed-media packet-switching networks - Routing and capacity assignment
NASA Technical Reports Server (NTRS)
Huynh, D.; Kuo, F. F.; Kobayashi, H.
1977-01-01
This paper considers a mixed-media packet-switched computer communication network which consists of a low-delay terrestrial store-and-forward subnet combined with a low-cost high-bandwidth satellite subnet. We show how to route traffic via ground and/or satellite links by means of static, deterministic procedures and assign capacities to channels subject to a given linear cost such that the network average delay is minimized. Two operational schemes for this network model are investigated: one is a scheme in which the satellite channel is used as a slotted ALOHA channel; the other is a new multiaccess scheme we propose in which whenever a channel collision occurs, retransmission of the involved packets will route through ground links to their destinations. The performance of both schemes is evaluated and compared in terms of cost and average packet delay tradeoffs for some examples. The results offer guidelines for the design and optimal utilization of mixed-media networks.
Duan, J; Shen, S; Popple, R; Wu, X; Cardan, R; Brezovich, I
2012-06-01
To assess the trigger delay in respiratory triggered real-time imaging and its impact on image guided radiotherapy (IGRT) with Varian TrueBeam System. A sinusoidal motion phantom with 2cm motion amplitude was used. The trigger delay was determined directly with video image, and indirectly by the distance between expected and actual triggering phantom positions. For the direct method, a fluorescent screen was placed on the phantom to visualize the x-ray. The motion of the screen was recorded at 60 frames/second. The number of frames between the time when the phantom reached expected triggering position and the time when the screen was illuminated by the x-ray was used to determine the trigger delay. In the indirect method, triggered kV x-ray images were acquired in real-time during 'treatment' with triggers set at 25% and 75% respiratory phases where the phantom moved at the maximum speed. 39-40 triggered images were acquired continuously in each series. The distance between the expected and actual triggering points, d, was measured on the images to determine the delay time t by d=Asin(wt), where w=2π/T, T=period and A=amplitude. Motion periods of 2s and 4s were used in the measurement. The trigger delay time determined with direct video imaging was 125ms (7.5 video frames). The average distance between the expected and actual triggering positions determined by the indirect method was 3.93±0.74mm for T=4s and 7.02±1.25mm for T=2s, yielding mean trigger delay times of 126±24ms and 120±22ms, respectively. Although the mean over-travel distance is significant at 25% and 75% phases, clinically, the target over-travel resulted from the trigger delay at the end of expiration (50% phase) is negligibly small(< 0.5mm). The trigger delay in respiration-triggered imaging is in the range of 120-126ms. This delay has negligible clinical effect on gated IGRT. © 2012 American Association of Physicists in Medicine.
Echo state networks with filter neurons and a delay&sum readout.
Holzmann, Georg; Hauser, Helmut
2010-03-01
Echo state networks (ESNs) are a novel approach to recurrent neural network training with the advantage of a very simple and linear learning algorithm. It has been demonstrated that ESNs outperform other methods on a number of benchmark tasks. Although the approach is appealing, there are still some inherent limitations in the original formulation. Here we suggest two enhancements of this network model. First, the previously proposed idea of filters in neurons is extended to arbitrary infinite impulse response (IIR) filter neurons. This enables such networks to learn multiple attractors and signals at different timescales, which is especially important for modeling real-world time series. Second, a delay&sum readout is introduced, which adds trainable delays in the synaptic connections of output neurons and therefore vastly improves the memory capacity of echo state networks. It is shown in commonly used benchmark tasks and real-world examples, that this new structure is able to significantly outperform standard ESNs and other state-of-the-art models for nonlinear dynamical system modeling. Copyright 2009 Elsevier Ltd. All rights reserved.
Temporal Influence on Awareness
1995-12-01
43 38. Test Setup Timing: Measured vs Expected Modal Delays (in ms) ............. 46 39. Experiment I: visual and auditory stimuli...presented simultaneously; visual- auditory delay=Oms, visual-visual delay=0ms ....... .......................... 47 40. Experiment II: visual and auditory ...stimuli presented in order; visual- auditory de- lay=Oms, visual-visual delay=variable ................................ 48 41. Experiment II: visual and
Delay-time distribution in the scattering of time-narrow wave packets (II)—quantum graphs
NASA Astrophysics Data System (ADS)
Smilansky, Uzy; Schanz, Holger
2018-02-01
We apply the framework developed in the preceding paper in this series (Smilansky 2017 J. Phys. A: Math. Theor. 50 215301) to compute the time-delay distribution in the scattering of ultra short radio frequency pulses on complex networks of transmission lines which are modeled by metric (quantum) graphs. We consider wave packets which are centered at high wave number and comprise many energy levels. In the limit of pulses of very short duration we compute upper and lower bounds to the actual time-delay distribution of the radiation emerging from the network using a simplified problem where time is replaced by the discrete count of vertex-scattering events. The classical limit of the time-delay distribution is also discussed and we show that for finite networks it decays exponentially, with a decay constant which depends on the graph connectivity and the distribution of its edge lengths. We illustrate and apply our theory to a simple model graph where an algebraic decay of the quantum time-delay distribution is established.
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Wang, Xingyuan; Wang, Chunpeng; Xia, Zhiqiu
This paper concerns the outer synchronization problem between two complex delayed networks via the method of aperiodically intermittent pinning control. Apart from previous works, internal delay and coupling delay are both involved in this model, and the designed intermittent controllers can be aperiodic. The main work in this paper can be summarized as follows: First, two cases of aperiodically intermittent control with constant gain and adaptive gain are implemented, respectively. The intermittent control and pinning control are combined to reduce consumptions further. Then, based on the Lyapunov stability theory, synchronization protocols are given by strict derivation. Especially, the designed controllers are indeed simple and valid in application of theory to practice. Finally, numerical examples put the proposed control methods to the test.
A Cross-Layer Optimized Opportunistic Routing Scheme for Loss-and-Delay Sensitive WSNs
Xu, Xin; Yuan, Minjiao; Liu, Xiao; Cai, Zhiping; Wang, Tian
2018-01-01
In wireless sensor networks (WSNs), communication links are typically error-prone and unreliable, so providing reliable and timely data routing for loss- and delay-sensitive applications in WSNs it is a challenge issue. Additionally, with specific thresholds in practical applications, the loss and delay sensitivity implies requirements for high reliability and low delay. Opportunistic Routing (OR) has been well studied in WSNs to improve reliability for error-prone and unreliable wireless communication links where the transmission power is assumed to be identical in the whole network. In this paper, a Cross-layer Optimized Opportunistic Routing (COOR) scheme is proposed to improve the communication link reliability and reduce delay for loss-and-delay sensitive WSNs. The main contribution of the COOR scheme is making full use of the remaining energy in networks to increase the transmission power of most nodes, which will provide a higher communication reliability or further transmission distance. Two optimization strategies referred to as COOR(R) and COOR(P) of the COOR scheme are proposed to improve network performance. In the case of increasing the transmission power, the COOR(R) strategy chooses a node that has a higher communication reliability with same distance in comparison to the traditional opportunistic routing when selecting the next hop candidate node. Since the reliability of data transmission is improved, the delay of the data reaching the sink is reduced by shortening the time of communication between candidate nodes. On the other hand, the COOR(P) strategy prefers a node that has the same communication reliability with longer distance. As a result, network performance can be improved for the following reasons: (a) the delay is reduced as fewer hops are needed while the packet reaches the sink in longer transmission distance circumstances; (b) the reliability can be improved since it is the product of the reliability of every hop of the routing path, and the count is reduced while the reliability of each hop is the same as the traditional method. After analyzing the energy consumption of the network in detail, the value of optimized transmission power in different areas is given. On the basis of a large number of experimental and theoretical analyses, the results show that the COOR scheme will increase communication reliability by 36.62–87.77%, decrease delay by 21.09–52.48%, and balance the energy consumption of 86.97% of the nodes in the WSNs. PMID:29751589
A Cross-Layer Optimized Opportunistic Routing Scheme for Loss-and-Delay Sensitive WSNs.
Xu, Xin; Yuan, Minjiao; Liu, Xiao; Liu, Anfeng; Xiong, Neal N; Cai, Zhiping; Wang, Tian
2018-05-03
In wireless sensor networks (WSNs), communication links are typically error-prone and unreliable, so providing reliable and timely data routing for loss- and delay-sensitive applications in WSNs it is a challenge issue. Additionally, with specific thresholds in practical applications, the loss and delay sensitivity implies requirements for high reliability and low delay. Opportunistic Routing (OR) has been well studied in WSNs to improve reliability for error-prone and unreliable wireless communication links where the transmission power is assumed to be identical in the whole network. In this paper, a Cross-layer Optimized Opportunistic Routing (COOR) scheme is proposed to improve the communication link reliability and reduce delay for loss-and-delay sensitive WSNs. The main contribution of the COOR scheme is making full use of the remaining energy in networks to increase the transmission power of most nodes, which will provide a higher communication reliability or further transmission distance. Two optimization strategies referred to as COOR(R) and COOR(P) of the COOR scheme are proposed to improve network performance. In the case of increasing the transmission power, the COOR(R) strategy chooses a node that has a higher communication reliability with same distance in comparison to the traditional opportunistic routing when selecting the next hop candidate node. Since the reliability of data transmission is improved, the delay of the data reaching the sink is reduced by shortening the time of communication between candidate nodes. On the other hand, the COOR(P) strategy prefers a node that has the same communication reliability with longer distance. As a result, network performance can be improved for the following reasons: (a) the delay is reduced as fewer hops are needed while the packet reaches the sink in longer transmission distance circumstances; (b) the reliability can be improved since it is the product of the reliability of every hop of the routing path, and the count is reduced while the reliability of each hop is the same as the traditional method. After analyzing the energy consumption of the network in detail, the value of optimized transmission power in different areas is given. On the basis of a large number of experimental and theoretical analyses, the results show that the COOR scheme will increase communication reliability by 36.62⁻87.77%, decrease delay by 21.09⁻52.48%, and balance the energy consumption of 86.97% of the nodes in the WSNs.
NASA Astrophysics Data System (ADS)
Divett, T.; Ingham, M.; Rodger, C. J.; Richardson, G. S.; Beggan, C.; Thomson, A. W. P.; Dalzell, M.; Mac Manus, D. H.
2017-12-01
Transformers in the South Island of Transpower New Zealand Ltd's electrical transmission network have been impacted by geomagnetically induced currents (GIC) during geomagnetic storms, including the November 2001 event. We aim to make recommendations that lead to improving mitigation strategies for reducing these impacts during extreme events. We have adapted a thin-sheet electromagnetic and GIC network modelling approach that has previously been successfully used in the UK to New Zealand's geology and transmission network. In this presentation we show how we have used this approach to explore Transpower's mitigation procedure as well as alternative mitigation options for reducing the impact of space weather on the network. In order to compare modelled GIC with what has been described as `possibly the best GIC dataset in the world' (Boteler and Pirjola, Pers. Comm. 2016) our model includes every transformer and every high voltage transmission line in the South Island network. This level of detail was required to match the transformer level observations of GIC in the network and to appropriately assess the mitigation options at the level where the damage to power networks occurs. We found that removing a single generator at a central power station and four transmission lines is enough to effectively redistribute GIC away from transformers that have previously experienced very high GIC (as shown in Figure). The redistributed GIC is less damaging to the transformers that it is redistributed to due to lower total GIC at those locations. In the past the impact of GIC on transformers has occurred in the first two minutes of a storm. Hence, mitigation strategies that currently rely on human intervention and involving delays of up to 15 minutes may need to be initiated very rapidly, in a significant departure from Transpower's existing protocol. Reducing delays should significantly reduce the potential for damage in a storm equivalent to the 2001 event. During an extreme storm we expect GIC of 300 A or more to flow through multiple transformers across both islands. In the case of an extreme storm we suggest the more drastic approach of floating the entire network to reduce the potential for damage while retaining power supply to the majority of the country.
Intelligent QoS routing algorithm based on improved AODV protocol for Ad Hoc networks
NASA Astrophysics Data System (ADS)
Huibin, Liu; Jun, Zhang
2016-04-01
Mobile Ad Hoc Networks were playing an increasingly important part in disaster reliefs, military battlefields and scientific explorations. However, networks routing difficulties are more and more outstanding due to inherent structures. This paper proposed an improved cuckoo searching-based Ad hoc On-Demand Distance Vector Routing protocol (CSAODV). It elaborately designs the calculation methods of optimal routing algorithm used by protocol and transmission mechanism of communication-package. In calculation of optimal routing algorithm by CS Algorithm, by increasing QoS constraint, the found optimal routing algorithm can conform to the requirements of specified bandwidth and time delay, and a certain balance can be obtained among computation spending, bandwidth and time delay. Take advantage of NS2 simulation software to take performance test on protocol in three circumstances and validate the feasibility and validity of CSAODV protocol. In results, CSAODV routing protocol is more adapt to the change of network topological structure than AODV protocol, which improves package delivery fraction of protocol effectively, reduce the transmission time delay of network, reduce the extra burden to network brought by controlling information, and improve the routing efficiency of network.
Chen, Jiejie; Chen, Boshan; Zeng, Zhigang
2018-04-01
This paper investigates O(t -α )-synchronization and adaptive Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations. Firstly, based on the framework of Filippov solution and differential inclusion theory, using a Razumikhin-type method, some sufficient conditions ensuring the global O(t -α )-synchronization of considered networks are established via a linear-type discontinuous control. Next, a new fractional differential inequality is established and two new discontinuous adaptive controller is designed to achieve Mittag-Leffler synchronization between the drive system and the response systems using this inequality. Finally, two numerical simulations are given to show the effectiveness of the theoretical results. Our approach and theoretical results have a leading significance in the design of synchronized fractional-order memristive neural networks circuits involving discontinuous activations and time-varying delays. Copyright © 2018 Elsevier Ltd. All rights reserved.
Energy conservation in ad hoc multimedia networks using traffic-shaping mechanisms
NASA Astrophysics Data System (ADS)
Chandra, Surendar
2003-12-01
In this work, we explore network traffic shaping mechanisms that deliver packets at pre-determined intervals; allowing the network interface to transition to a lower power consuming sleep state. We focus our efforts on commodity devices, IEEE 802.11b ad hoc mode and popular streaming formats. We argue that factors such as the lack of scheduling clock phase synchronization among the participants and scheduling delays introduced by back ground tasks affect the potential energy savings. Increasing the periodic transmission delays to transmit data infrequently can offset some of these effects at the expense of flooding the wireless channel for longer periods of time; potentially increasing the time to acquire the channel for non-multimedia traffic. Buffering mechanisms built into media browsers can mitigate the effects of these added delays from being mis-interpreted as network congestion. We show that practical implementations of such traffic shaping mechanisms can offer significant energy savings.
Wei, Ruoyu; Cao, Jinde; Alsaedi, Ahmed
2018-02-01
This paper investigates the finite-time synchronization and fixed-time synchronization problems of inertial memristive neural networks with time-varying delays. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, several sufficient conditions are derived to ensure finite-time synchronization of inertial memristive neural networks. Then, for the purpose of making the setting time independent of initial condition, we consider the fixed-time synchronization. A novel criterion guaranteeing the fixed-time synchronization of inertial memristive neural networks is derived. Finally, three examples are provided to demonstrate the effectiveness of our main results.
Average waiting time in FDDI networks with local priorities
NASA Technical Reports Server (NTRS)
Gercek, Gokhan
1994-01-01
A method is introduced to compute the average queuing delay experienced by different priority group messages in an FDDI node. It is assumed that no FDDI MAC layer priorities are used. Instead, a priority structure is introduced to the messages at a higher protocol layer (e.g. network layer) locally. Such a method was planned to be used in Space Station Freedom FDDI network. Conservation of the average waiting time is used as the key concept in computing average queuing delays. It is shown that local priority assignments are feasable specially when the traffic distribution is asymmetric in the FDDI network.
A Distributed Algorithm for Economic Dispatch Over Time-Varying Directed Networks With Delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Lu, Jie; Wu, Di
In power system operation, economic dispatch problem (EDP) is designed to minimize the total generation cost while meeting the demand and satisfying generator capacity limits. This paper proposes an algorithm based on the gradient-push method to solve the EDP in a distributed manner over communication networks potentially with time-varying topologies and communication delays. It has been shown that the proposed method is guaranteed to solve the EDP if the time-varying directed communication network is uniformly jointly strongly connected. Moreover, the proposed algorithm is also able to handle arbitrarily large but bounded time delays on communication links. Numerical simulations are usedmore » to illustrate and validate the proposed algorithm.« less
Stability analysis for uncertain switched neural networks with time-varying delay.
Shen, Wenwen; Zeng, Zhigang; Wang, Leimin
2016-11-01
In this paper, stability for a class of uncertain switched neural networks with time-varying delay is investigated. By exploring the mode-dependent properties of each subsystem, all the subsystems are categorized into stable and unstable ones. Based on Lyapunov-like function method and average dwell time technique, some delay-dependent sufficient conditions are derived to guarantee the exponential stability of considered uncertain switched neural networks. Compared with general results, our proposed approach distinguishes the stable and unstable subsystems rather than viewing all subsystems as being stable, thus getting less conservative criteria. Finally, two numerical examples are provided to show the validity and the advantages of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Delay/Disruption Tolerant Networking for the International Space Station (ISS)
NASA Technical Reports Server (NTRS)
Schlesinger, Adam; Willman, Brett M.; Pitts, Lee; Davidson, Suzanne R.; Pohlchuck, William A.
2017-01-01
Disruption Tolerant Networking (DTN) is an emerging data networking technology designed to abstract the hardware communication layer from the spacecraft/payload computing resources. DTN is specifically designed to operate in environments where link delays and disruptions are common (e.g., space-based networks). The National Aeronautics and Space Administration (NASA) has demonstrated DTN on several missions, such as the Deep Impact Networking (DINET) experiment, the Earth Observing Mission 1 (EO-1) and the Lunar Laser Communication Demonstration (LLCD). To further the maturation of DTN, NASA is implementing DTN protocols on the International Space Station (ISS). This paper explains the architecture of the ISS DTN network, the operational support for the system, the results from integrated ground testing, and the future work for DTN expansion.
Periodic bidirectional associative memory neural networks with distributed delays
NASA Astrophysics Data System (ADS)
Chen, Anping; Huang, Lihong; Liu, Zhigang; Cao, Jinde
2006-05-01
Some sufficient conditions are obtained for the existence and global exponential stability of a periodic solution to the general bidirectional associative memory (BAM) neural networks with distributed delays by using the continuation theorem of Mawhin's coincidence degree theory and the Lyapunov functional method and the Young's inequality technique. These results are helpful for designing a globally exponentially stable and periodic oscillatory BAM neural network, and the conditions can be easily verified and be applied in practice. An example is also given to illustrate our results.
Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case
NASA Astrophysics Data System (ADS)
Raja, R.; Marshal Anthoni, S.
2011-02-01
This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.
Passivity analysis for uncertain BAM neural networks with time delays and reaction-diffusions
NASA Astrophysics Data System (ADS)
Zhou, Jianping; Xu, Shengyuan; Shen, Hao; Zhang, Baoyong
2013-08-01
This article deals with the problem of passivity analysis for delayed reaction-diffusion bidirectional associative memory (BAM) neural networks with weight uncertainties. By using a new integral inequality, we first present a passivity condition for the nominal networks, and then extend the result to the case with linear fractional weight uncertainties. The proposed conditions are expressed in terms of linear matrix inequalities, and thus can be checked easily. Examples are provided to demonstrate the effectiveness of the proposed results.
An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.
Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem
2016-11-04
In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.
NASA Astrophysics Data System (ADS)
Li, Kelin
2010-02-01
In this article, a class of impulsive bidirectional associative memory (BAM) fuzzy cellular neural networks (FCNNs) with time-varying delays is formulated and investigated. By employing delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM FCNNs with time-varying delays are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM FCNNs. An example is given to show the effectiveness of the results obtained here.
NASA Astrophysics Data System (ADS)
Oliveira, José J.
2017-10-01
In this paper, we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.
A flow-control mechanism for distributed systems
NASA Technical Reports Server (NTRS)
Maitan, J.
1991-01-01
A new approach to the rate-based flow control in store-and-forward networks is evaluated. Existing methods display oscillations in the presence of transport delays. The proposed scheme is based on the explicit use of an embedded dynamic model of a store-and-forward buffer in a controller's feedback loop. It is shown that the use of the model eliminates the oscillations caused by the transport delays. The paper presents simulation examples and assesses the applicability of the scheme in the new generation of high-speed photonic networks where transport delays must be considered.
Formation Control over Delayed Communication Network
NASA Astrophysics Data System (ADS)
Secchi, Cristian; Fantuzzi, Cesare
In this Chapter we address the problem of formation control of a group of robots that exchange information over a communication network characterized by a non negligible delay. We consider the Virtual Body Artificial Potential approach for stabilizing a group of robots at a desired formation. We show that it is possible to model the controlled group of robots as a port-Hamiltonian system and we exploit the scattering framework to achieve a passive behavior of the controlled system and to stabilize the robots in the desired formation independently of any communication delay.
Peabody, Nathan C.; Pohl, Jascha B.; Diao, Fengqiu; Vreede, Andrew P.; Sandstrom, David J.; Wang, Howard; Zelensky, Paul K.; White, Benjamin H.
2009-01-01
After emergence, adult flies and other insects select a suitable perch and expand their wings. Wing expansion is governed by the hormone bursicon and can be delayed under adverse environmental conditions. How environmental factors delay bursicon release and alter perch selection and expansion behaviors has not been investigated in detail. Here we provide evidence that in Drosophila the motor programs underlying perch selection and wing expansion have different environmental dependencies. Using physical manipulations, we demonstrate that the decision to perch is based primarily on environmental valuations and is incrementally delayed under conditions of increasing perturbation and confinement. In contrast, the all-or-none motor patterns underlying wing expansion are relatively invariant in length regardless of environmental conditions. Using a novel technique for targeted activation of neurons, we show that the highly stereotyped wing expansion motor patterns can be initiated by stimulation of NCCAP, a small network of central neurons that regulates the release of bursicon. Activation of this network using the cold-sensitive rat TRPM8 channel is sufficient to trigger all essential behavioral and somatic processes required for wing expansion. The delay of wing expansion under adverse circumstances thus couples an environmentally-sensitive decision network to a command-like network that initiates a fixed action pattern. Because NCCAP mediates environmentally-insensitive ecdysis-related behaviors in Drosophila development prior to adult emergence, the study of wing expansion promises insights not only into how networks mediate behavioral choices, but also into how decision networks develop. PMID:19295141
Automated Synthesis of Long Communication Delays for Testing
NASA Technical Reports Server (NTRS)
Seibert, Marc; McKim, James
2005-01-01
Planetary-Ohio Network Emulator (p- ONE) is a computer program for local laboratory testing of high bandwidth data-communication systems subject to long delays in propagation over interplanetary distances. p-ONE is installed on a personal computer connected to two bidirectional Ethernet interfaces, denoted A and B, that represent local-area networks at opposite ends of a long propagation path. Traffic that is to be passed between A and B is encapsulated in IP (Internet Protocol) packets (e.g., User Data Protocol, UDP). Intercepting this traffic between A and B in both directions, p-ONE time-tags each packet and stores it in memory or on the hard disk of the computer for a user-specified interval that equals the propagation delay to be synthesized. At the expiration of its storage time, each such packet is sent to its destination (that is, if it was received from A, it is sent to B, or vice versa). The accuracy of the p-ONE software is very high, with zero packet loss through the system and negligible latency. Optionally, p-ONE can be configured to delay all network traffic to and from all network addresses on each Ethernet interface or to selectively delay traffic between specific addresses or traffic of specific types. p-ONE works well with Linux and is also designed to be compatible with other operating systems.
Shah, Peer Azmat; Hasbullah, Halabi B; Lawal, Ibrahim A; Aminu Mu'azu, Abubakar; Tang Jung, Low
2014-01-01
Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node's reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node's compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6's Return-Routability-based Route Optimization (RR-RO).
A general theory of intertemporal decision-making and the perception of time.
Namboodiri, Vijay M K; Mihalas, Stefan; Marton, Tanya M; Hussain Shuler, Marshall G
2014-01-01
Animals and humans make decisions based on their expected outcomes. Since relevant outcomes are often delayed, perceiving delays and choosing between earlier vs. later rewards (intertemporal decision-making) is an essential component of animal behavior. The myriad observations made in experiments studying intertemporal decision-making and time perception have not yet been rationalized within a single theory. Here we present a theory-Training-Integrated Maximized Estimation of Reinforcement Rate (TIMERR)-that explains a wide variety of behavioral observations made in intertemporal decision-making and the perception of time. Our theory postulates that animals make intertemporal choices to optimize expected reward rates over a limited temporal window which includes a past integration interval-over which experienced reward rate is estimated-as well as the expected delay to future reward. Using this theory, we derive mathematical expressions for both the subjective value of a delayed reward and the subjective representation of the delay. A unique contribution of our work is in finding that the past integration interval directly determines the steepness of temporal discounting and the non-linearity of time perception. In so doing, our theory provides a single framework to understand both intertemporal decision-making and time perception.
A general theory of intertemporal decision-making and the perception of time
Namboodiri, Vijay M. K.; Mihalas, Stefan; Marton, Tanya M.; Hussain Shuler, Marshall G.
2014-01-01
Animals and humans make decisions based on their expected outcomes. Since relevant outcomes are often delayed, perceiving delays and choosing between earlier vs. later rewards (intertemporal decision-making) is an essential component of animal behavior. The myriad observations made in experiments studying intertemporal decision-making and time perception have not yet been rationalized within a single theory. Here we present a theory—Training-Integrated Maximized Estimation of Reinforcement Rate (TIMERR)—that explains a wide variety of behavioral observations made in intertemporal decision-making and the perception of time. Our theory postulates that animals make intertemporal choices to optimize expected reward rates over a limited temporal window which includes a past integration interval—over which experienced reward rate is estimated—as well as the expected delay to future reward. Using this theory, we derive mathematical expressions for both the subjective value of a delayed reward and the subjective representation of the delay. A unique contribution of our work is in finding that the past integration interval directly determines the steepness of temporal discounting and the non-linearity of time perception. In so doing, our theory provides a single framework to understand both intertemporal decision-making and time perception. PMID:24616677
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, Anupreeta; Oguri, Masamune; More, Surhud
2017-02-01
We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but placesmore » a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.« less
NASA Astrophysics Data System (ADS)
Meng, Su; Chen, Jie; Sun, Jian
2017-10-01
This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.
Voice/Data Integration in Mobile Radio Networks: Overview and Future Research Directions
1989-09-30
degradation in interactive speech when delays are less than about 300 ms (Gold 1977; Gitman and Frank, 1978). When delays are larger (between 300 ms and 1.5...222-267. Gitman , 1. and H. Frank (1978), "Economic Analysis of Integrated Voice and Data Networks: A Case Study," Proc. IEEE 66 1549-1570. Glynn, P.W
Yu, Lijing; Zhou, Lingling; Tan, Li; Jiang, Hongbo; Wang, Ying; Wei, Sheng; Nie, Shaofa
2014-01-01
Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012. The best-fitted hybrid model was combined with seasonal ARIMA [Formula: see text] and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively -965.03, -1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend. The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information.
Growth dominates choice in network percolation
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.
2013-09-01
The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.
Hunting for dark matter with ultra-stable fibre as frequency delay system.
Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye
2015-07-10
Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs' arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on "frequency-delay system" to search dark-matter by "self-frequency comparison" of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level.
Hunting for dark matter with ultra-stable fibre as frequency delay system
Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye
2015-01-01
Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs’ arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on “frequency-delay system” to search dark-matter by “self-frequency comparison” of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level. PMID:26159113
2018-01-01
Abstract It is widely assumed that distributed neuronal networks are fundamental to the functioning of the brain. Consistent spike timing between neurons is thought to be one of the key principles for the formation of these networks. This can involve synchronous spiking or spiking with time delays, forming spike sequences when the order of spiking is consistent. Finding networks defined by their sequence of time-shifted spikes, denoted here as spike timing networks, is a tremendous challenge. As neurons can participate in multiple spike sequences at multiple between-spike time delays, the possible complexity of networks is prohibitively large. We present a novel approach that is capable of (1) extracting spike timing networks regardless of their sequence complexity, and (2) that describes their spiking sequences with high temporal precision. We achieve this by decomposing frequency-transformed neuronal spiking into separate networks, characterizing each network’s spike sequence by a time delay per neuron, forming a spike sequence timeline. These networks provide a detailed template for an investigation of the experimental relevance of their spike sequences. Using simulated spike timing networks, we show network extraction is robust to spiking noise, spike timing jitter, and partial occurrences of the involved spike sequences. Using rat multineuron recordings, we demonstrate the approach is capable of revealing real spike timing networks with sub-millisecond temporal precision. By uncovering spike timing networks, the prevalence, structure, and function of complex spike sequences can be investigated in greater detail, allowing us to gain a better understanding of their role in neuronal functioning. PMID:29789811
78 FR 59422 - Delayed Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... Applications AGENCY: Office of Hazardous Materials Safety, Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: List of applications delayed more than 180 days. SUMMARY: In accordance with... applications that have been in process for 180 days or more. The reason(s) for delay and the expected...
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyuan; Zhang, Hui; Yang, Bo; Zhang, Guichen
2018-01-01
In order to improve oscillation damping control performance as well as gear shift quality of electric vehicle equipped with integrated motor-transmission system, a cloud-based shaft torque estimation scheme is proposed in this paper by using measurable motor and wheel speed signals transmitted by wireless network. It can help reduce computational burden of onboard controllers and also relief network bandwidth requirement of individual vehicle. Considering possible delays during signal wireless transmission, delay-dependent full-order observer design is proposed to estimate the shaft torque in cloud server. With these random delays modeled by using homogenous Markov chain, robust H∞ performance is adopted to minimize the effect of wireless network-induced delays, signal measurement noise as well as system modeling uncertainties on shaft torque estimation error. Observer parameters are derived by solving linear matrix inequalities, and simulation results using acceleration test and tip-in, tip-out test demonstrate the effectiveness of proposed shaft torque observer design.
A review on transport layer protocol performance for delivering video on an adhoc network
NASA Astrophysics Data System (ADS)
Suherman; Suwendri; Al-Akaidi, Marwan
2017-09-01
The transport layer protocol is responsible for the end to end data transmission. Transmission control protocol (TCP) provides a reliable connection and user datagram protocol (UDP) offers fast but unguaranteed data transfer. Meanwhile, the 802.11 (wireless fidelity/WiFi) networks have been widely used as internet hotspots. This paper evaluates TCP, TCP variants and UDP performances for video transmission on an adhoc network. The transport protocol - medium access cross-layer is proposed by prioritizing TCP acknowledgement to reduce delay. The NS-2 evaluations show that the average delays increase linearly for all the evaluated protocols and the average packet losses grow logarithmically. UDP produces the lowest transmission delay; 5.4% and 5.8% lower than TCP and TCP variant, but experiences the highest packet loss. Both TCP and TCP Vegas maintain packet loss as low as possible. The proposed cross-layer successfully decreases TCP and TCP Vegas delay about 0.12 % and 0.15%, although losses remain similar.
NASA Astrophysics Data System (ADS)
Kikuchi, Takahiro; Kubo, Ryogo
2016-08-01
In energy-efficient passive optical network (PON) systems, the increase in the queuing delays caused by the power-saving mechanism of optical network units (ONUs) is an important issue. Some researchers have proposed quality-of-service (QoS)-aware ONU cyclic sleep controllers in PON systems. We have proposed proportional (P) and proportional-derivative (PD)-based controllers to maintain the average queuing delay at a constant level regardless of the amount of downstream traffic. However, sufficient performance has not been obtained because of the sleep period limitation. In this paper, proportional-integral (PI) and proportional-integral-derivative (PID)-based controllers considering the sleep period limitation, i.e., using an anti-windup (AW) technique, are proposed to improve both the QoS and power-saving performance. Simulations confirm that the proposed controllers provide better performance than conventional controllers in terms of the average downstream queuing delay and the time occupancy of ONU active periods.
Stability switches of arbitrary high-order consensus in multiagent networks with time delays.
Yang, Bo
2013-01-01
High-order consensus seeking, in which individual high-order dynamic agents share a consistent view of the objectives and the world in a distributed manner, finds its potential broad applications in the field of cooperative control. This paper presents stability switches analysis of arbitrary high-order consensus in multiagent networks with time delays. By employing a frequency domain method, we explicitly derive analytical equations that clarify a rigorous connection between the stability of general high-order consensus and the system parameters such as the network topology, communication time-delays, and feedback gains. Particularly, our results provide a general and a fairly precise notion of how increasing communication time-delay causes the stability switches of consensus. Furthermore, under communication constraints, the stability and robustness problems of consensus algorithms up to third order are discussed in details to illustrate our central results. Numerical examples and simulation results for fourth-order consensus are provided to demonstrate the effectiveness of our theoretical results.
Modeling fluctuations in default-mode brain network using a spiking neural network.
Yamanishi, Teruya; Liu, Jian-Qin; Nishimura, Haruhiko
2012-08-01
Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.
Zhang, Guodong; Zeng, Zhigang; Hu, Junhao
2018-01-01
This paper is concerned with the global exponential dissipativity of memristive inertial neural networks with discrete and distributed time-varying delays. By constructing appropriate Lyapunov-Krasovskii functionals, some new sufficient conditions ensuring global exponential dissipativity of memristive inertial neural networks are derived. Moreover, the globally exponential attractive sets and positive invariant sets are also presented here. In addition, the new proposed results here complement and extend the earlier publications on conventional or memristive neural network dynamical systems. Finally, numerical simulations are given to illustrate the effectiveness of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Escalator: An Autonomous Scheduling Scheme for Convergecast in TSCH
Oh, Sukho; Hwang, DongYeop; Kim, Ki-Hyung; Kim, Kangseok
2018-01-01
Time Slotted Channel Hopping (TSCH) is widely used in the industrial wireless sensor networks due to its high reliability and energy efficiency. Various timeslot and channel scheduling schemes have been proposed for achieving high reliability and energy efficiency for TSCH networks. Recently proposed autonomous scheduling schemes provide flexible timeslot scheduling based on the routing topology, but do not take into account the network traffic and packet forwarding delays. In this paper, we propose an autonomous scheduling scheme for convergecast in TSCH networks with RPL as a routing protocol, named Escalator. Escalator generates a consecutive timeslot schedule along the packet forwarding path to minimize the packet transmission delay. The schedule is generated autonomously by utilizing only the local routing topology information without any additional signaling with other nodes. The generated schedule is guaranteed to be conflict-free, in that all nodes in the network could transmit packets to the sink in every slotframe cycle. We implement Escalator and evaluate its performance with existing autonomous scheduling schemes through a testbed and simulation. Experimental results show that the proposed Escalator has lower end-to-end delay and higher packet delivery ratio compared to the existing schemes regardless of the network topology. PMID:29659508
Towards a Low-Cost Remote Memory Attestation for the Smart Grid
Yang, Xinyu; He, Xiaofei; Yu, Wei; Lin, Jie; Li, Rui; Yang, Qingyu; Song, Houbing
2015-01-01
In the smart grid, measurement devices may be compromised by adversaries, and their operations could be disrupted by attacks. A number of schemes to efficiently and accurately detect these compromised devices remotely have been proposed. Nonetheless, most of the existing schemes detecting compromised devices depend on the incremental response time in the attestation process, which are sensitive to data transmission delay and lead to high computation and network overhead. To address the issue, in this paper, we propose a low-cost remote memory attestation scheme (LRMA), which can efficiently and accurately detect compromised smart meters considering real-time network delay and achieve low computation and network overhead. In LRMA, the impact of real-time network delay on detecting compromised nodes can be eliminated via investigating the time differences reported from relay nodes. Furthermore, the attestation frequency in LRMA is dynamically adjusted with the compromised probability of each node, and then, the total number of attestations could be reduced while low computation and network overhead can be achieved. Through a combination of extensive theoretical analysis and evaluations, our data demonstrate that our proposed scheme can achieve better detection capacity and lower computation and network overhead in comparison to existing schemes. PMID:26307998
Towards a Low-Cost Remote Memory Attestation for the Smart Grid.
Yang, Xinyu; He, Xiaofei; Yu, Wei; Lin, Jie; Li, Rui; Yang, Qingyu; Song, Houbing
2015-08-21
In the smart grid, measurement devices may be compromised by adversaries, and their operations could be disrupted by attacks. A number of schemes to efficiently and accurately detect these compromised devices remotely have been proposed. Nonetheless, most of the existing schemes detecting compromised devices depend on the incremental response time in the attestation process, which are sensitive to data transmission delay and lead to high computation and network overhead. To address the issue, in this paper, we propose a low-cost remote memory attestation scheme (LRMA), which can efficiently and accurately detect compromised smart meters considering real-time network delay and achieve low computation and network overhead. In LRMA, the impact of real-time network delay on detecting compromised nodes can be eliminated via investigating the time differences reported from relay nodes. Furthermore, the attestation frequency in LRMA is dynamically adjusted with the compromised probability of each node, and then, the total number of attestations could be reduced while low computation and network overhead can be achieved. Through a combination of extensive theoretical analysis and evaluations, our data demonstrate that our proposed scheme can achieve better detection capacity and lower computation and network overhead in comparison to existing schemes.
Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility
Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus
2013-01-01
This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992
Escalator: An Autonomous Scheduling Scheme for Convergecast in TSCH.
Oh, Sukho; Hwang, DongYeop; Kim, Ki-Hyung; Kim, Kangseok
2018-04-16
Time Slotted Channel Hopping (TSCH) is widely used in the industrial wireless sensor networks due to its high reliability and energy efficiency. Various timeslot and channel scheduling schemes have been proposed for achieving high reliability and energy efficiency for TSCH networks. Recently proposed autonomous scheduling schemes provide flexible timeslot scheduling based on the routing topology, but do not take into account the network traffic and packet forwarding delays. In this paper, we propose an autonomous scheduling scheme for convergecast in TSCH networks with RPL as a routing protocol, named Escalator. Escalator generates a consecutive timeslot schedule along the packet forwarding path to minimize the packet transmission delay. The schedule is generated autonomously by utilizing only the local routing topology information without any additional signaling with other nodes. The generated schedule is guaranteed to be conflict-free, in that all nodes in the network could transmit packets to the sink in every slotframe cycle. We implement Escalator and evaluate its performance with existing autonomous scheduling schemes through a testbed and simulation. Experimental results show that the proposed Escalator has lower end-to-end delay and higher packet delivery ratio compared to the existing schemes regardless of the network topology.
Finite-dimensional modeling of network-induced delays for real-time control systems
NASA Technical Reports Server (NTRS)
Ray, Asok; Halevi, Yoram
1988-01-01
In integrated control systems (ICS), a feedback loop is closed by the common communication channel, which multiplexes digital data from the sensor to the controller and from the controller to the actuator along with the data traffic from other control loops and management functions. Due to asynchronous time-division multiplexing in the network access protocols, time-varying delays are introduced in the control loop, which degrade the system dynamic performance and are a potential source of instability. The delayed control system is represented by a finite-dimensional, time-varying, discrete-time model which is less complex than the existing continuous-time models for time-varying delays; this approach allows for simpler schemes for analysis and simulation of the ICS.
Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar
2018-02-01
This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Manman; Wang, Weiping; Luo, Xiong; Li, Lixiang; Kurths, Jürgen; Wang, Xiao
2018-03-01
This paper is concerned with the exponential lag function projective synchronization of memristive multidirectional associative memory neural networks (MMAMNNs). First, we propose a new model of MMAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying discrete delays and distributed time delays. Second, we design two kinds of hybrid controllers. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the controllers are carefully designed to confirm the process of different types of synchronization in the MMAMNNs. Third, sufficient criteria guaranteeing the synchronization of system are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.
Zhou, Caigen; Zeng, Xiaoqin; Luo, Chaomin; Zhang, Huaguang
In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.
Nie, Xiaobing; Zheng, Wei Xing
2015-05-01
This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Golomb, David; Ermentrout, G. Bard
1999-01-01
Propagation of discharges in cortical and thalamic systems, which is used as a probe for examining network circuitry, is studied by constructing a one-dimensional model of integrate-and-fire neurons that are coupled by excitatory synapses with delay. Each neuron fires only one spike. The velocity and stability of propagating continuous pulses are calculated analytically. Above a certain critical value of the constant delay, these pulses lose stability. Instead, lurching pulses propagate with discontinuous and periodic spatio-temporal characteristics. The parameter regime for which lurching occurs is strongly affected by the footprint (connectivity) shape; bistability may occur with a square footprint shape but not with an exponential footprint shape. For strong synaptic coupling, the velocity of both continuous and lurching pulses increases logarithmically with the synaptic coupling strength gsyn for an exponential footprint shape, and it is bounded for a step footprint shape. We conclude that the differences in velocity and shape between the front of thalamic spindle waves in vitro and cortical paroxysmal discharges stem from their different effective delay; in thalamic networks, large effective delay between inhibitory neurons arises from their effective interaction via the excitatory cells which display postinhibitory rebound. PMID:10557346
Inferring topologies via driving-based generalized synchronization of two-layer networks
NASA Astrophysics Data System (ADS)
Wang, Yingfei; Wu, Xiaoqun; Feng, Hui; Lu, Jun-an; Xu, Yuhua
2016-05-01
The interaction topology among the constituents of a complex network plays a crucial role in the network’s evolutionary mechanisms and functional behaviors. However, some network topologies are usually unknown or uncertain. Meanwhile, coupling delays are ubiquitous in various man-made and natural networks. Hence, it is necessary to gain knowledge of the whole or partial topology of a complex dynamical network by taking into consideration communication delay. In this paper, topology identification of complex dynamical networks is investigated via generalized synchronization of a two-layer network. Particularly, based on the LaSalle-type invariance principle of stochastic differential delay equations, an adaptive control technique is proposed by constructing an auxiliary layer and designing proper control input and updating laws so that the unknown topology can be recovered upon successful generalized synchronization. Numerical simulations are provided to illustrate the effectiveness of the proposed method. The technique provides a certain theoretical basis for topology inference of complex networks. In particular, when the considered network is composed of systems with high-dimension or complicated dynamics, a simpler response layer can be constructed, which is conducive to circuit design. Moreover, it is practical to take into consideration perturbations caused by control input. Finally, the method is applicable to infer topology of a subnetwork embedded within a complex system and locate hidden sources. We hope the results can provide basic insight into further research endeavors on understanding practical and economical topology inference of networks.
Wagner, Isabella C; van Buuren, Mariët; Bovy, Leonore; Morris, Richard G; Fernández, Guillén
2017-02-01
Synaptic memory consolidation is thought to rely on catecholaminergic signaling. Eventually, it is followed by systems consolidation, which embeds memories in a neocortical network. Although this sequence was demonstrated in rodents, it is unclear how catecholamines affect memory consolidation in humans. Here, we tested the effects of catecholaminergic modulation on synaptic and subsequent systems consolidation. We expected enhanced memory performance and increased neocortical engagement during delayed retrieval. Additionally, we tested if this effect was modulated by individual differences in a cognitive proxy measure of baseline catecholamine synthesis capacity. Fifty-three healthy males underwent a between-subjects, double-blind, placebo-controlled procedure across 2 days. On day 1, subjects studied and retrieved object-location associations and received 20 mg of methylphenidate or placebo. Drug intake was timed so that methylphenidate was expected to affect early consolidation but not encoding or retrieval. Memory was tested again while subjects were scanned three days later. Methylphenidate did not facilitate memory performance, and there was no significant group difference in activation during delayed retrieval. However, memory representations differed between groups depending on baseline catecholamines. The placebo group showed increased activation in occipito-temporal regions but decreased connectivity with the hippocampus, associated with lower baseline catecholamine synthesis capacity. The methylphenidate group showed stronger activation in the postcentral gyrus, associated with higher baseline catecholamine synthesis capacity. Altogether, methylphenidate during early consolidation did not foster long-term memory performance, but it affected retrieval-related neural processes depending on individual levels of baseline catecholamines.
Cao, Boqiang; Zhang, Qimin; Ye, Ming
2016-11-29
We present a mean-square exponential stability analysis for impulsive stochastic genetic regulatory networks (GRNs) with time-varying delays and reaction-diffusion driven by fractional Brownian motion (fBm). By constructing a Lyapunov functional and using linear matrix inequality for stochastic analysis we derive sufficient conditions to guarantee the exponential stability of the stochastic model of impulsive GRNs in the mean-square sense. Meanwhile, the corresponding results are obtained for the GRNs with constant time delays and standard Brownian motion. Finally, an example is presented to illustrate our results of the mean-square exponential stability analysis.
A feedback control model for network flow with multiple pure time delays
NASA Technical Reports Server (NTRS)
Press, J.
1972-01-01
A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.
Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E
2016-12-01
This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patel, Mainak; Joshi, Badal
2013-10-07
The widespread presence of synchronized neuronal oscillations within the brain suggests that a mechanism must exist that is capable of decoding such activity. Two realistic designs for such a decoder include: (1) a read-out neuron with a high spike threshold, or (2) a phase-delayed inhibition network motif. Despite requiring a more elaborate network architecture, phase-delayed inhibition has been observed in multiple systems, suggesting that it may provide inherent advantages over simply imposing a high spike threshold. In this work, we use a computational and mathematical approach to investigate the efficacy of the phase-delayed inhibition motif in detecting synchronized oscillations. We show that phase-delayed inhibition is capable of creating a synchrony detector with sharp synchrony filtering properties that depend critically on the time course of inputs. Additionally, we show that phase-delayed inhibition creates a synchrony filter that is far more robust than that created by a high spike threshold. Copyright © 2013 Elsevier Ltd. All rights reserved.
Saad, E W; Prokhorov, D V; Wunsch, D C
1998-01-01
Three networks are compared for low false alarm stock trend predictions. Short-term trends, particularly attractive for neural network analysis, can be used profitably in scenarios such as option trading, but only with significant risk. Therefore, we focus on limiting false alarms, which improves the risk/reward ratio by preventing losses. To predict stock trends, we exploit time delay, recurrent, and probabilistic neural networks (TDNN, RNN, and PNN, respectively), utilizing conjugate gradient and multistream extended Kalman filter training for TDNN and RNN. We also discuss different predictability analysis techniques and perform an analysis of predictability based on a history of daily closing price. Our results indicate that all the networks are feasible, the primary preference being one of convenience.
NASA Astrophysics Data System (ADS)
Zhao, Liyun; Zhou, Jin; Wu, Quanjun
2016-01-01
This paper considers the sampled-data synchronisation problems of coupled harmonic oscillators with communication and input delays subject to controller failure. A synchronisation protocol is proposed for such oscillator systems over directed network topology, and then some general algebraic criteria on exponential convergence for the proposed protocol are established. The main features of the present investigation include: (1) both the communication and input delays are simultaneously addressed, and the directed network topology is firstly considered and (2) the effects of time delays on synchronisation performance are theoretically and numerically investigated. It is shown that in the absence of communication delays, coupled harmonic oscillators can achieve synchronisation oscillatory motion. Whereas if communication delays are nonzero at infinite multiple sampled-data instants, its synchronisation (or consensus) state is zero. This conclusion can be used as an effective control strategy to stabilise coupled harmonic oscillators in practical applications. Furthermore, it is interesting to find that increasing either communication or input delays will enhance the synchronisation performance of coupled harmonic oscillators. Subsequently, numerical examples illustrate and visualise theoretical results.
Performance analysis of Integrated Communication and Control System networks
NASA Technical Reports Server (NTRS)
Halevi, Y.; Ray, A.
1990-01-01
This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.
An Efficient Offloading Scheme For MEC System Considering Delay and Energy Consumption
NASA Astrophysics Data System (ADS)
Sun, Yanhua; Hao, Zhe; Zhang, Yanhua
2018-01-01
With the increasing numbers of mobile devices, mobile edge computing (MEC) which provides cloud computing capabilities proximate to mobile devices in 5G networks has been envisioned as a promising paradigm to enhance users experience. In this paper, we investigate a joint consideration of delay and energy consumption offloading scheme (JCDE) for MEC system in 5G heterogeneous networks. An optimization is formulated to minimize the delay as well as energy consumption of the offloading system, which the delay and energy consumption of transmitting and calculating tasks are taken into account. We adopt an iterative greedy algorithm to solve the optimization problem. Furthermore, simulations were carried out to validate the utility and effectiveness of our proposed scheme. The effect of parameter variations on the system is analysed as well. Numerical results demonstrate delay and energy efficiency promotion of our proposed scheme compared with another paper’s scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Chakraborty, Sudipta; Wang, Dexin
This paper presents a cyber-physical testbed, developed to investigate the complex interactions between emerging microgrid technologies such as grid-interactive power sources, control systems, and a wide variety of communication platforms and bandwidths. The cyber-physical testbed consists of three major components for testing and validation: real time models of a distribution feeder model with microgrid assets that are integrated into the National Renewable Energy Laboratory's (NREL) power hardware-in-the-loop (PHIL) platform; real-time capable network-simulator-in-the-loop (NSIL) models; and physical hardware including inverters and a simple system controller. Several load profiles and microgrid configurations were tested to examine the effect on system performance withmore » increasing channel delays and router processing delays in the network simulator. Testing demonstrated that the controller's ability to maintain a target grid import power band was severely diminished with increasing network delays and laid the foundation for future testing of more complex cyber-physical systems.« less
Robustness analysis of uncertain dynamical neural networks with multiple time delays.
Senan, Sibel
2015-10-01
This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Noise-Assisted Concurrent Multipath Traffic Distribution in Ad Hoc Networks
Murata, Masayuki
2013-01-01
The concept of biologically inspired networking has been introduced to tackle unpredictable and unstable situations in computer networks, especially in wireless ad hoc networks where network conditions are continuously changing, resulting in the need of robustness and adaptability of control methods. Unfortunately, existing methods often rely heavily on the detailed knowledge of each network component and the preconfigured, that is, fine-tuned, parameters. In this paper, we utilize a new concept, called attractor perturbation (AP), which enables controlling the network performance using only end-to-end information. Based on AP, we propose a concurrent multipath traffic distribution method, which aims at lowering the average end-to-end delay by only adjusting the transmission rate on each path. We demonstrate through simulations that, by utilizing the attractor perturbation relationship, the proposed method achieves a lower average end-to-end delay compared to other methods which do not take fluctuations into account. PMID:24319375
Shah, Peer Azmat; Hasbullah, Halabi B.; Lawal, Ibrahim A.; Aminu Mu'azu, Abubakar; Tang Jung, Low
2014-01-01
Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node's reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node's compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6's Return-Routability-based Route Optimization (RR-RO). PMID:24688398
Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans
Devauchelle, Anne-Dominique; Béranger, Benoît; Tallon-Baudry, Catherine
2018-01-01
Resting-state networks offer a unique window into the brain’s functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics. PMID:29561263
NASA Astrophysics Data System (ADS)
Bai, Wei; Yang, Hui; Xiao, Hongyun; Yu, Ao; He, Linkuan; Zhang, Jie; Li, Zhen; Du, Yi
2017-11-01
With the increase in varieties of services in network, time-sensitive services (TSSs) appear and bring forward an impending need for delay performance. Ultralow-latency communication has become one of the important development goals for many scenarios in the coming 5G era (e.g., robotics and driverless cars). However, the conventional methods, which decrease delay by promoting the available resources and the network transmission speed, have limited effect; a new breakthrough for ultralow-latency communication is necessary. We propose a de-optical-line-terminal (De-OLT) hybrid access-aggregation optical network (DAON) for TSS based on software-defined networking (SDN) orchestration. In this network, low-latency all-optical communication based on optical burst switching can be achieved by removing OLT. For supporting this network and guaranteeing the quality of service for TSSs, we design SDN-driven control method and service provision method. Numerical results demonstrate the proposed DAON promotes network service efficiency and avoids traffic congestion.
Structural and functional networks in complex systems with delay.
Eguíluz, Víctor M; Pérez, Toni; Borge-Holthoefer, Javier; Arenas, Alex
2011-05-01
Functional networks of complex systems are obtained from the analysis of the temporal activity of their components, and are often used to infer their unknown underlying connectivity. We obtain the equations relating topology and function in a system of diffusively delay-coupled elements in complex networks. We solve exactly the resulting equations in motifs (directed structures of three nodes) and in directed networks. The mean-field solution for directed uncorrelated networks shows that the clusterization of the activity is dominated by the in-degree of the nodes, and that the locking frequency decreases with increasing average degree. We find that the exponent of a power law degree distribution of the structural topology γ is related to the exponent of the associated functional network as α=(2-γ)(-1) for γ<2. © 2011 American Physical Society
Trade-off Analysis of Underwater Acoustic Sensor Networks
NASA Astrophysics Data System (ADS)
Tuna, G.; Das, R.
2017-09-01
In the last couple of decades, Underwater Acoustic Sensor Networks (UASNs) were started to be used for various commercial and non-commercial purposes. However, in underwater environments, there are some specific inherent constraints, such as high bit error rate, variable and large propagation delay, limited bandwidth capacity, and short-range communications, which severely degrade the performance of UASNs and limit the lifetime of underwater sensor nodes as well. Therefore, proving reliability of UASN applications poses a challenge. In this study, we try to balance energy consumption of underwater acoustic sensor networks and minimize end-to-end delay using an efficient node placement strategy. Our simulation results reveal that if the number of hops is reduced, energy consumption can be reduced. However, this increases end-to-end delay. Hence, application-specific requirements must be taken into consideration when determining a strategy for node deployment.
The Strong Lensing Time Delay Challenge (2014)
NASA Astrophysics Data System (ADS)
Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.
2014-01-01
Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.
Shear-wave splitting observations of mantle anisotropy beneath Alaska
NASA Astrophysics Data System (ADS)
Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.
2009-12-01
Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.
NASA Astrophysics Data System (ADS)
Ren, Fengli; Cao, Jinde
2007-03-01
In this paper, several sufficient conditions are obtained ensuring existence, global attractivity and global asymptotic stability of the periodic solution for the higher-order bidirectional associative memory neural networks with periodic coefficients and delays by using the continuation theorem of Mawhin's coincidence degree theory, the Lyapunov functional and the non-singular M-matrix. Two examples are exploited to illustrate the effectiveness of the proposed criteria. These results are more effective than the ones in the literature for some neural networks, and can be applied to the design of globally attractive or globally asymptotically stable networks and thus have important significance in both theory and applications.
Stability analysis for stochastic BAM nonlinear neural network with delays
NASA Astrophysics Data System (ADS)
Lv, Z. W.; Shu, H. S.; Wei, G. L.
2008-02-01
In this paper, stochastic bidirectional associative memory neural networks with constant or time-varying delays is considered. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, we derive several sufficient conditions in order to guarantee the global asymptotically stable in the mean square. Our investigation shows that the stochastic bidirectional associative memory neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities(LMIs). Hence, the global asymptotic stability of the stochastic bidirectional associative memory neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global asymptotic stability criteria.
Pinning synchronization of memristor-based neural networks with time-varying delays.
Yang, Zhanyu; Luo, Biao; Liu, Derong; Li, Yueheng
2017-09-01
In this paper, the synchronization of memristor-based neural networks with time-varying delays via pinning control is investigated. A novel pinning method is introduced to synchronize two memristor-based neural networks which denote drive system and response system, respectively. The dynamics are studied by theories of differential inclusions and nonsmooth analysis. In addition, some sufficient conditions are derived to guarantee asymptotic synchronization and exponential synchronization of memristor-based neural networks via the presented pinning control. Furthermore, some improvements about the proposed control method are also discussed in this paper. Finally, the effectiveness of the obtained results is demonstrated by numerical simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen
2018-06-01
The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Abdurahman, Abdujelil; Jiang, Haijun; Rahman, Kaysar
2015-12-01
This paper deals with the problem of function projective synchronization for a class of memristor-based Cohen-Grossberg neural networks with time-varying delays. Based on the theory of differential equations with discontinuous right-hand side, some novel criteria are obtained to realize the function projective synchronization of addressed networks by combining open loop control and linear feedback control. As some special cases, several control strategies are given to ensure the realization of complete synchronization, anti-synchronization and the stabilization of the considered memristor-based Cohen-Grossberg neural network. Finally, a numerical example and its simulations are provided to demonstrate the effectiveness of the obtained results.
Design of Distributed Engine Control Systems with Uncertain Delay.
Liu, Xiaofeng; Li, Yanxi; Sun, Xu
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.
Multistability and instability analysis of recurrent neural networks with time-varying delays.
Zhang, Fanghai; Zeng, Zhigang
2018-01-01
This paper provides new theoretical results on the multistability and instability analysis of recurrent neural networks with time-varying delays. It is shown that such n-neuronal recurrent neural networks have exactly [Formula: see text] equilibria, [Formula: see text] of which are locally exponentially stable and the others are unstable, where k 0 is a nonnegative integer such that k 0 ≤n. By using the combination method of two different divisions, recurrent neural networks can possess more dynamic properties. This method improves and extends the existing results in the literature. Finally, one numerical example is provided to show the superiority and effectiveness of the presented results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Song, Qiankun; Yu, Qinqin; Zhao, Zhenjiang; Liu, Yurong; Alsaadi, Fuad E
2018-07-01
In this paper, the boundedness and robust stability for a class of delayed complex-valued neural networks with interval parameter uncertainties are investigated. By using Homomorphic mapping theorem, Lyapunov method and inequality techniques, sufficient condition to guarantee the boundedness of networks and the existence, uniqueness and global robust stability of equilibrium point is derived for the considered uncertain neural networks. The obtained robust stability criterion is expressed in complex-valued LMI, which can be calculated numerically using YALMIP with solver of SDPT3 in MATLAB. An example with simulations is supplied to show the applicability and advantages of the acquired result. Copyright © 2018 Elsevier Ltd. All rights reserved.
Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels
Son, In Keun; Mao, Shiwen; Hur, Seung Min
2009-01-01
We study the problem of how to alleviate the exposed terminal effect in multi-hop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that sched-ules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multi-hop wireless networks. PMID:22408556
Design of Distributed Engine Control Systems with Uncertain Delay
Li, Yanxi; Sun, Xu
2016-01-01
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005
Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2008-01-01
Computational self-sufficiency - the making of communication decisions on the basis of locally available information that is already in place, rather than on the basis of information residing at other entities - is a fundamental principle of Delay-Tolerant Networking. Contact Graph Routing is an attempt to apply this principle to the problem of dynamic routing in an interplanetary DTN. Testing continues, but preliminary results are promising.
Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming
2014-04-01
technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming...attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence... wireless communications, while at the same time providing latency guarantee for control messages. An open question is how to minimize message delay for
He, Huaguang; Li, Taoshen; Feng, Luting; Ye, Jin
2017-07-15
Different from the traditional wired network, the fundamental cause of transmission congestion in wireless ad hoc networks is medium contention. How to utilize the congestion state from the MAC (Media Access Control) layer to adjust the transmission rate is core work for transport protocol design. However, recent works have shown that the existing cross-layer congestion detection solutions are too complex to be deployed or not able to characterize the congestion accurately. We first propose a new congestion metric called frame transmission efficiency (i.e., the ratio of successful transmission delay to the frame service delay), which describes the medium contention in a fast and accurate manner. We further present the design and implementation of RECN (ECN and the ratio of successful transmission delay to the frame service delay in the MAC layer, namely, the frame transmission efficiency), a general supporting scheme that adjusts the transport sending rate through a standard ECN (Explicit Congestion Notification) signaling method. Our method can be deployed on commodity switches with small firmware updates, while making no modification on end hosts. We integrate RECN transparently (i.e., without modification) with TCP on NS2 simulation. The experimental results show that RECN remarkably improves network goodput across multiple concurrent TCP flows.
NASA Astrophysics Data System (ADS)
Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.
2016-02-01
Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.
Relationship between Weather, Traffic and Delay Based on Empirical Methods
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Swei, Sean S. M.
2006-01-01
The steady rise in demand for air transportation over the years has put much emphasis on the need for sophisticated air traffic flow management (TFM) within the National Airspace System (NAS). The NAS refers to hardware, software and people, including runways, radars, networks, FAA, airlines, etc., involved in air traffic management (ATM) in the US. One of the metrics that has been used to assess the performance of NAS is the actual delays provided through FAA's Air Traffic Operations Network (OPSNET). The OPSNET delay data includes those reportable delays, i.e. delays of 15 minutes or more experienced by Instrument Flight Rule (IFR) flights, submitted by the FAA facilities. These OPSNET delays are caused by the application of TFM initiatives in response to, for instance, weather conditions, increased traffic volume, equipment outages, airline operations, and runway conditions. TFM initiatives such as, ground stops, ground delay programs, rerouting, airborne holding, and miles-in-trail restrictions, are actions which are needed to control the air traffic demand to mitigate the demand-capacity imbalance due to the reduction in capacity. Consequently, TFM initiatives result in NAS delays. Of all the causes, weather has been identified as the most important causal factor for NAS delays. Therefore, in order to accurately assess the NAS performance, it has become necessary to create a baseline for NAS performance and establish a model which characterizes the relation between weather and NAS delays.
Zhang, Zhengqiu; Liu, Wenbin; Zhou, Dongming
2012-01-01
In this paper, we first discuss the existence of a unique equilibrium point of a generalized Cohen-Grossberg BAM neural networks of neutral type delays by means of the Homeomorphism theory and inequality technique. Then, by applying the existence result of an equilibrium point and constructing a Lyapunov functional, we study the global asymptotic stability of the equilibrium solution to the above Cohen-Grossberg BAM neural networks of neutral type. In our results, the hypothesis for boundedness in the existing paper, which discussed Cohen-Grossberg neural networks of neutral type on the activation functions, are removed. Finally, we give an example to demonstrate the validity of our global asymptotic stability result for the above neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2008-01-01
Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology composed of scheduled, bounded communication contacts in a network built on the Delay-Tolerant Networking (DTN) architecture. It is designed to support operations in a space network based on DTN, but it also could be used in terrestrial applications where operation according to a predefined schedule is preferable to opportunistic communication, as in a low-power sensor network. This paper will describe the operation of the CGR system and explain how it can enable data delivery over scheduled transmission opportunities, fully utilizing the available transmission capacity, without knowing the current state of any bundle protocol node (other than the local node itself) and without exhausting processing resources at any bundle router.
Traffic signal coordination and queue management in oversaturated intersection.
DOT National Transportation Integrated Search
2011-03-18
Traffic signal timing optimization when done properly, could significantly improve network : performance by reducing delay, increasing network throughput, reducing number of stops, or : increasing average speed in the network. The optimization can be...
Traffic signal coordination and queue management in oversaturated intersections.
DOT National Transportation Integrated Search
2011-03-18
Traffic signal timing optimization when done properly, could significantly improve network performance by reducing delay, increasing network throughput, reducing number of stops, or increasing average speed in the network. The optimization can become...
In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network
Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang
2014-01-01
The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948
Epidemic spreading and global stability of an SIS model with an infective vector on complex networks
NASA Astrophysics Data System (ADS)
Kang, Huiyan; Fu, Xinchu
2015-10-01
In this paper, we present a new SIS model with delay on scale-free networks. The model is suitable to describe some epidemics which are not only transmitted by a vector but also spread between individuals by direct contacts. In view of the biological relevance and real spreading process, we introduce a delay to denote average incubation period of disease in a vector. By mathematical analysis, we obtain the epidemic threshold and prove the global stability of equilibria. The simulation shows the delay will effect the epidemic spreading. Finally, we investigate and compare two major immunization strategies, uniform immunization and targeted immunization.
Olshansky, S Jay; Goldman, Dana P; Zheng, Yuhui; Rowe, John W
2009-01-01
Context: The aging of the baby boom generation, the extension of life, and progressive increases in disability-free life expectancy have generated a dramatic demographic transition in the United States. Official government forecasts may, however, have inadvertently underestimated life expectancy, which would have major policy implications, since small differences in forecasts of life expectancy produce very large differences in the number of people surviving to an older age. This article presents a new set of population and life expectancy forecasts for the United States, focusing on transitions that will take place by midcentury. Methods: Forecasts were made with a cohort-components methodology, based on the premise that the risk of death will be influenced in the coming decades by accelerated advances in biomedical technology that either delay the onset and age progression of major fatal diseases or that slow the aging process itself. Findings: Results indicate that the current forecasts of the U.S. Social Security Administration and U.S. Census Bureau may underestimate the rise in life expectancy at birth for men and women combined, by 2050, from 3.1 to 7.9 years. Conclusions: The cumulative outlays for Medicare and Social Security could be higher by $3.2 to $8.3 trillion relative to current government forecasts. This article discusses the implications of these results regarding the benefits and costs of an aging society and the prospect that health disparities could attenuate some of these changes. PMID:20021588
Faydasicok, Ozlem; Arik, Sabri
2013-08-01
The main problem with the analysis of robust stability of neural networks is to find the upper bound norm for the intervalized interconnection matrices of neural networks. In the previous literature, the major three upper bound norms for the intervalized interconnection matrices have been reported and they have been successfully applied to derive new sufficient conditions for robust stability of delayed neural networks. One of the main contributions of this paper will be the derivation of a new upper bound for the norm of the intervalized interconnection matrices of neural networks. Then, by exploiting this new upper bound norm of interval matrices and using stability theory of Lyapunov functionals and the theory of homomorphic mapping, we will obtain new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slope-bounded activation functions. The results obtained in this paper will be shown to be new and they can be considered alternative results to previously published corresponding results. We also give some illustrative and comparative numerical examples to demonstrate the effectiveness and applicability of the proposed robust stability condition. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grzybowski, J. M. V.; Macau, E. E. N.; Yoneyama, T.
2017-05-01
This paper presents a self-contained framework for the stability assessment of isochronal synchronization in networks of chaotic and limit-cycle oscillators. The results were based on the Lyapunov-Krasovskii theorem and they establish a sufficient condition for local synchronization stability of as a function of the system and network parameters. With this in mind, a network of mutually delay-coupled oscillators subject to direct self-coupling is considered and then the resulting error equations are block-diagonalized for the purpose of studying their stability. These error equations are evaluated by means of analytical stability results derived from the Lyapunov-Krasovskii theorem. The proposed approach is shown to be a feasible option for the investigation of local stability of isochronal synchronization for a variety of oscillators coupled through linear functions of the state variables under a given undirected graph structure. This ultimately permits the systematic identification of stability regions within the high-dimensionality of the network parameter space. Examples of applications of the results to a number of networks of delay-coupled chaotic and limit-cycle oscillators are provided, such as Lorenz, Rössler, Cubic Chua's circuit, Van der Pol oscillator and the Hindmarsh-Rose neuron.
The option value of delay in health technology assessment.
Eckermann, Simon; Willan, Andrew R
2008-01-01
Processes of health technology assessment (HTA) inform decisions under uncertainty about whether to invest in new technologies based on evidence of incremental effects, incremental cost, and incremental net benefit monetary (INMB). An option value to delaying such decisions to wait for further evidence is suggested in the usual case of interest, in which the prior distribution of INMB is positive but uncertain. of estimating the option value of delaying decisions to invest have previously been developed when investments are irreversible with an uncertain payoff over time and information is assumed fixed. However, in HTA decision uncertainty relates to information (evidence) on the distribution of INMB. This article demonstrates that the option value of delaying decisions to allow collection of further evidence can be estimated as the expected value of sample of information (EVSI). For irreversible decisions, delay and trial (DT) is demonstrated to be preferred to adopt and no trial (AN) when the EVSI exceeds expected costs of information, including expected opportunity costs of not treating patients with the new therapy. For reversible decisions, adopt and trial (AT) becomes a potentially optimal strategy, but costs of reversal are shown to reduce the EVSI of this strategy due to both a lower probability of reversal being optimal and lower payoffs when reversal is optimal. Hence, decision makers are generally shown to face joint research and reimbursement decisions (AN, DT and AT), with the optimal choice dependent on costs of reversal as well as opportunity costs of delay and the distribution of prior INMB.
NASA Astrophysics Data System (ADS)
Zhang, Hai; Ye, Renyu; Liu, Song; Cao, Jinde; Alsaedi, Ahmad; Li, Xiaodi
2018-02-01
This paper is concerned with the asymptotic stability of the Riemann-Liouville fractional-order neural networks with discrete and distributed delays. By constructing a suitable Lyapunov functional, two sufficient conditions are derived to ensure that the addressed neural network is asymptotically stable. The presented stability criteria are described in terms of the linear matrix inequalities. The advantage of the proposed method is that one may avoid calculating the fractional-order derivative of the Lyapunov functional. Finally, a numerical example is given to show the validity and feasibility of the theoretical results.
Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Yen, Hong-Hsu; Hsieh, Yu-Jen
2013-01-01
One of the important applications in Wireless Sensor Networks (WSNs) is video surveillance that includes the tasks of video data processing and transmission. Processing and transmission of image and video data in WSNs has attracted a lot of attention in recent years. This is known as Wireless Visual Sensor Networks (WVSNs). WVSNs are distributed intelligent systems for collecting image or video data with unique performance, complexity, and quality of service challenges. WVSNs consist of a large number of battery-powered and resource constrained camera nodes. End-to-end delay is a very important Quality of Service (QoS) metric for video surveillance application in WVSNs. How to meet the stringent delay QoS in resource constrained WVSNs is a challenging issue that requires novel distributed and collaborative routing strategies. This paper proposes a Near-Optimal Distributed QoS Constrained (NODQC) routing algorithm to achieve an end-to-end route with lower delay and higher throughput. A Lagrangian Relaxation (LR)-based routing metric that considers the “system perspective” and “user perspective” is proposed to determine the near-optimal routing paths that satisfy end-to-end delay constraints with high system throughput. The empirical results show that the NODQC routing algorithm outperforms others in terms of higher system throughput with lower average end-to-end delay and delay jitter. In this paper, for the first time, the algorithm shows how to meet the delay QoS and at the same time how to achieve higher system throughput in stringently resource constrained WVSNs.
A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks.
Dao, Thi-Nga; Yoon, Seokhoon; Kim, Jangyoung
2016-01-05
Many applications in wireless sensor networks (WSNs) require energy consumption to be minimized and the data delivered to the sink within a specific delay. A usual solution for reducing energy consumption is duty cycling, in which nodes periodically switch between sleep and active states. By increasing the duty cycle interval, consumed energy can be reduced more. However, a large duty cycle interval causes a long end-to-end (E2E) packet delay. As a result, the requirement of a specific delay bound for packet delivery may not be satisfied. In this paper, we aim at maximizing the duty cycle while still guaranteeing that the packets arrive at the sink with the required probability, i.e., the required delay-constrained success ratio (DCSR) is achieved. In order to meet this objective, we propose a novel scheduling and forwarding scheme, namely the deadline-aware scheduling and forwarding (DASF) algorithm. In DASF, the E2E delay distribution with the given network model and parameters is estimated in order to determine the maximum duty cycle interval, with which the required DCSR is satisfied. Each node independently selects a wake-up time using the selected interval, and packets are forwarded to a node in the potential forwarding set, which is determined based on the distance between nodes and the sink. DASF does not require time synchronization between nodes, and a node does not need to maintain neighboring node information in advance. Simulation results show that the proposed scheme can satisfy a required delay-constrained success ratio and outperforms existing algorithms in terms of E2E delay and DCSR.
A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks
Dao, Thi-Nga; Yoon, Seokhoon; Kim, Jangyoung
2016-01-01
Many applications in wireless sensor networks (WSNs) require energy consumption to be minimized and the data delivered to the sink within a specific delay. A usual solution for reducing energy consumption is duty cycling, in which nodes periodically switch between sleep and active states. By increasing the duty cycle interval, consumed energy can be reduced more. However, a large duty cycle interval causes a long end-to-end (E2E) packet delay. As a result, the requirement of a specific delay bound for packet delivery may not be satisfied. In this paper, we aim at maximizing the duty cycle while still guaranteeing that the packets arrive at the sink with the required probability, i.e., the required delay-constrained success ratio (DCSR) is achieved. In order to meet this objective, we propose a novel scheduling and forwarding scheme, namely the deadline-aware scheduling and forwarding (DASF) algorithm. In DASF, the E2E delay distribution with the given network model and parameters is estimated in order to determine the maximum duty cycle interval, with which the required DCSR is satisfied. Each node independently selects a wake-up time using the selected interval, and packets are forwarded to a node in the potential forwarding set, which is determined based on the distance between nodes and the sink. DASF does not require time synchronization between nodes, and a node does not need to maintain neighboring node information in advance. Simulation results show that the proposed scheme can satisfy a required delay-constrained success ratio and outperforms existing algorithms in terms of E2E delay and DCSR. PMID:26742046
Challenges in sending large radiology images over military communications channels
NASA Astrophysics Data System (ADS)
Cleary, Kevin R.; Levine, Betty A.; Norton, Gary S.; Mundur, Padmavathi V.
1997-05-01
In cooperation with the US Army, Georgetown University Medical Center (GUMC) deployed a teleradiology network to sites in Bosnia-Herzegovina, Hungary, and Germany in early 1996. This deployment was part of Operation Primetime III, a military project to provide state-of-the-art medical care to the 20,000 US troops stationed in Bosnia-Herzegovina.In a three-month time frame from January to April 1996, the Imaging Sciences and Information Systems (ISIS) Center at GUMC worked with the Army to design, develop, and deploy a teleradiology network for the digital storage and transmission of radiology images. This paper will discuss some of the problems associated with sending large files over communications networks with significant delays such as those introduced by satellite transmissions.Radiology images of up to 10 megabytes are acquired, stored, and transmitted over the wide area network (WAN). The WAN included leased lines from Germany to Hungary and a satellite link form Germany to Bosnia-Herzegovina. The communications links provided at least a T-1 bandwidth. The satellite link introduces a round-trip delay of approximately 500 milliseconds. This type of high bandwidth, high delay network is called a long fat network. The images are transferred across this network using the Transmission Control Protocol (TCP/IP). By modifying the TCP/IP software to increase the window size, the throughput of the satellite link can be greatly improved.
Li, Zhijun; Su, Chun-Yi
2013-09-01
In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.
Mixed reality framework for collective motion patterns of swarms with delay coupling
NASA Astrophysics Data System (ADS)
Szwaykowska, Klementyna; Schwartz, Ira
The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is an important subject for many applications within the field of distributed robotic systems. However, there are significant logistical challenges associated with testing fully distributed systems in real-world settings. In this paper, we provide a rigorous theoretical justification for the use of mixed-reality experiments as a stepping stone to fully physical testing of distributed robotic systems. We also model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. Our analyses, assuming agents communicating over an Erdos-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm. K. S. was a National Research Council postdoctoral fellow. I.B.S was supported by the U.S. Naval Research Laboratory funding (N0001414WX00023) and office of Naval Research (N0001414WX20610).
A method of network topology optimization design considering application process characteristic
NASA Astrophysics Data System (ADS)
Wang, Chunlin; Huang, Ning; Bai, Yanan; Zhang, Shuo
2018-03-01
Communication networks are designed to meet the usage requirements of users for various network applications. The current studies of network topology optimization design mainly considered network traffic, which is the result of network application operation, but not a design element of communication networks. A network application is a procedure of the usage of services by users with some demanded performance requirements, and has obvious process characteristic. In this paper, we first propose a method to optimize the design of communication network topology considering the application process characteristic. Taking the minimum network delay as objective, and the cost of network design and network connective reliability as constraints, an optimization model of network topology design is formulated, and the optimal solution of network topology design is searched by Genetic Algorithm (GA). Furthermore, we investigate the influence of network topology parameter on network delay under the background of multiple process-oriented applications, which can guide the generation of initial population and then improve the efficiency of GA. Numerical simulations show the effectiveness and validity of our proposed method. Network topology optimization design considering applications can improve the reliability of applications, and provide guidance for network builders in the early stage of network design, which is of great significance in engineering practices.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-09-18
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols.
Cai, Zuowei; Huang, Lihong; Guo, Zhenyuan; Zhang, Lingling; Wan, Xuting
2015-08-01
This paper is concerned with the periodic synchronization problem for a general class of delayed neural networks (DNNs) with discontinuous neuron activation. One of the purposes is to analyze the problem of periodic orbits. To do so, we introduce new tools including inequality techniques and Kakutani's fixed point theorem of set-valued maps to derive the existence of periodic solution. Another purpose is to design a switching state-feedback control for realizing global exponential synchronization of the drive-response network system with periodic coefficients. Unlike the previous works on periodic synchronization of neural network, both the neuron activations and controllers in this paper are allowed to be discontinuous. Moreover, owing to the occurrence of delays in neuron signal, the neural network model is described by the functional differential equation. So we introduce extended Filippov-framework to deal with the basic issues of solutions for discontinuous DNNs. Finally, two examples and simulation experiments are given to illustrate the proposed method and main results which have an important instructional significance in the design of periodic synchronized DNNs circuits involving discontinuous or switching factors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Queueing models for token and slotted ring networks. Thesis
NASA Technical Reports Server (NTRS)
Peden, Jeffery H.
1990-01-01
Currently the end-to-end delay characteristics of very high speed local area networks are not well understood. The transmission speed of computer networks is increasing, and local area networks especially are finding increasing use in real time systems. Ring networks operation is generally well understood for both token rings and slotted rings. There is, however, a severe lack of queueing models for high layer operation. There are several factors which contribute to the processing delay of a packet, as opposed to the transmission delay, e.g., packet priority, its length, the user load, the processor load, the use of priority preemption, the use of preemption at packet reception, the number of processors, the number of protocol processing layers, the speed of each processor, and queue length limitations. Currently existing medium access queueing models are extended by adding modeling techniques which will handle exhaustive limited service both with and without priority traffic, and modeling capabilities are extended into the upper layers of the OSI model. Some of the model are parameterized solution methods, since it is shown that certain models do not exist as parameterized solutions, but rather as solution methods.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-01-01
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols. PMID:26393608
Delay-dependent coupling for a multi-agent LTI consensus system with inter-agent delays
NASA Astrophysics Data System (ADS)
Qiao, Wei; Sipahi, Rifat
2014-01-01
Delay-dependent coupling (DDC) is considered in this paper in a broadly studied linear time-invariant multi-agent consensus system in which agents communicate with each other under homogeneous delays, while attempting to reach consensus. The coupling among the agents is designed here as an explicit parameter of this delay, allowing couplings to autonomously adapt based on the delay value, and in order to guarantee stability and a certain degree of robustness in the network despite the destabilizing effect of delay. Design procedures, analysis of convergence speed of consensus, comprehensive numerical studies for the case of time-varying delay, and limitations are presented.
Planning and deployment of DWDM systems: a reality
NASA Astrophysics Data System (ADS)
Mishra, Data S.
2001-10-01
The new definition and implementation of new communication network architectures and elements in the present data-centric world are due to dramatic change in technology, explosive growth in bandwidth requirement and de-regulated, privatized and competitive telecommunication market. Network Convergence, Disruptive Technology and Convulsive Market are the basic forces who are pushing the future network towards Packet based Optical Core Network and varieties of Access Network along with integrated NMS. Well-known Moore's law governs the result of progress in silicon processing and accordingly the present capacity of network must be multiplied by 100 times in 10 years. To build a global network which is 100 times powerful than present one by scaling up today's technology can not be a practical solution due to requirement of 100 fold increase in cost, power and size. Today's two network (Low delay, fixed bandwidth, Poisson voice traffic based, circuit-switched PSTN/PLMN and variable delay, variable bandwidth, no-guaranteed QoS based packet switched internet) are converging towards two-layer network (IP and ATM in lower layer; DWDM in network layer). SDH Network which was well drafted before explosive data traffic and was best suitable for Interoperability, Survivability, Reliability and Manageability will be taken over by DWDM Network by 2005 due to 90% of data traffic. This paper describes the way to build the Communication Network (either by migration or by overlay) with an overview of the equipment and technologies required to design the DWDM Network. Service Providers are facing tough challenges for selection of emerging technologies and advances in network standard for bandwidth hungry, valued customers. The reduction of cost of services due to increased competition , explosive growth of internet and 10GbE Ethernet (which is being considered as an end-to-end network solution) have given surprise to many network architects and designers. To provide transparency to data-rate and data-format the gap between electrical layer and Optical backbone layer has to be filled. By partitioning the Optical Bandwidth of Optical Fibre Cable into the wavelengths (32 to 120) Wavelength Division Multiplexing can transport data rate from 10MB/s to 10GB/s on each wavelength. In this paper we will analyze the difficult strategies of suppliers and obstacles in the way of service providers to make DWDM a reality in the field either as Upgrade or Overlay or New Network. The difficult constraint of protection scheme with respect to compatibility with existing network and network under development has to sorted out along with present standard of Optical Fibre to carry DWDM signal in cost effective way to Access , Edge and Metro part of our network. The future of IP under DWDM is going to be key element for Network Planners in future. Fundamental limitation of bit manipulation in Photonic domain will have implication on the network design, cost and migration to all optical network because Photons are computer un-friendly and not mature enough to give memory and logic devices. In the environment of heterogeneous traffic the DWDM based All Optical Network should behave as per expectation of users whose primary traffic will be multi-media IP type. The quality of service (QoS), Virtual Path Network (VPN) over DWDM, OXC and intelligence at the edge will play a major role in future deployment of DWDM in our network . The development of improved fiber characteristics, EDFAs and Photonic component has led the carriers to go for Dense WDM Network.
NASA Astrophysics Data System (ADS)
Khan, Kashif A.; Wang, Qi; Luo, Chunbo; Wang, Xinheng; Grecos, Christos
2014-05-01
Mobile cloud computing is receiving world-wide momentum for ubiquitous on-demand cloud services for mobile users provided by Amazon, Google etc. with low capital cost. However, Internet-centric clouds introduce wide area network (WAN) delays that are often intolerable for real-time applications such as video streaming. One promising approach to addressing this challenge is to deploy decentralized mini-cloud facility known as cloudlets to enable localized cloud services. When supported by local wireless connectivity, a wireless cloudlet is expected to offer low cost and high performance cloud services for the users. In this work, we implement a realistic framework that comprises both a popular Internet cloud (Amazon Cloud) and a real-world cloudlet (based on Ubuntu Enterprise Cloud (UEC)) for mobile cloud users in a wireless mesh network. We focus on real-time video streaming over the HTTP standard and implement a typical application. We further perform a comprehensive comparative analysis and empirical evaluation of the application's performance when it is delivered over the Internet cloud and the cloudlet respectively. The study quantifies the influence of the two different cloud networking architectures on supporting real-time video streaming. We also enable movement of the users in the wireless mesh network and investigate the effect of user's mobility on mobile cloud computing over the cloudlet and Amazon cloud respectively. Our experimental results demonstrate the advantages of the cloudlet paradigm over its Internet cloud counterpart in supporting the quality of service of real-time applications.
Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S
2013-06-01
A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.
Stability and synchronization analysis of inertial memristive neural networks with time delays.
Rakkiyappan, R; Premalatha, S; Chandrasekar, A; Cao, Jinde
2016-10-01
This paper is concerned with the problem of stability and pinning synchronization of a class of inertial memristive neural networks with time delay. In contrast to general inertial neural networks, inertial memristive neural networks is applied to exhibit the synchronization and stability behaviors due to the physical properties of memristors and the differential inclusion theory. By choosing an appropriate variable transmission, the original system can be transformed into first order differential equations. Then, several sufficient conditions for the stability of inertial memristive neural networks by using matrix measure and Halanay inequality are derived. These obtained criteria are capable of reducing computational burden in the theoretical part. In addition, the evaluation is done on pinning synchronization for an array of linearly coupled inertial memristive neural networks, to derive the condition using matrix measure strategy. Finally, the two numerical simulations are presented to show the effectiveness of acquired theoretical results.
Delay and Disruption Tolerant Networking MACHETE Model
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.; Gao, Jay L.
2011-01-01
To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity, the ability to take advantage of scheduled and opportunistic connectivity, and late binding of names to addresses.
A Realistic Framework for Delay-Tolerant Network Routing in Open Terrains with Continuous Churn
NASA Astrophysics Data System (ADS)
Mahendran, Veeramani; Anirudh, Sivaraman K.; Murthy, C. Siva Ram
The conventional analysis of Delay-Tolerant Network (DTN) routing assumes that the terrain over which nodes move is closed implying that when the nodes hit a boundary, they either wrap around or get reflected. In this work, we study the effect of relaxing this closed terrain assumption on the routing performance, where a continuous stream of nodes enter the terrain and get absorbed upon hitting the boundary.
NASA Astrophysics Data System (ADS)
Xu, Chang-Jin; Li, Pei-Luan; Pang, Yi-Cheng
2017-02-01
This paper is concerned with fractional-order bidirectional associative memory (BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag-Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results. Supported by National Natural Science Foundation of China under Grant Nos.~61673008, 11261010, 11101126, Project of High-Level Innovative Talents of Guizhou Province ([2016]5651), Natural Science and Technology Foundation of Guizhou Province (J[2015]2025 and J[2015]2026), 125 Special Major Science and Technology of Department of Education of Guizhou Province ([2012]011) and Natural Science Foundation of the Education Department of Guizhou Province (KY[2015]482)
Lu, Binglong; Jiang, Haijun; Hu, Cheng; Abdurahman, Abdujelil
2018-05-04
The exponential synchronization of hybrid coupled reaction-diffusion neural networks with time delays is discussed in this article. At first, a generalized intermittent control with spacial sampled-data is introduced, which is intermittent in time and data sampling in space. This type of control strategy not only can unify the traditional periodic intermittent control and the aperiodic case, but also can lower the update rate of the controller in both temporal and spatial domains. Next, based on the designed control protocol and the Lyapunov-Krasovskii functional approach, some novel and readily verified criteria are established to guarantee the exponential synchronization of the considered networks. These criteria depend on the diffusion coefficients, coupled strengths, time delays as well as control parameters. Finally, the effectiveness of the proposed control strategy is shown by a numerical example. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sowmiya, C; Raja, R; Cao, Jinde; Rajchakit, G; Alsaedi, Ahmed
2017-01-01
This paper is concerned with the problem of enhanced results on robust finite-time passivity for uncertain discrete-time Markovian jumping BAM delayed neural networks with leakage delay. By implementing a proper Lyapunov-Krasovskii functional candidate, the reciprocally convex combination method together with linear matrix inequality technique, several sufficient conditions are derived for varying the passivity of discrete-time BAM neural networks. An important feature presented in our paper is that we utilize the reciprocally convex combination lemma in the main section and the relevance of that lemma arises from the derivation of stability by using Jensen's inequality. Further, the zero inequalities help to propose the sufficient conditions for finite-time boundedness and passivity for uncertainties. Finally, the enhancement of the feasible region of the proposed criteria is shown via numerical examples with simulation to illustrate the applicability and usefulness of the proposed method.
A Novel IEEE 802.15.4e DSME MAC for Wireless Sensor Networks
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-01
IEEE 802.15.4e standard proposes Deterministic and Synchronous Multichannel Extension (DSME) mode for wireless sensor networks (WSNs) to support industrial, commercial and health care applications. In this paper, a new channel access scheme and beacon scheduling schemes are designed for the IEEE 802.15.4e enabled WSNs in star topology to reduce the network discovery time and energy consumption. In addition, a new dynamic guaranteed retransmission slot allocation scheme is designed for devices with the failure Guaranteed Time Slot (GTS) transmission to reduce the retransmission delay. To evaluate our schemes, analytical models are designed to analyze the performance of WSNs in terms of reliability, delay, throughput and energy consumption. Our schemes are validated with simulation and analytical results and are observed that simulation results well match with the analytical one. The evaluated results of our designed schemes can improve the reliability, throughput, delay, and energy consumptions significantly. PMID:28275216
A Novel IEEE 802.15.4e DSME MAC for Wireless Sensor Networks.
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-16
IEEE 802.15.4e standard proposes Deterministic and Synchronous Multichannel Extension (DSME) mode for wireless sensor networks (WSNs) to support industrial, commercial and health care applications. In this paper, a new channel access scheme and beacon scheduling schemes are designed for the IEEE 802.15.4e enabled WSNs in star topology to reduce the network discovery time and energy consumption. In addition, a new dynamic guaranteed retransmission slot allocation scheme is designed for devices with the failure Guaranteed Time Slot (GTS) transmission to reduce the retransmission delay. To evaluate our schemes, analytical models are designed to analyze the performance of WSNs in terms of reliability, delay, throughput and energy consumption. Our schemes are validated with simulation and analytical results and are observed that simulation results well match with the analytical one. The evaluated results of our designed schemes can improve the reliability, throughput, delay, and energy consumptions significantly.
An observer-based compensator for distributed delays
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1990-01-01
This paper presents an algorithm for compensating delays that are distributed between the sensor(s), controller and actuator(s) within a control loop. This observer-based algorithm is specially suited to compensation of network-induced delays in integrated communication and control systems. The robustness of the algorithm relative to plant model uncertainties has been examined.
Homeostatic plasticity for single node delay-coupled reservoir computing.
Toutounji, Hazem; Schumacher, Johannes; Pipa, Gordon
2015-06-01
Supplementing a differential equation with delays results in an infinite-dimensional dynamical system. This property provides the basis for a reservoir computing architecture, where the recurrent neural network is replaced by a single nonlinear node, delay-coupled to itself. Instead of the spatial topology of a network, subunits in the delay-coupled reservoir are multiplexed in time along one delay span of the system. The computational power of the reservoir is contingent on this temporal multiplexing. Here, we learn optimal temporal multiplexing by means of a biologically inspired homeostatic plasticity mechanism. Plasticity acts locally and changes the distances between the subunits along the delay, depending on how responsive these subunits are to the input. After analytically deriving the learning mechanism, we illustrate its role in improving the reservoir's computational power. To this end, we investigate, first, the increase of the reservoir's memory capacity. Second, we predict a NARMA-10 time series, showing that plasticity reduces the normalized root-mean-square error by more than 20%. Third, we discuss plasticity's influence on the reservoir's input-information capacity, the coupling strength between subunits, and the distribution of the readout coefficients.
Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J.
2014-01-01
Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action. PMID:24573291
Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays.
Popa, Călin-Adrian
2018-06-08
This paper discusses octonion-valued neural networks (OVNNs) with leakage delay, time-varying delays, and distributed delays, for which the states, weights, and activation functions belong to the normed division algebra of octonions. The octonion algebra is a nonassociative and noncommutative generalization of the complex and quaternion algebras, but does not belong to the category of Clifford algebras, which are associative. In order to avoid the nonassociativity of the octonion algebra and also the noncommutativity of the quaternion algebra, the Cayley-Dickson construction is used to decompose the OVNNs into 4 complex-valued systems. By using appropriate Lyapunov-Krasovskii functionals, with double and triple integral terms, the free weighting matrix method, and simple and double integral Jensen inequalities, delay-dependent criteria are established for the exponential stability of the considered OVNNs. The criteria are given in terms of complex-valued linear matrix inequalities, for two types of Lipschitz conditions which are assumed to be satisfied by the octonion-valued activation functions. Finally, two numerical examples illustrate the feasibility, effectiveness, and correctness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Heterogeneous delays making parents synchronized: A coupled maps on Cayley tree model
NASA Astrophysics Data System (ADS)
Singh, Aradhana; Jalan, Sarika
2014-06-01
We study the phase synchronized clusters in the diffusively coupled maps on the Cayley tree networks for heterogeneous delay values. Cayley tree networks comprise of two parts: the inner nodes and the boundary nodes. We find that heterogeneous delays lead to various cluster states, such as; (a) cluster state consisting of inner nodes and boundary nodes, and (b) cluster state consisting of only boundary nodes. The former state may comprise of nodes from all the generations forming self-organized cluster or nodes from few generations yielding driven clusters depending upon on the parity of heterogeneous delay values. Furthermore, heterogeneity in delays leads to the lag synchronization between the siblings lying on the boundary by destroying the exact synchronization among them. The time lag being equal to the difference in the delay values. The Lyapunov function analysis sheds light on the destruction of the exact synchrony among the last generation nodes. To the end we discuss the relevance of our results with respect to their applications in the family business as well as in understanding the occurrence of genetic diseases.
Economides, Marcos; Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J
2014-02-26
Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action.
2015-11-01
Genetic association studies of transplantation outcomes have been hampered by small samples and highly complex multifactorial phenotypes, hindering investigations of the genetic architecture of a range of comorbidities which significantly impact graft and recipient life expectancy. We describe here the rationale and design of the International Genetics & Translational Research in Transplantation Network. The network comprises 22 studies to date, including 16494 transplant recipients and 11669 donors, of whom more than 5000 are of non-European ancestry, all of whom have existing genomewide genotype data sets. We describe the rich genetic and phenotypic information available in this consortium comprising heart, kidney, liver, and lung transplant cohorts. We demonstrate significant power in International Genetics & Translational Research in Transplantation Network to detect main effect association signals across regions such as the MHC region as well as genomewide for transplant outcomes that span all solid organs, such as graft survival, acute rejection, new onset of diabetes after transplantation, and for delayed graft function in kidney only. This consortium is designed and statistically powered to deliver pioneering insights into the genetic architecture of transplant-related outcomes across a range of different solid-organ transplant studies. The study design allows a spectrum of analyses to be performed including recipient-only analyses, donor-recipient HLA mismatches with focus on loss-of-function variants and nonsynonymous single nucleotide polymorphisms.
Performance Analysis of the United States Marine Corps War Reserve Materiel Program Process Flow
2016-12-01
or Less)............41 Figure 21. Tornado Diagram of Expected Delays Using 2016 Inputs ........................42 x Figure 22. Fishbone Diagram of...variability. Using Crystal Ball we produced a Tornado Diagram (similar to a Pareto Chart) in order to tell us where to focus our efforts. The results of...the Tornado Diagram are shown in Figure 21. Figure 21. Tornado Diagram of Expected Delays Using 2016 Inputs Using the results shown in the Tornado
Temporal prediction errors modulate task-switching performance
Limongi, Roberto; Silva, Angélica M.; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as “executive control” is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568
Temporal prediction errors modulate task-switching performance.
Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.
NASA Astrophysics Data System (ADS)
Yang, Hongyong; Han, Fujun; Zhao, Mei; Zhang, Shuning; Yue, Jun
2017-08-01
Because many networked systems can only be characterized with fractional-order dynamics in complex environments, fractional-order calculus has been studied deeply recently. When diverse individual features are shown in different agents of networked systems, heterogeneous fractional-order dynamics will be used to describe the complex systems. Based on the distinguishing properties of agents, heterogeneous fractional-order multi-agent systems (FOMAS) are presented. With the supposition of multiple leader agents in FOMAS, distributed containment control of FOMAS is studied in directed weighted topologies. By applying Laplace transformation and frequency domain theory of the fractional-order operator, an upper bound of delays is obtained to ensure containment consensus of delayed heterogenous FOMAS. Consensus results of delayed FOMAS in this paper can be extended to systems with integer-order models. Finally, numerical examples are used to verify our results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ziyang; Yang, Tao; Li, Guoqi
We study synchronization of coupled linear systems over networks with weak connectivity and time-varying delays. We focus on the case that the internal dynamics are time-varying but non-expansive. Both uniformly connected and infinitely connected communication topologies are considered. A new concept of P-synchronization is introduced and we first show that global asymptotic P-synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of the infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns out that the existence of a uniform time interval for the communicationmore » topology is not necessary and P-synchronization can be achieved when the time varying delays are arbitrarily bounded. Simulations are given to validate the theoretical results.« less
Robust passivity analysis for discrete-time recurrent neural networks with mixed delays
NASA Astrophysics Data System (ADS)
Huang, Chuan-Kuei; Shu, Yu-Jeng; Chang, Koan-Yuh; Shou, Ho-Nien; Lu, Chien-Yu
2015-02-01
This article considers the robust passivity analysis for a class of discrete-time recurrent neural networks (DRNNs) with mixed time-delays and uncertain parameters. The mixed time-delays that consist of both the discrete time-varying and distributed time-delays in a given range are presented, and the uncertain parameters are norm-bounded. The activation functions are assumed to be globally Lipschitz continuous. Based on new bounding technique and appropriate type of Lyapunov functional, a sufficient condition is investigated to guarantee the existence of the desired robust passivity condition for the DRNNs, which can be derived in terms of a family of linear matrix inequality (LMI). Some free-weighting matrices are introduced to reduce the conservatism of the criterion by using the bounding technique. A numerical example is given to illustrate the effectiveness and applicability.
A development of logistics management models for the Space Transportation System
NASA Technical Reports Server (NTRS)
Carrillo, M. J.; Jacobsen, S. E.; Abell, J. B.; Lippiatt, T. F.
1983-01-01
A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support.
75 FR 45628 - Delayed Update of the HHS Poverty Guidelines for the Remainder of 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Office of the Secretary Delayed Update of the HHS Poverty...: This notice provides a delayed update of the Department of Health and Human Services (HHS) poverty guidelines for the remainder of 2010, and until the 2011 poverty guidelines are published, which is expected...
NASA Astrophysics Data System (ADS)
Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-04-01
Exploiting GNSS signal delays is one possibility to obtain Precipitable Water Vapor (PWV) estimates in the atmosphere. The technique is well known since the early 1990s and by now an established method in the meteorological community. The data is crucial for weather forecasting and its assimilation into numerical weather forecasting models is a topic of ongoing research. However, the spatial resolution of ground based GNSS receivers is usually low, in the order of tens of kilometres. Since severe weather events such as convective storms can be concentrated in spatial extent, existing GNSS networks are often not sufficient to retrieve small scale PWV fluctuations and need to be densified. For economic reasons, the use of low-cost single-frequency receivers is a promising solution. In this study, we will deploy a network of single-frequency receivers to densify an existing dual-frequency network in order to investigate the spatial and temporal PWV variations. We demonstrate a test network consisting of four single-frequency receivers in the Rotterdam area (Netherlands). In order to eliminate the delay caused by the ionosphere, the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) is applied, using a surrounding dual-frequency network distributed over a radius of approximately 25 km. With the synthesized L2 frequency, the tropospheric delays are estimated using the Precise Point Positioning (PPP) strategy and International GNSS Service (IGS) final orbits. The PWV time series are validated by a comparison of a collocated single-frequency and a dual-frequency receiver. The time series themselves form the basis for potential further studies like data assimilation into numerical weather models and GNSS tomography to study the impact of the increased spatial resolution on local heavy rain forecast.
Ding, Xiaoshuai; Cao, Jinde; Zhao, Xuan; Alsaadi, Fuad E
2017-08-01
This paper is concerned with the drive-response synchronization for a class of fractional-order bidirectional associative memory neural networks with time delays, as well as in the presence of discontinuous activation functions. The global existence of solution under the framework of Filippov for such networks is firstly obtained based on the fixed-point theorem for condensing map. Then the state feedback and impulsive controllers are, respectively, designed to ensure the Mittag-Leffler synchronization of these neural networks and two new synchronization criteria are obtained, which are expressed in terms of a fractional comparison principle and Razumikhin techniques. Numerical simulations are presented to validate the proposed methodologies.
Delay/Disruption Tolerant Networks (DTN): Testing and Demonstration for Lunar Surface Applications
NASA Technical Reports Server (NTRS)
2009-01-01
This slide presentation reviews the testing of the Delay/Disruption Tolerant Network (DTN) designed for use with Lunar Surface applications. This is being done through the DTN experimental Network (DEN), that permit access and testing by other NASA centers, DTN team members and protocol developers. The objective of this work is to demonstrate DTN for high return applications in lunar scenarios, provide DEN connectivity with analogs of Constellation elements, emulators, and other resources from DTN Team Members, serve as a wireless communications staging ground for remote analog excursions and enable testing of detailed communication scenarios and evaluation of network performance. Three scenarios for DTN on the Lunar surface are reviewed: Motion imagery, Voice and sensor telemetry, and Navigation telemetry.
Complete stability of delayed recurrent neural networks with Gaussian activation functions.
Liu, Peng; Zeng, Zhigang; Wang, Jun
2017-01-01
This paper addresses the complete stability of delayed recurrent neural networks with Gaussian activation functions. By means of the geometrical properties of Gaussian function and algebraic properties of nonsingular M-matrix, some sufficient conditions are obtained to ensure that for an n-neuron neural network, there are exactly 3 k equilibrium points with 0≤k≤n, among which 2 k and 3 k -2 k equilibrium points are locally exponentially stable and unstable, respectively. Moreover, it concludes that all the states converge to one of the equilibrium points; i.e., the neural networks are completely stable. The derived conditions herein can be easily tested. Finally, a numerical example is given to illustrate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Fen; Chen, Yuanlong; Liu, Meichun
2018-02-01
Stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays play an increasingly important role in the design and implementation of neural network systems. Under the framework of Filippov solutions, the issues of the pth moment exponential stability of stochastic memristor-based BAM neural networks are investigated. By using the stochastic stability theory, Itô's differential formula and Young inequality, the criteria are derived. Meanwhile, with Lyapunov approach and Cauchy-Schwarz inequality, we derive some sufficient conditions for the mean square exponential stability of the above systems. The obtained results improve and extend previous works on memristor-based or usual neural networks dynamical systems. Four numerical examples are provided to illustrate the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Tong; Ding, Yongsheng; Zhang, Lei; Hao, Kuangrong
2016-08-01
This paper considered the synchronisation of continuous complex dynamical networks with discrete-time communications and delayed nodes. The nodes in the dynamical networks act in the continuous manner, while the communications between nodes are discrete-time; that is, they communicate with others only at discrete time instants. The communication intervals in communication period can be uncertain and variable. By using a piecewise Lyapunov-Krasovskii function to govern the characteristics of the discrete communication instants, we investigate the adaptive feedback synchronisation and a criterion is derived to guarantee the existence of the desired controllers. The globally exponential synchronisation can be achieved by the controllers under the updating laws. Finally, two numerical examples including globally coupled network and nearest-neighbour coupled networks are presented to demonstrate the validity and effectiveness of the proposed control scheme.
Networks for Autonomous Formation Flying Satellite Systems
NASA Technical Reports Server (NTRS)
Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.
2001-01-01
The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.
Stability and Hopf bifurcation for a business cycle model with expectation and delay
NASA Astrophysics Data System (ADS)
Liu, Xiangdong; Cai, Wenli; Lu, Jiajun; Wang, Yangyang
2015-08-01
According to rational expectation hypothesis, the government will take into account the future capital stock in the process of investment decision. By introducing anticipated capital stock into an economic model with investment delay, we construct a mixed functional differential system including delay and advanced variables. The system is converted to the one containing only delay by variable substitution. The equilibrium point of the system is obtained and its dynamical characteristics such as stability, Hopf bifurcation and its stability and direction are investigated by using the related theories of nonlinear dynamics. We carry out some numerical simulations to confirm these theoretical conclusions. The results indicate that both capital stock's anticipation and investment lag are the certain factors leading to the occurrence of cyclical fluctuations in the macroeconomic system. Moreover, the level of economic fluctuation can be dampened to some extent if investment decisions are made by the reasonable short-term forecast on capital stock.
An Efficient and QoS Supported Multichannel MAC Protocol for Vehicular Ad Hoc Networks
Tan, Guozhen; Yu, Chao
2017-01-01
Vehicular Ad Hoc Networks (VANETs) employ multichannel to provide a variety of safety and non-safety (transport efficiency and infotainment) applications, based on the IEEE 802.11p and IEEE 1609.4 protocols. Different types of applications require different levels Quality-of-Service (QoS) support. Recently, transport efficiency and infotainment applications (e.g., electronic map download and Internet access) have received more and more attention, and this kind of applications is expected to become a big market driver in a near future. In this paper, we propose an Efficient and QoS supported Multichannel Medium Access Control (EQM-MAC) protocol for VANETs in a highway environment. The EQM-MAC protocol utilizes the service channel resources for non-safety message transmissions during the whole synchronization interval, and it dynamically adjusts minimum contention window size for different non-safety services according to the traffic conditions. Theoretical model analysis and extensive simulation results show that the EQM-MAC protocol can support QoS services, while ensuring the high saturation throughput and low transmission delay for non-safety applications. PMID:28991217
Two-level leader-follower organization in pigeon flocks
NASA Astrophysics Data System (ADS)
Chen, Zhiyong; Zhang, Hai-Tao; Chen, Xi; Chen, Duxin; Zhou, Tao
2015-10-01
The most attractive trait of collective animal behavior is the emergence of highly ordered structures (Cavagna A., Giardina I. and Ginelli F., Phys. Rev. Lett., 110 (2013) 168107). It has been conjectured that the interaction mechanism in pigeon flock dynamics follows a hierarchical leader-follower influential network (Nagy M., Ákos Z., Biro D. and Vicsek T., Nature, 464 (2010) 890). In this paper, a new observation is reported that shows that pigeon flocks actually adopt a much simpler two-level interactive network composed of one leader and some followers. By statistically analyzing the same experimental dataset, we show that for a certain period of time a sole leader determines the motion of the flock while the remaining birds are all followers directly copying the leader's direction with specific time delays. This simple two-level despotic organization is expected to save both motional energy and communication cost, while retaining agility and robustness of the whole group. From an evolutionary perspective, our results suggest that a two-level organization of group flight may be more efficient than a multilevel topology for small pigeon flocks.
Considerations for an Earth Relay Satellite with RF and Optical Trunklines
NASA Technical Reports Server (NTRS)
Israel, David J.
2016-01-01
Support for user platforms through the use of optical links to geosynchronous relay spacecraft are expected to be part of the future space communications architecture. The European Data Relay Satellite System (EDRS) has its first node, EDRS-A, in orbit. The EDRS architecture includes space-to-space optical links with a Ka-Band feeder link or trunkline. NASA's Laser Communications Relay Demonstration (LCRD) mission, originally baselined to support a space-to-space optical link relayed with an optical trunkline, has added an Radio Frequency (RF) trunkline. The use of an RF trunkline avoids the outages suffered by an optical trunkline due to clouds, but an RF trunkline will be bandwidth limited. A space relay architecture with both RF and optical trunklines could relay critical realtime data, while also providing a high data volume capacity. This paper considers the relay user scenarios that could be supported, and the implications to the space relay system and operations. System trades such as the amount of onboard processing and storage required, the use of link layer switching vs. network layer routing, and the use of Delay/Disruption Tolerant Networking (DTN) are discussed.
A Study of the Effects of Fieldbus Network Induced Delays on Control Systems
ERIC Educational Resources Information Center
Mainoo, Joseph
2012-01-01
Fieldbus networks are all-digital, two-way, multi-drop communication systems that are used to connect field devices such as sensors and actuators, and controllers. These fieldbus network systems are also called networked control systems (NCS). Although, there are different varieties of fieldbus networks such as Foundation Field Bus, DeviceNet, and…
Expected Number of Fixed Points in Boolean Networks with Arbitrary Topology.
Mori, Fumito; Mochizuki, Atsushi
2017-07-14
Boolean network models describe genetic, neural, and social dynamics in complex networks, where the dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically considered to correspond to cell types in an organism. We prove that the expected number of fixed points in a Boolean network, with Boolean functions drawn from probability distributions that are not required to be uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also demonstrate that the expected number is increased by the predominance of positive feedback in a cycle.
Almost periodic cellular neural networks with neutral-type proportional delays
NASA Astrophysics Data System (ADS)
Xiao, Songlin
2018-03-01
This paper presents a new result on the existence, uniqueness and generalised exponential stability of almost periodic solutions for cellular neural networks with neutral-type proportional delays and D operator. Based on some novel differential inequality techniques, a testable condition is derived to ensure that all the state trajectories of the system converge to an almost periodic solution with a positive exponential convergence rate. The effectiveness of the obtained result is illustrated by a numerical example.
NASA Astrophysics Data System (ADS)
Cao, Jinde; Song, Qiankun
2006-07-01
In this paper, the exponential stability problem is investigated for a class of Cohen-Grossberg-type bidirectional associative memory neural networks with time-varying delays. By using the analysis method, inequality technique and the properties of an M-matrix, several novel sufficient conditions ensuring the existence, uniqueness and global exponential stability of the equilibrium point are derived. Moreover, the exponential convergence rate is estimated. The obtained results are less restrictive than those given in the earlier literature, and the boundedness and differentiability of the activation functions and differentiability of the time-varying delays are removed. Two examples with their simulations are given to show the effectiveness of the obtained results.
NASA Astrophysics Data System (ADS)
Zhang, Junzhi; Li, Yutong; Lv, Chen; Gou, Jinfang; Yuan, Ye
2017-03-01
The flexibility of the electrified powertrain system elicits a negative effect upon the cooperative control performance between regenerative and hydraulic braking and the active damping control performance. Meanwhile, the connections among sensors, controllers, and actuators are realized via network communication, i.e., controller area network (CAN), that introduces time-varying delays and deteriorates the control performances of the closed-loop control systems. As such, the goal of this paper is to develop a control algorithm to cope with all these challenges. To this end, the models of the stochastic network induced time-varying delays, based on a real in-vehicle network topology and on a flexible electrified powertrain, were firstly built. In order to further enhance the control performances of active damping and cooperative control of regenerative and hydraulic braking, the time-varying delays compensation algorithm for the electrified powertrain active damping during regenerative braking was developed based on a predictive scheme. The augmented system is constructed and the H∞ performance is analyzed. Based on this analysis, the control gains are derived by solving a nonlinear minimization problem. The simulations and hardware-in-loop (HIL) tests were carried out to validate the effectiveness of the developed algorithm. The test results show that the active damping and cooperative control performances are enhanced significantly.
A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.
Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R
2018-05-01
This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Decreased body mass index in the preclinical stage of autosomal dominant Alzheimer's disease.
Müller, Stephan; Preische, Oliver; Sohrabi, Hamid R; Gräber, Susanne; Jucker, Mathias; Dietzsch, Janko; Ringman, John M; Martins, Ralph N; McDade, Eric; Schofield, Peter R; Ghetti, Bernardino; Rossor, Martin; Graff-Radford, Neill R; Levin, Johannes; Galasko, Douglas; Quaid, Kimberly A; Salloway, Stephen; Xiong, Chengjie; Benzinger, Tammie; Buckles, Virginia; Masters, Colin L; Sperling, Reisa; Bateman, Randall J; Morris, John C; Laske, Christoph
2017-04-27
The relationship between body-mass index (BMI) and Alzheimer´s disease (AD) has been extensively investigated. However, BMI alterations in preclinical individuals with autosomal dominant AD (ADAD) have not yet been investigated. We analyzed cross-sectional data from 230 asymptomatic members of families with ADAD participating in the Dominantly Inherited Alzheimer Network (DIAN) study including 120 preclinical mutation carriers (MCs) and 110 asymptomatic non-carriers (NCs). Differences in BMI and their relation with cerebral amyloid load and episodic memory as a function of estimated years to symptom onset (EYO) were analyzed. Preclinical MCs showed significantly lower BMIs compared to NCs, starting 11.2 years before expected symptom onset. However, the BMI curves begun to diverge already at 17.8 years before expected symptom onset. Lower BMI in preclinical MCs was significantly associated with less years before estimated symptom onset, higher global Aβ brain burden, and with lower delayed total recall scores in the logical memory test. The study provides cross-sectional evidence that weight loss starts one to two decades before expected symptom onset of ADAD. Our findings point toward a link between the pathophysiology of ADAD and disturbance of weight control mechanisms. Longitudinal follow-up studies are warranted to investigate BMI changes over time.
Role of delay-based reward in the spatial cooperation
NASA Astrophysics Data System (ADS)
Wang, Xu-Wen; Nie, Sen; Jiang, Luo-Luo; Wang, Bing-Hong; Chen, Shi-Ming
2017-01-01
Strategy selection in games, a typical decision making, usually brings noticeable reward for players which have discounted value if the delay appears. The discounted value is measure: earning sooner with a small reward or later with a delayed larger reward. Here, we investigate effects of delayed rewards on the cooperation in structured population. It is found that delayed reward supports the spreading of cooperation in square lattice, small-world and random networks. In particular, intermediate reward differences between delays impel the highest cooperation level. Interestingly, cooperative individuals with the same delay time steps form clusters to resist the invasion of defects, and cooperative individuals with lowest delay reward survive because they form the largest clusters in the lattice.
Galileo Earth approach navigation using connected-element interferometer phase-delay tracking
NASA Technical Reports Server (NTRS)
Thurman, S. W.
1990-01-01
The application of a Connected-Element Interferometer (CEI) to the navigation of the Galileo spacecraft during its encounter with Earth in December 1990 is investigated. A CEI tracking demonstration is planned for the week of November 11 through 18, 1990, from 27 days to 20 days prior to Earth encounter on December 8. During this period, the spacecraft will be tracked daily with Deep Space Network Stations 13 and 15 at Goldstone. The purpose of this work is twofold: first, to establish and define the navigation performance expected during the tracking demonstration and, second, to study, in a more general sense, the sensitivity of orbit demonstration results obtained with CEI to the data density within CEI tracking passes and to important system parameters, such as baseline orientation errors and the phase-delay measurement accuracy. Computer simulation results indicate that the use of CEI data, coupled with conventional range and Doppler data, may reduce the uncertainty in the declination of the spacecraft's incoming trajectory by 15 to 66 percent compared with the operational solution using range and Doppler data only. The level of improvement depends upon the quantity and quality of the CEI data.
Dynamic decision making for dam-break emergency management - Part 1: Theoretical framework
NASA Astrophysics Data System (ADS)
Peng, M.; Zhang, L. M.
2013-02-01
An evacuation decision for dam breaks is a very serious issue. A late decision may lead to loss of lives and properties, but a very early evacuation will incur unnecessary expenses. This paper presents a risk-based framework of dynamic decision making for dam-break emergency management (DYDEM). The dam-break emergency management in both time scale and space scale is introduced first to define the dynamic decision problem. The probability of dam failure is taken as a stochastic process and estimated using a time-series analysis method. The flood consequences are taken as functions of warning time and evaluated with a human risk analysis model (HURAM) based on Bayesian networks. A decision criterion is suggested to decide whether to evacuate the population at risk (PAR) or to delay the decision. The optimum time for evacuating the PAR is obtained by minimizing the expected total loss, which integrates the time-related probabilities and flood consequences. When a delayed decision is chosen, the decision making can be updated with available new information. A specific dam-break case study is presented in a companion paper to illustrate the application of this framework to complex dam-breaching problems.
Building an Energy-efficient Uplink and Downlink Delay Aware TDM-PON System
NASA Astrophysics Data System (ADS)
Newaz, S. H. Shah; Jang, Min Seok; Alaelddin, Fuad Yousif Mohammed; Lee, Gyu Myoung; Choi, Jun Kyun
2016-05-01
With the increasing concern over the energy expenditure due to rapid ICT expansion and growth of Internet traffic volume, there is a growing trend towards developing energy-efficient ICT solutions. Passive Optical Network (PON), which is regarded as a key enabler to facilitate high speed broadband connection to individual subscribers, is considered as one of the energy-efficient access network technologies. However, an immense amount of research effort can be noticed in academia and industries to make PON more energy-efficient. In this paper, we aim at improving energy saving performance of Time Division Multiplexing (TDM)-PON, which is the most widely deployed PON technology throughout the world. A commonly used approach to make TDM-PON energy-efficient is to use sleep mode in Optical Network Units (ONUs), which are the customer premises equipment of a TDM-PON system. However, there is a strong trade-off relationship between traffic delay performance of an ONU and its energy saving (the longer the sleep interval length of an ONU, the lower its energy consumption, but the higher the traffic delay, and vice versa). In this paper, we propose an Energy-efficient Uplink and Downlink Delay Aware (EUDDA) scheme for TDM-PON system. The prime object of EUDDA is to meet both downlink and uplink traffic delay requirement while maximizing energy saving performance of ONUs as much as possible. In EUDDA, traffic delay requirement is given more priority over energy saving. Even so, it still can improve energy saving of ONUs noticeably. We evaluate performance of EUDDA in front of two existing solutions in terms of traffic delay, jitter, and ONU energy consumption. The performance results show that EUDDA significantly outperforms the other existing solutions.
Hybrid services efficient provisioning over the network coding-enabled elastic optical networks
NASA Astrophysics Data System (ADS)
Wang, Xin; Gu, Rentao; Ji, Yuefeng; Kavehrad, Mohsen
2017-03-01
As a variety of services have emerged, hybrid services have become more common in real optical networks. Although the elastic spectrum resource optimizations over the elastic optical networks (EONs) have been widely investigated, little research has been carried out on the hybrid services of the routing and spectrum allocation (RSA), especially over the network coding-enabled EON. We investigated the RSA for the unicast service and network coding-based multicast service over the network coding-enabled EON with the constraints of time delay and transmission distance. To address this issue, a mathematical model was built to minimize the total spectrum consumption for the hybrid services over the network coding-enabled EON under the constraints of time delay and transmission distance. The model guarantees different routing constraints for different types of services. The immediate nodes over the network coding-enabled EON are assumed to be capable of encoding the flows for different kinds of information. We proposed an efficient heuristic algorithm of the network coding-based adaptive routing and layered graph-based spectrum allocation algorithm (NCAR-LGSA). From the simulation results, NCAR-LGSA shows highly efficient performances in terms of the spectrum resources utilization under different network scenarios compared with the benchmark algorithms.
Hurtado-Chong, Anahí; Joeris, Alexander; Hess, Denise; Blauth, Michael
2017-07-12
A considerable number of clinical studies experience delays, which result in increased duration and costs. In multicentre studies, patient recruitment is among the leading causes of delays. Poor site selection can result in low recruitment and bad data quality. Site selection is therefore crucial for study quality and completion, but currently no specific guidelines are available. Selection of sites adequate to participate in a prospective multicentre cohort study was performed through an open call using a newly developed objective multistep approach. The method is based on use of a network, definition of objective criteria and a systematic screening process. Out of 266 interested sites, 24 were shortlisted and finally 12 sites were selected to participate in the study. The steps in the process included an open call through a network, use of selection questionnaires tailored to the study, evaluation of responses using objective criteria and scripted telephone interviews. At each step, the number of candidate sites was quickly reduced leaving only the most promising candidates. Recruitment and quality of data went according to expectations in spite of the contracting problems faced with some sites. The results of our first experience with a standardised and objective method of site selection are encouraging. The site selection method described here can serve as a guideline for other researchers performing multicentre studies. ClinicalTrials.gov: NCT02297581. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Che-Aron, Z.; Abdalla, A. H.; Abdullah, K.; Hassan, W. H.
2013-12-01
In recent years, Cognitive Radio (CR) technology has largely attracted significant studies and research. Cognitive Radio Ad Hoc Network (CRAHN) is an emerging self-organized, multi-hop, wireless network which allows unlicensed users to opportunistically access available licensed spectrum bands for data communication under an intelligent and cautious manner. However, in CRAHNs, a lot of failures can easily occur during data transmission caused by PU (Primary User) activity, topology change, node fault, or link degradation. In this paper, an attempt has been made to evaluate the performance of the Multi-Radio Link-Quality Source Routing (MR-LQSR) protocol in CRAHNs under different path failure rate. In the MR-LQSR protocol, the Weighted Cumulative Expected Transmission Time (WCETT) is used as the routing metric. The simulations are carried out using the NS-2 simulator. The protocol performance is evaluated with respect to performance metrics like average throughput, packet loss, average end-to-end delay and average jitter. From the simulation results, it is observed that the number of path failures depends on the PUs number and mobility rate of SUs (Secondary Users). Moreover, the protocol performance is greatly affected when the path failure rate is high, leading to major service outages.
A Proposal for IoT Dynamic Routes Selection Based on Contextual Information.
Araújo, Harilton da Silva; Filho, Raimir Holanda; Rodrigues, Joel J P C; Rabelo, Ricardo de A L; Sousa, Natanael de C; Filho, José C C L S; Sobral, José V V
2018-01-26
The Internet of Things (IoT) is based on interconnection of intelligent and addressable devices, allowing their autonomy and proactive behavior with Internet connectivity. Data dissemination in IoT usually depends on the application and requires context-aware routing protocols that must include auto-configuration features (which adapt the behavior of the network at runtime, based on context information). This paper proposes an approach for IoT route selection using fuzzy logic in order to attain the requirements of specific applications. In this case, fuzzy logic is used to translate in math terms the imprecise information expressed by a set of linguistic rules. For this purpose, four Objective Functions (OFs) are proposed for the Routing Protocol for Low Power and Loss Networks (RPL); such OFs are dynamically selected based on context information. The aforementioned OFs are generated from the fusion of the following metrics: Expected Transmission Count (ETX), Number of Hops (NH) and Energy Consumed (EC). The experiments performed through simulation, associated with the statistical data analysis, conclude that this proposal provides high reliability by successfully delivering nearly 100% of data packets, low delay for data delivery and increase in QoS. In addition, an 30% improvement is attained in the network life time when using one of proposed objective function, keeping the devices alive for longer duration.
SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products
NASA Astrophysics Data System (ADS)
Jeansou, E.; Crespon, F.; Garcia, R.; Helbert, J.; Moreaux, G.; Lognonne, P.
2005-12-01
The dense GPS networks developed for geodesic applications appear to be very efficient ionospheric sensors because of interaction between plasma and electromagnetic waves. Indeed, the dual frequency receivers provide data from which the Slant Total Electron Content (STEC) can be easily extracted to compute Vertical Total Electron Content (VTEC) maps. The SPECTRE project, Service and Products for ionospheric Electron Content and Tropospheric Refractivity over Europe, is currently a pre-operational service providing VTEC maps with high time and space resolution after 3 days time delay (http://www.noveltis.fr/spectre and http://ganymede.ipgp.jussieu.fr/spectre). This project is a part of SWENET, SpaceWeather European Network, initiated by the European Space Agency. The SPECTRE data products are useful for many applications. We will present these applications in term of interest for the scientific community with a special focus on spaceweather and transient ionospheric perturbations related to Earthquakes. Moreover, the pre-operational extensions of SPECTRE to the californian (SCIGN/BARD) and japanese (GEONET) dense GPS networks will be presented. Then the method of 3D tomography of the electron density from GPS data will be presented and its resolution discussed. The expected improvements of the 3D tomographic images by new tomographic reconstruction algorithms and by the advent of the Galileo system will conclude the presentation.
Expected number of quantum channels in quantum networks.
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-07-15
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.
Expected number of quantum channels in quantum networks
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-01-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556
NASA Astrophysics Data System (ADS)
Kosal, Haluk; Skoog, Ronald A.
1994-04-01
Signaling System No. 7 (SS7) is designed to provide a connection-less transfer of signaling messages of reasonable length. Customers having access to user signaling bearer capabilities as specified in the ANSI T1.623 and CCITT Q.931 standards can send bursts of correlated messages (e.g., by doing a file transfer that results in the segmentation of a block of data into a number of consecutive signaling messages) through SS7 networks. These message bursts with short interarrival times could have an adverse impact on the delay performance of the SS7 networks. A control mechanism, Credit Manager, is investigated in this paper to regulate incoming traffic to the SS7 network by imposing appropriate time separation between messages when the incoming stream is too bursty. The credit manager has a credit bank where credits accrue at a fixed rate up to a prespecified credit bank capacity. When a message arrives, the number of octets in that message is compared to the number of credits in the bank. If the number of credits is greater than or equal to the number of octets, then the message is accepted for transmission and the number of credits in the bank is decremented by the number of octets. If the number of credits is less than the number of octets, then the message is delayed until enough credits are accumulated. This paper presents simulation results showing delay performance of the SS7 ISUP and TCAP message traffic with a range of correlated message traffic, and control parameters of the credit manager (i.e., credit generation rate and bank capacity) are determined that ensure the traffic entering the SS7 network is acceptable. The results show that control parameters can be set so that for any incoming traffic stream there is no detrimental impact on the SS7 ISUP and TCAP message delay, and the credit manager accepts a wide range of traffic patterns without causing significant delay.
Space Flight Middleware: Remote AMS over DTN for Delay-Tolerant Messaging
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2011-01-01
This paper describes a technique for implementing scalable, reliable, multi-source multipoint data distribution in space flight communications -- Delay-Tolerant Reliable Multicast (DTRM) -- that is fully supported by the "Remote AMS" (RAMS) protocol of the Asynchronous Message Service (AMS) proposed for standardization within the Consultative Committee for Space Data Systems (CCSDS). The DTRM architecture enables applications to easily "publish" messages that will be reliably and efficiently delivered to an arbitrary number of "subscribing" applications residing anywhere in the space network, whether in the same subnet or in a subnet on a remote planet or vehicle separated by many light minutes of interplanetary space. The architecture comprises multiple levels of protocol, each included for a specific purpose and allocated specific responsibilities: "application AMS" traffic performs end-system data introduction and delivery subject to access control; underlying "remote AMS" directs this application traffic to populations of recipients at remote locations in a multicast distribution tree, enabling the architecture to scale up to large networks; further underlying Delay-Tolerant Networking (DTN) Bundle Protocol (BP) advances RAMS protocol data units through the distribution tree using delay-tolerant storeand- forward methods; and further underlying reliable "convergence-layer" protocols ensure successful data transfer over each segment of the end-to-end route. The result is scalable, reliable, delay-tolerant multi-source multicast that is largely self-configuring.
Cui, Laizhong; Lu, Nan; Chen, Fu
2014-01-01
Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ziyang; Yang, Tao; Li, Guoqi
Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less
Meng, Ziyang; Yang, Tao; Li, Guoqi; ...
2017-09-18
Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less
NASA Technical Reports Server (NTRS)
Flock, W. L.
1981-01-01
When high precision is required for range measurement on Earth space paths, it is necessary to correct as accurately as possible for excess range delays due to the dry air, water vapor, and liquid water content of the atmosphere. Calculations based on representative values of atmospheric parameters are useful for illustrating the order of magnitude of the expected delays. Range delay, time delay, and phase delay are simply and directly related. Doppler frequency variations or noise are proportional to the time rate of change of excess range delay. Tropospheric effects were examined as part of an overall consideration of the capability of precision two way ranging and Doppler systems.
Bodnar, Tamara S; Raineki, Charlis; Wertelecki, Wladimir; Yevtushok, Lyubov; Plotka, Larisa; Zymak-Zakutnya, Natalya; Honerkamp-Smith, Gordon; Wells, Alan; Rolland, Matthieu; Woodward, Todd S; Coles, Claire D; Kable, Julie A; Chambers, Christina D; Weinberg, Joanne
2018-05-05
Cytokines and chemokines are potent modulators of brain development and as such, dysregulation of the maternal immune system can result in deviations in the fetal cytokine balance, altering the course of typical brain development, and putting the individual on a "pathway to pathology". In the current study, we used a multi-variate approach to evaluate networks of interacting cytokines and investigated whether alterations in the maternal immune milieu could be linked to alcohol-related and alcohol-independent child neurodevelopmental delay. This was achieved through the measurement of 40 cytokines/chemokines from maternal blood samples collected during the second and third trimesters of pregnancy. Importantly, during the second trimester we identified network enrichment in levels of cytokines including IFN-ɣ, IL-10, TNF-β, TNF-α, and CRP associated with offspring neurodevelopmental delay. However, as elevations in levels of these cytokines have previously been reported in a wide range of neurodevelopmental disorders including autism spectrum disorder and schizophrenia, we suggest that this cytokine profile is likely not disorder specific, but rather may be an indicator of neurodevelopmental delay in general. By contrast, distinct clusters of activated/inhibited cytokines were identified based on maternal alcohol consumption and child neurodevelopmental outcome. Specifically, cytokines including IL-15, IL-10, MDC, and members of the VEGF sub-family were highest in alcohol-consuming mothers of children with neurodevelopmental delay and were identified in both network analyses and examination of individual cytokines, whereas a differential and unique cytokine profile was identified in the case of alcohol-independent child neurodevelopmental delay. We propose that the current findings could provide a critical step towards the development of early biomarkers and possibly interventions for alcohol-related neurodevelopmental delay. Importantly, the current approach could be informative for understanding mechanisms linking maternal immune system dysfunction and adverse child outcomes in a range of other neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.
Empirical modeling of an alcohol expectancy memory network using multidimensional scaling.
Rather, B C; Goldman, M S; Roehrich, L; Brannick, M
1992-02-01
Risk-related antecedent variables can be linked to later alcohol consumption by memory processes, and alcohol expectancies may be one relevant memory content. To advance research in this area, it would be useful to apply current memory models such as semantic network theory to explain drinking decision processes. We used multidimensional scaling (MDS) to empirically model a preliminary alcohol expectancy semantic network, from which a theoretical account of drinking decision making was generated. Subanalyses (PREFMAP) showed how individuals with differing alcohol consumption histories may have had different association pathways within the expectancy network. These pathways may have, in turn influenced future drinking levels and behaviors while the person was under the influence of alcohol. All individuals associated positive/prosocial effects with drinking, but heavier drinkers indicated arousing effects as their highest probability associates, whereas light drinkers expected sedation. An important early step in this MDS modeling process is the determination of iso-meaning expectancy adjective groups, which correspond to theoretical network nodes.
Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling
Li, Xia; Rao, Shaoqi; Jiang, Wei; Li, Chuanxing; Xiao, Yun; Guo, Zheng; Zhang, Qingpu; Wang, Lihong; Du, Lei; Li, Jing; Li, Li; Zhang, Tianwen; Wang, Qing K
2006-01-01
Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network) to address the underlying regulations of genes that can span any unit(s) of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex gene regulations related to the development, aging and progressive pathogenesis of a complex disease where potential dependences between different experiment units might occurs. PMID:16420705
NASA Astrophysics Data System (ADS)
Gillespie, Mark A. K.; Baggesen, Nanna; Cooper, Elisabeth J.
2016-11-01
The projected alterations to climate in the High Arctic are likely to result in changes to the short growing season, particularly with varying predicted effects on winter snowfall, the timing of summer snowmelt and air temperatures. These changes are likely to affect the phenology of interacting species in a variety of ways, but few studies have investigated the effects of combined climate drivers on plant-pollinator interactions in the High Arctic. In this study, we alter the timing of flowering phenology using a field manipulation experiment in which snow depth is increased using snow fences and temperatures are enhanced by open-top chambers (OTCs). We used this experiment to quantify the combined effects of treatments on the flowering phenology of six dominant plant species (Dryas octopetala, Cassiope tetragona, Bistorta vivipara, Saxifraga oppositifolia, Stellaria crassipes and Pedicularis hirsuita), and to simulate differing responses to climate between plants and pollinators in a subset of plots. Flowers were counted regularly throughout the growing season of 2015, and insect visitors were caught on flowers during standardised observation sessions. As expected, deep snow plots had delayed snow melt timing and this in turn delayed the first and peak flowering dates of the plants and shortened the prefloration period overall. The OTCs counteracted the delay in first and peak flowering to some extent. There was no effect of treatment on length of flowering season, although for all variables there were species-specific responses. The insect flower-visitor community was species poor, and although evidence of disruption to phenological overlaps was not found, the results do highlight the vulnerability of the plant-pollinator network in this system with differing phenological shifts between insects and plants and reduced visitation rates to flowers in plots with deep snow.
NASA Astrophysics Data System (ADS)
Romero, D. A.; Sebastián, Rafael; Plank, Gernot; Vigmond, Edward J.; Frangi, Alejandro F.
2008-03-01
From epidemiological studies, it has been shown that 0.2% of men and 0.1% of women suffer from a degree of atrioventricular (AV) block. In recent years, the palliative treatment for third degree AV block has included Cardiac Resynchronization Therapy (CRT). It was found that patients show more clinical improvement in the long term with CRT compared with single chamber devices. Still, an important group of patients does not improve their hemodynamic function as much as could be expected. A better understanding of the basis for optimizing the devices settings (among which the VV delay) will help to increase the number of responders. In this work, a finite element model of the left and right ventricles was generated using an atlas-based approach for their segmentation, which includes fiber orientation. The electrical activity was simulated with the electrophysiological solver CARP, using the Ten Tusscher et al. ionic model for the myocardium, and the DiFrancesco-Noble for Purkinje fibers. The model is representative of a patient without dilated or ischemic cardiomyopathy. The simulation results were analyzed for total activation times and latest activated regions at different VV delays and pre-activations (RV pre-activated, LV pre-activated). To optimize the solution, simulations are compared against the His-Purkinje network activation (normal physiological conduction), and interventricular septum activation (as collision point for the two wave fronts). The results were analyzed using Pearson's coefficient of correlation for point to point comparisons between simulation cases. The results of this study contribute to gain insight on the VV delay and how its adjustment might influence response to CRT and how it can be used to optimize the treatment.
Wadud, Zahid; Hussain, Sajjad; Javaid, Nadeem; Bouk, Safdar Hussain; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra
2017-09-30
Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay.
Stamova, Ivanka; Stamov, Gani
2017-12-01
In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Syed Ali, M.; Yogambigai, J.; Kwon, O. M.
2018-03-01
Finite-time boundedness and finite-time passivity for a class of switched stochastic complex dynamical networks (CDNs) with coupling delays, parameter uncertainties, reaction-diffusion term and impulsive control are studied. Novel finite-time synchronisation criteria are derived based on passivity theory. This paper proposes a CDN consisting of N linearly and diffusively coupled identical reaction- diffusion neural networks. By constructing of a suitable Lyapunov-Krasovskii's functional and utilisation of Jensen's inequality and Wirtinger's inequality, new finite-time passivity criteria for the networks are established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, two interesting numerical examples are given to show the effectiveness of the theoretical results.
Finite-time synchronization for memristor-based neural networks with time-varying delays.
Abdurahman, Abdujelil; Jiang, Haijun; Teng, Zhidong
2015-09-01
Memristive network exhibits state-dependent switching behaviors due to the physical properties of memristor, which is an ideal tool to mimic the functionalities of the human brain. In this paper, finite-time synchronization is considered for a class of memristor-based neural networks with time-varying delays. Based on the theory of differential equations with discontinuous right-hand side, several new sufficient conditions ensuring the finite-time synchronization of memristor-based chaotic neural networks are obtained by using analysis technique, finite time stability theorem and adding a suitable feedback controller. Besides, the upper bounds of the settling time of synchronization are estimated. Finally, a numerical example is given to show the effectiveness and feasibility of the obtained results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modularity Induced Gating and Delays in Neuronal Networks
Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael
2016-01-01
Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350
Li, Hongfei; Jiang, Haijun; Hu, Cheng
2016-03-01
In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adaptive Aggregation Routing to Reduce Delay for Multi-Layer Wireless Sensor Networks.
Li, Xujing; Liu, Anfeng; Xie, Mande; Xiong, Neal N; Zeng, Zhiwen; Cai, Zhiping
2018-04-16
The quality of service (QoS) regarding delay, lifetime and reliability is the key to the application of wireless sensor networks (WSNs). Data aggregation is a method to effectively reduce the data transmission volume and improve the lifetime of a network. In the previous study, a common strategy required that data wait in the queue. When the length of the queue is greater than or equal to the predetermined aggregation threshold ( N t ) or the waiting time is equal to the aggregation timer ( T t ), data are forwarded at the expense of an increase in the delay. The primary contributions of the proposed Adaptive Aggregation Routing (AAR) scheme are the following: (a) the senders select the forwarding node dynamically according to the length of the data queue, which effectively reduces the delay. In the AAR scheme, the senders send data to the nodes with a long data queue. The advantages are that first, the nodes with a long data queue need a small amount of data to perform aggregation; therefore, the transmitted data can be fully utilized to make these nodes aggregate. Second, this scheme balances the aggregating and data sending load; thus, the lifetime increases. (b) An improved AAR scheme is proposed to improve the QoS. The aggregation deadline ( T t ) and the aggregation threshold ( N t ) are dynamically changed in the network. In WSNs, nodes far from the sink have residual energy because these nodes transmit less data than the other nodes. In the improved AAR scheme, the nodes far from the sink have a small value of T t and N t to reduce delay, and the nodes near the sink are set to a large value of T t and N t to reduce energy consumption. Thus, the end to end delay is reduced, a longer lifetime is achieved, and the residual energy is fully used. Simulation results demonstrate that compared with the previous scheme, the performance of the AAR scheme is improved. This scheme reduces the delay by 14.91%, improves the lifetime by 30.91%, and increases energy efficiency by 76.40%.
Adaptive Aggregation Routing to Reduce Delay for Multi-Layer Wireless Sensor Networks
Li, Xujing; Xie, Mande; Zeng, Zhiwen; Cai, Zhiping
2018-01-01
The quality of service (QoS) regarding delay, lifetime and reliability is the key to the application of wireless sensor networks (WSNs). Data aggregation is a method to effectively reduce the data transmission volume and improve the lifetime of a network. In the previous study, a common strategy required that data wait in the queue. When the length of the queue is greater than or equal to the predetermined aggregation threshold (Nt) or the waiting time is equal to the aggregation timer (Tt), data are forwarded at the expense of an increase in the delay. The primary contributions of the proposed Adaptive Aggregation Routing (AAR) scheme are the following: (a) the senders select the forwarding node dynamically according to the length of the data queue, which effectively reduces the delay. In the AAR scheme, the senders send data to the nodes with a long data queue. The advantages are that first, the nodes with a long data queue need a small amount of data to perform aggregation; therefore, the transmitted data can be fully utilized to make these nodes aggregate. Second, this scheme balances the aggregating and data sending load; thus, the lifetime increases. (b) An improved AAR scheme is proposed to improve the QoS. The aggregation deadline (Tt) and the aggregation threshold (Nt) are dynamically changed in the network. In WSNs, nodes far from the sink have residual energy because these nodes transmit less data than the other nodes. In the improved AAR scheme, the nodes far from the sink have a small value of Tt and Nt to reduce delay, and the nodes near the sink are set to a large value of Tt and Nt to reduce energy consumption. Thus, the end to end delay is reduced, a longer lifetime is achieved, and the residual energy is fully used. Simulation results demonstrate that compared with the previous scheme, the performance of the AAR scheme is improved. This scheme reduces the delay by 14.91%, improves the lifetime by 30.91%, and increases energy efficiency by 76.40%. PMID:29659535
Destabilizing Effects of Impulse in Delayed Bam Neural Networks
NASA Astrophysics Data System (ADS)
Li, Chuandong; Li, Chaojie; Liu, Chao
This paper further studies the global exponential stability of the equilibrium point of the delayed bidirectional associative memory (DBAM) neural networks with impulse effects. Several results characterizing the aggregated effects of impulse and dynamical property of the impulse-free DBAM on the exponential stability of the considered DBAM have been established. It is shown that the impulsive DBAM will preserve the global exponential stability of the impulse-free DBAM even if the impulses have enlarging effects on the states of neurons.
A Machine Learning Concept for DTN Routing
NASA Technical Reports Server (NTRS)
Dudukovich, Rachel; Hylton, Alan; Papachristou, Christos
2017-01-01
This paper discusses the concept and architecture of a machine learning based router for delay tolerant space networks. The techniques of reinforcement learning and Bayesian learning are used to supplement the routing decisions of the popular Contact Graph Routing algorithm. An introduction to the concepts of Contact Graph Routing, Q-routing and Naive Bayes classification are given. The development of an architecture for a cross-layer feedback framework for DTN (Delay-Tolerant Networking) protocols is discussed. Finally, initial simulation setup and results are given.
Huang, Tingwen; Li, Chuandong; Duan, Shukai; Starzyk, Janusz A
2012-06-01
This paper focuses on the hybrid effects of parameter uncertainty, stochastic perturbation, and impulses on global stability of delayed neural networks. By using the Ito formula, Lyapunov function, and Halanay inequality, we established several mean-square stability criteria from which we can estimate the feasible bounds of impulses, provided that parameter uncertainty and stochastic perturbations are well-constrained. Moreover, the present method can also be applied to general differential systems with stochastic perturbation and impulses.
Integrated communication and control systems. I - Analysis
NASA Technical Reports Server (NTRS)
Halevi, Yoram; Ray, Asok
1988-01-01
The paper presents the results of an ICCS analysis focusing on discrete-time control systems subject to time-varying delays. The present analytical technique is applicable to integrated dynamic systems such as those encountered in advanced aircraft, spacecraft, and the real-time control of robots and machine tools via a high-speed network within an autonomous manufacturing environment. The significance of data latency and missynchronization between individual system components in ICCS networks is discussed in view of the time-varying delays.
Frequency adjustment and synchrony in networks of delayed pulse-coupled oscillators
NASA Astrophysics Data System (ADS)
Nishimura, Joel
2015-01-01
We introduce a system of pulse-coupled oscillators that can change both their phases and frequencies and prove that when there is a separation of time scales between phase and frequency adjustment the system converges to exact synchrony on strongly connected graphs with time delays. The analysis involves decomposing the network into a forest of tree-like structures that capture causality. These results provide a robust method of sensor net synchronization as well as demonstrate a new avenue of possible pulse-coupled oscillator research.
NASA Astrophysics Data System (ADS)
Ma, Shuo; Kang, Yanmei
2018-04-01
In this paper, the exponential synchronization of stochastic neutral-type neural networks with time-varying delay and Lévy noise under non-Lipschitz condition is investigated for the first time. Using the general Itô's formula and the nonnegative semi-martingale convergence theorem, we derive general sufficient conditions of two kinds of exponential synchronization for the drive system and the response system with adaptive control. Numerical examples are presented to verify the effectiveness of the proposed criteria.
The Use of End-to-End Multicast Measurements for Characterizing Internal Network Behavior
2002-08-01
dropping on the basis Random Early Detection ( RED ) [17] is another mechanism by which packet loss may become decorrelated. It remains to be seen whether...this mechanism will be widely deployed in communications networks. On the other hand, the use of RED to merely mark packets will not break correlations...Tail and Random Early Detection ( RED ) buffer discard methods, [17]. We compared the inferred loss and delay with actual probe loss and delay. We found
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1990-01-01
The implementation and verification of the delay-compensation algorithm are addressed. The delay compensator has been experimentally verified at an IEEE 802.4 network testbed for velocity control of a DC servomotor. The performance of the delay-compensation algorithm was also examined by combined discrete-event and continuous-time simulation of the flight control system of an advanced aircraft that uses the SAE (Society of Automotive Engineers) linear token passing bus for data communications.
Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.
Ledoux, Erwan; Brunel, Nicolas
2011-01-01
We investigate the dynamics of recurrent networks of excitatory (E) and inhibitory (I) neurons in the presence of time-dependent inputs. The dynamics is characterized by the network dynamical transfer function, i.e., how the population firing rate is modulated by sinusoidal inputs at arbitrary frequencies. Two types of networks are studied and compared: (i) a Wilson-Cowan type firing rate model; and (ii) a fully connected network of leaky integrate-and-fire (LIF) neurons, in a strong noise regime. We first characterize the region of stability of the "asynchronous state" (a state in which population activity is constant in time when external inputs are constant) in the space of parameters characterizing the connectivity of the network. We then systematically characterize the qualitative behaviors of the dynamical transfer function, as a function of the connectivity. We find that the transfer function can be either low-pass, or with a single or double resonance, depending on the connection strengths and synaptic time constants. Resonances appear when the system is close to Hopf bifurcations, that can be induced by two separate mechanisms: the I-I connectivity and the E-I connectivity. Double resonances can appear when excitatory delays are larger than inhibitory delays, due to the fact that two distinct instabilities exist with a finite gap between the corresponding frequencies. In networks of LIF neurons, changes in external inputs and external noise are shown to be able to change qualitatively the network transfer function. Firing rate models are shown to exhibit the same diversity of transfer functions as the LIF network, provided delays are present. They can also exhibit input-dependent changes of the transfer function, provided a suitable static non-linearity is incorporated.
Low-Latency and Energy-Efficient Data Preservation Mechanism in Low-Duty-Cycle Sensor Networks.
Jiang, Chan; Li, Tao-Shen; Liang, Jun-Bin; Wu, Heng
2017-05-06
Similar to traditional wireless sensor networks (WSN), the nodes only have limited memory and energy in low-duty-cycle sensor networks (LDC-WSN). However, different from WSN, the nodes in LDC-WSN often sleep most of their time to preserve their energies. The sleeping feature causes serious data transmission delay. However, each source node that has sensed data needs to quickly disseminate its data to other nodes in the network for redundant storage. Otherwise, data would be lost due to its source node possibly being destroyed by outer forces in a harsh environment. The quick dissemination requirement produces a contradiction with the sleeping delay in the network. How to quickly disseminate all the source data to all the nodes with limited memory in the network for effective preservation is a challenging issue. In this paper, a low-latency and energy-efficient data preservation mechanism in LDC-WSN is proposed. The mechanism is totally distributed. The data can be disseminated to the network with low latency by using a revised probabilistic broadcasting mechanism, and then stored by the nodes with LT (Luby Transform) codes, which are a famous rateless erasure code. After the process of data dissemination and storage completes, some nodes may die due to being destroyed by outer forces. If a mobile sink enters the network at any time and from any place to collect the data, it can recover all of the source data by visiting a small portion of survived nodes in the network. Theoretical analyses and simulation results show that our mechanism outperforms existing mechanisms in the performances of data dissemination delay and energy efficiency.
Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.
2016-01-01
Within the framework of ‘Network Physiology’, we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain–heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain–heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991
NASA Astrophysics Data System (ADS)
Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.
2016-05-01
Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.
Energy latency tradeoffs for medium access and sleep scheduling in wireless sensor networks
NASA Astrophysics Data System (ADS)
Gang, Lu
Wireless sensor networks are expected to be used in a wide range of applications from environment monitoring to event detection. The key challenge is to provide energy efficient communication; however, latency remains an important concern for many applications that require fast response. The central thesis of this work is that energy efficient medium access and sleep scheduling mechanisms can be designed without necessarily sacrificing application-specific latency performance. We validate this thesis through results from four case studies that cover various aspects of medium access and sleep scheduling design in wireless sensor networks. Our first effort, DMAC, is to design an adaptive low latency and energy efficient MAC for data gathering to reduce the sleep latency. We propose staggered schedule, duty cycle adaptation, data prediction and the use of more-to-send packets to enable seamless packet forwarding under varying traffic load and channel contentions. Simulation and experimental results show significant energy savings and latency reduction while ensuring high data reliability. The second research effort, DESS, investigates the problem of designing sleep schedules in arbitrary network communication topologies to minimize the worst case end-to-end latency (referred to as delay diameter). We develop a novel graph-theoretical formulation, derive and analyze optimal solutions for the tree and ring topologies and heuristics for arbitrary topologies. The third study addresses the problem of minimum latency joint scheduling and routing (MLSR). By constructing a novel delay graph, the optimal joint scheduling and routing can be solved by M node-disjoint paths algorithm under multiple channel model. We further extended the algorithm to handle dynamic traffic changes and topology changes. A heuristic solution is proposed for MLSR under single channel interference. In the fourth study, EEJSPC, we first formulate a fundamental optimization problem that provides tunable energy-latency-throughput tradeoffs with joint scheduling and power control and present both exponential and polynomial complexity solutions. Then we investigate the problem of minimizing total transmission energy while satisfying transmission requests within a latency bound, and present an iterative approach which converges rapidly to the optimal parameter settings.
An observer-based compensator for distributed delays in integrated control systems
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1989-01-01
This paper presents an algorithm for compensation of delays that are distributed within a control loop. The observer-based algorithm is especially suitable for compensating network-induced delays that are likely to occur in integrated control systems of the future generation aircraft. The robustness of the algorithm relative to uncertainties in the plant model have been examined.
Durstewitz, Daniel
2017-06-01
The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects of the nonlinear dynamics underlying observed neuronal time series, and directly link these to computational properties.
NASA Astrophysics Data System (ADS)
Serbu, Sabina; Rivière, Étienne; Felber, Pascal
The emergence of large-scale distributed applications based on many-to-many communication models, e.g., broadcast and decentralized group communication, has an important impact on the underlying layers, notably the Internet routing infrastructure. To make an effective use of network resources, protocols should both limit the stress (amount of messages) on each infrastructure entity like routers and links, and balance as much as possible the load in the network. Most protocols use application-level metrics such as delays to improve efficiency of content dissemination or routing, but the extend to which such application-centric optimizations help reduce and balance the load imposed to the infrastructure is unclear. In this paper, we elaborate on the design of such network-friendly protocols and associated metrics. More specifically, we investigate random-based gossip dissemination. We propose and evaluate different ways of making this representative protocol network-friendly while keeping its desirable properties (robustness and low delays). Simulations of the proposed methods using synthetic and real network topologies convey and compare their abilities to reduce and balance the load while keeping good performance.
Modeling and analyzing cascading dynamics of the Internet based on local congestion information
NASA Astrophysics Data System (ADS)
Zhu, Qian; Nie, Jianlong; Zhu, Zhiliang; Yu, Hai; Xue, Yang
2018-06-01
Cascading failure has already become one of the vital issues in network science. By considering realistic network operational settings, we propose the congestion function to represent the congested extent of node and construct a local congestion-aware routing strategy with a tunable parameter. We investigate the cascading failures on the Internet triggered by deliberate attacks. Simulation results show that the tunable parameter has an optimal value that makes the network achieve a maximum level of robustness. The robustness of the network has a positive correlation with tolerance parameter, but it has a negative correlation with the packets generation rate. In addition, there exists a threshold of the attacking proportion of nodes that makes the network achieve the lowest robustness. Moreover, by introducing the concept of time delay for information transmission on the Internet, we found that an increase of the time delay will decrease the robustness of the network rapidly. The findings of the paper will be useful for enhancing the robustness of the Internet in the future.
Li, Xuanying; Li, Xiaotong; Hu, Cheng
2017-12-01
In this paper, without transforming the second order inertial neural networks into the first order differential systems by some variable substitutions, asymptotic stability and synchronization for a class of delayed inertial neural networks are investigated. Firstly, a new Lyapunov functional is constructed to directly propose the asymptotic stability of the inertial neural networks, and some new stability criteria are derived by means of Barbalat Lemma. Additionally, by designing a new feedback control strategy, the asymptotic synchronization of the addressed inertial networks is studied and some effective conditions are obtained. To reduce the control cost, an adaptive control scheme is designed to realize the asymptotic synchronization. It is noted that the dynamical behaviors of inertial neural networks are directly analyzed in this paper by constructing some new Lyapunov functionals, this is totally different from the traditional reduced-order variable substitution method. Finally, some numerical simulations are given to demonstrate the effectiveness of the derived theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Qiankun; Cao, Jinde
2007-05-01
A bidirectional associative memory neural network model with distributed delays is considered. By constructing a new Lyapunov functional, employing the homeomorphism theory, M-matrix theory and the inequality (a[greater-or-equal, slanted]0,bk[greater-or-equal, slanted]0,qk>0 with , and r>1), a sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability of the equilibrium point for the model. Moreover, the exponential converging velocity index is estimated, which depends on the delay kernel functions and the system parameters. The results generalize and improve the earlier publications, and remove the usual assumption that the activation functions are bounded . Two numerical examples are given to show the effectiveness of the obtained results.
Quick Vegas: Improving Performance of TCP Vegas for High Bandwidth-Delay Product Networks
NASA Astrophysics Data System (ADS)
Chan, Yi-Cheng; Lin, Chia-Liang; Ho, Cheng-Yuan
An important issue in designing a TCP congestion control algorithm is that it should allow the protocol to quickly adjust the end-to-end communication rate to the bandwidth on the bottleneck link. However, the TCP congestion control may function poorly in high bandwidth-delay product networks because of its slow response with large congestion windows. In this paper, we propose an enhanced version of TCP Vegas called Quick Vegas, in which we present an efficient congestion window control algorithm for a TCP source. Our algorithm improves the slow-start and congestion avoidance techniques of original Vegas. Simulation results show that Quick Vegas significantly improves the performance of connections as well as remaining fair when the bandwidth-delay product increases.
Throughput and delay analysis of IEEE 802.15.6-based CSMA/CA protocol.
Ullah, Sana; Chen, Min; Kwak, Kyung Sup
2012-12-01
The IEEE 802.15.6 is a new communication standard on Wireless Body Area Network (WBAN) that focuses on a variety of medical, Consumer Electronics (CE) and entertainment applications. In this paper, the throughput and delay performance of the IEEE 802.15.6 is presented. Numerical formulas are derived to determine the maximum throughput and minimum delay limits of the IEEE 802.15.6 for an ideal channel with no transmission errors. These limits are derived for different frequency bands and data rates. Our analysis is validated by extensive simulations using a custom C+ + simulator. Based on analytical and simulation results, useful conclusions are derived for network provisioning and packet size optimization for different applications.
NASA Astrophysics Data System (ADS)
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.
2013-09-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.
Analysis of Dependencies and Impacts of Metroplex Operations
NASA Technical Reports Server (NTRS)
DeLaurentis, Daniel A.; Ayyalasomayajula, Sricharan
2010-01-01
This report documents research performed by Purdue University under subcontract to the George Mason University (GMU) for the Metroplex Operations effort sponsored by NASA's Airportal Project. Purdue University conducted two tasks in support of the larger efforts led by GMU: a) a literature review on metroplex operations followed by identification and analysis of metroplex dependencies, and b) the analysis of impacts of metroplex operations on the larger U.S. domestic airline service network. The tasks are linked in that the ultimate goal is an understanding of the role of dependencies among airports in a metroplex in causing delays both locally and network-wide. The Purdue team has formulated a system-of-systems framework to analyze metroplex dependencies (including simple metrics to quantify them) and develop compact models to predict delays based on network structure. These metrics and models were developed to provide insights for planners to formulate tailored policies and operational strategies that streamline metroplex operations and mitigate delays and congestion.
Senan, Sibel; Syed Ali, M; Vadivel, R; Arik, Sabri
2017-02-01
In this study, we present an approach for the decentralized event-triggered synchronization of Markovian jumping neutral-type neural networks with mixed delays. We present a method for designing decentralized event-triggered synchronization, which only utilizes locally available information, in order to determine the time instants for transmission from sensors to a central controller. By applying a novel Lyapunov-Krasovskii functional, as well as using the reciprocal convex combination method and some inequality techniques such as Jensen's inequality, we obtain several sufficient conditions in terms of a set of linear matrix inequalities (LMIs) under which the delayed neural networks are stochastically stable in terms of the error systems. Finally, we conclude that the drive systems synchronize stochastically with the response systems. We show that the proposed stability criteria can be verified easily using the numerically efficient Matlab LMI toolbox. The effectiveness and feasibility of the results obtained are verified by numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
OSLG: A new granting scheme in WDM Ethernet passive optical networks
NASA Astrophysics Data System (ADS)
Razmkhah, Ali; Rahbar, Akbar Ghaffarpour
2011-12-01
Several granting schemes have been proposed to grant transmission window and dynamic bandwidth allocation (DBA) in passive optical networks (PON). Generally, granting schemes suffer from bandwidth wastage of granted windows. Here, we propose a new granting scheme for WDM Ethernet PONs, called optical network unit (ONU) Side Limited Granting (OSLG) that conserves upstream bandwidth, thus resulting in decreasing queuing delay and packet drop ratio. In OSLG instead of optical line terminal (OLT), each ONU determines its transmission window. Two OSLG algorithms are proposed in this paper: the OSLG_GA algorithm that determines the size of its transmission window in such a way that the bandwidth wastage problem is relieved, and the OSLG_SC algorithm that saves unused bandwidth for more bandwidth utilization later on. The OSLG can be used as granting scheme of any DBA to provide better performance in the terms of packet drop ratio and queuing delay. Our performance evaluations show the effectiveness of OSLG in reducing packet drop ratio and queuing delay under different DBA techniques.
Yu, Dongyuan; Xu, Xu; Zhou, Jing; Li, Eric
2017-05-01
This study considers a delayed neural network with excitatory and inhibitory shortcuts. The global stability of the trivial equilibrium is investigated based on Lyapunov's direct method and the delay-dependent criteria are obtained. It is shown that both the excitatory and inhibitory shortcuts decrease the stability interval, but a time delay can be employed as a global stabilizer. In addition, we analyze the bounds of the eigenvalues of the adjacent matrix using matrix perturbation theory and then obtain the generalized sufficient conditions for local stability. The possibility of small inhibitory shortcuts is helpful for maintaining stability. The mechanisms of instability, bifurcation modes, and chaos are also investigated. Compared with methods based on mean-field theory, the proposed method can guarantee the stability of the system in most cases with random events. The proposed method is effective for cases where excitatory and inhibitory shortcuts exist simultaneously in the network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monowar, Muhammad Mostafa; Rahman, Md. Obaidur; Hong, Choong Seon; Lee, Sungwon
2010-01-01
Energy conservation is one of the striking research issues now-a-days for power constrained wireless sensor networks (WSNs) and hence, several duty-cycle based MAC protocols have been devised for WSNs in the last few years. However, assimilation of diverse applications with different QoS requirements (i.e., delay and reliability) within the same network also necessitates in devising a generic duty-cycle based MAC protocol that can achieve both the delay and reliability guarantee, termed as multi-constrained QoS, while preserving the energy efficiency. To address this, in this paper, we propose a Multi-constrained QoS-aware duty-cycle MAC for heterogeneous traffic in WSNs (MQ-MAC). MQ-MAC classifies the traffic based on their multi-constrained QoS demands. Through extensive simulation using ns-2 we evaluate the performance of MQ-MAC. MQ-MAC provides the desired delay and reliability guarantee according to the nature of the traffic classes as well as achieves energy efficiency. PMID:22163439